More stories

  • in

    Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery

    Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).PubMed 

    Google Scholar 
    Heithaus, M. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).Article 

    Google Scholar 
    Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Env. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    Anderson, O. et al. Global seabird bycatch in longline fisheries. Endanger. Species Res. 14, 91–106 (2011).Article 

    Google Scholar 
    Dias, M. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).Article 

    Google Scholar 
    Phillips, R. et al. The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201, 169–183 (2016).Article 

    Google Scholar 
    Werner, T., Kraus, S., Read, A. & Zollett, E. Fishing techniques to reduce the bycatch of threatened marine animals. Mar. Technol. Soc. J. 40, 50–68 (2006).Article 

    Google Scholar 
    Hall, M., Gilman, E., Minami, H., Mituhasi, T. & Carruthers, E. Mitigating bycatch in tuna fisheries. Rev. Fish Biol. Fish. 27, 881–908 (2017).Article 

    Google Scholar 
    Gilman, E., Brothers, N. & Kobayashi, D. Principles and approaches to abate seabird bycatch in longline fisheries. Fish Fish. 6, 35–49 (2005).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M., Wiedoff, B. & Willson, J. Mitigating seabird bycatch during hauling by pelagic longline vessels. PLoS ONE 9, e84499 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juan-Jorda, M., Murua, H., Arrizabalaga, H., Dulvy, N. & Restrepo, V. Report card on ecosystem-based fisheries management in tuna regional fisheries management organizations. Fish Fish. 19, 321–339 (2018).Article 

    Google Scholar 
    ACAP. Review and best practice advice for reducing the impact of pelagic longline fisheries on seabirds. Agreement on the Conservation of Albatrosses and Petrels, Hobart, Australia (2019).Crespo, P. & Crawford, R. Bycatch and the Marine Stewardship Council (MSC): A Review of the Efficacy of the MSC Certification Scheme in Tackling the Bycatch of Non-target Species (Birdlife International, 2019).
    Google Scholar 
    Nakano, H., Okazaki, M. & Okamoto, H. Analysis of catch depth by species for tuna longline fishery based on catch by branch lines. Bull. Nat. Res. Inst. Far Seas Fish. 34, 43–62 (1997).
    Google Scholar 
    Musyl, M. et al. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fish. Bull. 109, 341–368 (2011).
    Google Scholar 
    Gabr, M. & El-Haweet, A. Pelagic longline fishery for albacore in the Mediterranean Sea off Egypt. Turk. J. Fish. Aquat. Sci. 12, 735–741 (2012).Article 

    Google Scholar 
    MEC. Marine Stewardship Council Public Certification Report. French Polynesia Albacore and Yellowfin Longline Fishery. ME Certification Ltd., Lymington, UK (2018).Gilman, E. et al. Robbing Peter to pay Paul: Replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management. Rev. Fish Biol. Fish. 29, 93–123 (2019).Article 

    Google Scholar 
    SCS. Tri Marine Atlantic albacore (Thunnus alalunga) Longline Fishery. MSC Fishery Assessment Report. SCS Global Services, Emeryville, USA (2022).Gilman, E. et al. Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: A global meta-analytic synthesis. Sci. Rep. https://doi.org/10.1038/s41598-022-21976-w (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    WCPFC. Conservation and Management Measure to Mitigate the Impact of Fishing for Highly Migratory Fish Stocks on Seabirds. CMM 2018-03. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2018).IATTC. Resolution to Mitigate the Impact on Seabirds of Fishing for Species Covered by the IATTC. Resolution C-11-02. Inter-American Tropical Tuna Commission, La Jolla, USA (2011).Melvin, E., Guy, T. & Read, L. Best practice seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species. Fish. Res. 149, 5–18 (2014).Article 

    Google Scholar 
    Huang, H. Incidental catch of seabirds and sea turtles by Taiwanese longline fleets in the Pacific Ocean. Fish. Res. 170, 179–189 (2015).Article 

    Google Scholar 
    Jimenez, S. et al. Towards mitigation of seabird bycatch: Large-scale effectiveness of night setting and tori lines across multiple pelagic longline fleets. Bio. Cons. 247, 108642 (2020).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2022–1. Online resource www.iucnredlist.org. ISSN 2307–8235. International Union for the Conservation of Nature, Gland, Switzerland (2022).Gilman, E., Castejon, V., Loganimoce, E. & Chaloupka, M. Capability of a pilot fisheries electronic monitoring system to meet scientific and compliance monitoring objectives. Mar. Policy 113, 103792 (2020).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M. & Sieben, C. Ecological risk assessment of a data-limited fishery using an ensemble of approaches. Mar. Policy 133, 104752 (2021).Article 

    Google Scholar 
    WPRFMC. Appendix 5. Fact Sheets on Seabird Bycatch Mitigation Methods for Pelagic Longline Fisheries. Report of the Workshop to Review Seabird Bycatch Mitigation Measures for Hawaii’s Pelagic Longline Fisheries. ISBN: 978–1–944827–37–3. Western Pacific Regional Fishery Management Council, Honolulu (2019).Melvin, E., Dietrich, K., Suryan, R. & Fitzgerald, S. Lessons from seabird conservation in Alaskan longline fisheries. Cons. Biol. 33, 842–852 (2019).Article 

    Google Scholar 
    Ward, P. & Myers, R. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. Fish. Aquat. Sci. 62, 1130–1142 (2005).Article 

