More stories

  • in

    The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula

    The catenary sequence of soilsThe catena of Andosols down a slope near a hot spring in the Valley of Geysers was subdivided into four thermal zones (Fig. 1a–e), which are described below.Figure 1Location of study area (a–c), soil pits along the catena (d, e) and photos of soil pits (f–i). (a b) Study area location. Soil map is from133 (open access) with additions and corrections by I.N. Semenkov based on the map of soil temperature at a depth of 15 cm in the Valley of Geysers131 and the soil names from44 using CorelDraw X7 software (https://www.coreldraw.com/). (c) Top view of the left side of the Geysernaya River with the body of a catastrophic landslide, a visitor center (in the left lower part) and the location of the transect studied (1–15). (d) The location of transect studied. (e) A schematic profile of the catena studied with numbered soil pits. The main soil pits selected for comprehensive analyses (see section ‘Soil analyses’) are in red. (f) Non-heated Eutrosilic Silandic Andosols (Arenic, Cutanic) on pyroclastic material (pit no 16, Zone I), within levelled parts of the interfluve, under tall-herb meadow communities with local patches of Erman’s birch woods. (g) Slightly heated Eutrosilic Aluandic Andosols (Cutanic, Loamic, Natric) in the upper part of the catena, on hydrothermally altered sandy-loamy pyroclastic material (pit no 12, Zone II), on slightly heated slopes, under tall-herb meadows. (h) Moderately heated Eutrosilic Gleyic Aluandic Andosols (Loamic, Reductic, Protosalic, Hyperthionic) in the middle part of the catena, on hydrothermally altered clayey pyroclastic material (pit no 9.1, Zone III), under different moss and ‘microzonal’ communities. (i) Hot Gleyic Aluandic Andosols (Clayic, Reductic, Salic, Hyperthionic) in the lower part of the catena, on hydrothermal clays (pit no 4, Zone IV), on most heated bare slopes.Full size imageZone I. Non-heated Eutrosilic Silandic Andosols (Arenic, Cutanic) under Kamchatka’s tall herb communities and fragmented Erman’s birch woodsNon-heated Andosols with temperatures of 50 with very small amounts of PM5–50 ( More

  • in

    Environmental DNA detection of an invasive ant species (Linepithema humile) from soil samples

    1.Moller, H. Lessons for invasion theory from social insects. Biol. Conserv. 78, 125–142 (1996).Article 

    Google Scholar 
    2.Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).Article 

    Google Scholar 
    3.Kenis, M. et al. Ecological effects of invasive alien insects. Biol. Invasion 11, 21–45 (2009).Article 

    Google Scholar 
    4.McGlynn, T. P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeog. 26, 535–548 (1999).Article 

    Google Scholar 
    5.Morrison, L. W., Porter, S. D., Daniels, E. & Korzukhin, M. D. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invasions 6, 183–191 (2004).Article 

    Google Scholar 
    6.Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range?. Global Ecol. Biogeog. 16, 24–33 (2007).Article 

    Google Scholar 
    7.Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. & Courchamp, F. Worldwide ant invasions under climate change. Biodivers. Conserv. 24, 117–128 (2015).Article 

    Google Scholar 
    8.Rowles, A. D. & O’Dowd, D. J. Impacts of the invasive Argentine ant on native ants and other invertebrates in coastal scrub in south-eastern Australia. Austral. Ecol. 34, 239–248 (2009).Article 

    Google Scholar 
    9.Naumann, K. & Higgins, R. J. The European fire ant (Hymenoptera: Formicidae) as an invasive species: Impact on local ant species and other epigaeic arthropods. Can. Entomol. 147, 592–601 (2015).Article 

    Google Scholar 
    10.Uchida, S. et al. Effects of an invasive ant on land snails in the Ogasawara Islands. Conserv. Biol. 30, 1330–1337 (2016).PubMed 
    Article 

    Google Scholar 
    11.Helanterä, H., Strassmann, J. E., Carrillo, J. & Queller, D. C. Unicolonial ants: Where do they come from, what are they and where are they going?. Trends Ecol. Evol. 24, 341–349 (2009).PubMed 
    Article 

    Google Scholar 
    12.Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Ann. Rev. Ecol. Syst. 33, 181–233 (2002).Article 

    Google Scholar 
    13.Stafford, C. T. Hypersensitivity to fire ant venom. Ann. Allerg. Asthma Im. 77, 87–99 (1996).CAS 
    Article 

    Google Scholar 
    14.Kemp, S. F., deShazo, R. D., Moffitt, J. E., Williams, D. F. & Buhner, W. A. II. Expanding habitat of the imported fire ant (Solenopsis invicta): A public health concern. J. Allergy Clin. Immun. 105, 683–691 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Morrison, J. E. Jr., Williams, D. F., Oi, D. H. & Potter, K. N. Damage to dry crop seed by red imported fire ant (Hymenoptera: Formicidae). J. Econ. Entomol. 90, 218–222 (1997).Article 

    Google Scholar 
    16.Mikissa, J. B., Jeffery, K., Fresneau, D. & Mercier, J. L. Impact of an invasive alien ant, Wasmannia auropunctata Roger., on a specialised plant-ant mutualism, Barteria fistulosa Mast. and Tetraponera aethiops F. Smith., in a Gabon forest. Ecol. Entomol. 38, 580–584 (2013).Article 

    Google Scholar 
    17.Keller, R. P., Lodge, D. M. & Finnoff, D. C. Risk assessment for invasive species produces net bioeconomic benefits. Proc. Natl. Acad. Sci. 104, 203–207 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Hulme, P. E., Nentwig, W., Pyšek, P. & Vilà, M. Common market, shared problems: Time for a coordinated response to biological invasions in Europe. Neobiota 8, 3–19 (2009).
    Google Scholar 
    19.Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against Alien species?. PLoS One 7, 48157 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    20.Sakamoto, Y., Kumagai, N. H. & Goka, K. Declaration of local chemical eradication of the Argentine ant: Bayesian estimation with a multinomial-mixture model. Sci. Rep. 7, 1–8 (2017).Article 
    CAS 

    Google Scholar 
    21.Jiménez-Carmona, F., Carpintero, S. & Reyes-López, J. L. The digging-in effect on ant studies with pitfall traps: Influence of type of habitat and sampling time. Entomol. Exp. Appl. 167, 906–914 (2019).Article 

    Google Scholar 
    22.Paknia, O., Bergmann, T. & Hadrys, H. Some ‘ant’swers: Application of a layered barcode approach to problems in ant taxonomy. Mol. Ecol. Resour. 15, 1262–1274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Chen, Y. & Zhou, S. Phylogenetic relationships based on DNA barcoding among 16 species of the Ant Genus Formica (Hymenoptera: Formicidae) from China. J. Insect Sci. 17, 1–7 (2017).CAS 
    Article 

    Google Scholar 
    24.Giraud, T., Pedersen, J. S. & Keller, L. Evolution of supercolonies: Argentine ants of southern Europe. Proc. Natl. Acad. Sci. 99, 6075–6079 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Touyama, Y., Ogata, K. & Sugiyama, T. The Argentine ant, Linepithema humile, in Japan: Assessment of impact on species diversity of ant communities in urban environments. Entomol. Sci. 6, 57–62 (2003).Article 

    Google Scholar 
    26.Okaue, M. et al. Distribution of the Argentine ant, Linepithema humile, along the Seto Inland Sea, western Japan: Result of surveys in 2003–2005. Entomol. Sci. 10, 337–342 (2007).Article 

    Google Scholar 
    27.Sunamura, E., Nishisue, K., Terayama, M. & Tatsuki, S. Invasion of four Argentine ant supercolonies into Kobe Port, Japan: Their distributions and effects on indigenous ants (Hymenoptera: Formicidae). Sociobiol. 50, 659–674 (2007).
    Google Scholar 
    28.Inoue, M. N. et al. Recent range expansion of Argentine ant in Japan. Divers. Distrib. 19, 2937 (2013).Article 

    Google Scholar 
    29.Park, S. H., Hosoishi, S. & Ogata, K. Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan. J. Ecol. Environ. 37, 123–129 (2014).Article 

    Google Scholar 
    30.Sugiyama, T. & Onishi, O. Invasion of Argentinean ants in Kyoto City Ari. J. Myrmecol. Soci. Jpn. 32, 127–129 (2009).
    Google Scholar 
    31.Murakami, K. Exotic ants in PortIsland, Kobe City Ari. J. Myrmecol. Soci. Jpn. 26, 45–46 (2002).
    Google Scholar 
    32.Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).Article 

    Google Scholar 
    34.Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N. & Kawabata, Z. Surveillance of fish species composition using environmental DNA. Limnology 13, 193–197 (2012).CAS 
    Article 

    Google Scholar 
    35.Bienert, F. et al. Tracking earthworm communities from soil DNA. Mol. Ecol. 21, 2017–2030 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Turner, C. R., Uy, K. L. & Everhart, R. C. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biol. Conserv. 183, 93–102 (2015).Article 

    Google Scholar 
    37.Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).Article 

    Google Scholar 
    38.Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).Article 

    Google Scholar 
    39.Takahara, T., Minamoto, T. & Doi, H. Using environmental DNA to estimate the distribution of an invasive fish species in Ponds. PLoS One 8, e56584 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Geerts, A. N., Boets, P., Van den Heede, S., Goethals, P. & Van der Heyden, C. A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecol. Indic. 84, 564–572 (2018).CAS 
    Article 

    Google Scholar 
    41.Valentin, R. E., Fonseca, D. M., Nielsen, A. L., Leskey, T. C. & Lockwood, J. L. Early detection of invasive exotic insect infestations using eDNA from crop surfaces. Front. Ecol. Environ. 16, 265–270 (2018).Article 

    Google Scholar 
    42.Shogren, A. J. et al. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 7, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    43.Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS One 7, e35868 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Tillotson, M. D. et al. Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biol. Conserv. 220, 1–11 (2018).Article 

    Google Scholar 
    46.Sakata, M. K. et al. Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environ. DNA 2, 505–518 (2020).Article 

    Google Scholar 
    47.Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fert. Soils 45, 219–235 (2009).CAS 
    Article 

    Google Scholar 
    48.Matisoo-Smith, E. et al. Recovery of DNA and pollen from New Zealand lake sediments. Quat. Int. 184, 139–149 (2008).Article 

