More stories

  • in

    Earliest evidence of marine habitat use by mammals

    1.McCrea, R. T., Pemberton, S. G. & Currie, P. J. New ichnotaxa of mammal and reptile tracks from the Upper Paleocene of Alberta. Ichnos 11, 323–339 (2004).Article 

    Google Scholar 
    2.Henderson, D. M. A wide-gauge, large-mammal trackway from the upper Paleocene of Alberta Canada. Can. J. Earth Sci. 52, 696–700 (2015).ADS 
    Article 

    Google Scholar 
    3.Lüthje, C. J., Milàn, J. & Hurum, J. H. Paleocene tracks of the mammal pantodont genus Titanoides in coal-bearing strata, Svalbard, Arctic Norway. J. Vertebr. Paleontol. 30, 521–527 (2010).Article 

    Google Scholar 
    4.Davydenko, S., Laime, M. J. & Gol’din, P. The earliest record of a marine mammal (Cetacea: Basilosauridae) from the Eocene of Amazonia. J. Vertebr. Paleontol. 38, e1549060 (2019).Article 

    Google Scholar 
    5.Hansen, D.E. Laramide tectonics and deposition of the Ferris and Hanna Formations, south-central Wyoming in Paleotectonics and sedimentation in the Rocky Mountain Region, United States: American Association of Petroleum Geologists Memoir 41 (ed. Peterson, J.A.) 481–495 (AAPG, 1986).6.Dechesne, M. et al. A new stratigraphic framework and constraints for the position of the Paleocene-Eocene boundary in the rapidly subsiding Hanna Basin, Wyoming. Geosphere 16, 594–618 (2020).ADS 
    Article 

    Google Scholar 
    7.Hasiotis, S. T. & Honey, J. G. Paleohydrologic and stratigraphic significance of crayfish burrows in continental deposits: examples from several Paleocene Laramide basins in the Rocky Mountains. J. Sediment. Res. 70, 127–139 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Gingras, M. K., Pemberton, S. G., Saunders, T. D. A. & Clifton, H. E. The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: variability in estuarine settings. Palaios 14, 352–374 (1999).ADS 
    Article 

    Google Scholar 
    9.Gingras, M. K., Hubbard, S. M., Pemberton, S. G. & Saunders, T. The significance of Pleistocene Psilonichnus at Willapa Bay, Washington. Palaios 15, 142–151 (2000).ADS 
    Article 

    Google Scholar 
    10.Gingras, M.K., MacEachern, J.A., Dashtgard, S.E., Zonneveld, J.-P., Schoengut, J., Ranger, M.J., & Pemberton, G. Estuaries. in Trace fossils as indicators of sedimentary environments. Developments in sedimentology, Volume 64 (eds. Knaust, D. &Bromley, R.G.) 463–507 (Elsevier, 2012).11.Gingras, M. K., MacEachern, J. A., Dashtgard, S. E., Ranger, M. J. & Pemberton, S. G. The significance of trace fossils in the McMurray Formation, Alberta, Canada. Bull. Can. Pet. Geol. 64, 233–250 (2016).Article 

    Google Scholar 
    12.MacEachern, J.A., Bann, K.L., Bhattacharya, J., & Howell, C.D. Ichnology of deltas: organism responses to the dynamic interplay of rivers, waves, storms, and tides. in River deltas-concepts, models, and examples, Volume 51, SEPM Special Publication (eds. Giosan, L., & Bhattacharya, J.P.) 49–85 (SEPM, 2005).13.Hauk, T. E., Dashtgard, S. E. & Pemberton, S. G. Brackish-water ichnological trends in a microtidal barrier island–embayment system, Kouchibouguac National Park, New Brunswick, Canada. Palaios 24, 478–496 (2011).ADS 
    Article 

    Google Scholar 
    14.Pemberton, S.G., & Wightman, D.M. Ichnological characteristics of brackish water deposits. in Applications of ichnology to petroleum exploration. Volume 17, SEPM Core Workshops, (ed. Pemberton, S.G.) 141–167 (SEPM, 1992).15.Hubbard, S. M., Gingras, M. K. & Pemberton, S. G. Palaeoenvironmental implications of trace fossils in estuary deposits of the Cretaceous Bluesky Formation, Cadotte region, Alberta, Canada. Fossils Strata 51, 68–87 (2004).
    Google Scholar 
    16.Xing, L. et al. Dinosaur natural track casts from the Lower Cretaceous Hekou Group in the Lanzhou-Minhe Basin, Gansu, Northwest China: Ichnology, track formation, and distribution. Cretac. Res. 52, 194–205 (2015).Article 

    Google Scholar 
    17.Elbroch, M. Mammal tracks and sign (Stackpole Books, 2003).
    Google Scholar 
    18.Osborn, H. F. Evolution of the Amblypoda. Part I. Taligrada and Pantodonta. Bull. Am. Mus. Nat. Hist. Bull. 10, 1–50 (1898).
    Google Scholar 
    19.Simons, E. L. The Paleocene Pantodonta. Trans. Am. Philos. Soc. 50, 3–99 (1960).Article 

    Google Scholar 
    20.Bennett, M. R., Morse, S. A. & Falkingham, P. L. Tracks made by swimming Hippopotami: an example from Koobi Fora (Turkana Basin, Kenya). Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 9–23 (2014).Article 

    Google Scholar 
    21.Clementz, M. T., Holroyd, P. A. & Koch, P. L. Identifying aquatic habits of herbivorous mammals through stable isotope analysis. Palaios 23, 574–585 (2008).ADS 
    Article 

    Google Scholar 
    22.Uhen, M. D. & Gingerich, P. D. Evolution of Coryphodon (Mammalia, Pantodonta) in the late Paleocene and early Eocene of northwestern Wyoming. Contrib. Mus. Paleontol. Univ. Michigan 29, 259–289 (1995).
    Google Scholar 
    23.Hasiotis, S. T. Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sed. Geol. 167, 177–268 (2004).Article 

    Google Scholar 
    24.Bordy, E. M., Bumby, A. J., Catuneanu, O. & Eriksson, P. G. Possible trace fossils of putative termite origin in the Lower Jurassic (Karoo Supergroup) of South Africa and Lesotho. S. Afr. J. Sci. 105, 356–362 (2009).
    Google Scholar 
    25.Bromley, R. G. et al. Comments on the paper “Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses” by Stephen T. Hasiotis. Sed. Geol. 200, 141–150 (2007).Article 

    Google Scholar 
    26.Eberle, J. J. A new ‘tapir’ from Ellesmere Island, Arctic Canada-implications for northern high latitude palaeobiogeography and tapir palaeobiology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227, 311–322 (2004).Article 

    Google Scholar 
    27.Halliday, T. J. D., Upchurch, P. & Goswami, A. Resolving the relationships of Paleocene placental mammals. Biol. Rev. 92, 521–550 (2017).Article 

    Google Scholar 
    28.Zurano, J. P. et al. Cetrtiodactyla: updating a time-calibrated molecular phylogeny. Mol. Phylogenet. Evol. 133, 256–262 (2019).Article 

    Google Scholar 
    29.Knaust, D. Atlas of trace fossils in well core: appearance, taxonomy and interpretation (Springer, 2017).Book 

    Google Scholar 
    30.Bingham, B. L., Freytes, I., Emery, M., Dimond, J. & Muller-Parker, G. Aerial exposure and body temperature of the intertidal sea anemone Anthopleura elegantissima. Invertebr. Biol. 130, 291–301 (2011).Article 

    Google Scholar 
    31.Jayewardene, J. The elephant in Sri Lanka. Wildlife Heritage Trust of Sri Lanka, Sri Lanka (1994).32.Miller, F.L. Inter-island water crossings by Peary caribou, south-central Queen Elizabeth Islands. Arctic, 8–12 (1995).33.Harveson, P. M., Grant, W. E., Lopez, R. R., Silvy, N. J. & Frank, P. A. The role of dispersal in Florida Key deer metapopulation dynamics. Ecol. Model. 195, 393–401 (2006).Article 

    Google Scholar 
    34.Quigley, D. T. G. & Moffatt, S. Sika-like deer Cervus nippon Temminck, 1838 observed swimming out to sea at Greystones, Co., Wicklow: increasing deer population pressure?. Bull. Ir. Biogeogr. Soc. 38, 251–261 (2014).
    Google Scholar 
    35.Castelló, J. R. Bovids of the world: Antelopes, gazelles, cattle, goas, sheep, and relatives (Princeton University Press, 2016).Book 

    Google Scholar 
    36.Naranjo, E.J. Tapirs of the Neotropics. in Ecology and conservation of tropical ungulates in Latin America (ed. Gallina-Tessaro, S.) 439–451(Springer, 2019).37.Kavčić, K., Corlatti, L., Rodriguez, O., Kavčić, B. & Šprem, N. From the mountains to the sea! Unusual swimming behavior in chamois Rupicapra spp. Ethol. Ecol. Evol. 32, 402–408 (2020).Article 

    Google Scholar 
    38.Roth, H. H., Hoppe-Dominik, B., Mühlenberg, M., Steinhauer-Burkart, B. & Fischer, F. Distribution and status of the hippopotamids in the Ivory Coast. Afr. Zool. 39, 211–224 (2004).Article 

    Google Scholar 
    39.Pilfold, N. W., McCall, A., Derocher, A. E., Lunn, N. J. & Richardson, E. Migratory response of polar bears to sea ice loss: to swim or not to swim. Ecography 40, 189–199 (2017).Article 

    Google Scholar 
    40.Smith, T. S. & Partridge, S. T. Dynamics of intertidal foraging by coastal brown bears in southwestern Alaska. J. Wildl. Manag. 68, 233–240 (2004).Article 

    Google Scholar 
    41.Lewis, T. M. & Lafferty, D. J. Brown bears and wolves scavenge humpback whale carcass in Alaska. Ursus 25, 8–13 (2014).Article 

    Google Scholar 
    42.Morgan, B. J. & Lee, P. C. Forest elephant group composition, frugivory and coastal use in the Réserve de Faune du Petit Loango, Gabon. Afr. J. Ecol. 45, 519–526 (2007).Article 

    Google Scholar 
    43.Prinsloo, A. S., Pillay, D. & O’Riain, M. J. Multiscale drivers of hippopotamus distribution in the St Lucia Estuary, South Africa. Afr. Zool. 55, 127–140 (2020).Article 

    Google Scholar 
    44.Boonratana, R. A statewide survey to estimate the distribution and density of the Sumatran rhinoceros, Asian elephant and banteng in Sabah, Malaysia. Wildlife Conservation Society, New York (1997). More

  • in

    Global option space for organic agriculture is delimited by nitrogen availability

    1.Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Mäder, P. et al. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    4.Bergström, L. & Kirchmann, H. Are the claimed benefits of organic agriculture justified? Nat. Plants 2, 16099 (2016).PubMed 
    Article 

    Google Scholar 
    5.Connor, D. J. Organic agriculture and food security: a decade of unreason finally implodes. Field Crops Res. 225, 128–129 (2018).Article 

    Google Scholar 
    6.Connor, D. J. Organic agriculture cannot feed the world. Field Crops Res. 106, 187–190 (2008).Article 

    Google Scholar 
    7.Erb, K. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Nowak, B., Nesme, T., David, C. & Pellerin, S. Disentangling the drivers of fertilising material inflows in organic farming. Nutr. Cycl. Agroecosyst. 96, 79–91 (2013).Article 

    Google Scholar 
    9.Oelofse, M., Jensen, L. S. & Magid, J. The implications of phasing out conventional nutrient supply in organic agriculture: Denmark as a case. Organ. Agric. 3, 41–55 (2013).Article 

    Google Scholar 
    10.Tayleur, C. & Phalan, B. Organic farming and deforestation. Nat. Plants 2, 16098 (2016).PubMed 
    Article 

