Genome-wide insights into population structure and host specificity of Campylobacter jejuni
1.Burnham, P. M. & Hendrixson, D. R. Campylobacter jejuni: Collective components promoting a successful enteric lifestyle. Nat. Rev. Microbiol. 16, 551–565. https://doi.org/10.1038/s41579-018-0037-9 (2018).CAS
Article
PubMed
Google Scholar
2.Humphrey, T., O’Brien, S. & Madsen, M. Campylobacters as zoonotic pathogens: A food production perspective. Int. J. Food Microbiol. 117, 237–257. https://doi.org/10.1016/j.ijfoodmicro.2007.01.006 (2007).Article
PubMed
Google Scholar
3.Hale, C. R. et al. Estimates of enteric illness attributable to contact with animals and their environments in the United States. Clin. Infect. Dis. 54, S472–S479. https://doi.org/10.1093/cid/cis051 (2012).Article
PubMed
Google Scholar
4.Friedman, C. R. et al. Risk factors for sporadic Campylobacter infection in the United States: A case-control study in FoodNet sites. Clin. Infect. Dis. 38(Suppl 3), S285–S296. https://doi.org/10.1086/381598 (2004).Article
PubMed
Google Scholar
5.Marder, E. P. et al. Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance—Foodborne diseases active surveillance network, 10 U.S. Sites, 2013–2016. MMWR. Morb. Mortal. Wkly. Rep. 66, 397–403. https://doi.org/10.15585/mmwr.mm6615a1 (2017).Article
PubMed
PubMed Central
Google Scholar
6.Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M. & Man, S. M. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 28, 687–720. https://doi.org/10.1128/CMR.00006-15 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
7.Didelot, X. & Falush, D. Inference of bacterial microevolution using multilocus sequence data. Genetics 175, 1251–1266. https://doi.org/10.1534/genetics.106.063305 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
8.Sheppard, S. K. et al. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol. Ecol. 20, 3484–3490. https://doi.org/10.1111/j.1365-294X.2011.05179.x (2011).Article
PubMed
PubMed Central
Google Scholar
9.Griekspoor, P. et al. Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol. Ecol. 22, 1463–1472. https://doi.org/10.1111/mec.12144 (2013).Article
PubMed
PubMed Central
Google Scholar
10.Ogden, I. D. et al. Campylobacter excreted into the environment by animal sources: Prevalence, concentration shed, and host association. Foodborne Pathog. Dis. 6, 1161–1170. https://doi.org/10.1089/fpd.2009.0327 (2009).Article
PubMed
PubMed Central
Google Scholar
11.Dearlove, B. L. et al. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J. 10, 721–729. https://doi.org/10.1038/ismej.2015.149 (2016).Article
PubMed
Google Scholar
12.Hermans, D. et al. Colonization factors of Campylobacter jejuni in the chicken gut. Vet. Res. 42, 82. https://doi.org/10.1186/1297-9716-42-82 (2011).Article
PubMed
PubMed Central
Google Scholar
13.Sheppard, S. K. et al. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc. Natl. Acad. Sci. U. S. A. 110, 11923–11927. https://doi.org/10.1073/pnas.1305559110 (2013).ADS
Article
PubMed
PubMed Central
Google Scholar
14.Yahara, K. et al. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ. Microbiol. 19, 361–380. https://doi.org/10.1111/1462-2920.13628 (2017).CAS
Article
PubMed
Google Scholar
15.Thépault, A. et al. Genome-wide identification of host-segregating epidemiological markers for source attribution in Campylobacter jejuni. Appl. Environ. Microbiol. 83, e03085-e3116. https://doi.org/10.1128/AEM.03085-16 (2017).Article
PubMed
PubMed Central
Google Scholar
16.Buchanan, C. J. et al. A genome-wide association study to identify diagnostic markers for human pathogenic Campylobacter jejuni strains. Front. Microbiol. 8, 1224. https://doi.org/10.3389/fmicb.2017.01224 (2017).Article
PubMed
PubMed Central
Google Scholar
17.de Vries, S. P. W. et al. Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models. Sci. Rep. 7, 1251. https://doi.org/10.1038/s41598-017-01133-4 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
18.Gormley, F. J. et al. Has retail chicken played a role in the decline of human Campylobacteriosis?. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01455-07 (2008).Article
PubMed
Google Scholar
