More stories

  • in

    Diurnal evolution of urban tree temperature at a city scale

    1.Oke, T. R. The heat island of the urban boundary layer: characteristics, causes and effects. In Wind climate in cities (eds Cermak, J. E. et al.) 81–107 (Springer, 1995). https://doi.org/10.1007/978-94-017-3686-2_5.
    Google Scholar 
    2.Wang, C., Wang, Z. H. & Yang, J. Cooling effect of urban trees on the built environment of contiguous United States. Earth’s Future 6, 1066–1081. https://doi.org/10.1029/2018EF000891 (2018).ADS 
    Article 

    Google Scholar 
    3.Pauleit, S. Urban street tree plantings: identifying the key requirements. Proc. Inst. Civ. Eng. Munic. Eng. 156, 43–50. https://doi.org/10.1680/muen.2003.156.1.43 (2003).Article 

    Google Scholar 
    4.Frantzeskaki, N. et al. Nature-based solutions for urban climate change adaptation: linking science, policy, and practice communities for evidence-based decision-making. BioScience 69, 455–466. https://doi.org/10.1093/biosci/biz042 (2019).Article 

    Google Scholar 
    5.Armson, D., Stringer, P. & Ennos, A. R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 11, 245–255. https://doi.org/10.1016/j.ufug.2012.05.002 (2012).Article 

    Google Scholar 
    6.Oke, T. R. The micrometeorology of the urban forest. Philos. Trans. R. Soc. Lond. B 324, 335–349. https://doi.org/10.1098/rstb.1989.0051 (1989).ADS 
    Article 

    Google Scholar 
    7.Chow, W. T. & Brazel, A. J. Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build. Environ. 47, 170–181. https://doi.org/10.1016/j.buildenv.2011.07.027 (2012).Article 

    Google Scholar 
    8.Wang, K., Ma, Q., Wang, X. & Wild, M. Urban impacts on mean and trend of surface incident solar radiation. Geophys. Res. Lett. 41, 4664–4668. https://doi.org/10.1002/2014GL060201 (2014).ADS 
    Article 

    Google Scholar 
    9.Bassuk, N. & Whitlow, T. Environmental stress in street trees. Arboricult. J. 12, 195–201. https://doi.org/10.1080/03071375.1988.9746788 (1988).Article 

    Google Scholar 
    10.Nowak, D. J., Kuroda, M. & Crane, D. E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban For. Urban Green. 2, 139–147. https://doi.org/10.1078/1618-8667-00030 (2004).Article 

    Google Scholar 
    11.Monteith, J. . & Unsworth, M. . Principles of Environmental Physics: Plants, Animals, and the Atmosphere 4th edn. (Elsevier Ltd., 2013).
    Google Scholar 
    12.Simon, H. et al. Modeling transpiration and leaf temperature of urban trees—a case study evaluating the microclimate model ENVI-met against measurement data. Landsc. Urban Plan. 174, 33–40. https://doi.org/10.1016/j.landurbplan.2018.03.003 (2018).Article 

    Google Scholar 
    13.González-Dugo, M. P., Moran, M. S., Mateos, L. & Bryant, R. Canopy temperature variability as an indicator of crop water stress severity. Irrig. Sci. 24, 1–8. https://doi.org/10.1007/s00271-005-0023-7 (2006).Article 

    Google Scholar 
    14.Han, M., Zhang, H., DeJonge, K. C., Comas, L. H. & Trout, T. J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricult. Water Manag. 177, 400–409. https://doi.org/10.1016/j.agwat.2016.08.031 (2016).Article 

    Google Scholar 
    15.Hou, M., Tian, F., Zhang, T. & Huang, M. Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery. Agricult. Water Manag. 222, 182–192. https://doi.org/10.1016/j.agwat.2019.06.005 (2019).Article 

    Google Scholar 
    16.Heilman, J. L., Brittin, C. L. & Zajicek, J. M. Water use by shrubs as affected by energy exchange with building walls. Agricult. For. Meteorol. 48, 345–357. https://doi.org/10.1016/0168-1923(89)90078-6 (1989).ADS 
    Article 

    Google Scholar 
    17.Perini, K. & Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 13, 495–506. https://doi.org/10.1016/j.ufug.2014.03.003 (2014).Article 

    Google Scholar 
    18.Soer, G. J. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Remote Sens. Environ. 9, 27–45. https://doi.org/10.1016/0034-4257(80)90045-0 (1980).ADS 
    Article 

    Google Scholar 
    19.Spronken-Smith, R. A. & Oke, T. R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 19, 2085–2104. https://doi.org/10.1080/014311698214884 (1998).ADS 
    Article 

    Google Scholar 
    20.Rahman, M. A. et al. Traits of trees for cooling urban heat islands: a meta-analysis. Build. Environ. 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 (2020).Article 

    Google Scholar 
    21.Leuzinger, S., Vogt, R. & Körner, C. Tree surface temperature in an urban environment. Agricult. For. Meteorol. 150, 56–62. https://doi.org/10.1016/j.agrformet.2009.08.006 (2010).ADS 
    Article 

    Google Scholar 
    22.Meier, F. & Scherer, D. Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theor. Appl. Climatol. 110, 373–384. https://doi.org/10.1007/s00704-012-0631-0 (2012).ADS 
    Article 

    Google Scholar 
    23.Ballester, C., Jiménez-Bello, M. A., Castel, J. R. & Intrigliolo, D. S. Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric. For. Meteorol. 168, 120–129. https://doi.org/10.1016/j.agrformet.2012.08.005 (2013).ADS 
    Article 

    Google Scholar 
    24.Jones, H. G. Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv. Botan. Res. 41, 107–163. https://doi.org/10.1016/s0065-2296(04)41003-9 (2004).ADS 
    Article 

    Google Scholar 
    25.Givoni, B. Impact of planted areas on urban environmental quality: a review. Atmos. Environ. Part B Urban Atmos. 25, 289–299. https://doi.org/10.1016/0957-1272(91)90001-U (1991).ADS 
    Article 

    Google Scholar 
    26.Kalnay, E. & Cai, M. Impact of urbanization and land-use change on climate. Nature 423, 528–531. https://doi.org/10.1038/nature01675 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    27.A. Coutts, A. et al. Impacts of water sensitive urban design solutions on human thermal comfort. p. 20 (online link: https://watersensitivecities.org.au/wp-content/uploads/2016/07/TMR_B3-1_WSUD_thermal_comfort_no2.pdf) (2014).28.Coutts1, A. et al. The Impacts of WSUD Solutions on Human Thermal Comfort Green Cities and Micro-climate-B3.1-2-2014 Contributing Authors. Tech. Rep. (1968).29.Gunawardena, K. R., Wells, M. J. & Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 584–585, 1040–1055. https://doi.org/10.1016/j.scitotenv.2017.01.158 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Völker, S., Baumeister, H., Classen, T., Hornberg, C. & Kistemann, T. Evidence for the temperature-mitigating capacity of urban blue space—a health geographic perspective. Erdkunde 67, 355–371. https://doi.org/10.3112/erdkunde.2013.04.05 (2013).Article 

    Google Scholar 
    31.Hu, L. & Li, Q. Greenspace, bluespace, and their interactive influence on urban thermal environments. Environ. Res. Lett. 15, 034041. https://doi.org/10.1088/1748-9326/ab6c30 (2020).ADS 
    Article 

    Google Scholar 
    32.Theeuwes, N. E., Solcerová, A. & Steeneveld, G. J. Modeling the influence of open water surfaces on the summertime temperature and thermal comfort in the city. J. Geophys. Res. Atmos. 118, 8881–8896. https://doi.org/10.1002/jgrd.50704 (2013).ADS 
    Article 

    Google Scholar 
    33.Ziter, C. D., Pedersen, E. J., Kucharik, C. J. & Turner, M. G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. U. S. A. 116, 7575–7580. https://doi.org/10.1073/pnas.1817561116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Johnson, S., Ross, Z., Kheirbek, I. & Ito, K. Characterization of intra-urban spatial variation in observed summer ambient temperature from the New York City Community Air Survey. Urban Clim. 31, 100583. https://doi.org/10.1016/j.uclim.2020.100583 (2020).Article 

    Google Scholar 
    35.Wetherley, E. B., McFadden, J. P. & Roberts, D. A. Megacity-scale analysis of urban vegetation temperatures. Remote Sens. Environ. 213, 18–33. https://doi.org/10.1016/j.rse.2018.04.051 (2018).ADS 
    Article 

    Google Scholar 
    36.Zhou, W., Wang, J. & Cadenasso, M. L. Effects of the spatial configuration of trees on urban heat mitigation: a comparative study. Remote Sens. Environ. 195, 1–12. https://doi.org/10.1016/j.rse.2017.03.043 (2017).ADS 
    Article 

    Google Scholar 
    37.Weng, Q., Lu, D. & Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 89, 467–483. https://doi.org/10.1016/j.rse.2003.11.005 (2004).ADS 
    Article 

    Google Scholar 
    38.Hulley, G., Hook, S., Fisher, J. & Lee, C. ECOSTRESS, A NASA Earth-Ventures Instrument for studying links between the water cycle and plant health over the diurnal cycle. In International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2017-July, 5494–5496 (Institute of Electrical and Electronics Engineers Inc., 2017). https://doi.org/10.1109/IGARSS.2017.8128248.39.Wood, S. N. Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62, 1025–1036. https://doi.org/10.1111/j.1541-0420.2006.00574.x (2006).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    40.Duan, S.-B. et al. Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data. Remote Sens. 6, 3247–3262. https://doi.org/10.3390/rs6043247 (2014).ADS 
    Article 

    Google Scholar 
    41.Hu, L., Sun, Y., Collins, G. & Fu, P. Improved estimates of monthly land surface temperature from MODIS using a diurnal temperature cycle (DTC) model. ISPRS J. Photogramm. Remote Sens. 168, 131–140. https://doi.org/10.1016/j.isprsjprs.2020.08.007 (2020).ADS 
    Article 

