More stories

  • in

    African swine fever ravaging Borneo’s wild pigs

    African swine fever has breached the island of Borneo, where it is wiping out populations of the wild bearded pig Sus barbatus. First confirmed in early February, the outbreak has driven a precipitous decline in this species in less than two months. Field sites in the east of the Sabah region are reporting a complete absence of live pigs in forests. Local extinctions across swathes of Borneo are a realistic prospect.Bearded pigs are listed as vulnerable by the International Union for Conservation of Nature. They are seen as ‘ecosystem engineers’ in the Bornean rainforest, where they are one of the most abundant species of mammal. Bearded pigs can be legally hunted under permit, and are an important source of animal protein for many communities.The African swine fever virus is already island-hopping across southeast Asia, threatening 11 species of endemic pig, including the Sulawesi warty pig (Sus celebensis). Opportunities to control the disease in wild-pig populations are limited. Vaccines for domestic pigs are still in development, so the best hope for stemming loss of the wild animals could be to protect isolated populations in geographically defensible locations. More

  • in

    Physiological and biochemical responses of two precious Carpinus species to high-concentration NO2 stress and their natural recovery

    Morphological changes of the leavesThe influence of NO2 stress on the plants was first reflected by the morphological changes of the leaves (Fig. 1)20,22. Slight NO2 injury was manifested by slight green deficiency and light color. Moderate NO2 injury was manifested by irregular watery spots between leaf veins, which gradually developed into yellow necrotic spots followed by lesions at the leaf stalk and margins. When the exposure time extended to 72 h, the leaves turned yellow, and irreversible injury occurred, which led to leaf death. The damaged areas of the leaves of the two species at different time points of NO2 exposure are summarized in Table 1.Figure 1Leaf injury symptoms of Carpinus betulus (A) and Carpinus putoensis (B) under different NO2 exposure time and after recovery.Full size imageTable 1 The damaged areas (percentage) of the leaves of Carpinus betulus and Carpinus putoensis at different time points of NO2 stress.Full size tableChanges in MDA contentThe changes in the MDA content of C. betulus and C. putoensis at different time points of NO2 stress are shown in Fig. 2. With the prolongation of NO2 stress, the MDA content of C. betulus showed an increasing tendency with the variation range from 0.016 to 0.029 µmol g−1 fw. However, no significant differences were observed at different time points of NO2 exposure.Figure 2Changes in the MDA content of C. betulus and C. putoensis at different time points of NO2 stress and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageAs NO2 fumigation time extended, the MDA content of C. putoensis also showed an increasing tendency, with the variation range from 0.015 to 0.034 µmol g−1 fw. Compared with the control group, a significant difference was observed in the MDA content from 24 h, which peaked at 72 h. In C. putoensis, although the recover group and the control group did not show a significant difference, the MDA content of the former lay between 0.015 (6 h) and 0.019 µmol g−1 fw (12 h), which suggests that the plant did not recovered completely from the stress damage.Compared with C. putoensis, C. betulus exhibited a smaller variation amplitude in the MDA content under NO2 stress. The MDA content of C. betulus did not show noticeable changes at 1, 6, and 12 h, and it was till 24 h when a rapid increase occurred. These findings indicate a delayed injury response of C. betulus. In contrast, with the prolongation of NO2 stress, the MDA content of C. putoensis noticeably increased, which indicates an increase in the membrane lipid peroxidation activity of C. putoensis under NO2 stress.Changes in POD activityThe changes in POD activity of C. betulus and C. putoensis at different time points of NO2 stress are shown in Fig. 3. With the prolongation of NO2 stress, the POD activity of C. betulus showed an increasing tendency, with a variation range from 323 to 663 U (g * min)−1 fw. After 30-d self recovery, the POD activity returned to 409 U (g * min)−1 fw, which was comparable to that of the control.Figure 3Changes in POD activity of C. betulus and C. putoensis at different time points of NO2 stress and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageAs NO2 fumigation time extended, the POD value of C. putoensis also showed an increasing tendency, with a variation range from 385 to 596 U (g * min)−1 fw. The recovery group did not show a significant difference compared with the control group.In C. betulus, the POD activity value rapidly increased at 72 h of NO2 stress, which showed a significant difference compared with any other group (adjusted p  0.05).Figure 4Changes in the soluble protein content of C. betulus and C. putoensis under NO2 stress at different time points and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageIn C. putoensis, the soluble protein content also showed an increasing trend as the fumigation time prolonged. The variations ranged from 2.61 to 3.27 mg g−1 fw. Compared with the control group, the recovery group exhibited a lower soluble protein content, although no significant difference was observed between them.As shown in Fig. 4, the maximum difference in the soluble protein content of C. betulus was 2.33 mg g−1 fw, which was greatly larger than that of C. putoensis (0.66 mg g−1 fw). Particularly, C. betulus exhibited a rapid increase in the soluble protein content from 12 h of fumigation, which indicates that C. betulus increased protein synthesis when encountered with NO2 stress, whereas C. putoensis showed only weak resistance against the stress.Changes in NRAt 0 h of NO2 treatment, the NR activity of C. betulus was 1.43 ± 0.14 µmol NO2−·g−1fw·h−1. With the prolongation of NO2 exposure, the NR activity of C. betulus exhibited a gradual increase followed by a gradual decrease, and a significant difference (adjusted p  0.05). In C. putoensis, the NR activity of the control group was 0.58 ± 0.06 µmol NO2−·g−1fw·h−1. As the NO2 exposure time prolonged, NR activity exhibited a rapid increase (adjusted p  0.05). The results were shown in Fig. 5.Figure 5Changes in the NR activity of C. betulus and C. putoensis under NO2 stress at different time points and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageChanges in NO3
    −NAs the NO2 treatment time extended, the NO3−N content of C. betulus exhibited an increase followed by a gradual decrease, and a significant difference (adjusted p  0.05). In C. putoensis, the NO3−N content also exhibited an increase followed by a decrease after NO2 exposure. However, a significant difference was observed from 12 h. After 30-d recovery, the index returned to a normal level (adjusted p  > 0.05). The results were shown in Fig. 6.Figure 6Changes in the NO3−N content of C. betulus and C. putoensis under NO2 stress at different time points and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageChanges in mineral elementsThe changes in the mineral elements of C. betulus and C. putoensi under NO2 stress and after self recovery are summarized in Table 2.Table 2 Changes in the mineral element contents of C. betulus and C. putoensis under NO2 stress and after self recovery.Full size tableMacroelements(1) N. At 1 h of NO2 stress, the total nitrogen content of C. betulus increased slightly to 1.68 ± 0.17 g/kg; this value was higher than that of control (1.4 ± 0.13 g/kg), but no significant difference was observed (adjusted p  > 0.05). With the prolongation of the stress, the content decreased, with the variations ranging from 0.84 to 1.68 g/kg and the maximum difference of 0.84 g/kg. The recovery group did not show a significant difference compared with the control group (1.53 ± 0.15 vs. 1.4 ± 0.13; adjusted p = 1.00).Overall, the changes in the total nitrogen content of C. putoensis showed a similar trend with those of C. betulus. At 1 h of NO2 stress, the total nitrogen content of C. putoensis significantly increased compared with that of the control (1.68 ± 0.15 g/kg vs. 1.12 ± 0.11 g/kg; adjusted p  0.05).(4) Ca. With the prolongation of NO2 exposure, the Ca content of C. betulus exhibited an increase followed by a gradual decrease, and the variations ranged from 84 to 243 µg L−1 dw. A significant difference was observed at 72 h of NO2 exposure. In C. putoensis, significant differences in the Ca content were observed during NO2 exposure, except at 12 h. In both species, the Ca content of the recovery group did not show a significant difference compared with the control group. The variation amplitude of the Ca content of C. betulus (159 µg L−1 dw) was noticeably greater than that of C. putoensis (68 µg L−1 dw).(5) Mg. As the NO2 stress prolonged, the Mg content of C. betulus did not show a significant drop, except at 48 h. The variations ranged from 21.4 to 31.3 µg L−1 dw. In C. putoensis, the variations ranged from 12.2 to 32.2 µg L−1 dw. In both species, the Ca content of the recovery group did not show a significant difference compared with the control group. The variation amplitude of the Ca content of C. betulus (9.9 µg L−1 dw) was remarkably smaller than that of C. putoensis (20 µg L−1 dw).Microelements(1) Zn. With the prolongation of NO2 exposure, the Zn content of C. betulus exhibited an increase followed by a gradual decrease. Compared with the control, significant differences were observed at 1, 6, and 12 h. The variations anged from 7.1 to 10.6 µg L−1 dw. In C. putoensis, significant differences in the Zn content were observed at 6 h and 48 h, and the variations ranged from 5.7 to 11.2 µg L−1 dw. The variation amplitude of the Zn content of C. betulus (3.5 µg L−1 dw) was smaller than that of C. putoensis (5.5 µg L−1 dw). In each species, the Zn content of the recovery group showed a significant difference compared with the control group.(2) Mn. At 1 h of NO2 fumigation, a sharp drop was observed, compared with the control. Afterwards, the Mn content of C. betulus exhibited a general increase followed by a gradual decrease. However, at any time point during NO2 exposure, a significant lower Mn content was observed when compared to the control. The variations of the Mn content ranged from 11.2 to 78.1 µg L−1 dw. In C. putoensis, the Mn content during NO2 exposure significantly decreased compared with control, and the variations ranged from 9.4 to 85.5 µg L−1 dw. The variation amplitude of the Mn content of C. betulus (66.9 µg L−1 dw) was slightly smaller than that of C. putoensis (76.1 µg L−1 dw). In each species, the Mn content of the recovery group did not show a significant difference compared with the control group.Correlation analysisThe correlations between the investigated indices and NO2 exposure time were analyzed using the Pearson’s method (Table 3). POD and soluble protein had a strong positive correlation with NO2 exposure time (correlation coefficient: 0.891 and 0.799, respectively), and NR, NO3−N, N, K, and Ca had a strong negative correlation with NO2 exposure time (correlation coefficient: -0.691, -0.805, -0.744, -0.606 and -0.696, respectively). MDA and the Zn content were not correlated with the exposure time.Table 3 Correlations of the investigated indices with NO2 exposure time.Full size table More

