1.Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Micro. 2007;5:782–91.CAS
Article
Google Scholar
2.Hansell DA, Carlson CA, Repeta DJ, Schlitzer R. Dissolved organic matter in the ocean a controversy stimulates new insights. Oceanography. 2009;22:202–11.Article
Google Scholar
3.Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci. 2016;113:3143–51.CAS
PubMed
Article
PubMed Central
Google Scholar
4.Benner R, Pakulski JD, Mccarthy M, Hedges JI, Hatcher PG, Pakulski JD, et al. Bulk chemical characteristics of dissolved organic matter in the ocean. Science. 1992;255:1561–4.CAS
PubMed
Article
PubMed Central
Google Scholar
5.Carpenter LJ, Liss PS. On temperate sources of bromoform and other reactive organic bromine gases. J Geophys Res. 2000;105:20539–47.CAS
Article
Google Scholar
6.Mac Monagail M, Cornish L, Morrison L, Araújo R, Critchley AT. Sustainable harvesting of wild seaweed resources. Eur J Phycol. 2017;52:371–90.Article
Google Scholar
7.Abdullah MI, Fredriksen S. Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway. J Mar Biol Assoc UK. 2004;84:887–94.Article
Google Scholar
8.Weigel BL, Pfister CA. The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecology. 2021;102:e03221.PubMed
Article
PubMed Central
Google Scholar
9.Pfister CA, Altabet MA, Weigel BL. Kelp beds and their local effects on seawater chemistry, productivity, and microbial communities. Ecology. 2019;100:e02798.PubMed
Article
PubMed Central
Google Scholar
10.Schapira M, McQuaid CD, Froneman PW. Free-living and particle-associated prokaryote metabolism in giant kelp forests: Implications for carbon flux in a sub-Antarctic coastal area. Estuar Coast Shelf Sci. 2012;106:69–79.CAS
Article
Google Scholar
11.Newell R, Lucas M, Velirnirov B, Seiderer L. Quantitative significance of dissolved organic losses following fragmentation of kelp (Ecklonia maxima and Laminaria pallida). Mar Ecol Prog Ser. 1980;2:45–59.CAS
Article
Google Scholar
12.Lozada M, Diéguez MC, García PE, Bigatti G, Livore JP, Gil MN, et al. Undaria pinnatifida exudates trigger shifts in seawater chemistry and microbial communities from Atlantic Patagonian coasts. bioRxiv 2020; 2020.10.21.349233.13.Kloareg B, Quatrano RS. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol An Annu Rev. 1988;26:259–315.
Google Scholar
14.Gacesa P. Alginates. Carbohydr Polym. 1988;8:161–82.CAS
Article
Google Scholar
15.Rehm BHA. Alginates: biology and applications. Microbiology Monographs. 2009. Springer.16.Martin M, Barbeyron T, Martin R, Portetelle D, Michel G, Vandenbol M. The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Front Microbiol. 2015;6:1–14.Article
Google Scholar
17.Lin JD, Lemay MA, Parfrey LW. Diverse bacteria utilize alginate within the microbiome of the giant kelp Macrocystis pyrifera. Front Microbiol. 2018;9:1–16.Article
Google Scholar
18.Sangwan P, Chen X, Hugenholtz P, Janssen PH. Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl Environ Microbiol. 2004;70:5875–81.CAS
PubMed
PubMed Central
Article
Google Scholar
19.Ji S, Wang B, Lu M, Li F. Defluviitalea phaphyphila sp. nov., a novel thermophilic bacterium that degrades brown algae. Appl Environ Microbiol. 2016;82:868–77.CAS
PubMed
PubMed Central
Article
Google Scholar
20.Thomas F, Barbeyron T, Tonon T, Génicot S, Czjzek M, Michel G. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol. 2012;14:2379–94.CAS
PubMed
Article
PubMed Central