    Google Scholar 
    42.New York City Department of Information Technology and Telecommunications (NYC DoITT). Land Cover Raster Data 6-inch Resolution (2017).43.New York City Department of Information Technology and Telecommunications (NYC DoITT). New York City Building Footprint (2017).44.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC Press, 2017).Book 

    Google Scholar 
    45.Cârlan, I., Mihai, B. A., Nistor, C. & Große-Stoltenberg, A. Identifying urban vegetation stress factors based on open access remote sensing imagery and field observations. Ecol. Inform. 55, 101032. https://doi.org/10.1016/j.ecoinf.2019.101032 (2020).Article 

    Google Scholar 
    46.Cregg, B. & Dix, M. E. Tree moisture stress and insect damage in urban areas in relation to heat island effects. J. Arboricult. 27, 8–17 (2001).
    Google Scholar 
    47.Novem, D. & Falxa, N. United States Department of Agriculture The Urban Forest of New York City. Tech. Rep. https://doi.org/10.2737/NRS-RB-117 (2018).48.Shaker, R. R., Altman, Y., Deng, C., Vaz, E. & Forsythe, K. W. Investigating urban heat island through spatial analysis of New York City streetscapes. J. Clean. Prod. 233, 972–992. https://doi.org/10.1016/j.jclepro.2019.05.389 (2019).Article 

    Google Scholar 
    49.Meir, T., Orton, P. M., Pullen, J., Holt, T. & Thompson, W. T. Forecasting the New York City urban heat island and sea breeze during extreme heat events. Weather Forecast. 28, 1460–1477. https://doi.org/10.1175/WAF-D-13-00012.1 (2013).ADS 
    Article 

    Google Scholar 
    50.Ramamurthy, P., González, J., Ortiz, L., Arend, M. & Moshary, F. Impact of heatwave on a megacity: an observational analysis of New York City during July 2016. Environ. Res. Lett. 12, 054011. https://doi.org/10.1088/1748-9326/aa6e59 (2017).ADS 
    Article 

    Google Scholar 
    51.Gedzelman, S. D. et al. Mesoscale aspects of the Urban Heat Island around New York City. Theor. Appl. Climatol. 75, 29–42. https://doi.org/10.1007/s00704-002-0724-2 (2003).ADS 
    Article 

    Google Scholar 
    52.Cavender, N. & Donnelly, G. Intersecting urban forestry and botanical gardens to address big challenges for healthier trees, people, and cities. Plants People Planet 1, 315–322. https://doi.org/10.1002/ppp3.38 (2019).Article 

    Google Scholar 
    53.Marias, D. E., Meinzer, F. C. & Still, C. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica. Ecol. Evol. 7, 1297–1310. https://doi.org/10.1002/ece3.2681 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Brune, M. Urban trees under climate change. Potential impacts of dry spells and heat waves in three Germany regions in the 1950s. Report 20, Climate Service Center Germany, Hamburg 123 (2016).55.Jim, C. Y. Green-space preservation and allocation for sustainable greening of compact cities. Cities 21, 311–320. https://doi.org/10.1016/j.cities.2004.04.004 (2004).Article 

    Google Scholar 
    56.Santamouris, M. Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003 (2014).ADS 
    Article 

    Google Scholar 
    57.Drescher, M. Urban heating and canopy cover need to be considered as matters of environmental justice. Proc. Natl. Acad. Sci. U. S. A. 116, 26153–26154. https://doi.org/10.1073/pnas.1917213116 (2019).ADS 
    CAS 
    Article 
    PubMed Central 

    Google Scholar 
    58.Roloff, A. . Bäume in der Stadt (Ulmer, E, 2013).
    Google Scholar 
    59.Bruse, M. ENVI-met 3.0: Updated Model Overview. Tech. Rep. (2004).60.US Census Bureau. State and County Quick Facts https://www.census.gov/quickfacts/fact/table/US/PST045219 (2019).61.Shorris, A. Cool Neighborhoods NYC: A Comprehensive Approach to Keep Communities Safe in Extreme Heat. Tech. Rep.62.Hulley, G. ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) Mission Level 2 Product Specification Document. Tech. Rep. (2018).63.Stark, P. & Parker, R. Bounded-Variable Least-squares: An Algorithm and Applications. Tech. Rep. 394, (1995). More

  • in

    Differentiation of two swim bladdered fish species using next generation wideband hydroacoustics

    1.Collingsworth, P. D. et al. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Rev. Fish Biol. Fish. 27, 363–391 (2017).Article 

    Google Scholar 
    2.Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and the Uncertainty (Routledge, Chapman and Hall Inc., 1992).Book 

    Google Scholar 
    3.Bean, C. W., Winfield, I. J. & Fletcher, J. M. Stock assessment of the Arctic charr (Salvelinus alpinus) population in Loch Ness, UK in stock assessment. In Inland Fisheries (ed. Cowx, I. G.) 206–223 (Blackwell Scientific Publications, 1996).
    Google Scholar 
    4.Emmrich, M. et al. Strong correspondence between gillnet catch per effort and hydroacoustically derived fish biomass in stratified lakes. Freshw. Biol. 57, 2436–2448 (2012).Article 

    Google Scholar 
    5.CEN (European Committee for Standardization). Water quality – sampling of fish with multi-mesh gillnets. European Committee for Standardization, European Standard EN 14757:2015 (Brussels, 2015).6.Murphy, B. & Willis, D. W. Fisheries Techniques 2nd edn. (American Fisheries Society, 1996).
    Google Scholar 
    7.Kinzelbach, R. Neozoans in European waters—Exemplifying the worldwide process of invasion and species mixing. Cell. Mol. Life Sci. 51, 526–538 (1995).CAS 
    Article 

    Google Scholar 
    8.Cerwenka, A. F. Phenotypic and genetic differentiation of invasive gobies in the upper Danube River. Dissertation (Technische
    Universität München, 2014).9.Byström, P. et al. Declining coastal piscivore populations in the Baltic Sea: Where and when do sticklebacks matter?. Ambio 44, 462–471 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Ustups, D. et al. Diet overlap between juvenile flatifish and the invasive round goby in the central Baltic Sea. J. Sea Res. 107, 121–129 (2016).ADS 
    Article 

    Google Scholar 
    11.Jackson, D. A. & Harvey, H. H. Qualitative and quantitative sampling of lake fish communities. Can. J. Fish. Aquat. Sci. 54, 2807–2813 (1997).Article 

    Google Scholar 
    12.Argyle, R. L. Acoustics as a tool for the assessment of Great Lakes forage fishes. Fish. Res. 14, 179–196 (1992).Article 

    Google Scholar 
    13.Jurvelius, J., Leinikki, J., Mamylov, V. & Pushkin, S. Stock assessment of pelagic three-spined stickleback (Gasterosteus aculeatus): A simultaneous up- and down-looking echo-sounding study. Fish. Res. 27, 227–241 (1996).Article 

    Google Scholar 
    14.Horne, J. K. Acoustic approaches to remote species identification: A review. Fish. Oceanogr. 9, 356–371 (2000).Article 

    Google Scholar 
    15.Godlewska, M., Świerzowski, A. & Winfield, I. J. Hydroacoustics as a tool for studies of fish and their habitat. Ecohydrol. Hydrobiol. 4, 417–427 (2004).
    Google Scholar 
    16.Muška, M. et al. Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale. Sci. Rep. 8, 5381. https://doi.org/10.1038/s41598-018-23762-z (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Berger, L. et al. Acoustic target classification. ICES Coop. Res. Rep. https://doi.org/10.17895/ices.pub.4567 (2018).ADS 
    Article 

    Google Scholar 
    18.Emmrich, M., Helland, I. P., Busch, S., Schiller, S. & Mehner, T. Hydroacoustic estimates of fish densities in comparison with stratified pelagic trawl sampling in two deep, coregonid-dominated lakes. Fish. Res. 105, 178–186 (2010).Article 

    Google Scholar 
    19.DuFour, M. R., Qian, S. S., Mayer, C. M. & Vandergoot, C. S. Embracing uncertainty to reduce bias in hydroacoustic species apportionment. Fish. Res. https://doi.org/10.1016/j.fishres.2020.105750 (2021).Article 

    Google Scholar 
    20.Cabreira, A. G., Tripode, M. & Madirolas, A. Artificial neural networks for fish-species identification. ICES J. Mar. Sci. 66, 1119–1129 (2009).Article 

    Google Scholar 
    21.Robotham, H., Bosch, P., Gutierrez-Estrada, J., Castillo, J. & Pulido-Calvo, I. Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks. Fish. Res. 102, 115–122 (2010).Article 

    Google Scholar 
    22.Taylor, J. C. & Maxwell, D. L. Hydroacoustics: lakes and reservoirs. in Salmonid Field Protocols Handbook: Techniques for Assessing Status and Trends in Salmon and Trout Populations (ed. Johnson, D. H. et al.) 153–172 (American Fisheries Society in association with State of the Salmon, 2007).23.Parker-Stetter, S. L., Rudstam, L. G., Sullivan, L. G. & Warner, D. M. Standard operating procedures for fisheries acoustic surveys in the Great Lakes. Great Lakes Fisheries Commission Special Publication 09-01 (2009).24.Guillard, J., Perga, M. E., Colon, M. & Angeli, N. Hydroacoustic assessment of young-of-the-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish. Manag. Ecol. 13, 319–327 (2006).Article 

    Google Scholar 
    25.Winfield, I. J., Fletcher, J. M., James, J. B. & Bean, J. B. Assessment of fish populations in still waters using hydroacoustics and survey gill netting: Experiences with Arctic charr (Salvelinus alpinus) in the UK. Fish. Res. 96, 30–38 (2009).Article 

    Google Scholar 
    26.Yule, D. L., Lori, M. E., Cachera, S., Colon, M. & Guillard, J. Comparing two fish sampling standards over time: Largely congruent results but with caveats. Freshw. Biol. 58, 2074–2088 (2013).Article 