  • in

    Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity

    1.Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Dannemiller, K. C. et al. Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24, 236–247 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Arleevskaya, M. I., Aminov, R., Brooks, W. H., Manukyan, G. & Renaudineau, Y. Shaping of human immune system and metabolic processes by viruses and microorganisms. Front Microbiol. 10, 816 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Rook, G. A., Raison, C. L. & Lowry, C. A. Microbiota, immunoregulatory old friends and psychiatric disorders. In Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease 2014 319–356 (Springer, 2014).
    Google Scholar 
    7.Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. 110, 18360–18367 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Schwinge, D. & Schramm, C. Sex-related factors in autoimmune liver diseases. In Seminars in Immunopathology, Voxl 41, No 2 165–175 (Springer, 2019).
    Google Scholar 
    9.Prescott, S. L. A butterfly flaps its wings: Extinction of biological experience and the origins of allergy. Ann. Allergy Asthma Immunol. 20, 20 (2020).
    Google Scholar 
    10.Prescott, S. L. et al. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Austvoll, C. T., Gallo, V. & Montag, D. Health impact of the Anthropocene: The complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Glob. Health Epidemiol. Genom. 5, 20 (2020).
    Google Scholar 
    12.Haahtela, T. A biodiversity hypothesis. Allergy 74, 1445–1456 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    13.Haahtela, T. et al. The biodiversity hypothesis and allergic disease: World allergy organization position statement. World Allergy Organ. J. 6, 1–8 (2013).Article 

    Google Scholar 
    14.Donovan, G., Gatziolis, D., Mannetje, A. T., Weinkove, R., Fyfe, C., & Douwes, J. An empirical test of the biodiversity hypothesis: Exposure to plant diversity is associated with a reduced risk of childhood acute lymphoblastic leukemia. Available at SSRN 3559635 (2020).15.Chen, D. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signalling and gut microbiota. Cancer Lett. 469, 456–467 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Du, Y. et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice. Br. J. Pharmacol. 177, 1754–1772 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Li, J. Y. et al. Microbiota dependent production of butyrate is required for the bone anabolic activity of PTH. J. Clin. Invest. 20, 20 (2020).CAS 

    Google Scholar 
    18.Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 1–4 (2017).CAS 
    Article 

    Google Scholar 
    19.Uetake, J. et al. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Front Microbiol. 10, 1572 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urban airborne microbial communities are less abundant and less diverse than rural counterparts-but what does that mean for our health? A systematic review. Sci. Total Environ. 20, 140337 (2020).Article 
    CAS 

    Google Scholar 
    21.Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, 106084 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Mhuireach, G. et al. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571, 680–687 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lymperopoulou, D. S., Adams, R. I. & Lindow, S. E. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl. Environ. Microbiol. 82, 3822–3833 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Abdelfattah, A. et al. Revealing cues for fungal interplay in the plant–air interface in vineyards. Front Plant Sci. 10, 922 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Stewart, J. et al. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Sci. Total Environ. 1, 138353 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    26.Mhuireach, G. Á., Betancourt-Román, C. M., Green, J. L. & Johnson, B. R. Spatiotemporal controls on the urban aerobiome. Front Ecol. Evol. 7, 43 (2019).Article 

    Google Scholar 
    27.Robinson, J. M. et al. Vertical stratification in urban green space aerobiomes. Environ. Health Perspect. 128, 1–12 (2020).Article 

    Google Scholar 
    28.Robinson, J. M. & Breed, M. F. Green prescriptions and their co-benefits: Integrative strategies for public and environmental health. Challenges 10, 9 (2019).Article 

    Google Scholar 
    29.Callaghan, A. et al. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 18, 1–5 (2020).Article 

    Google Scholar 
    30.Cameron, R. W. et al. Where the wild things are! Do urban green spaces with greater avian biodiversity promote more positive emotions in humans?. Urban Ecosyst. 23, 301–317 (2020).Article 