    Google Scholar 
    11.Principles of Organic Agriculture (IFOAM, 2018); https://www.ifoam.bio/en/organic-landmarks/principles-organic-agriculture12.European Commission Commission Regulation (EC) No 889/2008. Official Journal of the European Union L 250/1 (2008).13.Yussefi-Menzler, M., Willer, H. & Sorensen, N. The World of Organic Agriculture. Statistics and Emerging Trends 2019 (Routledge, 2019); https://doi.org/10.4324/978184977599114.Barbieri, P., Pellerin, S. & Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 7, 13761 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.McKenzie, F. C. & Williams, J. Sustainable food production: constraints, challenges and choices by 2050. Food Security https://doi.org/10.1007/s12571-015-0441-1 (2015).16.Rigby, D. & Cáceres, D. Organic farming and the sustainability of agricultural systems. Agric. Syst. 68, 21–40 (2001).Article 

    Google Scholar 
    17.Barbieri, P., Pellerin, S., Seufert, V. & Nesme, T. Changes in crop rotations would impact food production in an organically farmed world. Nat. Sustain. 2, 378–385 (2019).Article 

    Google Scholar 
    18.Baudry, J. et al. Improvement of diet sustainability with increased level of organic food in the diet: findings from the BioNutriNet cohort. Am. J. Clin. Nutr. 109, 1173–1188 (2019).PubMed 
    Article 

    Google Scholar 
    19.Chaudhary, A., Gustafson, D. & Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 9, 848 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Smith, L. C. & Haddad, L. Reducing child undernutrition: past drivers and priorities for the post-MDG era. World Dev. 68, 180–204 (2015).Article 

    Google Scholar 
    21.Gibson, R. S. & Hotz, C. Dietary diversification/modification strategies to enhance micronutrient content and bioavailability of diets in developing countries. Br. J. Nutr. 85, S159 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Mie, A. et al. Human health implications of organic food and organic agriculture: a comprehensive review. Environ. Health 16, 1–22 (2017).Article 
    CAS 

    Google Scholar 
    23.Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).ADS 
    Article 

    Google Scholar 
    24.White, R. R. & Hall, M. B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1707322114 (2017).25.Soussana, J. F. & Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agr. Ecosyst. Environ. 190, 9–17 (2014).CAS 
    Article 

    Google Scholar 
    26.Schader, C. et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 12, 20150891 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Persson, U. M., Johansson, D. J. A., Cederberg, C., Hedenus, F. & Bryngelsson, D. Climate metrics and the carbon footprint of livestock products: where’s the beef? Environ. Res. Lett. 10, 034005 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    28.Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).Article 

    Google Scholar 
    29.Eyhorn, F. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253–255 (2019).Article 

    Google Scholar 
    30.Badgley, M. C. et al. Organic agriculture and the global food supply. Renew. Agr. Food Syst. 22, 86–108 (2007).Article 

    Google Scholar 
    31.Karlsson, J. O. & Röös, E. Resource-efficient use of land and animals—environmental impacts of food systems based on organic cropping and avoided food-feed competition. Land Use Policy 85, 63–72 (2019).Article 

    Google Scholar 
    32.Watson, C. A. et al. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manage. 18, 264–273 (2002).Article 

    Google Scholar 
    33.Nowak, B., Nesme, T., David, C. & Pellerin, S. To what extent does organic farming rely on nutrient inflows from conventional farming? Environ. Res. Lett. 8, 044045 (2013).ADS 
    Article 

    Google Scholar 
    34.Feuerbacher, A., Luckmann, J., Boysen, O., Zikeli, S. & Grethe, H. Is Bhutan destined for 100% organic? Assessing the economy-wide effects of a large-scale conversion policy. PLoS ONE 13, e0199025 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1396 (2015).36.Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).Article 

    Google Scholar 
    37.Hoornweg, D. & Bhada-Tata, P. What a Waste. A Global Review of Solid Waste Management (World Bank, 2012).38.Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).PubMed 
    Article 

    Google Scholar 
    39.Tuomisto, H. L., Hodge, I. D., Riordan, P. & Macdonald, D. W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manage. 112, 309–320 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Crowder, D. W. & Reganold, J. P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl Acad. Sci. USA 112, 7611–7616 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Bartelt, K. D. & Bland, W. L. Theoretical analysis of manure transport distance as a function of herd size and landscape fragmentation. J. Soil Water Conserv. 62, 345–352 (2007).
    Google Scholar 
    42.De Klein, C. et al. in IPCC Guidelines for National Greenhouse Gas Inventories (eds Buendia, L. & Eggleston, S.) Ch. 11 (IPCC, 2006).43.Godard, C., Roger-Estrade, J., Jayet, P. A., Brisson, N. & Le Bas, C. Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU. Agric. Syst. 97, 68–82 (2008).Article 

    Google Scholar 
    44.Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycling Agroecosyst. 66, 119–131 (2003).Article 

    Google Scholar 
    45.Dong, H. et al. in IPCC Guidelines for National Greenhouse Gas Inventories (eds Buendia, L. & Eggleston, S.) Ch. 10 (IPCC, 2006).46.Hogh-Jensen, H., Loges, R., Jorgensen, F. V., Vinther, F. P. & Jensen, E. S. An empirical model for quantification of symbiotic nitrogen fixation in grass-clover mixtures. Agric. Syst. 82, 181–194 (2004).Article 

    Google Scholar 
    47.Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob. Biogeochem. Cycles 20, GB4003 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    49.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Licker, R. et al. Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782 (2010).Article 

    Google Scholar 
    51.Srednicka-Tober, D. et al. Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. Br. J. Nutr. 115, 994–1011 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Van Drecht, G., Bouwman, A. F., Harrison, J. & Knoop, J. M. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob. Biogeochem. Cycles 23, 1–19 (2009).
    Google Scholar 
    54.World Population Prospects 2015—Data Booklet (United Nations, 2015); https://doi.org/ST/ESA/SER.A/37755.Ahmed, S. & Blumberg, J. Dietary guidelines for Americans, 2010. Nutr. Rev. https://doi.org/10.1016/S0300-7073(05)71075-6 (2009).56.Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain 3, 200–208 (2020).Article 

    Google Scholar 
    57.Fetzel, T. et al. Quantification of uncertainties in global grazing systems assessment. Glob. Biogeochem. Cycles 31, 1089–1102 (2017).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds

    1.Chiappe, L. M. in Encyclopedia of Dinosaurs (eds Currie, P. J. & Padian, K.) 32–38 (Academic, 1997).2.Mayr, G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance (Wiley, 2017).3.O’Connor, J. K. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 178–195 (2019).Article 

    Google Scholar 
    4.Benton, M. J. Vertebrate Palaeontology (Wiley, 2015).5.Chatterjee, S. The Rise of Birds: 225 Million Years of Evolution (Johns Hopkins Univ. Press, 2015).6.Chiappe, L. M. & Qingjin, M. Birds of Stone Chinese Avian Fossils from the Age of Dinosaurs (Johns Hopkins Univ. Press, 2016).7.Ksepka, D. T., Grande, L. & Mayr, G. Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines. Curr. Biol. 29, 657–663 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.O’Connor, J. K. & Zhou, Z. The evolution of the modern avian digestive system: insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 63, 13–27 (2020).Article 

    Google Scholar 
    9.Zhou, Z., Barrett, P. M. & Hilton, J. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421, 807–814 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Zheng, X. et al. Fossil evidence of avian crops from the Early Cretaceous of China. Proc. Natl Acad. Sci. USA 108, 15904–15907 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Miller, C. V. et al. Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns. Commun. Biol. 3, 519 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Miller, C. & Pittman, M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. ESSOAr https://doi.org/10.1002/essoar.10504068.2 (2020).Article 

    Google Scholar 
    14.Wang, M., Wang, X., Wang, Y. & Zhou, Z. A new basal bird from China with implications for morphological diversity in early birds. Sci. Rep. 6, 19700 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Zanno, L. E. & Makovicky, P. J. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proc. Natl Acad. Sci. USA 108, 232–237 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Karasov, W. H. & Douglas, A. E. Comparative digestive physiology. Compr. Physiol. 3, 741–783 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    17.Karasov, W. H., Martinez del Rio, C. & Caviedes-Vidal, E. Ecological physiology of diet and digestive systems. Annu. Rev. Physiol. 73, 69–93 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Miller, S. A. & Harley, J. P. Zoology (McGraw-Hill, 2016).19.Corring, T. The adaptation of digestive enzymes to the diet: its physiological significance. Reprod. Nutr. Dev. 20, 1217–1235 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.German, D. P., Horn, M. H. & Gawlicka, A. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol. Biochem. Zool. 77, 789–804 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Hidalgo, M., Urea, E. & Sanz, A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170, 267–283 (1998).Article 

    Google Scholar 
    22.Karasov, W. H. & Diamond, J. M. Interplay between physiology and ecology in digestion: intestinal nutrient transporters vary within and between species according to diet. BioScience 38, 602–611 (1988).CAS 
    Article 

    Google Scholar 
    23.Hecker, N., Sharma, V. & Hiller, M. Convergent gene losses illuminate metabolic and physiological changes in herbivores and carnivores. Proc. Natl Acad. Sci. USA 116, 3036–3041 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Schondube, J. E., Herrera-M, L. G. & del Rio, C. M. Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104, 59–73 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Wang, Z. et al. Evolution of digestive enzyme genes associated with dietary diversity of crabs. Genetica 148, 87–99 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Wang, Z. et al. Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans. Mol. Biol. Evol. 33, 3144–3157 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Mayo Clinic. Encyclopedia of Foods: a Guide to Healthy Nutrition (Academic, 2002).28.Chen, Y.-H. & Zhao, H. Evolution of digestive enzymes and dietary diversification in birds. PeerJ 7, e6840 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Wu, Y. et al. Genomic bases underlying the adaptive radiation of core landbirds. Preprint at bioRxiv https://doi.org/10.1101/2020.07.29.222281 (2020).30.Wu, Y. & Wang, H. Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality. Proc. Biol. Sci. 286, 20182185 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    31.Wu, Y., Wang, H. & Hadly, E. A. Invasion of ancestral mammals into dim-light environments inferred from adaptive evolution of the phototransduction genes. Sci. Rep. 7, 46542 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Wu, Y., Wang, H., Wang, H. & Feng, J. Arms race of temporal partitioning between carnivorous and herbivorous mammals. Sci. Rep. 8, 1713 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    Article 

    Google Scholar 
    34.Naim, H. Y., Sterchi, E. & Lentze, M. Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J. Biol. Chem. 263, 7242–7253 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Boll, W., Wagner, P. & Mantei, N. Structure of the chromosomal gene and cDNAs coding for lactase-phlorizin hydrolase in humans with adult-type hypolactasia or persistence of lactase. Am. J. Hum. Genet. 48, 889–902 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Furuta, H. et al. Sequence of human hexokinase III cDNA and assignment of the human hexokinase III gene (HK3) to chromosome band 5q35. 2 by fluorescence in situ hybridization. Genomics 36, 206–209 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Wright, E., Hirayama, B. & Loo, D. Active sugar transport in health and disease. J. Intern. Med. 261, 32–43 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Cura, A. J. & Carruthers, A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr. Physiol. 2, 863–914 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    39.Douard, V. & Ferraris, R. P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 295, E227–E237 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 34, 121–138 (2013).CAS 
    Article 

    Google Scholar 
    41.Li, Y. et al. N-myc downstream-regulated gene 2, a novel estrogen-targeted gene, is involved in the regulation of Na+/K+-ATPase. J. Biol. Chem. 286, 32289–32299 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 34, 281–303 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Izar, M. C., Tegani, D. M., Kasmas, S. H. & Fonseca, F. A. Phytosterols and phytosterolemia: gene–diet interactions. Genes Nutr. 6, 17–26 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Takeuchi, K. & Reue, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296, E1195–E1209 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Mangaraj, M., Nanda, R. & Panda, S. Apolipoprotein AI a molecule of diverse function. Indian J. Clin. Biochem. 31, 253–259 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Qu, J., Ko, C.-W., Tso, P. & Bhargava, A. Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 8, 319 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    47.Hazard, S. E. & Patel, S. B. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflug. Arch. 453, 745–752 (2007).CAS 
    Article 