Google Scholar
21.Kabisch A, Otto A, König S, Becher D, Albrecht D, Schüler M, et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803. ISME J. 2014;8:1492–502.CAS
PubMed
PubMed Central
Article
Google Scholar
22.Koch H, Freese HM, Hahnke R, Simon M, Wietz M. Adaptations of Alteromonas sp. 76-1 to polysaccharide degradation: A CAZyme plasmid for ulvan degradation and two alginolytic systems. Front Microbiol. 2019;10:504.PubMed
PubMed Central
Article
Google Scholar
23.Gobet A, Barbeyron T, Matard-Mann M, Magdelenat G, Vallenet D, Duchaud E, et al. Evolutionary evidence of algal polysaccharide degradation acquisition by Pseudoalteromonas carrageenovora 9T to adapt to macroalgal niches. Front Microbiol. 2018;9:1–16.Article
Google Scholar
24.Dudek M, Dieudonné A, Jouanneau D, Rochat T, Michel G, Sarels B, et al. Regulation of alginate catabolism involves a GntR family repressor in the marine flavobacterium Zobellia galactanivorans DsijT. Nucleic Acids Res. 2020;48:7786–7800.CAS
PubMed
PubMed Central
Article
Google Scholar
25.Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92–103.CAS
PubMed
Article
PubMed Central
Google Scholar
26.Thomas F, Bordron P, Eveillard D, Michel G. Gene expression analysis of Zobellia galactanivorans during the degradation of algal polysaccharides reveals both substrate-specific and shared transcriptome-wide responses. Front Microbiol. 2017;8:1808.PubMed
PubMed Central
Article
Google Scholar
27.Zhu Y, Thomas F, Larocque R, Li N, Duffieux D, Cladière L, et al. Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans. Environ Microbiol. 2017;19:2164–81.CAS
PubMed
Article
PubMed Central
Google Scholar
28.Hehemann J-H, Arevalo P, Datta MS, Yu X, Corzett CH, Henschel A, et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat Commun. 2016;7:12860.CAS
PubMed
PubMed Central
Article
Google Scholar
29.Enke TN, Datta MS, Schwartzman J, Cermak N, Schmitz D, Barrere J, et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr Biol. 2019;29:1528–35.CAS
PubMed
Article
PubMed Central
Google Scholar
30.Jain A, Krishnan KP, Begum N, Singh A, Thomas FA, Gopinath A. Response of bacterial communities from Kongsfjorden (Svalbard, Arctic Ocean) to macroalgal polysaccharide amendments. Mar Environ Res. 2020;155:104874.CAS
PubMed
Article
PubMed Central
Google Scholar
31.Mitulla M, Dinasquet J, Guillemette R, Simon M, Azam F, Wietz M. Response of bacterial communities from California coastal waters to alginate particles and an alginolytic Alteromonas macleodii strain. Environ Microbiol. 2016;18:4369–77.CAS
PubMed
Article
PubMed Central
Google Scholar
32.Wietz M, Wemheuer B, Simon H, Giebel H-A, Seibt MA, Daniel R, et al. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans. Environ Microbiol. 2015;17:3822–31.CAS
PubMed
Article
PubMed Central
Google Scholar
33.Musat N, Foster R, Vagner T, Adam B, Kuypers MMM. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev. 2012;36:486–511.CAS
PubMed
Article
PubMed Central
Google Scholar
34.Reintjes G, Arnosti C, Fuchs BM, Amann R. An alternative polysaccharide uptake mechanism of marine bacteria. ISME J. 2017;11:1640–50.CAS
PubMed
PubMed Central
Article
Google Scholar
35.Liu Y, Fang J, Jia Z, Chen S, Zhang L, Gao W. DNA stable-isotope probing reveals potential key players for microbial decomposition and degradation of diatom-derived marine particulate matter. Microbiologyopen. 2020;9:1–24.
