More stories

  • in

    Landscape change patterns at three stages of the construction and operation of the TGP

    1.ICOLD (International Commission On Large Dams). World Register of Dams. Preprint at https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp (2020).2.Lehner, B. et al. High resolution mapping of the world’s reservoirs and dams for sustainable river flow management. Front. Ecol. Environ. 9(9), 494–502. https://doi.org/10.1890/100125 (2013).Article 

    Google Scholar 
    3.Moussa, A., Soliman, M.& Aziz, M. Environmental evaluation for High Aswan Dam since its construction until present. In: Sixth International Water Technology Conference, IWTC, Alexandria, Egypt (2001).4.Strand, H., et al. Sourcebook on remote sensing and biodiversity indicators. NASA-NGO Biodiversity Working Group and UNEP-WCMC (2007).5.Grumbine, R. E. & Pandit, M. K. Threats from India’s Himalaya dams. Science 339(6115), 36–37. https://doi.org/10.1126/science.1227211 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    6.Chen, C., Ma, M., Wu, S., Jia, J. & Wang, Y. Complex effects of landscape, habitat and reservoir operation on riparian vegetation across multiple scales in a human-dominated landscape. Ecol. Indic. 94, 482–490. https://doi.org/10.1016/j.ecolind.2018.04.040 (2018).Article 

    Google Scholar 
    7.Milliman, J. D. & Meade, R. H. World-wide delivery of river sediment to the oceans. J. Geol. 91, 1–21 (1983).ADS 
    Article 

    Google Scholar 
    8.Tonkin, J. D. et al. Flow regime alternation degrades ecological networks in riparian ecosystems. Nat. Ecol. Evol. 2, 86–93. https://doi.org/10.1038/s41559-017-0379-0 (2018).Article 
    PubMed 

    Google Scholar 
    9.Nillson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408 (2005).ADS 
    Article 

    Google Scholar 
    10.Mitsch, W. et al. Optimizing ecosystem services in China. Science 322(5901), 528 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Stone, R. Three Gorges Dam: into the unknown. Science 333, 817 (2008).ADS 
    Article 

    Google Scholar 
    12.Fu, B. J. et al. Three Gorges Project: efforts and challenges for the environment. Prog. Phys. Geogr. 34(6), 741–754. https://doi.org/10.1177/0309133310370286 (2010).Article 

    Google Scholar 
    13.Xu, X. B. et al. Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China’s Three Gorges Dam. J. Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120446 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Yaeger, M. A., Massey, J. H., Reba, M. L. & Adviento-Borbe, M. A. A. Trends in the construction of on-farm irrigation reservoirs in response to aquifer decline in eastern Arkansas: implications for conjunctive water resource management. Agric. Water Manage. 208, 373–383. https://doi.org/10.1016/j.agwat.2018.06.040 (2018).Article 

    Google Scholar 
    15.Bai, J. et al. Soil organic carbon contents of two natural inland saline-alkalined wetlands in northeastern China. J. Soil. Water Conserv. 62(6), 447–452 (2007).
    Google Scholar 
    16.Chen, L. G., Qian, X. & Shi, Y. Critical area identification of potential soil loss in a typical watershed of the Three Gorges Reservoir Region. Water Resour. Manag. 25(13), 3445–3463. https://doi.org/10.1007/s11269-011-9864-4 (2011).Article 

    Google Scholar 
    17.Xiao, Q., Xiao, Y. & Tan, H. Changes to soil conservation in the Three Gorges Reservoir Area between 1982 to 2015. Environ. Monit. Assess. 192, 44. https://doi.org/10.1007/s10661-019-7983-1 (2020).Article 

    Google Scholar 
    18.Zhao, Q. H. et al. Landscape change and hydrologic alteration associated with dam construction. Int. J. Appl. Earth Obs. 16(1), 17–26. https://doi.org/10.1016/j.jag.2011.11.009 (2012).CAS 
    Article 

    Google Scholar 
    19.Zhao, C. L. et al. Ecological security patterns assessment of Liao river basin. Sustainability 10, 2401. https://doi.org/10.3390/su10072401 (2018).Article 

    Google Scholar 
    20.Yang, L. M. & Zhu, Z. L. The status quo and expectation of global and local land cover and land use RS research. J. Nat. Resour. 14(4), 340–344 (1999).
    Google Scholar 
    21.Meyfroidt, P., Lambin, E. F., Erb, K. H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Env. Sust. 5(5), 438–444. https://doi.org/10.1016/j.cosust.2013.04.003 (2013).Article 

    Google Scholar 
    22.Forman, R. T. T. Some general principles of landscape and regional ecology. Landscape Ecol. 10(3), 133–142. https://doi.org/10.1007/BF00133027 (1995).Article 

    Google Scholar 
    23.Xiao, D. N., Chen, W. B. & Guo, F. L. On the basic concepts and contents of ecological security. Chin. J. Appl. Ecol. 13(3), 354–383. https://doi.org/10.13287/j.1001-9332.2002.0084 (2002).Article 

    Google Scholar 
    24.Gustafson, E. J., Roberts, L. J. & Leefers, L. A. Linking linear programming and spatial simulation models to predict landscape effects of forest management alternatives. J. Environ. Manage. 81(4), 339–350. https://doi.org/10.1016/j.jenvman.2005.11.009 (2006).Article 
    PubMed 

    Google Scholar 
    25.Restrepo, A. M. C. et al. Land cover change during a period of extensive landscape restoration in Ningxia Hui Autonomous Region China. Sci Total Environ. 598, 669–679. https://doi.org/10.1016/j.scitotenv.2017.04.124 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Gong, W. F. et al. Effect of terrain on landscape patterns and ecological effects by a gradient-based RS and GIS analysis. J. For. Res. 28(5), 1061–1072. https://doi.org/10.1007/s11676-017-0385-8 (2017).Article 

    Google Scholar 
    27.Birhane, E. et al. Land use land cover changes along topographic gradients in Hugumburda national forest priority area, Northern Ethiopia. Remote Sens. Appl. Soc. Environ. 13, 61–68. https://doi.org/10.1016/j.rsase.2018.10.017 (2019).Article 

    Google Scholar 
    28.Tian, P. et al. Research on land use changes and ecological risk assessment in Yangjiang River Basin in Zhejiang Province China. Sustainability 11(10), 2817. https://doi.org/10.3390/su11102817 (2019).Article 

    Google Scholar 
    29.Xiong, M., Xu, Q. X. & Yuan, J. Analysis of multi-factors affecting sediment load in the Three Gorges Reservoir. Quatern Int. 208, 76–84. https://doi.org/10.1016/j.quaint.2009.01.010 (2009).Article 

    Google Scholar 
    30.Feng, L. & Xu, J. Y. Farmers’willingness to participate in the next-stage Grain-for-Green project in the Three Gorges Reservoir Area China. Environ. Manage. 56, 505–518. https://doi.org/10.1007/s00267-015-0505-1 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    31.Cao, S. et al. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manage. 183, 843–849. https://doi.org/10.1016/j.jenvman.2016.07.096 (2016).Article 
    PubMed 

    Google Scholar 
    32.Galicia, L., Zarco-Arista, A. E. & Mendoza-Robles, K. I. Land use/cover, landforms and fragmentation patterns in a tropical dry forest in the southern Pacific region of Mexico. Singapore J. Trop. Geo. 29(2), 137–154. https://doi.org/10.1111/j.1467-9493.2008.00326.x (2008).Article 

    Google Scholar 
    33.Zhong, S. Q. et al. Mechanized and optimized configuration pattern of crop-mulberry systems for controlling agricultural non-point source pollution on sloping farmland in the Three Gorges Reservoir Area, China. Int. J. Env. Res. Pub. He. 17, 3599. https://doi.org/10.3390/ijerph17103599 (2020).CAS 
    Article 

    Google Scholar 
    34.Qi, S. W., Yue, Z. Q., Liu, C. L. & Zhou, Y. D. Significance of outward dipping strata in argillaceous limestones in the area of the Three Gorges reservoir China. Bull. Eng. Geol. Environ. 68, 195–200. https://doi.org/10.1007/s10064-009-0206-1 (2009).CAS 
    Article 

    Google Scholar 
    35.Zhang, Q. et al. The spatial granularity effect, changing landscape patterns, and suitable landscape metrics in the Three Gorges Reservoir Area, 1995–2015. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2020.106259 (2020).Article 

    Google Scholar 
    36.Yang, H. C., Wang, G. Q., Wang, L. J. & Zheng, B. H. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir. Environ. Sci. Pollut. Res. Int. 23(12), 11448–11460. https://doi.org/10.1007/s11356-015-5922-4 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Shen, Z. Y. et al. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agric. Water Manage. 96, 1435–1442. https://doi.org/10.1016/j.agwat.2009.04.017 (2009).Article 

    Google Scholar 
    38.Zhang, J. X., Liu, Z. J. & Sun, X. X. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: land use/land cover, vegetation cover changes estimated using multi-source satellite data. Int. J. Appl. Earth Obs. 11, 403–412. https://doi.org/10.1016/j.jag.2009.07.004 (2009).CAS 
    Article 

    Google Scholar 
    39.Huang, C. B. et al. Land use/cover change in the Three Gorges Reservoir area, China: reconciling the land use conflicts between development and protection. CATENA 175, 388–399. https://doi.org/10.1016/j.catena.2019.01.002 (2019).Article 

    Google Scholar 
    40.Wang, W. & Pu, Y. Analysis of landscape patterns and the trend of forest resources in the Three Gorges Reservoir area. J. Geosci. Environ. Protect. 6, 181–192. https://doi.org/10.4236/gep.2018.65015 (2018).Article 

    Google Scholar 
    41.Li, Z., Wang, R., Zhou, Z. & Luo, X. Three Gorges Project’s impact on the water resource and environment of Yangtze River. J. Appl. Sci. 13(17), 3394–3399. https://doi.org/10.3923/jas.2013.3394.3399 (2013).Article 

    Google Scholar 
    42.Liang, X. Y. et al. Exploring cultivated land evolution in mountainous areas of Southwest China, an empirical study of development since the 1980s. Land Degrad. Dev. 32, 546–558. https://doi.org/10.1002/ldr.3735 (2021).Article 

    Google Scholar 
    43.Kelly, M., Tuxen, K. A. & Stalberg, D. Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time. Ecol. Indic. 11(2), 263–273. https://doi.org/10.1016/j.ecolind.2010.05.003 (2011).Article 

    Google Scholar 
    44.Guo, S. Q. et al. Spatiotemporal variation and landscape pattern of soil erosion in Qinling Mountains. Chin. J. Ecol. 38(7), 2167–2176. https://doi.org/10.13292/j.1000-4890.201907.016 (2019).Article 

    Google Scholar 
    45.Peng, W. J. & Shu, Y. G. Analysis of landscape ecological security and cultivated land evolution in the Karst mountain area. Acta Ecol. Sinc. 38(3), 852–865. https://doi.org/10.5846/stxb201612062513 (2018).Article 

    Google Scholar 
    46.Saura, S. Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices. Landscape Ecol. 19(2), 197–209. https://doi.org/10.1023/B:LAND.0000021724.60785.65 (2004).Article 

    Google Scholar 
    47.Kerenyi, A. & Szabo, G. Human impact on topography and landscape pattern in the Upper Tisza region NE-Hungary. Geogr. Fis. Din. Quat. 30(2), 193–196. https://doi.org/10.1144/GSL.SP.2007.270.01.17 (2007).Article 

    Google Scholar 
    48.Zhang, Y. X. et al. Changes in cultivated land patterns and driving forces in the Three Gorges Reservoir area, China, from 1992 to 2015. J. Mt. Sci. 17(1), 203–215. https://doi.org/10.1007/s11629-019-5375-1 (2020).Article 

    Google Scholar 
    49.Teng, M. J. et al. Impacts of forest restoration on soil erosion in the Three Gorges Reservoir area China. Sci. Total Environ. 697, 134164. https://doi.org/10.1016/j.scitotenv.2019.134164 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.He, L. H., King, L. & Tong, J. On the land use in the Three Gorges Reservoir area. J. Geogr. Sci. 13(4), 416–422. https://doi.org/10.1007/BF02837879 (2003).Article 

    Google Scholar 
    51.Gao, J. M. et al. Bioavailability of organic phosphorus in the water level fluctuation zone soil and the effects of ultraviolet irradiation on it in the Three Gorges Reservoir China. Sci. Total Environ. 738, 139912. https://doi.org/10.1016/j.scitotenv.2020.139912 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Xie, Y. H. et al. The impact of Three Gorges Dam on the downstream eco-hydrological environment and vegetation distribution of East Dongting Lake. Ecohydrology 8(4), 738–746. https://doi.org/10.1002/eco.1543 (2015).Article 

    Google Scholar 
    53.Cai, H. Y. et al. Quantifying the impact of the Three Gorges Dam on the thermal dynamics of the Yangtze River. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aab9e0 (2018).Article 