    Google Scholar 
    49.Foucher, A. et al. Persistence of environmental DNA in cultivated soils: Implication of this memory effect for reconstructing the dynamics of land use and cover changes. Sci. Rep. 10, 10502 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Sirois, S. H. & Buckley, D. H. Factors governing extracellular DNA degradation dynamics in soil. Environ. Microbiol. Rep. 11, 173–184 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Ogram, A. V., Mathot, M. L., Harsh, J. B., Boyle, J. & Pettigrew, C. A. Effects of DNA polymer length on its adsorption to soils. Appl. Environ. Microbiol. 60, 393–396 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Braid, M. D., Daniels, L. M. & Kitts, C. L. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52, 389–393 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Shogren, A. J. et al. Modelling the transport of environmental DNA through a porous substrate using continuous flow-through column experiments. J. R. Soc. Interface 13, 20160290 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).CAS 
    Article 

    Google Scholar 
    55.Hayami, K. et al. Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs. Ecol. Evol. 10, 5354–5367 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Sato, K. et al. Relationship among establishment durations, kin relatedness, aggressiveness, and distance between populations of eight invasive Argentine Ant (Hymenoptera: Formicidae) supercolonies in Japan. J. Econ. Entomol. 110, 1676–1684 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Nakajima, S. et al. A list of ant species on the Yard of Kyoto Prefectural Institute of Public Health and Environment, Fushimi, Kyoto Annual report of Kyoto Pref. Inst. Hyg. Environ. Sci. 58, 47–50 (2013).
    Google Scholar 
    58.Nakajima, S. et al. Time saving improvement to the time-unit sampling method for quantitative surveys of ant faunas. Jpn. J. Environ. Entomol. Zool. 24, 39–50 (2013).
    Google Scholar 
    59.Kouduka, M. et al. A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiol. Lett. 326, 47–54 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.The eDNA Society. Environmental DNA Sampling and Experiment Manual (ver. 2.1). https://ednasociety.org/eDNA_manual_Eng_v2_1_3b.pdf (2019).61.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/ (2018). More

  • in

    Inter-sexual and inter-generation differences in dispersal of a bivoltine butterfly

    1.Høye, T. T. et al. Phenology of high-arctic butterflies and their floral resources: Species-specific responses to climate change. Curr. Zool. 60, 243–251 (2014).Article 

    Google Scholar 
    2.Bell, J. R. et al. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).ADS 
    Article 

    Google Scholar 
    3.Lewins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).
    Google Scholar 
    4.Zografou, K. et al. Who flies first? Habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: A case study from the south-east Mediterranean. Ecol. Entomol. 40, 562–574 (2015).Article 

    Google Scholar 
    5.Yamamura, N. & Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 33, 289–298 (1998).Article 

    Google Scholar 
    6.Barton, M. G. & Terblanche, J. S. Predicting performance and survival across topographically heterogeneous landscapes: The global pest insect Helicoverpa armigera (Hubner, 1808) (Lepidoptera: Noctuidae). Aus. Entomol. 53, 249–258 (2014).Article 

    Google Scholar 
    7.Tauber, M. J., Tauber, C. A. & Masaki, S. Seasonal Adaptations Of Insects (Oxford University Press on Demand, 1986).
    Google Scholar 
    8.Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B. 277, 1281–1287 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lees, A. D. The physiology and biochemistry of diapause. Annu. Rev. Entomol. 1, 1–16 (1956).CAS 
    Article 

    Google Scholar 
    10.Roff, D. A. & Fairbairn, D. J. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am. Zool. 31, 243–251 (1991).Article 

    Google Scholar 
    11.Van Dyck, H. & Wiklund, C. Seasonal butterfly design: MORPHOLOGICAL plasticity among three developmental pathways relative to sex, flight and thermoregulation. J. Evol. Biol. 15, 216–225 (2002).Article 

    Google Scholar 
    12.Fric, Z. & Konvicka, M. Generations of the polyphenic butterfly Araschnia levana differ in body design. Evol. Ecol. Res. 4, 1017–1032 (2002).
    Google Scholar 
    13.Urquhart, F. A. The Monarch Butterfly (University of Toronto Press, 1960).Book 

    Google Scholar 
    14.Stefanescu, C. The nature of migration in the red admiral butterfly Vanessa atalanta: Evidence from the population ecology in its southern range. Ecol. Entomol. 26, 525–536 (2001).Article 

    Google Scholar 
    15.Stefanescu, C., Askew, R. R., Corbera, J. & Shaw, M. R. Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur. J. Entomol. 109, 85–94 (2012).Article 

    Google Scholar 
    16.Ohsaki, N. Comparative population studies of three Pieris butterflies, P. rapae, P. melete and P. napi, living in the same area. II. Utilization of patchy habitats by adults through migratory and non-migratory movements. Res. Popul. Ecol. 22, 163–183 (1980).Article 

    Google Scholar 
    17.Pollard, E., Greatorex-Davies, J. N. & Thomas, J. A. Drought reduces breeding success of the butterfly Aglais urticae. Ecol. Entomol. 22, 315–318 (1997).Article 

    Google Scholar 
    18.Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).Article 

    Google Scholar 
    19.Kim, S. Y., Torres, R. & Drummond, H. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90, 230–239 (2009).PubMed 
    Article 

    Google Scholar 
    20.Nowicki, P. & Vrabec, V. Evidence for positive density dependent emigration in butterfly metapopulations. Oecologia 167, 657–665 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Plazio, E., Margol, T. & Nowicki, P. Intersexual differences in density-dependent dispersal and their evolutionary drivers. J. Evol. Biol. 33, 1495–1506 (2020).PubMed 
    Article 

    Google Scholar 
    22.Brown, I. & Ehrlich, P. Population biology of the checkerspot butterfly, Euphydryas chalcedona structure of the Jasper Ridge colony. Oecologia 47, 239–251 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    23.Hanski, I., Kuussaari, M. & Nieminen, M. Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology 75, 747–762 (1994).Article 

    Google Scholar 
    24.Petit, S., Moilanen, A., Hanski, I. & Baguette, M. Metapopulation dynamics of the bog fritillary butterfly, movements between habitat patches. Oikos 92, 491–500 (2001).Article 

    Google Scholar 
    25.Enfjäll, K. & Leimar, O. Density-dependent dispersal in the Glanville fritillary, Melitaea cinxia. Oikos 108, 465–472 (2005).Article 

    Google Scholar 
    26.Schtickzelle, N., Mennechez, G. & Baguette, M. Dispersal depression with habitat fragmentation in the bog fritillary butterfly. Ecology 87, 1057–1065 (2006).PubMed 
    Article 

    Google Scholar 
    27.Habel, J. C., Meyer, M., & Schmitt, T. Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle (Pensoft, 2014).28.Martin, Y., Habel, J. C., Van Dyck, H. & Titeux, N. Losing genetic uniqueness under global change: the Violet Copper (Lycaena helle) in Europe. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 165–184 (Pensoft, 2014).29.Nabielec, J. & Nowicki, P. Drivers of local densities of endangered Lycaena helle butterflies in a fragmented landscape. Popul. Ecol. 57, 649–656 (2015).Article 

    Google Scholar 
    30.Bauerfeind, S. S., Theisen, A. & Fischer, K. Patch occupancy in the endangered butterfly Lycaena helle in fragmented landscape: effects of habitat quality, patch size and isolation. J. Insect. Conserv. 13, 271–277 (2009).Article 

    Google Scholar 
    31.Habel, J. C., Rodder, D., Schmitt, T. & Néves, G. Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob. Change Biol. 17, 194–205 (2011).ADS 
    Article 

    Google Scholar 
    32.Van Helsdingen, P. J., Willemse, L. & Speight, M. C. D. Background Information On Invertebrates Of The Habitats Directive And The Bern Convention. Crustacea, Coleoptera And Lepidoptera. Vol. 2 (Council of Europe Publishing, 1996)33.Van Swaay, C. et al. European Red List Of Butterfies. (Publications Office of the European Union, 2010).34.Fischer, K., Beinlich, B. & Plachter, H. Population structure, mobility and habitat preferences of the violet copper Lycaena helle (Lepidoptera: Lyceanidae) in Western Germany: Implications for conservation. J. Insect. Conserv. 3, 43–52 (1999).Article 

    Google Scholar 
    35.Kudłek, J & Pępkowska, A. Natura 2000 Standard Data Form For SCI Dębnicko-Tyniecki Obszar Łąkowy PLH 120065 (GDOŚ, 2008).36.Begon, M. Investigating Animal Abundance. Capture-recapture For Biologists. (Edward Arnold (Publishers) Ltd., 1979).37.Cerrato, C., Lai, V., Balletto, E. & Bonelli, S. Direct and indirect effects of weather variability in a specialist butterfly. Ecol. Entomol. 41, 263–275 (2016).Article 

    Google Scholar 
    38.Hanski, I., Alho, J. & Moilanen, A. Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81, 239–251 (2000).Article 

    Google Scholar 
    39.Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860–873 (1996).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    40.Bubova, T., Kulma, M., Vrabec, V. & Nowicki, P. Adult longevity and its relationship with conservation status in European butterflies. J. Insect Conserv. 20, 1021–1032 (2016).Article 

    Google Scholar 
    41.Hambäck, P. A. & Englund, G. Patch area, population density and the scaling of migration rates: The resource concentration hypothesis revisited. Ecol. Lett. 8, 1057–1065 (2005).Article 

    Google Scholar 
    42.Matter, S. F., Roland, J., Moilanen, A. & Hanski, I. Migration and survival of Parnassius smintheus: detecting effects of habitat for individual butterflies. Ecol. Appl. 14, 1526–1534 (2004).Article 

    Google Scholar 
    43.Dempster, J. P. & Pollard, E. Spatial heterogeneity, stochasticity and the detection of density dependence in animal populations. Oikos 46, 413–416 (1986).Article 

    Google Scholar 
    44.Gros, A., Hovestadt, T. & Poethke, H. J. Evolution of sex-biased dispersal: the role of sex-specific dispersal costs, demographic stochasticity, and inbreeding. Ecol. Model. 219, 226–233 (2008).MATH 
    Article 

    Google Scholar 
    45.Shapiro, A. M. The role of sexual behavior in density related dispersal of pierid butterflies. Am. Nat. 104, 367–372 (1970).Article 

    Google Scholar 
    46.Odendaal, F. J., Turchin, P. & Stermitz, F. R. Influence of host-plant density and male harassment on the distribution of female Euphydryas anicia (Nymphalidae). Oecologia 78, 283–288 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Baguette, M., Convie, I. & Neve, G. Male density affects female spatial behaviour in the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 17, 225–232 (1996).
    Google Scholar 
    48.Baguette, M., Vansteenwegen, C., Convi, I. & Neve, G. Sex-biased density-dependent migration in a metapopulation of the butterfly Proclossiana eunomia. Acta. Oecol. (Montrouge) 19, 17–24 (1998).ADS 
    Article 

    Google Scholar 
    49.Matthysen, E. Multicausality of dispersal: a review. In Dispersal Ecology And Evolution (ed. Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M.) 3–18 (Oxford University Press, 2012).50.Li, X. Y. & Kokko, H. Sex-biased dispersal: a review of the theory. Biol. Rev. 94, 721–736 (2019).PubMed 
    Article 