    Google Scholar 
    31.Robinson, J. M., Jorgensen, A., Cameron, R. & Brindley, P. Let nature be thy medicine: A socioecological exploration of green prescribing in the UK. Int. J. Environ. Res. Public Health 17, 3460 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    32.Yeh, C. T., Cheng, Y. Y. & Liu, T. Y. Spatial characteristics of urban green spaces and human health: An exploratory analysis of canonical correlation. Int. J. Environ. Res. Public Health 17, 3227 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    33.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Franconieri, F. et al. Rothia spp. infective endocarditis: A systematic literature review. Méd. Maladies Infect. 35, 1–8 (2020).
    Google Scholar 
    35.Iljazovic, A. et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol. 14, 1–12 (2020).
    Google Scholar 
    36.Robinson, J. M. & Jorgensen, A. Rekindling old friendships in new landscapes: The environment–microbiome–health axis in the realms of landscape research. People Nat. 2, 339–349 (2020).Article 

    Google Scholar 
    37.Baruch, Z. et al. Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecol. 47, 100939 (2020).Article 

    Google Scholar 
    38.Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 20, 20 (2020).
    Google Scholar 
    39.Honeker, L. K. et al. Gut microbiota from amish but not hutterite children protect germ-free mice from experimental asthma. In D92. The Microbiome and Lung Disease A7022–A7022 (American Thoracic Society, 2019).
    Google Scholar 
    40.Roslund, M. I. et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, 2578 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    41.Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. MSystems 2, 6 (2017).Article 

    Google Scholar 
    42.Chen, J., Jin, S. & Du, P. Roles of horizontal and vertical tree canopy structure in mitigating daytime and night-time urban heat island effects. Int. J. Appl. Earth Obs. Geoinf. 89, 102060 (2020).Article 

    Google Scholar 
    43.Straka, T. M., Wolf, M., Gras, P., Buchholz, S. & Voigt, C. C. Tree cover mediates the effect of artificial light on urban bats. Front Ecol. Evol. 7, 91 (2019).Article 

    Google Scholar 
    44.Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 20, 20 (2020).
    Google Scholar 
    45.Astell-Burt, T. & Feng, X. Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM Popul. Health 10, 100497 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Woo, J. & Lee, C. J. Sleep-enhancing effects of phytoncide via behavioral, electrophysiological, and molecular modeling approaches. Exp. Neurobiol. 29, 120 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Ross, S. et al. i-Tree eco analysis of landscape vegetation on remediated areas of oak ridge national laboratory. Open J. Forest. 10, 412 (2020).Article 

    Google Scholar 
    48.Robinson, J. M., Mills, J. G. & Breed, M. F. Walking ecosystems in microbiome-inspired green infrastructure: An ecological perspective on enhancing personal and planetary health. Challenges 9, 40 (2018).Article 

    Google Scholar 
    49.Watkins, H., Robinson, J. M., Breed, M. F., Parker, B. & Weinstein, P. Microbiome-inspired green infrastructure: A toolkit for multidisciplinary landscape design. Trends Biotechnol. 20, 20 (2020).
    Google Scholar 
    50.Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol. 9, 84 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Abrego, N. et al. Fungal communities decline with urbanization—more in air than in soil. ISME J. 20, 1–10 (2020).
    Google Scholar 
    52.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.JNCC. 2013. Handbook for Phase 1 Habitat Surveys. https://data.jncc.gov.uk/data/9578d07b-e018-4c66-9c1b-47110f14df2a/Handbook-Phase1-HabitatSurvey-Revised-2016.pdf. Accessed 28 Sep 2020.55.Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. MBio 6, 02527–02614 (2015).Article 
    CAS 

    Google Scholar 
    56.Mbareche, H., Veillette, M., Pilote, J., Létourneau, V. & Duchaine, C. Bioaerosols play a major role in the nasopharyngeal microbiota content in agricultural environment. Int. J. Environ. Res. Public Health 16, 1375 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    57.Dettwyler, K. A. A time to wean: The hominid blueprint for the natural age of weaning in modern human populations. In Breastfeeding 39–74 (Routledge, 2017).
    Google Scholar 
    58.Jelenkovic, A. et al. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts. Sci. Rep. 6, 1–3 (2016).Article 

    Google Scholar 
    59.Milani, C. et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81, 00036–00117 (2017).Article 

    Google Scholar 
    60.RCPCH. Growth Charts. 2020. https://www.rcpch.ac.uk/resources/uk-who-growth-charts-2-18-years. Accessed on 21 Jan 2020.61.Bae, S., Lyons, C. & Onstad, N. A culture-dependent and metagenomic approach of household drinking water from the source to point of use in a developing country. Water Res. X. 2, 100026 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, 61217 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    63.Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 9, 107 (2019).Article 
    CAS 

    Google Scholar 
    64.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Wickham, H., & Wickham, MH. . The ggplot package. (2007).66.Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H. H., Szoecs, E., & Wagner, E. The vegan package in R. Online. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed on 20 Sep 2020.67.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Revel, W. The Psych R Package. 2020. https://cran.r-project.org/web/pakages/psych/psych.pdf. Accessed on 20 Sep 2020.69.Canty, A, & Ripley, B. The Boot R Package. 2020. https://cran.r-project.org/web/packages/boot/boot.pdf. Accessed on 20 Sep 2020.70.Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 9, 1002687 (2012).Article 
    CAS 

    Google Scholar 
    71.Csárdi, G. The igraph Package in R. Online. 2020. https://cran.r-project.org/web/packages/igraph/igraph.pdf. Accessed on 10 Aug 20.72.Cusack, L., Larkin, A., Carozza, S. E. & Hystad, P. Associations between multiple green space measures and birth weight across two US cities. Health Place 47, 36–43 (2017).PubMed 
    Article 

    Google Scholar 
    73.Klompmaker, J. O. et al. Green space definition affects associations of green space with overweight and physical activity. Environ Res. 160, 531–540 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Lee, J. Y. et al. Preventive effect of residential green space on infantile atopic dermatitis associated with prenatal air pollution exposure. Int. J. Environ. Res. Public Health 15, 102 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    75.i-Tree Canopy. i-Tree Canopy. 2020. https://canopy.itreetools.org/. Accessed on 15 May 2020.76.Richardson, J. J. & Moskal, L. M. Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban Forest. Urban Green. 13, 152–157 (2014).Article 

    Google Scholar 
    77.Soltani, A. & Sharifi, E. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Front Arch. Res. 6, 529–538 (2017).
    Google Scholar  More

  • in

    Forests that float in the clouds are drifting away

    Mist wafts through the trees at the Monteverde Cloud Forest Biological Preserve in Costa Rica. Cloud forests around the world are threatened by development, wood collection and climate change. Credit: Stefano Paterna/Alamy

    Conservation biology
    04 May 2021
    Forests that float in the clouds are drifting away

    Tropical cloud forests are safe havens for a vast range of creatures and plants, but they are under siege around the globe.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Remote habitats called tropical cloud forests, which cling to misty mountains and tap humid air for water, are in decline. So says a global analysis also reporting that cloud forests, despite occupying just 0.4% of Earth’s land, harbour around 15% of the global biodiversity of birds, mammals, amphibians and tree ferns.Dirk Karger at the Swiss Federal Institute for Forest, Snow and Landscape Research in Birmensdorf, Walter Jetz at Yale University in New Haven, Connecticut, and their colleagues created habitat-prediction models that incorporate remote-sensing data on cloud cover and other conditions to predict the coverage of tropical cloud forests worldwide. They then studied satellite imagery of land cover from 2001 to 2018 to determine the rate of cloud-forest loss and analysed how this loss would affect 3,700 species living in this ecosystem.The team estimates that more than 15,000 square kilometres of tropical cloud forest — 2.4% of the global total — were lost during the 18-year period. Africa and the Americas had the greatest losses. The authors note that the establishment of protected areas did little to halt the loss of habitat and its biodiversity, highlighting the urgent need for other safeguards.