19.Korczak, B. M., Zurfluh, M., Emler, S., Kuhn-Oertli, J. & Kuhnert, P. Multiplex strategy for multilocus sequence typing, fla typing, and genetic determination of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates collected in Switzerland. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00237-09 (2009).Article
PubMed
PubMed Central
Google Scholar
20.Lévesque, S., Frost, E., Arbeit, R. D. & Michaud, S. Multilocus sequence typing of Campylobacter jejuni isolates from humans, chickens, raw milk, and environmental water in Quebec, Canada. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00042-08 (2008).Article
PubMed
PubMed Central
Google Scholar
21.Habib, I., Uyttendaele, M. & De Zutter, L. Survival of poultry-derived Campylobacter jejuni of multilocus sequence type clonal complexes 21 and 45 under freeze, chill, oxidative, acid and heat stresses. Food Microbiol. 27, 829–834. https://doi.org/10.1016/j.fm.2010.04.009 (2010).CAS
Article
PubMed
Google Scholar
22.Alter, T. & Scherer, K. Stress response of Campylobacter spp. and its role in food processing. J. Vet. Med. Ser. B 53, 351–357. https://doi.org/10.1111/j.1439-0450.2006.00983.x (2006).Article
Google Scholar
23.Murphy, C., Carroll, C. & Jordan, K. N. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 100, 623–632. https://doi.org/10.1111/j.1365-2672.2006.02903.x (2006).CAS
Article
PubMed
Google Scholar
24.Mourkas, E. et al. Agricultural intensification and the evolution of host specialism in the enteric pathogen Campylobacter jejuni. Proc. Natl. Acad. Sci. 117, 11018–11028. https://doi.org/10.1073/pnas.1917168117 (2020).CAS
Article
PubMed
Google Scholar
25.Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N. & Corander, J. pyseer: A comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 34, 4310–4312. https://doi.org/10.1093/bioinformatics/bty539 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
26.Schröder, G. & Lanka, E. TraG-like proteins of type IV secretion systems: Functional dissection of the multiple activities of TraG (RP4) and TrwB (R388). J. Bacteriol. 185, 4371–4381. https://doi.org/10.1128/JB.185.15.4371-4381.2003 (2003).CAS
Article
PubMed
PubMed Central
Google Scholar
27.Poly, F., Threadgill, D. & Stintzi, A. Genomic diversity in Campylobacter jejuni: Identification of C. jejuni 81–176-specific genes. J. Clin. Microbiol. 43, 2330–2338. https://doi.org/10.1128/JCM.43.5.2330-2338.2005 (2005).CAS
Article
PubMed
PubMed Central
Google Scholar
28.Lee, K.-Y. et al. Structure-based functional identification of Helicobacter pylori HP0268 as a nuclease with both DNA nicking and RNase activities. Nucleic Acids Res. 43, 5194–5207. https://doi.org/10.1093/nar/gkv348 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
29.Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565. https://doi.org/10.1038/s41576-018-0032-z (2018).CAS
Article
PubMed
Google Scholar
30.Sheppard, S. K. et al. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol. Ecol. 23, 2442–2451. https://doi.org/10.1111/mec.12742 (2014).Article
PubMed
PubMed Central
Google Scholar
31.Mohan, V. et al. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand. Microbiologyopen 2, 659–673. https://doi.org/10.1002/mbo3.102 (2013).Article
PubMed
PubMed Central
Google Scholar
32.Dingle, K. E. et al. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39, 14–23. https://doi.org/10.1128/JCM.39.1.14-23.2001 (2001).CAS
Article
PubMed
PubMed Central
Google Scholar
33.Hershberg, R. Mutation—The engine of evolution: Studying mutation and its role in the evolution of bacteria: Figure 1. Cold Spring Harb. Perspect. Biol. 7, a018077. https://doi.org/10.1101/cshperspect.a018077 (2015).Article
PubMed
PubMed Central
Google Scholar
34.Falush, D. Bacterial genomics: Microbial GWAS coming of age. Nat. Microbiol. 1, 16059. https://doi.org/10.1038/nmicrobiol.2016.59 (2016).CAS
Article
PubMed
Google Scholar
35.Power, R. A., Parkhill, J. & de Oliveira, T. Microbial genome-wide association studies: Lessons from human GWAS. Nat. Rev. Genet. 18, 41–50. https://doi.org/10.1038/nrg.2016.132 (2017).CAS
Article
PubMed
Google Scholar
36.Brandley, M. C., Warren, D. L., Leaché, A. D. & McGuire, J. A. Homoplasy and clade support. Syst. Biol. 58, 184–198. https://doi.org/10.1093/sysbio/syp019 (2009).Article