    Google Scholar 
    Rice, P., Goodyear, C., Prince, E., Snodgrass, D. & Serafy, J. Use of catenary geometry to estimate hook depth during near-surface pelagic longline fishing: Theory versus practice. N. Am. J. Fish. Manag. 27, 1148–1161 (2007).Article 

    Google Scholar 
    Zhou, C. & Brothers, N. Interaction frequency of seabirds with longline fisheries: Risk factors and implications for management. ICES J. Mar. Sci. 78, 1278–1287 (2021).Article 

    Google Scholar 
    Childers, J., Snyder, S. & Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 20, 157–173 (2011).Article 

    Google Scholar 
    Cosgrove, R., Arregui, I., Arrizabalaga, H., Goni, N. & Sheridan, M. New insights to behavior of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish. Res. 150, 89–99 (2014).Article 

    Google Scholar 
    Williams, et al. Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean. Deep -Sea Res. II 113, 154–169 (2015).Punt, A., Butterworth, D., de Moor, C., De Oliveira, J. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334 (2016).Article 

    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).MathSciNet 

    Google Scholar 
    Gelman, A., et al. Bayesian Workflow. arXiv:2011.01808v1 (2020).Fahrmeir, L. & Lang, S. Bayesian inference for generalised additive mixed models based on Markov random field priors. Appl. Stat. 50, 201–220 (2001).
    Google Scholar 
    Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Fávero, L., Hair, J., Souza, R., Albergaria, M. & Brugni, T. Zero-inflated generalized linear mixed models: a better way to understand data relationships. Mathematics 9, 1100 (2021).Article 

    Google Scholar 
    Gilman, E. et al. Tori lines mitigate seabird bycatch in a pelagic longline fishery. Rev. Fish Biol. Fish. 31, 653–666 (2021).Article 

    Google Scholar 
    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 
    ADS 

    Google Scholar 
    Yau, K., Wang, K. & Lee, A. Zero-Inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Congdon, P. Applied Bayesian Modelling. Wiley and Sons Ltd, UK. (2003).Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).Article 
    PubMed 

    Google Scholar 
    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).
    Google Scholar 
    Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: an improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Kruschke, J. & Liddell, T. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).Article 
    PubMed 

    Google Scholar 
    Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Lenth R (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans More

  • in

    Environmental variables and machine learning models to predict cetacean abundance in the Central-eastern Mediterranean Sea

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. & Kent, J. M. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cuttelod, A., García, V., Abdul Malak, D., Temple, H. & Katariya, V. The Mediterranean: A biodiversity hotspot under threat. In Wildl. a Chang. World an Anal. 2008 IUCN Red List Threat. Species 89–101 (2008).Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5, e11842–e11842 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).Article 

    Google Scholar 
    Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).Article 
    PubMed 

    Google Scholar 
    Tsirintanis, K. et al. Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Aquatic Invasions, 17(3), 308–352 (2022).Article 

    Google Scholar 
    Sanderson, C. E. & Alexander, K. A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 26, 4284–4301 (2020).Article 
    PubMed 

    Google Scholar 
    EEC, 1992. European Commission. In EU Council Directive 92/43/EEC on the Conservationof Natural Habitats and of Wild Fauna and Flora. Orkesterjournalen L 7–50 206 (1992).Bearzi, G. Interactions between cetacean and fisheries in the Mediterranean Sea. In: G. Notarbartolo di Sciara (Ed.), Cetaceans of the Mediterranean and Black Seas: state of knowledge and conservation strategies. A report to the ACCOBAMS Secretariat, Monaco, 9, 20 (2002). Reeves, R. R., Smith, B. D., Crespo, E. A. & Notarbartolo di Sciara, G. Dolphins, Whales and Porpoises : 2002–2010 Conservation Action Plan for the world’s Cetaceans (2003).Dolman, S., Evans, P., Ritter, F., Simmonds, M. & Swabe, J. Implications of new technical measures regulation for cetacean bycatch in European waters. Mar. Policy 124, 1043 (2020).
    Google Scholar 
    Carlucci, R. et al. Managing multiple pressures for cetaceans’ conservation with an Ecosystem-Based Marine Spatial Planning approach. J. Environ. Manage. 287, 112240 (2021).Article 
    PubMed 

    Google Scholar 
    Carlucci, R. et al. Assessment of cetacean–fishery interactions in the marine food web of the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea). Rev. Fish Biol. Fish. 31, 135–156 (2020).Article 

    Google Scholar 
    Fossi, C. & Lauriano, G. Impacts of shipping on the biodiversity of large marine vertebrates: Persistent organic pollutants, sewage and debris. Marit. Traffic Eff. Biodivers. Mediterr. Sea Rev Impacts Prior. Areas Mitig. Meas. 3, 65–73 (2008).
    Google Scholar 
    Cardellicchio, N. Persistent contaminants in dolphins: An indication of chemical pollution in the mediterranean sea. Water Sci. Technol. 32, 331–340 (1995).Article 
    CAS 

    Google Scholar 
    Fossi, M. C., Panti, C., Baini, M. & Lavers, J. L. A review of plastic-associated pressures: Cetaceans of the Mediterranean Sea and Eastern Australian Shearwaters as case studies. Front. Mar. Sci. 5, 125 (2018).Article 

    Google Scholar 
    Marsili, L., Jiménez, B. & Borrell, A. Persistent Organic Pollutants in Cetaceans Living in a Hotspot Area (Elsevier, 2018).Book 

    Google Scholar 
    Dolman, S. J., Evans, P. G. H., Notarbartolo-di-Sciara, G. & Frisch, H. Active sonar, beaked whales and European regional policy. Mar. Pollut. Bull. 63, 27–34 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    di Sciara, G. N. et al. Place-based approaches to marine mammal conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 85–100 (2016).Article 