    Nature Ecol. Evol. (2021)

    Conservation biology More

  • in

    Intrataxonomic trends in herbivore enamel δ13C are decoupled from ecosystem woody cover

    1.Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).Article 

    Google Scholar 
    2.Kingston, J. D. Shifting adaptive landscapes: progress and challenges in reconstructing early hominid environments. Am. J. Phys. Anthropol. 134, 20–58 (2007).Article 

    Google Scholar 
    3.Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci. 43, 405–429 (2015).CAS 
    Article 

    Google Scholar 
    4.Campisano, C. J. et al. The Hominin sites and Paleolakes Drilling Project: high-resolution paleoclimate records from the East African Rift system and their implications for understanding the environmental context of hominin evolution. PaleoAnthropology 2017, 1–43 (2017).
    Google Scholar 
    5.Lupien, R. L. et al. Vegetation change in the Baringo Basin, East Africa across the onset of Northern Hemisphere glaciation 3.3–2.6 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 570, 109426 (2019).Article 

    Google Scholar 
    6.Yost, C. L. et al. Phytoliths, pollen, and microcharcoal from the Baringo Basin, Kenya reveal savanna dynamics during the Plio-Pleistocene transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 570, 109779 (2020).Article 

    Google Scholar 
    7.Reed, K. E. Paleoecological patterns at the Hadar hominin site, Afar regional state, Ethiopia. J. Hum. Evol. 54, 743–768 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kovarovic, K., Su, D. F., Lintulaakso, K. in Methods in Paleoecology (eds Croft, D. A., Su. D. F. & Simpson, S. W.) 351–372 (Springer, 2018).9.Barr, W. A. in Methods in Paleoecology (eds Croft, D. A., Su. D. F. & Simpson, S. W.) 339–349 (Springer, 2018).10.Fortelius, M. et al. An ecometric analysis of the fossil mammal record of the Turkana Basin. Philos. Trans. R. Soc. Lond. B 371, 20150232 (2016).Article 

    Google Scholar 
    11.Polly, P. D. et al. History matters: ecometrics and integrative climate change biology. Proc. R. Soc. Lond. B 278, 1131–1140 (2011).
    Google Scholar 
    12.Wang, Y. & Cerling, T. E. A model of fossil tooth enamel and bone diagenesis: implications for stable isotope studies and paleoenvironment reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 281–289 (1994).Article 

    Google Scholar 
    13.Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J. J. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11, 306–318 (1996).Article 

    Google Scholar 
    14.Schoeninger, M. J., Reeser, H. & Hallin, K. Paleoenvironment of Australopithecus anamensis at Allia Bay, East Turkana, Kenya: evidence from mammalian herbivore enamel stable isotopes. J. Anthropol. Archaeol. 22, 200–207 (2003).Article 

    Google Scholar 
    15.Levin, N. E., Simpson, S. W., Quade, J., Cerling, T. E. & Frost, S. R. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. The geology of early humans in the Horn of Africa. Geol. Soc. Am. Spec. Pap. 446, 215–234 (2008).
    Google Scholar 
    16.Levin, N. E., Haile-Selassie, Y., Frost, S. R. & Saylor, B. Z. Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proc. Natl Acad. Sci. USA 112, 12304–12309 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Kingston, J. D. in Paleontology and Geology of Laetoli: Human Evolution in Context (ed. Harrison, T.) 293–328 (Springer, 2011).18.Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl Acad. Sci. USA 112, 11467–11472 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Wynn, J. G. et al. Dietary flexibility of Australopithecus afarensis in the face of paleoecological change during the middle Pliocene: faunal evidence from Hadar, Ethiopia. J. Hum. Evol. 99, 93–106 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Robinson, J. R., Rowan, J., Campisano, C. J., Wynn, J. G. & Reed, K. E. Late Pliocene environmental change during the transition from Australopithecus to Homo. Nat. Ecol. Evol. 1, 0159 (2017).Article 

    Google Scholar 
    21.Ambrose, S. H. & DeNiro, M. J. The isotopic ecology of East African mammals. Oecologia 69, 395–406 (1986).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Sponheimer, M. et al. Diets of southern African Bovidae: stable isotope evidence. J. Mammal. 84, 471–479 (2003).Article 

    Google Scholar 
    24.Tieszen, L. L., Senyimba, M. M., Imbaba, S. K. & Troughton, J. H. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37, 337–350 (1979).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Tiezsen, L. L., Boutton, T., Tesdahl, K. & Slade, N. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for the 13C analysis of diet. Oecologia 57, 32–37 (1983).Article 

    Google Scholar 
    26.O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).Article 

    Google Scholar 
    27.Kingdon, J. et al. Mammals of Africa Vol. 1 (A&C Black, 2013).28.Kingston, J. D. & Harrison, T. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 272–306 (2007).Article 

    Google Scholar 
    29.Patterson, D. B. et al. Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo. Nat. Ecol. Evol. 3, 1048–1056 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Sponheimer, M. & Lee-Thorp, J. A. Using carbon isotope data of fossil bovid communities for palaeoenvironmental reconstruction: research articles: human origins research in South Africa. S. Afr. J. Sci. 99, 273–275 (2003).CAS 

    Google Scholar 
    31.Lee-Thorp, J. A., Sponheimer, M. & Luyt, J. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. J. Hum. Evol. 53, 595–601 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Bedaso, Z., Wynn, J. G., Alemseged, Z. & Geraads, D. Paleoenvironmental reconstruction of the Asbole fauna (Busidima Formation, Afar, Ethiopia) using stable isotopes. Geobios 43, 165–177 (2010).Article 

    Google Scholar 
    33.Bedaso, Z. K., Wynn, J. G., Alemseged, Z. & Geraads, D. Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: implication for Australopithecus afarensis habitat and food resources. J. Hum. Evol. 64, 21–38 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Leichliter, J. N. et al. Small mammal insectivore carbon isotopes as environmental proxies in a South African savanna ecosystem. Am. J. Phys. Anthropol. 159, 206–207 (2016).
    Google Scholar 
    35.Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Marston, C. G. et al. ‘Remote’ behavioural ecology: do megaherbivores consume vegetation in proportion to its presence in the landscape? PeerJ 8, e8622 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Hernandez-Fernández, M. & Vrba, E. S. Plio-Pleistocene climatic change in the Turkana Basin (East Africa): evidence from large mammal faunas. J. Hum. Evol. 50, 595–626 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Lintulaakso, K. & Kovarovic, K. Diet and locomotion, but not body size, differentiate mammal communities in worldwide tropical ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 454, 20–29 (2016).Article 