    Google Scholar 
    54.Tang, Q. et al. Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir China. Sci. Total Environ. 548, 410–420. https://doi.org/10.1016/j.scitotenv.2015.12.158 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Shen, Z. Y. et al. Assessment of nitrogen and phosphorus loads and casual factors from different land use and soil types in the Three Gorges Reservoir Area. Sci. Total Environ. 454–455, 383–392. https://doi.org/10.1016/j.scitotenv.2013.03.036 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Zhu, K. W. et al. Vegetation of the water-level fluctuation zone in the Three Gorges Reservoir at the initial impoundment stage. Glob. Ecol. Conserv. 21, e00866. https://doi.org/10.1016/j.gecco.2019.e00866 (2020).Article 

    Google Scholar 
    57.Chen, C. D. et al. Restoration design for Three Gorges Reservoir shorelands, combining Chinese traditional agro-ecological knowledge with landscape ecological analysis. Ecol. Eng. 71, 584–597. https://doi.org/10.1016/j.ecoleng.2014.07.008 (2014).Article 

    Google Scholar 
    58.Bao, Y., Gao, P. & He, X. The water-level fluctuation zone of Three Gorges Reservoir-a unique geomorphological unit. Earth Rev. 150, 14–24. https://doi.org/10.1016/j.earscirev.2015.07.005 (2015).Article 

    Google Scholar 
    59.Li, Y. et al. Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci. Total. Environ. 690, 50–60. https://doi.org/10.1016/j.scitotenv.2019.07.014 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Wang, L. J. et al. Role of reservoir construction in regional land use change in Pengxi River basin upstream of the Three Gorges Reservoir in China. Environ. Earth Sci. 75, 1048. https://doi.org/10.1007/s12665-016-5758-3 (2016).Article 

    Google Scholar 
    61.Zhong, H. P. et al. Analysis of stage response of land use in Three Gorges Reservoir area: taking Hubei section of the reservoir area as an example. J. Central Normal Univ. Nat. Sci. 53(4), 582–593. https://doi.org/10.19603/j.cnki.1000-1190.2019.04.019 (2019).Article 

    Google Scholar 
    62.Brady, N.C. & Weil, R.R. The nature and properties of Soils14th. Prentice Hall, 2007:212–213.63.Gerrard, J. Fundamentals of Soil: Berlin Germany: Routledge, 2000:110–115.64.Otukei, J. R. & Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 12S, S27–S31. https://doi.org/10.1016/j.jag.2009.11.002 (2010).Article 

    Google Scholar 
    65.Li, R. K., Li, Y. B., Wen, W. & Zhou, Y. L. Comparative study on spatial difference of elevation and slope in soil erosion evolution in typical watershed. J. Soil Water Conserv. 31(5), 99–107. https://doi.org/10.13870/j.cnki.stbcxb.2017.05.016 (2017).Article 

    Google Scholar 
    66.Li, S. F. et al. An estimation of the extent of cropland abandonment in mountainous regions of China. Land Degrad Dev. 29(5), 1327–1342. https://doi.org/10.1002/ldr.2924 (2018).Article 

    Google Scholar 
    67.Sang, X. et al. Intensity and stationarity analysis of land use change based on CART algorithm. Sci. Rep-UK 9, 12279. https://doi.org/10.1038/s41598-019-48586-3 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Strehmel, A., Schmalz, B. & Fohrer, N. Evaluation of land use, land management and soil conservation strategies to reduce non-point source pollution loads in the Three Gorges Region China. Environ Manage 58, 906–921. https://doi.org/10.1007/s00267-016-0758-3 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    69.Liang, X. Y. et al. Traditional agroecosystem transition in mountainous area of Three Gorges Reservoir Area. J Geogr Sci. 30(2), 281–296. https://doi.org/10.1007/s11442-020-1728-5 (2020).Article 

    Google Scholar 
    70.Kalerstaghi, A. & Jeloudar, Z. J. Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arab. J. Geosci. 4(3–4), 401–411. https://doi.org/10.1007/s12517-009-0078-5 (2011).Article 

    Google Scholar 
    71.Ministry of Ecology and Environment of the People’s Republic of China (MEE). Gazette of eco-environmental monitoring of three gorges project. Yangzi River, China 1997–2017 (in Chinese) (2018). http://jcs.mep.gov.cn/hjzl/sxgb/2011sxgb/201206/P020120608565218279423.pdf. Accessed 3 March 2019.72.Xu, X. B. et al. Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China’s Three Gorges Dam. J. Clean. Prod. 256, 120446. https://doi.org/10.1016/j.jclepro.2020.120446 (2020).CAS 
    Article 

    Google Scholar 
    73.Staged Assessment Group of Chinese Academy of Engineering (SAGCAE). Staged Assessment Report of the Three Gorges Project (Comprehensive Volume) (in Chinese). Chinese Water Power Press, Beijing, China (2010).74.Li, R. K. et al. Study on the temporal and spatial variation of soil erosion intensity in typical watersheds of the Three Gorges Reservoir Area from 1988 to 2015: a case based on the Daning and Meixi River Watershed. Acta Ecological Sinica. 38(17), 6243–7257. https://doi.org/10.5846/stxb201706071040 (2018).Article 

    Google Scholar 
    75.Birhanu, L., Hailu, B. T., Bekele, T. & Demissew, S. Land use/land cover change along elevation and slope gradient in highlands of Ethiopia. Remote Sensing Appl. Soc. Environ. 16, 100260 (2019).Article 

    Google Scholar 
    76.Huang, X.Y., Ma, J.S. & Tang, Q. Introduction to geographic information systems. Beijing: Higher Education Press. 165–171 (2001).77.Xiao, J. Y. et al. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape Urban Plan. 75, 69–80. https://doi.org/10.1016/j.landurbplan.2004.12.005 (2006).Article 

    Google Scholar 
    78.Ye, Q. H. et al. Geospatial-temporal analysis of land-use changes in the Yellow River Delta during the last 40 years. Sci China Ser D. 47, 1008–1024. https://doi.org/10.1360/03yd0151 (2004).Article 

    Google Scholar 
    79.Liu, J. Y. The Land use in Xizang Autonomous Region (Science Press, 1992).
    Google Scholar 
    80.Li, X. Z. et al. The adequacy of different landscape metrics for various landscape patterns. Pattern Recogn. 38, 2626–2638. https://doi.org/10.1016/j.patcog.2005.05.009 (2005).Article 

    Google Scholar 
    81.Buyantuyev, A., Wu, J. G. & Gries, C. Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: Time, space and thematic resolution. Landscape Urban Plan. 94(3), 206–217. https://doi.org/10.1016/j.landurbplan.2009.10.005 (2010).Article 

    Google Scholar 
    82.McGarigal, K., Cushman, S.A. & Ene, E. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Preprint at http://www.umass.edu/landeco/research/fragstats/fragstats.html (2012).83.Liu, X. L., Yang, Z. P., Di, F. & Chen, X. G. Evaluation on tourism ecological security in nature heritage sites—case of Kanas nature reserve of Xinjiang China. Chin Geogra Sci. 19(3), 265–273. https://doi.org/10.1007/s11769-009-026s5-z (2009).CAS 
    Article 

    Google Scholar 
    84.Zhang, R. S. et al. Landscape ecological security response to land use change in the tidal flat reclamation zone China. Environ Monit Assess. https://doi.org/10.1007/s10661-015-4999-z (2016).Article 
    PubMed 

    Google Scholar  More

  • in

    Disturbance suppresses the aboveground carbon sink in North American boreal forests

    1.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    Article 

    Google Scholar 
    2.Lindroth, A., Grelle, A. & Morén, A.-S. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob. Change Biol. 4, 443–450 (1998).Article 

    Google Scholar 
    3.Kasischke, E. S., Christensen, N. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437–451 (1995).Article 

    Google Scholar 
    4.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).CAS 
    Article 

    Google Scholar 
    5.Welp, L. R. et al. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmos. Chem. Phys. 16, 9047–9066 (2016).CAS 
    Article 

    Google Scholar 
    6.Myneni, R. B., Keeling, C., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).CAS 
    Article 

    Google Scholar 
    7.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS 
    Article 

    Google Scholar 
    8.Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS 
    Article 

    Google Scholar 
    9.Giguère-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl Acad. Sci. USA 116, 2749–2754 (2019).Article 
    CAS 

    Google Scholar 
    10.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    Article 

    Google Scholar 
    11.Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).
    Google Scholar 
    12.White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C. & Hobart, G. W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 194, 303–321 (2017).Article 

    Google Scholar 
    13.Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).CAS 
    Article 

    Google Scholar 
    14.Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).CAS 
    Article 

    Google Scholar 
    15.Wang, J. A. et al. Extensive land cover change across Arctic–boreal northwestern North America from disturbance and climate forcing. Glob. Change Biol. 26, 807–822 (2020).Article 

    Google Scholar 
    16.Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).Article 

    Google Scholar 
    17.Wang, J. A. & Friedl, M. A. The role of land cover change in Arctic–boreal greening and browning trends. Environ. Res. Lett. 14, 125007 (2019).Article 

    Google Scholar 
    18.Beck, P. S. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).Article 

    Google Scholar 
    19.de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manage. 294, 35–44 (2013).Article 

    Google Scholar 
    20.Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89–92 (2007).CAS 
    Article 

    Google Scholar 
    21.Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).Article 

    Google Scholar 
    22.Goulden, M. L. et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Change Biol. 17, 855–871 (2011).Article 

    Google Scholar 
    23.Pugh, T. A. M., Arneth, A., Kautz, M., Poulter, B. & Smith, B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12, 730–735 (2019).CAS 
    Article 

    Google Scholar 
    24.Zimov, S. et al. Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2. Science 284, 1973–1976 (1999).CAS 
    Article 

    Google Scholar 
    25.Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).Article 

    Google Scholar 
    26.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).CAS 
    Article 

    Google Scholar 
    27.Matasci, G. et al. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots. Remote Sens. Environ. 216, 697–714 (2018).Article 

    Google Scholar 
    28.Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).CAS 
    Article 

    Google Scholar 
    29.Wulder, M. A., Hermosilla, T., White, J. C. & Coops, N. C. Biomass status and dynamics over Canada’s forests: disentangling disturbed area from associated aboveground biomass consequences. Environ. Res. Lett. 15, 094093 (2020).CAS 
    Article 

    Google Scholar 
    30.Margolis, H. A. et al. Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Can. J. For. Res. 45, 838–855 (2015).Article 

    Google Scholar 
    31.Neigh, C. S. et al. Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote Sens. Environ. 137, 274–287 (2013).Article 

    Google Scholar 
    32.Fisher, J. B. et al. Missing pieces to modeling the Arctic–boreal puzzle. Environ. Res. Lett. 13, 020202 (2018).Article 

    Google Scholar 
    33.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 
    Article 

    Google Scholar 
    34.Kurz, W. A. et al. Carbon in Canada’s boreal forest—a synthesis. Environ. Rev. 21, 260–292 (2013).CAS 
    Article 

    Google Scholar 
    35.Price, D., Peng, C., Apps, M. & Halliwell, D. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. J. Biogeogr. 26, 1237–1248 (1999).Article 

    Google Scholar 
    36.Stocks, B. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 107, FFR-5 (2002).
    Google Scholar 
    37.Kasischke, E. S., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11, 131–144 (2002).Article 

    Google Scholar 
    38.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    39.Fredeen, A. L., Waughtal, J. D. & Pypker, T. G. When do replanted sub-boreal clearcuts become net sinks for CO2? For. Ecol. Manage. 239, 210–216 (2007).Article 

    Google Scholar 
    40.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 201407302 (2014).
    Google Scholar 
    41.Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).Article 
    CAS 

    Google Scholar 
    42.Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    43.Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century: limited CO2 fertilization of forests. Glob. Biogeochem. Cycles 24, GB3027 (2010).Article 
    CAS 

    Google Scholar 
    44.Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).CAS 
    Article 

    Google Scholar 
    45.Duncanson, L. et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens. Environ. 242, 111779 (2020).Article 

    Google Scholar 
    46.Helbig, M., Pappas, C. & Sonnentag, O. Permafrost thaw and wildfire: equally important drivers of boreal tree cover changes in the Taiga Plains, Canada. Geophys. Res. Lett. 43, 1598–1606 (2016).Article 

    Google Scholar 
    47.Carpino, O. A., Berg, A. A., Quinton, W. L. & Adams, J. R. Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 13, 084018 (2018).Article 

    Google Scholar 
    48.Margolis, H., Sun, G., Montesano, P. M. & Nelson, R. F. NACP LiDAR-Based Biomass Estimates, Boreal Forest Biome, North America, 2005–2006 (ORNL DAAC, 2015); https://doi.org/10.3334/ORNLDAAC/127349.Spawn, S. A. & Gibbs, H. K. Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010 (ORNL DAAC, 2020); https://doi.org/10.3334/ORNLDAAC/176350.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-ground Biomass for the Year 2017 Version 1 (Centre for Environmental Data Analysis, 2019); https://doi.org/10.5285/bedc59f37c9545c981a839eb552e408451.Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).Article 

    Google Scholar 
    52.Wulder, M. A. et al. Monitoring Canada’s forests. Part 1: completion of the EOSD land cover project. Can. J. Remote Sens. 34, 549–562 (2008).Article 

    Google Scholar 
    53.Jin, S., Yang, L., Zhu, Z. & Homer, C. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sens. Environ. 195, 44–55 (2017).Article 