Google Scholar
36.Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS
PubMed
PubMed Central
Article
Google Scholar
37.Cunliffe M, Hollingsworth A, Bain C, Sharma V, Taylor JD. Algal polysaccharide utilisation by saprotrophic planktonic marine fungi. Fungal Ecol. 2017;30:135–8.Article
Google Scholar
38.Alonso C, Musat N, Adam B, Kuypers M, Amann R. HISH-SIMS analysis of bacterial uptake of algal-derived carbon in the Río de la Plata estuary. Syst Appl Microbiol. 2012;35:541–8.CAS
PubMed
Article
PubMed Central
Google Scholar
39.Arandia-Gorostidi N, Alonso-Sáez L, Stryhanyuk H, Richnow HH, Morán XAG, Musat N. Warming the phycosphere: differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. Environ Microbiol. 2020;22:1381–96.CAS
PubMed
Article
Google Scholar
40.Thomas F, Le Duff N, Leroux C, Dartevelle L, Riera P. Isotopic labeling of cultured macroalgae and isolation of 13C-labeled cell wall polysaccharides for trophic investigations. Adv Bot Res. 2020;95:1–17.Article
Google Scholar
41.Hardouin K, Burlot AS, Umami A, Tanniou A, Stiger-Pouvreau V, Widowati I, et al. Biochemical and antiviral activities of enzymatic hydrolysates from different invasive French seaweeds. J Appl Phycol. 2014;26:1029–42.CAS
Article
Google Scholar
42.Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS
PubMed
PubMed Central
Article
Google Scholar
43.Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol. 1992;15:593–600.Article
Google Scholar
44.Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology. 1996;142:1097–106.CAS
PubMed
Article
PubMed Central
Google Scholar
45.Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14:136–43.CAS
PubMed
Article
PubMed Central
Google Scholar
46.Pernthaler A, Pernthaler J Fluorescene in situ hybridization for the identification of environmental microbes. In: Hilario E, Mackay J (eds). Methods in Molecular Biology. Totowa, NJ: Humana Press Inc.; 2004. pp 153–64.47.Guerquin-Kern JL, Wu T Di, Quintana C, Croisy A. Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta – Gen Subj. 2005;1724:228–38.CAS
Article
Google Scholar
48.Slodzian G, Daigne B, Girard F, Boust F, Hillion F. Scanning secondary ion analytical microscopy with parallel detection. Biol Cell. 1992;74:43–50.CAS
PubMed
Article
PubMed Central
Google Scholar
49.Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of Image Analysis. Nat Methods. 2012;9:671–5.CAS
PubMed
PubMed Central
Article
Google Scholar
50.Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of single cell assimilation rates from sip-nanosims-derived isotope ratios: a comprehensive approach. Front Microbiol. 2018;9:1–15.Article
Google Scholar
51.Woebken D, Burow LC, Behnam F, Mayali X, Schintlmeister A, Fleming ED, et al. Revisiting N2 fixation in Guerrero Negro intertidal microbial mats with a functional single-cell approach. ISME J. 2015;9:485–96.CAS
PubMed
Article
PubMed Central
Google Scholar
52.Ramond P, Sourisseau M, Simon N, Romac S, Schmitt S, Rigaut-Jalabert F, et al. Coupling between taxonomic and functional diversity in protistan coastal communities. Environ Microbiol. 2019;21:730–49.CAS
PubMed
Article
PubMed Central
Google Scholar
53.Thomas F, Corre E, Cébron A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. ISME J. 2019;13:1814–30.CAS
PubMed
PubMed Central
Article
Google Scholar
54.Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front Microbiol. 2016;7:1–17.Article
Google Scholar
55.Buckley DH, Huangyutitham V, Hsu SF, Nelson TA. Stable isotope probing with 15N achieved by disentangling the effects of genome G+C content and isotope enrichment on DNA density. Appl Environ Microbiol. 2007;73:3189–95.CAS
PubMed
PubMed Central
Article
Google Scholar
56.Birnie G Centrifugal separations in molecular and cell biology. Boston: Butterworth & Co Publishers Ltd.; 1978.57.Thomas F, Dittami SM, Brunet M, Le Duff N, Tanguy G, Leblanc C, et al. Evaluation of a new primer combination to minimize plastid contamination in 16S rDNA metabarcoding analyses of alga‐associated bacterial communities. Environ Microbiol Rep. 2020;12:30–37.CAS