    Google Scholar 
    39.Barr, W. A. Bovid locomotor functional trait distributions reflect land cover and annual precipitation in sub-Saharan Africa. Evol. Ecol. Res. 18, 253–269 (2017).
    Google Scholar 
    40.Eronen, J. T. et al. Precipitation and large herbivorous mammals I: estimates from present-day communities. Evol. Ecol. Res. 12, 217–233 (2010).
    Google Scholar 
    41.Eronen, J. T. et al. Precipitation and large herbivorous mammals II: application to fossil data. Evol. Ecol. Res. 12, 235–248 (2010).
    Google Scholar 
    42.Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.White, T. D. et al. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326, 67–93 (2009).Article 
    CAS 

    Google Scholar 
    44.Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proc. Natl Acad. Sci. USA 107, 19691–19695 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Du, A., Robinson, J. R., Rowan, J., Lazagabaster, I. A. & Behrensmeyer, A. K. Stable carbon isotopes from paleosol carbonate and herbivore enamel document differing paleovegetation signals in the eastern African Plio-Pleistocene. Rev. Palaeobot. Palynol. 261, 41–52 (2019).Article 

    Google Scholar 
    47.Brown, F. H., McDougall, I. & Gathogo, P. N. in The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 7–20 (Springer, 2013).48.McDougall, I. et al. New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo–Turkana Basin, East Africa. J. Geol. Soc. 169, 213–226 (2012).CAS 
    Article 

    Google Scholar 
    49.Herries, A. I. et al. in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 21–40 (Springer, 2013).50.Pickering, R. et al. U–Pb-dated flowstones restrict South African early hominin record to dry climate phases. Nature 565, 226–229 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Erena, M. G., Bekele, A. & Debella, H. J. Diet composition of forest inhabiting Cape buffalo (Syncerus caffer caffer) in western Ethiopia. Int. J. Ecol. Environ. Sci. 45, 165–178 (2019).
    Google Scholar 
    52.Pianka, E. R. in Theoretical Ecology. Principles and Applications (ed. May, R. M.) 114–141 (Blackwell Scientific, 1976).53.Schoener, T. W. The controversy over interspecific competition: despite spirited criticism, competition continues to occupy a major domain in ecological thought. Am. Sci. 70, 586–595 (1982).
    Google Scholar 
    54.Gordon, I. J. & Prins, H. H. T. in The Ecology of Browsing and Grazing (eds Gordon, I. J. & Prins, H. H. T.) 309–321 (Springer, 2008).55.O’Kane, C. A., Duffy, K. J., Page, B. R. & Macdonald, D. W. Effects of resource limitation on habitat usage by the browser guild in Hluhluwe-iMfolozi Park, South Africa. J. Trop. Ecol. 29, 39–47 (2013).Article 

    Google Scholar 
    56.Codron, J. et al. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772 (2005).Article 

    Google Scholar 
    57.Codron, D., Codron, J., Lee-thorp, A. J., Sponheimer, M. & Brink, S. J. Dietary variation in impala Aepyceros melampus recorded by carbon isotope composition of feces. Acta Zool. Sin. 52, 1015–1025 (2006).CAS 

    Google Scholar 
    58.Uno, K. T. et al. High-resolution stable isotope profiles of modern elephant (Loxodonta africana) tusk dentin and tail hair from Kenya: implications for identifying seasonal variability in climate, ecology, and diet in ancient proboscideans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109962 (2020).Article 

    Google Scholar 
    59.Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 6355–6363 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Owen-Smith, R. N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).61.Uno, K. T. et al. Forward and inverse methods for extracting climate and diet information from stable isotope profiles in proboscidean molars. Quat. Intern. 557, 92–109 (2020).Article 

    Google Scholar 
    62.White, F. The Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa (3 plates), 1:5,000,000 (UNESCO, 1983).63.Uno, K. T. et al. A Pleistocene palaeovegetation record from plant wax biomarkers from the Nachukui Formation, West Turkana, Kenya. Philos. Trans. R. Soc. Lond. B 371, 20150235 (2016).Article 
    CAS 

    Google Scholar 
    64.Behrensmeyer, A. K., Kidwell, S. M. & Gastaldo, R. A. Taphonomy and paleobiology. Paleobiology 26, 103–147 (2000).Article 

    Google Scholar 
    65.Faith, J. T., Du, A. & Rowan, J. Addressing the effects of sampling on ecometric-based paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol 528, 175–185 (2019).Article 

    Google Scholar 
    66.Shorrocks, B. & Bates, W. The Biology of African Savannahs (Oxford Univ. Press, 2015).67.Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18, 227–248 (1991).Article 

    Google Scholar 
    68.Cornwell, W. K. et al. Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. Glob. Ecol. Biogeogr. 27, 1056–1067 (2018).Article 

    Google Scholar 
    69.Luyt, J., Hare, V. J. & Sealy, J. The relationship of ungulate δ13C and environment in the temperate biome of southern Africa, and its palaeoclimatic application. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 282–291 (2019).Article 

    Google Scholar 
    70.Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2020); www.protectedplanet.net71.ArcGIS Desktop Release 10 (Environmental Systems Research Institute, 2012).72.Ogutu, J. et al. Changing wildlife populations in Nairobi national park and adjoining Athi-Kaputiei plains: collapse of the migratory wildebeest. Open Conserv. Biol. J. 7, 11–26 (2013).Article 

    Google Scholar 
    73.Forest Atlas of the Democratic Republic of the Congo (Ministry of Environment and Sustainable Development of the Democratic Republic of the Congo and World Resources Institute, 2020); https://www.wri.org/resources/maps/forest-atlas-democratic-republic-congo74.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/75.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). More

  • in

    Adaptation to chronic drought modifies soil microbial community responses to phytohormones

    1.Bardgett, R. D. Plant-soil interactions in a changing world. F1000 Biol. Rep. 3, 16 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Faure, D., Vereecke, D. & Leveau, J. H. Molecular communication in the rhizosphere. Plant Soil 321, 279–303 (2009).CAS 
    Article 

    Google Scholar 
    3.de Zelicourt, A., Al-Yousif, M. & Hirt, H. Rhizosphere microbes as essential partners for plant stress tolerance. Mol. Plant 6, 242–245 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).Article 

    Google Scholar 
    5.Jones, P., Garcia, B., Furches, A., Tuskan, G. & Jacobson, D. Plant host-associated mechanisms for microbial selection. Front. Plant Sci. 10, 862 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.de Vries, F. T. et al. Changes in root‐exudate‐induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. N. Phytol. 224, 132–145 (2019).Article 
    CAS 

    Google Scholar 
    7.Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. & Belimov, A. A. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157, 361–379 (2010).CAS 
    Article 