    Google Scholar 
    48.Frølund, S., Holm, R., Brodin, B. & Nielsen, C. U. The proton‐coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly‐Gly, Gly‐Sar and other Gly‐Gly mimetics. Br. J. Pharm. 161, 589–600 (2010).Article 
    CAS 

    Google Scholar 
    49.Szabó, A., Pilsak, C., Bence, M., Witt, H. & Sahin-Tóth, M. Complex formation of human proelastases with procarboxypeptidases A1 and A2. J. Biol. Chem. 291, 17706–17716 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Crisman, J. M., Zhang, B., Norman, L. P. & Bond, J. S. Deletion of the mouse meprin β metalloprotease gene diminishes the ability of leukocytes to disseminate through extracellular matrix. J. Immunol. 172, 4510–4519 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Erşahin, Ç., Szpaderska, A. M., Orawski, A. T. & Simmons, W. H. Aminopeptidase P isozyme expression in human tissues and peripheral blood mononuclear cell fractions. Arch. Biochem. Biophys. 435, 303–310 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    52.Higuchi, Y. et al. Mutations in MME cause an autosomal‐recessive Charcot–Marie–Tooth disease type 2. Ann. Neurol. 79, 659–672 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Lambeir, A.-M., Durinx, C., Scharpé, S. & De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab Sci. 40, 209–294 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Yamamoto, K. K. et al. Isolation of a cDNA encoding a human serum marker for acute pancreatitis. Identification of pancreas-specific protein as pancreatic procarboxypeptidase B. J. Biol. Chem. 267, 2575–2581 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Liang, R. et al. Human intestinal H+/peptide cotransporter cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270, 6456–6463 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Johansson, B. B. et al. The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology 18, 12–19 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Shen, W.-J., Azhar, S. & Kraemer, F. B. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Stahl, A. et al. Identification of the major intestinal fatty acid transport protein. Mol. Cell 4, 299–308 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hussain, M. M., Rava, P., Walsh, M., Rana, M. & Iqbal, J. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. 9, 14 (2012).CAS 
    Article 

    Google Scholar 
    61.Ludvik, A. E. et al. HKDC1 is a novel hexokinase involved in whole-body glucose use. Endocrinology 157, 3452–3461 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Wang, N. & Tall, A. R. Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23, 1178–1184 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Wang, G., Bonkovsky, H. L., de Lemos, A. & Burczynski, F. J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res. 56, 2238–2247 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Tousignant, K. D. et al. Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol. Cancer Res. 17, 1166–1179 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Cui, X.-L., Schlesier, A. M., Fisher, E. L., Cerqueira, C. & Ferraris, R. P. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1310–G1320 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Cappello, A. R., Curcio, R., Lappano, R., Maggiolini, M. & Dolce, V. The physiopathological role of the exchangers belonging to the SLC37 family. Front. Chem. 6, 122 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352, 1–292 (2011).Article 

    Google Scholar 
    69.Yahia, E. M. Fruit and Vegetable Phytochemicals: Chemistry and Human Health (Wiley, 2018).70.Caviedes-Vidal, E. et al. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc. Natl Acad. Sci. USA 104, 19132–19137 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Frei, S. et al. Comparative digesta retention patterns in ratites. Auk 132, 119–131 (2015).Article 

    Google Scholar 
    72.Price, E. R., Brun, A., Caviedes-Vidal, E. & Karasov, W. H. Digestive adaptations of aerial lifestyles. Physiology 30, 69–78 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Larson, D. W., Brown, C. M. & Evans, D. C. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Curr. Biol. 26, 1325–1333 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Matsukawa, M., Shibata, K., Sato, K., Xing, X. & Lockley, M. G. The Early Cretaceous terrestrial ecosystems of the Jehol Biota based on food-web and energy-flow models. Biol. J. Linn. Soc. 113, 836–853 (2014).Article 

    Google Scholar 
    75.Wolff, R. L. et al. Abietoid seed fatty acid composition—a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae. Lipids 37, 17–26 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Wolff, R. L., Pédrono, F., Pasquier, E. & Marpeau, A. M. General characteristics of Pinus spp. Sseed fatty acid compositions, and importance of Δ5‐olefinic acids in the taxonomy and phylogeny of the genus. Lipids 35, 1–22 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).78.Clench, M. H. & Mathias, J. R. The avian cecum: a review. Wilson Bull. 107, 93–121 (1995).
    Google Scholar 
    79.Li, Z. et al. Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds. BMC Evol. Biol. 20, 46 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Ma, W., Pittman, M., Lautenschlager, S., Meade, L. E. & Xu, X. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 229–249 (Scientific Publications of the American Museum of Natural History, 2020).81.Barrett, P. M. Paleobiology of herbivorous dinosaurs. Annu. Rev. Earth Planet Sci. 42, 207–230 (2014).CAS 
    Article 

    Google Scholar 
    82.Zanno, L. E., Gillette, D. D., Albright, L. B. & Titus, A. L. A new North American therizinosaurid and the role of herbivory in ‘predatory’dinosaur evolution. Proc. R. Soc. B 276, 3505–3511 (2009).PubMed 
    Article 

    Google Scholar 
    83.Cowen, R. History to Life (Wiley, 2013).84.You, H.-l et al. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science 312, 1640–1643 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    86.Brusatte, S. L. Dinosaur Paleobiology (Wiley, 2012).87.Button, K., You, H., Kirkland, J. I. & Zanno, L. Incremental growth of therizinosaurian dental tissues: implications for dietary transitions in Theropoda. PeerJ 5, e4129 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Han, G. et al. A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance. Nat. Commun. 5, 4382 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.O’Connor, J. et al. Microraptor with ingested lizard suggests non-specialized digestive function. Curr. Biol. 29, 2423–2429 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    90.O’Connor, J., Zhou, Z. & Xu, X. Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proc. Natl Acad. Sci. USA 108, 19662–19665 (2011).PubMed 
    Article 

    Google Scholar 
    91.Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Wang, S., Stiegler, J., Wu, P. & Chuong, C.-M. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 205–228 (Scientific Publications of the American Museum of Natural History, 2020).93.Farlow, J. O. & Holtz, T. R. The fossil record of predation in dinosaurs. Paleontol. Soc. Pap. 8, 251–266 (2002).Article 

    Google Scholar 
    94.Pittman, M. et al. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 37–95 (Scientific Publications of the American Museum of Natural History, 2020).95.Benson, R. B. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Lee, M. S., Cau, A., Naish, D. & Dyke, G. J. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.O’Connor, J. & Zhou, Z. Early evolution of the biological bird: perspectives from new fossil discoveries in China. J. Ornithol. 156, 333–342 (2015).Article 

    Google Scholar 
    98.Zhou, Z. & Zhang, F. A precocial avian embryo from the Lower Cretaceous of China. Science 306, 653 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Mayr, G. Evolution of avian breeding strategies and its relation to the habitat preferences of Mesozoic birds. Evol. Ecol. 31, 131–141 (2017).Article 

    Google Scholar 
    100.Arendt, J. D. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).Article 

    Google Scholar 
    101.Jackson, B. E., Segre, P. & Dial, K. P. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): negotiating a three-dimensional terrestrial environment. Proc. R. Soc. B 276, 3457–3466 (2009).PubMed 
    Article 

    Google Scholar 
    102.Colquhoun, I. Comparing the impact of predators on the activity patterns of lemurids and ceboids. Folia Primatol. 77, 143–165 (2006).Article 

    Google Scholar 
    103.Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).PubMed 
    Article 

    Google Scholar 
    104.Wu, Y. Evolutionary origin of nocturnality in birds. eLS 1, 483–489 (2020).Article 

    Google Scholar 
    105.Xu, X., Zhou, Z. & Wang, X. The smallest known non-avian theropod dinosaur. Nature 408, 705–708 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    106.Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Gong, E., Martin, L. D., Burnham, D. A. & Falk, A. R. The birdlike raptor Sinornithosaurus was venomous. Proc. Natl Acad. Sci. USA 107, 766–768 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    108.Sullivan, C., Xu, X. & O’Connor, J. K. Complexities and novelties in the early evolution of avian flight, as seen in the Mesozoic Yanliao and Jehol Biotas of Northeast China. Palaeoworld 26, 212–229 (2017).Article 

    Google Scholar 
    109.Pei, R. et al. Potential for powered flight neared by most close avialan relatives, but few crossed its thresholds. Curr. Biol. 30, 4033–4046 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Turner, A. H., Pol, D., Clarke, J. A., Erickson, G. M. & Norell, M. A. A basal dromaeosaurid and size evolution preceding avian flight. Science 317, 1378–1381 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    112.Gittleman, J. L. Carnivore body size: ecological and taxonomic correlates. Oecologia 67, 540–554 (1985).PubMed 
    Article 

    Google Scholar 
    113.Radloff, F. G. & Du Toit, J. T. Large predators and their prey in a southern African savanna: a predator’s size determines its prey size range. J. Anim. Ecol. 73, 410–423 (2004).Article 

    Google Scholar 
    114.Vézina, A. F. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67, 555–565 (1985).PubMed 
    Article 

    Google Scholar 
    115.Rezende, E. L., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 6, eaaw4486 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Seebacher, F. Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology 29, 105–122 (2003).Article 

    Google Scholar 
    117.Chatterjee, S. & Templin, R. in Feathered Dragons: Studies on the Transition from Dinosaurs to Birds (eds Currie, P. J., Kopplehaus, E. B., Shugar, M. A. & Wright, J. L.) 251–281 (Indiana Univ. Press, 2004).118.Hedenström, A. How birds became airborne. Trends Ecol. Evol. 14, 375–376 (1999).PubMed 
    Article 

    Google Scholar 
    119.Dudley, R. et al. Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu. Rev. Ecol. Evol. Syst. 38, 179–201 (2007).Article 

    Google Scholar 
    120.Clemente, C. & Wilson, R. Speed and maneuverability jointly determine escape success during simulated games of escape behaviour. Behav. Ecol. 27, 45–54 (2016).Article 

    Google Scholar 
    121.Caro, T. Antipredator Defenses in Birds and Mammals (Univ. Chicago Press, 2005).122.Van den Hout, P. J., Mathot, K. J., Maas, L. R. & Piersma, T. Predator escape tactics in birds: linking ecology and aerodynamics. Behav. Ecol. 21, 16–25 (2010).Article 

    Google Scholar 
    123.Wright, N. A., Steadman, D. W. & Witt, C. C. Predictable evolution toward flightlessness in volant island birds. Proc. Natl Acad. Sci. USA 113, 4765–4770 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    124.Wang, M., Zhou, Z. & Sullivan, C. A fish-eating enantiornithine bird from the Early Cretaceous of China provides evidence of modern avian digestive features. Curr. Biol. 26, 1170–1176 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    125.Zheng, X. et al. New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS ONE 9, e95036 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    126.Zhou, Z., Zhang, F. & Li, Z. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc. R. Soc. B 277, 219–227 (2010).PubMed 
    Article 

    Google Scholar 
    127.Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D. & Springer, M. S. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346, 1254390 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    128.Lima, S. L. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66, 60–67 (1985).PubMed 
    Article 

    Google Scholar 
    129.Lima, S. L., Valone, T. J. & Caraco, T. Foraging-efficiency-predation-risk trade-off in the grey squirrel. Anim. Behav. 33, 155–165 (1985).Article 

    Google Scholar 
    130.Verdolin, J. L. Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav. Ecol. Sociobiol. 60, 457–464 (2006).Article 