PubMed
Article
PubMed Central
Google Scholar
58.Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11.Article
CAS
Google Scholar
59.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS
PubMed
PubMed Central
Article
Google Scholar
60.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS
PubMed
PubMed Central
Article
Google Scholar
61.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed
PubMed Central
Article
Google Scholar
62.Mcmurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:1–11.Article
CAS
Google Scholar
63.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article
CAS
Google Scholar
64.Youngblut ND, Barnett SE, Buckley DH. HTSSIP: an r package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (sip) experiments. PLoS One. 2018;13:1–8.Article
CAS
Google Scholar
65.Youngblut ND, Barnett SE, Buckley DH. SIPSim: a modeling toolkit to predict accuracy and aid design of DNA-SIP experiments. Front Microbiol. 2018;9:570.PubMed
PubMed Central
Article
Google Scholar
66.Thomas F, Lundqvist LCE, Jam M, Jeudy A, Barbeyron T, Sandström C, et al. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J Biol Chem. 2013;288:23021–37.CAS
PubMed
PubMed Central
Article
Google Scholar
67.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS
PubMed
PubMed Central
Article
Google Scholar
68.Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics. 2008;9:1–15.Article
CAS
Google Scholar
69.Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS
Article
Google Scholar
70.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. DbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS
PubMed
PubMed Central
Article
Google Scholar
71.Barrett K, Lange L. Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). Biotechnol Biofuels. 2019;12:1–21.Article
Google Scholar
72.Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.CAS
PubMed
Article
PubMed Central
Google Scholar
73.El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432.CAS
Article
PubMed
Google Scholar
74.Ferguson RL, Buckley EN, Palumbo AV. Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol. 1984;47:49–55.CAS
PubMed
PubMed Central
Article
Google Scholar
75.Lucas M, Newell R, Velimirov B. Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida) II. Differential utilisation of dissolved organic components from kelp mucilage. Mar Ecol Prog Ser. 1981;4:43–55.CAS
Article
Google Scholar
76.Koop K, Newell R, Lucas M. Biodegradation and carbon flow based on kelp (Ecklonia maxima) debris in a sandy beach microcosm. Mar Ecol Prog Ser. 1982;7:315–26.Article
Google Scholar
77.Barbeyron T, Thomas F, Barbe V, Teeling H, Schenowitz C, Dossat C, et al. Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: Example of the model algae-associated bacterium Zobellia galactanivorans DsijT. Environ Microbiol. 2016;18:4610–27.CAS
PubMed
Article
PubMed Central
Google Scholar
78.Díez-Vives C, Nielsen S, Sánchez P, Palenzuela O, Ferrera I, Sebastián M, et al. Delineation of ecologically distinct units of marine Bacteroidetes in the Northwestern Mediterranean Sea. Mol Ecol. 2019;28:2846–59.PubMed
Google Scholar
79.Balmonte JP, Buckley A, Hoarfrost A, Ghobrial S, Ziervogel K, Teske A, et al. Community structural differences shape microbial responses to high molecular weight organic matter. Environ Microbiol. 2019;21:557–71.CAS
PubMed
Article
Google Scholar
80.Alonso-Sáez L, Díaz-Pérez L, Morán XAG. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ Microbiol. 2015;17:3766–80.PubMed
Article
PubMed Central
Google Scholar
81.Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Ann Rev Mar Sci. 2017;9:231–55.PubMed
Article
PubMed Central
Google Scholar
82.Grote J, Cameron Thrash J, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. MBio. 2012;3:1–13.Article
CAS
Google Scholar
83.Ngugi DK, Stingl U. High-quality draft single-cell genome sequence of the NS5 marine group from the coastal Red Sea. Genome Announc. 2018;6:5–6.