    Google Scholar 
    8.Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F. & Hashem, A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front. Microbiol. 8, 2104 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Xu, L. & Coleman-Derr, D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr. Opin. Microbiol. 49, 1–6 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Wittenmeyer, L. & Merbach, W. Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. J. Plant Nutr. Soil Sci. 168, 531–540 (2005).Article 
    CAS 

    Google Scholar 
    12.Borghi, L., Kang, J., Ko, D., Lee, Y. & Martinoia, E. The role of ABCG-type ABC transporters in phytohormone transport. Biochem. Soc. Trans. 43, 924–930 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    14.Hamer, U. & Marschner, B. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol. Biochem. 37, 445–454 (2005).CAS 
    Article 

    Google Scholar 
    15.Mondini, C., Cayuela, M. L., Sanchez-Monedero, M. A., Roig, A. & Brookes, P. C. Soil microbial biomass activation by trace amounts of readily available substrate. Biol. Fertil. Soils 42, 542–549 (2006).Article 

    Google Scholar 
    16.Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    17.Fahad, S. et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22, 4907–4921 (2015).Article 

    Google Scholar 
    18.Speirs, J., Binney, A., Collins, M., Edwards, E. & Loveys, B. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). J. Exp. Bot. 64, 1907–1916 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.McAdam, S. A., Brodribb, T. J. & Ross, J. J. Shoot‐derived abscisic acid promotes root growth. Plant Cell Environ. 39, 652–659 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ibort, P., Molina, S., Ruiz-Lozano, J. M. & Aroca, R. Molecular insights into the involvement of a never ripe receptor in the interaction between two beneficial soil bacteria and tomato plants under well-watered and drought conditions. Mol. Plant Microbe Interact. 31, 633–650 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Timmusk, S. et al. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6, e17968 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Ghosh, D., Gupta, A. & Mohapatra, S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis 77, 265–278 (2019).CAS 
    Article 

    Google Scholar 
    23.Carvalhais, L. C., Dennis, P. G. & Schenk, P. M. Plant defence inducers rapidly influence the diversity of bacterial communities in a potting mix. Appl. Soil Ecol. 84, 1–5 (2014).Article 

    Google Scholar 
    24.Olds, C. L., Glennon, E. K. & Luckhart, S. Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes Infect. 20, 484–492 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hartung, W., Sauter, A., Turner, N. C., Fillery, I. & Heilmeier, H. Abscisic acid in soils: what is its function and which factors and mechanisms influence its concentration? Plant Soil 184, 105–110 (1996).CAS 
    Article 

    Google Scholar 
    26.Belimov, A. A. et al. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol. Biochem. 74, 84–91 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Glick, B. R., Penrose, D. M. & Li, J. P. A model for the lowering of plant ethylene concentrations by plant growth-promoting rhizobacteria. J. Theor. Biol. 190, 63–68 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20, 219–229 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.de Ollas, C. & Dodd, I. C. Physiological impacts of ABA–JA interactions under water-limitation. Plant Mol. Biol. 91, 641–650 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Carvalhais, L. C. et al. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol. Plant Microbe Interact. 28, 1049–1058 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Ngumbi, E. & Kloepper, J. Bacterial-mediated drought tolerance: current and future prospects. Appl. Soil Ecol. 105, 109–125 (2016).Article 

    Google Scholar 
    32.Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kudoyarova, G. et al. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front. Plant Sci. 10, 1368 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Wallenstein, M. D. & Hall, E. K. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109, 35–47 (2012).Article 

    Google Scholar 
    35.Martiny, J. B. et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 11, 490–499 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Grime, J. P. et al. The response of two contrasting limestone grasslands to simulated climate change. Science 289, 762–765 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Fridley, J. D., Lynn, J. S., Grime, J. P. & Askew, A. P. Longer growing seasons shift grassland vegetation towards more-productive species. Nat. Clim. Change 6, 865–868 (2016).Article 

    Google Scholar 
    38.Sayer, E. J. et al. Links between soil microbial communities and plant traits in a species‐rich grassland under long‐term climate change. Ecol. Evol. 7, 855–862 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Trinder, S., Askew, A. P. & Whitlock, R. Climate‐driven evolutionary change in reproductive and early‐acting life‐history traits in the perennial grass Festuca ovina. J. Ecol. 108, 1398–1410 (2020).CAS 
    Article 

    Google Scholar 
    40.Fridley, J. D., Grime, J. P., Askew, A. P., Moser, B. & Stevens, C. J. Soil heterogeneity buffers community response to climate change in species‐rich grassland. Glob. Change Biol. 17, 2002–2011 (2011).Article 

    Google Scholar 
    41.Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress‐response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).CAS 
    Article 

    Google Scholar 
    43.Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).CAS 
    Article 

    Google Scholar 
    44.Chanclud, E. & Morel, J. B. Plant hormones: a fungal point of view. Mol. Plant Pathol. 17, 1289–1297 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Sembdner, G. A. P. B. & Parthier, B. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Biol. 44, 569–589 (1993).CAS 
    Article 

    Google Scholar 
    46.Eng, F. et al. Jasmonic acid biosynthesis by fungi: derivatives, first evidence on biochemical pathways and culture conditions for production. PeerJ 9, e10873 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Fuchslueger, L. et al. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J. Ecol. 104, 1453–1465 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).Article 

    Google Scholar 
    49.Waring, B. G., Averill, C. & Hawkes, C. V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol. Lett. 16, 887–894 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Staddon, P. L. et al. Mycorrhizal fungal abundance is affected by long‐term climatic manipulations in the field. Glob. Change Biol. 9, 186–194 (2003).Article 

    Google Scholar 
    51.Van Gestel, M., Merckx, R. & Vlassak, K. Microbial biomass responses to soil drying and rewetting: the fate of fast-and slow-growing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123 (1993).Article 

    Google Scholar 
    52.Belimov, A. A. et al. Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. N. Phytol. 181, 413–423 (2009).CAS 
    Article 

    Google Scholar 
    53.Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann. Microbiol. 65, 1627–1637 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Kakumanu, M. L., Ma, L. & Williams, M. A. Drought-induced soil microbial amino acid and polysaccharide change and their implications for C-N cycles in a climate change world. Sci. Rep. 9, 1–12 (2019).CAS 

    Google Scholar 
    56.Puertolas, J., Alcobendas, R., Alarcón, J. J. & Dodd, I. C. Long‐distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone. Plant Cell Environ. 36, 1465–1475 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Axtell, C. A. & Beattie, G. A. Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl. Environ. Microbiol. 68, 4604–4612 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Wesener, F. & Tietjen, B. Primed to be strong, primed to be fast: modeling benefits of microbial stress responses. FEMS Microbiol. Ecol. 95, 114 (2019).Article 
    CAS 

    Google Scholar 
    59.Andrade‐Linares, D. R., Lehmann, A. & Rillig, M. C. Microbial stress priming: a meta‐analysis. Environ. Microbiol. 18, 1277–1288 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Grime, J. P. et al. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl Acad. Sci. USA 105, 10028–10032 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Giannetta, B., Plaza, C., Zaccone, C., Vischetti, C. & Rovira, P. Ecosystem type effects on the stabilization of organic matter in soils: combining size fractionation with sequential chemical extractions. Geoderma 353, 423–434 (2019).CAS 
    Article 