    Google Scholar 
    54.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    55.Roy, D. P., Boschetti, L., Justice, C. & Ju, J. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–3707 (2008).Article 

    Google Scholar 
    56.Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article 

    Google Scholar 
    57.R Core Team R: A Language and Environment for Statistical Computing Version 3.6.0 (R Foundation for Statistical Computing, 2019).58.Greenwell, B., Boehmke, B., Cunningham, J. & GMB Developers. gbm: Generalized Boosted Regression Models Version 2.1.5. R package (2019).59.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    60.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 37, 4302–4315 (2017).Article 

    Google Scholar 
    61.Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O. & Friedl, M. A. ABoVE: Annual Land Cover in the ABoVE Core Domain from Landsat, 1984–2014 (ORNL DAAC, 2019); https://doi.org/10.3334/ORNLDAAC/169162.Canadian National Fire Database—Agency Fire Data (Canadian Forest Service, 2002); https://cwfis.cfs.nrcan.gc.ca/ha/nfdb63.Alaskan Large Fire Database (Alaska Interagency Coordination Center, 2002); https://fire.ak.blm.gov/predsvcs/maps.php64.Thornton, M. M. et al. Daymet: Monthly Climate Summaries on a 1-km Grid for North America Version 3 (ORNL DAAC, 2018); https://doi.org/10.3334/ornldaac/134565.Lumley, T. leaps: Regression Subset Selection Version 3.0. R package (2017).66.Mallows, C. L. Some comments on Cp. Technometrics 42, 87–94 (2000).
    Google Scholar 
    67.Li, Z., Kurz, W. A., Apps, M. J. & Beukema, S. J. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can. J. For. Res. 33, 126–136 (2003).Article 

    Google Scholar 
    68.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). More

  • in

    Spatial variation and mechanisms of leaf water content in grassland plants at the biome scale: evidence from three comparative transects

    1.Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M. & Zak, M. R. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2010).Article 

    Google Scholar 
    2.He, N. et al. Ecosystem traits linking functional traits to macroecology. Trends Ecol Evol 34, 200–210. https://doi.org/10.1016/j.tree.2018.11.004 (2019).Article 
    PubMed 

    Google Scholar 
    3.Reich, P. B. & Lusk, W. C. H. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl. 17, 1982–1988 (2007).PubMed 
    Article 

    Google Scholar 
    4.Shi, P., Preisler, H. K., Quinn, B. K., Zhao, J. & Hlscher, D. Precipitation is the most crucial factor determining the distribution of moso bamboo in Mainland China. Global Ecol. Conserv. 22, e00924 (2020).Article 

    Google Scholar 
    5.Bassirirad, G. H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Boyer, J. S. Water transport. Annu. Rev. Plant Physiol. 36, 473–516 (1985).Article 

    Google Scholar 
    7.Kromer, S. Respiration during photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 45–70 (1995).Article 

    Google Scholar 
    8.Carl, V. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant Biol. 66, 599–622 (2015).Article 
    CAS 

    Google Scholar 
    9.Heinen, R. B., Qing, Y. & François, C. Role of aquaporins in leaf physiology. J. Exp. Bot. 60, 2971–2985 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Chapin, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer, 2011).Book 

    Google Scholar 
    11.Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Zhang, J. et al. C:N: P stoichiometry in China’s forests: from organs to ecosystems. Funct. Ecol. 32, 50–60 (2017).Article 

    Google Scholar 
    13.Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1221–1226 (1977).Article 

    Google Scholar 
    14.Bassirirad, H. & Caldwell, M. M. Root growth, osmotic adjustment and NO3-uptake during and after a period of drought in Artemisia tridentata. Aust. J. Plant Physiol. 19, 493–500 (1992).CAS 

    Google Scholar 
    15.Bassirirad, H. & Caldwell, M. M. Temporal changes in root growth and 15N uptake and water relations of two tussock grass species recovering from water stress. Physiol. Plant. 86, 525–531 (1992).Article 

    Google Scholar 
    16.Bassirirad, H. et al. Short-term patterns in water and nitrogen acquisition by two desert shrubs following a simulated summer rain. Plant Ecol. 145, 27–36 (1999).Article 

    Google Scholar 
    17.Gebauer, R. L. E. & Ehleringer, J. R. Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81, 1415 (2000).Article 

    Google Scholar 
    18.Liu, M., Niklas, K. J., Niinemets, L., Hlscher, D. & Shi, P. Comparison of the scaling relationships of leaf biomass versus surface area between spring and summer for two deciduous tree species. Forests 11, 1010 (2020).Article 

    Google Scholar 
    19.Shi, P., Li, Y., Hui, C., Ratkowsky, D. A. & Niinemets, L. Does the law of diminishing returns in leaf scaling apply to vines? Evidence from 12 species of climbing plants. Glob. Ecol. Conserv. 21, e00830 (2019).Article 

    Google Scholar 
    20.Yu, X., Hui, C., Sandhu, H. S., Lin, Z. & Shi, P. Scaling relationships between leaf shape and area of 12 Rosaceae species. Symmetry 11, 1255 (2019).Article 

    Google Scholar 
    21.Liu, C. et al. Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency. Funct. Ecol. 32, 20–28 (2017).Article 

    Google Scholar 
    22.Am, H. & Fi, W. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).Article 
    CAS 

    Google Scholar 
    23.Huang, W., Ratkowsky, D. A., Hui, C., Wang, P. & Shi, P. Leaf fresh weight versus dry weight: which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants?. Forests 10, 256 (2019).Article 

    Google Scholar 
    24.Huang, W., Reddy, G. V., Li, Y., Larsen, J. B. & Shi, P. Increase in absolute leaf water content tends to keep pace with that of leaf dry mass—evidence from bamboo plants. Symmetry 12, 1345 (2020).Article 

    Google Scholar 
    25.Yang, Y. et al. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol. 221, 155–168 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Huang, W., Fonti, P., Rbild, A., Larsen, J. B. & Hansen, J. K. Variability Among Sites and Climate Models Contribute to Uncertain Spruce Growth Projections in Denmark. Forests 12, 36 (2021).Article 

    Google Scholar 
    27.Aspinwall, M. J. et al. Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Glob. Change Biol. 25, 1665–1684 (2019).ADS 
    Article 

    Google Scholar 
    28.Shao, J. et al. Plant evolutionary history mainly explains the variance in biomass responses to climate warming at a global scale. New Phytol. 222, 1338–1351 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.He, J., Reddy, G. V., Liu, M. & Shi, P. A general formula for calculating surface area of the similarly shaped leaves: evidence from six Magnoliaceae species. Glob. Ecol. Conserv. 23, e01129 (2020).Article 

    Google Scholar 
    30.Guo, X., Reddy, G. V., He, J., Li, J. & Shi, P. Mean-variance relationships of leaf bilateral asymmetry for 35 species of plants and their implications. Glob. Ecol. Conserv. 23, e01152 (2020).Article 

    Google Scholar 
    31.Shi, P.-J., Li, Y.-R., Niinemets, Ü., Olson, E. & Schrader, J. Influence of leaf shape on the scaling of leaf surface area and length in bamboo plants. Trees 35, 1–7 (2020).
    Google Scholar 
    32.Shi, P. et al. Leaf area–length allometry and its implications in leaf shape evolution. Trees 33, 1073–1085 (2019).Article 

    Google Scholar 
    33.Yu, X., Shi, P., Schrader, J. & Niklas, K. J. Nondestructive estimation of leaf area for 15 species of vines with different leaf shapes. Am. J. Bot. 107, 1481–1490. https://doi.org/10.1002/ajb2.1560 (2020).Article 
    PubMed 

    Google Scholar 
    34.Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).Article 

    Google Scholar 
    35.Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).PubMed 
    Article 

    Google Scholar 
    36.Gonzalez-Orozco, C. E. et al. Phylogenetic approaches reveal biodiversity threats under climate change. Nat. Clim. Change 6, 1110–1114 (2016).ADS 
    Article 

    Google Scholar 
    37.Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).ADS 
    Article 

    Google Scholar 
    38.Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).Article 

    Google Scholar 
    39.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann. Bot. 99, 1003–1015 (2007).PubMed 
    Article 

    Google Scholar 
    40.Reich, P. B. The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    41.Kong, D. et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203, 863–872 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Koch, G. W., Scholes, R. J., Steffen, W. L., Vitousek, P. M. & Walker, B. H. The IGBP terrestrial transects: science plan. Global Change Report (1995).43.Liu, Z., Shao, M. A. & Wang, Y. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region China. Agric. Ecosyst. Environ. 142, 184–194 (2011).Article 

    Google Scholar 
    44.Bai, Y. et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89, 2140–2153 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chen, H. et al. The impacts of climate change and human activities on biogeochemical cycles on the Q inghai-T ibetan P lateau. Glob. Change Biol. 19, 2940–2955 (2013).ADS 
    Article 

    Google Scholar 
    46.Dee, L. E. et al. When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34, 746–758 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Cornelissen, J. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    48.Lamont, B. B., Downes, S. & Fox, J. E. Importance–value curves and diversity indices applied to a species-rich heathland in Western Australia. Nature 265, 438–441 (1977).ADS 
    Article 

    Google Scholar 
    49.Zhang, T., Guo, R., Gao, S., Guo, J. & Sun, W. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem. PLoS ONE 10, e0123160 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).Article 

    Google Scholar 
    51.Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Genetic association with boldness and maternal performance in a free-ranging population of grey seals (Halichoerus grypus)

    Baker JR (1984) Mortality and morbidity in grey seal pups (Halichoerus grypus). Studies on its causes, effects of environment, the nature and sources of infectious agents and the immunological status of pups. J Zool 203:23–48Article 

    Google Scholar 
    Bakermans-Kranenburg MJ, van IJzendoorn MH (2008) Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc Cogn Affect Neur 3:128–134Article 

    Google Scholar 
    Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48Article 

    Google Scholar 
    Battersby S, Ogilvie AD, Smith CA, Blackwood DH, Muir WJ, Quinn JP et al. (1996) Structure of a variable number tandem repeat of the serotonin transporter gene and association with affective disorder. Psychiat Genet 6:177–181CAS 
    Article 

    Google Scholar 
    Bengston SE, Dahan RA, Donaldson Z, Phelps SM, van Oers K, Sih A et al. (2018) Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour. Nat Ecol Evol 2:944–955PubMed 
    Article 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300
    Google Scholar 
    Boake CRB, Arnold SJ, Breden F, Meffert LM, Ritchie MG, Taylor BJ et al. (2002) Genetic tools for studying adaptation and the evolution of behavior. Am Nat 160:S143–S159PubMed 
    Article 

    Google Scholar 
    Boness DJ, Anderson SS, Cox CR (1982) Function of female aggression during the pupping and mating season of grey seals, Halichoerus grypus (Fabricius). Can J Zool 60:2270–2278Article 

    Google Scholar 
    Bowen WD, den Heyer CE, McMillan JI, Iverson SJ (2015) Offspring size at weaning affects survival to recruitment and reproductive performance of primiparous grey seals. Ecol Evol 5:1412–1424PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bowen WD, Iverson SJ, McMillan JI, Boness DJ (2006) Reproductive performance in grey seals: age-related improvement and senescence in a capital breeder. J Anim Ecol 75:1340–1351CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowen WD, McMillan JI, Blanchard W (2007) Reduced population growth of grey seals at Sable Island: evidence from pup production and age of primiparity. Mar Mam Sci 23:48–64Article 

    Google Scholar 
    Bowen WD, McMillan J, Mohn R (2003) Sustained exponential population growth of grey seals at Sable Island, Nova Scotia. ICES J Mar Sci 60:1265–1274Article 

    Google Scholar 
    Bowen WD, Stobo WT, Smith SJ (1992) Mass changes of grey seal Halichoerus grypus pups on Sable Island: differential maternal investment reconsidered. J Zool 227:607–622Article 

    Google Scholar 
    Bubac CM, Coltman DW, Bowen WD, Lidgard DC, Lang SLC, den Heyer CE (2018) Repeatability and reproductive consequences of boldness in female gray seals. Behav Ecol Sociobiol 72:100–112Article 

    Google Scholar 
    Bubac CM, Miller JM, Coltman DW (2020) The genetic basis of animal behavioural diversity in natural populations. Mol Ecol https://doi.org/10.1111/mec.15461Cammen KM, Andrews KR, Carroll EL, Foote AD, Humble E, Khudyakov JI et al. (2016) Genomic methods take the plunge: recent advances in high-throughput sequencing of marine mammals. J Hered 107:481–495CAS 
    PubMed 
    Article 

    Google Scholar 
    Cammen KM, Schultz TF, Bowen WD, Hammill MO, Puryear WB, Runstadler J et al. (2018b) Genomic signatures of population bottleneck and recovery in Northwest Atlantic pinnipeds. Ecol Evol 8:6599–6614PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cammen KM, Vincze S, Heller AS, McLeod BA, Wood SA, Bowen WD et al. (2018a) Genetic diversity from pre-bottleneck to recovery in two sympatric pinniped species in the Northwest Atlantic. Con Gen 19:555–569CAS 
    Article 

