1.Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (World Meteorological Organization, 2018).2.Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).Article
Google Scholar
3.Minx, J. C. et al. Negative emissions — part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).Article
Google Scholar
4.Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).Article
Google Scholar
5.Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. K. The potential for ocean-based climate action: negative emissions technologies and beyond. Front. Clim. 2, 37 (2021).Article
Google Scholar
6.National Academies of Sciences, Engineering, and Medicine (NASEM). Negative Emissions Technologies and Reliable Sequestration (The National Academies Press, 2019).
Google Scholar
7.IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280, 1393–1394 (1998).Article
Google Scholar
8.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).Article
Google Scholar
9.Intergovernmental Panel on Climate Change (IPCC). Proceedings of the IPCC Conference on Tropical Forestry Response Options to Global Climate Change (US Environmental Protection Agency, 1990).10.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).Article
Google Scholar
11.Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016).Article
Google Scholar
12.Putz, F. E. et al. Improved tropical forest management for carbon retention. PLoS Biol. 6, e166 (2008).Article
Google Scholar
13.Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).Article
Google Scholar
14.Nolan, R. H. et al. Safeguarding reforestation efforts against changes in climate and disturbance regimes. For. Ecol. Manag. 424, 458–467 (2018).Article
Google Scholar
15.Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).Article
Google Scholar
16.Smith, P. et al. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob. Change Biol. 18, 2089–2101 (2012).Article
Google Scholar
17.Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article
Google Scholar
18.Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).Article
Google Scholar
19.Paustian, K. et al. Soil C sequestration as a biological negative emission strategy. Front. Clim. 1, 8 (2019).Article
Google Scholar
20.Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).Article
Google Scholar
21.World Resources Institute. Global Forest Watch https://www.wri.org/our-work/project/global-forest-watch (2014).22.Forest Trends’ Ecosystem Marketplace. Financing Emissions Reductions for the Future: State of the Voluntary Carbon Markets 2019 (Forest Trends, 2019).23.Forest Trends’ Ecosystem Marketplace. Fertile Ground: State of Forest Carbon Finance 2017 (Forest Trends, 2017).24.United Nations Framework Convention on Climate Change (UNFCCC). The Clean Development Mechanism Project Search https://cdm.unfccc.int/Projects/projsearch.html.25.Pozo, C., Galán-Martín, Á., Reiner, D. M., Mac Dowell, N. & Guillén-Gosálbez, G. Equity in allocating carbon dioxide removal quotas. Nat. Clim. Change 10, 640–646 (2020).Article
Google Scholar
26.Mulligan, J. A. et al. CarbonShot: Federal Policy Options for Carbon Removal in the United States (World Resources Institute, 2020).27.Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).Article
Google Scholar
28.Cameron, D. R., Marvin, D. C., Remucal, J. M. & Passero, M. C. Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals. Proc. Natl Acad. Sci. USA 114, 12833–12838 (2017).Article
Google Scholar
29.Baker, S. E. et al. Getting to Neutral: Options for Negative Carbon Emissions in California (Lawrence Livermore National Laboratory, 2020).30.Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).Article
Google Scholar
31.Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis Ch. 3 (eds Houghton, J. T. et al.) 185–237 (World Meteorological Organization, 2001).32.Mackey, B. et al. Untangling the confusion around land carbon science and climate change mitigation policy. Nat. Clim. Change 3, 552–557 (2013).Article
Google Scholar
33.Hurteau, M. D., Koch, G. W. & Hungate, B. A. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 6, 493–498 (2008).Article
Google Scholar
34.McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).Article
Google Scholar
35.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).Article
Google Scholar
36.Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).Article
Google Scholar
