1.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
2.Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).PubMed
Article
Google Scholar
3.Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–358 (2010).Article
Google Scholar
4.Invasive Species Specialist Group IUCN guidelines for the prevention of biodiversity loss caused by alien invasive species. https://portals.iucn.org/library/node/12673 (2000).5.Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinction. Trends Ecol. Evol. 20, 110 (2005).PubMed
Article
Google Scholar
6.Hassan, R., Scholes, R. J. & Ash, N. Ecosystems and human well-being: Current state and trends: Findings of the Condition and Trends working group (Millennium Ecosystem Assessment Series) (Island Press, 2005).7.Vitousek, P. M., D’Antonio, C. M., Loope, L. L., Rejmánek, M. & Westbrooks, R. Introduced species: A significant component of human-caused global change. N. Z. J. Ecol. 21, 1–16 (1997).
Google Scholar
8.Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).Article
Google Scholar
9.Hulme, P. E. Beyond control: Wider implications for the management of biological invasions. J. Appl. Ecol. 43, 835–847 (2006).Article
Google Scholar
10.Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N. & Kornis, M. S. A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205 (2010).Article
Google Scholar
11.Myers, J. H., Simberloff, D., Kuris, A. M. & Carey, J. R. Eradication revisited: Dealing with exotic species. Trends Ecol. Evol. 15, 316–320 (2000).CAS
PubMed
Article
Google Scholar
12.Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).Article
Google Scholar
13.McDonald, L. L. Sampling rare populations. In Sampling Rare or Elusive Species (ed. Thompson, W. L.) 11–42 (Island Press, 2004).
Google Scholar
14.Harvey, C. T., Qureshi, S. A. & MacIsaac, H. J. Detection of a colonizing, aquatic, non-indigenous species. Divers. Distrib. 15, 429–437 (2009).Article
Google Scholar
15.Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed
PubMed Central
Article
Google Scholar
16.Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).Article
Google Scholar
17.Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).PubMed
Article
Google Scholar
18.Thomsen, P. F. & Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).Article
Google Scholar
19.Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).CAS
Article
Google Scholar
20.Brys, R. et al. Monitoring of spatio-temporal occupancy patterns of fish and amphibian species in a lentic aquatic system using environmental DNA. Mol. Ecol. https://doi.org/10.1111/mec.15742 (2021).Article
Google Scholar
21.Smart, A. S. et al. Assessing the cost-efficiency of environmental DNA sampling. Methods Ecol. Evol. 7, 1291–1298 (2016).Article
Google Scholar
22.Wilcox, T. M. et al. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv. 194, 209–216 (2016).Article
Google Scholar
23.Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).Article
Google Scholar
24.Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed
Article
Google Scholar
25.Furlan, E. M., Gleeson, D., Hardy, C. M. & Duncan, R. P. A framework for estimating the sensitivity of eDNA surveys. Mol. Ecol. Resour. 16, 641–654 (2016).CAS
PubMed
Article
Google Scholar
26.Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).Article
Google Scholar
27.Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678 (2020).PubMed
Article
Google Scholar
28.Wilcox, T. M. et al. Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS One 8, e59520. https://doi.org/10.1371/journal.pone.0059520 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
29.Freeland, J. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA (eDNA). Genome 60, 358–374 (2016).PubMed
Article
CAS
Google Scholar
30.Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).Article
Google Scholar
31.Veldhoen, N. et al. Implementation of novel design features for qPCR-based eDNA assessment. PLoS One 11, e0164907. https://doi.org/10.1371/journal.pone.0164907 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Lin, M., Zhang, S. & Yao, M. Effective detection of environmental DNA from the invasive American bullfrog. Biol. Invasions 21, 2255–2268 (2019).Article
Google Scholar
33.Thalinger, B. et al. A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environ. DNA https://doi.org/10.1002/edn3.189 (2021).Article
Google Scholar
34.Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).Article
Google Scholar