    Google Scholar 
    Carere C, Maestripieri D (2013) Animal personalities: Behavior, physiology, and evolution. The University of Chicago Press, ChicagoBook 

    Google Scholar 
    Chakraborty S, Chakraborty D, Mukherjee O, Jain S, Ramakrishnan U, Sinha A (2010) Genetic polymorphism in the serotonin transporter promoter region and ecological success in macaques. Behav Genet 40:672–679PubMed 
    Article 

    Google Scholar 
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale, NJ
    Google Scholar 
    Dochtermann NA, Schwab T, Anderson Berdal M, Dalos J, Royauté R (2019) The heritability of behavior: a meta-analysis. J Hered 110:403–410PubMed 
    Article 

    Google Scholar 
    Dohm MR (2002) Repeatability estimates do not always set an upper limit to heritability. Funct Ecol 16:273–280Article 

    Google Scholar 
    Edwards HA, Hajduk GK, Durieux G, Burke T, Dugdale HL (2015) No association between personality and candidate gene polymorphisms in a wild bird population. PLoS ONE 10:e0138439. https://doi.org/10.1371/journal.pone.0138439CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emiliano ABF, Cruz T, Pannoni V, Fudge JL (2007) The interface of oxytocin-labeled cells and serotonin transporter-containing fibers in the primate hypothalamus: a substrate for SSRIs therapeutic effects? Neuropsychopharmacol 32:977–988CAS 
    Article 

    Google Scholar 
    Fairbanks LA, Way BM, Breidenthal, Bailey JN, Jorgensen MJ (2012) Maternal and offspring dopamine D4 receptor genotypes interact to influence juveniles impulsivity in vervet monkeys Psychol Sci 23:1099–1104. https://doi.org/10.1177/0956797612444905Article 
    PubMed 

    Google Scholar 
    Fidler A (2011) Personality-associated genetic variation in birds and its possible significance for avian evolution, conservation, and welfare. In: Inoue-Murayama M, Kawamura S, Weiss A (eds) From Genes to Animal Behavior. Primatology Monographs. Springer, Tokyo, p 275–294
    Google Scholar 
    Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LEM, Robinson GE, Sokolowski MB (2005) Candidate genes for behavioural ecology. Trends in Ecology & Evolution 20:96–104Article 

    Google Scholar 
    Fulton TL, Strobeck C (2010) Multiple fossil calibrations, nuclear loci and mitochondrial genomes provide new insight into biogeography and divergence timing for true seals (Phocidae, Pinnipedia). J Biogeogr 37:814–829Article 

    Google Scholar 
    Garvin MR, Saitoh K, Gharrett AJ (2010) Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour 10:915–934. https://doi.org/10.1111/j.1755-0998.02891.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Göring HHH, Terwilliger JD, Blangero J (2001) Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 69:1357–2001PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86CAS 
    PubMed 
    Article 

    Google Scholar 
    Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22Article 

    Google Scholar 
    Hall AJ, McConnell BJ, Barker RJ (2001) Factors affecting first-year survival in grey seals and their implications for life-history strategy. J Anim Ecol 70:138–149
    Google Scholar 
    Hammill MO, den Heyer CE, Bowen WD, Lang SLC (2017) Grey seal population trends in Canadian waters, 1960–2016 and harvest advice. DFO Can Sci Advis Sec Res Doc 2017/052. v + 30pHelyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT et al. (2011) Applications of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136. https://doi.org/10.1111/j.1755-0998.2010.02943.xArticle 
    PubMed 

    Google Scholar 
    Holtmann B, Grosser S, Lagisz M, Johnson SL, Santos ESA, Lara CE et al. (2016) Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol Ecol 25:706–722CAS 
    PubMed 
    Article 

    Google Scholar 
    Howell S, Westergaard G, Hoos B, Chavanne TJ, Shoaf SE, Snoy PJ et al. (2007) Serotonergic influences on life-history outcomes in free-ranging male rhesus macaques. Am J Primatol 69:851–865CAS 
    PubMed 
    Article 

    Google Scholar 
    Iverson SJ, Bowen WD, Boness DJ, Oftedal OT (1993) The effect of maternal size and milk output on pup growth in grey seals (Halichoerus grypus). Physiol Zool 66:61–88Article 

    Google Scholar 
    Jacobs LN, Staiger EA, Albright JD, Brooks SA (2016) The MC1R and ASIP coat color loci may impact behavior in the horse. J Hered 107:214–219CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jaeger BC, Edwards LJ, Das K, Sen PK (2016) An R2 statistic for fixed effects in the generalized linear mixed model. J Appl Stat 44:1086–1106Article 

    Google Scholar 
    Jorgensen H, Riis M, Knigge U, Kjaer A, Warberg J (2003) Serotonin receptors involved in vasopressin and oxytocin secretion. J Neuroendocrinol 15:242–249CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kendrick KM (2000) Oxytocin, motherhood and bonding. Exp Physiol 85:111–124Article 

    Google Scholar 
    Kim SJ, Kim YS, Lee HS, Kim SY, Kim C-H (2006) An interaction between the serotonin transporter promoter region and dopamine transporter polymorphisms contributes to harm avoidance and reward dependence traits in normal healthy subjects. J Neural Transm 113:877–886CAS 
    PubMed 
    Article 

    Google Scholar 
    Kluger A, Siegfried Z, Ebstein R (2002) A meta-analysis of the association between DRD4 polymorphism and novelty seeking. Mol Psychiatry 7:712–717CAS 
    PubMed 
    Article 

    Google Scholar 
    Korsten P, Mueller JC, Hermannstädter C, van Overveld T, Patrick SC, Quinn JL et al. (2010) Association between DRD4 gene polymorphism and personality variation in great tits: a test across four populations. Mol Ecol 19:832–843CAS 
    PubMed 
    Article 

    Google Scholar 
    Laine VN, van Oers K (2017) The quantitative and molecular genetics of individual differences in animal personality. In: Vonk J, Weiss A, Kuczaj SA(eds) Personality in Nonhuman Animals. Springer, Cham, p 55–72
    Google Scholar 
    Laird NM, Lange C (2011) The fundamentals of modern statistical genetics. Springer, New York, NYBook 

    Google Scholar 
    Lang SLC, Iverson SJ, Bowen WD (2009) Repeatability in lactation performance and the consequences for maternal reproductive success in gray seals. Ecology 90:2513–2523CAS 
    PubMed 
    Article 

    Google Scholar 
    Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531CAS 
    PubMed 
    Article 

    Google Scholar 
    Lidgard DC, Bowen WD, Boness DJ (2012) Longitudinal changes and consistency in male physical and behavioural traits have implications for mating success in the grey seal (Halichoerus grypus). Can J Zool 90:849–860Article 

    Google Scholar 
    Lim MM, Young LJ (2006) Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm Behav 50:506–517CAS 
    PubMed 
    Article 

    Google Scholar 
    MacKenzie A, Quinn J (1999) A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. PNAS 96:15251–15255CAS 
    PubMed 
    Article 

    Google Scholar 
    Mansfield AW, Beck B (1977) The grey seal in eastern Canada. Tech Rep. Fish Mar Serv Can 706:1–81
    Google Scholar 
    Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number alleles a small Popul that was Form a recent bottleneck Genet 111:675–689CAS 

    Google Scholar 
    McCann TS (1982) Aggressive and maternal activities of female southern elephant seals (Mirounga leonina). Anim Behav 30:268–276Article 

    Google Scholar 
    McDougall PT, Réale D, Sol D, Reader SM (2006) Wildlife conservation and animal temperament: causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim Conserv 9:39–48Article 

    Google Scholar 
    Mellish JAE, Iverson SJ, Bowen WD (1999) Variation in milk production and lactation performance in grey seals and consequences for pup growth and weaning characteristics. Physiol Biochem Zool 72:677–690CAS 
    PubMed 
    Article 

    Google Scholar 
    Mitsuyasu H, Hirata N, Sakai Y, Shibata H, Takeda Y (2001) Association analysis of polymorphisms in the upstream region of the human dopamine D4 receptor gene (DRD4) with schizophrenia and personality traits. J Hum Genet 46:26–31CAS 
    PubMed 
    Article 

    Google Scholar 
    Møller AP, Jennions MD (2002) How much variance can be explained by ecologists and evolutionary biologists. Oecologia 132:492–500PubMed 
    Article 

    Google Scholar 
    Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197PubMed 
    Article 

    Google Scholar 
    Mueller JC, Partecke J, Hatchwell BJ, Gaston KJ, Evans KL (2013) Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Mol Ecol 22:3629–3637CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142Article 

    Google Scholar 
    Nei M, Li WH (1976) The transient distribution of allele frequencies under mutation pressure. Genet Res 28:205–214CAS 
    PubMed 
    Article 

    Google Scholar 
    Noren SR, Boness DJ, Iverson SJ, McMillan J, Bowen WD (2008) Body condition at weaning affects the duration of the postweaning fast in grey seal pups (Halichoerus grypus). Physiol Biochem Zool 81:269–277PubMed 
    Article 

    Google Scholar 
    Oak JN, Oldenhof J, Van Tol HH (2000) The dopamine D4 receptor: one decade of research. Eur J Pharm 405:303–327CAS 
    Article 

    Google Scholar 
    Pati N, Schowinsky V, Kokanovic O, Magnuson V, Ghosh S (2004) A comparison between SNaPshot, pyrosequencing, and biplex invader SNP genotyping methods: accuracy, cost, and throughput. J Biochem Biophys Methods 60:1–12CAS 
    PubMed 
    Article 

    Google Scholar 
    Prasad P, Ogawa S, Parhar IS (2015) Role of serotonin in fish reproduction. Front Neurosci 9:1–9. https://doi.org/10.3389/fnins.2015.00195Article 

    Google Scholar 
    R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ URLRaymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Article 

    Google Scholar 
    Réale D, Gallant BY, Leblanc M, Festa-Bianchet M (2000) Consistency in bighorn ewes and correlates with behaviour and life history. Anim Behav 60:589–597PubMed 
    Article 

    Google Scholar 
    Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318PubMed 
    Article 

    Google Scholar 
    Riyahi S, Björklund M, Mateos-Gonzalez F, Senar JC (2017) Personality and urbanization: behavioural traits and DRD4 SNP830 polymorphisms in Great Tits in Barcelona city. J Ethol 35:101–108Article 

    Google Scholar 
    Riyahi S, Sánchez-Delgado M, Calafell F, Monk D, Senar JC (2015) Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics 10:516–525PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson KJ, Twiss SD, Hazon N, Pomeroy PP (2015) Maternal oxytocin is linked to close mother-infant proximity in grey seals (Halichoerus grypus). PLoS One 10:e0144577. https://doi.org/10.1371/journal.pone.0144577CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson KJ, Twiss SD, Hazon N, Simon M, Pomeroy PP (2017) Positive social behaviours are induced and retained after oxytocin manipulations mimicking endogenous concentrations in a wild mammal. Proc R Soc B-Biol Sci https://doi.org/10.1098/rspb.2017.0554Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 
    Article 

    Google Scholar 
    Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302CAS 
    PubMed 
    Article 

    Google Scholar 
    Sala M, Braida D, Donzelli A, Martucci R, Busnelli M, Bulgheroni E et al. (2013) Mice heterozygous for the oxytocin receptor gene (Oxtr+/−) show impaired social behaviour but not increased aggression or cognitive inflexibility: evidence of a selective haploinsufficiency gene effect. J Neuroendocrinol 25:107–118CAS 
    PubMed 
    Article 

    Google Scholar 
    Savitz JB, Ramesar RS (2004) Genetic variants implicated in personality: a review of the more promising candidates. Am J Med Genet B 131B:20–32Article 

    Google Scholar 
    Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioural syndromes: an integrative overview. Q Rev Biol 79:241–277PubMed 
    Article 

    Google Scholar 
    Singmann H, Bolker B, Westfall J, Aust F, Ben-Shachar MS (2019) afex: Analysis of Factorial Experiments. R package version 0.25-1. https://CRAN.R-project.org/package=afexSinn DL, Gosling SD, Moltschaniwskyj NA (2008) Development of shy/bold behaviour in squid: context-specific phenotypes associated with developmental plasticity. Anim Behav 75:433–442Article 

    Google Scholar 
    Sloan Wilson D, Clark AB, Coleman K, Dearstyne T (1994) Shyness and boldness in humans and other animals. TREE 9:442–446CAS 
    PubMed 

    Google Scholar 
    Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Timm K, van Oers K, Tilgar V (2018) SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J Exp Biol 221:jeb171595. https://doi.org/10.1242/jeb.171595Article 
    PubMed 

    Google Scholar 
    Twiss SD, Cairns C, Culloch RM, Richards SA, Pomeroy PP (2012) Variation in female grey seal (Halichoerus grypus) reproductive performance correlates to proactive-reactive behavioural types. PLoS ONE 7:e49598. https://doi.org/10.1371/journal.pone.0049598CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Twiss SD, Shuert CR, Brannan N, Bishop AM, Pomeroy PP (2020) Reactive stress-coping styles show more variable reproductive expenditure and fitness outcomes. Sci Rep. 10:9550PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Neer A, Gross S, Kesselring T, Wohlsein, Leitzen E, Siebert U (2019) Behavioural and pathological insights into a case of active cannibalism by a grey seal (Halichoerus grypus) on Helgoland, Germany. J Sea Res 148-149:12–16Article 