    Google Scholar 
    27.DuFour, M. R., Song, S. Q., Mayer, C. M. & Vandergoot, C. S. Evaluating catchability in a large-scale gillnet survey using hydroacoustics: Making the case for coupled surveys. Fish. Res. 211, 309–318 (2019).Article 

    Google Scholar 
    28.Haralabous, J. & Georgakarakos, S. Artificial neural networks as a tool for species identification of fish schools. ICES J. Mar. Sci. 53, 173–180 (1996).Article 

    Google Scholar 
    29.Zakharia, M. E., Magand, F., Hetroit, F. & Diner, N. Wideband sounder for fish species identification at sea. ICES J. Mar. Sci. 53, 203–208 (1996).Article 

    Google Scholar 
    30.Fernandes, P. G. Classification trees for species identification of fish-school echo traces. ICES J. Mar. Sci. 66, 1073–1080 (2009).Article 

    Google Scholar 
    31.Eckmann, R. A hydroacoustic study of the pelagic spawning behavior of whitefish (Coregonus lavaretus) in lake constance. Can. J. Fish. Aquat. Sci. 48, 995–1002 (1991).Article 

    Google Scholar 
    32.Eckmann, R. & Engesser, B. Reconstructing the build-up of a pelagic stickleback (Gasterosteus aculeatus) population using hydroacoustics. Fish. Res. 210, 189–192 (2018).Article 

    Google Scholar 
    33.Peltonen, H., Ruuhijärvi, J., Malinen, T. & Horppila, J. Estimation of roach (Rutilus rutilus (L.)) and smelt (Osmerus eperlanus (L.)) stocks with virtual population analysis. Hydroacoustics and Gillnet CPUE. Fish. Res. 44, 25–36 (1999).Article 

    Google Scholar 
    34.MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    35.Korneliussen, R. J. The acoustic identification of Atlantic mackerel. ICES J. Mar. Sci. 67, 1749–1758 (2010).Article 

    Google Scholar 
    36.Langkau, M. C., Balk, H., Schmidt, M. B. & Borcherding, J. Can acoustic shadows identify fish species? A novel application of imaging sonar data. Fish. Manag. Ecol. 19, 313–322 (2012).Article 

    Google Scholar 
    37.Boswell, K. M., Wilson, M. P. & Cowan, J. H. Jr. A semiautomated approach to estimating fish size, abundance, and behavior from dual-frequency identification sonar (DIDSON) data. N. Am. J. Fish. Manag. 28, 799–807 (2008).Article 

    Google Scholar 
    38.Crossman, J. A., Martel, G., Johnson, P. N. & Bray, K. The use of Dual-Frequency Identification SONar (DIDSON) to document white sturgeon activity in the Columbia River, Canada. J. Appl. Ichthyol. 27, 53–57 (2011).Article 

    Google Scholar 
    39.Rakowitz, G. et al. Use of high-frequency imaging sonar (DIDSON) to observe fish behavior towards a surface trawl. Fish. Res. 123–124, 37–48 (2012).Article 

    Google Scholar 
    40.Skowronski, M. D. & Harris, J. G. Automatic detection of microchiroptera echolocation calls from field recordings using machine learning algorithms. J. Acoust. Soc. Am. 119, 1817–1833 (2005).Article 

    Google Scholar 
    41.Witten, I. H. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques 4th edn. (Morgan Kaufmann USA, 2017).MATH 

    Google Scholar 
    42.Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015).ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    43.Jech, J. M., Lawson, G. L. & Lavery, A. C. Wideband (15–260 kHz) acoustic volume backscattering spectra of Northern krill (Meganyctiphanes norvegica) and butterfish (Peprilus triacanthus). ICES J. Mar. Sc. 74, 2249–2261 (2017).Article 

    Google Scholar 
    44.Lavery, A. C., Bassett, C., Lawson, G. L. & Jech, J. M. Exploiting signal processing approaches for broadband echosounders. ICES J. of Mar. Sci. 74, 2262–2275 (2017).Article 

    Google Scholar 
    45.Bassett, C., De Robertis, A. & Wilson, C. D. Broadband echosounder measurements of the frequency response of fishes and euphausiids in the Gulf of Alaska. ICES J. Mar. Sci. 75, 1131–1142 (2018).Article 

    Google Scholar 
    46.Demer, D. A. et al. 2016 USA–Norway EK80 Workshop Report: Evaluation of a wideband echosounder for fisheries and marine ecosystem science. ICES Coop. Res. Rep. https://doi.org/10.17895/ices.pub.2318 (2017).Article 

    Google Scholar 
    47.Tuzlukov, V. Signal Processing in Radar Systems 1st edn. (CRC Press Taylor & Francis Group USA, 2013).MATH 

    Google Scholar 
    48.Baer, J., Eckmann, R., Rösch, R., Arlinghaus, R. & Brinker, A. Managing upper lake constance fishery in a multi-sector policy landscape: Beneficiary and victim of a century of anthropogenic trophic change. In Inter-Sectoral Governance of Inland Fisheries (eds Song, A. M. et al.) 32–47 (TBTI Publication Series, 2017).
    Google Scholar 
    49.Roch, S., von Ammon, L., Geist, J. & Brinker, A. Foraging habits of invasive three-spined sticklebacks (Gasterosteus aculeatus)—Impacts on fisheries yield in Upper Lake Constance. Fish. Res. 204, 172–180 (2018).Article 

    Google Scholar 
    50.Rösch, R., Baer, J. & Brinker, A. Impact of the invasive three-spined stickleback (Gasterosteus aculeatus) on relative abundance and growth of native pelagic whitefish (Coregonus wartmanni) in Upper Lake Constance. Hydrobiol. 824, 255–270 (2018).Article 
    CAS 

    Google Scholar 
    51.Balk, H., & Lindem, T. Sonar4 and Sonar5-Pro Post processing systems Operator manual, version 6.0.3. (2018).52.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    53.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News. 2, 18–22 (2002).
    Google Scholar 
    54.Degan, D. J. & Wilson, W. Comparison of four hydroacoustic frequencies for sampling pelagic fish populations in Lake Texoma. N. Am. J. Fish. Manag. 15, 924–932 (1995).Article 

    Google Scholar 
    55.Godlewska, M. et al. Hydroacoustic measurements at two frequencies: 70 and 120 kHz—Consequences for fish stock estimation. Fish. Res. 96, 11–16 (2009).Article 

    Google Scholar 
    56.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    57.Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).PubMed 
    Article 

    Google Scholar 
    58.Oppel, S. et al. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol. Cons. 156, 94–104 (2012).Article 

    Google Scholar 
    59.Kuhn, M. Caret: Classification and Regression Training. R package version 6.0-81. https://CRAN.R-project.org/package=caret (2018).60.Archer, K. J. & Kimes, R. V. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52, 2249–2260 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    61.Lawson, G. J., Barange, M. & Fréon, P. Species identification of pelagic fish schools on the South African continental shelf using acoustic descriptors and ancillary information. ICES J. Mar. Sci. 58, 275–287 (2001).Article 

    Google Scholar 
    62.Simmonds, E. J., Armstrong, F. & Copland, P. J. Species identification using wideband backscatter with neural network and discriminant analysis. ICES J. Mar. Sci. 53, 189–195 (1996).Article 

    Google Scholar 
    63.Bergström, U. et al. Stickleback increase in the Baltic Sea—A thorny issue for coastal predatory fish. Estuar. Coast. Shelf Sci. 163, 134–142 (2015).ADS 
    Article 

    Google Scholar 
    64.Pepin, T. & Shears, T. H. Influence of body size and alternate prey abundance on the risk of predation to fish larvae. Mar. Ecol. Prog. Ser. 128, 279–285 (1995).ADS 
    Article 

    Google Scholar 
    65.Frouzová, J., Kubečka, J., Balk, H. & Frouz, J. Target strength of some European fish species and its dependence onfish body parameters. Fish. Res. 75, 86–96 (2005).Article 

    Google Scholar 
    66.Marques, D. A., Lucek, K., Sousa, V. C., Excoffier, L. & Seehausen, O. Admixture between old lineages facilitated contemporary ecological speciation in Lake Constance stickleback. Nat. Commun. 10, 4240. https://doi.org/10.1038/s41467-019-12182-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Processing of novel food reveals payoff and rank-biased social learning in a wild primate

    Study site and subject detailsThe study was conducted at the Inkawu Vervet Project (IVP) in a 12,000-hectare private game reserve: Mawana (28° 00.327 S, 031° 12.348 E) in KwaZulu Natal province, South Africa. The vegetation of the study site consisted in a savannah characterized by a mosaic of grasslands and clusters of trees of the typical savannah thornveld, bushveld and thicket patches. We studied two groups of wild vervet monkeys (Chlorocebus pygerythrus): ‘Noha’ (NH) and ‘Kubu’ (KB). NH was composed of 34 individuals (6 adult males; 9 adult females; 6 juvenile males; 7 juvenile females; 5 infant males; 1 infant female) and KB was composed of 19 individuals (1 adult male; 6 adult females; 3 juvenile males; 4 juvenile females; 3 infant males; 2 infant females; Table S1). Males were considered as adults once they dispersed, and females were considered as adults after they gave their first birth. Individuals that did not fulfil these criteria were considered as juveniles28 and infants were aged less than 1 year old. In EWA models, infants and juveniles were lumped in a single category “juveniles”. Each group had been habituated to the presence of human observers: since 2010 for NH and since 2013 for KB. All individuals were identifiable thanks to portrait photographs and specific individual body and face features (scars, colours, shape etc.).This research adhered to the “Guidelines for the use of animals in research” of Association for Study of Animal Behaviour, was approved by the relevant local authority, Ezemvelo KZN Wildlife, South Africa and complied with the ARRIVE guidelines.Hierarchy establishmentAgonistic interactions (aggressor behaviour: stare, chase, attack, hit, bite, take place; victim behaviour: retreat, flee, leave, avoid, jump aside) were collected from May 2018 to October 2018, aside from experiment days, on all the adults and juveniles of both groups via ad libitum sampling50 and food competition tests (i.e. corn provided to the whole group from a plastic box). Data were collected by CC, MBC and different observers from the IVP team. Before beginning data collection, observers had to pass an inter-observer reliability test with 80% reliability for each data category between two observers. Data were collected on tablets (Vodacom Smart Tab 2) equipped with Pendragon version 8.Individual hierarchical ranks were determined by the outcome of dyadic agonistic interactions recorded ad libitum and through food competition tests using Socprog software version 2.751. Hierarchies in both groups were significantly linear (NH: h′ = 0.27; P  More

