1.Whyte, R. O. Grassland and Fodder Resources of India Revised. (Indian Council of Agricultural Research, 1964).
Google Scholar
2.Misra, R. The vegetation of the Indian Savannas. In Tropical Savannas (ed. Bourliere, F.) 151–166 (Elsevier, 1983).3.Behrensmeyer, A. K. et al. The structure and rate of late Miocene expansion of C4 plants: evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan. GSA Bull. 119, 1486–1505 (2007).CAS
Article
Google Scholar
4.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India Press, 1968).
Google Scholar
5.Mani, M. S. The Flora. In Ecology and Biogeography in India (ed. Mani, M. S.) 159–177 (Dr. W. Junk b.v. Publishers, 1974).6.Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B 371, 20150305 (2016).Article
CAS
Google Scholar
7.Blasco, F. The transition from open forest to Savanna in continental Southeast Asia. In Tropical Savannas (ed. Bourliere, F.) 167–182 (Elsevier, 1983).8.Puri, G. S., Meher Homji, V. M., Gupta, R. K. & Puri, S. Forest Ecology. Phytogeography and Conservation Vol. 1 (Oxford & IBH Publishing, 1983).
Google Scholar
9.Fuller, D. Q. & Korisettar, R. The vegetational context of early agriculture in South India. Man Environ. 29, 7–27 (2004).
Google Scholar
10.Fuller, D. Q. Finding plant domestication in the Indian subcontinent. Curr. Anthropol. 52, S347–S362 (2011).Article
Google Scholar
11.Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. New Phytol. 191, 197–209 (2011).PubMed
Article
PubMed Central
Google Scholar
12.Staver, A. C., Archibald, S. & Levin, S. A. Tree-cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).PubMed
Article
PubMed Central
Google Scholar
13.Bond, W. J. What limits trees in C4 grasslands and savannas?. Annu. Rev. Ecol. Evol. Syst. 39, 641–659 (2008).Article
Google Scholar
14.Hirota, M., Holmgren, M., Van Nes, E. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
15.Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).ADS
CAS
PubMed
MATH
Article
PubMed Central
Google Scholar
16.Mayle, F. E. & Power, M. J. Impact of a drier early–mid-Holocene climate upon Amazonian forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1829–1838 (2008).PubMed
PubMed Central
Article
Google Scholar
17.Ngomanda, A. et al. Western equatorial African forest-savanna mosaics: a legacy of late Holocene climatic change?. Clim. Past 5, 647–659 (2009).Article
Google Scholar
18.Metwally, A. A., Scott, L., Neumann, F. H., Bamford, M. K. & Oberhänsli, H. Holocene palynology and palaeoenvironments in the Savanna Biome at Tswaing Crater, central South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 402, 125–135 (2014).Article
Google Scholar
19.Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
20.Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).Article
Google Scholar
21.Wanner, H. et al. Mid- to late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).ADS
Article
Google Scholar
22.Kathayat, G. et al. The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci. Adv. 3, e1701296 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
23.Shinde, V. The origin and development of the Chalcolithic in Central India. Indo-Pac. Prehist. Assoc. Bull. 19, 125–136 (2000).
Google Scholar
24.Fuller, D. Q. Agricultural origins and frontiers in South Asia: a working synthesis. J. World Prehist. 20, 1–86 (2006).Article
Google Scholar
25.Fuller, D. Q., Boivin, N. & Korisettar, R. Dating the Neolithic of South India: new radiometric evidence for key economic, social and ritual transformations. Antiquity 81, 755–778 (2007).Article
Google Scholar
26.Johansen, P. G. Landscape, monumental architecture, and ritual: a reconsideration of the South Indian ashmounds. J. Anthropol. Archaeol. 23, 309–330 (2004).Article
Google Scholar
27.Fuller, D. Q. Asia, South: Neolithic cultures. In Encyclopedia of Archaeology (ed. Pearsall, D.) 756–768 (Springer, 2008).
Google Scholar
28.Asouti, E. & Fuller, D. Q. Trees and Woodlands of South India: Archaeological Perspectives (Left Coast Press, 2008).
Google Scholar
29.Singh, G., Joshi, R. D., Chopra, S. K. & Singh, A. B. Late quaternary history of vegetation and climate of the Rajasthan desert, India. Philos. Trans. R. Soc. Lond. B Biol. Sci. 267, 467–501 (1974).ADS
Article
Google Scholar
30.Singh, I. B. Quaternary palaeoenvironments of the Ganga plain and anthropogenic activity. Man Environ. 30, 1–35 (2005).