    Google Scholar 
    Holcer, D., Fortuna, C. M., Mackelworth, P., Cebrian, D. & Requena Moreno, S. Adriatic Sea: Important Areas for Conservation of Cetaceans, Sea Turtles and Giant Devil Rays (2015).Carlucci, R. et al. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Ecol. Indic. 69, 707–721 (2016).Article 

    Google Scholar 
    Carlucci, R., Ricci, P., Cipriano, G. & Fanizza, C. Abundance, activity and critical habitat of the striped dolphin Stenella coeruleoalba in the Gulf of Taranto (northern Ionian Sea, central Mediterranean Sea). Aquat. Conserv. Freshw. Ecosyst. 28, 324–336 (2018).Article 

    Google Scholar 
    Carlucci, R. et al. Random Forest population modelling of striped and common-bottlenose dolphins in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Estuar. Coast. Shelf Sci. 204, 177–192 (2018).Article 

    Google Scholar 
    Arcangeli, A., Campana, I. & Bologna, M. A. Influence of seasonality on cetacean diversity, abundance, distribution and habitat use in the western Mediterranean Sea: Implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 995–1010 (2017).Article 

    Google Scholar 
    Panigada, S. et al. Estimating cetacean density and abundance in the Central and Western Mediterranean Sea through aerial surveys: Implications for Management. Deep. Res. Part II-Top. Stud. Oceanogr. 141, 41–58 (2017).Article 

    Google Scholar 
    Mannocci, L. et al. Assessing cetacean surveys throughout the Mediterranean Sea: A gap analysis in environmental space. Sci. Rep. 8, 1 (2018).Article 
    CAS 

    Google Scholar 
    Panigada, S. et al. Estimates of Abundance and Distribution of Cetaceans, Marine Mega-Fauna and Marine Litter in the Mediterranean Sea from 2018–2019 surveys. ACCOBAMS vol. ACCOBAMS S (2021).Paiu, R.-M. et al. Estimates of abundance and distribution of cetaceans in the Black Sea from 2019 surveys. ACCOBAMS 54, 45 (2021).
    Google Scholar 
    Azzolin, M. et al. Spatial distribution modelling of striped dolphin (Stenella coeruleoalba) at different geographical scales within the EU Adriatic and Ionian Sea Region, central-eastern Mediterranean Sea. Aquat. Conserv. Freshw. Ecosyst. 30, 1194–1207 (2020).Article 

    Google Scholar 
    Renò, V. et al. A SIFT-based software system for the photo-identification of the Risso’s dolphin. Ecol. Inform. 50, 95–101 (2019).Article 

    Google Scholar 
    Maglietta, R. et al. DolFin: an innovative digital platform for studying Risso’s dolphins in the Northern Ionian Sea (North-eastern Central Mediterranean). Sci. Rep. 8, 17185 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammond, P. S. et al. Estimating the abundance of marine mammal populations. Front. Mar. Sci. 8, 96 (2021).Article 

    Google Scholar 
    Fontaine, M. C. et al. History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data. Proc. Natl. Acad. Sci. 109, E2569–E2576 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alter, S. E., Rynes, E. & Palumbi, S. R. DNA evidence for historic population size and past ecosystem impacts of gray whales. Proc. Natl. Acad. Sci. 104, 15162–15167 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chavez-Rosales, S., Palka, D. L., Garrison, L. P. & Josephson, E. A. Environmental predictors of habitat suitability and occurrence of cetaceans in the western North Atlantic Ocean. Sci. Rep. 9, 5833 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buckland, S. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 2001).MATH 

    Google Scholar 
    Buckland, S. T. et al. Advanced Distance Sampling: Estimating Abundance of Biological Populations (OUP Oxford, 2004).MATH 

    Google Scholar 
    Laake, J. S. T., Buckland, E. A., Rexstad, T. A., Marques, C. S. & Oedekoven, F. Distance sampling: Methods and applications. Biometrics 72, 1389–1390 (2016).Article 

    Google Scholar 
    Hammond, P. S., Mizroch, S. A. & Donovan, G. P. Individual recognition of cetaceans: Use of photo-identification and other techniques to estimate population parameters. In Incorporating the Proceedings of the Symposium and Workshop on Individual Recognition and the Estimation of Cetacean Population Parameters (1990).Sandercock, B. K. Handbook of capture-recapture analysis. Biometrics 62, 1276–1277 (2006).Article 

    Google Scholar 
    Hammond, P. S. Mark-Recapture. In Encyclopedia of Marine Mammals (Third Edition) (eds Würsig, B. et al.) 580–584 (Academic Press, 2018).Pless, E., Saarman, N. P., Powell, J. R., Caccone, A. & Amatulli, G. A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data. Proc. Natl. Acad. Sci. 118, 9 (2021).Article 

    Google Scholar 
    Belanger, C. L. et al. Global environmental predictors of benthic marine biogeographic structure. Proc. Natl. Acad. Sci. 109, 14046–14051 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. USA 114, 12202–12207 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, D. L., Burt, M. L., Rexstad, E. A. & Thomas, L. Spatial models for distance sampling data: Recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010 (2013).Article 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.) 43, 1261–1277 (2020).Article 

    Google Scholar 
    Redfern, J. V. et al. Techniques for cetacean-habitat modeling. Mar. Ecol. Prog. Ser. 310, 271–295 (2006).Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Taylor & Francis, 1990).MATH 