PubMed
Google Scholar
37.Hassanin, A., Lecointre, G. & Tillier, S. The ‘evolutionary signal’ of homoplasy in proteincoding gene sequences and its consequences for a priori weighting in phylogeny. C. R. l’Acad. Sci. Ser. III Sci. Vie 321, 611–620. https://doi.org/10.1016/S0764-4469(98)80464-2 (1998).CAS
Article
Google Scholar
38.Sheppard, S. K. & Maiden, M. C. J. The evolution of Campylobacter jejuni and Campylobacter coli. Cold Spring Harb. Perspect. Biol. 7, a018119. https://doi.org/10.1101/cshperspect.a018119 (2015).Article
PubMed
PubMed Central
Google Scholar
39.Motiejūnaitė, R., Armalytė, J., Markuckas, A. & Sužiedėlienė, E. Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module. FEMS Microbiol. Lett. 268, 112–119. https://doi.org/10.1111/j.1574-6968.2006.00563.x (2007).CAS
Article
PubMed
Google Scholar
40.Buts, L., Lah, J., Dao-Thi, M.-H., Wyns, L. & Loris, R. Toxin–antitoxin modules as bacterial metabolic stress managers. Trends Biochem. Sci. 30, 672–679. https://doi.org/10.1016/j.tibs.2005.10.004 (2005).CAS
Article
PubMed
Google Scholar
41.Gerdes, K., Christensen, S. K. & Løbner-Olesen, A. Prokaryotic toxin–antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382. https://doi.org/10.1038/nrmicro1147 (2005).CAS
Article
PubMed
Google Scholar
42.Han, Z. et al. Influence of the gut microbiota composition on Campylobacter jejuni colonization in chickens. Infect. Immun. https://doi.org/10.1128/IAI.00380-17 (2017).Article
PubMed
PubMed Central
Google Scholar
43.Indikova, I., Humphrey, T. J. & Hilbert, F. Survival with a helping hand: Campylobacter and Microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01266 (2015).Article
PubMed
PubMed Central
Google Scholar
44.Fijalkowska, I. J., Schaaper, R. M. & Jonczyk, P. DNA replication fidelity in Escherichia coli : A multi-DNA polymerase affair. FEMS Microbiol. Rev. 36, 1105–1121. https://doi.org/10.1111/j.1574-6976.2012.00338.x (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
45.Vandewiele, D., Fernández de Henestrosa, A. R., Timms, A. R., Bridges, B. A. & Woodgate, R. Sequence analysis and phenotypes of five temperature sensitive mutator alleles of dnaE, encoding modified α-catalytic subunits of Escherichia coli DNA polymerase III holoenzyme. Mutat. Res. Mol. Mech. Mutagen. 499, 85–95. https://doi.org/10.1016/S0027-5107(01)00268-8 (2002).CAS
Article
Google Scholar
46.Shan, S., Stroud, R. M. & Walter, P. Mechanism of association and reciprocal activation of two GTPases. PLoS Biol. 2, e320. https://doi.org/10.1371/journal.pbio.0020320 (2004).CAS
Article
PubMed
PubMed Central
Google Scholar
47.Yosef, I., Bochkareva, E. S. & Bibi, E. Escherichia coli SRP, its protein subunit Ffh, and the Ffh M domain are able to selectively limit membrane protein expression when overexpressed. MBio https://doi.org/10.1128/mBio.00020-10 (2010).Article
PubMed
PubMed Central
Google Scholar
48.Balaban, M., Joslin, S. N. & Hendrixson, D. R. FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni. J. Bacteriol. 191, 6602–6611. https://doi.org/10.1128/JB.00884-09 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
49.Budroni, S. et al. Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc. Natl. Acad. Sci. 108, 4494–4499. https://doi.org/10.1073/pnas.1019751108 (2011).ADS
Article
PubMed
Google Scholar
50.McCarthy, N. D. et al. Host-associated genetic import in Campylobacter jejuni. Emerg. Infect. Dis. 13, 267–272. https://doi.org/10.3201/eid1302.060620 (2007).Article
PubMed
PubMed Central
Google Scholar
51.Asakura, H. et al. Molecular evidence for the thriving of Campylobacter jejuni ST-4526 in Japan. PLoS ONE 7, e48394. https://doi.org/10.1371/journal.pone.0048394 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
52.Morley, L. et al. Gene loss and lineage-specific restriction-modification systems associated with niche differentiation in the Campylobacter jejuni sequence type 403 clonal complex. Appl. Environ. Microbiol. 81, 3641–3647. https://doi.org/10.1128/AEM.00546-15 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
53.National Research Council. Nutrient Requirements of Swine. Nutrient Requirements of Swine. https://doi.org/10.17226/13298 (National Academies Press, 2012).