    Google Scholar 
    131.Yang, T.-R. & Sander, P. M. The origin of the bird’s beak: new insights from dinosaur incubation periods. Biol. Lett. 14, 20180090 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Zhou, Y.-C., Sullivan, C. & Zhang, F. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vert. Palas 57, 38–50 (2019).
    Google Scholar 
    133.Louchart, A. & Viriot, L. From snout to beak: the loss of teeth in birds. Trends Ecol. Evol. 26, 663–673 (2011).PubMed 
    Article 

    Google Scholar 
    134.Randall, D., Burggren, W. & French, K. Eckert Animal Physiology: Mechanisms and Adaptations (W. H. Freeman, 1997).135.Davit‐Béal, T., Tucker, A. S. & Sire, J. Y. Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J. Anat. 214, 477–501 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    136.Gill, F. & Donsker, D. IOC World Bird List (v8.2). https://doi.org/10.14344/IOC.ML.8.2 (2018).137.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    138.Crawford, N. G. et al. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257 (2015).PubMed 
    Article 

    Google Scholar 
    139.Guillon, J.-M., Guéry, L., Hulin, V. & Girondot, M. A large phylogeny of turtles (Testudines) using molecular data. Contrib. Zool. 81, 147–158 (2012).Article 

    Google Scholar 
    140.Jønsson, K. A. & Fjeldså, J. A phylogenetic supertree of oscine passerine birds (Aves: Passeri). Zool. Scr. 35, 149–186 (2006).Article 

    Google Scholar 
    141.McKay, B. D., Barker, F. K., Mays, H. L. Jr, Doucet, S. M. & Hill, G. E. A molecular phylogenetic hypothesis for the manakins (Aves: Pipridae). Mol. Phylogenet. Evol. 55, 733–737 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    142.Oaks, J. R. A time‐calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65, 3285–3297 (2011).PubMed 
    Article 

    Google Scholar 
    143.Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    144.Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar 
    146.Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Response to novelty induced by change in size and complexity of familiar objects in Lister-Hooded rats, a follow-up of 2019 study

    To enhance the legibility of the results, the habituation phase was marked as the H mean score from habituation trials 5 to 7, which served as a reference value for further analyses, while the test trials were marked as T1, T2, and T3, respectively. Novelty, i.e. addition or change of objects in zone C, was introduced in the first test trial T1.The initial four habituation trials have not been presented here, as they served only as a habituation phase and not as an element of the comparative analysis of the animals’ response to novelty.The data was analysed using a General Linear Model procedure GLM, with repeated measurements H, T1, T2, T3 as within-subject factors, followed by an LSD PostHoc test which involved a comparison of the habituation phase H with the three test trials T1, T2 and T3. Bonferroni correction for multiple comparisons was employed. Differences were considered significant for p ≤ 0.05. Data analysis was carried out using JASP v. 0.14.1 software, an open-source project supported by the University of Amsterdam.Time spent in the transporterThe amount of time spent in the transporter, excluding the latency to leave the transporter (that is, the amount of time from the moment the transporter was opened until the rat first entered the experimental apparatus), was measured for each group.In the ADD group, the analysis showed a significant main effect of trial: F(3, 39) = 5.033, p = 0.005, Eta2 = 0.279 (Wilks’ Lambda). A post-hoc analysis showed a significant decrease in the time spent in the transporter in the first and third test trials compared to the habituation phase (T1: p = 0.008, d = 1.090; T3: p = 0.017, d = 0.982).In the CMPLX group, the analysis showed a significant main effect of trial: F(3, 36) = 8.695, p  More

  • in

    Light and energetics at seasonal extremes limit poleward range shifts

    1.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    Article 

    Google Scholar 
    2.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 

    Google Scholar 
    3.Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    Article 

    Google Scholar 
    4.Lenoir, J. & Svenning, J.-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).Article 

    Google Scholar 
    5.Robinson, L. M. et al. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20, 789–802 (2011).Article 

    Google Scholar 
    6.Guisan, A. et al. Making better biogeographical predictions of species’ distributions. J. Appl. Ecol. 43, 386–392 (2006).Article 

    Google Scholar 
    7.Wilson, R. P., Culik, B., Coria, N. R., Adelung, D. & Spairani, H. J. Foraging rhythms in Adélie penguins (Pygoscelis adeliae) at Hope Bay, Antarctica; determination and control. Polar Biol. 10, 161–165 (1989).
    Google Scholar 
    8.Aksnes, D. & Utne, A. C. W. A revised model of visual range in fish. Sarsia 4827, 37–41 (1997).
    Google Scholar 
    9.Johansen, R., Barrett, R. T. & Pedersen, T. Foraging strategies of great cormorants Phalacrocorax carbo carbo wintering north of the Arctic Circle. Bird Study 48, 59–67 (2001).Article 

    Google Scholar 
    10.Varpe, Ø. Life history adaptations to seasonality. Integr. Comp. Biol. 57, 943–960 (2017).Article 

    Google Scholar 
    11.Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).Article 

    Google Scholar 
    12.Saikkonen, K. et al. Climate change-driven species’ range shifts filtered by photoperiodism. Nat. Clim. Change 2, 239–242 (2012).Article 

    Google Scholar 
    13.Bradshaw, W. E. & Holzapfel, C. M. Light, time, and the physiology of biotic response to rapid climate change in animals. Annu. Rev. Physiol. 72, 147–166 (2010).CAS 
    Article 

    Google Scholar 
    14.Huffeldt, N. P. Photic barriers to poleward range-shifts. Trends Ecol. Evol. 35, 652–655 (2020).Article 

    Google Scholar 
    15.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 

    Google Scholar 
    16.Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    17.Kaartvedt, S. Photoperiod may constrain the effect of global warming in arctic marine systems. J. Plankton Res. 30, 1203–1206 (2008).Article 

    Google Scholar 
    18.Sundby, S., Drinkwater, K. F. & Kjesbu, O. S. The North Atlantic spring-bloom system—where the changing climate meets the winter dark. Front. Mar. Sci. 3, 28 (2016).Article 

    Google Scholar 
    19.Langbehn, T. J. & Varpe, Ø. Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans. Glob. Chang. Biol. 23, 5318–5330 (2017).Article 

    Google Scholar 
    20.Irigoien, X., Klevjer, T. A. & Røstad, A. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).Article 
    CAS 

    Google Scholar 
    21.Geoffroy, M. et al. Mesopelagic sound scattering layers of the high Arctic: seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 6, 364 (2019).Article 

    Google Scholar 
    22.Jobling, M. Fish Bioenergetics (Chapman & Hall, 1994).23.Ljungström, G., Claireaux, M., Fiksen, Ø. & Jørgensen, C. Body size adaptions under climate change: zooplankton community more important than temperature or food abundance in model of a zooplanktivorous fish. Mar. Ecol. Prog. Ser. 636, 1–18 (2020).Article 
    CAS 

    Google Scholar 
    24.Enberg, K. et al. Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence. Mar. Ecol. 33, 1–25 (2012).Article 

    Google Scholar 
    25.Langbehn, T., Aksnes, D., Kaartvedt, S., Fiksen, Ø. & Jørgensen, C. Light comfort zone in a mesopelagic fish emerges from adaptive behaviour along a latitudinal gradient. Mar. Ecol. Prog. Ser. 623, 161–174 (2019).Article 

    Google Scholar 
    26.Røstad, A., Kaartvedt, S. & Aksnes, D. L. Erratum to ‘Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments’ [Deep Sea Res. I 113 (2016) 1–6]. Deep Sea Res. I Oceanogr. Res. Pap. 114, 162–164 (2016).27.Røstad, A., Kaartvedt, S. & Aksnes, D. L. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments. Deep Sea Res. I Oceanogr. Res. Pap. 113, 1–6 (2016).28.Clark, C. W. & Levy, D. A. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am. Nat. 131, 271–290 (1988).Article 

    Google Scholar 
    29.Scheuerell, M. D. & Schindler, D. E. Diel vertical migration by juvenile sockeye salmon: empirical evidence for the antipredation window. Ecology 84, 1713–1720 (2003).Article 

    Google Scholar 
    30.Boyce, M. S. Seasonality and patterns of natural selection for life histories. Am. Nat. 114, 569–583 (1979).Article 

    Google Scholar 
    31.Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Chapman & Hall, 1992).32.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).33.Varpe, Ø., Jørgensen, C., Tarling, G. A. & Fiksen, Ø. The adaptive value of energy storage and capital breeding in seasonal environments. Oikos 118, 363–370 (2009).Article 

    Google Scholar 
    34.Hagen, W. & Auel, H. Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104, 313–326 (2001).CAS 
    Article 

    Google Scholar 
    35.Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).Article 

    Google Scholar 
    36.Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741–752 (2015).Article 

    Google Scholar 
    37.García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).Article 

    Google Scholar 
    38.Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish. Fish. 10, 235–251 (2009).Article 

    Google Scholar 
    39.Sinclair, S. J., White, M. D. & Newell, G. R. How useful are species distribution models for managing biodiversity under future climates? Ecol. Soc. 15, 8 (2010).Article 

    Google Scholar 
    40.Twiname, S. et al. A cross-scale framework to support a mechanistic understanding and modelling of marine climate-driven species redistribution, from individuals to communities. Ecography 43, 1764–1778 (2020).41.Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).Article 

    Google Scholar 
    42.Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).Article 

    Google Scholar 
    43.Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).Article 

    Google Scholar 
    44.Saunders, R. A., Collins, M. A., Stowasser, G. & Tarling, G. A. Southern Ocean mesopelagic fish communities in the Scotia Sea are sustained by mass immigration. Mar. Ecol. Prog. Ser. 569, 173–185 (2017).Article 

    Google Scholar 
    45.Audzijonyte, A. et al. Atlantis: a spatially explicit end-to-end marine ecosystem model with dynamically integrated physics, ecology and socio-economic modules. Methods Ecol. Evol. 10, 1814–1819 (2019).Article 

    Google Scholar 
    46.Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    47.Nøttestad, L., Giske, J., Holst, J. C. & Huse, G. A length-based hypothesis for feeding migrations in pelagic fish. Can. J. Fish. Aquat. Sci. 56, 26–34 (1999).Article 

    Google Scholar 
    48.Roff, D. A. The evolution of migration and some life history parameters in marine fishes. Environ. Biol. Fishes 22, 133–146 (1988).Article 

    Google Scholar 
    49.Alder, J., Campbell, B., Karpouzi, V., Kaschner, K. & Pauly, D. Forage fish: from ecosystems to markets. Annu. Rev. Environ. Resour. 33, 153–166 (2008).Article 

    Google Scholar 
    50.Houston, A. I. & McNamara, J. M. Models of Adaptive Behaviour: An Approach Based on State (Cambridge University Press, 1999).51.Clark, C. W. & Mangel, M. Dynamic State Variable Models in Ecology (Oxford University Press, 2000).52.Hoegh-Guldberg, O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Barros, V. R. et al) 1655 (Cambridge Univ. Press, 2014).53.Seidov, D. Greenland–Iceland–Norwegian Seas Regional Climatology version 2 (Regional 497 Climatology Team, NOAA/NCEI, 2018).54.Drange, H. & Simonsen, K. Formulation of Air–Sea Fluxes in the ESOP2 Version of MICOM (1996). More

  • in

    Different land-use types equally impoverish but differentially preserve grassland species and functional traits of spider assemblages

    1.Lindenmayer, D., Cunningham, S. & Young, A. Land use intensification: Effects on agriculture, biodiversity and ecological processes (CSIRO Publishing, Collingwood, 2012).Book 