    Google Scholar 
    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).MATH 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Vapnik, N.V. Statistical Learning Theory (1998).Culley, C., Vijayakumar, S., Zampieri, G. & Angione, C. A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. 117, 18869–18879 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, B. M. et al. Robust predictions of specialized metabolism genes through machine learning. Proc. Natl. Acad. Sci. 116, 2344–2353 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renò, V. et al. Combined color semantics and deep learning for the automatic detection of dolphin dorsal fins. Electronics 9, 75 (2020).Article 

    Google Scholar 
    Maglietta, R., Milella, A., Caccia, M. & Bruzzone, G. A vision-based system for robotic inspection of marine vessels. Signal Image Video Process. 12, 471–478 (2018).Article 

    Google Scholar 
    Maglietta, R. et al. Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm. Pattern Anal. Appl. 19, 579–591 (2016).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Ancona, N., Maglietta, R. & Stella, E. Data representations and generalization error in kernel based learning machines. Pattern Recognit. 39, 1588–1603 (2006).Article 
    MATH 

    Google Scholar 
    Martín, B., González-Arias, J. & Vicente-Virseda, J. A. Machine learning as a successful approach for predicting complex spatial temporal patterns in animal species abundance. Anim. Biodivers. Conserv. 2021, 25 (2021).
    Google Scholar 
    Dimauro, G. et al. A novel approach for biofilm detection based on a convolutional neural network. Electronics 9, 88 (2020).Article 

    Google Scholar 
    Inglese, P. et al. Multiple RF classifier for the hippocampus segmentation: Method and validation on EADC-ADNI Harmonized Hippocampal Protocol. Phys. Med. 31(8), 1085–1091 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maglietta, R. et al. Convolutional neural networks for Risso’s Dolphins identification. IEEE Access 8, 80195–80206 (2020).Article 

    Google Scholar 
    Conference on Biological Diversity—Nagoya 2010 European Parliament resolution of 7 October 2010 on the EU strategic objectives for the 10th Meeting of the Conference of the Parties to the Convention on Biological Diversity (CBD), to be held in Nagoya (2010).EU. In Commission Decision (EU) 2017/848 of 17 May 2017 Laying Down Criteria and Methodological Standards on Good Environmental Status of Marine Waters and Specifications and Standardised Methods for Monitoring and Assessment, and Repealing Decision 2 (2017).European Commission. Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for maritime spatial planning. In Off. J. Eur. Union 2014, L 257, 135; MSFD (2008/56/EC) (2014).Muckenhirn, A., Baş, A. A. & Richard, F.-J. Assessing the influence of environmental and physiographic parameters on common bottlenose dolphin (Tusiops truncatus) distribution in the southern Adriatic Sea. In Proc. 1st Int. Electron. Conf. Biol. Divers. Ecol. Evol. (2021).Correia, A. et al. Predicting Cetacean Distributions in the Eastern North Atlantic to Support Marine Management. Front. Mar. Sci. 8, 256 (2021).Article 

    Google Scholar 
    Redfern, J. V., Barlow, J., Ballance, L. T., Gerrodette, T. & Becker, E. A. Absence of scale dependence in dolphin-habitat models for the eastern tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 363, 1–14 (2008).Article 

    Google Scholar 
    Kruse, S. L. Aspects of the Biology, Ecology, and Behavior of Risso’s dolphins (Grampus griseus) off the California Coast (University of California, Santa Cruz, 1989).Kruse, S., Caldwell, D. K., Caldwell, M. C., Ridgway, S. H. & Harrison, R. Risso’s dolphin Grampus griseus (G. Cuvier, 1812). Handb. Mar. Mamm. Sec. B Dolphins Porpoises 6, 12 (1999).
    Google Scholar 
    Gómez-de-Segura, A., Hammond, P. S. & Raga, J. A. Influence of environmental factors on small cetacean distribution in the Spanish Mediterranean. J. Mar. Biol. Assoc. UK 88, 1185–1192 (2008).Article 

    Google Scholar 
    Pitchford, J. et al. Predictive spatial modelling of seasonal bottlenose dolphin (Tursiops truncatus) distributions in the Mississippi Sound: Seasonal spatial distributions of bottlenose dolphins. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 289–306 (2015).Article 

    Google Scholar 
    La Manna, G., Ronchetti, F. & Sarà, G. Predicting common bottlenose dolphin habitat preference to dynamically adapt management measures from a Marine Spatial Planning perspective. Ocean Coast. Manag. 130, 317–327 (2016).Article 

    Google Scholar 
    Becker, E. A. et al. Predicting cetacean abundance and distribution in a changing climate. Divers. Distrib. 25, 626–643 (2019).Article 

    Google Scholar 
    Cañadas, A. & Hammond, P. S. Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: Implications for conservation. Endanger. Spec. Res. 4, 309–331 (2008).Article 

    Google Scholar 
    Mannocci, L. et al. Predicting cetacean and seabird habitats across a productivity gradient in the South Pacific gyre. Prog. Oceanogr. 120, 383–398 (2014).Article 

    Google Scholar 
    Carretta, J. V. Estimates of Marine Mammal, Sea Turtle, and Seabird Bycatch in the California Large-Mesh Drift Gillnet Fishery: 1990–2019 U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-654.
    https://doi.org/10.25923/7emj-za90 (2021).Rustam, F. et al. A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis. PLoS ONE 16, e0245909 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Addabbo, A. & Maglietta, R. Parallel selective sampling method for imbalanced and large data classification. Pattern Recognit. Lett. 62, 61–67 (2015).Article 