  • in

    Neogene hyperaridity in Arabia drove the directions of mammalian dispersal between Africa and Eurasia

    1.Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 2-1–2-31 (2002).
    Google Scholar 
    2.Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003).CAS 

    Google Scholar 
    3.Jickells, T. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. science 308, 67–71 (2005).CAS 

    Google Scholar 
    4.Mahowald, N. M. et al. Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles 19, https://doi.org/10.1029/2004GB002402 (2005).5.Bristow, C. S., Hudson‐Edwards, K. A. & Chappell, A. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL043486 (2010).6.Rizzolo, J. A. et al. Soluble iron nutrients in Saharan dust over the central Amazon rainforest. Atmos. Chem. Phys. 17, 2673–2687 (2017).CAS 

    Google Scholar 
    7.Micheels, A., Eronen, J. & Mosbrugger, V. The Late Miocene climate response to a modern Sahara desert. Glob. Planet. Change 67, 193–204 (2009).
    Google Scholar 
    8.Lohmann, G., Butzin, M. & Bickert, T. Effect of vegetation on the Late Miocene ocean circulation. J. Mar. Sci. Eng. 3, 1311–1333 (2015).
    Google Scholar 
    9.Vinoj, V. et al. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat. Geosci. 7, 308–313 (2014).CAS 

    Google Scholar 
    10.Dave, P., Bhushan, M. & Venkataraman, C. Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    11.Besnard, G., de Casas, R., Christin, R. & Vargas, P.-A. P. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann. Bot. 104, 143–160 (2009).CAS 

    Google Scholar 
    12.Désamoré, A. et al. Out of Africa: north‐westwards Pleistocene expansions of the heather Erica arborea. J. Biogeogr. 38, 164–176 (2011).
    Google Scholar 
    13.Denk, T., Güner, H. T. & Grimm, G. W. From mesic to arid: Leaf epidermal features suggest preadaptation in Miocene dragon trees (Dracaena). Rev. Palaeobot. Palynol. 200, 211–228 (2014).
    Google Scholar 
    14.Mairal, M., Pokorny, L., Aldasoro, J. J., Alarcón, M. & Sanmartín, I. Ancient vicariance and climate‐driven extinction explain continental‐wide disjunctions in Africa: the case of the Rand Flora genus Canarina (Campanulaceae). Mol. Ecol. 24, 1335–1354 (2015).CAS 

    Google Scholar 
    15.Douady, C. J. et al. The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews). Proc. Natl Acad. Sci. 100, 8325–8330 (2003).CAS 

    Google Scholar 
    16.Carranza, S., Arnold, E., Geniez, P., Roca, J. & Mateo, J. Radiation, multiple dispersal and parallelism in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara Desert. Mol. Phylogenet. Evol. 46, 1071–1094 (2008).CAS 

    Google Scholar 
    17.Brito, J. C. et al. Unravelling biodiversity, evolution and threats to conservation in the Sahara‐Sahel. Biol. Rev. 89, 215–231 (2014).
    Google Scholar 
    18.Gonçalves, D. V. et al. The role of climatic cycles and trans-Saharan migration corridors in species diversification: biogeography of Psammophis schokari group in North Africa. Mol. Phylogenet. Evol. 118, 64–74 (2018).
    Google Scholar 
    19.Lado, S., Alves, P. C., Islam, M. Z., Brito, J. C. & Melo-Ferreira, J. The evolutionary history of the Cape hare (Lepus capensis sensu lato): insights for systematics and biogeography. Heredity 123, 634–646 (2019).CAS 

    Google Scholar 
    20.Moutinho, A. F. et al. Evolutionary history of two cryptic species of northern African jerboas. BMC Evolut. Biol. 20, 1–16 (2020).
    Google Scholar 
    21.Solounias, N., Plavcan, J., Quade, J. & Witmer, L. in The Evolution of Neogene Terrestrial Ecosystems in Europe (eds Rook, L. et al.) Ch. 22, 436–453 (Cambridge University Press, 1999).22.Thomas, H. Les bovidae (Artiodactyla: Mammalia) du miocene du sous-continent indien, de la peninsule arabique et de l’afrique: Biostratigraphie, biogeographie et ecologie. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45, 251–299 (1984).
    Google Scholar 
    23.Bibi, F. Mio-Pliocene faunal exchanges and African biogeography: the record of fossil bovids. PLoS ONE 6, e16688 (2011).24.Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evolut. Biol. 13, 166 (2013).
    Google Scholar 
    25.Begun, D. R., Nargolwalla, M. C. & Kordos, L. European Miocene hominids and the origin of the African ape and human clade. Evolut. Anthropol. 21, 10–23 (2012).
    Google Scholar 
    26.Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).
    Google Scholar 
    27.Vrba, E. S. On the connections between paleoclimate and evolution. In Paleoclimate and evolution, with emphasis on human origins. (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) p. 24–45 (Yale University Press, New Haven and Lopndon, 1995).28.Homke, S., Vergés, J., Garcés, M., Emami, H. & Karpuz, R. Magnetostratigraphy of Miocene–Pliocene Zagros foreland deposits in the front of the Push-e Kush arc (Lurestan Province, Iran). Earth Planet. Sci. Lett. 225, 397–410 (2004).CAS 

    Google Scholar 
    29.Alavi, M. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–238 (1994).
    Google Scholar 
    30.Berberian, M. Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241, 193–224 (1995).
    Google Scholar 
    31.Mather, A., Stokes, M., Pirrie, D. & Hartley, R. Generation, transport and preservation of armoured mudballs in an ephemeral gully system. Geomorphology 100, 104–119 (2008).
    Google Scholar 
    32.Bachmann, G. H. & Wang, Y. Armoured mud balls as a result of ephemeral fluvial flood in a humid climate: modern example from Guizhou Province, South China. J. Palaeogeogr. 3, 410–418 (2014).
    Google Scholar 
    33.Vicente, A., Expósito, M., Sanjuan, J. & Martín-Closas, C. Small sized charophyte gyrogonites in the Maastrichtian of Coll de Nargó, Eastern Pyrenees: an adaptation to temporary floodplain ponds. Cretac. Research 57, 443–456 (2016).
    Google Scholar 
    34.Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J. & Amini, A. Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics 451, 170–185 (2008).
    Google Scholar 
    35.Emami, H. et al. Structure of the Mountain Front Flexure along the Anaran anticline in the Pusht-e Kuh Arc (NW Zagros, Iran): insights from sand box models. Geol. Soc. Lond. Spec. Publ. 330, 155–178 (2010).36.Ewing, S. A. et al. A threshold in soil formation at Earth’s arid–hyperarid transition. Geochim. Cosmochim. Acta 70, 5293–5322 (2006).CAS 

    Google Scholar 
    37.Rosenthal, E., Magaritz, M., Ronen, D. & Roded, R. Origin of nitrates in the Negev Desert, Israel. Appl. Geochem 2, 347–354 (1987).CAS 

    Google Scholar 
    38.Michalski, G., Böhlke, J. & Thiemens, M. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim. Cosmochim. Acta 68, 4023–4038 (2004).CAS 

    Google Scholar 
    39.Mouthereau, F., Lacombe, O. & Vergés, J. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532, 27–60 (2012).
    Google Scholar 
    40.Reynolds, R. L. et al. Dust emission from wet and dry playas in the Mojave Desert, USA. Earth Surf. Process. Landf. 32, 1811–1827 (2007).
    Google Scholar 
    41.Cosentino, D. et al. Refining the Mediterranean “Messinian gap” with high-precision U-Pb zircon geochronology, central and northern Italy. Geology 41, 323–326 (2013).CAS 

    Google Scholar 
    42.Lisiecki, L. E. & Raymo, M. E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, https://doi.org/10.1029/2004PA001071 (2005).43.Tan, N. et al. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth Planet. Sci. Lett. 472, 266–276 (2017).CAS 

    Google Scholar 
    44.Miller, K. G. et al. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology 40, 407–410 (2012).CAS 

    Google Scholar 
    45.Ohneiser, C. et al. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nat. Commun. 6, 1–10 (2015).
    Google Scholar 
    46.Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 1–14 (2016).
    Google Scholar 
    47.Manzi, V. et al. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25, 315–322 (2013).
    Google Scholar 
    48.Ryan, W. B. Decoding the Mediterranean salinity crisis. Sedimentology 56, 95–136 (2009).
    Google Scholar 
    49.Roveri, M. et al. The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Mar. Geol. 352, 25–58 (2014).
    Google Scholar 
    50.Madof, A. S., Bertoni, C. & Lofi, J. Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology 47, 171–174 (2019).CAS 

    Google Scholar 
    51.Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V. Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 290, 183–191 (2010).CAS 

    Google Scholar 
    52.van Baak, C. G. et al. Paratethys response to the Messinian salinity crisis. Earth Sci. Rev. 172, 193–223 (2017).
    Google Scholar 
    53.Böhme, M., Ilg, A. & Winklhofer, M. Late Miocene “washhouse” climate in Europe. Earth Planet. Sci. Lett. 275, 393–401 (2008).
    Google Scholar 
    54.Schuster, M. et al. The age of the Sahara desert. Science 311, 821–821 (2006).CAS 