    Google Scholar 
    2.Gibson, D. J. Grasses and grassland ecology (Oxford University Press, Oxford, 2009).
    Google Scholar 
    3.White, R., Murray, S., & Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems. (2000). https://doi.org/10.1021/es00328814.Schmidt, A. C., Fraser, L. H., Carlyle, C. N. & Bassett, E. R. L. Does cattle grazing affect ant abundance and diversity in temperate grasslands?. Rangeland Ecol. Manag. 65(3), 292–298. https://doi.org/10.2111/REM-D-11-00100.1 (2012).Article 

    Google Scholar 
    5.Phifer, C. C., Knowlton, J. L., Webster, C. R., Flaspohler, D. J. & Licata, J. A. Bird community responses to afforested eucalyptus plantations in the Argentine pampas. Biodivers. Conserv. 26(13), 3073–3101. https://doi.org/10.1007/s10531-016-1126-6 (2017).Article 

    Google Scholar 
    6.Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12(1), 22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.x (2009).Article 
    PubMed 

    Google Scholar 
    7.Sasaki, T. et al. Nestedness and niche-based species loss in moorland plant communities. Oikos 121(11), 1783–1790. https://doi.org/10.1111/j.1600-0706.2012.20152.x (2012).Article 

    Google Scholar 
    8.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).Article 

    Google Scholar 
    9.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29(5), 592–599. https://doi.org/10.1111/1365-2435.12345 (2015).Article 

    Google Scholar 
    10.Swenson, N. G. & Enquist, J. Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology 90(8), 2161–2170 (2009).Article 

    Google Scholar 
    11.Stubbs, W. J. & Wilson, J. B. Evidence for limiting similarity in a sand dune community. J. Ecol. 92, 557–567 (2004).Article 

    Google Scholar 
    12.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. America 75(1), 3–35. https://doi.org/10.1890/04-0922 (2005).Article 

    Google Scholar 
    13.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568. https://doi.org/10.1038/ncomms9568 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16(11), 646–655. https://doi.org/10.1016/S0169-5347(01)02283-2 (2001).Article 

    Google Scholar 
    15.Bruno, J. F. & Cardinale, B. J. Cascading effects of predator richness. Front. Ecol. Environ. 6(10), 539–546. https://doi.org/10.1890/070136 (2008).Article 

    Google Scholar 
    16.Avalos, G., Rubio, G. D., Bar, M. E. & González, A. Arañas (Arachnida: Araneae) asociadas a dos bosques degradados del Chaco húmedo en Corrientes, Argentina. Rev. Biol. Trop. 55(3–4), 899–909 (2007).PubMed 

    Google Scholar 
    17.Downie, I. S. et al. The impact of different agricultural land-uses on epigeal spider diversity in Scotland. J. Insect Conserv. 3(4), 273–286 (1999).Article 

    Google Scholar 
    18.Salas-Lopez, A., Violle, C., Mallia, L. & Orivel, J. Land-use change effects on the taxonomic and morphological trait composition of ant communities in French Guiana. Insect. Conserv. Divers. 11(2), 162–173. https://doi.org/10.1111/icad.12248 (2018).Article 

    Google Scholar 
    19.Mousseau, T. A. Ectotherms follow the converse to Bergmann’s rule. Evolution 51(2), 630. https://doi.org/10.2307/2411138 (1997).Article 
    PubMed 

    Google Scholar 
    20.Woolley, C., Thomas, C. F. G., Blackshaw, R. P. & Goodacre, S. L. Aerial dispersal activity of spiders sampled from farmland in southern England. J. Arachnol. 44(3), 347–358. https://doi.org/10.1636/p15-56.1 (2016).Article 

    Google Scholar 
    21.Rypstra, A. L., Carter, P. E., Balfour, R. A. & Marshall, S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27(1), 371–377. https://doi.org/10.2307/3706009 (1999).Article 

    Google Scholar 
    22.Tuf, I. H., Dedek, P. & Veselý, M. Does the diurnal activity pattern of carabid beetles depend on season, ground temperature and habitat?. Arch. Biol. Sci. 64(2), 721–732. https://doi.org/10.2298/ABS1202721T (2012).Article 

    Google Scholar 
    23.Entling, W., Schmidt-Entling, M. H., Bacher, S., Brandl, R. & Nentwig, W. Body size-climate relationships of European spiders. J. Biogeogr. 37(3), 477–485. https://doi.org/10.1111/j.1365-2699.2009.02216.x (2010).Article 

    Google Scholar 
    24.Blandenier, G. Ballooning of spiders (Araneae) in Switzerland: General results from an eleven-year survey. Arachnology 14(7), 308–316. https://doi.org/10.13156/arac.2009.14.7.308 (2014).Article 

    Google Scholar 
    25.Greenstone, M. H. Determinants of web spider species diversity: Vegetation structural diversity vs. prey availability. Oecologia 62(3), 299–304 (1984).ADS 
    Article 

    Google Scholar 
    26.Morello, J., Matteucci, S. D., & Rodríguez, A. F. Ecorregiones y complejos ecosistémicos de argentina. Orientación Gráfica Editora, Buenos Aires (2012).27.Satorre, E. H. Cambios tecnológicos en la agricultura argentina actua. Ciencia hoy. 15(87), 6 (2005).
    Google Scholar 
    28.Viglizzo, E., La Pampa, I.C.R., Satorre, E., Solbrig, O.T., Torres, F. & Ingaramo, J. The provision of ecosystem services and human well-being in the Pampas of Argentina. Millennium Ecosystem Assessment: Full Report (2005).29.INTA. Instituto Nacional de Tecnología Agropecuaria (INTA). Plan De Tecnologia Regional 2009–2011, INTA Centro Regional Entre Ríos (2009).30.Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. For. Ecol. Manag. 437, 304–313. https://doi.org/10.1016/j.foreco.2019.01.021 (2019).Article 

    Google Scholar 
    31.Pinto, C. M., Santoandré, S., Zurita, G., Bellocq, M. I. & Filloy, J. Conifer plantations in grassland and subtropical forest: Does spider diversity respond different to edge effect?. J. For. Res. 23(5), 253–259. https://doi.org/10.1080/13416979.2018.1506248 (2018).CAS 
    Article 

    Google Scholar 
    32.Bell, J., Wheater, C. & Cullen, W. The implications of grassland and heathland management for the conservation of spider communities: A review. J. Zool. 255, 377–387. https://doi.org/10.1017/s0952836901001479 (2001).Article 

    Google Scholar 
    33.Spears, L.R., & MacMahon, J.A. An experimental study of spiders in a shrub-steppe ecosystem: The effects of prey availability and shrub architecture. J. Arachnol. 40(2):218–227 (2012). http://digitalcommons.usu.edu/etd/1207/34.Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11(7), 36–42 (2004).
    Google Scholar 
    35.Merrett, P. & Snazell, R. A comparison of pitfall trapping and vacuum sampling for assessing spider faunas on heath-land at Ashdown Forest, south-east England. Bull. Br. Arachnol. Soc. 6(1), 1–13 (1983).
    Google Scholar 
    36.Lambeets, K., Vandegehuchte, M., Jean-Pierre, M. & Dries, B. Physical defences wear you down: Progressive and. J. Anim. Ecol. 78, 281–291. https://doi.org/10.1111/j.1365-2656.2007.0 (2009).Article 

    Google Scholar 
    37.Duelli, P., Obrist, M. K. & Schmatz, D. R. Environment Biodiversity evaluation in agricultural landscapes: Above-ground insects (Woodhead Publishing Limited, Cambridge, 1999). https://doi.org/10.1016/B978-0-444-50019-9.50006-6.Book 

    Google Scholar 
    38.Munévar, A., Rubio, G. D. & Zurita, G. A. Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic forest: The role of prey availability and abiotic conditions. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2018.03.025 (2017).Article 

    Google Scholar 
    39.Horváth, R., Lengyel, S., Szinetár, C. & Jakab, L. L. The effect of prey availability on spider assemblages on European black pine (Pinus nigra) bark: Spatial patterns and guild structure. Can. J. Zool. 83(2), 324–335. https://doi.org/10.1139/z05-009 (2005).Article 

    Google Scholar 
    40.Bonte, D., Borre, J. V., Lens, L. & Maelfait, J.-P. Geographical variation in wolf spider dispersal behaviour is related to landscape structure. Anim. Behav. 72(3), 655–662. https://doi.org/10.1016/j.anbehav.2005.11.026 (2006).Article 

    Google Scholar 
    41.Legendre, P., Legendre, L. Numerical ecology: Developments in environmental modelling. Developments in Environmental Modelling. 20 (1998)42.R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria. Internet: http://www.R-project.org. 2012.43.Oksanen, J., Blanchet, G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. Vegan: community ecology package 2.3–2 (2015).44.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305 (2010).Article 

    Google Scholar 
    45.Lavorel, S. et al. Assessing functional diversity in the field—Methodology matters!. Funct. Ecol. 22(1), 134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.x (2008).Article 

    Google Scholar 
    46.Leps, J., de Bello, F., Lavorel, S., Berman, S. Quantifying and interpreting functional diversity of natural communities: Practical considerations matter (2006).47.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009).Book 

    Google Scholar 
    48.Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Taxonomic and functional β-diversity of ants along tree plantation
    chronosequences differ between contrasting biomes. Basic Appl. Ecol. 41, 1–12. https://doi.org/10.1016/j.baae.2019.08.004 (2019).49.Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions- What null hypothesis are you .pdf. Ecol. Monogr. 83(4), 557–574. https://doi.org/10.1890/12-2010.1 (2013).Article 

    Google Scholar 
    50.Swenson, N. G. Functional and phylogenetic ecology in R (Springer, Berlin, 2014). https://doi.org/10.1007/978-1-4614-9542-0.Article 
    MATH 

    Google Scholar 
    51.Craven, D., Hall, J. S., Berlyn, G. P., Ashton, M. S. & van Breugel, M. Environmental filtering limits functional diversity during succession in a seasonally wet tropical secondary forest. J. Veg. Sci. 29(3), 511–520. https://doi.org/10.1111/jvs.12632 (2018).Article 

    Google Scholar 
    52.Woodcock, B. A., Pywell, R. F., Roy, D. B., Rose, R. J. & Bell, D. Grazing management of calcareous grasslands and its implications for the conservation of beetle communities. Biol. Cons. 125, 193–202. https://doi.org/10.1016/j.biocon.2005.03.017 (2005).Article 

    Google Scholar 
    53.Mangels, J., Fiedler, K., Schneider, F. D. & Blüthgen, N. Diversity and trait composition of moths respond to land-use intensification in grasslands: Generalists replace specialists. Biodivers. Conserv. 26(14), 3385–3405. https://doi.org/10.1007/s10531-017-1411-z (2017).Article 

    Google Scholar 
    54.Martello, F. et al. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci. Rep. 8(1), 1–11. https://doi.org/10.1038/s41598-018-20823-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Rubio, G. D., Nadal, M. F., Munévar, A. C., Avalos, G. & Perger, R. Iberá Wetlands: Diversity hotspot, valid ecoregion or transitional area? Perspective from a faunistic jumping spiders revision (Araneae: Salticidae). Species 19, 117–131 (2018).
    Google Scholar 
    56.Schiapelli, R. E. Arañas argentinas. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia.” (1948).57.Zapata, L. & Grismando, C. Lista sistemática de arañas (Arachnida: Araneae) de la Reserva Ecológica Costanera Sur (Ciudad Autónoma de Buenos Aires, Argentina), con notas sobre su taxonomía y distribución. Rev. Mus. Argentino Cienc. Nat. 17(2), 183–211 (2015).
    Google Scholar 
    58.Argañaraz, C. I., Rubio, G. D. & Gleiser, R. M. Spider communities in urban green patches and their relation to local and landscape traits. Biodivers. Conserv. 27(4), 981–1009. https://doi.org/10.1007/s10531-017-1476-8 (2018).Article 

    Google Scholar 
    59.Bao, L., et al. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay. Biodivers. Data J. (2018) (6).60.Uetz, G. W. Habitat structure and spider foraging. Habitat Struct. 1948, 325–348. https://doi.org/10.1007/978-94-011-3076-9_16 (1991).Article 