    Google Scholar 
    van Oers K (2008) Animal personality, behaviours or traits: what are we measuring? Eur J Pers 22:457–474Article 

    Google Scholar 
    van Oers K, Mueller JC (2010) Evolutionary genomics of animal personality. P R Soc B-Biol Sci 365:3991–4000
    Google Scholar 
    Wellenreuther M, Hansson B (2016) Detecting polygenic evolution: problems, pitfalls, and promises. Trends Genet 32:155–164. https://doi.org/10.1016/j.tig.2015.12.004CAS 
    Article 
    PubMed 

    Google Scholar 
    Wolf M, Weissing FJ (2010) An explanatory framework for adaptive personality differences. Proc R Soc B-Biol Sci 365:3959–3968. https://doi.org/10.1098/rstb.2010.0215Article 

    Google Scholar 
    Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood SA, Frasier TR, McLeod BA, Gilbert JR, White BN et al. (2011) The genetics of recolonization: an analysis of the stock structure of grey seals (Halichoerus grypus) in the Northwest Atlantic. Can J Zool 89:490–497Article 

    Google Scholar  More

  • in

    The role of chemotaxis and efflux pumps on nitrate reduction in the toxic regions of a ciprofloxacin concentration gradient

    1.DeVries SL, Zhang P. Antibiotics and the Terrestrial Nitrogen Cycle: a review. Curr Pollut Rep. 2016;2:51–67.CAS 
    Article 

    Google Scholar 
    2.Kümmerer K. Antibiotics in the aquatic environment – A review – Part I. Chemosphere. 2009;75:417–34.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE, Pruden A, et al. Antibiotics in Agroecosystems: introduction to the Special Section. J Environ Qual. 2016;45:377–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Roose-Amsaleg C, Laverman AM. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ Sci Pollut Res. 2016;23:4000–12.CAS 
    Article 

    Google Scholar 
    5.Grenni P, Ancona V, Barra, Caracciolo A. Ecological effects of antibiotics on natural ecosystems: a review. Microchemical J. 2018;136:25–39.CAS 
    Article 

    Google Scholar 
    6.Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y-F, Yannarell AC, et al. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. J Environ Qual. 2009;38:1086.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Mehrtens A, Licha T, Broers HP, Burke V. Tracing veterinary antibiotics in the subsurface – A long-term field experiment with spiked manure. Environ Pollut. 2020;265:114930.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kivits T, Broers HP, Beeltje H, van Vliet M, Griffioen J. Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environ Pollut. 2018;241:988–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Gros M, Mas-Pla J, Boy-Roura M, Geli I, Domingo F, Petrović M. Veterinary pharmaceuticals and antibiotics in manure and slurry and their fate in amended agricultural soils: Findings from an experimental field site (Baix Empordà, NE Catalonia). Sci Total Environ. 2019;654:1337–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Baquero F, Negri M-C. Challenges: selective compartments for resistant microorganisms in antibiotic gradients. BioEssays. 1997;19:731–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Hermsen R, Deris JB, Hwa T. On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc Natl Acad Sci. 2012;109:10775–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12:465–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Cohen NR, Lobritz MA, Collins JJ. Microbial Persistence and the Road to Drug Resistance. Cell Host Microbe. 2013;13:632–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Hughes D, Andersson DI. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev. 2017;41:374–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Venter H, Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem. 2017;61:49–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Alcalde RE, Michelson K, Zhou L, Schmitz EV, Deng J, Sanford RA, et al. Motility of Shewanella oneidensis MR-1 Allows for Nitrate Reduction in the Toxic Region of a Ciprofloxacin Concentration Gradient in a Microfluidic Reactor. Environ Sci Technol. 2019;53:2778–87.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hol FJH, Hubert B, Dekker C, Keymer JE. Density-dependent adaptive resistance allows swimming bacteria to colonize an antibiotic gradient. ISME J. 2016;10:30–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Butler MT, Wang Q, Harshey RM. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci. 2010;107:3776–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Steel H, Papachristodoulou A. The effect of spatiotemporal antibiotic inhomogeneities on the evolution of resistance. J Theor Biol. 2020;486:110077.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lai S, Tremblay J, Déziel E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol. 2009;11:126–36.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Zhang Q, Lambert G, Liao D, Kim H, Robin K, Tung C-k, et al. Acceleration of Emergence of Bacterial Antibiotic Resistance in Connected Microenvironments. Science. 2011;333:1764–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Wu A, Loutherback K, Lambert G, Estevez-Salmeron L, Tlsty TD, Austin RH, et al. Cell motility and drug gradients in the emergence of resistance to chemotherapy. Proc Natl Acad Sci. 2013;110:16103–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016;353:1147–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Alexandre G, Greer-Phillips S, Zhulin IB. Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev. 2004;28:113–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Fenchel T. Microbial Behavior in a Heterogeneous World. Science. 2002;296:1068–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Groh JL, Luo Q, Ballard JD, Krumholz LR. Genes That Enhance the Ecological Fitness of Shewanella oneidensis MR-1 in Sediments Reveal the Value of Antibiotic Resistance. Appl Environ Microbiol. 2007;73:492–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Blair JM, Piddock LJ. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol. 2009;12:512–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25:661–81.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Alvarez-Ortega C, Olivares J, Martinez JL. RND multidrug efflux pumps: what are they good for? Front Microbiol. 2013;4:7.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol. 2015;6:587.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol. 1996;19:101–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nies DH. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003;27:313–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Fraud S, Poole K. Oxidative Stress Induction of the MexXY Multidrug Efflux Genes and Promotion of Aminoglycoside Resistance Development in Pseudomonas aeruginosa. Antimicrobial Agents Chemother. 2011;55:1068–74.CAS 
    Article 

    Google Scholar 
    35.El Garch F, Lismond A, Piddock LJV, Courvalin P, Tulkens PM, Van Bambeke F. Fluoroquinolones induce the expression of patA and patB, which encode ABC efflux pumps in Streptococcus pneumoniae. J Antimicrob Chemother. 2010;65:2076–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Zhang L, Mah T-F. Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics. J Bacteriol. 2008;190:4447–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.El Meouche I, Siu Y, Dunlop MJ. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells. Scientific Rep. 2016;6:1–9.Article 
    CAS 

    Google Scholar 
    38.Frade VMF, Dias M, Teixeira ACSC, Palma MSA, Frade VMF, Dias M. et al. Environmental contamination by fluoroquinolones. Braz J Pharm Sci. 2014;50:41–54.Article 

    Google Scholar 
    39.Riaz L, Mahmood T, Yang Q, Coyne MS, D’Angelo E. Bacteria-assisted removal of fluoroquinolones from wheat rhizospheres in an agricultural soil. Chemosphere. 2019;226:8–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Llanes C, Köhler T, Patry I, Dehecq B, Delden C, van, Plésiat P. Role of the MexEF-OprN Efflux System in Low-Level Resistance of Pseudomonas aeruginosa to Ciprofloxacin. Antimicrobial Agents Chemother. 2011;55:5676–84.CAS 
    Article 

    Google Scholar 
    41.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Deatherage DE, Barrick JE. Identification of mutations in laboratory evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014;1151:165–88.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Saltikov CW, Newman DK. Genetic identification of a respiratory arsenate reductase. PNAS. 2003;100:10983–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Engler C, Kandzia R, Marillonnet S. A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLOS ONE. 2008;3:e3647.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9:ix–xv.Article 

    Google Scholar 
    46.Lambert RJ, Pearson J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol. 2000;88:784–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Sonnet P, Izard D, Mullié C. Prevalence of efflux-mediated ciprofloxacin and levofloxacin resistance in recent clinical isolates of Pseudomonas aeruginosa and its reversal by the efflux pump inhibitors 1-(1-naphthylmethyl)-piperazine and phenylalanine-arginine-β-naphthylamide. Int J Antimicrobial Agents. 2012;39:77–80.CAS 
    Article 

    Google Scholar 
    48.Lindgren PK, Karlsson Å, Hughes D. Mutation Rate and Evolution of Fluoroquinolone Resistance in Escherichia coli Isolates from Patients with Urinary Tract Infections. Antimicrobial Agents Chemother. 2003;47:3222–32.CAS 
    Article 

    Google Scholar 
    49.Klaus W, Ross A, Gsell B, Senn H. Backbone resonance assignment of the N-terminal 24 kDa fragment of the gyrase B subunit from S. aureus complexed with novobiocin. J Biomol NMR. 2000;16:357–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Müller RT, Pos KM. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump. Biol Chem. 2015;396:1083–9.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    51.Oethinger M, Podglajen I, Kern WV, Levy SB. Overexpression of the marA or soxS Regulatory Gene in Clinical Topoisomerase Mutants of Escherichia coli. Antimicrob Agents Chemother. 1998;42:2089–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Praski Alzrigat L, Huseby DL, Brandis G, Hughes D. Fitness cost constrains the spectrum of marR mutations in ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother. 2017;72:3016–24.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Srikumar R, Paul CJ, Poole K. Influence of Mutations in the mexR Repressor Gene on Expression of the MexA-MexB-OprM Multidrug Efflux System of Pseudomonas aeruginosa. J Bacteriol. 2000;182:1410–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Sánchez P, Rojo F, Martı́nez JL. Transcriptional regulation of mexR, the repressor of Pseudomonas aeruginosa mexAB-oprM multidrug efflux pump. FEMS Microbiol Lett. 2002;207:63–68.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Fukuda H, Hosaka M, Hirai K, Iyobe S. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrobial Agents Chemother. 1990;34:1757–61.CAS 
    Article 

    Google Scholar 
    56.Fukuda H, Hosaka M, Iyobe S, Gotoh N, Nishino T, Hirai K. nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa. Antimicrobial Agents Chemother. 1995;39:790–2.CAS 
    Article 

    Google Scholar 
    57.Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K. mexEF-oprN Multidrug Efflux Operon of Pseudomonas aeruginosa: Regulation by the MexT Activator in Response to Nitrosative Stress and Chloramphenicol. Antimicrobial Agents Chemother. 2011;55:508–14.CAS 
    Article 

    Google Scholar 
    58.Köhler T, Michea-Hamzehpour M, Plesiat P, Kahr AL, Pechere JC. Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1997;41:2540–3.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Galajda P, Keymer J, Dalland J, Park S, Kou S, Austin R. Funnel ratchets in biology at low Reynolds number: choanotaxis. J Mod Opt. 2008;55:3413–22.CAS 
    Article 

    Google Scholar 
    60.Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Front Microbiol. 2016;7:1483.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, et al. Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: novel Agents for Combination Therapy. Antimicrobial Agents Chemother. 2001;45:105–16.CAS 
    Article 

    Google Scholar 
    62.Pannek S, Higgins PG, Steinke P, Jonas D, Akova M, Bohnert JA, et al. Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-beta-naphthylamide. J Antimicrob Chemother. 2006;57:970–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Deng J, Zhou L, Sanford RA, Shechtman LA, Dong Y, Alcalde RE, et al. Adaptive Evolution of Escherichia coli to Ciprofloxacin in Controlled Stress Environments: Contrasting Patterns of Resistance in Spatially Varying versus Uniformly Mixed Concentration Conditions. Environ Sci Technol. 2019;53:7996–8005.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Olivares J, Álvarez-Ortega C, Martinez JL. Metabolic Compensation of Fitness Costs Associated with Overexpression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58:3904–13.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Barbosa TM, Levy SB. The impact of antibiotic use on resistance development and persistence. Drug Resist Updates. 2000;3:303–11.Article 

    Google Scholar 
    66.Chia HE, Marsh ENG, Biteen JS. Extending fluorescence microscopy into anaerobic environments. Curr Opin Chem Biol. 2019;51:98–104.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Laverman AM, Cazier T, Yan C, Roose-Amsaleg C, Petit F, Garnier J, et al. Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments. Environ Sci Pollut Res. 2015;22:13702–9.CAS 
    Article 

    Google Scholar 
    68.Li J, Romine MF, Ward MJ. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species. FEMS Microbiol Lett. 2007;273:180–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up

    1.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).Article 

    Google Scholar 
    3.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73–83 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).Article 

    Google Scholar 
    6.Stenseth, N. C. & Mysterud, A. Climate, changing phenology, and other life history traits: nonlinearity and match–mismatch to the environment. Proc. Natl Acad. Sci. USA 99, 13379–13381 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Blackford, C., Germain, R. M. & Gilbert, B. Species differences in phenology shape coexistence. Am. Nat. 195, E168–E180 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl Acad. Sci. USA 105, 16195–16200 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    10.Mynott, J. Birds in the Ancient World: Winged Words (Oxford Univ. Press, 2018).11.Hurlbert, A. H. & Liang, Z. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS ONE 7, e31662 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1902 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 10, 63–68 (2020).Article 

    Google Scholar 
    14.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Sullivan, B. L. et al. The eBird enterprise: an integrated approach to development and application of citizen science. Biol. Conserv. 169, 31–40 (2014).Article 