Google Scholar
84.Woyke T, Xie G, Copeland A, González JM, Han C, Kiss H, et al. Assembling the marine metagenome, one cell at a time. PLoS One. 2009;4:e5299.PubMed
PubMed Central
Article
CAS
Google Scholar
85.Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife. 2016;5:1–29.Article
Google Scholar
86.Krüger K, Chafee M, Ben Francis T, Glavina del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed
PubMed Central
Article
CAS
Google Scholar
87.Pei X, Chang Y. Shen J. Cloning, expression and characterization of an endo-acting bifunctional alginate lyase of marine bacterium Wenyingzhuangia fucanilytica. Protein Expr Purif. 2019;154:44–51.CAS
PubMed
Article
PubMed Central
Google Scholar
88.Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, et al. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J. 2015;9:1410–22.CAS
PubMed
Article
PubMed Central
Google Scholar
89.Tanaka R, Shibata T, Miyake H, Mori T, Tamaru Y, Ueda M, et al. Temporal fluctuation in the abundance of alginate-degrading bacteria in the gut of abalone Haliotis gigantea over 1 year. Aquac Res. 2016;47:2899–908.CAS
Article
Google Scholar
90.Bunse C, Koch H, Breider S, Simon M, Wietz M. Sweet and magnetic: succession and CAZyme expression of marine bacterial communities encountering a mix of alginate and pectin particles. bioRxiv 2020; 2020.12.08.416354.91.Park HH, Kam N, Lee EY, Kim HS. Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3. Mar Biotechnol. 2012;14:189–202.CAS
Article
Google Scholar
92.Sim PF, Furusawa G, Teh AH. Functional and structural studies of a multidomain alginate lyase from Persicobacter sp. CCB-QB2. Sci Rep. 2017;7:1–9.Article
CAS
Google Scholar
93.Lyu Q, Zhang K, Zhu Q, Li Z, Liu Y, Fitzek E, et al. Structural and biochemical characterization of a multidomain alginate lyase reveals a novel role of CBM32 in CAZymes. Biochim Biophys Acta Gen Subj. 2018;1862:1862–9.94.Han W, Gu J, Cheng Y, Liu H, Li Y, Li F. Novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium, Flammeovirga sp. strain MY04: Effects of module truncation on biochemical characteristics, alginate degradation patterns, and oligosaccharide-yielding properties. Appl Environ Microbiol. 2016;82:364–74.CAS
PubMed
Article
PubMed Central
Google Scholar
95.Kim DH, Wang D, Yun EJ, Kim S, Kim SR, Kim KH. Validation of the metabolic pathway of the alginate-derived monomer in Saccharophagus degradans 2-40T by gas chromatography–mass spectrometry. Process Biochem. 2016;51:1374–9.CAS
Article
Google Scholar
96.Arnosti C, Wietz M, Brinkhoff T, Hehemann J-H, Probandt D, Zeugner L, et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann Rev Mar Sci. 2021;13:9.1–9.28.Article
Google Scholar
97.Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide Utilization Loci: Fuelling microbial communities. J Bacteriol. 2017;199:e00860–16.CAS
PubMed
PubMed Central
Article
Google Scholar
98.Reintjes G, Arnosti C, Fuchs B. Amann R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 2019;13:1119–32.CAS
PubMed
Article
PubMed Central
Google Scholar
99.Arahal DR, Lucena T, Macián MC, Ruvira MA, González JM, Lekumberri I, et al. Marinomonas blandensis sp. nov., a novel marine gammaproteobacterium. Int J Syst Evol Microbiol. 2016;66:5544–9.CAS
PubMed
Article
PubMed Central
Google Scholar
100.Pontiller B, Martínez-García S, Lundin D, Pinhassi J. Labile dissolved organic matter compound characteristics select for divergence in marine bacterial activity and transcription. Front Microbiol. 2020;11:1–19.Article
Google Scholar More