37.DeFries, R. S., Field, C. B., Fung, I., Collatz, G. J. & Bounoua, L. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. Cycles 13, 803–815 (1999).Article
Google Scholar
38.Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).Article
Google Scholar
39.Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).Article
Google Scholar
40.Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).Article
Google Scholar
41.Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).Article
Google Scholar
42.Stallard, R. F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).Article
Google Scholar
43.Kondo, M. et al. Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake. Geophys. Res. Lett. 45, 4820–4830 (2018).Article
Google Scholar
44.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article
Google Scholar
45.Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 119, 4382–4387 (2019).Article
Google Scholar
46.Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).Article
Google Scholar
47.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).Article
Google Scholar
48.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).Article
Google Scholar
49.Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190126 (2020).Article
Google Scholar
50.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).Article
Google Scholar
51.Krause, A. et al. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts. Glob. Change Biol. 24, 3025–3038 (2018).Article
Google Scholar
52.Jones, C. D. et al. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11, 095012 (2016).Article
Google Scholar
53.Jones, C. D. et al. C4MIP — the coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).Article
Google Scholar
54.Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).Article
Google Scholar
55.Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).Article
Google Scholar
56.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).Article
Google Scholar
57.Hong, S. et al. Divergent responses of soil organic carbon to afforestation. Nat. Sustain. 3, 694–700 (2020).Article
Google Scholar
58.Li, D., Niu, S. & Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. 195, 172–181 (2012).Article
Google Scholar
59.Baldocchi, D. & Penuelas, J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol. 25, 1191–1197 (2018).Article
Google Scholar
60.Gómez-González, S., Ochoa-Hueso, R. & Pausas, J. G. Afforestation falls short as a biodiversity strategy. Science 368, 1439 (2020).Article
Google Scholar
61.Bellamy, R. & Osaka, S. Unnatural climate solutions. Nat. Clim. Change 10, 98–99 (2020).Article
Google Scholar
62.Indigo Ag. Indigo launches The Terraton Initiative. https://www.indigoag.com/en-au/pages/news/indigo-launches-the-terraton-initiative (2019).63.Schlesinger, W. H. & Amundson, R. Managing for soil carbon sequestration: Let’s get realistic. Glob. Change Biol. 25, 386–389 (2019).Article
Google Scholar
64.Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).Article
Google Scholar
65.Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).Article
Google Scholar
66.Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).Article
Google Scholar
67.Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).Article
Google Scholar
68.Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PloS ONE 13, e0213368 (2019).Article
Google Scholar
69.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article
Google Scholar
70.Zhang, Q. et al. Reforestation and surface cooling in temperate zones: mechanisms and implications. Glob. Change Biol. 26, 3384–3401 (2020).Article
Google Scholar
71.California Air Resources Board. Compliance Offset Program. https://ww2.arb.ca.gov/our-work/programs/compliance-offset-program (2013).72.Intergovernmental Panel on Climate Change (IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019).73.Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H. & Baldocchi, D. D. A biogeochemical compromise: the high methane cost of sequestering carbon in restored wetlands. Geophys. Res. Lett. 45, 6081–6091 (2018).Article
Google Scholar
74.CarbonPlan Team. The cost of temporary carbon removal (2020).75.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).Article
Google Scholar
76.Chen, W., Meng, J., Han, X., Lan, Y. & Zhang, W. Past, present, and future of biochar. Biochar 1, 75–87 (2019).Article
Google Scholar
77.Nemet, G. F. et al. Negative emissions — part 3: innovation and upscaling. Environ. Res. Lett. 13, 063003 (2018).Article
Google Scholar