    Google Scholar 
    55.Böhme, M. et al. Messinian age and savannah environment of the possible hominin Graecopithecus from Europe. PLoS ONE 12, e0177347 (2017).56.Böhme, M., Van Baak, C. G., Prieto, J., Winklhofer, M. & Spassov, N. Late Miocene stratigraphy, palaeoclimate and evolution of the Sandanski Basin (Bulgaria) and the chronology of the Pikermian faunal changes. Glob. Planet. Change 170, 1–19 (2018).
    Google Scholar 
    57.Alijani, B. & Harman, J. R. Synoptic climatology of precipitation in Iran. Ann. Assoc. Am. Geogr. 75, 404–416 (1985).
    Google Scholar 
    58.Perșoiu, A., Ionita, M. & Weiss, H. Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event—a hypothesis. Clim. Past 15, 781–793 (2019).
    Google Scholar 
    59.Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997).CAS 

    Google Scholar 
    60.Zhongshi, Z., Wang, H., Guo, Z. & Jiang, D. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 317–331 (2007).
    Google Scholar 
    61.Najafi, M. S., Sarraf, B., Zarrin, A. & Rasouli, A. Climatology of atmospheric circulation patterns of Arabian dust in western Iran. Environ. Monit. Assess. 189, 473 (2017).
    Google Scholar 
    62.van Baak, C. G., Stoica, M., Grothe, A., Aliyeva, E. & Krijgsman, W. Mediterranean-Paratethys connectivity during the Messinian salinity crisis: the Pontian of Azerbaijan. Glob. Planet. Change 141, 63–81 (2016).
    Google Scholar 
    63.Naidina, O. D. & Richards, K. The Akchagylian stage (late Pliocene-early Pleistocene) in the North Caspian region: Pollen evidence for vegetation and climate change in the Urals-Emba region. Quat. Int. 540, 22–37 (2020).
    Google Scholar 
    64.Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. 114, 12888–12893 (2017).CAS 

    Google Scholar 
    65.Colleoni, F., Cherchi, A., Masina, S. & Brierley, C. M. Impact of global SST gradients on the Mediterranean runoff changes across the Plio‐Pleistocene transition. Paleoceanography 30, 751–767 (2015).
    Google Scholar 
    66.Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1–13 (2018).CAS 

    Google Scholar 
    67.White, S. & Ravelo, A. Dampened El Niño in the early Pliocene warm period. Geophys. Res. Lett. 47, e2019GL085504 (2020).
    Google Scholar 
    68.Tozuka, T., Endo, S. & Yamagata, T. Anomalous Walker circulations associated with two flavors of the Indian Ocean Dipole. Geophys. Res. Lett. 43, 5378–5384 (2016).
    Google Scholar 
    69.Annamalai, H., Okajima, H. & Watanabe, M. Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Clim. 20, 3164–3189 (2007).
    Google Scholar 
    70.Nazemosadat, M., Samani, N., Barry, D. & Molaii Niko, M. ENSO forcing on climate change in Iran: precipitation analysis. Iran. J. Sci. Technol. Trans. B 30, 555–565 (2006).
    Google Scholar 
    71.Trauth, M. H. et al. High-and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J. Hum. Evol. 53, 475–486 (2007).
    Google Scholar 
    72.Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl Acad. Sci. 114, 7331–7336 (2017).CAS 

    Google Scholar 
    73.Lebatard, A.-E. et al. Application of the authigenic 10Be/9Be dating method to continental sediments: reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin. Earth Planet. Sci. Lett. 297, 57–70 (2010).CAS 

    Google Scholar 
    74.Tiedemann, R., et al. Proc. ODP, Sci. Results. 241–277.75.Hilgen, F. et al. Integrated stratigraphy and astrochronology of the Messinian GSSP at Oued Akrech (Atlantic Morocco). Earth Planet. Sci. Lett. 182, 237–251 (2000).CAS 

    Google Scholar 
    76.Dupont, L. M. & Leroy, S. A. Steps Toward Drier Climatic Conditions in Northwestern Africa during the Upper Pliocene. Paleoclimate and Evolution with Emphasis on Human Origins 289–298 (Yale University Press, 1995)77.Darwin, C. & Bynum, W. F. The Origin of Species by Means of Natural Selection: Or, the Preservation of favored Races in the Struggle for Life (Penguin Harmondsworth, 2009).78.Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).CAS 

    Google Scholar 
    79.Gradstein, F. M., Ogg, J. G., Schmitz, M. B. & Ogg, G. M. The Geologic Time Scale 2012. (Elsevier, 2012).80.Epp, T. et al. Vegetation canopy effects on total and dissolved Cl, Br, F and I concentrations in soil and their fate along the hydrological flow path. Sci. Total Environ. 712, 135473 (2020).CAS 

    Google Scholar 
    81.Dietze, E. & Dietze, M. Grain-size distribution unmixing using the R package EMMAgeo. E&G-Quat. Sci. J. 68, 29–46 (2019).
    Google Scholar 
    82.Andò, S. Gravimetric separation of heavy minerals in sediments and rocks. Minerals 10, 273 (2020).
    Google Scholar 
    83.Al-Juboury, A. I. & Al-Miamary, F. A. Geochemical variations in heavy minerals as provenance indications: application to the Tigris river sand, northern Iraq. J. Mediter. Earth Sci. 1, 33–45 (2009).
    Google Scholar 
    84.Garzanti, E. et al. The Euphrates-Tigris-Karun river system: Provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate. Earth Sci. Rev. 162, 107–128 (2016).CAS 

    Google Scholar 
    85.Philip, G. Mineralogy of the Recent sediments of Tigris and Euphrates rivers and some of the older detrital deposits. J. Sediment. Res. 38, 35–44 (1968).
    Google Scholar 
    86.Skoček, V. & Saadallah, A. Grain-size distribution, carbonate content and heavy minerals in eolian sands, southern desert, Iraq. Sediment. Geol. 8, 29–46 (1972).
    Google Scholar 
    87.Popov, S., Antipov, M., Zastrozhnov, A., Kurina, E. & Pinchuk, T. Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigr. Geol. Correl. 18, 200–224 (2010).
    Google Scholar 
    88.Krijgsman, W. et al. Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth Sci. Rev. 188, 1–40 (2019).
    Google Scholar 
    89.van Baak, C. G. et al. Messinian events in the Black Sea. Terra Nova 27, 433–441 (2015).
    Google Scholar 
    90.Green, T., Abdullayev, N., Hossack, J., Riley, G. & Roberts, A. M. Sedimentation and Subsidence in the South Caspian Basin, Azerbaijan vol. 312 (Geological Society, London, Special Publications, 2009) 241–260 (2009).91.Abdullayev, N. R., Riley, G. W. & Bowman, A. P. Regional controls on lacustrine sandstone reservoirs: the Pliocene of the South Caspian Basin. (2012).92.Trubikhin, V. Paleomagnetic data for the Pontian. Chronostratigraphie und Neostratotypen–Pontien. Chronostratigraphie und Neostratotypen, Zagreb–Beograd. 76–79 (1989).93.Van Baak, C. G. et al. A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan. Glob. Planet. Change 103, 119–134 (2013).
    Google Scholar 
    94.Davis, S. N., Fabryka-Martin, J. T. & Wolfsberg, L. E. Variations of bromide in potable ground water in the United States. Ground Water 42, 902–909 (2004).CAS 

    Google Scholar 
    95.Davis, S. N., Whittemore, D. O. & Fabryka-Martin, J. Uses of chloride/bromide ratios in studies of potable water. Ground Water 36, 338–350 (1998).CAS 

    Google Scholar 
    96.Alcalá, F. J. & Custodio, E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J. Hydrol. 359, 189–207 (2008).
    Google Scholar 
    97.Dickson, A. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water 166–187 (ORNL/CDIAC-74, U. S. Department of Energy, 1994).98.Tan, H., Ma, H., Li, B., Zhang, X. & Xiao, Y. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chin. Sci. Bull. 55, 3181–3188 (2010).CAS 

    Google Scholar 
    99.Turk, L., Davis, S. & Bingham, C. Hydrogeology of lacustrine sediments, Bonneville Salt Flats, Utah. Econ. Geol. 68, 65–78 (1973).CAS 

    Google Scholar 
    100.Sun, S. et al. Bromine content and Br/Cl molar ratio of halite in a core from Laos: implications for origin and environmental changes. Carbon. Evaporites 34, 1107–1115 (2019).CAS 

    Google Scholar 
    101.Fomba, K. W. et al. Long-term chemical characterization of tropical and marine aerosols at the CVAO: field studies (2007 to 2011). Atmos. Chem. Phys 14, 3917–3971 (2014).
    Google Scholar 
    102.Manö, S. & Andreae, M. O. Emission of methyl bromide from biomass burning. Science 263, 1255–1257 (1994).
    Google Scholar 
    103.Goni, I., Fellman, E. & Edmunds, W. Rainfall geochemistry in the Sahel region of northern Nigeria. Atmos. Environ. 35, 4331–4339 (2001).CAS 

    Google Scholar 
    104.Horst, A. et al. Stable bromine isotopic composition of methyl bromide released from plant matter. Geochim. Cosmochim. Acta 125, 186–195 (2014).CAS 

    Google Scholar 
    105.Helder, R. The absorption of labelled chloride and bromide ions by young intact barley plants. Acta Bot. Neerl. 13, 488–506 (1965).
    Google Scholar 
    106.Bowen, H. J. M. Environmental Chemistry of the Elements (Academic Press, 1979).107.Gerritse, R. G. & George, R. J. The role of soil organic matter in the geochemical cycling of chloride and bromide. J. Hydrol. 101, 83–95 (1988).CAS 

    Google Scholar 
    108.Wishkerman, A. et al. Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature. Environ. Sci. Technol. 42, 6837–6842 (2008).CAS 