    Google Scholar 
    62.Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Tworkoski, T., Wisniewski, M. & Artlip, T. Application of BABA and s-ABA for drought resistance in apple. J. Appl. Hortic. 13, 95–90 (2011).Article 

    Google Scholar 
    64.Rohwer, C. L. & Erwin, J. E. Horticultural applications of jasmonates: a review. J. Hortic. Sci. Biotechnol. 83, 283–304 (2008).CAS 
    Article 

    Google Scholar 
    65.Creamer, R. E. et al. An inter-laboratory comparison of multi-enzyme and multiple substrate-induced respiration assays to assess method consistency in soil monitoring. Biol. Fertil. Soils 45, 623–633 (2009).CAS 
    Article 

    Google Scholar 
    66.Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03. (U.S. Department of Agriculture, Natural Resources Conservation Service, 2019).67.Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).Article 

    Google Scholar 
    68.Bardgett, R. D. & McAlister, E. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).Article 

    Google Scholar 
    69.Bardgett, R. D., Hobbs, P. J. & Frostegård, Å. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264 (1996).Article 

    Google Scholar 
    70.Zhu, Z. et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil-part 2: turnover and microbial utilization. Plant Soil 416, 243–257 (2017).CAS 
    Article 

    Google Scholar 
    71.R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).72.Bates, D. M., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
    Google Scholar 
    73.Cohen, J. The effect size index: d. Stat. Power Anal. Behav. Sci. 2, 284–288 (1988).
    Google Scholar 
    74.Anderson, T. H. & Domsch, A. K. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. 25, 393–395 (1993).Article 

    Google Scholar 
    75.Pinheiro, J.C., Bates, D.M. Mixed-Effects Models in S and S-PLUS (Springer, 2000).76.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).Article 

    Google Scholar 
    77.Sayer, E. J. et al. Data from: Adaptation to chronic drought modifies soil microbial community responses to phytohormones. figshare https://doi.org/10.6084/m9.figshare.14130065 (2021). More

  • in

    The game changing role of traditional ecological knowledge based Agri amendment systems in nutrient dynamics in the stress prone semi arid tropics

    1.Andriamananjara, A. et al. Farmyard manure improves phosphorus use efficiency in weathered P deficient soil. Nutr. Cycl. Agroecosyst. 115(3), 407–425 (2019).CAS 
    Article 

    Google Scholar 
    2.Arora, N. K. & Mishra, J. Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl. Soil. Ecol. 107, 405–407 (2016).Article 

    Google Scholar 
    3.Bellakki, M. A. & Badanur, V. P. Long-term effect of integrated nutrient management on properties of Vertisol under dryland agriculture. J. Indian Soc. Soil Sci. 45, 438–442 (1997).CAS 

    Google Scholar 
    4.Bowman, R. A. A rapid method to determine phosphorus in soils. Soil Sci. Soc. Am. J. 52, 1301–1304 (1988).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Bulluck, L. R., Brosius, M., Evanylo, G. K. & Ristaino, J. B. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 19(2), 147–160 (2002).Article 

    Google Scholar 
    6.CBD. Convention on Biological Diversity. Traditional knowledge and the Convention on Biological Diversity; Article 8(j) Traditional Knowledge, Innovations and Practices (2016).7.Das, B. B. & Dkhar, M. S. Rhizosphere microbial populations and physico chemical properties as affected by organic and inorganic farming practices. Am.-Eur. J. Agric. Environ. Sci. 10(2), 140–150 (2011).
    Google Scholar 
    8.De Oliveira Freitas, N., Yano-Melo, A.M., da Silva, F.S.B., de Melo, N.F., & Maia, L. C. Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil. Sci. Agric. (Piracicaba, Braz.) 68(2), 223–229 (2011).9.Fabre, A., Pinay, G. & Ruffinoni, C. Seasonal changes in inorganic and organic phosphorus in the soil of a riparian forest. Biogeochem. 35, 419–432 (1996).Article 

    Google Scholar 
    10.Gangopadhyay, S. K., Sarkar, D., Sahu, A. K. & Das, K. Forms and distribution of potassium in some soils of Ranchi Plateau. J. Indian Soc. Soil Sci. 53(3), 413–416 (2005).CAS 

    Google Scholar 
    11.Gupta, P. K. Soil, Plant, Water and Fertilizer Analysis (Agrobios, 2009).
    Google Scholar 
    12.Ishaq, M., Ibrahim, M. & Lal, R. Tillage effect on soil properties at different levels of fertilizer application in Punjab. Pak. Soil Tillage Res. 68, 93–99 (2002).Article 

    Google Scholar 
    13.Jackson, M. L. Soil Chemical Analysis 111–203 (Prentice Hall India P Limited, 1967).
    Google Scholar 
    14.Jagadeesan, S., Kumar, M. D., & Sivamohan, M. V. K. (2016). Positive Externalities of Surface Irrigation on Farm Wells and Drinking Water Supplies in Large Water Systems: The Case of Sardar Sarovar Project. In: Rural Water Systems for Multiple Uses and Livelihood Security (pp. 229–252). Elsevier.15.Kamali, F. P., Borges, J. A., Meuwissen, M. P., de Boer, I. J. & Lansink, A. G. O. Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis. Agric. Syst. 157, 118–128 (2017).Article 

    Google Scholar 
    16.Kang, B. T. Nitrogennitrogen cycling in the multiple cropping systems. In Advances in Nitrogen Cycling in Agriculture Ecosystems (ed. Wilson, J. R.) 333–348 (CAB International, 1988).
    Google Scholar 
    17.Klerkx, L. & Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways?. Glob. Food Secur. 24, 100347 (2020).Article 

    Google Scholar 
    18.Lawanprasert, A., Kunket, K., Arayarangsarit, L., and Prasertsak, A. Comparison between Conventional and Organic Paddy Fields in Irrigated Rice Ecosystem. 4th INWEPF Steering Meeting and Symposium, 2, 1–9 (2007).19.Maurya, D.M., Thakkar, M.G., Chamyal, L.S. Quaternary geology of the arid zone of Kachchh: Terra incognita. Proc. Ind. Nat. Sci. Acad. 69, A, No.2, March 03. pp. 123–135 (2003).20.McGrath, D. A., Comeford, N. B. & Duryea, M. L. Litter dynamics and monthly fluctuations in soil phosphorus availability in an Amazonian agroforest. Forest Ecol. Manag. 131, 167–181 (2000).Article 

    Google Scholar 
    21.Mpai, T., Jaiswal, S.K., & Dakora, F.D. Accumulation of phosphorus and carbon and the dependency on biological N-2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa. SYMBIOSIS (2020).22.NBSS and LUP circular. Guide to land use planning for kachchh and north Gujarat. National bureau of soil science and land use planning, western zone, Udaipur, 2005.23.Olsen, S. R., Cole, C, V., Watanabe, F. S., and Dean, L. A.. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. National Agricultural Society, USA. 939 (1954).24.Palekar, S. The Philosophy of Spiritual Farming. Zero Budget Natural Farming Research, Development & Extension Movement, Amravati (Maharashtra) (2006).25.Parry ML et al. (eds). Cross-chapter case studies. Indigenous knowledge for adaptation to climate change. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007).26.Pasricha, N. S. Potassiumpotassium dynamics in soils in relation to crop nutrition. J. Indian Soc. Soil Sci. 50, 333–334 (2002).CAS 