35.Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Nathan, L. M., Simmons, M., Wegleitner, B. J., Jerde, C. L. & Mahon, A. R. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ. Sci. Technol. 48, 12800–12806 (2014).ADS
CAS
PubMed
Article
Google Scholar
37.Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS One 10, e0122763. https://doi.org/10.1371/journal.pone.0122763 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
38.Brys, R. et al. Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis). J. Fish Biol. https://doi.org/10.1111/jfb.14315 (2020).Article
PubMed
Google Scholar
39.Lacoursière-Roussel, A., Côté, G., Leclerc, V. & Bernatchez, L. Quantifying relative fish abundance with eDNA: A promising tool for fisheries management. J. Appl. Ecol. 53, 1148–1157 (2016).Article
CAS
Google Scholar
40.Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).CAS
Article
Google Scholar
41.Buxton, A. S., Groombridge, J. J., Zakaria, N. B. & Griffiths, R. A. Seasonal variation in environmental DNA in relation to population size and environmental factors. Sci. Rep. 7, 46294. https://doi.org/10.1038/srep46294 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
42.Takahara, T., Iwai, N., Yasumiba, K. & Takeshi, I. Comparison of the detection of 3 endangered frog species by eDNA and acoustic surveys across 3 seasons. Freshw. Sci. 39, 18–27 (2020).Article
Google Scholar
43.Kats, L. B. & Ferrer, R. P. Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Divers. Distrib. 9, 99–110 (2003).Article
Google Scholar
44.Martel, A. et al. The novel ‘Candidatus Amphibiichlamydia ranarum’ is highly prevalent in invasive exotic bullfrogs (Lithobates catesbeianus). Environ. Microbiol. Rep. 5, 105–108 (2012).PubMed
Article
Google Scholar
45.Blaustein, A. R. et al. Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biol. Invasions 22, 1771–1784 (2020).Article
Google Scholar
46.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), First published as special lift-out in Aliens 12 (2000).47.Adams, M. J. & Pearl, C. A. Problems and opportunities managing invasive bullfrogs: Is there any hope? In Biological Invaders in Waters: Profiles, Distribution and Threats (ed. Gherardi, F.) 679–693 (Springer, Paris, 2007).
Google Scholar
48.Louette, G., Devisscher, S. & Adriaens, T. Combating adult invasive American bullfrog Lithobates catesbeianus. Eur. J. Wildl. Res. 60, 703–706 (2014).Article
Google Scholar
49.Kamoroff, C. et al. Effective removal of the American bullfrog (Lithobates catesbeianus) on a landscape level: Long term monitoring and removal efforts in Yosemite Valley, Yosemite National Park. Biol Invasions 22, 617–626 (2020).Article
Google Scholar
50.Jooris, R. Palmt de stierkikker uit Noord-Amerika ook Vlaanderen in?. Natuur. Focus 1, 13–15 (2001).
Google Scholar
51.Adriaens, T., Devisscher, S. & Louette, G. Risk analysis of American bullfrog, Lithobates catesbeianus. Risk analysis report of non-native organisms in Belgium. Rapporten van het Instituut voor Natuur- en Bosonderzoek 41. https://doi.org/10.13140/2.1.2431.5688 (2013).52.Descamps, S. & De Vocht, A. Movements and habitat use of the invasive species Lithobates catesbeianus in the valley of the Grote Nete (Belgium). Belg. J. Zool. 146, 90–100 (2016).
Google Scholar
53.Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).Article
Google Scholar
54.Lefever, S., Pattyn, F., Hellemans, J. & Vandesompele, J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin. Chem. 59, 1470–1480 (2013).CAS
PubMed
Article
Google Scholar
55.Erligh, H. A., Gelfand, D. & Sninsky, J. J. Recent advances in the polymerase chain reaction. Science 252, 1643–1651 (1991).ADS
Article
Google Scholar
56.Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026 (2012).CAS
PubMed
Article
Google Scholar
57.Lievens, A., Jacchia, S., Kagkli, D., Savini, C. & Querci, M. Measuring digital PCR quality: Performance parameters and their optimization. PLoS One 11, e0153317. https://doi.org/10.1371/journal.pone.0153317 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
58.Pecoraro, S. et al. Overview and recommendations for the application of digital PCR. EUR 29673 EN, Publications Office of the European Union. https://doi.org/10.2760/192883 (2019).59.Harper, L. R. et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41 (2019).CAS
Article
Google Scholar
60.Doi, H. et al. Droplet digital PCR outperforms real-time PCR in the detection of environmental DNA from an invasive fish species. Environ. Sci. Technol. 49, 5601–5608 (2015).ADS
CAS
PubMed
Article
Google Scholar
61.Wells, K. D. (ed.) The Ecology and Behavior of Amphibians (The University of Chicago Press, 2007).