    Google Scholar 
    61.Balfour, R. A. & Rypstra, A. L. The influence of habitat structure on spider density in a no-till soybean agroecosystem. J. Arachnol. 26, 221–226 (1998).
    Google Scholar 
    62.Robinson, J. V. The effect of architectural variation in habitat on a spider community: An experimental field study. Ecol. Soc. Am. 62(1), 73–80 (1981).
    Google Scholar 
    63.Chisté, M. N. et al. Losers, winners, and opportunists: How grassland land-use intensity affects orthopteran communities. Ecosphere 7(11), e01545 (2016).Article 

    Google Scholar 
    64.Blandenier, G., Bruggisser, O. T., Rohr, R. P. & Bersier, L. F. Are phenological patterns of ballooning spiders linked to habitat characteristics?. J. Arachnol. 41(2), 126–132. https://doi.org/10.1636/P12-48 (2013).Article 

    Google Scholar 
    65.De Bello, F. et al. Evidence for scale- and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J. Ecol. 101(5), 1237–1244. https://doi.org/10.1111/1365-2745.12139 (2013).Article 

    Google Scholar 
    66.Gibb, H. et al. Habitat disturbance selects against both small and large species across varying climates. Ecography 41(7), 1184–1193. https://doi.org/10.1111/ecog.03244 (2018).Article 

    Google Scholar 
    67.Entling, W., Schmidt, M. H., Bacher, S., Brandl, R. & Nentwig, W. Niche properties of Central European spiders: Shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr. 16(4), 440–448. https://doi.org/10.1111/j.1466-8238.2006.00305.x (2007).Article 

    Google Scholar  More

  • in

    Constraints and enablers for increasing carbon storage in the terrestrial biosphere

    1.Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (World Meteorological Organization, 2018).2.Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).Article 

    Google Scholar 
    3.Minx, J. C. et al. Negative emissions — part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).Article 

    Google Scholar 
    4.Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).Article 

    Google Scholar 
    5.Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. K. The potential for ocean-based climate action: negative emissions technologies and beyond. Front. Clim. 2, 37 (2021).Article 

    Google Scholar 
    6.National Academies of Sciences, Engineering, and Medicine (NASEM). Negative Emissions Technologies and Reliable Sequestration (The National Academies Press, 2019).
    Google Scholar 
    7.IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280, 1393–1394 (1998).Article 

    Google Scholar 
    8.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).Article 

    Google Scholar 
    9.Intergovernmental Panel on Climate Change (IPCC). Proceedings of the IPCC Conference on Tropical Forestry Response Options to Global Climate Change (US Environmental Protection Agency, 1990).10.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).Article 

    Google Scholar 
    11.Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016).Article 

    Google Scholar 
    12.Putz, F. E. et al. Improved tropical forest management for carbon retention. PLoS Biol. 6, e166 (2008).Article 

    Google Scholar 
    13.Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).Article 

    Google Scholar 
    14.Nolan, R. H. et al. Safeguarding reforestation efforts against changes in climate and disturbance regimes. For. Ecol. Manag. 424, 458–467 (2018).Article 

    Google Scholar 
    15.Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).Article 

    Google Scholar 
    16.Smith, P. et al. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob. Change Biol. 18, 2089–2101 (2012).Article 

    Google Scholar 
    17.Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article 

    Google Scholar 
    18.Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).Article 

    Google Scholar 
    19.Paustian, K. et al. Soil C sequestration as a biological negative emission strategy. Front. Clim. 1, 8 (2019).Article 

    Google Scholar 
    20.Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).Article 

    Google Scholar 
    21.World Resources Institute. Global Forest Watch https://www.wri.org/our-work/project/global-forest-watch (2014).22.Forest Trends’ Ecosystem Marketplace. Financing Emissions Reductions for the Future: State of the Voluntary Carbon Markets 2019 (Forest Trends, 2019).23.Forest Trends’ Ecosystem Marketplace. Fertile Ground: State of Forest Carbon Finance 2017 (Forest Trends, 2017).24.United Nations Framework Convention on Climate Change (UNFCCC). The Clean Development Mechanism Project Search https://cdm.unfccc.int/Projects/projsearch.html.25.Pozo, C., Galán-Martín, Á., Reiner, D. M., Mac Dowell, N. & Guillén-Gosálbez, G. Equity in allocating carbon dioxide removal quotas. Nat. Clim. Change 10, 640–646 (2020).Article 

    Google Scholar 
    26.Mulligan, J. A. et al. CarbonShot: Federal Policy Options for Carbon Removal in the United States (World Resources Institute, 2020).27.Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).Article 

    Google Scholar 
    28.Cameron, D. R., Marvin, D. C., Remucal, J. M. & Passero, M. C. Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals. Proc. Natl Acad. Sci. USA 114, 12833–12838 (2017).Article 

    Google Scholar 
    29.Baker, S. E. et al. Getting to Neutral: Options for Negative Carbon Emissions in California (Lawrence Livermore National Laboratory, 2020).30.Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).Article 

    Google Scholar 
    31.Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis Ch. 3 (eds Houghton, J. T. et al.) 185–237 (World Meteorological Organization, 2001).32.Mackey, B. et al. Untangling the confusion around land carbon science and climate change mitigation policy. Nat. Clim. Change 3, 552–557 (2013).Article 

    Google Scholar 
    33.Hurteau, M. D., Koch, G. W. & Hungate, B. A. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 6, 493–498 (2008).Article 

    Google Scholar 
    34.McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).Article 

    Google Scholar 
    35.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).Article 

    Google Scholar 
    36.Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).Article 

    Google Scholar 
    37.DeFries, R. S., Field, C. B., Fung, I., Collatz, G. J. & Bounoua, L. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. Cycles 13, 803–815 (1999).Article 

    Google Scholar 
    38.Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).Article 

    Google Scholar 
    39.Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).Article 

    Google Scholar 
    40.Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).Article 

    Google Scholar 
    41.Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).Article 

    Google Scholar 
    42.Stallard, R. F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).Article 

    Google Scholar 
    43.Kondo, M. et al. Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake. Geophys. Res. Lett. 45, 4820–4830 (2018).Article 

    Google Scholar 
    44.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article 

    Google Scholar 
    45.Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 119, 4382–4387 (2019).Article 

    Google Scholar 
    46.Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).Article 

    Google Scholar 
    47.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).Article 

    Google Scholar 
    48.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).Article 

    Google Scholar 
    49.Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190126 (2020).Article 

    Google Scholar 
    50.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).Article 

    Google Scholar 
    51.Krause, A. et al. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts. Glob. Change Biol. 24, 3025–3038 (2018).Article 

    Google Scholar 
    52.Jones, C. D. et al. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11, 095012 (2016).Article 

    Google Scholar 
    53.Jones, C. D. et al. C4MIP — the coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).Article 

    Google Scholar 
    54.Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).Article 

    Google Scholar 
    55.Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).Article 

    Google Scholar 
    56.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).Article 

    Google Scholar 
    57.Hong, S. et al. Divergent responses of soil organic carbon to afforestation. Nat. Sustain. 3, 694–700 (2020).Article 

    Google Scholar 
    58.Li, D., Niu, S. & Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. 195, 172–181 (2012).Article 

    Google Scholar 
    59.Baldocchi, D. & Penuelas, J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol. 25, 1191–1197 (2018).Article 

    Google Scholar 
    60.Gómez-González, S., Ochoa-Hueso, R. & Pausas, J. G. Afforestation falls short as a biodiversity strategy. Science 368, 1439 (2020).Article 

    Google Scholar 
    61.Bellamy, R. & Osaka, S. Unnatural climate solutions. Nat. Clim. Change 10, 98–99 (2020).Article 

    Google Scholar 
    62.Indigo Ag. Indigo launches The Terraton Initiative. https://www.indigoag.com/en-au/pages/news/indigo-launches-the-terraton-initiative (2019).63.Schlesinger, W. H. & Amundson, R. Managing for soil carbon sequestration: Let’s get realistic. Glob. Change Biol. 25, 386–389 (2019).Article 

    Google Scholar 
    64.Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).Article 

    Google Scholar 
    65.Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).Article 

    Google Scholar 
    66.Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).Article 

    Google Scholar 
    67.Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).Article 

    Google Scholar 
    68.Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PloS ONE 13, e0213368 (2019).Article 

    Google Scholar 
    69.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 

    Google Scholar 
    70.Zhang, Q. et al. Reforestation and surface cooling in temperate zones: mechanisms and implications. Glob. Change Biol. 26, 3384–3401 (2020).Article 

    Google Scholar 
    71.California Air Resources Board. Compliance Offset Program. https://ww2.arb.ca.gov/our-work/programs/compliance-offset-program (2013).72.Intergovernmental Panel on Climate Change (IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019).73.Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H. & Baldocchi, D. D. A biogeochemical compromise: the high methane cost of sequestering carbon in restored wetlands. Geophys. Res. Lett. 45, 6081–6091 (2018).Article 

    Google Scholar 
    74.CarbonPlan Team. The cost of temporary carbon removal (2020).75.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).Article 

    Google Scholar 
    76.Chen, W., Meng, J., Han, X., Lan, Y. & Zhang, W. Past, present, and future of biochar. Biochar 1, 75–87 (2019).Article 

    Google Scholar 
    77.Nemet, G. F. et al. Negative emissions — part 3: innovation and upscaling. Environ. Res. Lett. 13, 063003 (2018).Article 

    Google Scholar 
    78.Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).Article 

    Google Scholar 
    79.Kalt, G. et al. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice. GCB Bioenergy 11, 1283–1297 (2019).Article 

    Google Scholar 
    80.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190120 (2020).Article 

    Google Scholar 
    81.Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).Article 

    Google Scholar 
    82.Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).Article 

    Google Scholar 
    83.Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).Article 

    Google Scholar 
    84.Buck, H. J. After Geoengineering: Climate Tragedy, Repair, and Restoration (Verso Books, 2019).85.House, J. I., Prentice, I. C. & Le Quere, C. Maximum impacts of future reforestation or deforestation on atmospheric CO2. Glob. Change Biol. 8, 1047–1052 (2002).Article 

    Google Scholar 
    86.Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).Article 

    Google Scholar 
    87.Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).Article 

    Google Scholar 
    88.Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals. Glob. Change Biol. 19, 2285–2302 (2013).Article 

    Google Scholar 
    89.Popp, A. et al. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ. Res. Lett. 6, 034017 (2011).Article 

    Google Scholar 
    90.Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).Article 

    Google Scholar 
    91.Turner, P. A., Field, C. B., Lobell, D. B., Sanchez, D. L. & Mach, K. J. Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat. Sustain. 1, 240–245 (2018).Article 

    Google Scholar 
    92.Campbell, J. E., Lobell, D. B., Genova, R. C. & Field, C. B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42, 5791–5794 (2008).Article 

    Google Scholar 
    93.Bell, S., Barriocanal, C., Terrer, C. & Rosell-Melé, A. Management opportunities for soil carbon sequestration following agricultural land abandonment. Environ. Sci. Policy 108, 104–111 (2020).Article 

    Google Scholar 
    94.FAO and UNEP. The State of the World’s Forests 2020. Forests, biodiversity, and people. http://www.fao.org/3/ca8642en/ca8642en.pdf (2020).95.The Food and Land Use Coalition. Growing Better: Ten Critical Transitions to Transform Food and Land Use. https://www.foodandlandusecoalition.org/wp-content/uploads/2019/09/FOLU-GrowingBetter-GlobalReport.pdf (2019).96.Smith, P. et al. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).Article 

    Google Scholar 
    97.Dorner, P. & Thiesenhusen, W. Land Tenure and Deforestation: Interactions and Environmental Implications (United Nations Research Institute for Social Development, 1992).98.Ferreira, S. Deforestation, property rights, and international trade. Land Econ. 80, 174–193 (2004).Article 