    Google Scholar 
    Dimauro, G. et al. An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset. Artif. Intell. Med. 136, 102477 (2023).Article 
    PubMed 

    Google Scholar 
    Spooner, A. et al. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 10, 20410 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becker, E. A. et al. Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecol. Evol. 10, 5759–5784 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kosicki, J. Z. Generalised additive models and random forest approach as effective methods for predictive species density and functional species richness. Environ. Ecol. Stat. 27, 273–292 (2020).Article 
    CAS 

    Google Scholar 
    Barreto, J. et al. Drone-monitoring: Improving the detectability of threatened marine megafauna. Drones 5, 14 (2021).Article 

    Google Scholar 
    Sarr, J.-M.A. et al. Complex data labeling with deep learning methods: Lessons from fisheries acoustics. ISA Trans. 109, 113–125 (2021).Article 
    PubMed 

    Google Scholar 
    Capezzuto, F. et al. The bathyal benthopelagic fauna in the north-western Ionian Sea: Structure, patterns and interactions. Chem. Ecol. 26, 199–217 (2010).Article 

    Google Scholar 
    Harris, P. & Whiteway, T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol. 285, 69–86 (2011).Article 

    Google Scholar 
    Pescatore, T. & Senatore, M. R. A comparison between a present.day (Taranto Gulf) and a Miocene (Irpinian Basin) foredeep of the Southern Apennine (Italy). Spec. Publ. 1986, 169–182 (1986).
    Google Scholar 
    Rossi, S. & Gabbianelli, G. Geomorfologia del Golfo di Taranto. Ital. J. Geosci. 97, 423–437 (1978).
    Google Scholar 
    Federico, I. et al. Observational evidence of the basin-wide gyre reversal in the Gulf of Taranto. Geophys. Res. Lett. 47, 1030 (2020).Article 

    Google Scholar 
    Carlucci, R., Battista-Capezzuto, F., Serena, F. & Sion, L. Occurrence of the basking shark Cetorhinus maximus (Gunnerus, 1765) (Lamniformes: Cetorhinidae) in the central-eastern Mediterranean Sea. Ital. J. Zool. 81, 280–286 (2014).Article 

    Google Scholar 
    Matarrese, R., Chiaradia, M. T., Tijani, K., Morea, A. & Carlucci, R. Chlorophyll A multi-temporal analysis in coastal waters with MODIS data. Eur. J. Remote Sens. 2011, 39–48 (2011).
    Google Scholar 
    Civitarese, G., Gačić, M., Lipizer, M. & Eusebi-Borzelli, G. L. On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences 7, 3987–3997 (2010).Article 
    CAS 

    Google Scholar 
    Pinardi, N. et al. Marine rapid environmental assessment in the hack{newline} Gulf of Taranto: A multiscale approach. Nat. Hazards Earth Syst. Sci. 16, 2623–2639 (2016).Article 

    Google Scholar 
    Ciancia, E. et al. Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data. Cont. Shelf Res. 155, 34–44 (2018).Article 

    Google Scholar 
    Trotta, F., Pinardi, N., Fenu, E., Grandi, A. & Lyubartsev, V. Multi-nest high-resolution model of submesoscale circulation features in the Gulf of Taranto. Ocean Dyn. 67, 1609–1625 (2017).Article 

    Google Scholar 
    Federico, I. et al. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci. 17, 45–59 (2017).Article 

    Google Scholar 
    Trotta, F. et al. A relocatable ocean modeling platform for downscaling to shelf-coastal areas to support disaster risk reduction. Front. Mar. Sci. 8, 103 (2021).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515–1532 (1997).Article 

    Google Scholar 
    Cushman-Roisin, B., Gacić, M., Poulain, P. M. & Artegiani, A. Physical Oceanography of the Adriatic Sea (2001).Escudier, R. et al. Mediterranean sea production centre MEDSEA_MULTIYEAR_PHY_006_004 (2021).Clementi, E. et al. Mediterranean sea physical analysis and forecast (CMEMS MED-Currents, EAS6 system) (Version 1) set. In Copernicus Monitoring Environment Marine Service (CMEMS) (2021).Madec, G. NEMO Ocean Engine (2008).Dobricic, S. & Nadia, P. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model 22, 89–105 (2008).Article 

    Google Scholar 
    Roquet, F., Madec, G., McDougall, T. J. & Barker, P. M. Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Model 90, 29–43 (2015).Article 

    Google Scholar 
    IOC, SCOR & IAPSO. In The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties 196 (2010).MEDSEA_MULTIYEAR_BGC_006_008 (2020).Mediterranean Sea Monthly and Daily Reprocessed Surface Chlorophyll Concentration from Multi Satellite observations + SeaWiFS daily climatology (2020).Volpe, G. et al. Mediterranean ocean colour Level 3 operational multi-sensor processing. Ocean Sci. 25, 1527–1532 (2019).
    Google Scholar 
    Berthon, J.-F. & Zibordi, G. Bio-optical relationships for the northern Adriatic Sea. Int. J. Remote Sens. 25, 1527–1532 (2004).Article 

    Google Scholar 
    De Dominicis, M. et al. A relocatable ocean model in support of environmental emergencies. Ocean Dyn. 64, 667–688 (2014).Article 

    Google Scholar 
    Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Wu, J. et al. Hyperparameter optimization for machine learning models based on bayesian optimizationb. J. Electron. Sci. Technol. 17, 26–40 (2019).
    Google Scholar 
    Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295–316 (2020).Article 