Google Scholar
54.Schröder, G. et al. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: Inner membrane gate for exported substrates?. J. Bacteriol. 184, 2767–2779. https://doi.org/10.1128/JB.184.10.2767-2779.2002 (2002).CAS
Article
PubMed
PubMed Central
Google Scholar
55.Kienesberger, S. et al. Interbacterial macromolecular transfer by the Campylobacter fetus subsp. venerealis type IV secretion system. J. Bacteriol. 193, 744–758. https://doi.org/10.1128/JB.00798-10 (2011).CAS
Article
PubMed
Google Scholar
56.Velayudhan, J. & Kelly, D. J. Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: An essential role for phosphoenolpyruvate carboxykinase. Microbiology 148, 685–694. https://doi.org/10.1099/00221287-148-3-685 (2002).CAS
Article
PubMed
Google Scholar
57.Korczak, B. M. et al. Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int. J. Syst. Evol. Microbiol. 56, 937–945. https://doi.org/10.1099/ijs.0.64109-0 (2006).CAS
Article
PubMed
Google Scholar
58.González-González, A., Hug, S. M., Rodríguez-Verdugo, A., Patel, J. S. & Gaut, B. S. Adaptive mutations in RNA polymerase and the transcriptional terminator rho have similar effects on Escherichia coli gene expression. Mol. Biol. Evol. 34, 2839–2855. https://doi.org/10.1093/molbev/msx216 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
59.Richards, S. A. The significance of changes in the temperature of the skin and body core of the chicken in the regulation of heat loss. J. Physiol. 216, 1–10. https://doi.org/10.1113/jphysiol.1971.sp009505 (1971).CAS
Article
PubMed
PubMed Central
Google Scholar
60.Hottes, A. K. et al. Bacterial adaptation through loss of function. PLoS Genet. 9, e1003617. https://doi.org/10.1371/journal.pgen.1003617 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
61.Iranzo, J., Wolf, Y. I., Koonin, E. V. & Sela, I. Gene gain and loss push prokaryotes beyond the homologous recombination barrier and accelerate genome sequence divergence. Nat. Commun. 10, 5376. https://doi.org/10.1038/s41467-019-13429-2 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
62.Riedel, C. et al. Differences in the transcriptomic response of Campylobacter coli and Campylobacter lari to heat stress. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.00523 (2020).Article
PubMed
PubMed Central
Google Scholar
63.Epping, L. et al. Comparison of different technologies for the decipherment of the whole genome sequence of Campylobacter jejuni BfR-CA-14430. Gut Pathog. 11, 59. https://doi.org/10.1186/s13099-019-0340-7 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
64.Roehr, J. T., Dieterich, C. & Reinert, K. Flexbar 3.0—SIMD and multicore parallelization. Bioinformatics 33, 2941–2942. https://doi.org/10.1093/bioinformatics/btx330 (2017).CAS
Article
PubMed
Google Scholar
65.Nikolenko, S. I., Korobeynikov, A. I. & Alekseyev, M. A. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics 14(Suppl 1), S7. https://doi.org/10.1186/1471-2164-14-S1-S7 (2013).Article
PubMed
PubMed Central
Google Scholar
66.Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).MathSciNet
CAS
Article
PubMed
PubMed Central
Google Scholar
67.Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. https://doi.org/10.1093/bioinformatics/btu153 (2014).CAS
Article
PubMed
Google Scholar
68.Jolley, K. A. & Maiden, M. C. J. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 11, 595. https://doi.org/10.1186/1471-2105-11-595 (2010).Article
Google Scholar
69.Zhou, Z. et al. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 28, 1395–1404. https://doi.org/10.1101/gr.232397.117 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
70.Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693. https://doi.org/10.1093/bioinformatics/btv421 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
71.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
72.Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Am. Math. Soc. Lect. Math. Life Sci. 17, 57–86 (1986).MathSciNet
MATH
Google Scholar
73.Didelot, X. & Wilson, D. J. ClonalFrameML: Efficient inference of recombination in whole bacterial genomes. PLOS Comput. Biol. 11, e1004041. https://doi.org/10.1371/journal.pcbi.1004041 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
74.Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. W. & Corander, J. RhierBAPs: An R implementation of the population clustering algorithm hierbaps [version 1; referees: 2 approved]. Wellcome Open Res. 3, 93. https://doi.org/10.12688/wellcomeopenres.14694.1 (2018).Article
PubMed
PubMed Central
Google Scholar
75.van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).MATH
Google Scholar
76.Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, e6. https://doi.org/10.1093/nar/gkr928 (2012).CAS
Article
PubMed
Google Scholar
77.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
78.Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293. https://doi.org/10.1093/nar/gkv1248 (2016).CAS
Article
Google Scholar
79.Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122. https://doi.org/10.1093/molbev/msx148 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar More