1.Watling, L., France, S. C., Pante, E. & Simpson, A. Biology of Deep-Water Octocorals. Advances in Marine Biology Vol. 60 (Elsevier, Amsterdam, 2011).
Google Scholar
2.Sánchez, J. A. Diversity and Evolution of Octocoral Animal Forests at Both Sides of Tropical America. in Marine Animal Forests (ed. Rossi, S., Bramanti, L., Gori, A., & Orejas, C) 1–33 (Springer, 2016).3.Rossi, S., Bramanti, L., Gori, A. and Orejas, C. Marine animal forests: the ecology of benthic biodiversity hotspots. 1-1366. (Springer International Publishing, 2017)4.Cairns, S. D. Studies on western Atlantic Octocorallia (Gorgonacea: Primnoidae). Part 8: New records of Primnoidae from the New England and Corner Rise Seamounts. Proceedings of the Biological Society of Washington120(2), 243–263 (2007).5.Freiwald, A. and Roberts, J.M. Cold-water corals and ecosystems. (Springer, 2005)6.Buhl-Mortensen, L. & Buhl-Mortensen, P. Cold Temperate Coral Habitats. in Corals in a Changing World (2018).7.Braga-Henriques, A. et al. Diversity, distribution and spatial structure of the cold-water coral fauna of the Azores (NE Atlantic). Biogeosciences 10, 4009–4036 (2013).ADS
Article
Google Scholar
8.Íris, S., Andre, F., Filipe, M. P., Gui, M. & Marina, C.-S. Census of Octocorallia (Cnidaria: Anthozoa) of the Azores (NE Atlantic) with a nomenclature update. Zootaxa 4550, 451 (2019).PubMed
Article
PubMed Central
Google Scholar
9.Tempera, F. et al. Mapping condor seamount seafloor environment and associated biological assemblages (Azores, NE Atlantic). Seafloor Geomorphol. Benthic Habitat https://doi.org/10.1016/B978-0-12-385140-6.00059-1 (2012).Article
Google Scholar
10.Andrews, A., Stone, R., Lundstrom, C. & DeVogelaere, A. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating. Mar. Ecol. Prog. Ser. 397, 173–185 (2009).ADS
CAS
Article
Google Scholar
11.Neves, B. D. M., Edinger, E., Layne, G. D. & Wareham, V. E. Decadal longevity and slow growth rates in the deep-water sea pen Halipteris finmarchica (Sars, 1851) (Octocorallia: Pennatulacea): implications for vulnerability and recovery from anthropogenic disturbance. Hydrobiologia 759, 147–170 (2015).CAS
Article
Google Scholar
12.FAO. International guidelines for the management of deep-sea fisheries in the High Seas. (2009).13.OSPAR. Background document for coral gardens, Biodiversity Series, Publication Number: 15486/2010. (2010).14.Kim, K. & Lasker, H. R. Allometry of resource capture in colonial cnidarians and constraints on modular growth. Funct. Ecol. 12, 646–654 (1998).Article
Google Scholar
15.Gori, A. et al. Effects of food availability on the sexual reproduction and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J. Exp. Mar. Bio. Ecol. 444, 38–45 (2013).Article
Google Scholar
16.Coma, R. & Ribes, M. Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101, 205–215 (2003).Article
Google Scholar
17.Nisbet, R. M., Muller, E. B., Lika, K. & Kooijman, S. A. L. M. From molecules to ecosystems through dynamic energy budget models. J. Anim. Ecol. 69, 913–926 (2008).Article
Google Scholar
18.Sebens, K., Sarà, G. & Nishizaki, M. Energetics, Particle Capture, and Growth Dynamics of Benthic Suspension Feeders. in Marine Animal Forests 813–854 (Springer, 2017).19.Ribes, M., Coma, R. & Gili, J. M. Heterogeneous feeding in benthic suspension feeders: The natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar. Ecol. Prog. Ser. 183, 125–137 (1999).ADS
Article
Google Scholar
20.Orejas, C., Gili, J. M. & Arntz, W. Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar. Ecol. Prog. Ser. 250, 105–116 (2003).ADS
Article
Google Scholar
21.Ribes, M., Coma, R. & Rossi, S. Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar. Ecol. Prog. Ser. 254, 141–150 (2003).ADS
CAS
Article
Google Scholar
22.Cocito, S. et al. Nutrient acquisition in four Mediterranean gorgonian species. Mar. Ecol. Prog. Ser. 473, 179–188 (2013).ADS
CAS
Article
Google Scholar
23.Leal, M. C. et al. Temporal changes in the trophic ecology of the asymbiotic gorgonian Leptogorgia virgulata. Mar. Biol. 161, 2191–2197 (2014).Article
Google Scholar
24.Fabricius, K. E., Benayahu, Y. & Genin, A. Herbivory in Asymbiotic Soft Corals. Science (80-) 268, 90–92 (1995).ADS
CAS
Article
Google Scholar
25.Rossi, S., Ribes, M., Coma, R. & Gili, J. M. Temporal variability in Zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar. Biol. 144, 89–99 (2004).Article