    Google Scholar 
    16.Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid v.6 (NASA EOSDIS Land Processes DAAC, accessed 26 March 2020); https://doi.org/10.5067/MODIS/MCD12Q2.00617.Richardson, A. D., Hufkens, K., Milliman, T. & Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 8, 5679 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Cole, E. F., Long, P. R., Zelazowski, P., Szulkin, M. & Sheldon, B. C. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment. Ecol. Evol. 5, 5057–5074 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Pettorelli, N. et al. The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim. Res. 46, 15–27 (2011).Article 

    Google Scholar 
    20.Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).21.Åkesson, S. et al. Timing avian long-distance migration: from internal clock mechanisms to global flights. Philos. Trans. R. Soc. B 372, 20160252 (2017).Article 

    Google Scholar 
    22.Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B 372, 20160246 (2017).Article 

    Google Scholar 
    23.Haest, B., Hüppop, O. & Bairlein, F. The influence of weather on avian spring migration phenology: what, where and when? Glob. Change Biol. 24, 5769–5788 (2018).Article 

    Google Scholar 
    24.Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B 278, 3437–3443 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).27.Van der Graaf, A., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea Wagening. 94, 567 (2006).
    Google Scholar 
    28.Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).Article 

    Google Scholar 
    29.Marra, P. P., Francis, C. M., Mulvihill, R. S. & Moore, F. R. The influence of climate on the timing and rate of spring bird migration. Oecologia 142, 307–315 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).Article 

    Google Scholar 
    31.Horton, K. G. et al. Holding steady: little change in intensity or timing of bird migration over the Gulf of Mexico. Glob. Change Biol. 25, 1106–1118 (2019).Article 

    Google Scholar 
    32.Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Curley, S. R., Manne, L. L. & Veit, R. R. Differential winter and breeding range shifts: implications for avian migration distances. Divers. Distrib. 26, 415–425 (2020).Article 

    Google Scholar 
    34.Root, T. Energy constraints on avian distributions and abundances. Ecology 69, 330–339 (1988).Article 

    Google Scholar 
    35.La Sorte, F. A., Fink, D., Hochachka, W. M., DeLong, J. P. & Kelling, S. Population-level scaling of avian migration speed with body size and migration distance for powered fliers. Ecology 94, 1839–1847 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236 (2019).Article 

    Google Scholar 
    37.Knudsen, E. et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86, 928–946 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Allstadt, A. J. et al. Spring plant phenology and false springs in the conterminous US during the 21st century. Environ. Res. Lett. 10, 104008 (2015).Article 

    Google Scholar 
    39.Franks, S. E. et al. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Glob. Change Biol. 24, 957–971 (2018).Article 

    Google Scholar 
    40.Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).Article 

    Google Scholar 
    42.Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Abdala‐Roberts, L. et al. Tri‐trophic interactions: bridging species, communities and ecosystems. Ecol. Lett. 22, 2151–2167 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Burgess, M. D. et al. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Helm, B., Van Doren, B. M., Hoffmann, D. & Hoffmann, U. Evolutionary response to climate change in migratory pied flycatchers. Curr. Biol. 29, 3714–3719 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Newson, S. E. et al. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158, 481–495 (2016).Article 

    Google Scholar 
    47.Townsend, A. K. et al. The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird. Glob. Change Biol. 22, 544–555 (2016).Article 

    Google Scholar 
    48.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine. Ecology 89, 2736–2745 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Lany, N. K. et al. Breeding timed to maximumimize reproductive success for a migratory songbird: the importance of phenological asynchrony. Oikos 125, 656–666 (2016).Article 

    Google Scholar 
    50.Samplonius, J. M. & Both, C. Climate change may affect fatal competition between two bird species. Curr. Biol. 29, 327–331 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Potvin, D. A., Välimäki, K. & Lehikoinen, A. Differences in shifts of wintering and breeding ranges lead to changing migration distances in European birds. J. Avian Biol. 47, 619–628 (2016).Article 

    Google Scholar 
    52.Bassett, F. & Cubie, D. Wintering hummingbirds in Alabama and Florida: species diversity, sex and age ratios, and site fidelity. J. Field Ornithol. 80, 154–162 (2009).Article 

    Google Scholar 
    53.Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Chmura, H. E. et al. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol. Monogr. 89, e01337 (2019).Article 

    Google Scholar 
    55.Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V. & Wikle, C. K. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 19, 553–570 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Miller-Rushing, A. J., Inouye, D. W. & Primack, R. B. How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J. Ecol. 96, 1289–1296 (2008).Article 

    Google Scholar 
    58.Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).Article 

    Google Scholar 
    59.Barnes, R. dggridR: Discrete global grids for R. R package version 0.1.12 https://github.com/r-barnes/dggri (2017).60.Data Zone (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis61.Sulla-Menashe, D. et al. Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sens. Environ. 115, 392–403 (2011).Article 

    Google Scholar 
    62.Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid v.6 (NASA EOSDIS Land Processes DAAC, accessed 26 February 2020); https://doi.org/10.5067/MODIS/MCD12Q2.00663.Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 157, 157–177 (2002).Article 

    Google Scholar 
    64.Fink, D. et al. Spatiotemporal exploratory models for broad-scale survey data. Ecol. Appl. 20, 2131–2147 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003).Article 

    Google Scholar 
    66.Lindén, A., Meller, K. & Knape, J. An empirical comparison of models for the phenology of bird migration. J. Avian Biol. 48, 255–265 (2017).Article 

    Google Scholar 
    67.Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).68.Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://www.jstatsoft.org/v076/i01 (2017).69.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434 (1998).
    Google Scholar 
    70.Besag, J. & Kooperberg, C. On conditional and intrinsic autoregression. Biometrika 82, 733 (1995).
    Google Scholar 
    71.Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data (Chapman & Hall/CRC, 2004).72.Morris, M. et al. Bayesian hierarchical spatial models: implementing the Besag York Mollié model in stan. Spat. Spatiotemporal Epidemiol. 31, 100301 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Stan Development Team. RStan: the R interface to Stan. R package version 2.17.3 http://mc-stan.org (2018).74.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).75.Monnahan, C. C., Thorson, J. T. & Branch, T. A. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo. Methods Ecol. Evol. 8, 339–348 (2017).Article 

    Google Scholar 
    76.Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).Article 

    Google Scholar 
    77.Gelman, A., Carlin, J. B, Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman & Hall/CRC, 2014).78.Finley, A. O. Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence: spatially-varying coefficients models. Methods Ecol. Evol. 2, 143–154 (2011).Article 

    Google Scholar 
    79.Stan Modeling Language Users Guide and Reference Manual v. 2.18.0 (Stan Development Team, 2018).80.Menzel, A., von Vopelius, J., Estrella, N., Schleip, C. & Dose, V. Farmers’ annual activities are not tracking the speed of climate change. Clim. Res. 32, 201–207 (2006).
    Google Scholar  More

  • in

    Distribution, associations and role in the biological carbon pump of Pyrosoma atlanticum (Tunicata, Thaliacea) off Cabo Verde, NE Atlantic

    1.Pugh, P. Gelatinous zooplankton: the forgotten fauna. Sci. Prog. 14, 67–78 (1989).
    Google Scholar 
    2.Robison, B. H. Deep pelagic biology. J. Exp. Mar. Biol. Ecol. 300, 253–272. https://doi.org/10.1016/j.jembe.2004.01.012 (2004).Article 

    Google Scholar 
    3.Condon, R. H. et al. Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62, 160–169. https://doi.org/10.1525/bio.2012.62.2.9 (2012).Article 

    Google Scholar 
    4.Haddock, S. H. D. A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530, 549–556. https://doi.org/10.1007/s10750-004-2653-9 (2004).Article 

    Google Scholar 
    5.Lebrato, M. et al. Sinking of gelatinous zooplankton biomass increases deep carbon transfer efficiency globally. Glob. Biogeochem. Cycles 33, 1764–1783. https://doi.org/10.1029/2019GB006265 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Luo, J. Y. et al. Gelatinous zooplankton-mediated carbon flows in the global oceans: a data-driven modeling study. Glob. Biogeochem. Cycles https://doi.org/10.1029/2020GB006704 (2020).Article 

    Google Scholar 
    7.Lucas, C. H. et al. Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Glob. Ecol. Biogeogr. 23, 701–714. https://doi.org/10.1111/geb.12169 (2014).Article 

    Google Scholar 
    8.Robison, B. H. Conservation of deep pelagic biodiversity. Conserv. Biol. 23, 847–858 (2009).Article 

    Google Scholar 
    9.Décima, M., Stukel, M. R., López-López, L. & Landry, M. R. The unique ecological role of pyrosomes in the Eastern Tropical Pacific. Limnol. Oceanogr. 64, 728–743. https://doi.org/10.1002/lno.11071 (2019).ADS 
    Article 

    Google Scholar 
    10.Henschke, N. et al. Large vertical migrations of Pyrosoma atlanticum play an important role in active carbon transport. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018jg004918 (2019).Article 

    Google Scholar 
    11.Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399. https://doi.org/10.1002/ecy.2429 (2018).Article 
    PubMed 

    Google Scholar 
    12.Perissinotto, R., Mayzaud, P., Nichols, P. D. & Labat, J. P. Grazing by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian Ocean. Mar. Ecol. Prog. Ser. 330, 1–11 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    13.van Soest, R. W. M. A monograph of the order Pyrosomatida (Tunicata, Thaliacea). J. Plankton Res. 3, 603–631. https://doi.org/10.1093/plankt/3.4.603 (1981).Article 

    Google Scholar 
    14.Drits, A. V., Arashkevich, E. G. & Semenova, T. N. Pyrosoma atlanticum (Tunicata, Thaliacea): grazing impact on phytoplankton standing stock and role in organic carbon flux. J. Plankton Res. 14, 799–809. https://doi.org/10.1093/plankt/14.6.799 (1992).Article 

    Google Scholar 
    15.Lebrato, M. & Jones, D. O. B. Mass deposition event of Pyrosoma atlanticum carcasses off Ivory Coast (West Africa). Limnol. Oceanogr. 54, 1197–1209. https://doi.org/10.4319/lo.2009.54.4.1197 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Lebrato, M. et al. Sinking jelly-carbon unveils potential environmental variability along a continental margin. PLoS ONE 8, e82070. https://doi.org/10.1371/journal.pone.0082070 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Archer, S. K. et al. Pyrosome consumption by benthic organisms during blooms in the northeast Pacific and Gulf of Mexico. Ecology 99, 981–984. https://doi.org/10.1002/ecy.2097 (2018).Article 
    PubMed 

    Google Scholar 
    18.Harbison, G. R. in The Biology of Pelagic Tunicates (ed Q. Bone) Ch. 12, 186–214 (Oxford University Press, 1998).19.James, G. D. & Stahl, J. C. Diet of southern Buller’s albatross (Diomedea bulleri bulleri) and the importance of fishery discards during chick rearing. NZ J. Mar. Freshwat. Res. 34, 435–454. https://doi.org/10.1080/00288330.2000.9516946 (2000).Article 

    Google Scholar 
    20.Hedd, A. & Gales, R. The diet of shy albatrosses (Thalassarche cauta) at Albatross Island, Tasmania. J. Zool. 253, 69–90. https://doi.org/10.1017/S0952836901000073 (2001).Article 

    Google Scholar 
    21.Brodeur, R. et al. An unusual gelatinous plankton event in the NE Pacific: the great pyrosome bloom of 2017. PICES Press 26, 22–27 (2018).
    Google Scholar 
    22.Childerhouse, S., Dix, B. & Gales, N. Diet of New Zealand sea lions at the Auckland Islands. Wildl. Res. 28, 291–298. https://doi.org/10.1071/WR00063 (2001).Article 

    Google Scholar 
    23.Lindsay, D., Hunt, J. & Hayashi, K.-I. Associations in the midwater zone: The penaeid shrimp Funchalia sagamiensis FUJINO 1975 and pelagic tunicates (Order: Pyrosomatida). Marine Freshwater Behav. Phys. 34, 157–170. https://doi.org/10.1080/10236240109379069 (2001).Article 

    Google Scholar 
    24.Andersen, V. in The Biology of Pleagic Tunicates (ed Q. Bone) Ch. 7, 125–137 (Oxford University Press, 1998).25.Madin, L. P. Production, composition and sedimentation of salp fecal pellets in oceanic waters. Mar. Biol. 67, 39–45. https://doi.org/10.1007/BF00397092 (1982).Article 

    Google Scholar 
    26.Thomsen, P. F. & Willerslev, E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol. Cons. 183, 4–18. https://doi.org/10.1016/j.biocon.2014.11.019 (2015).Article 

    Google Scholar 
    27.Andruszkiewicz, E. A. et al. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE 12, e0176343. https://doi.org/10.1371/journal.pone.0176343 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Doty, M. S. & Oguri, M. The Island mass effect. ICES J. Mar. Sci. 22, 33–37. https://doi.org/10.1093/icesjms/22.1.33 (1956).Article 

    Google Scholar 
    29.Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581. https://doi.org/10.1038/ncomms10581 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Faye, S., Lazar, A., Sow, B. & Gaye, A. A model study of the seasonality of sea surface temperature and circulation in the Atlantic North-eastern tropical upwelling system. Front. Phys. https://doi.org/10.3389/fphy.2015.00076 (2015).Article 