    Google Scholar 
    99.Robinson, B. E., Holland, M. B. & Naughton-Treves, L. Does secure land tenure save forests? A meta-analysis of the relationship between land tenure and tropical deforestation. Glob. Environ. Change 29, 281–293 (2014).Article 

    Google Scholar 
    100.Laurance, W. F. Reflections on the tropical deforestation crisis. Biol. Conserv. 91, 109–117 (1999).Article 

    Google Scholar 
    101.Murtazashvili, I., Murtazashvili, J. & Salahodjaev, R. Trust and deforestation: a cross-country comparison. For. Policy Econ. 101, 111–119 (2019).Article 

    Google Scholar 
    102.Koyuncu, C. & Yilmaz, R. The impact of corruption on deforestation: a cross-country evidence. J. Dev. Areas 42, 213–222 (2009).Article 

    Google Scholar 
    103.Pailler, S. Re-election incentives and deforestation cycles in the Brazilian Amazon. J. Environ. Econ. Manag. 88, 345–365 (2018).Article 

    Google Scholar 
    104.United Nations Framework Convention on Climate Change (UNFCCC). Decision 4/CP.15 Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (2009).105.Anderson, C. M., Field, C. B. & Mach, K. J. Forest offsets partner climate-change mitigation with conservation. Front. Ecol. Environ. 15, 359–365 (2017).Article 

    Google Scholar 
    106.Merenlender, A. M., Huntsinger, L., Guthey, G. & Fairfax, S. K. Land trusts and conservation easements: who is conserving what for whom. Conserv. Biol. 18, 65–75 (2004).Article 

    Google Scholar 
    107.Alix-Garcia, J. & Wolff, H. Payment for ecosystem services from forests. Annu. Rev. Resour. Econ. 6, 361–380 (2014).Article 

    Google Scholar 
    108.Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).Article 

    Google Scholar 
    109.Biggs, E. M. et al. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ. Sci. Policy 54, 389–397 (2015).Article 

    Google Scholar 
    110.Buchner, B. et al. Global Landscape of Climate Finance 2019 (Climate Policy Initiative, 2019).111.The Food and Land Use Coalition. Nature for Net-Zero: consultation document on the need to raise corporate ambition towards nature-based net-zero emissions (2020).112.Asner, G. P. et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160 (2012).Article 

    Google Scholar 
    113.Schimel, D. & Schneider, F. D., JPL Carbon and Ecosystem Participants. Flux towers in the sky: global ecology from space. New Phytol. 224, 570–584 (2019).Article 

    Google Scholar 
    114.Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl Acad. Sci. USA 105, 1551–1555 (2008).Article 

    Google Scholar 
    115.Marland, G., Fruit, K. & Sedjo, R. Accounting for sequestered carbon: the question of permanence. Environ. Sci. Policy 4, 259–268 (2001).Article 

    Google Scholar 
    116.Sedjo, R. A., Marland, G. & Fruit, K. Renting carbon offsets: the question of permanence. Resources for the Future Manuscript 12 pp (2001).117.Marland, G. & Marland, E. Trading permanent and temporary carbon emissions credits. Clim. Change 95, 465 (2009).Article 

    Google Scholar 
    118.van Oosterzee, P., Blignaut, J. & Bradshaw, C. J. A. iREDD hedges against avoided deforestation’s unholy trinity of leakage, permanence and additionality. Conserv. Lett. 5, 266–273 (2012).Article 

    Google Scholar 
    119.May, P. J. Policy learning and failure. J. Public Policy 12, 331–354 (1992).Article 

    Google Scholar 
    120.Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 52, 143–150 (2002).Article 

    Google Scholar 
    121.Zeng, Y. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Change 10, 842–844 (2020).Article 

    Google Scholar 
    122.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).Article 

    Google Scholar 
    123.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).Article 

    Google Scholar 
    124.Lal, R. et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 73, 145A–152A (2018).Article 

    Google Scholar 
    125.Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).Article 

    Google Scholar 
    126.National Academies of Sciences, Engineering, and Medicine (NASEM). Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (The National Academies Press, 2015).127.Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).Article 

    Google Scholar 
    128.Vaughan, N. E. & Lenton, T. M. A review of climate geoengineering proposals. Clim. Change 109, 745–790 (2011).Article 

    Google Scholar 
    129.Houghton, R. A., Unruh, J. D. & Lefebvre, P. A. Current land cover in the tropics and its potential for sequestering carbon. Glob. Biogeochem. Cycles 7, 305–320 (1993).Article 

    Google Scholar 
    130.Houghton, R. A. & Nassikas, A. A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Change Biol. 24, 350–359 (2018).Article 

    Google Scholar 
    131.Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).Article 

    Google Scholar 
    132.Nilsson, S. & Schopfhauser, W. The carbon-sequestration potential of a global afforestation program. Clim. Change 30, 267–293 (1995).Article 

    Google Scholar 
    133.Winjum, J. K., Dixon, R. K. & Schroeder, P. E. Estimating the global potential of forest and agroforest management practices to sequester carbon. Water Air Soil Pollut. 64, 213–227 (1992).Article 

    Google Scholar 
    134.Sohngen, B. & Sedjo, R. Carbon sequestration in global forests under different carbon price regimes. Energy J. 27, 109–126 (2006).
    Google Scholar 
    135.Mayer, A., Hausfather, Z., Jones, A. D. & Silver, W. L. The potential of agricultural land management to contribute to lower global surface temperatures. Sci. Adv. 4, eaaq0932 (2018).Article 

    Google Scholar 
    136.van Minnen, J. G., Strengers, B. J., Eickhout, B., Swart, R. J. & Leemans, R. Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model. Carbon Balance Manag. 3, 3 (2008).Article 

    Google Scholar 
    137.Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22 (2004).Article 

    Google Scholar 
    138.Sathaye, J., Makundi, W., Dale, L., Chan, P. & Andrasko, K. GHG mitigation potential, costs and benefits in global forests: a dynamic partial equilibrium approach. Energy J. 27, 127–162 (2006).
    Google Scholar 
    139.Canadell, J. G. & Schulze, E. D. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 5, 5282 (2014).Article 

    Google Scholar 
    140.Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).Article 

    Google Scholar 
    141.Caldecott, B., Lomax, G. & Workman, M. Stranded Carbon Assets and Negative Emissions Technologies (Smith School of Enterprise and the Environment, 2015).142.Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).Article 

    Google Scholar  More

  • in

    Developments in data science solutions for carnivore tooth pit classification

    SampleA total of 620 carnivore tooth pits were included in the present study. These samples included tooth marks produced by;

    Brown Bears (Ursus arctos, Ursidae, 69 pits)

    Spotted Hyenas (Crocuta crocuta, Hyaenidae, 86 pits)

    Wolves (Canis lupus, Canidae, 80 pits)

    African Wild Dogs (Lycaon pictus, Canidae, 89 pits)

    Foxes (Vulpes vulpes, Canidae, 53 pits)

    Jaguars (Panthera onca, Felidae, 77 pits)

    Leopards (Panthera pardus, Felidae, 84 pits)

    Lions (Panthera leo, Felidae, 82 pits)