Google Scholar
62.Willis, Y. L., Moyle, D. I. & Baskett, T. S. Emergence, breeding, hibernation, movements and transformation of the bullfrog, Rana catesbeiana Missouri. Copeia 1, 30–41 (1956).Article
Google Scholar
63.Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS One 9, e114639. https://doi.org/10.1371/journal.pone.0114639 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
64.Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).ADS
CAS
PubMed
Article
Google Scholar
65.Lance, R. F. et al. Experimental observations on the decay of environmental DNA from bighead and silver carps. Manag. Biol. Invasions 8, 343–359 (2017).Article
Google Scholar
66.Hoorfar, J. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J. Clin. Microbiol. 42, 1863–1868 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Devisscher, S. et al. Beheer van de stierkikker in Vlaanderen en Nederland. Rapporten van het Instituut voor Natuur- en Bosonderzoek 52. https://www.researchgate.net/publication/235789235 (2012).68.Bylemans, J. et al. An environmental DNA-based method for monitoring spawning activity: A case study using the endangered Macquarie perch (Macquaria australasica). Methods Ecol. Evol. 8, 646–655 (2017).Article
Google Scholar
69.Dunn, N., Priestley, V., Herraiz, A., Arnold, R. & Savolainen, V. Behavior and season affect crayfish detection and density inference using environmental DNA. Ecol. Evol. 7, 7777–7785 (2017).PubMed
PubMed Central
Article
Google Scholar
70.Bury, R. B. & Whelan, J. A. Ecology and management of the bullfrog. U.S. Fish and Wildlife Service 155 (1984).71.Gahl, M. K., Calhoun, A. J. K. & Graves, R. Facultative use of seasonal pools by American bullfrogs (Rana catesbeiana). Wetlands 29, 697–703 (2009).Article
Google Scholar
72.Biek, R., Funk, C., Maxell, B. A. & Mills, L. S. What is missing in amphibian decline research: Insights from ecological sensitivity analysis. Conserv. Biol. 16, 728–734 (2002).Article
Google Scholar
73.Govindarajulu, P., Altwegg, R. & Anholt, B. R. Matrix model investigation of invasive species control: Bullfrogs on Vancouver Island. Ecol. Appl. 15, 2161–2170 (2005).Article
Google Scholar
74.Carim, K. J. et al. Environmental DNA sampling informs fish eradication efforts: Case studies and lessons learned. N. Am. J. Fish. 40, 488–508 (2020).Article
Google Scholar
75.Riaz, T. et al. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39, e145. https://doi.org/10.1093/nar/gkr732 (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
76.Moyer, G. R., Díaz-Ferguson, E., Hill, J. E. & Shea, C. Assessing environmental DNA detection in controlled lentic systems. PLoS One 9, e103767. https://doi.org/10.1371/journal.pone.0103767 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
77.Turner, C. R. et al. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol. Evol. 7, 676–684 (2014).Article
Google Scholar
78.U.S. Fish and Wildlife Service. Quality assurance project plan: eDNA monitoring of bighead and silver carps. https://www.fws.gov/midwest/fisheries/eDNA/documents/QAPP.pdf (2017).79.Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: Advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2017).Article
Google Scholar
80.RStudio Team (2020) RStudio: Integrated Development Environment for R. RStudio, PBC. http://www.rstudio.com/. More