    Google Scholar 
    109.Delany, A. C., Pollock, W. H. & Shedlovsky, J. P. Tropospheric aerosol—relative contribution of marine and continental components. J. Geophys. Res. 78, 6249–6265 (1973).CAS 

    Google Scholar 
    110.Pérez-Fodich, A. et al. Climate change and tectonic uplift triggered the formation of the Atacama Desert’s giant nitrate deposits. Geology 42, 251–254 (2014).
    Google Scholar 
    111.Reich, M. & Bao, H. M. Nitrate deposits of the Atacama Desert: a marker of long-term hyperaridity. Elements 14, 251–256 (2018).CAS 

    Google Scholar 
    112.Erickson, D. J. III & Duce, R. A. On the global flux of atmospheric sea salt. J. Geophys. Res. 93, 14079–14088 (1988).
    Google Scholar 
    113.Murphy, D. M. et al. The distribution of sea-salt aerosol in the global troposphere. Atmos. Chem. Phys. 19, https://doi.org/10.5194/acp-19-4093-2019 (2019).114.Walvoord, M. A. et al. A reservoir of nitrate beneath desert soils. Science 302, 1021–1024 (2003).CAS 

    Google Scholar 
    115.Graham, R. C., Hirmas, D. R., Wood, Y. A. & Amrhein, C. Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California. Geology 36, 259–262 (2008).CAS 

    Google Scholar 
    116.Voigt, C., Klipsch, S., Herwartz, D., Chong, G. & Staubwasser, M. The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Glob. Planet. Change 184, 103077 (2020).
    Google Scholar 
    117.Böhlke, J., Ericksen, G. & Revesz, K. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. chemical. Chem. Geol. 136, 135–152 (1997).
    Google Scholar 
    118.Jin, Z., Zhu, Y., Li, X., Dong, Y. & An, Z. Soil N retention and nitrate leaching in three types of dunes in the Mu Us desert of China. Sci. Rep. 5, 14222 (2015).CAS 

    Google Scholar 
    119.Ericksen, G. E., Hosterman, J. W. & Amand, P. S. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, USA. Chem. Geol. 67, 85–102 (1988).CAS 

    Google Scholar 
    120.Qin, Y. et al. Massive atmospheric nitrate accumulation in a continental interior desert, northwestern China. Geology 40, 623–626 (2012).CAS 

    Google Scholar 
    121.Lybrand, R. A. et al. Nitrate, perchlorate, and iodate co-occur in coastal and inland deserts on Earth. Chemical. Geology 442, 174–186 (2016).CAS 

    Google Scholar 
    122.Wood, G. in American Association of Stratigraphic Palynologists Foundation vol. 1 29–50 (1996).123.Wallace, A. The Geographical Distribution of Animals Vol. I & II (Harper and Brothers, 1876).124.Wessel, P. & Luis, J. F. The GMT/MATLAB Toolbox. Geochem. Geophys. Geosyst. 18, 811–823 (2017).
    Google Scholar 
    125.Amante, C. & Eakins, B. ETOPO1 Global Relief Model Converted to PanMap Layer Format (NOAA-National Geophysical Data Center, 2009).126.Flint, A. L., Flint, L. E., Curtis, J. A. & Buesch, D. C. A preliminary water balance model for the Tigris and Euphrates river system. US Geological Survey, Water Budget Report (2011). More

  • in

    Low annual temperature likely prevents the Holarctic amphipod Gammarus lacustris from invading Lake Baikal

    This study aimed to investigate species-specific thermal adaptations of two endemic amphipod species differing in their thermal tolerance and one widespread Holarctic species by comparing long-term responses to cold and warm temperatures beyond their respective preference temperatures. We hypothesize that the Holarctic G. lacustris is limited at the extreme low temperature (i.e. 1.5 °C) preventing this species from establishing a stable population in Lake Baikal, whereas the Baikal endemic amphipods possessing specific thermal adaptations to maintain a high energy metabolism in winter at low temperatures.To test this hypothesis, we measured metabolic markers in long-term acclimated animals exposed to four different temperatures (i.e., 1.5 °C, 6 °C, 12 °C and 15 °C) including the respective preference temperature of each species. More specifically , we studied key metabolic enzyme activities, such as citrate synthase and cytochrome c and oxidase, to estimate aerobic energy production and lactate dehydrogenase as an indicator of anaerobic glycolysis. To better understand the metabolic output of these enzymes we studied metabolite contents such as ATP, lactate, and glycogen. Finally, we investigated activities of three antioxidant enzymes to evaluate the level of cellular stress. Overall, we could demonstrate significant differences of several markers between all three species and their responsiveness to temperature. Common patterns and their implications for the performance of the species in their habitats are discussed in the following.Metabolic properties at optimal temperaturesLong-term acclimation to the preferred (= optimal) temperatures allows maintaining homeostasis and avoids any stress related to the non-optimal thermal conditions. At these optimal temperatures, the aerobic scopes of the species should be at their maxima meaning that maximum excess oxygen is available to fuel processes above maintenance to support e.g., growth and reproduction7,27.Here, we found differences in the capacities of aerobic metabolism, levels of energy equivalents and energy stores between the three species, as indicated by the higher activity of cytochrome c oxidase, ATP and glycogen levels in G. lacustris compared to the two Baikal species. This is in line with our previous findings about routine metabolic rates, measured as oxygen consumption in the studied species21.Constantly low temperatures led to decreased cellular ATP levels and activities of cytochrome c oxidase in Baikal endemics, thereby indicating a reduced rate of basal metabolism. The same trend was observed in Antarctic fish compared to temperate and tropical fish species27,28.However, the activity of another marker of aerobic metabolism—citrate synthase—is similar among the three species. The higher citrate synthase/cytochrome c oxidase ratio in Baikal species compared to G. lacustris may be attributed to the prevalence of lipid over glucose metabolism in Baikal species29. Significantly higher levels of glycogen in G. lacustris support this assumption.Here, we studied one thermally tolerant Baikal endemic species, E. cyaneus, and one cold-stenothermal species, E. verrucosus. Previous studies on the molecular evolution of thermal tolerance revealed significant structural and functional differences in heat shock proteins (Hsp70), a universal molecular protection system24. Significant differences in routine metabolic rate and lethal temperatures were also shown21, supporting both endemic species’ thermal classification. The present results widen our mechanistic understanding of thermotolerance in Baikal amphipods. Particularly, when acclimated to their preferred temperatures, the two Baikal species showed some differences in metabolic fuel usage. Higher glucose, glycogen and lactate levels correspond to a more enhanced glucose metabolism, which may be required to maintain higher metabolic activity of the thermotolerant species E. cyaneus. However, capacities of cytochrome c oxidase and citrate synthase activities are similar, as well as the ATP level, which indicates similar rates of oxygen metabolism under optimal thermal condition in these two species.Oxygen metabolism is tightly connected with the antioxidative defense against reactive oxygen species (ROS) as they are natural byproducts of aerobic metabolism. Therefore, we studied the activity of three antioxidative enzymes. Our results indicate that despite higher aerobic capacities and presumably higher metabolic rates in G. lacustris compared to the two Baikal species, the activities of catalase and glutathione S-transferase were comparable and for peroxidase even higher in the cold stenothermal E. verrucosus than in G. lacustris (Fig. 2). Similarly, Abele and Puntarulo24,30 showed that the basic levels of superoxide dismutase activity in polar mollusks are higher than in temperate ones. Increased ROS generation in cells of ectothermic animals may occur due to higher oxygen solubility in cold water and biological fluids31,32. Thus, higher peroxidase level in E. verrucosus is likely an adaptation to the low temperatures with its high dissolved oxygen content in Baikal water.Glutathione S-transferase activities were found to be higher in both thermotolerant species—G. lacustris and E. cyaneus. Besides protecting against ROS, this enzyme has multiple functions, including xenobiotic detoxification33. Thus, its higher activity may be related to the enhanced tolerance level to various environmental factors in both species besides temperature.Thermal exposure to lower than the preferred temperaturesWe hypothesized that Baikal species have metabolic adaptations to cold temperatures that allow an active lifestyle in the cold. Thus, we expected cold compensation mechanisms (i.e., increased enzyme activities due to higher densities of mitochondria in cold stenotherms). Our results indicate that this is the case only for E. cyaneus (Baikal endemic, thermotolerant), as it showed increased cytochrome c oxidase activities at 1.5 °C. As the citrate synthase activity and ATP level remained unchanged, compensation of the respiratory chain seems to be sufficient to support stable energy production at low temperatures and an alteration of the mitochondrial ultrastructure, i.e., increased cristae density (cytochrome c oxidase) relative to the matrix (citrate synthase) may be involved in cold acclimation.E. cyaneus represents the rather small summer-reproducing complex among Baikal endemic amphipods. Despite its relatively high thermotolerance24, this species is actively moving under the ice cover in winter. In our experiments, animals of this species expressed high locomotor and feeding activity at all exposure temperatures, including 1.5 °C. Our results unravel the metabolic adaptation providing this rather wide thermotolerance window of this species. Already at 6 °C, glycogen started to accumulate, which also reoccurred at 1.5 °C. Glycogen accumulation is a well-known strategy of overwintering ectotherms known as cold hardiness, especially in those surviving in frozen habitats under oxygen-limited conditions34. Similar, we found an accumulation of glycogen above the control level in the Holarctic G. lacustris when exposed to 12 and 6 °C. However, at 1.5 °C the level of glycogen in this species was below the control level, indicating reduced glycogenesis possibly due to metabolic depression in the cold.Instead, E. cyaneus can maintain a high level of glycogenesis at 1.5 °C, and therefore accumulate glycogen in winter, despite its lower metabolic rate compared to G. lacustris. Surprisingly, at 6 °C we found a strong increase in lactate dehydrogenase activity in E. cyaneus, which was not followed by a significant accumulation of lactate or significant depletion of ATP indicating the absence of functional anaerobiosis. This unpredicted reaction of lactate dehydrogenase in this species at 6 °C, which is the Baikal littoral zone’s annual average temperature, requires further studies.Exposure to 1.5 °C and 6 °C caused decreased catalase and peroxidase activities and decreased lactate levels in E. cyaneus, which would be in line with a reduced metabolic rate, following the Q10 rule. Thus, our results indicate that E. cyaneus can maintain a high level of aerobic metabolism within a wide thermal range including the common winter temperature—1.5 °C. Although E. cyaneus is one of the most thermotolerant Baikal amphipod species, differences to the closely-related thermotolerant Holarctic G. lacustris became apparent as the latter failed to maintain high ATP and lactate levels at the lowest exposure temperature likely due to lacking compensation (citrate synthase, cytochrome c oxidase) or even inactivation of enzyme functions (including lactate dehydrogenase). This reduced energy state may likely contribute to the low locomotor activity of G. lacustris at the lowest exposure temperature.Surprisingly, no cold compensation in any of the studied parameters was found for the cold-loving Baikal endemic species E. verrucosus. This species belongs to the winter-reproducing complex, which is most common in the littoral zone. The absence in cold compensation of this species indicates that at 1.5 °C its energy metabolism remains on its physiological maximum.The absence of glycogen accumulation at low temperatures in this species can be explained by the food availability during winter in Lake Baikal’s littoral zone. Presumably, the existing amount of winter nutrition is sufficient for E. verrucosus to maintain maximum aerobic capacities and energy metabolism. The high nutrition allows the species to breed, develop eggs and release juveniles, which occurs during the seasons with lowest annual temperatures. Another explanation can be the usage of lipids instead of carbohydrates as energy source in winter. The lower amount of glycogen and free glucose than in the thermotolerant congener E. cyaneus, supports this hypothesis.Thus, despite the relatively similar aerobic capacities of the thermotolerant E. cyaneus and the winter-reproducing cold stenothermal E. verrucosus at their respective preference temperatures, the latter species shows a different metabolic fuel use, that allows E. verrucosus to maintain its maximum metabolic rate at 1.5 °C.We hypothesized that the Holarctic G. lacustris has disadvantages compared to the two Baikal species regarding energy metabolism at low temperatures. Gammarus lacustris is eurythermal and often overwinters in small ponds, which are nearly completely frozen in winter35. However, it has been shown that temperatures below its optimal range cause decreased respiration rates and activity possibly resulting in torpor21,35. Our observations confirmed these assumptions as at 1.5 °C individuals of G. lacustris significantly decreased their locomotor and feeding activities. The assumption that G. lacustris shows metabolic depression at 6 °C and 1.5 °C is supported by the decreased ATP, lactate, and lactate dehydrogenase activity levels. Moreover, only for this species we observed mortality at 1.5 °C, which indicates that this experimental thermal condition is stressful. This is supported by the increase in catalase activity over the control level and the elevated level of peroxidase activity at 1.5 °C, while at 12 °C and 6 °C, the capacity for this enzyme was decreased compared to the control (following the Q10 rule). In this case, exposure to 1.5 °C could cause cellular damages resulting in the development of oxidative stress. Preparation for such extreme temperatures for G. lacustris like requires enough time to accumulate cryoprotectors25 and adjust the metabolism in its natural habitat. Besides, we observed the accumulation of glycogen, like in the thermotolerant E. cyaneus. For G. lacustris, accumulation of glycogen for the wintertime is essential, as it is often overwintering in nearly completely frozen ponds and therefore experiences periods of hypoxia23. Glycogen can be metabolized via anaerobic glycolysis, in contrast to lipid storages, which require oxygen for their metabolizations34. In comparison to E. cyaneus, accumulation of glycogen over the control level in G. lacustris occurs already at 12 °C, indicating the lower thermal threshold of the zone of preferred temperatures for this species22, but this accumulation disappeared at the lowest temperature indicating that G. lacustris follows a different strategy for winter survival than cold hardiness34.Thermal exposure to higher than the preferred temperaturesPrevious studies indicated that 15 °C is the critical thermal threshold for large adults of the stenothermal E. verrucosus, and it was observed that most of these individuals start to migrate to deeper littoral zones when the temperature in the Baikal littoral surpass about 11 °C21. Thus, E. verrucosus is behaviorally adapted to escape deleterious temperatures. When exposed to gradual temperature increase, individuals of E. verrucosus showed accumulation of lactate and heat shock proteins at temperatures exceeding 12 °C22,24. Our results complement these previous findings, as lactate levels were significantly higher than the control lactate levels at 12 °C. At 15 °C, increases of lactate dehydrogenase capacities were detected, which may foster a higher turnover and remobilization of lactate at this temperature compared to 12 °C, as lactate level did not further increase. As shown earlier lactate dehydrogenase was the only metabolic enzyme exhibited similar kinetic and regulatory properties as the other two amphipod species (following simple Q10 rules)23. The results here confirm the need of E. verrucosus to keep higher anaerobic capacities and turnover rates at the upper limit of the thermal window, where functional hypoxia may appear7,27.In the more thermotolerant E. cyaneus, exposure to 15 °C caused increases of ATP, lactate, and both peroxidase and catalase activities. Increases of both ATP and lactate likely indicate the enhancement of the cellular respiration rather than the onset of anaerobiosis. Activation of peroxidase and catalase may indicate both the development of cellular stress and the general increase in metabolic rate following the Q10 rule. The last explanation is more likely, as antioxidant enzyme activities, lactate and ATP content gradually increased with rising temperature. As E. cyaneus is a sedentary species, that occupies a rather narrow zone of the upper littoral, such a metabolic plasticity can serve as a specific adaptation to its thermal niche. Opposite, for the migrating E. verrucosus, behavioral responses are more important when temperatures gradually increase. More