78.Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).Article
Google Scholar
79.Kalt, G. et al. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice. GCB Bioenergy 11, 1283–1297 (2019).Article
Google Scholar
80.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190120 (2020).Article
Google Scholar
81.Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).Article
Google Scholar
82.Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).Article
Google Scholar
83.Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).Article
Google Scholar
84.Buck, H. J. After Geoengineering: Climate Tragedy, Repair, and Restoration (Verso Books, 2019).85.House, J. I., Prentice, I. C. & Le Quere, C. Maximum impacts of future reforestation or deforestation on atmospheric CO2. Glob. Change Biol. 8, 1047–1052 (2002).Article
Google Scholar
86.Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).Article
Google Scholar
87.Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).Article
Google Scholar
88.Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals. Glob. Change Biol. 19, 2285–2302 (2013).Article
Google Scholar
89.Popp, A. et al. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ. Res. Lett. 6, 034017 (2011).Article
Google Scholar
90.Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).Article
Google Scholar
91.Turner, P. A., Field, C. B., Lobell, D. B., Sanchez, D. L. & Mach, K. J. Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat. Sustain. 1, 240–245 (2018).Article
Google Scholar
92.Campbell, J. E., Lobell, D. B., Genova, R. C. & Field, C. B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42, 5791–5794 (2008).Article
Google Scholar
93.Bell, S., Barriocanal, C., Terrer, C. & Rosell-Melé, A. Management opportunities for soil carbon sequestration following agricultural land abandonment. Environ. Sci. Policy 108, 104–111 (2020).Article
Google Scholar
94.FAO and UNEP. The State of the World’s Forests 2020. Forests, biodiversity, and people. http://www.fao.org/3/ca8642en/ca8642en.pdf (2020).95.The Food and Land Use Coalition. Growing Better: Ten Critical Transitions to Transform Food and Land Use. https://www.foodandlandusecoalition.org/wp-content/uploads/2019/09/FOLU-GrowingBetter-GlobalReport.pdf (2019).96.Smith, P. et al. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).Article
Google Scholar
97.Dorner, P. & Thiesenhusen, W. Land Tenure and Deforestation: Interactions and Environmental Implications (United Nations Research Institute for Social Development, 1992).98.Ferreira, S. Deforestation, property rights, and international trade. Land Econ. 80, 174–193 (2004).Article
Google Scholar
99.Robinson, B. E., Holland, M. B. & Naughton-Treves, L. Does secure land tenure save forests? A meta-analysis of the relationship between land tenure and tropical deforestation. Glob. Environ. Change 29, 281–293 (2014).Article
Google Scholar
100.Laurance, W. F. Reflections on the tropical deforestation crisis. Biol. Conserv. 91, 109–117 (1999).Article
Google Scholar
101.Murtazashvili, I., Murtazashvili, J. & Salahodjaev, R. Trust and deforestation: a cross-country comparison. For. Policy Econ. 101, 111–119 (2019).Article
Google Scholar
102.Koyuncu, C. & Yilmaz, R. The impact of corruption on deforestation: a cross-country evidence. J. Dev. Areas 42, 213–222 (2009).Article
Google Scholar
103.Pailler, S. Re-election incentives and deforestation cycles in the Brazilian Amazon. J. Environ. Econ. Manag. 88, 345–365 (2018).Article
Google Scholar
104.United Nations Framework Convention on Climate Change (UNFCCC). Decision 4/CP.15 Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (2009).105.Anderson, C. M., Field, C. B. & Mach, K. J. Forest offsets partner climate-change mitigation with conservation. Front. Ecol. Environ. 15, 359–365 (2017).Article
Google Scholar
106.Merenlender, A. M., Huntsinger, L., Guthey, G. & Fairfax, S. K. Land trusts and conservation easements: who is conserving what for whom. Conserv. Biol. 18, 65–75 (2004).Article
Google Scholar
107.Alix-Garcia, J. & Wolff, H. Payment for ecosystem services from forests. Annu. Rev. Resour. Econ. 6, 361–380 (2014).Article
Google Scholar
108.Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).Article
Google Scholar
109.Biggs, E. M. et al. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ. Sci. Policy 54, 389–397 (2015).Article
Google Scholar