    Google Scholar 
    27.Patidar, A. K., Maurya, D. M., Thakkar, M. G. & Chamyal, L. S. Fluvial geomorphology and neotectonic activity based on field and GPR data Katrol hill range, Kachchh, western India. Quaternary Int. 159(2007), 74–92 (2007).ADS 
    Article 

    Google Scholar 
    28.Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies, 1992. EPA/600/R-92/128 July.29.Reganold, J. P. et al. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE 5(9), e12346. https://doi.org/10.1371/journal.pone.0012346 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Saxena, R. C., Chaudhary, S. L. & Nene, Y. L. A Textbook on Ancient History of Indian Agriculture, Asian Agri-History Foundation (AAHF) (Secunderabad; and Rajasthan chapter of AAHF, 2009).
    Google Scholar 
    31.Sharma S.B., and Gobi, T.A. Impact of drought on soil and microbial diversity in different agro ecosystems of the semi arid zones. In: Plant, Soil and Microbes – Interactions and Implications in Crop Science (Editors: Dr. Khalid Rehman Hakeem, Dr.MohdSayeedAkhtarandDr.Siti Nor Akmar Abdullah), Springer International Publishing Switzerland. (ISBN 978–3–319–27453–9 ISBN 978–3–319–27455–3 (eBook) DOI https://doi.org/10.1007/978-3-319-27455-3) (2016).32.Sharma, S.B. The relevance of Traditional Ecological Knowledge (TEK) in agricultural sustainability of the semi arid tropics. In:Adaptive Soil Management: from theory to practices. (Rakshit A, Abhilash P. C., Singh H. B., Ghosh S.(Eds.). Springer nature, Singapore. ISBN 978–981–10–3637–8 ISBN 978–981–10–3638–5 (eBook) (2017a). https://doi.org/10.1007/978-981-10-3638-533.Sharma S. B. Traditional Ecological Knowledge-Based Practices and Bio-formulations: Key to Agricultural Sustainability. In: Probiotics in Agroecosystem (Eds. Vivek Kumar, Manoj Kumar, Shivesh Sharma). Springer Nature. ISBN 978–981–10–4058–0 ISBN 978–981–10–4059–7 (eBook). DOI https://doi.org/10.1007/978-981-10-4059-7 (2017b)34.Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. & Thivakaran, G. A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus. 2, 587. https://doi.org/10.1186/2193-1801-2-587 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Subbiah, B. V. & Asija, G. L. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 25, 259–260 (1956).CAS 

    Google Scholar 
    36.Sugiyama, A., Vivanco, J. M., Jayanty, S. S. & Manter, D. K. Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant. Dis. 94, 1329–1335 (2010).CAS 
    Article 

    Google Scholar 
    37.Tandon, H. L. S.. Phosphorusphosphorus research and agriculture production in India. New Delhi: Fertilization Development and Consultation Organisation 160p (1987).38.The UN Sustainable Development Goals. United Nations, New York, 2015. Available at :http://www.un.org/sustainabledevelopment/summit/.39.Topp, C. F., Watson, C. A., & Stockdale, E. Utilising the concept of nutrients as a currency within organic farming system. In Proceedings of the UK Organic Research 2002 Conference (pp. 157–160). Organic Centre Wales, Institute of Rural Studies, University of Wales Aberystwyth (2002)..40.United Nations World Population Prospects, 2019. World Population Prospects (2019)41.Walkley, A. & Black, I. A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Sharma, S. B. & Thivakaran, G. A. Microbial dynamics in traditional eco-knowledge vis-à-vis chemical-intensive agri-amendment systems of stress prone semi-arid tropics. Appl. Soil. Ecol. 155, 103668 (2020).Article 

    Google Scholar  More

  • in

    Co-existence of AMF with different putative MAT-alleles induces genes homologous to those involved in mating in other fungi: a reply to Malar et al.

    Although Malar et al. “do not exclude the possibility that the genes identified by Mateus et al. are involved in mating,” they qualify the homology inference between genes differentially expressed in the co-inoculation treatment and genes involved in mating in other fungal species as “spurious evolutionary relationships” or “not the best ortholog”. Those statements imply that they attach no importance to the demonstrated sequence homology relationships identified in Mateus et al. Orthology does not necessarily imply conservation of gene function and genes with equivalent functions are not necessarily orthologs [3]. Therefore, it is misleading to assume that two genes have the same function when interpreting the role of a “best candidate ortholog” identified in silico. Moreover, relying only on an in silico search for exploring orthologs can lead to serious problems for inferring function as none of the search algorithms are free from bias if subfunctionalization or neofunctionalization events occurred among the homologs.Malar et al. have not considered, or have misunderstood, the experimental evidence on gene expression in interpreting their homology search. It is not surprising that their “best homologs” were not upregulated, because we already saw that those genes were not upregulated in the original dataset. Our approach comprised performing an experiment to identify genes that were specifically upregulated when two isolates coexisted in planta. We then identified their putative function by homology. We did not look at whether the genes were the closest orthologs. However, we discussed the limitations of an homology approach to identify gene function [2]. To our surprise, a consistent set of 20 genes was upregulated in the co-inoculation treatment in different host plants, and 9 of these 20 (upregulated in more than one host plant) shared the common feature of homology to genes involved in different steps of mating in other fungal species (Figs. 3 and 4 of Mateus et al.).Malar et al. claim the identification of hundreds of hits of the 18 genes differentially expressed in Mateus et al. “against the high-quality protein databases from the JGI Mycocosm Rhiir2” (referring to the protein database “Rhiir2” of R. irregularis). In fact, Malar et al. compared the 18 genes against “all protein gene catalogs of fungal species from the JGI fungal genomic resource” comprising 1318 taxa. The interpretation of the number of hits on a such large dataset is misleading because if a gene is highly conserved across the fungal kingdom, we would expect hundreds of hits in this database. In contrast, if an R. irregularis gene is highly specific to the Glomeromycotina taxa, we would expect very few hits (because there are less Glomeromycotina genomes in the database). Consequently, the number of hits in Table 1 from Malar et al. reflect the size of the database used and how conserved a given gene is, rather than whether a gene is from a large gene family. Malar et al. identified the so-called “closest ortholog” in R. irregularis of fungal mating genes from other fungal species by showing the “best hit” using OrthoMCL. However, differentiating paralogs from orthologs is a complicated task, in very distant species, especially if the organisms are highly paralogous. A more cautious analysis for each gene, including a confirmation that they are located in similar genomic locations, would lend more certitude that a given gene could be an ortholog. Consequently, the evaluation of RNA expression of their “best hit” remains incomplete in terms of the effort to find the best orthologs. More