    Google Scholar 
    51.Dethier, V. & MacArthur, R. A field’s capacity to support a butterfly population. Nature 201, 728–729 (1964).ADS 
    Article 

    Google Scholar 
    52.Baker, R. The dilemma: when and how to go or stay. In The Biology Of Butterflies. Symposium Of The Royal Entomological Society Of London. Number 11 (ed. Vane-Wright, R. I. & Ackery, P. R.) 279–296 (Academic Press, 1984).53.Rausher, M. Egg recognition: Its advantage to a butterfly. Anim. Behav. 27, 1034–1040 (1979).Article 

    Google Scholar 
    54.Ray, C., Gilpin, M. & Smith, A. The effect of conspecific attraction on metapopulation dynamics. Biol. J. Linn. Soc. Lond. 42, 123–134 (1991).Article 

    Google Scholar 
    55.Kuussaari, M., Nieminen, M. & Hanski, I. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J. Anim. Ecol. 65, 791–801 (1996).Article 

    Google Scholar 
    56.Fric, Z. & Konvicka, M. Adult population structure and behaviour of two seasonal generations of the European Map Butterfly, Araschnia levana, species with seasonal polyphenism (Nymphalidae). Nota Lepid. 23, 2–25 (2000).
    Google Scholar 
    57.Gilchrist, G. W. The consequences of sexual dimorphism in body size for butterfly flight and thermoregulation. Funct. Ecol. 4, 475–487 (1990).Article 

    Google Scholar 
    58.Klockmann, M., Karajoli, F., Kuczyk, J., Reimer, S. & Fischer, K. Fitness implications of simulated climate change in three species of copper butterflies (Lepidoptera: Lycaenidae). Biol. J. Linn. Soc. Lond. 120, 125–143 (2017).
    Google Scholar 
    59.Piaggio, A. J, Navo, K. W. & Stihler, C. W. Intraspecific comparison of population structure, genetic diversity, and dispersal among three subspecies of Townsend’s big-eared bats, Corynorhinus townsendii townsendii, C. t. pallescens, and the endangered C. t. virginianus. Conserv. Genet. 10, 143–159 (2009).60.Solmsen, N., Johannesen, J. & Schradin, C. Highly asymmetric fine-scale genetic structure between sexes of African striped mice and indication for condition dependent alternative male dispersal tactics. Mol. Ecol. 20, 1624–1634 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Bergman, K. O. & Landin, J. Population structure and movements of a threatened butterfly (Lopinga achine) in a fragmented landscape in Sweden. Biol. Conserv. 108, 361–369 (2002).Article 

    Google Scholar 
    62.Craioveanu, C., Sitar, C. & Rakosy, L. Mobility, behaviour and phenology of the Violet Copper Lycaena helle in North-Western Romania. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 91–105 (Pensoft, 2014).63.Turlure, C., Van Dyck, H., Goffart, P., & Schtickzelle, N. Resource-based habitat use in Lycaena helle: Significance of a functional, ecological niche-oriented approach. In Jewels In The Mist. A Synopsis On The Endangered Violet Copper Butterfly Lycaena helle. (ed. Habel, J. C., Meyer, M. & Schmitt, T.) 67–86 (Pensoft, 2014).64.Hanski, I., & Gaggiotti, O. E. Ecology, Genetics and Evolution Of Metapopulations (Elsevier Academic Press, 2004). More

  • in

    Visibility and attractiveness of Fritillaria (Liliaceae) flowers to potential pollinators

    1.Warren, J. & Mackenzie, S. Why are all colour combinations not equally represented as flower-colour polymorphisms?. New Phytol. 151, 237–241 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Armbruster, S., Fenster, C. & Dudash, M. Pollination ‘principles’ revisited: specialization, pollination syndromes, and the evolution of flowers. Scandanavian Assoc. Pollinat. Ecol. 39, 179–200 (2000).
    Google Scholar 
    3.Hargreaves, A. L., Harder, L. D. & Johnson, S. D. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259–276 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Hansen, D. M., van der Niet, T. & Johnson, S. D. Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proc. R. Soc. B Biol. Sci. 279, 634–639 (2012).Article 

    Google Scholar 
    5.Rosas-Guerrero, V. et al. A quantitative review of pollination syndromes: do floral traits predict effective pollinators?. Ecol. Lett. 17, 388–400 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Narbona, E., Wang, H., Ortiz, P. L., Arista, M. & Imbert, E. Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. Plant Biol. 20, 8–20 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Altshuler, D. L. Flower color, hummingbird pollination, and habitat irradiance in four neotropical forests1. Biotropica 35, 344 (2003).Article 

    Google Scholar 
    8.Riordan, C. E., Ault, J. G., Langreth, S. G. & Keithly, J. S. Cryptosporidium parvum Cpn60 targets a relict organelle. Curr. Genet. 44, 138–147 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Rodríguez-Gironés, M. A. & Santamaría, L. Why are so many bird flowers red?. PLoS Biol. 2, 1515–1519 (2004).Article 
    CAS 

    Google Scholar 
    10.Whibley, A. C. et al. Evolutionary paths underlying flower color variation in Antirrhinum. Science (80-.) 313, 963–966 (2006).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Papiorek, S. et al. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns. Plant Biol. 18, 46–55 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wilson, P., Castellanos, M., Wolfe, A. D. & Thomson, J. D. Shifts between bee and bird pollination in penstemons. Plant-Pollinat. Interact. Spec. Gen. 3, 47–68 (2006).13.Wilson, P., Castellanos, M. C., Hogue, J. N., Thomson, J. D. & Armbruster, W. S. A multivariate search for pollination syndromes among penstemons. Oikos 104, 345–361 (2004).Article 

    Google Scholar 
    14.Sutherland, S. D. & Vickery, R. K. Jr. On the relative importance of floral color, shape, and nectar rewards in attracting pollinators to Mimulus. Gt. Basin Nat. 53, 107–117 (1993).
    Google Scholar 
    15.Wester, P. & Lunau, K. Plant-Pollinator Communication. Advances in Botanical Research Vol. 82 (Elsevier, 2017).
    Google Scholar 
    16.de Camargo, M. G. G. et al. How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. New Phytol. 222, 1112–1122 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.van der Kooi, C. J., Dyer, A. G., Kevan, P. G. & Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Ann. Bot. https://doi.org/10.1093/aob/mcy119 (2018).Article 
    PubMed Central 

    Google Scholar 
    18.Castellanos, M. C., Wilson, P. & Thomson, J. D. ‘ Anti-bee ’ and ‘ pro-bird ’ changes during the evolution of hummingbird pollination in Penstemon flowers. J. Evol. Biol. 17, 876–885 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.del Carmen Salas-Arcos, L., Lara, C., Castillo-Guevara, C., Cuautle, M. & Ornelas, J. F. “Pro-bird” floral traits discourage bumblebee visits to Penstemon gentianoides (Plantaginaceae), a mixed-pollinated herb. Sci. Nat. 106, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    20.Armbruster, W. S. Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiaceae). Flor. Biol. https://doi.org/10.1007/978-1-4613-1165-2_9 (1996).Article 

    Google Scholar 
    21.Chittka, L. & Schürkens, S. Successful invasion of a floral market. Nature 411, 653 (2001).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    22.Ellis, T. J. & Field, D. L. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. Ann. Bot. 117, 1133–1140 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Tanaka, Y., Sasaki, N. & Ohmiya, A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733–749 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lázaro, A., Lundgren, R. & Totland, Ø. Pollen limitation, species’ floral traits and pollinator visitation: different relationships in contrasting communities. Oikos 124, 174–186 (2015).Article 

    Google Scholar 
    25.Jones, K. N. & Reithel, J. S. Pollinator-mediated selection on a flower color polymorphism in experimental populations of Anthirrhinum (Scrophulariaceae). Am. J. Bot. 88, 447–454 (2001).Article 

    Google Scholar 
    26.Teixido, A. L., Barrio, M. & Valladares, F. Size matters: understanding the conflict faced by large flowers in mediterranean environments. Bot. Rev. 82, 204–228 (2016).Article 

    Google Scholar 
    27.Ortiz, P. L., Fernández-Díaz, P., Pareja, D., Escudero, M. & Arista, M. Do visual traits honestly signal floral rewards at community level?. Funct. Ecol. 35, 369–383 (2021).Article 

    Google Scholar 
    28.Fenster, C. B., Cheely, G., Dudash, M. R. & Reynolds, R. J. Nectar reward and advertisement in hummingbird. Am. J. Bot. 93, 1800 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Simpson, B. B., Neff, J. L. & Simpson, B. B. Floral rewards: alternatives to pollen and nectar. Ann. Mo. Bot. Gard. 68, 301–322 (2015).Article 

    Google Scholar 
    30.Canto, A., Herrera, C. M., García, I. M., Pérez, R. & Vaz, M. Intraplant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 668–675 (2011).
    Google Scholar 
    31.Parachnowitsch, A. L., Manson, J. S. & Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. https://doi.org/10.1093/aob/mcy132 (2018).Article 
    PubMed Central 

    Google Scholar 
    32.Gómez, J. M. et al. Association between floral traits and rewards in Erysimum mediohispanicum (Brassicaceae). Ann. Bot. 101, 1413–1420 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Worley, A. C. & Barrett, S. C. H. Evolution of floral display in Eichhornia paniculata (Pontederiaceae): genetic correlations between flower size and number. J. Evol. Biol. 14, 469–481 (2001).Article 

    Google Scholar 
    34.Lunau, K. The ecology and evolution of visual pollen signals. Plant Syst. Evol. 222, 89–111 (2000).Article 

    Google Scholar 
    35.Nicholls, E. & Hempel de Ibarra, N. Assessment of pollen rewards by foraging bees. Funct. Ecol. 31, 76–87 (2017).Article 

    Google Scholar 
    36.Tang, L.-L. & Huang, S.-Q. Evidence for reductions in floral attractants with increased selfing rates in two heterandrous species. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02115.x (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology (Elsevier, 2013).
    Google Scholar 
    38.Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. https://doi.org/10.1111/nph.16793 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Kostyun, J. L., Gibson, M. J. S., King, C. M. & Moyle, L. C. A simple genetic architecture and low constraint allow rapid floral evolution in a diverse and recently radiating plant genus. New Phytol. 223, 1009–1022 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Roguz, K. et al. Diversity of nectar amino acids in the Fritillaria (Liliaceae) genus: ecological and evolutionary implications. Sci. Rep. 9, 1–12 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Roguz, K. et al. Functional diversity of nectary structure and nectar composition in the genus Fritillaria (liliaceae). Front. Plant Sci. 9, 1–21 (2018).Article 
    ADS 