110.Buchner, B. et al. Global Landscape of Climate Finance 2019 (Climate Policy Initiative, 2019).111.The Food and Land Use Coalition. Nature for Net-Zero: consultation document on the need to raise corporate ambition towards nature-based net-zero emissions (2020).112.Asner, G. P. et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160 (2012).Article
Google Scholar
113.Schimel, D. & Schneider, F. D., JPL Carbon and Ecosystem Participants. Flux towers in the sky: global ecology from space. New Phytol. 224, 570–584 (2019).Article
Google Scholar
114.Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl Acad. Sci. USA 105, 1551–1555 (2008).Article
Google Scholar
115.Marland, G., Fruit, K. & Sedjo, R. Accounting for sequestered carbon: the question of permanence. Environ. Sci. Policy 4, 259–268 (2001).Article
Google Scholar
116.Sedjo, R. A., Marland, G. & Fruit, K. Renting carbon offsets: the question of permanence. Resources for the Future Manuscript 12 pp (2001).117.Marland, G. & Marland, E. Trading permanent and temporary carbon emissions credits. Clim. Change 95, 465 (2009).Article
Google Scholar
118.van Oosterzee, P., Blignaut, J. & Bradshaw, C. J. A. iREDD hedges against avoided deforestation’s unholy trinity of leakage, permanence and additionality. Conserv. Lett. 5, 266–273 (2012).Article
Google Scholar
119.May, P. J. Policy learning and failure. J. Public Policy 12, 331–354 (1992).Article
Google Scholar
120.Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 52, 143–150 (2002).Article
Google Scholar
121.Zeng, Y. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Change 10, 842–844 (2020).Article
Google Scholar
122.Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).Article
Google Scholar
123.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).Article
Google Scholar
124.Lal, R. et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 73, 145A–152A (2018).Article
Google Scholar
125.Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).Article
Google Scholar
126.National Academies of Sciences, Engineering, and Medicine (NASEM). Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (The National Academies Press, 2015).127.Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).Article
Google Scholar
128.Vaughan, N. E. & Lenton, T. M. A review of climate geoengineering proposals. Clim. Change 109, 745–790 (2011).Article
Google Scholar
129.Houghton, R. A., Unruh, J. D. & Lefebvre, P. A. Current land cover in the tropics and its potential for sequestering carbon. Glob. Biogeochem. Cycles 7, 305–320 (1993).Article
Google Scholar
130.Houghton, R. A. & Nassikas, A. A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Change Biol. 24, 350–359 (2018).Article
Google Scholar
131.Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).Article
Google Scholar
132.Nilsson, S. & Schopfhauser, W. The carbon-sequestration potential of a global afforestation program. Clim. Change 30, 267–293 (1995).Article
Google Scholar
133.Winjum, J. K., Dixon, R. K. & Schroeder, P. E. Estimating the global potential of forest and agroforest management practices to sequester carbon. Water Air Soil Pollut. 64, 213–227 (1992).Article
Google Scholar
134.Sohngen, B. & Sedjo, R. Carbon sequestration in global forests under different carbon price regimes. Energy J. 27, 109–126 (2006).
Google Scholar
135.Mayer, A., Hausfather, Z., Jones, A. D. & Silver, W. L. The potential of agricultural land management to contribute to lower global surface temperatures. Sci. Adv. 4, eaaq0932 (2018).Article
Google Scholar
136.van Minnen, J. G., Strengers, B. J., Eickhout, B., Swart, R. J. & Leemans, R. Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model. Carbon Balance Manag. 3, 3 (2008).Article
Google Scholar
137.Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22 (2004).Article
Google Scholar
138.Sathaye, J., Makundi, W., Dale, L., Chan, P. & Andrasko, K. GHG mitigation potential, costs and benefits in global forests: a dynamic partial equilibrium approach. Energy J. 27, 127–162 (2006).
Google Scholar
139.Canadell, J. G. & Schulze, E. D. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 5, 5282 (2014).Article
Google Scholar
140.Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).Article
Google Scholar
141.Caldecott, B., Lomax, G. & Workman, M. Stranded Carbon Assets and Negative Emissions Technologies (Smith School of Enterprise and the Environment, 2015).142.Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).Article
Google Scholar More