    Google Scholar 
    31.Schütte, F., Brandt, P. & Karstensen, J. Occurrence and characteristics of mesoscale eddies in the tropical northeastern Atlantic Ocean. Ocean Sci. 12, 663–685. https://doi.org/10.5194/os-12-663-2016 (2016).ADS 
    Article 

    Google Scholar 
    32.Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420. https://doi.org/10.1146/annurev-marine-120710-100849 (2013).Article 
    PubMed 

    Google Scholar 
    33.Schütte, F. et al. Characterization of “dead-zone” eddies in the eastern tropical North Atlantic. Biogeosciences 13, 5865–5881. https://doi.org/10.5194/bg-13-5865-2016 (2016).ADS 
    Article 

    Google Scholar 
    34.GEOMAR Helmholtz-Zentrum für Ozeanforschung. CVOO Cape Verde Ocean Observatory, http://cvoo.geomar.de/ (n.d.).35.NASA Goddard Space Flight Center, O. E. L., Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data. https://doi.org/10.5067/AQUA/MODIS/L3B/CHL/2018 (2019).36.Hoving, H. J. et al. The Pelagic in situ observation system (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna. Ocean Sci. 15, 1327–1340. https://doi.org/10.5194/os-15-1327-2019 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Schlining, B. & Stout, N. MBARI’s Video Annotation and reference system. Vol. 2006 (2006).38.O’Loughlin, J. H. et al. Implications of Pyrosoma atlanticum range expansion on phytoplankton standing stocks in the Northern California Current. Prog. Oceanogr. 188, 102424. https://doi.org/10.1016/j.pocean.2020.102424 (2020).Article 

    Google Scholar 
    39.Al-Mutairi, H. & Landry, M. R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep Sea Res. Part II Top. Stud. Ocean. 48, 2083–2103. https://doi.org/10.1016/S0967-0645(00)00174-0 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Mayzaud, P., Boutoute, M., Gasparini, S., Mousseau, L. & Lefevre, D. Respiration in marine zooplankton—the other side of the coin: CO2 production. Limnol. Oceanogr. 50, 291–298. https://doi.org/10.4319/lo.2005.50.1.0291 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    41.GEOMAR Helmholtz-Zentrum für Ozeanforschung, Hissmann, K. & Schauer, J. Manned submersible JAGO. J. Large-Scale Res. Facil. 3, 1–12, https://doi.org/10.17815/jlsrf-3-157 (2017).42.Lavaniegos, B. E. & Ohman, M. D. Long-term changes in pelagic tunicates of the California current. Deep Sea Res. Part II Top. Stud. Ocen. 50, 2473–2498. https://doi.org/10.1016/S0967-0645(03)00132-2 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    43.GEBCO Compilation Group. GEBCO 2019 Grid. https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e (2019).44.Schram, J. B., Sorensen, H. L., Brodeur, R. D., Galloway, A. W. E. & Sutherland, K. R. Abundance, distribution, and feeding ecology of Pyrosoma atlanticum in the Northern California current. Mar. Ecol. Prog. Ser. 651, 97–110 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Goy, J. Vertical migration of zooplankton. Résultats des Campagnes à la mer, GNEXO 13, 71–73 (1977).
    Google Scholar 
    46.Andersen, V. & Sardou, J. Pyrosoma atlanticum (Tunicata, Thaliacea): diel migration and vertical distribution as a function of colony size. J. Plankton Res. 16, 337–349. https://doi.org/10.1093/plankt/16.4.337 (1994).Article 

    Google Scholar 
    47.Andersen, V., Sardou, J. & Nival, P. The diel migrations and vertical distributions of zooplankton and micronekton in the Northwestern Mediterranean Sea. 2. Siphonophores, hydromedusae and pyrosomids. J. Plankton Res. 14, 1155–1169. https://doi.org/10.1093/plankt/14.8.1155 (1992).Article 

    Google Scholar 
    48.Roe, H. S. J. et al. Great Meteor East: a biological characterisation (Wormley, 1987).
    Google Scholar 
    49.Williamson, C. E., Fischer, J. M., Bollens, S. M., Overholt, E. P. & Breckenridge, J. K. Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623. https://doi.org/10.4319/lo.2011.56.5.1603 (2011).ADS 
    Article 

    Google Scholar 
    50.Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S. & Stock, C. A. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6, 545–548. https://doi.org/10.1038/ngeo1837 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Purcell, J. et al. in Coastal Hypoxia: Consequences for Living Resources and Ecosystems Vol. 58 77–100 (2001).52.Neitzel, P. The impact of the oxygen minimum zone on the vertical distribution and abundance of gelatinous macrozooplankton in the Eastern Tropical Atlantic, Christian-Albrechts-Universität Kiel, (2017).53.Hoving, H. J. T. et al. In situ observations show vertical community structure of pelagic fauna in the eastern tropical North Atlantic off Cape Verde. Sci. Rep. 10, 21798. https://doi.org/10.1038/s41598-020-78255-9 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Thuesen, E. V. et al. Intragel oxygen promotes hypoxia tolerance of scyphomedusae. J. Exp. Biol. 208, 2475. https://doi.org/10.1242/jeb.01655 (2005).Article 
    PubMed 

    Google Scholar 
    55.Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229. https://doi.org/10.1146/annurev.marine.010908.163855 (2009).Article 

    Google Scholar 
    56.Wiebe, P. H., Madin, L. P., Haury, L. R., Harbison, G. R. & Philbin, L. M. Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea. Mar. Biol. 53, 249–255. https://doi.org/10.1007/BF00952433 (1979).Article 

    Google Scholar 
    57.Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F. & Hernández-León, S. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands). Prog. Oceanogr. 134, 330–342. https://doi.org/10.1016/j.pocean.2015.03.003 (2015).ADS 
    Article 

    Google Scholar 
    58.Hernández-León, S. et al. Zooplankton and micronekton active flux across the tropical and subtropical Atlantic Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00535 (2019).Article 

    Google Scholar 
    59.Kiko, R. et al. Zooplankton-mediated fluxes in the eastern tropical North Atlantic. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00358 (2020).Article 

    Google Scholar 
    60.Cascão, I., Domokos, R. K., Lammers, M. O., Santos, R. S. & Silva, M. N. A. Seamount effects on the diel vertical migration and spatial structure of micronekton. Prog. Ocean. 175, 1–13. https://doi.org/10.1016/j.pocean.2019.03.008 (2019).Article 

    Google Scholar 
    61.Fock, H., Matthiessen, B., Zidowitz, H. & Westernhagen, H. Diel and habitat-dependent resource utilisation of deep-sea fishes at the Great Meteor seamount (subtropical NE Atlantic): niche overlap and support for the sound-scattering layer-interception hypothesis. Mar. Ecol. Progr. Ser. 244, 219–233. https://doi.org/10.3354/meps244219 (2002).ADS 
    Article 

    Google Scholar 
    62.Laval, P. Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanogr. Mar. Biol. Annu. Rev. 18, 11–56 (1980).
    Google Scholar 
    63.Madin, L. P. & Harbison, G. R. The associations of Amphipoda Hyperiidea with gelatinous zooplankton—I Associations with Salpidae. Deep-Sea Res. 24, 449–463. https://doi.org/10.1016/0146-6291(77)90483-0 (1977).ADS 
    Article 

    Google Scholar 
    64.Gasca, R., Hoover, R. & Haddock, S. H. D. New symbiotic associations of hyperiid amphipods (Peracarida) with gelatinous zooplankton in deep waters off California. J. Mar. Biol. Assoc. UK 95, 503–511. https://doi.org/10.1017/S0025315414001416 (2015).Article 

    Google Scholar 
    65.Harbison, G. R., Biggs, D. C. & Madin, L. P. The associations of Amphipoda Hyperiidea with gelatinous zooplankton—II. Associations with Cnidaria, Ctenophora and Radiolaria. Deep Sea Res. 24, 465–488. https://doi.org/10.1016/0146-6291(77)90484-2 (1977).ADS 
    Article 

    Google Scholar 
    66.Harbison, G. R., Madin, L. P. & Swanberg, N. R. On the natural history and distribution of oceanic ctenophores. Deep-Sea Res. 25, 233–256 (1978).ADS 
    Article 

    Google Scholar 
    67.Laval, P. The barrel of the pelagic amphipod Phronima sedentaria (Forsk.) (Crustacea: hyperiidea). J. Exp. Mar. Biol. Ecol. 33, 187–211. https://doi.org/10.1016/0022-0981(78)90008-4 (1978).Article 

    Google Scholar 
    68.Desmarest, A.-G. in Dictionnaire des Sciences Naturelles, 28. (ed F.G. Levrault) 138–425 (Paris and Strasbourg, 1823).69.Laval, P. Observations on biology of Phronima curvipes Voss (Amphipoda Hyperidae) and description of adult male. Cah. Biol. Mar. 9, 347–362 (1968).
    Google Scholar 
    70.Janssen, J. & Harbison, G. R. Fish in Salps: the Association of Squaretails (Tetragonurus Spp) with Pelagic Tunicates. J. Mar. Biol. Assoc. UK. 61, 917–927. https://doi.org/10.1017/S0025315400023055 (1981).Article 

    Google Scholar 
    71.Choy, C. A., Haddock, S. H. D. & Robison, B. H. Deep pelagic food web structure as revealed by in situ feeding observations. Proc. R. Soc. B Biol. Sci. 284, 20172116. https://doi.org/10.1098/rspb.2017.2116 (2017).Article 

    Google Scholar 
    72.Robison, B. H., Sherlock, R. E., Reisenbichler, K. R. & McGill, P. R. Running the gauntlet: assessing the threats to vertical migrators. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00064 (2020).Article 

    Google Scholar 
    73.Hoving, H. J., Neitzel, P. & Robison, B. In situ observations lead to the discovery of the large ctenophore Kiyohimea usagi (Lobata: Eurhamphaeidae) in the eastern tropical Atlantic. Zootaxa 4526, 232–238. https://doi.org/10.11646/zootaxa.4526.2.8 (2018).Article 
    PubMed 

    Google Scholar 
    74.Arai, M. N. Predation on pelagic coelenterates: a review. J. Mar. Biol. Assoc. UK. 85, 523–536. https://doi.org/10.1017/S0025315405011458 (2005).Article 

    Google Scholar  More

  • in

    Carbon stocks of homestead forests have a mitigation potential to climate change in Bangladesh

    1.IEA. Renewables information 2019 overview. Clim. Change 2013 Phys. Sci. Basis 53, 1–30 (2019).
    Google Scholar 
    2.IPCC. Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. (2018).3.IPCC. Foreword, Preface, Dedication and In Memoriam. Clim. Chang. 2014 Mitig. Clim. Chang. Contrib. Work. Gr. III to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 1454 (2014).4.Shakoor, A. et al. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environ. Sci. Pollut. Res. 27, 38513–38536 (2020).CAS 
    Article 

    Google Scholar 
    5.Mani, M., Bandyopadhyay, S., Chonabayashi, S., Markandya, A. & Mosier, T. South Asia’s Hotspots: The Impact of Temperature and Precipitation Changes on Living Standards. South Asia’s Hotspots: The Impact of Temperature and Precipitation Changes on Living Standards (2018). https://doi.org/10.1596/978-1-4648-1155-5.6.Sarkar, M. S. K., Sadeka, S., Sikdar, M. M. H. & Badiuzzaman. Energy consumption and CO2 emission in Bangladesh: Trends and policy implications. Asia Pac. J. Energy Environ. 5, 41–48 (2018).Article 

    Google Scholar 
    7.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Adame, M. F. et al. Carbon stocks of tropical coastal wetlands within the Karstic landscape of the Mexican Caribbean. PLoS ONE 8, e56569 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Henry, M. et al. Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric. Ecosyst. Environ. 129, 238–252 (2009).CAS 
    Article 

    Google Scholar 
    12.Kumar, B. M. Species richness and aboveground carbon stocks in the homegardens of central Kerala, India. Agric. Ecosyst. Environ. 140, 430–440 (2011).Article 

    Google Scholar 
    13.Mattsson, E., Ostwald, M., Nissanka, S. P. & Pushpakumara, D. K. N. G. Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala district, Sri Lanka. Agrofor. Syst. 89, 435–445 (2015).Article 

    Google Scholar 
    14.Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10–23 (2009).CAS 
    Article 

    Google Scholar 
    15.Murthy, I. K. Carbon sequestration potential of agroforestry systems in India. J. Earth Sci. Clim. Change 4, 1–7 (2013).Article 
    CAS 

    Google Scholar 
    16.Delgado, J. A. et al. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 66, 118–129 (2011).Article 

    Google Scholar 
    17.Kabir, M. E. & Webb, E. L. Can homegardens conserve biodiversity in Bangladesh?. Biotropica 40, 95–103 (2008).
    Google Scholar 
    18.FD [Forest Department]. Bangladesh Forestry Master Plan 2017–2036, 2036 (2017).19.Mather, A. Global forest resources assessment 2000 main report. Land Use Policy 20, 195 (2003).Article 