    Google Scholar  More

  • in

    Life cycle of the cold-water coral Caryophyllia huinayensis

    The solitary cold-water scleractinian C. huinayensis is described here as a brooder. Although reproduction in scleractinian CWCs is still poorly known, no other temperate species has yet been described to brood larvae. The solitary temperate CWC D. dianthus12, as well as the temperate colonial CWC D. pertusum8,10,38, M. oculata8,10 and O. varicosa9 reproduce by broadcast spawning. Brooding has only been reported in subpolar and polar solitary CWCs from the Southern Ocean17,18.Although quantitative data on the number of larvae released in the four Southern Ocean brooders are lacking, a potential number of larvae released per polyp can be inferred from their maximum fecundity (Table 1). C. huinayensis appears to be in the lower range of larvae production (6.5 ± 11.4 month-1 larvae), when compared its larval size (750–1080 µm length) with Balanophyllia malouinensis larvae ( > 600 µm, Table 1).Table 1 Larval features of scleractinian CWC species.Full size tableThorson’s rule43,44 states that organisms at higher latitudes tend to produce larger and fewer offspring and are frequently brooders. However, the brooding C. huinayensis appears to defy this rule, as it occurs at mid-latitudes (36° and 48.5° S33,45). Though the phylogeography of C. huinayensis is not yet clear, six other solitary species of the genus Caryophyllia are endemic to Antarctica46, suggesting that the genus may have originated in the Southern Ocean, with the mid-latitude distribution of C. huinayensis making the downstream end dispersal via the cold Humboldt Current branching off the Southern Ocean. In our case, Thorson’s rule does not seem to be a good predictor of the macroevolutionary patterns and reproductive mode in Caryophyllia.A better explanation can be inferred from Kerr et al.47. Their phylogenetic study on scleractinians revealed that the change from spawning to brooding (or vice versa) is based on the sexuality of the corals (i.e., gonochoric or hermaphroditic) and not on latitudinal distribution. The main pathway is from gonochoric spawners to gonochoric brooders, then to hermaphroditic brooders, and finally hermaphroditic spawning, which is the dominant reproductive mode in shallow-water corals.The results of our study indicate that C. huinayensis reproduces throughout the year, albeit with large temporal variations in the number of larvae released. However, the fluctuations were not seasonal. This may be due to the fact that the aquarium for this experiment lacked external timing signals (zeitgebers) usually found in the field, i.e., there were no fluctuations e.g., in water temperature, food frequency, food quality, or salinity, which might otherwise have synchronized the corals’ internal clock. Although, it is not yet known if the local C. huinayensis population exhibits seasonality in their larval release, the lack of larvae in April 2021 could also be due to poor internal fertilisation success based on the quality and/or quantity of sperm released (which was never observed).If there is no seasonal release of larvae from the natural coral population, this may indicate that rapid recolonisation is possible throughout the year following a disturbance. Substrate alterations are usually observed in the Patagonian fjord region, where strong physical disturbances such as landslides occur48, due to precipitation and earthquakes49. Also, hypoxia events ( More

  • in

    Impact of test, vaccinate or remove protocol on home ranges and nightly movements of badgers a medium density population

    DEFRA. Strategy for Achieving Officially Bovine Tuberculosis Free Status for England: The ‘edge area’ strategy. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/300447/pb14088-bovine-tb-strategy-140328.pdf (2014).Campbell, E. L. et al. Interspecific visitation of cattle and badgers to fomites: A transmission risk for bovine tuberculosis?. Ecol. Evol. 9(15), 8479–8489 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roberts, T., O’Connor, C., Nuñez-Garcia, J., De La Rua-Domenech, R. & Smith, N. H. Unusual cluster of Mycobacterium bovis infection in cats. Vet. Rec. 174(13), 326–326 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phipps, E. et al. Bovine tuberculosis in working foxhounds: Lessons learned from a complex public health investigation. Epidemiol. Infect. 147, 1–6 (2019).Article 

    Google Scholar 
    Delahay, R. J., De Leeuw, A. N. S., Barlow, A. M., Clifton-Hadley, R. S. & Cheeseman, C. L. The status of Mycobacterium bovis infection in UK wild mammals: A review. Vet. J. 164(2), 90–105 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fitzgerald, S. D. & Kaneene, J. B. Wildlife reservoirs of bovine tuberculosis worldwide: Hosts, pathology, surveillance, and control. Vet. Pathol. 50(3), 488–499 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Skuce, R. A., Allen, A. R. & McDowell, S. W. J. Herd-level risk factors for bovine tuberculosis: A literature review. Vet Med Int 2012, 621210 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayele, W. Y., Neill, S. D., Zinsstag, J., Weiss, M. G. & Pavlik, I. Bovine tuberculosis: An old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 8(8), 924–937 (2004).CAS 
    PubMed 

    Google Scholar 
    Gallagher, J. & Clifton-Hadley, R. S. Tuberculosis in badgers; a review of the disease and its significance for other animals. Res. Vet. 69(3), 203–217 (2000).Article 
    CAS 

    Google Scholar 
    Allen, A. et al. Genome epidemiology of Mycobacterium bovis infection in contemporaneous, sympatric badger and cattle populations in Northern Ireland. Access Microbiol. 1(1A), 385 (2019).Article 