    Google Scholar 
    42.Zych, M. & Stpiczyńska, M. Neither protogynous nor obligatory out-crossed: Pollination biology and breeding system of the European Red List Fritillaria meleagris L. (Liliaceae). Plant Biol. 14, 285–294 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Day, P. D. et al. Evolutionary relationships in the medicinally important genus Fritillaria L. (Liliaceae). Mol. Phylogenet. Evol. 80, 11–19 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Hayashi, K. Molecular systematics of Lilium and allied genera (Liliaceae): phylogenetic relationships among Lilium and related genera based on the rbcL and matK gene sequence data. Plant Species Biol. 15, 73–93 (2000).Article 

    Google Scholar 
    45.Stpiczyńska, M., Nepi, M. & Zych, M. Nectaries and male-biased nectar production in protandrous flowers of a perennial umbellifer Angelica sylvestris L. (Apiaceae). Plant Syst. Evol. https://doi.org/10.1007/s00606-014-1152-3 (2014).Article 

    Google Scholar 
    46.Hill, L. A taxonomic history of Japanese endemic Fritillaria (Liliaceae). Kew Bull. 66, 227–240 (2018).Article 

    Google Scholar 
    47.Kiani, M. et al. Iran supports a great share of biodiversity and floristic endemism for Fritillaria spp. (Liliaceae): a review. Plant Divers. 39, 245–262 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Shaw, A. J. Phylogeny of the Sphgnpsida based on chloroplast and nuclear DNA sequences. Bryologist 103, 277–306 (2000).CAS 
    Article 

    Google Scholar 
    49.Rønsted, N., Law, S., Thornton, H., Fay, M. F. & Chase, M. W. Molecular phylogenetic evidence for the monophyly of Fritillaria and Lilium (Liliaceae; Liliales) and the infrageneric classification of Fritillaria. Mol. Phylogenet. Evol. 35, 509–527 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Tekşen, M. & Aytaç, Z. The revision of the genus Fritillaria L. (Liliaceae) in the Mediterranean region (Turkey). Turk. J. Bot. 35, 447–478 (2011).
    Google Scholar 
    51.Roguz, K., Hill, L., Roguz, A. & Zych, M. Evolution of bird and insect flower traits in Fritillaria L. (Liliaceae). Front. Plant Sci. 12, 656783 (2020).Article 

    Google Scholar 
    52.Zaharof, E. Variation and taxonomy of Fritillaria graeca (Liliaceae) in Greece. Plant Syst. Evol. 154, 41–61 (1986).Article 

    Google Scholar 
    53.Búrquez, A. & Burquez, A. Blue tits, Parus caeruleus, as pollinators of the crown imperial, Fritillaria imperialis, in Britain. Oikos 55, 335 (1989).Article 

    Google Scholar 
    54.Peters, W. S., Pirl, M., Gottsberger, G. & Peters, D. Pollination of the crown imperial Fritillaria imperialis by great tits Parus major. J. Ornithol. 136, 207–212 (1995).Article 

    Google Scholar 
    55.Pendegrass, K. & Robinson, A. A recovery plan for Fritillaria gentneri (Gentner’s fritillary). Agric. U.S.F.a.W. Serv. (2005).56.Zox, H. Ecology of black lily (Fritillaria camschatcensis): a Washington State sensitive species. Douglasia (2008).57.Cronk, Q. & Ojeda, I. Bird-pollinated flowers in an evolutionary and molecular context. J. Exp. Bot. 59, 715–727 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lunau, K. & Verhoeven, C. Wie Bienen Blumen sehen: Falschfarbenaufnahmen von Blüten. Biol. Unserer Zeit 47, 120–127 (2017).Article 

    Google Scholar 
    59.Kranas, H., Spalik, K. & Banasiak, Ł. MatPhylobi, 0.1 (University of Warsaw, 2018).
    Google Scholar 
    60.Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. Leaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt389 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. Evolution 62, 1103–1118 (2018).
    Google Scholar 
    62.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinform. Appl. 30, 1312–1313 (2014).CAS 
    Article 

    Google Scholar 
    63.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. https://doi.org/10.1093/ve/vey016 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Kim, J. S. & Kim, J. H. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales). Bot. J. Linn. Soc. 187, 579–593 (2018).Article 

    Google Scholar 
    65.Cockerell, T. D. A. Two new plants from the tertiary rocks of the west. Torrey Bot. Soc. 14, 135–137 (1914).
    Google Scholar 
    66.Ettingshausen, C. B. III. ‘ Report on Phyto-Palaeontologieal Investigations of Fossil Flora of Alum Bay.’ By Dr. (1AD).67.Conran, J. G., Carpenter, R. J. & Jordan, G. J. Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia. Aust. Syst. Bot. 22, 219–228 (2009).Article 

    Google Scholar 
    68.Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mss020 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Paradis, E. & Schliep, K. Phylogenetics ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics https://doi.org/10.1093/bioinformatics/bty633 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    71.Garland, T., Dickerman, A. W., Janis, C. M. & Jones, J. A. Phylogenetic Analysis of Covariance by Computer Simulation. vol. 42, 1993. https://academic.oup.com/sysbio/article/42/3/265/1629506 (Accessed 09 March 2021).72.Orme, C. D. L. The caper package: comparative analyses in phylogenetics and evolution in R, 1–36, 2012. See http://caper.r-forge.r-project.org/. (Accessed 09 March 2021).73.TEAM, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    74.Dyer, A. G. et al. Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision. Proc. R. Soc. B Biol. Sci. 279, 3606–3615 (2012).Article 

    Google Scholar 
    75.Ollerton, J. Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. J. Ecol. 84, 767–769 (1996).Article 

    Google Scholar 
    76.Wessinger, C. A. & Rausher, M. D. Predictability and irreversibility of genetic changes associated with flower color evolution in Penstemon barbatus. Evolution (N. Y.) 68, 1058–1070 (2014).CAS 

    Google Scholar 
    77.Wittmann, D., Radtke, R., Cure, J. R. & Schifino-Wittmann, M. T. Coevolved reproductive strategies in the oligolectic bee Callonychium petuniae (Apoidea, Andrenidae) and three purple flowered Petunia species (Solanaceae) in southern Brazil. J. Zool. Syst. Evol. Res. 28, 157–165 (1990).Article 

    Google Scholar 
    78.Chittka, L. & Waser, N. M. Why red flowers are not invisible to bees. Isr. J. Plant Sci. 45, 169–183 (1997).Article 

    Google Scholar 
    79.Kołodziejska-Degórska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans (L.) seem. in Poland. Acta Soc. Bot. Pol. 75, 79–85 (2006).Article 

    Google Scholar 
    80.Mayr, G. New specimens of the early oligocene old world hummingbird Eurotrochilus inexpectatus. J. Ornithol. 148, 105–111 (2007).Article 

    Google Scholar 
    81.Mayr, G. Old world fossil record of modern-type hummingbirds. Science (80-.) 304, 861–864 (2004).CAS 
    Article 
    ADS 

    Google Scholar 
    82.Schiestl, F. P. & Johnson, S. D. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 28, 307–315 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Daumer, K. Blumenfarben, wie sie die Bienen sehen. Z. Vgl. Physiol. 41, 49–110 (1958).
    Google Scholar 
    84.Kevan, P. G. Floral colours in the high Arctic with reference to insect flower relations and pollination. Can. J. Bot. 50, 2289–2316 (1972).Article 

    Google Scholar 
    85.Chittka, L., Shmida, A., Troje, N. & Menzel, R. Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vis. Res. 34, 1489–1508 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Lunau, K. Stamens and mimic stamens as components of floral colour patterns. Bot. Jahrbücher für Syst. Pflanzengeschichte und Pflanzengeographie 127, 13–41 (2006).Article 

    Google Scholar 
    87.Koski, M. H. & Ashman, T. L. Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct. Ecol. 28, 868–877 (2014).Article 

    Google Scholar 
    88.Menzel, R. & Shmida, A. The ecology of flower colours and the natural colour vision of insect pollinators: the Israeli flora as a study case. Biol. Rev. 68, 81–120 (1993).Article 

    Google Scholar 
    89.van der Kooi, C. J. & Stavenga, D. G. Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 205, 363–372 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Kevan, P., Giurfa, M. & Chittka, L. Why are there so many and so few white flowers?. Trends Plant Sci. 1, 280–284 (1996).Article 

    Google Scholar 
    91.Kapustjansky, A., Chittka, L. & Spaethe, J. Bees use three-dimensional information to improve target detection. Naturwissenschaften 97, 229–233 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    92.Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Curr. Opin. Plant Biol. 9, 428–435 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Hansen, D. M., Olesen, J. M., Mione, T., Johnson, S. D. & Müller, C. B. Coloured nectar: Distribution, ecology, and evolution of an enigmatic floral trait. Biol. Rev. 82, 83–111 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Raguso, R. A. Start making scents: the challenge of integrating chemistry into pollination ecology. Entomol. Exp. Appl. 128, 196–207 (2008).CAS 
    Article 

    Google Scholar 
    95.Sapir, Y., Shmida, A. & Ne’eman, G. Morning floral heat as a reward to the pollinators of the Oncocyclus irises. Oecologia 147, 53–59 (2006).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    96.Bazzaz, F. A. & Carslon, R. W. Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. New Phytol. 82, 223–232 (1979).Article 

    Google Scholar  More

  • in

    Influence of intrinsic and extrinsic attributes on neonate survival in an invasive large mammal

    1.Sæther, B.-E. Environmental stochasticity and population dynamics of large herbivores: A search for mechanisms. Trends Ecol. Evol. 12, 143–149 (1997).PubMed 
    Article 

    Google Scholar 
    2.Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Coulson, T. et al. Estimating individual contributions to population growth: Evolutionary fitness in ecological time. Proc. R. Soc. B 273, 547–555 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Pelletier, F., Clutton-Brock, T., Pemberton, J., Tuljapurkar, S. & Coulson, T. The evolutionary demography of ecological change: Linking trait variation and population growth. Science 315, 1571–1574 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Pettorelli, N., Coulson, T., Durant, S. M. & Gaillard, J.-M. Predation, individual variability and vertebrate population dynamics. Oecologia 167, 305 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    6.Forchhammer, M. C., Clutton-Brock, T. H., Lindström, J. & Albon, S. D. Climate and population density induce long-term cohort variation in a northern ungulate. J. Anim. Ecol. 70, 721–729 (2001).Article 

    Google Scholar 
    7.Owen-Smith, N., Mason, D. R. & Ogutu, J. O. Correlates of survival rates for 10 African ungulate populations: Density, rainfall and predation. J. Anim. Ecol. 74, 774–788 (2005).Article 