Google Scholar
31.Clarkson, C. et al. The oldest and longest enduring microlithic sequence in India: 35 000 years of modern human occupation and change at the Jwalapuram locality 9 rockshelter. Antiquity 83, 326–348 (2009).Article
Google Scholar
32.Riedel, N. et al. Modern pollen vegetation relationships in a dry deciduous monsoon forest: a case study from Lonar Crater Lake, central India. Quat. Int. 371 (2015).33.Sarkar, S. et al. Monsoon source shifts during the drying mid-Holocene: biomarker isotope based evidence from the core ‘monsoon zone’ (CMZ) of India. Quat. Sci. Rev. 123, 144–157 (2015).ADS
Article
Google Scholar
34.Chakraborty, A., Joshi, P. K., Ghosh, A. & Areendran, G. Assessing biome boundary shifts under climate change scenarios in India. Ecol. Indic. 34, 536–547 (2013).Article
Google Scholar
35.Rasquinha, D. N. & Sankaran, M. Modelling biome shifts in the Indian subcontinent under scenarios of future climate change. Curr. Sci. 111, 147–156 (2016).Article
Google Scholar
36.Berkelhammer, M. et al. An abrupt shift in the Indian monsoon 4000 years ago in Climates, Landscapes, and Civilizations (eds. Giosan, L. et al.) 75–88 (American Geophysical Union, 2013).37.Fleitmann, D. et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev. 26, 170–188 (2007).ADS
Article
Google Scholar
38.Sinha, A. et al. A global context for megadroughts in monsoon Asia during the past millennium. Quat. Sci. Rev. 30, 47–62 (2011).ADS
Article
Google Scholar
39.Berkelhammer, M. et al. Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet. Sci. Lett. 290, 166–172 (2010).ADS
CAS
Article
Google Scholar
40.Laskar, A. H., Yadava, M. G., Ramesh, R., Polyak, V. J. & Asmerom, Y. A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem. Geophys. Geosyst. 14, 3555–3566 (2013).ADS
CAS
Article
Google Scholar
41.Thamban, M., Kawahata, H. & Rao, V. P. Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: timing and implications. J. Oceanogr. 63, 1009–1020 (2007).Article
Google Scholar
42.Ponton, C. et al. Holocene aridification of India. Geophys. Res. Lett. 39, L03704 (2012).ADS
Article
Google Scholar
43.Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob. Ecol. Biogeogr. 25, 443–454 (2016).Article
Google Scholar
44.Gaussen, H. et al. International Map of the Vegetation at Scale 1:1.000.000 (French Institute of Pondycherry, 1964).
Google Scholar
45.ESRI Inc. ArcGIS Pro (ESRI Inc., 2019).
Google Scholar
46.Saha, K. Tropical Circulation Systems and Monsoons (Springer, 2010).Book
Google Scholar
47.Goswami, B. N. South Asian monsoon. In Intraseasonal Variability in the Atmosphere–Ocean Climate System (eds. Lau, W. K. M. & Waliser, D. E.) 19–61 (Springer, 2005).48.Dabadghao, P. M. & Shankarnarayan, K. A. The Grass Cover of India (Indian Council of Agricultural Research, 1973).
Google Scholar
49.Prasad, S. & Enzel, Y. Holocene paleoclimates of India. Quat. Res. 66, 442–453 (2006).Article
Google Scholar
50.Fleitmann, D. et al. Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quat. Sci. Rev. 23, 935–945 (2004).ADS
Article
Google Scholar
51.Kale, V. S. Fluvio–sedimentary response of the monsoon-fed Indian rivers to Late Pleistocene–Holocene changes in monsoon strength: reconstruction based on existing 14C dates. Quat. Sci. Rev. 26, 1610–1620 (2007).ADS
MathSciNet
Article
Google Scholar
52.Prasad, S. et al. Prolonged monsoon droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar Lake, central India. Earth Planet. Sci. Lett. 391, 171–182 (2014).ADS
CAS
Article
Google Scholar
53.Dixit, Y., Hodell, D. A. & Petrie, C. A. Abrupt weakening of the summer monsoon in northwest India ∼ 4100 yr ago. Geology https://doi.org/10.1130/G35236.1 (2014).Article
Google Scholar
54.Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).ADS
Article
Google Scholar
55.Marzin, C. & Braconnot, P. Variations of Indian and African monsoons induced by insolation changes at 6 and 9.5 kyr BP. Clim. Dyn. 33, 215–231 (2009).Article
Google Scholar
56.Bush, R. T. & McInerney, F. A. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).ADS
CAS
Article
Google Scholar
57.Murphy, C. & Fuller, D. Q. The agriculture of early India. In Oxford Research Encyclopedia of Environmental Science (ed. Shugart, H.) (Oxford University Press, 2017).