Google Scholar
26.Coma, R., Llorente-Llurba, E., Serrano, E., Gili, J. M. & Ribes, M. Natural heterotrophic feeding by a temperate octocoral with symbiotic zooxanthellae: a contribution to understanding the mechanisms of die-off events. Coral Reefs 34, 549–560 (2015).ADS
Article
Google Scholar
27.Orejas, C., Gili, J., López-González, P. & Arntz, W. Feeding strategies and diet composition of four Antarctic cnidarian species. Polar Biol. 24, 620–627 (2001).Article
Google Scholar
28.Sherwood, O. A., Jamieson, R. E., Edinger, E. N. & Wareham, V. E. Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: Examination of trophic, depth and spatial effects . Deep. Res. Part I Oceanogr. Res. Pap. 55, 1392–1402 (2008).ADS
CAS
Article
Google Scholar
29.Kiriakoulakis, K. et al. Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. in Cold-Water Corals and Ecosystems 715–729 (Springer, 2005).30.Naumann, M. S., Tolosa, I., Taviani, M., Grover, R. & Ferrier-Pagès, C. Trophic ecology of two cold-water coral species from the Mediterranean Sea revealed by lipid biomarkers and compound-specific isotope analyses. Coral Reefs 34, 1165–1175 (2015).ADS
Article
Google Scholar
31.Naumann, M. S., Orejas, C., Wild, C. & Ferrier-Pagès, C. First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J. Exp. Biol. 214, 3570–3576 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Sherwood, O. et al. Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: a new archive of surface processes. Mar. Ecol. Prog. Ser. 301, 135–148 (2005).ADS
CAS
Article
Google Scholar
33.Imbs, A. B., Demidkova, D. A. & Dautova, T. N. Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition. Mar. Biol. 163, 202 (2016).Article
CAS
Google Scholar
34.Salvo, F., Hamoutene, D., Hayes, V. E. W., Edinger, E. N. & Parrish, C. C. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses. Coral Reefs 37, 157–171 (2018).ADS
Article
Google Scholar
35.Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).ADS
Article
Google Scholar
36.Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 1–8 (2015).Article
CAS
Google Scholar
37.Fabricius, K. E., Genin, A. & Benayahu, Y. Flow-dependent herbivory and growth in zoxanthellae-free soft corals. Limnol. Oceanogr. 40, 1290–1301 (1995).ADS
Article
Google Scholar
38.Widdig, A. & Schlichter, D. Phytoplankton: a significant trophic source for soft corals?. Helgol. Mar. Res. 55, 198–211 (2001).ADS
Article
Google Scholar
39.Colaço, A., Giacomello, E., Porteiro, F. & Menezes, G. M. Trophodynamic studies on the Condor seamount (Azores, Portugal, North Atlantic) . Deep. Res. Part II Top. Stud. Oceanogr. 98, 178–189 (2013).ADS
Article
Google Scholar
40.Addamo, A. M. et al. Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0654-8 (2016).Article
PubMed
PubMed Central
Google Scholar
41.Mueller, C. E., Larsson, A. I., Veuger, B., Middelburg, J. J. & van Oevelen, D. Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11, 123–133 (2014).ADS
Article
Google Scholar
42.Roushdy, H. & Hansen, V. Filtration of phytoplankton by the octocoral Alcyonium digitatum. Nature 190, 649–650 (1961).ADS
Article
Google Scholar
43.Sorokin, Y. Biomass, metabolic rates and feeding of some common reef zoantharians and octocorals. Aust. J. Mar. Freshw. Resour. 42, 729–741 (1991).Article
Google Scholar
44.Seemann, J. The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J. Exp. Mar. Biol. Ecol. 442, 88–95 (2013).CAS
Article
Google Scholar
45.Orejas, C. et al. The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J. Exp. Mar. Biol. Ecol. 481, 34–40 (2016).Article
Google Scholar
46.Carmo, V. et al. Variability of zooplankton communities at Condor seamount and surrounding areas, Azores (NE Atlantic) . Deep. Sea Res. Part II Top. Stud. Oceanogr. 98, 63–74 (2013).ADS
Article
Google Scholar
47.Gori, A., Grover, R., Orejas, C., Sikorski, S. & Ferrier-Pagès, C. Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea . Deep. Sea Res. Part II Top. Stud. Oceanogr. 99, 42–50 (2014).ADS
CAS
Article
Google Scholar
48.Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa Science of the Anthropocene vol. 5 (2017).49.Migné, A. & Davoult, D. Experimental nutrition in the soft coral Alcyonium digitatum (Cnidaria: Octocorallia): Removal rate of phytoplankton and zooplankton. Cah. Biol. Mar. 43, 9–16 (2002).