    Google Scholar 
    8.Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    9.Griffin, K. A. et al. Neonatal mortality of elk driven by climate, predator phenology and predator community composition. J. Anim. Ecol. 80, 1246–1257 (2011).PubMed 
    Article 

    Google Scholar 
    10.Kilgo, J. C., Vukovich, M., Scott Ray, H., Shaw, C. E. & Ruth, C. Coyote removal, understory cover, and survival of white-tailed deer neonates. J. Wildl. Manag. 78, 1261–1271 (2014).Article 

    Google Scholar 
    11.Coltman, D. W., Bowen, W. D. & Wright, J. M. Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. B 265, 803–809 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Kolbe, J. & Janzen, F. The influence of propagule size and maternal nest-site selection on survival and behaviour of neonate turtles. Funct. Ecol. 15, 772–781 (2001).Article 

    Google Scholar 
    13.Kissner, K. J. & Weatherhead, P. J. Phenotypic effects on survival of neonatal northern watersnakes Nerodia sipedon. J. Anim. Ecol. 74, 259–265 (2005).Article 

    Google Scholar 
    14.Carstensen, M., Delgiudice, G. D., Sampson, B. A. & Kuehn, D. W. Survival, birth characteristics, and cause-specific mortality of white-tailed deer neonates. J. Wildl. Manag. 73, 175–183 (2009).Article 

    Google Scholar 
    15.Guttery, M. R. et al. Effects of landscape-scale environmental variation on greater sage-grouse chick survival. PLoS One 8, e65582 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Duquette, J. F., Belant, J. L., Svoboda, N. J., Beyer, D. E. Jr. & Lederle, P. E. Effects of maternal nutrition, resource use and multi-predator risk on neonatal white-tailed deer survival. PLoS One 9, 1–10 (2014).Article 

    Google Scholar 
    17.Pimentel, D. In Managing Vertebrate Invasive Species: Proceedings of an International Symposium. (eds. Pitt, W.C. et al.) 2–8 (USDA/APHIS/WS, 2007).18.Pitt, W. C., Beasley, J. & Witmer, G. W. Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States. 7–31 (CRC Press, 2018).19.Strickland, B. K., Smith, M. D., Smith, A. L. Wild pig damage to resources. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 143–174 (CRC Press, 2020).20.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. In 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Vol. 12 (Invasive Species Specialist Group, Species Survival Commission, World Conservation Union (IUCN), 2000).21.Keiter, D. A., Mayer, J. J. & Beasley, J. C. What is in a “common” name? A call for consistent terminology for nonnative Sus scrofa. Wild. Soc. Bull. 40, 384–387 (2016).Article 

    Google Scholar 
    22.Smyser, T. J. et al. Mixed ancestry from wild and domestic lineages contributes to the rapid expansion of invasive feral swine. Mol. Ecol. 29, 1103–1119 (2020).PubMed 
    Article 

    Google Scholar 
    23.Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. BioSci. 64, 291–299 (2014).Article 

    Google Scholar 
    24.Mohr, D., Cohnstaedt, L. W. & Topp, W. Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biol. Biochem. 37, 693–700 (2005).CAS 
    Article 

    Google Scholar 
    25.Barrios-García, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    26.Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & Vercauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).Article 

    Google Scholar 
    27.Ditchkoff, S. S. & Bodenchuk, M. J. Management of wild pigs. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 175–198 (CRC Press, 2020).28.Bieber, C. & Ruf, T. Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42, 1203–1213 (2005).Article 

    Google Scholar 
    29.Hanson, L. B. et al. Effect of experimental manipulation on survival and recruitment of feral pigs. Wildl. Res. 36, 185–191 (2009).Article 

    Google Scholar 
    30.Keiter, D. A. et al. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Sci. Rep. 7, 1–12 (2017).CAS 
    Article 

    Google Scholar 
    31.Keiter, D. A., Kilgo, J. C., Vukovich, M. A., Cunningham, F. L. & Beasley, J. C. Development of known-fate survival monitoring techniques for juvenile wild pigs (Sus scrofa). Wildl. Res. 44, 165–173 (2017).Article 

    Google Scholar 
    32.Snow, N. P., Miller, R. S., Beasely, J. C. & Pepin, K. M. Wild pig population dynamics. In Invasive Wild Pigs in North America: Ecology, Impacts, and Management (eds. Vercauteren, K. C. et al.) 57–82 (CRC Press, 2020).33.Alonso-Spilsbury, M., Ramirez-Necoechea, R., Gonzalez-Lozano, M., Mota-Rojas, D. & Trujillo-Ortega, M. Piglet survival in early lactation: A review. J. Anim. Vet. Adv. 1, 76–86 (2007).
    Google Scholar 
    34.Baubet, E., Servanty, S. & Brandt, S. Tagging piglets at the farrowing nest in the wild: Some preliminary guidelines. Acta Sylvatica Lig. Hung. 5, 159–166 (2009).
    Google Scholar 
    35.Kerr, J. & Cameron, N. Reproductive performance of pigs selected for components of efficient lean growth. Anim. Sci. 60, 281–290 (1995).Article 

    Google Scholar 
    36.Van der Lende, T., KnoI, E. & Leenhouwers, J. Prenatal development asa predisposing factor for perinatal lossesin pigs. Reproduction 58, 247–261 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    37.Mount, L. The heat loss from new-born pigs to the floor. Res. Vet. Sci. 8, 175–186 (1967).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Herpin, P., Damon, M. & Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 78, 25–45 (2002).Article 

    Google Scholar 
    39.Gaillard, J.-M., Pontier, D., Brandt, S., Jullien, J.-M. & Allaine, D. Sex differentiation in postnatal growth rate: A test in a wild boar population. Oecologia 90, 167–171 (1992).ADS 
    Article 

    Google Scholar 
    40.Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313, 131–133 (1985).ADS 
    Article 

    Google Scholar 
    42.Theil, P. K., Nielsen, M. O., Sørensen, M. T. & Lauridsen, C. Lactation, milk and suckling. In Nutritional Physiology of Pigs: with emphasis on Danish production conditions (eds. Knudsen et al.) 1–49 (University of Copenhagen, 2012).43.Theil, P. K., Lauridsen, C. & Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 8, 1021–1030 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Mayer, J. & Brisbin Jr, I. L. Wild pigs of the Savannah River Site. Report No. SRNL-RP-2011-00295, 114 (Savannah River National Laboratory, 2012).45.Withey, J. C., Bloxton, T. D. & Marzluff, J. M. Effects of tagging and location error in wildlife telemetry studies. In Radio Tracking and Animal Populations. 43–75 (Academic Press, 2001).46.Webster, S. C. & Beasley, J. C. Influence of lure choice and survey duration on scent stations for carnivore surveys. Wildl. Soc. Bull. 43, 661–668 (2019).Article 

    Google Scholar 
    47.Matschke, G. H. Aging European wild hogs by dentition. J. Wildl. Manag. 31, 109–113 (1967).Article 

    Google Scholar 
    48.Mayer, J. J., Martin, F. D. & Brisbin, I. L. Characteristics of wild pig farrowing nests and beds in the upper Coastal Plain of South Carolina. Appl. Anim. Behav. Sci. 78, 1–17 (2002).Article 

    Google Scholar 
    49.Kilgo, J. C., Ray, H. S., Vukovich, M., Goode, M. J. & Ruth, C. Predation by coyotes on white-tailed deer neonates in South Carolina. J. Wildl. Manag. 76, 1420–1430 (2012).Article 

    Google Scholar 
    50.Mayer, J. J. & Brisbin, I. J., Jr. Wild Pigs: Biology, Damage, Control Techniques and Management. Report No. SRNL-RP-2009-00869, 77–104 (Savannah River National Laboratory, 2009).51.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    52.R: A language and environment for statistical computing. v. 3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020).53.Weinbeck, S. W., Viner, B. J., Rivera-Giboyeaux A. M. Meteorological Monitoring Program at the Savannah River Site. Report No. SRNL-TR-2020-00197 (Savannah River National Laboratory, 2020).54.Plummer, M. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. 1–10 (Vienna, Austria).55.Denwood, M. J. runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71, 1–25 (2016).Article 

    Google Scholar 
    56.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    57.Pollock, K. H., Winterstein, S. R., Bunck, C. M. & Curtis, P. D. Survival analysis in telemetry studies: The staggered entry design. J. Wildl. Manag. 53, 7–15 (1989).Article 

    Google Scholar 
    58.Harrell, F. Regression Modeling Strategies (ed. Harrell, F.) 60–64 (Springer, 2001).59.McCoy, D. E. et al. A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. Am. J. Primatol. 81, e23038. https://doi.org/10.1002/ajp.23038 (2019).60.Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).61.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. In Model Selection and Multimodel Inference, 2nd edn. 75–117 (Springer, 2002).62.Taylor, R. B., Hellgren, E. C., Gabor, T. M. & Ilse, L. M. Reproduction of feral pigs in southern Texas. J. Mammal. 79, 1325–1331 (1998).Article 

    Google Scholar 
    63.Mittwoch, U. Blastocysts prepare for the race to be male. Hum. Reprod. 8, 1550–1555 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Stanton, H. & Carroll, J. Potential mechanisms responsible for prenatal and perinatal mortality or low viability of swine. J. Anim. Sci. 38, 1037–1044 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Hartsock, T. G. & Graves, H. Neonatal behavior and nutrition-related mortality in domestic swine. J. Anim. Sci. 42, 235–241 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Spicer, E. et al. Causes of preweaning mortality on a large intensive piggery. Aus. Vet. J. 63, 71–75 (1986).CAS 
    Article 

    Google Scholar 
    67.Hendrix, W. F., Kelley, K. W., Gaskins, C. T. & Hinrichs, D. J. Porcine neonatal survival and serum gamma globulins. J. Anim. Sci. 47, 1281–1286 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.De Roth, L. & Downie, H. Evaluation of viability of neonatal swine. Can. Vet. J. 17, 275–279 (1976).PubMed 
    PubMed Central 

    Google Scholar 
    69.Williams, G. The question of adaptive sex ratio in outcrossed vertebrates. Proc. R. Soc. Lond. B 205, 567–580 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Servanty, S., Gaillard, J.-M., Allainé, D., Brandt, S. & Baubet, E. Litter size and fetal sex ratio adjustment in a highly polytocous species: The wild boar. Behav. Ecol. 18, 427–432 (2007).Article 

    Google Scholar 
    71.Fernández-Llario, P., Carranza, J. & Mateos-Quesada, P. Sex allocation in a polygynous mammal with large litters: The wild boar. Anim. Behav. 58, 1079–1084 (1999).PubMed 
    Article 