  • in

    Global effects of land-use intensity on local pollinator biodiversity

    1.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    2.Steffan-Dewenter, I. & Westphal, C. The interplay of pollinator diversity, pollination services and landscape change. J. Appl. Ecol. 45, 737–741 (2007).Article 

    Google Scholar 
    3.Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. 42, 1–22 (2011).Article 

    Google Scholar 
    5.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.IPBES (2017). The Assessment Report on Pollinators, Pollination and Food Production. Bonn.7.Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Embury-Dennis, T. The Independent. 19 October. (2017) http://www.independent.co.uk/news/science/flying-insects-numbers-drop-ecological-armageddon-75-per-cent-plummet-a8008406.html. Accessed 03 Dec 2020.9.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    10.Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 

    Google Scholar 
    11.Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1–6 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406. (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).Article 

    Google Scholar 
    15.Saunders, M. E., Janes, J. K. & O’hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. BioScience 70, 80–89 (2020).Article 

    Google Scholar 
    16.De Palma, A. et al. Predicting bee community responses to land-use changes: effects of geographic and taxonomic biases. Sci. Rep. 6, 31153 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Kunin, W. E. Robust evidence of declines in insect abundance and biodiversity. Nature 574, 641–642 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Macgregor, C. J. et al. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).PubMed 
    Article 

    Google Scholar 
    19.Millard, J. W., Freeman, R. & Newbold, T. Text‐analysis reveals taxonomic and geographic disparities in animal pollination literature. Ecography 43, 44–59 (2020).Article 

    Google Scholar 
    20.Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. Ser. B 274, 303–313 (2007).
    Google Scholar 
    21.European Commission. EU Pollinators Initiative (European Commission, Brussels, 2018).22.Food and Agriculture Organization. The International Pollinator Initiative plan of action 2018-2030 (FAO, Rome, 2018).23.Secretariat of the Convention on Biological Diversity. Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, Montreal, 2020).24.Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article 

    Google Scholar 
    25.Le B. Hooke, R., Martín-Duque, J. F. and Pedraza, J. Land transformation by humans: a review. GSA Today 22, 4–10 (2012).26.Donald, P. F., Green, R. E. & Heath, M. F. Agricultural intensifcation and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. B. 268, 25–29 (2001).Article 

    Google Scholar 
    27.Benton, T. G. et al. Linking agricultural practice to insect and bird populations: a historical study over three decades. J. Appl. Ecol. 39, 673–687 (2002).Article 

    Google Scholar 
    28.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    29.Tscharntke, T. et al. Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol. Appl. 12, 354–363 (2002).
    Google Scholar 
    30.Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed 
    Article 

    Google Scholar 
    31.Ricketts, T. H. et al. Landscape effects on crop pollination services: are there general patterns? Ecol. Lett. 11, 499–515 (2008).PubMed 
    Article 

    Google Scholar 
    32.Klein, A.-M., Steffan-Dewenter, I. & Tscharntke, T. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. R. Soc. Lond. Biol. Sci. 270, 955–961 (2003).Article 

    Google Scholar 
    33.Xiao, Y. et al. The diverse effects of habitat fragmentation on plant–pollinator interactions. Plant Ecol. 217, 857–868 (2016).Article 

    Google Scholar 
    34.Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article 

    Google Scholar 
    35.Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102 (2015).CAS 
    Article 

    Google Scholar 
    36.Sánchez-Bayo, F. & Goka, K. Pesticide residues and bees—a risk assessment. PLoS One. 9, e94482 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Pilling, E. D. & Jepson, P. C. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39, 293–297 (1993).CAS 
    Article 

    Google Scholar 
    38.Crall, J. D. et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683–686 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Schmuck, R., Stadler, T. & Schmidt, H.-W. Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera). Pest Manag. Sci. 59, 279–286 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Morandin, L. A. & Winston, M. L. Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol. Appl. 15, 871–881 (2005).Article 

    Google Scholar 
    41.Ridding, L. E. et al. Long-term change in calcareous grassland vegetation and drivers over three time periods between 1970 and 2016. Plant Ecol. 221, 377–394 (2020).Article 