Google Scholar
58.Kumaran, N. K. P. et al. Vegetation response and landscape dynamics of Indian Summer Monsoon variations during Holocene: an eco-geomorphological appraisal of tropical evergreen forest subfossil logs. PLoS ONE 9, e93596 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
59.Singh, G., Wasson, R. J. & Agrawal, D. P. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Rev. Palaeobot. Palynol. 64, 351–358 (1990).Article
Google Scholar
60.Cole, M. M. The Savannas, Biogeography and Geobotany (Academic Press, 1986).61.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
62.Kodandapani, N., Cochrane, M. A. & Sukumar, R. A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India. For. Ecol. Manag. 256, 607–617 (2008).Article
Google Scholar
63.Hegde, V., Chandran, M. D. S. & Gadgil, M. Variation in bark thickness in a tropical forest community of Western Ghats in India. Funct. Ecol. 12, 313–318 (1998).Article
Google Scholar
64.Stott, P. A., Goldammer, J. G. & Werner, W. L. The role of fire in the tropical lowland deciduous forests of Asia. In Fire in the Tropical Biota. Ecosystem Processes and Global Challenges (ed. Goldammer, J. G.) 32–44 (Springer, 1990).65.Murphy, C. & Fuller, D. Q. Seed coat thinning during horsegram (Macrotyloma uniflorum) domestication documented through synchrotron tomography of archaeological seeds. Sci. Rep. 7, 5369 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
66.Kingwell-Banham, E. & Fuller, D. Q. Shifting cultivators in South Asia: expansion, marginalisation and specialisation over the long term. Quat. Int. 249, 84–95 (2012).Article
Google Scholar
67.Kajale, M. Excavation at Inamgaon (Deccan College Postgraduate and Research Institute, 1988).
Google Scholar
68.Shirvalkar, P. & Prasad, E. The archaeology of the Late Holocene on the Deccan Plateau (The Deccan Chalcolithic). In A Companion to South Asia in the Past (eds. Schug, G. R. & Walimbe, S. R.) 240-254 (John Wiley & Sons, 2016).69.Roberts, P. et al. Local diversity in settlement, demography and subsistence across the southern Indian Neolithic-Iron Age transition: site growth and abandonment at Sanganakallu-Kupgal. Archaeol. Anthropol. Sci. 8, 575–599 (2016).Article
Google Scholar
70.Nayar, T. S. Pollen Flora of Maharashtra State, India (Today & Tomorrow Printers and Publishers, 1990).
Google Scholar
71.APSA Members. The Australasian Pollen and Spore Atlas V1.0 (Australian National University, 2007).
Google Scholar
72.Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13, 499–505 (2003).ADS
Article
Google Scholar
73.Conedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 28, 555–576 (2009).ADS
Article
Google Scholar
74.Higuera, P., Peters, M., Brubaker, L. & Gavin, D. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 26, 1790–1809 (2007).ADS
Article
Google Scholar
75.McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat. Sci. Rev. 23, 901–918 (2004).ADS
Article
Google Scholar
76.Baldini, J., McDermott, F. & Fairchild, I. Spatial variability in cave drip water hydrochemistry: implications for stalagmite paleoclimate records. Chem. Geol. 235, 390–404 (2006).ADS
CAS
Article
Google Scholar
77.Allchin, B. & Allchin, F. R. The Rise of Civilization in India and Pakistan (Cambridge University Press, 1982).
Google Scholar
78.Shinde, V. S. New light on the origin, settlement system and decline of the Jorwe culture in the Deccan India. South Asian Stud. 5, 59–72 (1989).Article
Google Scholar
79.Shinde, V. S. Settlement pattern of the Savalda culture—the first farming community of Maharashtra. Bull. Deccan Coll. Res. Inst. 49–50, 417–426 (1990).
Google Scholar
80.Paddayya, K. Investigations Into the Neolithic Culture of the Shorapur Doab, South India Vol. 3 (Brill, 1973).
Google Scholar More