    Google Scholar 
    72.Focardi, S., Gaillard, J.-M., Ronchi, F. & Rossi, S. Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate. J. Mammal. 89, 1113–1123 (2008).Article 

    Google Scholar 
    73.Gamelon, M. et al. Do age-specific survival patterns of wild boar fit current evolutionary theories of senescence?. Evolution 68, 3636–3643 (2014).PubMed 
    Article 

    Google Scholar 
    74.Saïd, S., Tolon, V., Brandt, S. & Baubet, E. Sex effect on habitat selection in response to hunting disturbance: The study of wild boar. Eur. J. Wildl. Res. 58, 107–115 (2012).Article 

    Google Scholar 
    75.Caro, T. The adaptive significance of coloration in mammals. BioSci. 55, 125–136 (2005).Article 

    Google Scholar 
    76.Tewes, M. E., Mock, J. M. & Young, J. H. Bobcat predation on quail, birds, and mesomammals. In Proc. Nat. Quail Symp. 65–70. (2002).77.Jones, M. P., Pierce, K. E. Jr. & Ward, D. Avian vision: a review of form and function with special consideration to birds of prey. J. Ex. Pet Med. 16, 69–87 (2007).Article 

    Google Scholar 
    78.Walsberg, G. E. Coat color and solar heat gain in animals. BioSci. 33, 88–91 (1983).Article 

    Google Scholar 
    79.Lack, D. The Natural Regulation of Animal Numbers. (ed. Lack, D.) 343 (Oxford University Press, 1954).80.Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Gamelon, M. et al. The relationship between phenotypic variation among offspring and mother body mass in wild boar: Evidence of coin-flipping?. J. Anim. Ecol. 82, 937–945 (2013).PubMed 
    Article 

    Google Scholar 
    82.Mitchell, G. & Stevens, C. Primiparous and multiparous monkey mothers in a mildly stressful social situation: First three months. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 1, 280–286 (1968).Article 

    Google Scholar 
    83.Okai, D., Aherne, F. & Hardin, R. Effects of sow nutrition in late gestation on the body composition and survival of the neonatal pig. Can. J. Anim. Sci. 57, 439–448 (1977).CAS 
    Article 

    Google Scholar  More

  • in

    Thermally tolerant intertidal triplefin fish (Tripterygiidae) sustain ATP dynamics better than subtidal species under acute heat stress

    1.Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integr. Comp. Biol. 42(4), 780–789 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hochachka, P. W. & Somero, G. N. Biochemical Adaptation: Mechanism and Process in Physiological Evolution (Oxford University Press, 2002).
    Google Scholar 
    3.Helmuth, B. et al. Living on the Edge of Two Changing Worlds: Forecasting the Responses of Rocky Intertidal Ecosystems to Climate Change Vol. 37 (ECU Publications, 2006).
    Google Scholar 
    4.Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9(2), 228–241 (2006).ADS 
    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Woodward, A. Climate change: Disruption, risk and opportunity. Glob. Transit. 1, 44–49 (2019).Article 

    Google Scholar 
    6.Hoffmann, K. H. 6—Metabolic and enzyme adaptation to temperature and pressure. In The Mollusca (ed. Hochachka, P. W.) 219–255 (Academic Press, 1983).
    Google Scholar 
    7.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808), 95 (2007).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: Bridging ecology and physiology. J. Exp. Biol. 220(15), 2685–2696 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88(4), 137–146 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Verberk, W. C. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 192, 64–78 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: Blurring ecology and physiology. J. Exp. Biol. 221(1), jeb169615 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ern, R. et al. Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans. Sci. Rep. 5, 10743 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mitchell, P. et al. Regulation of Metabolic Processes in Mitochondria (Elsevier, 1966).
    Google Scholar 
    14.Hüttemann, M. et al. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J. Bioenerg. Biomembr. 40(5), 445 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Iftikar, F. I. & Hickey, A. J. Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus. PLoS One 8(5), e64120 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schulte, P. M. The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218(Pt 12), 1856–1866 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Power, A. et al. Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart. Physiol. Rep. 2(9), e12138 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Lemieux, H., Blier, P. U. & Gnaiger, E. Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: Electron flow through the Q-junction in permeabilized fibers. Sci. Rep. 7(1), 2840 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Christen, F. et al. Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radic. Biol. Med. 116, 11–18 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kiyatkin, E. A. Brain hyperthermia as physiological and pathological phenomena. Brain Res. Brain Res. Rev. 50(1), 27–56 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kiyatkin, E. A. Brain temperature homeostasis: Physiological fluctuations and pathological shifts. Front. Biosci. (Landmark Ed) 15, 73–92 (2010).CAS 
    Article 

    Google Scholar 
    22.Wang, H. et al. Brain temperature and its fundamental properties: A review for clinical neuroscientists. Front. Neurosci.-switz 8, 307–307 (2014).
    Google Scholar 
    23.Pellerin, L. & Magistretti, P. J. How to balance the brain energy budget while spending glucose differently. J. Physiol. 546(Pt 2), 325–325 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Zhao, Y. & Boulant, J. A. Temperature effects on neuronal membrane potentials and inward currents in rat hypothalamic tissue slices. J. Physiol. 564(Pt 1), 245–257 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Obel, L. F. et al. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front. Neuroenergetics 4, 3 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.White, M. G. et al. Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons. J. Neurophysiol. 108(8), 2203–2214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Walter, E. J. & Carraretto, M. The neurological and cognitive consequences of hyperthermia. Crit. Care (London, England) 20(1), 199–199 (2016).Article 

    Google Scholar 
    28.Vornanen, M. & Paajanen, V. Seasonal changes in glycogen content and Na+-K+-ATPase activity in the brain of crucian carp. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291(5), R1482–R1489 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Hochachka, P. W. et al. Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. U. S. A. 93(18), 9493–9498 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Chung, D. J., Bryant, H. J. & Schulte, P. M. Thermal acclimation and subspecies-specific effects on heart and brain mitochondrial performance in a eurythermal teleost (Fundulus heteroclitus). J. Exp. Biol. 220(8), 1459–1471 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    31.Brahim, A., Mustapha, N. & Marshall, D. J. Non-reversible and reversible heat tolerance plasticity in tropical intertidal animals: Responding to habitat temperature heterogeneity. Front. Physiol. 9, 1909–1909 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26(4), 331–348 (1997).Article 

    Google Scholar 
    33.Hilton, Z., Clements, K. D. & Hickey, A. J. Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes. J. Comp. Physiol. B 180(7), 979–990 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.McArley, T. J., Hickey, A. J. R. & Herbert, N. A. Hyperoxia increases maximum oxygen consumption and aerobic scope of intertidal fish facing acutely high temperatures. J. Exp. Biol. 221(22), 189993 (2018).Article 

    Google Scholar 
    35.Gout, E. et al. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. U. S. A. 111(43), E4560–E4567 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pham, T. et al. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am. J. Physiol. Cell Physiol. 307(6), C499-507 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Masson, S. W. C. et al. Mitochondrial glycerol 3-phosphate facilitates bumblebee pre-flight thermogenesis. Sci. Rep. 7(1), 13107 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Chinopoulos, C. et al. A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT. Biophys. J. 96(6), 2490–2504 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Devaux, J. B. L. et al. Acidosis maintains the function of brain mitochondria in hypoxia-tolerant triplefin fish: A strategy to survive acute hypoxic exposure? Front. Physiol. 9, 1941 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Goo, S. et al. Multiscale measurement of cardiac energetics. Clin. Exp. Pharmacol. Physiol. 40(9), 671–681 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Lagerspetz, K. Y. Temperature effects on different organization levels in animals. Symp. Soc. Exp. Biol. 41, 429–449 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Rosenthal, J. J. & Bezanilla, F. A comparison of propagated action potentials from tropical and temperate squid axons: Different durations and conduction velocities correlate with ionic conductance levels. J. Exp. Biol. 205(Pt 12), 1819–1830 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Robertson, R. M. Thermal stress and neural function: Adaptive mechanisms in insect model systems. J. Therm. Biol. 29(7), 351–358 (2004).CAS 
    Article 

    Google Scholar 
    44.Miller, N. A. & Stillman, J. H. Neural thermal performance in porcelain crabs, Genus Petrolisthes. Physiol. Biochem. Zool. 85(1), 29–39 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gladwell, R. T., Bowler, K. & Duncan, C. J. Heat death in the crayfish Austropotamobius pallipes—Ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1(2), 79–94 (1976).CAS 
    Article 

    Google Scholar 
    46.Chen, I. & Lui, F. Neuroanatomy, Neuron Action Potential (StatPearls Publishing, 2019).
    Google Scholar 
    47.Milligan, L. P. & McBride, B. W. Energy costs of ion pumping by animal tissues. J. Nutr. 115(10), 1374–1382 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Buzatu, S. The temperature-induced changes in membrane potential. Riv. Biol. 102(2), 199–217 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    49.Krans, J. L., Rivlin, P. K. & Hoy, R. R. Demonstrating the temperature sensitivity of synaptic transmission in a Drosophila mutant. J. Undergrad. Neurosci. Educ. 4(1), A27–A33 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    50.Khan, J. R. et al. Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (Family: Tripterygiidae). J. Comp. Physiol. B 184(8), 991–1001 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McArley, T. et al. Intertidal triplefin fishes have a lower critical oxygen tension (Pcrit), higher maximal aerobic capacity, and higher tissue glycogen stores than their subtidal counterparts. J. Comp. Physiol. B. 189, 399–411 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Pfleger, J., He, M. & Abdellatif, M. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis. 6(7), e1835–e1835 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Brand, M. D. The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 33(Pt 5), 897–904 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Brown, J. H. et al. Toward a metabolic theory of ecology. Ecology 85(7), 1771–1789 (2004).ADS 
    Article 

    Google Scholar 
    55.Salin, K. et al. Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proc. Biol. Sci. 2015(282), 20151028–20151028 (1812).
    Google Scholar 
    56.Findly, R. C., Gillies, R. J. & Shulman, R. G. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena. Science 219(4589), 1223 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sharma, H. S. Neurobiology of Hyperthermia (Elsevier, 2011).
    Google Scholar 
    58.Salin, K. et al. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol. Rep. 4(20), e13007 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Hinkle, P. C. P/O ratios of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta BBA Bioenerg. 1706(1), 1–11 (2005).CAS 

    Google Scholar  More

  • in

    Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor

    1.Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14, 343–348 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cam, E. & Aubry, L. Early development, recruitment and life history trajectory in long-lived birds. J. Ornithol. 152, 187–201 (2011).Article 

    Google Scholar 
    3.Cam, E., Monnat, J. Y. & Hines, J. E. Long-term fitness consequences of early conditions in the kittiwake. J. Anim. Ecol. 72, 411–424 (2003).Article 