    Google Scholar 
    APHA. Bovine Tuberculosis in England in 2020—Epidemiological analysis of the 2020 data and historical trends. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1027591/tb-epidemiological-report-2020.pdf (2021).DAERA. Tuberculosis disease statistics in Northern Ireland 2022. https://www.daera-ni.gov.uk/publications/tuberculosis-disease-statistics-northern-ireland-2022 (2022).Woodroffe, R. et al. Effects of culling on badger Meles meles spatial organization: Implications for the control of bovine tuberculosis. J. Appl. Ecol. 43(1), 1–10 (2006).Article 

    Google Scholar 
    Byrne, A. W., Paddy Sleeman, D., O’Keeffe, J. & Davenport, J. The ecology of the European badger (Meles meles) in Ireland: A review. Biol. Environ. 112, 105–132 (2012).Article 

    Google Scholar 
    McDonald, J., Robertson, A. & Silk, M. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87(1), 101–112 (2017).Article 
    PubMed 

    Google Scholar 
    Macdonald, D. W., Newman, C. & Buesching, C. D. Badgers in the rural landscape—conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. Wildlife conservation on farmland 2, 65–95 (2015).
    Google Scholar 
    Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A. & Delahay, R. J. Abundance of badgers (Meles meles) in England and Wales. Sci. Rep. 7(1), 1–8 (2017).Article 
    CAS 

    Google Scholar 
    Feore, S. & Montgomery, W. I. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. 247(4), 537–549 (1999).Article 

    Google Scholar 
    Reid, N., Etherington, T. R., Wilson, G. J., Montgomery, W. I. & McDonald, R. A. Monitoring and population estimation of the European badger Meles meles in Northern Ireland. Wildlife Biol. 18(1), 46–57 (2012).Article 

    Google Scholar 
    DAERA. Farm animal populations: Cattle populations in Northern Ireland from 1981 to 2019. https://www.daera-ni.gov.uk/publications/farm-animal-population-data (2019).DEFRA. Livestock numbers in the UK (data to December 2019). https://www.gov.uk/government/statistical-data-sets/structure-of-the-livestock-industry-in-england-at-december.39 (2020).DEFRA. Setting the minimum and maximum numbers in badger cull areas in 2021—Advice to Natural England. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1015421/tb-min-max-numbers-2021.pdf (2021).Griffin, J. M. et al. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Prev. Vet. Med. 67(4), 237–266 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ham, C., Donnelly, C. A., Astley, K. L., Jackson, S. Y. B. & Woodroffe, R. Effect of culling on individual badger Meles meles behaviour: Potential implications for bovine tuberculosis transmission. J. Appl. Ecol. 56(11), 2390–2399 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olea-Popelka, F. J. et al. Targeted badger removal and the subsequent risk of bovine tuberculosis in cattle herds in county Laois, Ireland. Prev. Vet. Med. 88(3), 178–184 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Donnelly, C. A. et al. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439(7078), 843–846 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Byrne, A. W., White, P. W., McGrath, G., O’Keeffe, J. & Martin, S. W. Risk of tuberculosis cattle herd breakdowns in Ireland: Effects of badger culling effort, density and historic large-scale interventions. Vet. Res. 45(1), 1–10 (2014).Article 

    Google Scholar 
    Wright, D. M. et al. Herd-level bovine tuberculosis risk factors: Assessing the role of low-level badger population disturbance. Sci. Rep. 5, 1–11 (2015).Article 

    Google Scholar 
    Jenkins, H. E., Woodroffe, R. & Donnelly, C. A. The duration of the effects of repeated widespread badger culling on cattle tuberculosis following the cessation of culling. PLoS ONE 5(2), e9090 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuyttens, F. A. M. et al. Spatial perturbation caused by a badger (Meles meles) culling operation: Implications for the function of territoriality and the control of bovine tuberculosis (Mycobacterium bovis). J. Anim. Ecol. 69(5), 815–828 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Carter, S. P. et al. Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: An analysis of a critical problem in applied ecology. Proc. R. Soc. B. 274(1626), 2769–2777 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donnelly, C. A. et al. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426(6968), 834–837 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vicente, J., Delahay, R. J., Walker, N. J. & Cheeseman, C. L. Social organization and movement influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles meles population. J Anim Ecol. 76(2), 348–360 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Riordan, P., Delahay, R. J., Cheeseman, C., Johnson, P. J. & Macdonald, D. W. Culling-induced changes in badger (Meles meles) behaviour, social organisation and the epidemiology of bovine tuberculosis. PLoS ONE 6(12), e28904 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowalczyk, R., Jȩdrzejewska, B. & Zalewski, A. Annual and circadian activity patterns of badgers (Meles meles) in Białowieża Primeval Forest (eastern Poland) compared with other palaearctic populations. J. Biogeogr. 30(3), 463–472 (2003).Article 

    Google Scholar 
    Smith, G. C., Delahay, R. J., McDonald, R. A. & Budgey, R. Model of selective and non-selective management of badgers (Meles meles) to control bovine tuberculosis in badgers and cattle. PLoS ONE 11(11), e0167206 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garnett, B. T., Delahay, R. J. & Roper, T. J. Ranging behaviour of European badgers (Meles meles) in relation to bovine tuberculosis (Mycobacterium bovis) infection. Appl. Anim. Behav. Sci. 94(3–4), 331–340 (2005).Article 

    Google Scholar 
    Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. 23(20), 915–916 (2013).Article 

    Google Scholar 
    Ellwood, S. A. et al. An active-radio-frequency-identification system capable of identifying co-locations and social-structure: Validation with a wild free-ranging animal. Methods Ecol. Evol. 8(12), 1822–1831 (2017).Article 