    Google Scholar 
    42.Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Michener, C. D. The Bees of the World (Johns Hopkins University Press 2007).44.Deans, A. M. et al. Hoverfly (Syrphidae) communities respond to varying structural retention after harvesting in Canadian peatland black spruce forests. Environ. Entomol. 36, 308–318 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Kuussaari, M. et al. Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agric. Ecosyst. Environ. 122, 366–376 (2007).Article 

    Google Scholar 
    46.Tscharntke, T. et al. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89, 944–951 (2008).PubMed 
    Article 

    Google Scholar 
    47.Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).PubMed 
    Article 

    Google Scholar 
    48.Öckinger, E. et al. Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol. Lett. 13, 969–979 (2010).PubMed 

    Google Scholar 
    49.Burivalova, Z. et al. Avian responses to selective logging shaped by species traits and logging practices. Proc. R. Soc. B 282, 20150164 (2015).PubMed 
    Article 

    Google Scholar 
    50.Montero-Castaño, A. & Vilà, M. Impact of landscape alteration and invasions on pollinators: a meta-analysis. J. Ecol. 100, 884–893 (2012).Article 

    Google Scholar 
    51.De Palma, A. et al. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J. Appl. Ecol. 52, 1567–1577 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Aguirre-Gutiérrez, J. et al. Functional traits help to explain half-century long shifts in pollinator distributions. Sci. Rep. 6, 1–13. (2016).Article 
    CAS 

    Google Scholar 
    53.Shuler, R. E., Roulston, T. H. & Farris, G. E. Farming practices influence wild pollinator populations on squash and pumpkin. J. Economic Entomol. 98, 790–795 (2005).Article 

    Google Scholar 
    54.Cusser, S., Neff, J. L. & Jha, S. Land-use history drives contemporary pollinator community similarity. Landsc. Ecol. 33, 1335–1351 (2018).Article 

    Google Scholar 
    55.Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 1, 193–196 (1996).Article 

    Google Scholar 
    56.Høye, T., Post, E., Schmidt, N., Trøjelsgaard, K. & Forchhammer, M. C. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 3, 759–763 (2013).ADS 
    Article 

    Google Scholar 
    57.Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Williams, J. J., Bates, A. E. & Newbold, T. Human‐dominated land uses favour species affiliated with more extreme climates, especially in the tropics. Ecography 43, 391–405 (2020).Article 

    Google Scholar 
    59.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).PubMed 
    Article 

    Google Scholar 
    62.Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) project. Ecol. Evolution 7, 145–188 (2017).Article 

    Google Scholar 
    63.Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).PubMed 
    Article 

    Google Scholar 
    64.Lazaro, A., Tscheulin, T., Devalez, J., Nakas, G. & Petanidou, T. Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecol. Entomol. 41, 400–412 (2016).Article 

    Google Scholar 
    65.Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Ollerton, J., Tarrant, S. & Winfree, R. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).Article 

    Google Scholar 
    67.Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).ADS 
    Article 

    Google Scholar 
    68.Outhwaite, C. L. et al. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).PubMed 
    Article 

    Google Scholar 
    69.Rader, R. et al. The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Diversity Distrib. 20, 908–917 (2014).Article 

    Google Scholar 
    70.Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1–10. (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    72.DeFries, R. & Rosenzweig, C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc. Natl Acad. Sci. USA 107, 19627–19632 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Weiner, C. N. et al. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 12, 292–299 (2011).Article 

    Google Scholar 
    75.Parker, W. E. & Howard, J. J. The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the UK. Agric. For. Entomol. 3, 85–98 (2001).Article 

    Google Scholar 
    76.Jauker, F. et al. Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).Article 

    Google Scholar 
    77.Haenke, S. et al. Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. J. Appl. Ecol. 46, 1106–1114 (2009).Article 

    Google Scholar 
    78.Speight, M. C. D. Species Accounts of European Syrphidae, 2017. Syrph Net. Database Eur. Syrphidae (Diptera) 97, 1–294 (2017).
    Google Scholar 
    79.Easton, A. H. & Goulson, D. The neonicotinoid insecticide imidacloprid repels pollinating flies and beetles at field-realistic concentrations. PLoS One 8, e54819 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Maggi, F. et al. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 1–20. (2019).CAS 
    Article 

    Google Scholar 
    81.Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).Article 

    Google Scholar 
    82.Watanabe, M. E. Pollination worries rise as honey bees decline. Science 265, 1170 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Kevan, P. G. Blueberry crops in Nova Scotia and New Brunswick—pesticides and crop reductions. Can. J. Agric. Econ. 25, 61–64 (1977).Article 

    Google Scholar 
    84.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    85.Ollerton J. Pollinators & Pollination: Nature and Society (Pelagic Publishing, Exeter, 2021).86.Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: the PREDICTS project. Adv. Ecol. Res. 58, 201–241 (2018).Article 

    Google Scholar 
    87.Brittain, C. A. et al. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl. Ecol. 11, 106–115 (2010).CAS 
    Article 

    Google Scholar 
    88.Melidonis, C. A. & Peter, C. I. Diurnal pollination, primarily by a single species of rodent, documented in Protea foliosa using modified camera traps. South Afr. J. Bot. 97, 9–15 (2015).Article 

    Google Scholar 
    89.Ollerton, J. & Liede, S. Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biol. J. Linn. Soc. 62, 593–610 (1997).Article 

    Google Scholar 
    90.Dutton, E. M. & Frederickson, M. E. Why ant pollination is rare: new evidence and implications of the antibiotic hypothesis. Arthropod-Plant Interact. 6, 561–569 (2012).Article 

    Google Scholar 
    91.Dukas, R. & Morse, D. H. Crab spiders affect flower visitation by bees. Oikos 101, 157–163 (2003).Article 

    Google Scholar 
    92.Myers, S. A., Donnellan, S. & Kleindorfer, S. Rainfall can explain adaptive phenotypic variation with high gene flow in the New Holland honeyeater (Phylidonyris novaehollandiae). Ecol. Evol. 2, 2397–2412 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).Article 

    Google Scholar 
    95.Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput. Stat. Data Anal. 53, 381–393 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    96.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    98.West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Millard, J. et al. Global_effects_of_land-use_intensity_on_local_pollinator-biodiversity (Version v1.0.0). Zenodo https://doi.org/10.5281/zenodo.4593493 (2021). More

  • in

    Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees

    1.Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.CAS 
    Article 

    Google Scholar 
    2.Bourguignon T, Lo N, Dietrich C, Roisin Y, Brune A, Evans TA, et al. Rampant host switching shaped the termite gut microbiome. Curr Biol. 2018;28:649–54.CAS 
    Article 

    Google Scholar 
    3.Matsuura Y, Moriyama M, Łukasik P, Vanderpool D, Tanahashi M, Meng X. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc Natl Acad Sci USA. 2018;115:E5970–9.CAS 
    Article 

    Google Scholar 
    4.Chong RA, Moran NA. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J. 2018;12:898–908.CAS 
    Article 

    Google Scholar 
    5.Bennett GM, Moran NA. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA. 2015;112:10169–76.CAS 
    Article 

    Google Scholar 
    6.Sudakaran S, Kost C, Kaltenpoth M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017;25:1–16.Article 

    Google Scholar 
    7.Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol. 2011;20:619–28.Article 

    Google Scholar 
    8.Kwong WK, Medina LA, Koch H, Sing KW, Soh EJY, Ascher JS, et al. Dynamic microbiome evolution in social bees. Sci Adv. 2017;3:1–17.Article 

    Google Scholar 
    9.Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol. 2016;14:374–84.CAS 
    Article 

    Google Scholar 
    10.Rothman JA, Leger L, Graystock P, Russell K, McFrederick QS. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ Microbiol. 2019;21:3417–29.CAS 
    Article 

    Google Scholar 
    11.Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108:19288–92.CAS 
    Article 

    Google Scholar 
    12.Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci USA. 2017;114:4775–80.CAS 
    Article 

    Google Scholar 
    13.Mockler BK, Kwong WK, Moran NA, Koch H. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl Environ Microbiol. 2018;84:1–11.CAS 
    Article 

    Google Scholar 
    14.Giannini TCG, Boff S, Cordeiro GD, Cartonalo EA Jr, Veiga AK, Imperatriz-Fonseca VL, et al. Crop pollinators in Brazil: a review of reported interactions. Apidologie. 2015;46:209–23.Article 

    Google Scholar 
    15.Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol. 2013;22:2028–44.CAS 
    Article 

    Google Scholar 
    16.Leonhardt SD, Kaltenpoth M. Microbial communities of three sympatric Australian stingless bee species. PLoS One. 2014;9:1–6.Article 

    Google Scholar 
    17.Díaz S, de Souza Urbano S, Caesar L, Blochtein B, Sattler A, Zuge V, et al. Report on the microbiota of Melipona quadrifasciata affected by a recurrent disease. J Invertebr Pathol. 2017;143:35–39.Article 

    Google Scholar 
    18.Teixeira ACP, Marini MM, Nicoli JR, Antonini Y, Martins RP, Lachance M-A, et al. Starmerella meliponinorum sp. nov., a novel ascomycetous yeast species associated with stingless bees. Int J Syst Evol Microbiol. 2003;53:339–43.Article 

    Google Scholar 
    19.Paludo CR, Menezes C, Silva-Junior EA, Vollet-Neto A, Andrade-Dominguez A, Pishchany G, et al. Stingless bee larvae require fungal steroid to pupate. Sci Rep. 2018;8:1–10.CAS 
    Article 

    Google Scholar 
    20.Ramírez SR, Nieh JC, Quental TB, Roubik DW, Imperatriz-Fonseca VL, Pierce NE. A molecular phylogeny of the stingless bee genus Melipona (Hymenoptera: Apidae). Mol Phylogenet Evol. 2010;56:519–25.Article 

    Google Scholar  More

  • in

    Retraction Note: Tree growth in sync

    AffiliationsEnergy and Resources Group, UC Berkeley and Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USALara M. KueppersAuthorsLara M. KueppersCorresponding authorCorrespondence to
    Lara M. Kueppers. More