    Google Scholar 
    4.Tilgar, V., Mänd, R., Kilgas, P. & Mägi, M. Long-term consequences of early ontogeny in free-living Great Tits Parus major. J. Ornithol. 151, 61–68 (2010).Article 

    Google Scholar 
    5.Stamps, J. A. The silver spoon effect and habitat selection by natal dispersers. Ecol. Lett. 9, 1179–1185 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Briga, M., Koetsier, E., Boonekamp, J. J., Jimeno, B. & Verhulst, S. Food availability affects adult survival trajectories depending on early developmental conditions. Proc. R. Soc. B Biol. Sci. 284, 20162287 (2017).Article 

    Google Scholar 
    7.Cooper, E. B. & Kruuk, L. E. Ageing with a silver-spoon: A meta-analysis of the effect of developmental environment on senescence. Evol. Lett. 2, 460–471 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Song, Z. et al. Silver spoon effects of hatching order in an asynchronous hatching bird. Behav. Ecol. Sociobiol. 30, 509–517 (2019).Article 

    Google Scholar 
    9.Descamps, S., Boutin, S., Berteaux, D., McAdam, A. G. & Gaillard, J. M. Cohort effects in red squirrels: The influence of density, food abundance and temperature on future survival and reproductive success. J. Anim. Ecol. 77, 305–314 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Van De Pol, M., Bruinzeel, L. W., Heg, D., Van Der Jeugd, H. P. & Verhulst, S. A silver spoon for a golden future: Long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus). J. Anim. Ecol. 75, 616–626 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Murgatroyd, M. et al. Sex-specific patterns of reproductive senescence in a long-lived reintroduced raptor. J. Anim. Ecol. 87, 1587–1599 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Dmitriew, C. & Rowe, L. Effects of early resource limitation and compensatory growth on lifetime fitness in the ladybird beetle (Harmonia axyridis). J. Evol. Biol. 20, 1298–1310 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hopwood, P. E., Moore, A. J. & Royle, N. J. Effects of resource variation during early life and adult social environment on contest outcomes in burying beetles: A context-dependent silver spoon strategy?. Proc. R. Soc. B Biol. Sci. 281, 20133102 (2014).Article 

    Google Scholar 
    14.Royle, N. J., Lindström, J. & Metcalfe, N. B. A poor start in life negatively affects dominance status in adulthood independent of body size in green swordtails Xiphophorus helleri. Proc. R. Soc. B Biol. Sci. 272, 1917–1922 (2005).Article 

    Google Scholar 
    15.Mugabo, M., Marquis, O., Perret, S. & Le Galliard, J. F. Immediate and delayed life history effects caused by food deprivation early in life in a short-lived lizard. J. Evol. Biol. 23, 1886–1898 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Vitikainen, E. I., Thompson, F. J., Marshall, H. H. & Cant, M. A. Live long and prosper: Durable benefits of early-life care in banded mongooses. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180114 (2019).Article 

    Google Scholar 
    17.Sumasgutner, P., Tate, G. J., Koeslag, A. & Amar, A. Family morph matters: Factors determining survival and recruitment in a long-lived polymorphic raptor. J. Anim. Ecol. 85, 1043–1055 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Emaresi, G. et al. Melanin-specific life-history strategies. Am. Nat. 183, 269–280 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Grunst, M. L. et al. Actuarial senescence in a dimorphic bird: Different rates of ageing in morphs with discrete reproductive strategies. Proc. R. Soc. B Biol. Sci. 285, 20182053 (2018).Article 

    Google Scholar 
    20.Nebel, C., Sumasgutner, P., McPherson, S. C., Tate, G. J. & Amar, A. Contrasting parental color-morphs increase regularity of prey deliveries in an African raptor. Behav. Ecol. 31, 1142–1149 (2020).Article 

    Google Scholar 
    21.Morosinotto, C. et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 196, 609–619 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Chakarov, N., Boerner, M. & Krüger, O. Fitness in common buzzards at the cross-point of opposite melanin–parasite interactions. Funct. Ecol. 22, 1062–1069 (2008).Article 

    Google Scholar 
    23.Roulin, A. Proximate basis of the covariation between a melanin-based female ornament and offspring quality. Oecologia 140, 668–675 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Rödel, H. G., Von Holst, D. & Kraus, C. Family legacies: short-and long-term fitness consequences of early-life conditions in female European rabbits. J. Anim. Ecol. 78, 789–797 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    26.Cockburn, A. Prevalence of different modes of parental care in birds. Proc. R. Soc. B Biol. Sci. 273, 1375–1383 (2006).Article 

    Google Scholar 
    27.Norris, K. & Evans, M. R. Ecological immunology: Life history trade-offs and immune defense in birds. Behav. Ecol. Sociobiol. 11, 19–26 (2000).Article 

    Google Scholar 
    28.van der Most, P. J., de Jong, B., Parmentier, H. K. & Verhulst, S. Trade-off between growth and immune function: A meta-analysis of selection experiments. Funct. Ecol. 25, 74–80 (2011).Article 

    Google Scholar 
    29.Aastrup, C. & Hegemann, A. Jackdaw nestlings rapidly increase innate immune function during the nestling phase but no evidence for a trade-off with growth. Dev. Comparat. Immunol. 2, 103967 (2020).
    Google Scholar 
    30.Ratikainen, I. I. & Kokko, H. Differential allocation and compensation: Who deserves the silver spoon?. Behav. Ecol. Sociobiol. 21, 195–200 (2010).Article 

    Google Scholar 
    31.Limbourg, T., Mateman, A. C. & Lessells, C. M. Opposite differential allocation by males and females of the same species. Biol. Let. 9, 20120835 (2013).Article 

    Google Scholar 
    32.Järvistö, P. E., Calhim, S., Schuett, W., Velmala, W. & Laaksonen, T. Foster, but not genetic, father plumage coloration has a temperature-dependent effect on offspring quality. Behav. Ecol. Sociobiol. 69, 335–346 (2015).Article 

    Google Scholar 
    33.Pryke, S. R. & Griffith, S. C. Socially mediated trade-offs between aggression and parental effort in competing color morphs. Am. Nat. 174, 455–464 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Amar, A., Koeslag, A. & Curtis, O. Plumage polymorphism in a newly colonized black sparrowhawk population: Classification, temporal stability and inheritance patterns. J. Zool. 289, 60–67 (2013).Article 

    Google Scholar 
    35.Tate, G., Sumasgutner, P., Koeslag, A. & Amar, A. Pair complementarity influences reproductive output in the polymorphic black sparrowhawk Accipiter melanoleucus. J. Avian Biol. 48, 387–398 (2017).Article 

    Google Scholar 
    36.Tinbergen, J. M. & Boerlijst, M. C. Nestling weight and survival in individual great tits (Parus major). J. Anim. Ecol. 59, 1113–1127 (1990).Article 

    Google Scholar 
    37.Cleasby, I. R., Nakagawa, S., Gillespie, D. O. S. & Burke, T. The influence of sex and body size on nestling survival and recruitment in the house sparrow. Biol. J. Lin. Soc. 101, 680–688 (2010).Article 

    Google Scholar 
    38.Christe, P., Møller, A. P. & de Lope, F. Immunocompetence and nestling survival in the house martin: The tasty chick hypothesis. Oikos 83, 175–179 (1998).CAS 
    Article 

    Google Scholar 
    39.Ringsby, T. H., Sæther, B.-E. & Solberg, E. J. Factors affecting juvenile survival in house sparrow Passer domesticus. J. Avian Biol. 29, 241–247 (1998).Article 

    Google Scholar 
    40.Losdat, S. et al. Nestling erythrocyte resistance to oxidative stress predicts fledging success but not local recruitment in a wild bird. Biol. Lett. 9, 20120888 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Vermeulen, A., Müller, W. & Eens, M. J. Vitally important–does early innate immunity predict recruitment and adult innate immunity?. Ecol. Evol. 6, 1799–1808 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Vennum, C. R. et al. Early life conditions and immune defense in nestling Swainson’s Hawks. Physiol. Biochem. Zool. 92, 419–429 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Bowers, E. K. et al. Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology 95, 3027–3034 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Calder, P. C. & Sonnenfeld, G. in Nutrition, Immunity, and Infection 1–18 (CRC Press, 2017).Book 

    Google Scholar 
    45.Wilcoxen, T. E., Boughton, R. K. & Schoech, S. J. Selection on innate immunity and body condition in Florida scrub-jays throughout an epidemic. Biol. Let. 6, 552–554 (2010).Article 

    Google Scholar 
    46.Hegemann, A., Marra, P. P. & Tieleman, B. I. Causes and consequences of partial migration in a passerine bird. Am. Nat. 186, 531–546 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Hegemann, A., Matson, K. D., Flinks, H. & Tieleman, B. I. Offspring pay sooner, parents pay later: Experimental manipulation of body mass reveals trade-offs between immune function, reproduction and survival. Front. Zool. 10, 77 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Apanius, V. Ontogeny of Immune Function (Oxford University Press, 1998).
    Google Scholar 
    49.Klasing, K. C. & Leshchinksy, T. V. Functions, Costs, and Benefits of the Immune System During Development and Growth Ostrich, 69, 2817–2835 (1999).50.Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Costantini, D. & Moller, A. P. Does immune response cause oxidative stress in birds? A meta-analysis. Comparat. Biochem. Physiol. Part A 153, 339–344 (2009).Article 
    CAS 

    Google Scholar 
    52.Hanssen, S. A., Hasselquist, D., Folstad, I. & Erikstad, K. E. Costs of immunity: Immune responsiveness reduces survival in a vertebrate. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 925–930 (2004).Article 

    Google Scholar 
    53.Hanssen, S. A. Costs of an immune challenge and terminal investment in a long-lived bird. Ecology 87, 2440–2446 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Matson, K. D., Ricklefs, R. E. & Klasing, K. C. A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev. Comp. Immunol. 29, 275–286 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Müller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 57, 321–347 (1988).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Dobryszycka, W. Biological functions of haptoglobin-new pieces to an old puzzle. Eur. J. Clin. Chem. Clin. Biochem. 35, 647–654 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Matson, K. D., Horrocks, N. P. C., Versteegh, M. A. & Tieleman, B. I. Baseline haptoglobin concentrations are repeatable and predictive of certain aspects of a subsequent experimentally-induced inflammatory response. Comparat. Biochem. Physiol. Part A Mol. Integr. Physiol. 162, 7–15 (2012).CAS 
    Article 