Google Scholar
50.Sebens, K. P. & Koehl, M. A. R. Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Mar. Biol. 81, 255–271 (1984).Article
Google Scholar
51.Gili, J.-M., Coma, R., Orejas, C., López-González, P. & Zabala, M. Are Antarctic suspension-feeding communities different from those elsewhere in the world?. Polar Biol. 24, 473–485 (2001).Article
Google Scholar
52.Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): evidence for summer-autumn feeding constraints. Mar. Biol. 149, 643–651 (2006).CAS
Article
Google Scholar
53.Coma, R., Ribes, M., Gili, J.-M. & Zabala, M. Seasonality in coastal benthic ecosystems. Trends Ecol. Evol. 15, 448–453 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Bythell, J. C. & Wild, C. Biology and ecology of coral mucus release. J. Exp. Mar. Biol. Ecol. 408, 88–93 (2011).Article
Google Scholar
55.Brooke, S., Holmes, M. & Young, C. Sediment tolerance of two different morphotypes of the deep-sea coral Lophelia pertusa from the Gulf of Mexico. Mar. Ecol. Prog. Ser. 390, 137–144 (2009).ADS
Article
Google Scholar
56.Larsson, A. I., van Oevelen, D., Purser, A. & Thomsen, L. Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Mar. Pollut. Bull. 70, 176–188 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
57.Ragnarsson, S. Á. et al. The impact of anthropogenic activity on cold-water corals. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots 989–1023 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_27.58.Rix, L. et al. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci. Rep. 6, 18715 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
59.Lampert, W. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23, 831–834 (1978).ADS
CAS
Article
Google Scholar
60.Moller, E. F. Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon. J. Plankton Res. 27, 27–35 (2004).Article
CAS
Google Scholar
61.Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proc. R. Soc. B Biol. Sci. 278, 3465–3473 (2011).CAS
Article
Google Scholar
62.Burgess, S. C. et al. Metabolic scaling in modular animals. Invertebr. Biol. 136, 456–472 (2017).Article
Google Scholar
63.Maier, S. R. et al. Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. 64, 1651–1671 (2019).ADS
CAS
Article
Google Scholar
64.Okie, J. G. et al. Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Proc. R. Soc. B Biol. Sci. 282, 20142630 (2015).Article
Google Scholar
65.van Oevelen, D. et al. The cold-water coral community as hotspot of carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol. Oceanogr. 54, 1829–1844 (2009).ADS
Article
Google Scholar
66.Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37 (2015).Article
Google Scholar
67.Coppari, M., Zanella, C. & Rossi, S. The importance of coastal gorgonians in the blue carbon budget. Sci. Rep. 9, 1–12 (2019).CAS
Article
Google Scholar
68.Moller, E. F. & Nielsen, T. G. Production of bacterial substrate by marine copepods: effect of phytoplankton biomass and cell size. J. Plankton Res. 23, 527–536 (2001).Article
Google Scholar
69.Titelman, J., Riemann, L., Holmfeldt, K. & Nilsen, T. Copepod feeding stimulates bacterioplankton activities in a low phosphorus system. Aquat. Biol. 2, 131–141 (2008).Article
Google Scholar
70.Violle, C. & Jiang, L. Towards a trait-based quantification of species niche. J. Plant Ecol. 2, 87–93 (2009).Article
Google Scholar
71.Yesson, C. et al. Global habitat suitability of cold-water octocorals. J. Biogeogr. 39, 1278–1292 (2012).Article
Google Scholar
72.Kearney, M., Simpson, S. J., Raubenheimer, D. & Helmuth, B. Modelling the ecological niche from functional traits. Philos. Trans. R. Soc. B Biol. Sci. 365, 3469–3483 (2010).Article
Google Scholar
73.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).Article
Google Scholar
74.Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conservation Physiology 3, cov056 (2015).PubMed
PubMed Central
Article
Google Scholar
75.Johnson, J. Y. Description of a new species of flexible coral belonging to the genus Juncella, obtained at Madeira. Proc. Zool. Soc. London 505–506 (1863).76.Weinberg, S. & Grasshoff, M. Gorgonias. El Mar Mediterraneo. Fauna, Flora, Ecologia. II/1. Guia Sistematica y de Identificacion. (Ediciones Omega, 2003).77.Carpine, C. & Grasshoff, M. Les gorgonaires de la Méditerranée. Bull. l’Institut Océanographique 1–140 (1975).78.Brito, A. & Ocaña, O. Corales de las Islas Canarias. (2004).79.Cau, A. et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar. Biol. 162, 1865–1878 (2015).Article
Google Scholar
80.Tempera, F. et al. Mapping the Condor seamount seafloor environment and associated biological assemblages (Azores, NE Atlantic). In Seafloor geomorphology as benthic habitat: geohab atlas of seafloor geomorphic features and benthic habitats (eds Harris, P. T. & Baker, E. K.) 807–818 (Elsevier, Amsterdam, 2012).
Google Scholar
81.Santos, M. et al. Phytoplankton variability and oceanographic conditions at Condor seamount, Azores (NE Atlantic) . Deep. Sea Res. Part II Top. Stud. Oceanogr. 98, 52–62 (2013).ADS
Article
Google Scholar
82.Sorokin, Y. I. On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol. Oceanogr. 18, 380–386 (1973).ADS
CAS
Article
Google Scholar
83.Maier, S. R. et al. Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. https://doi.org/10.1002/lno.11142 (2019).Article
Google Scholar
84.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article
Google Scholar
85.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York , 2009).MATH
Book
Google Scholar
86.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
87.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and Nonlinear mixed effects models. R package version 3.1–140. (2019). More