    Samples originated from a number of different sources, including animals kept in parks as well as wild animals. Samples obtained from wild animals included those produced by foxes as well as wolves. The only sample containing both wild and captive animals was the wolf sample. Preliminary data from these tooth pits revealed animals in captivity to have highly equivalent tooth pit morphologies to wild animals ((vert d vert ) = 0.125, p = 9.0e−14, BFB = 1.4e+11), while tooth scores revealed otherwise ((vert d vert ) = 0.152, p = 0.99, BFB = 3.7e+01 against (H_{a})). Under this premise, and so as to avoid the influence of confounding variables that go beyond the scope of the present study, tooth scores were excluded from the present samples and are under current investigation (data in preperation). Nevertheless, other research have shown tooth pits to be more informative than tooth scores when considering morphology20,23.When working with tooth mark morphologies, preference is usually given to marks found on long bone diaphyses. This is preferred considering how diaphyses are denser than epiphyses, and are thus more likely to survive during carnivore feeding. Nevertheless, when working with captive or semi-captive animals, controlling the bones that carnivores are fed is not always possible. This is due to the rules and regulations established by the institution where these animals are kept64. While this was not an issue for the majority of the animals used within the present study, in the case of P. pardus, animals were only fed ribs in articulation with other axial elements. In light of this, a careful evaluation on the effects this may have on the analogy of our samples was performed (Supplementary Appendix 2). These reflections concluded that in order to maintain a plausible analogy with tooth marks produced by other animals on diaphyses, tooth marks could only be used if found on the shaft of bovine ribs closest to the tuburcle, coinciding with the posterior and posterior-lateral portions of the rib, and farthest away from the costochondral junction65. This area of the rib corresponds to label RI3 described by Lam et al.65. Moreover, with a reported average cortical thickness of 2.3mm (± 0.13 mm) and Bone Mineral Density of (4490 kg/m^{3} [213.5, 334.6])66, bovine ribs are frequently employed in most bone simulation experiments used in agricultural as well as general surgical sciences. Finally, considering the grease, muscle and fat content of typical domestic bovine individuals67, alongside the general size of P. pardus teeth, it was concluded that the use of rib elements for this sample was the closest possible analogy to the tooth marks collected from other animals.Carnivores were fed a number of different sized animals, also dependent in most cases on the regulations established by the institution where these animals are kept64. Nevertheless, recent research has found statistical similarities between tooth marks found on different animals25, with the greatest differences occurring between large and small sized animals. Needless to say, considering the typical size of prey some of these carnivores typically consume, this factor was not considered of notable importance for the present study25 (Supplementary Appendix 1).For the purpose of comparisons, animals were split into 5 groups according to ecosystem as well as taxonomic family. From an ecological perspective, two datasets were defined; (1) the Pleistocene European Taxa dataset containing U. arctos, V. vulpes, C. crocuta, P. pardus, P. leo and C. lupus; and (2) the African Taxa dataset containing C. crocuta, P. pardus, L. pictus and P. leo. When considering taxonomic groupings, animals were separated into 3 groups, including; (1) the Canidae dataset, including V. vulpes, L. pictus and C. lupus; (2) the Felidae dataset, including P. pardus, P. onca and P. leo; and (3) a general Taxonomic Family dataset, including all Canidae in the same group, all Felidae in the same group, followed by Hyaenidae and Ursidae. Some complementary details on each of these carnivores have been included in Supplementary Appendix 1.All experiments involving carnivores were performed in accordance with the relevant ethical guidelines as set forth by park keepers and general park regulations. No animals were sacrificed specifically for the purpose of these experiments. Likewise, carnivores were not manipulated or handled at any point during the collection of samples. Collection of chewed bones were performed directly by park staff and assisted by one of the authors (JY). The present study followed the guidelines set forth by ARRIVE (https://arriveguidelines.org/) wherever necessary. No licenses or permits were required in order to perform these experiments. Finally, in the case of animals in parks, bone samples were provided by the park according to normal feeding protocols. More details can be consulted in the Extended Samples section of the supplementary files.3D modelling and landmark digitisationDigital reconstructions of tooth marks were performed using Structured Light Surface Scanning (SLSS)68. The equipment used in the present study was the DAVID SLS-2 Structured Light Surface Scanner located in the C.A.I. Archaeometry and Archaeological Analysis lab of the Complutense University of Madrid (Spain). This equipment consists of a DAVID USB CMOS Monochrome 2-Megapixel camera and ACER K11 LED projector. Both the camera and the projector were connected to a portable ASUS X550VX personal laptop (8 GB RAM, Intel® CoreTM i5 6300HQ CPU (2.3 GHz), NVIDIA GTX 950 GPU) via USB and HDMI respectively. The DAVID’s Laser Scanner Professional Edition software is stored in a USB Flash Drive. Equipment were calibrated using a 15 mm markerboard, using additional macro lenses attached to both the projector and the camera in order to obtain optimal resolution at this scale. Once calibrated the DAVID SLS-2 produces a point cloud density of up to 1.2 million points which can be exported for further processing via external software.The landmark configuration used for this study consists of a total of 30 landmarks (LMs)21; 5 fixed Type II landmarks18 and a (5 times 5) patch of semilandmarks69 (Fig. S2). Of the 5 fixed landmarks, LM1 and LM2 mark the maximal length (l) of each pit. For the correct orientation of the pit, LM1 can be considered to be the point along the maximum length furthest away from the perpendicular axis marking the maximum width (w). LM2 would therefore be the point closest to said perpendicular axis (see variables (d_{1}) and (d_{2}) in Fig. S2 for clarification). LM3 and LM4 mark the extremities of the perpendicular axis (w) with LM3 being the left-most extremity and LM4 being the right-most extremity. LM5 is the deepest point of the pit. The semilandmark patch is then positioned over the entirety of the pit, so as to capture the internal morphology of the mark.Landmark collection was performed using the free Landmark Editor software (v.3.0.0.6.) by a single experienced analyst. Inter-analyst experiments prior to landmark collection revealed the landmark model to have a robustly defined human-induced margin of error of 0.14 ± 0.09 mm (Median ± Square Root of the Biweight Midvariance). Detailed explanations as well as an instructional video on how to place both landmarks and semilandmarks can be consulted in the Supplementary Appendix and main text of Courtenay et al.21.Geometric morphometricsOnce collected, landmarks were formatted as morphologika files and imported into the R free software environment (v.3.5.3, https://www.r-project.org/). Initial processing of these files consisted in the orthogonal tangent projection into a new normalized feature space. This process, frequently referred to as Generalized Procrustes Analysis (GPA), is a valuable tool that allows for the direct comparison of landmark configurations18,19,70. GPA utilises different superimposition procedures (translation, rotation and scaling) to quantify minute displacements of individual landmarks in space71. This in turn facilitates the comparison of landmark configurations, as well as hypothesis testing, using multivariate statistical analyses. Nevertheless, considering observations made by Courtenay et al.20,21,25 revealed tooth mark size to be an important conditioning factor in their morphology, prior analyses in allometry were also performed72. From this perspective, allometric analyses first considered the calculation of centroid sizes across all individuals; the square root of the sum of squared distances of all landmarks of an object from their centroid18. These calculations were then followed by multiple regressions to assess the significance of shape-size relationships. For regression, the logarithm of centroid sizes were used. In cases where shape-size relationships proved significant, final superimposition procedures were performed excluding the scaling step of GPA (form).In addition to these analyses, preliminary tests were performed to check for the strength of phylogenetic signals73. This was used as a means of testing whether groups of carnivores produced similar tooth pits to other members of the same taxonomic family. For details on the phylogenies used during these tests, consult Fig. S1 and Supplementary Appendix 1.For the visualisation of morphological trends and variations, Thin Plate Splines (TPS) and central morphological tendencies were calculated19,71. From each of these mean landmark configurations, for ease of pattern visualisation across so many landmarks, final calculations were performed using Delaunay 2.5D Triangulation algorithms74 creating visual meshes of these configurations in Python (v.3.7.4, https://www.python.org/).Once normalised, landmark coordinates were processed using dimensionality reduction via Principal Components Analyses (PCA). In order to identify the optimal number of Principal Component Scores (PC Scores) that best represented morphological variance, permutation tests were performed calculating the observed variance explained by each PC with the permuted variance over 50 randomized iterations75. Multivariate Analysis of Variance (MANOVA) tests were then performed on these select PCs to assess the significance of multivariate morphological variance among samples.Geometric Morphometric applications were programmed in the R programming language (Sup. Appendix 8).Robust statisticsWhile GPA is known to normalize data76, this does not always hold true. Under this premise, caution must be taken when performing statistical analyses on these datasets. Taking this into consideration, prior to all hypothesis testing, normality tests were also performed. These included Shapiro tests and the inspection of Quantile–Quantile graphs. In cases where normality was detected, univariate hypothesis tests were performed using traditional parametric Analysis of Variance (ANOVA). For multivariate tests, such as MANOVA, calculations were derived using the Hotelling-Lawley test-statistic. When normality was rejected, robust alternatives to each of these tests were chosen. In the case of univariate testing, the Kruskal–Wallis non-parametric rank test was prefered, while for MANOVA calculations, Wilk’s Lambda was used.Finally, in light of some of the recommendations presented by The American Statistical Association (ASA), as debated in Volume 73, Issue Sup1 of The American Statistician77,78, the present study considers p-values of ( >2sigma ) from the mean to indicate only suggestive support for the alternative hypothesis ((H_{a})). (p ; > ; 0.005), or where possible, (3sigma ) was therefore used as a threshold to conclude that (H_{a}) is “significant”. In addition, Bayes Factor Bound (BFB) values (Eq. 1) have also been included alongside all corresponding p-Values79. Unless stated otherwise, BFBs are reported as the odds in favor of the alternative hypothesis (BFB:1). More details on BFB, Bayes Factors and the (p ; > ; 3sigma ) threshold have been included in Supplementary Appendix 3. General BFB calibrations in accordance with Benjamin and Berger’s Recommendation 0.379, as well as False Positive Risk values according to Colquhoun’s proposals80, have also been included in Table S20 of Supplementary Appendix 3.$$begin{aligned} BFB = frac{1}{-e ; p ; log (p)} end{aligned}$$
    (1)
    All statistical applications were programmed in the R programming language (Sup. Appendix 8).Computational learningComputational Learning employed in this study consisted of two main types of algorithm; Unsupervised and Supervised algorithms. The concept of “learning” in AI refers primarily to the creation of algorithms that are able to extract patterns from raw data (i.e. “learn”), based on their “experience” through the construction of mathematical functions38,81. The basis of all AI learning activities include the combination of multiple components, including; linear algebra, calculus, probability theory and statistics. From this, algorithms can create complex mathematical functions using many simpler concepts as building blocks38. Here we use the term “Computational Learning” to refer to a very large group of sub-disciplines and sub-sub-disciplines within AI. Deep Learning and Machine Learning are terms frequently used (and often debated), however, many more branches and types of learning exist. Under this premise, and so as to avoid complication, the present study has chosen to summarise these algorithms using the term “Computational”.Similar to the concepts of Deep and Machine Learning, many different types of supervision exist. The terms supervised and unsupervised refer to the way raw data is fed into the algorithm. In most literature, data will be referred to via the algebraic symbol x, whether this be a vector, scalar or matrix. The objective of algorithms are to find patterns among a group of x. In an unsupervised context, x is directly fed into the algorithm without further explanation. Algorithms are then forced to search for patterns that best explain the data. In the case of supervised contexts, x is associated with a label or target usually denominated as y. Here the algorithm will try and find the best means of mapping x to y. From a statistical perspective, this can be explained as (pleft( y vert x right) ). In sum, unsupervised algorithms are typically used for clustering tasks, dimensionality reduction or anomaly detection, while supervised learning is typically associated with classification tasks or regression.The workflow used in the present study begins with dimensionality reduction, as explained earlier with the use of PCA. While preliminary experiments were performed using non-linear dimensionality reduction algorithms, such as t-distributed Stochastic Neighbor Embedding (t-SNE)82 and Uniform Manifold Approximation and Projection (UMAP)83, PCA was found to be the most consistent across all datasets, a point which should be developed in detailed further research. Once dimensionality reduction had been performed, and prior to any advanced computational modelling, datasets were cleaned using unsupervised Isolation Forests (IFs)84. Once anomalies had been removed, data augmentation was performed using two different unsupervised approaches; Generative Adversarial Networks (GANs)38,39,40,41 and Markov Chain Monte Carlo (MCMC) sampling44. Data augmentation was performed for two primary reasons; (1) the simulation of larger datasets to ensure supervised algorithms have enough information to train from, and (2) to balance datasets so each sample has the same size. Both MCMCs and GANs were trialed and tested using robust statistics to evaluate quality of augmented data41. Once the best model had been determined, each of the datasets were augmented so they had a total sample size of (n = 100). In the case of the Taxonomic Family dataset, augmentation was performed until all samples had the same size as the largest sample.Once augmented, samples were used for the training of supervised classification models. Two classification models were tried and tested; Support Vector Machines (SVM)85 and Neural Support Vector Machines (NSVM)86,87. NSVMs are an extension of SVM using Neural Networks (NNs)38 as feature extractors, in substituting the kernel functions typically used in SVMs. Hyperparameter optimization for both SVMs and NSVMs were performed using Bayesian Optimization Algorithms (BOAs)88.Supervised computational applications were performed in both the R and Python programming languages (Sup. Appendix 8). For full details on both unsupervised and supervised computational algorithms, consult the Extended Methods section of the Supplementary Materials.Evaluation of supervised learning algorithms took into account a wide array of different popular evaluation metrics in machine and deep learning. These included; Accuracy, Sensitivity, Specificity, Precision, Recall, Area Under the receiver operator characteristic Curve (AUC), the F-Measure (also known as the F1 Score), Cohen’s Kappa ((kappa )) statistic, and model Loss. Each of these metrics, with the exception of loss, are calculated using confusion matrices, measuring the ratio of correctly classified individuals (True Positive & True Negative) as well as miss-classified individuals (False Positive & False Negative). For more details see Supplementary Appendix 6.Accuracy is simply reported as either a decimal (left[ 0, 1right] ) or a percentage. Accuracy is a metric often misinterpreted, as explained in Supplementary Appendix 6, and should always be considered in combination with other values, such as Sensitivity or Specificity. Both Sensitivity and Specificity are values reported as decimals (left[ 0, 1right] ), and are used to evaluate the proportion of correct classifications and miss-classifications. AUC values are derived from receiver operator characteristic curves, a method used to balance and graphically represent the rate of correctly and incorrectly classified individuals. The closest the curve gets to reaching the top left corner of the graph, the better the classifier, while diagonal lines in the graph represent a random classifier (poor model). In order to quantify the curvature of the graph, the area under the curve can be calculated (AUC), with (AUC=1) being a perfect classifier and (AUC=0.5) being a random classifier. The (kappa ) statistic is a measure of observer reliability, usually employed to test the agreement between two systems. When applied to confusion matrix evaluations, (kappa ) can be used to assess the probability that a model will produce an output (hat{y}) that coincides with the real output y. (kappa ) values typically range between (left[ 0, 1right] ), with (kappa =1) meaning perfect agreement, (kappa =0) being random agreement, and (kappa =0.8) typically used as a threshold to define a near-perfect or perfect algorithm.While in the authors’ opinion, AUC, Sensitivity and Specificity values are the most reliable evaluation metrics for studies of this type (Supp. Appendix 6), for ease of comparison with other papers or authors who choose to use other metrics, we have also included Precision, Recall and F-Measure values. Precision and Recall values play a similar role to sensitivity and specificity, with recall being equivalent to sensitivity, and precision being the calculation of the number of correct positive predictions made. Precision and Recall, however, differ from their counterparts in being more robust to imbalance in datasets. F-Measures are a combined evaluation of these two measures. For more details consult Supplementary Appendix 6.Loss metrics were reported using the Mean Squared Error (Eq. 2);$$begin{aligned} MSE = frac{1}{n} sum _{i = 1}^{n} left( y_{i} – hat{y}_{i} right) ^{2} end{aligned}$$
    (2)
    Loss values are interpreted considering values closest to 0 as an indicator of greater confidence when using the model to make new predictions.Final evaluation metrics were reported when using algorithms to classify only the original samples, without augmented data. Augmented data was, therefore, solely used for training and validation. Finally, so as to assess the impact data augmentation has on supervised learning algorithms, algorithms were also trained on the raw data. This was performed using 70% of the raw data for training, while the remaining 30% was used as a test set. More