    Google Scholar 
    58.Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: A review. Comp. Med. 59, 517–526 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Hegemann, A., Matson, K. D., Both, C. & Tieleman, B. I. Immune function in a free-living bird varies over the annual cycle, but seasonal patterns differ between years. Oecologia 170, 605–618 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Alexander, C. & Rietschel, E. T. Invited review: Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7, 167–202 (2016).
    Google Scholar 
    61.Hegemann, A., Matson, K. D., Versteegh, M. A., Villegas, A. & Tieleman, B. I. Immune response to an endotoxin challenge involves multiple immune parameters and is consistent among the annual-cycle stages of a free-living temperate zone bird. J. Exp. Biol. 216, 2573–2580 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Vermeulen, A., Eens, M., Zaid, E. & Müller, W. Baseline innate immunity does not affect the response to an immune challenge in female great tits (Parus major). Behav. Ecol. Sociobiol. 70, 585–592 (2016).Article 

    Google Scholar 
    63.Vinterstare, J., Hegemann, A., Nilsson, P. A., Hulthén, K. & Brönmark, C. Defence versus defence: Are crucian carp trading off immune function against predator-induced morphology?. J. Anim. Ecol. 88, 1510–1521 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Lei, B., Amar, A., Koeslag, A., Gous, T. A. & Tate, G. J. Differential haemoparasite intensity between black sparrowhawk (Accipiter melanoleucus) morphs suggests an adaptive function for polymorphism. PLoS ONE 8, e81607 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Suri, J., Sumasgutner, P., Hellard, É., Koeslag, A. & Amar, A. Stability in prey abundance may buffer Black Sparrowhawks Accipiter melanoleucus from health impacts of urbanization. Ibis 159, 38–54 (2017).Article 

    Google Scholar 
    66.Råberg, L., Grahn, M., Hasselquist, D. & Svensson, E. On the adaptive significance of stress-induced immunosuppression. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 1637–1641 (1998).Article 

    Google Scholar 
    67.Sadd, B. M. & Siva-Jothy, M. T. Self-harm caused by an insect’s innate immunity. Proc. R. Soc. Lond. Ser. B Biol. Sci. 273, 2571–2574 (2006).
    Google Scholar 
    68.Gyan, B. et al. Elevated levels of nitric oxide and low levels of haptoglobin are associated with severe malarial anaemia in African children. Acta Trop. 83, 133–140 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Alonso-Alvarez, C. & Tella, J. L. Effects of experimental food restriction and body-mass changes on the avian T-cell-mediated immune response. Can. J. Zool. 79, 101–105 (2001).Article 

    Google Scholar 
    70.Merino, S. et al. Phytohaemagglutinin injection assay and physiological stress in nestling house martins. Anim. Behav. 58, 219–222 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Ochsenbein, A. F. & Zinkernagel, R. M. Natural antibodies and complement link innate and acquired immunity. Immunol. Today 21, 624–630 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Boes, M. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 37, 1141–1149 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Grönwall, C., Vas, J. & Silverman, G. J. Protective roles of natural IgM antibodies. Front. Immunol. 3, 66 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. Trans. R. Soc. B Biol. Sci. 363, 321–339 (2008).Article 

    Google Scholar 
    75.Klasing, K. C. The costs of immunity. Acta Zool. Sin. 50, 961–969 (2004).CAS 

    Google Scholar 
    76.Van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: Their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).Article 

    Google Scholar 
    77.Glazier, D. S. Trade-offs between reproductive and somatic (storage) investments in animals: A comparative test of the Van Noordwijk and De Jong model. Evol. Ecol. 13, 539–555 (1999).Article 

    Google Scholar 
    78.Newton, I., McGrady, M. J. & Oli, M. K. A review of survival estimates for raptors and owls. Ibis 158, 227–248 (2016).Article 

    Google Scholar 
    79.Kennedy, P. L. & Ward, J. M. Effects of experimental food supplementation on movements of juvenile northern goshawks (Accipiter gentilis atricapillus). Oecologia 134, 284–291 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Terraube, J., Vasko, V. & Korpimäki, E. Mechanisms and reproductive consequences of breeding dispersal in a specialist predator under temporally varying food conditions. Oikos 124, 762–771 (2015).Article 

    Google Scholar 
    81.Delgado, M. D. M., Penteriani, V. & Nams, V. O. How fledglings explore surroundings from fledging to dispersal. A case study with Eagle Owls Bubo bubo. Ardea 97, 7–15 (2009).Article 

    Google Scholar 
    82.Rosenfield, R. N. et al. Body mass of female Cooper’s Hawks is unrelated to longevity and breeding dispersal: Implications for the study of breeding dispersal. J. Raptor Res. 50, 305–312 (2016).Article 

    Google Scholar 
    83.Klein, S. L. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol. 26, 247–264 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Zuk, M. Reproductive strategies and disease susceptibility: An evolutionary viewpoint. Parasitol. Today 6, 231–233 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Zuk, M. & McKean, K. A. Sex differences in parasite infections: patterns and processes. Int. J. Parasitol. 26, 1009–1024 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Alexander, J. & Stimson, W. H. Sex hormones and the course of parasitic infection. Parasitol. Today 4, 189–193 (1988).Article 

    Google Scholar 
    88.Roulin, A. et al. Which chick is tasty to parasites? The importance of host immunology vs. parasite life history. J. Anim. Ecol. 72, 75–81 (2003).Article 

    Google Scholar 
    89.Hockey, P. A. R., Dean, W. R. J., Ryan, P. G., Maree, S. & Brickman, B. M. Roberts’ Birds of Southern Africa 7th edn. (John Voelcker Bird Book Fund, 2005).
    Google Scholar 
    90.Christie, D. A. & Ferguson-Lees, J. Raptors of the World (Christopher Helm Publishers, 2010).
    Google Scholar 
    91.Martin, R. O. et al. Phenological shifts assist colonisation of a novel environment in a range-expanding raptor. Oikos 123, 1457–1468 (2014).Article 

    Google Scholar 
    92.Rose, S., Sumasgutner, P., Koeslag, A. & Amar, A. Does seasonal decline in breeding performance differ for an African raptor across an urbanization gradient?. Front. Ecol. Evol. 5, 47 (2017).Article 

    Google Scholar 
    93.Horrocks, N. P. et al. Immune indexes of larks from desert and temperate regions show weak associations with life history but stronger links to environmental variation in microbial abundance. Physiol. Biochem. Zool. 85, 504–515 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Horrocks, N. P. et al. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life. Oecologia 177, 281–290 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Sergio, F., Blas, J., Forero, M. G., Donázar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. Sociobiol. 18, 811–821 (2007).Article 

    Google Scholar 
    96.Rose, S., Thomson, R. L., Oschadleus, H.-D. & Lee, A. T. Summarising biometrics from the SAFRING database for southern African birds. Ostrich 2, 1–5 (2019).
    Google Scholar 
    97.Paijmans, D. M., Rose, S., Oschadleus, H.-D. & Thomson, R. L. SAFRING ringing report for 2017. Biodivers. Observ. 10, 1–11 (2019).
    Google Scholar 
    98.Katzenberger, J., Tate, G., Koeslag, A. & Amar, A. Black Sparrowhawk brooding behaviour in relation to chick age and weather variation in the recently colonised Cape Peninsula, South Africa. J. Ornithol. 156, 903–913 (2015).Article 

    Google Scholar 
    99.Buehler, D. M. et al. Constitutive immune function responds more slowly to handling stress than corticosterone in a shorebird. Physiol. Biochem. Zool. 81, 673–681 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Zylberberg, M. Common measures of immune function vary with time of day and sampling protocol in five passerine species. J Exp Biol 218, 757–766 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    101.van de Crommenacker, J. et al. Effects of immune supplementation and immune challenge on oxidative status and physiology in a model bird: Implications for ecologists. J. Exp. Biol. 213, 3527–3535 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    102.French, S. S. & Neuman-Lee, L. A. Improved ex vivo method for microbiocidal activity across vertebrate species. Biol. Open 1, 482–487 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Eikenaar, C. & Hegemann, A. Migratory common blackbirds have lower innate immune function during autumn migration than resident conspecifics. Biol. Let. 12, 20160078 (2016).Article 
    CAS 

    Google Scholar 
    104.Hegemann, A., Pardal, S. & Matson, K. D. Indices of immune function used by ecologists are mostly unaffected by repeated freeze-thaw cycles and methodological deviations. Front. Zool. 14, 43 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    105.R Core Team. R: A language and environment for statistical computing. Vienna, Austria (R Foundation for Statistical Computing, 2019).106.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 2 (2017).Article 

    Google Scholar 
    107.McCurdy, D. G., Shutler, D., Mullie, A. & Forbes, M. R. Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos 82, 303–312 (1998).CAS 
    Article 

    Google Scholar 
    108.Parejo, D., Silva, N. & Avilés, J. M. Within-brood size differences affect innate and acquired immunity in roller Coracias garrulus nestlings. J. Avian Biol. 38, 717–725 (2007).Article 

    Google Scholar 
    109.Kanikowska, D., Hyun, K. J., Tokura, H., Azama, T. & Nishimura, S. Circadian rhythm of acute phase proteins under the influence of bright/dim light during the daytime. Chronobiol. Int. 22, 137–143 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Laake, J. L. RMark: an R interface for analysis of capture-recapture data with MARK. AFSC Processed Rep 2013-01, Seattle, WA (Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 2013).111.White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).Article 

    Google Scholar 
    112.Burnham, K. P. Design and Analysis Methods for Fish Survival Experiments Based on Release-Recapture (American Fisheries Society, 1987).
    Google Scholar 
    113.Coquet, R., Lebreton, J.-D., Gimenez, O. & Reboulet, A.-M. U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography 32, 1071–1074 (2009).Article 

    Google Scholar 
    114.Sauer, J. R. & Byron, K. W. Generalized procedures for testing hypotheses about survival or recovery raes. J. Wildl. Manag. 53, 137–142 (1989).Article 

    Google Scholar 
    115.Nebel, C., Amar, A., Hegemann, A., Isaksson, C. & Sumasgutner, P. Parental morph combination does not influence innate immune function in nestlings of a colour-polymorphic African raptor: Data, Zivahub, https://doi.org/10.25375/uct.12780803 (2021). More

  • in

    Correction: Gulf of Mexico blue hole harbors high levels of novel microbial lineages

    N. V. PatinPresent address: Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USAN. V. PatinPresent address: Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USAN. V. PatinPresent address: Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USASchool of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USAN. V. Patin & F. J. StewartCenter for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USAN. V. Patin & F. J. StewartBowdoin College, Brunswick, ME, USAZ. A. DietrichHarbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USAA. Stancil, M. Quinan & J. S. BecklerMote Marine Laboratory, Sarasota, FL, USAE. R. Hall & J. CulterU.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USAC. G. SmithSchool of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USAM. TaillefertDepartment of Microbiology & Immunology, Montana State University, Bozeman, MT, USAF. J. Stewart More