    Google Scholar 
    20.FD [Forest Department]. District wise forest area of Bangladesh 2016. Preprint at http://www.bforest.gov.bd/ (2020).21.Mukul, S. A. et al. A new estimate of carbon for Bangladesh forest ecosystems with their spatial distribution and REDD+ implications. Int. J. Res. Land-use Sustain. 1, 33–41 (2014).
    Google Scholar 
    22.Nath, T. K., Aziz, N. & Inoue, M. Contribution of homestead forests to rural economy and climate change mitigation: A study from the ecologically critical area of Cox’s Bazar—Teknaf Peninsula, Bangladesh. Small-scale For. 14, 1–18 (2015).Article 

    Google Scholar 
    23.Jaman, M. S. et al. Quantification of carbon stock and tree diversity of homegardens in Rangpur District, Bangladesh. Int. J. Agric. For. 6, 169–180 (2016).
    Google Scholar 
    24.Wang, S. & Huang, Y. Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests. Glob. Change Biol. 26, 3163–3173 (2020).ADS 
    Article 

    Google Scholar 
    25.Khan, M. N. I. et al. Allometric relationships of stand level carbon stocks to basal area, tree height and wood density of nine tree species in Bangladesh. Glob. Ecol. Conserv. 22, e01025 (2020).Article 

    Google Scholar 
    26.Shen, Y. et al. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest. Sci. Rep. 6, 25304 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Petrokofsky, G. et al. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid. 1, 1–21 (2012).Article 

    Google Scholar 
    28.Dondini, M., Hastings, A., Saiz, G., Jones, M. B. & Smith, P. The potential of Miscanthus to sequester carbon in soils: Comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy 1, 413–425 (2009).CAS 
    Article 

    Google Scholar 
    29.Ullah, M. R. & Al-Amin, M. Above- and below-ground carbon stock estimation in a natural forest of Bangladesh. J. For. Sci. 58, 372–379 (2012).Article 

    Google Scholar 
    30.Nouvellon, Y. et al. Age-related changes in litter inputs explain annual trends in soil CO2 effluxes over a full Eucalyptus rotation after afforestation of a tropical savannah. Biogeochemistry 111, 515–533 (2012).CAS 
    Article 

    Google Scholar 
    31.Krishna, M. P. & Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2, 236–249 (2017).Article 

    Google Scholar 
    32.Patra, P. K. et al. The carbon budget of South Asia. Biogeosciences 10, 513–527 (2013).ADS 
    Article 

    Google Scholar 
    33.Ostertag, R., Marín-Spiotta, E., Silver, W. L. & Schulten, J. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11, 701–714 (2008).CAS 
    Article 

    Google Scholar 
    34.Nair, P. K. R. & Garrity, D. Afroforestry—The Future of Global Land Use, Advances in Agroforestry (Springer, 2012) https://doi.org/10.1007/978-94-007-4676-3_1.Book 

    Google Scholar 
    35.Abrar, M. M. et al. Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol. Sci. Total Environ. 723, 138181 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Baul, T. K., Datta, D. & Alam, A. A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy https://doi.org/10.1016/j.enpol.2017.12.037 (2018).Article 

    Google Scholar 
    37.Mackey, B. et al. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig. Adapt. Strateg. Glob. Change 25, 763–787 (2020).Article 

    Google Scholar 
    38.Zaman, M. A., Osman, K. T. & Sirajul Haque, S. M. Comparative study of some soil properties in forested and deforested areas in Cox’s Bazar and Rangamati Districts, Bangladesh. J. For. Res. 21, 319–322 (2010).CAS 
    Article 

    Google Scholar 
    39.Akhtaruzzaman, M., Osman, K. T. & Sirajul Haque, S. M. Soil properties in two forest sites in Cox’s Bazar, Bangladesh. J. For. Environ. Sci. 31, 280–287 (2015).
    Google Scholar 
    40.Islam, M., Deb, G. P. & Rahman, M. Forest fragmentation reduced carbon storage in a moist tropical forest in Bangladesh: Implications for policy development. Land Use Policy 65, 15–25 (2017).Article 

    Google Scholar 
    41.Nair, P. K. R., Nair, V. D., Kumar, B. M. & Haile, S. G. Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal. Environ. Sci. Policy 12, 1099–1111 (2009).CAS 
    Article 

    Google Scholar 
    42.Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R. & Morales-Ruiz, D. E. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agrofor. Syst. 93, 213–227 (2019).Article 

    Google Scholar 
    43.Islam, M., Dey, A. & Rahman, M. Effect of tree diversity on soil organic carbon content in the homegarden agroforestry system of North-Eastern Bangladesh. Small-scale For. 14, 91–101 (2015).Article 

    Google Scholar 
    44.Saha, S. K., Nair, P. K. R., Nair, V. D. & Kumar, B. M. Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor. Syst. 76, 53–65 (2009).Article 

    Google Scholar 
    45.Kothandaraman, S., Dar, J. A., Sundarapandian, S., Dayanandan, S. & Khan, M. L. Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India. Sci. Rep. 10, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    46.Youkhana, A. & Idol, T. Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biol. Biochem. 41, 2527–2534 (2009).CAS 
    Article 

    Google Scholar 
    47.Flessa, H. et al. Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. J. Plant Nutr. Soil Sci. 171, 36–51 (2008).CAS 
    Article 

    Google Scholar 
    48.Semere, M. Biomass and soil carbon stocks assessment of agroforestry systems and adjacent cultivated land, in Cheha Wereda, Gurage Zone, Ethiopia. Int. J. Environ. Sci. Nat. Resour. 20, 119–125 (2019).
    Google Scholar 
    49.Ramachandran Nair, P. K., Nair, V. D., Mohan Kumar, B. & Showalter, J. M. Carbon sequestration in agroforestry systems. Adv. Agron. 108, 237–307 (2010).Article 
    CAS 

    Google Scholar 
    50.Mustafa, A. et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 270, 110894 (2020).CAS 
    Article 

    Google Scholar 
    51.Sayer, E. J. et al. Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs. Sci. Rep. 9, 1–9 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Rahman, M., Biswas, J., Maniruzzaman, M., Choudhury, A. & Ahmed, F. Effect of tillage practices and rice straw management on soil environment and carbon dioxide emission. Agriculture 15, 127–142 (2017).
    Google Scholar 
    53.Day, M., Baldauf, C., Rutishauser, E. & Sunderland, T. C. H. Relationships between tree species diversity and above-ground biomass in Central African rainforests: Implications for REDD. Environ. Conserv. 41, 64–72 (2014).Article 

    Google Scholar 
    54.Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).Article 

    Google Scholar 
    55.Rahman, M. M., Kabir, M. E., Jahir Uddin Akon, A. S. M. & Ando, K. High carbon stocks in roadside plantations under participatory management in Bangladesh. Glob. Ecol. Conserv. 3, 412–423 (2015).Article 

    Google Scholar 
    56.Kamruzzaman, M., Ahmed, S., Paul, S., Rahman, M. M. & Osawa, A. Stand structure and carbon storage in the oligohaline zone of the Sundarbans mangrove forest, Bangladesh. For. Sci. Technol. 14, 23–28 (2018).
    Google Scholar 
    57.Asok, S. & Sobha, V. Analysis of variation of soil bulk densities with respect to different vegetation classes, in a tropical rain forest—A study in Shendurney Wildlife Sanctuary, S. Kerala, India. Glob. J. Environ. Res. 8, 17–20 (2014).
    Google Scholar 
    58.Périé, C. & Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 88, 315–325 (2008).Article 

    Google Scholar 
    59.Biswas, A., Alamgir, M., Haque, S. M. S. & Osman, K. T. Study on soils under shifting cultivation and other land use categories in Chittagong Hill Tracts, Bangladesh. J. For. Res. 23, 261–265 (2012).CAS 
    Article 

    Google Scholar 
    60.Leff, J. W. et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Glob. Change Biol. 18, 2969–2979 (2012).ADS 
    Article 

    Google Scholar 
    61.Wang, Q., He, T., Wang, S. & Liu, L. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agric. For. Meteorol. 178–179, 152–160 (2013).ADS 
    Article 

    Google Scholar 
    62.Ali Shah, S. A. et al. Long-term fertilization affects functional soil organic carbon protection mechanisms in a profile of Chinese loess plateau soil. Chemosphere 267, 128897 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Miah, D., Uddin, M. F., Bhuiyan, M. K., Koike, M. & Shin, M. Y. Carbon sequestration by the indigenous tree species in the reforestation program in Bangladesh-aphanamixis polystachya Wall. and Parker. Forest Sci. Technol. 5, 62–65 (2009).Article 

    Google Scholar 
    64.Kibria, M. G. & Saha, N. Analysis of existing agroforestry practices in Madhupur Sal forest: An assessment based on ecological and economic perspectives. J. For. Res. 22, 533–542 (2011).
    CAS 
    Article 

    Google Scholar 
    65.Mikrewongel Tadesse, A. B. Estimation of carbon stored in agroforestry practices in Gununo Watershed, Wolayitta Zone, Ethiopia. J. Ecosyst. Ecogr. 05, 1–5 (2015).Article 

    Google Scholar 
    66.Abrar, M. M. et al. Carbon, nitrogen, and phosphorus stoichiometry mediate sensitivity of carbon stabilization mechanisms along with surface layers of a Mollisol after long-term fertilization in Northeast China. J. Soils Sediments 21, 705–723 (2021).CAS 
    Article 

    Google Scholar 
    67.Ahmed, N. & Glaser, M. Coastal aquaculture, mangrove deforestation and blue carbon emissions: Is REDD+ a solution?. Mar. Policy 66, 58–66 (2016).Article 

    Google Scholar 
    68.BBS [Bangladesh Bureau of Statistics]. Statistical yearbook of Bangladesh 2018. Statistics Division, Ministry of Planning, Government of the People’s Republic of Bangladesh (2019).69.BMD [Bangladesh Metereological Department]. Cox’s Bazar region, Chittagong, Bangladesh (2020).70.Osman, K. S., Jashimuddin, M., Haque, S. M. S. & Miah, S. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh. J. For. Res. 24, 791–795 (2013).CAS 
    Article 

    Google Scholar 
    71.SRDI. Soil resource development institute. Annu. Report. Soil Resour. Dev. Institute, Dhaka, Bangladesh (2018).72.Upazila Parishad Office. Bandarban Sadar Upazila, Bandarban District, Chittagong Hill Trcats, Bangladesh (2019).73.Blake, G. R. Bulk density. In Methods of Soil Analysis. Part 1 (eds Black, C. A. et al.) 894–895 (American Society of Agronomy Inc., 1965).
    Google Scholar 
    74.Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).ADS 
    Article 

    Google Scholar 
    75.Macdicken, K. G. A guide to monitoring carbon storage in forestry and agroforestry projects (2015).76.Sattar, M. A., Bhattacharje, D. K. & Kabir, M. F. Physical and Mechanical Properties and Uses of Timbers of Bangladesh (Bangladesh Forest Research Institute, 1999).
    Google Scholar 
    77.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).Article 

    Google Scholar 
    78.Data Set. Definitions (2020). https://doi.org/10.32388/5b0dft.79.Hairiah, K. Measuring carbon stocks: Across land use systems: a manual. Published in close cooperation with Brawijaya University and ICALRRD (Indonesian Center for Agricultural Land Resources Research and Development) (2011).80.Frangi, J. L., Lugo, A. E., Forest, F., Frangi, J. L. & Service, F. Ecosystem dynamics of a subtropical floodplain forest published by: Ecological Society of America. Ecosyst. Dyn. Subtrop. 55, 351–369 (2016).
    Google Scholar 
    81.Issa, S., Dahy, B., Ksiksi, T. & Saleous, N. Development of a new allometric equation correlated WTH RS variables for the assessment of date palm biomass. Proc. 39th Asian Conf. Remote Sens. Remote Sens. Enabling Prosper. ACRS 2018 2, 730–739 (2018).82.Brown, S. Estimating biomass and biomass change of tropical forests: A Primer. FAO For. Pap. 134, 13–33 (1997).
    Google Scholar 
    83.Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    84.Michael, P. Ecological Methods for Field and Laboratory Investigation (Tata Mc Graw Hill, 1990).
    Google Scholar 
    85.Shukla, R. S. & Chandel, P. S. Plant Ecology and Soil Science 9th edn. (S. Chand and Company, 2000).
    Google Scholar 
    86.Ball, D. F. Loss-on-ignition as an estimate. J. Soil Sci. 15, 84–92 (1964).CAS 
    Article 

    Google Scholar 
    87.Pearson, T., Walker, S. & Brown, S. Sourcebook for Land Use, Land-Use Change and Forestry Projects 29 (Winrock International and the BioCarbon Fund of the World Bank, 2005).
    Google Scholar 
    88.Pearson, T. R. H., Brown, S. L. & Birdsey, R. A. Measurement guidelines for the sequestration of forest carbon. Gen. Tech. Rep. NRS-18. Delaware United States Dep. Agric. For. Serv. 18, 42 (2007).89.Coleman, D. C. Soil carbon balance in a successional grassland. Oikos 24, 195–199. https://doi.org/10.2307/3543875 (1973).CAS 
    Article 

    Google Scholar  More