    Google Scholar 
    Noonan, M. et al. A new Magneto-Inductive tracking technique to uncover subterranean activity: what do animals do underground?. Methods Ecol. Evol. 6(5), 510–520 (2015).Article 

    Google Scholar 
    Schütz, K. et al. Behavioral and physiological responses of trap-induced stress in European badgers. J. Wildl. Manag. 70(3), 884–891 (2006).Article 

    Google Scholar 
    Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27(6), 1826–1832 (2016).
    Google Scholar 
    Bidder, O. R. et al. Step by step: Reconstruction of terrestrial animal movement paths by dead-reckoning. Mov. Ecol. https://doi.org/10.1186/s40462-015-0055-4 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunner, R. M. et al. Dead-reckoning animal movements in R: a reappraisal using Gundog. Tracks. Anim. Biotelem. 9(1), 1–37 (2021).
    Google Scholar 
    McClune, D. W., Marks, N. J., Delahay, R. J., Montgomery, W. I. & Scantlebury, D. M. Behaviour-time budget and functional habitat use of a free-ranging European badger (Meles meles). Anim. Biotelem. 3(7), 1–7 (2015).
    Google Scholar 
    McClune, D. et al. Tri-axial accelerometers quantify behaviour in the Eurasian badger (Meles meles): towards an automated interpretation of field data. Anim. Biotelem. 2(1), 1–6 (2014).Article 

    Google Scholar 
    Gaughran, A. et al. Dispersal patterns in a medium-density Irish badger population: Implications for understanding the dynamics of tuberculosis transmission. Ecol. Evol. 9(23), 13142–13152 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelly, D. J. et al. Extra Territorial Excursions by European badgers are not limited by age, sex or season. Sci. Rep. 10(1), 1–2 (2020).Article 

    Google Scholar 
    Macdonald, D. W., Newman, C., Buesching, C. D. & Johnson, P. J. Male-biased movement in a high-density population of the Eurasian badger (Meles meles). J. Mammal. 89(5), 1077–1086 (2008).Article 

    Google Scholar 
    Courcier, E. A. et al. Evaluating the application of the dual path platform VetTB test for badgers (Meles meles) in the test and vaccinate or remove (TVR) wildlife research intervention project in Northern Ireland. Res. Vet. Sci. 130, 170–178 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Menzies, F. D. et al. Test and vaccinate or remove: Methodology and preliminary results from a badger intervention research project. Vet. Rec. 189, e248 (2021).Article 
    PubMed 

    Google Scholar 
    O’Hagan, M. J. H. et al. Effect of selective removal of badgers (Meles meles) on ranging behaviour during a “test and Vaccinate or Remove” intervention in Northern Ireland. Epidemiol. Infect. 149(1), e125 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roper, T. J. The structure and function of badger setts. J. Zool. 227(4), 691–698 (1992).Article 

    Google Scholar 
    DAERA. The Test and Vaccinate or Remove (TVR) Wildlife Intervention Research Project. Year 1 Report—2014. https://www.daera-ni.gov.uk/sites/default/files/publications/dard/tvr-year-1-report.pdf (2014).Brown, E., Cooney, R. & Rogers, F. Veterinary guidance on the practical use of the BadgerBCG tuberculosis vaccine. In Pract. 35(3), 143–146 (2013).Article 

    Google Scholar 
    Magowan, E. A. et al. Dead-reckoning elucidates fine-scale habitat use by European badgers Meles meles. Anim. Biotelem. 10(1), 1–11 (2022).Article 

    Google Scholar 
    McGill, K. et al. Seroconversion against antigen MPB83 in badgers (Meles meles) vaccinated with multiple doses of BCG strain Sofia. Res. Vet. Sci. 149, 119–124. https://doi.org/10.1016/j.rvsc.2022.06.011 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gaughran, A. et al. Super-ranging. A new ranging strategy in European badgers. PLoS ONE 13(2), e0191818 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, H. J. et al. Identification of animal movement patterns using tri-axial magnetometry. Mov. Ecol. 5(1), 6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brendel C, Helder R, Chevallier D, Zaytoon J, Georges JY, and Handrich Y. Testing a global positioning system on free ranging badgers Meles meles. Mammal Notes, The Mammal Society, Southampton. https://www.mammal.org.uk/wp-content/uploads/2016/04/Note–Brendel-MN-2012-1.pdf (2012).Börger, L. et al. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75(6), 1393–1405 (2006).Article 
    PubMed 

    Google Scholar 
    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197(3–4), 516–519 (2006).Article 

    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7(9), 1124–1132 (2016).Article 

    Google Scholar 
    QGIS.org. QGIS Geographic Information System. QGIS Association. https://qgis.org/en/site/ (2021).Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96(5), 1182–1188 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fleming, C. H. et al. Estimating where and how animals travel: An optimal framework for path reconstruction from autocorrelated tracking data. Ecology 97(3), 576–582 (2016).CAS 
    PubMed 

    Google Scholar 
    Fleming, C. H. et al. Correcting for missing and irregular data in home-range estimation. Ecol. Appl. 28(4), 1003–1010 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gula, R. & Theuerkauf, J. The need for standardization in wildlife science: Home range estimators as an example. Eur. J. Wildl. Res. 59, 713–718 (2013).Article 

    Google Scholar 
    Schuler, K. L., Schroeder, G. M., Jenks, J. A. & Kie, J. G. Ad hoc smoothing parameter performance in kernel estimates of GPS-derived home ranges. Wildl. Biol. 20(5), 259–266 (2014).Article 

    Google Scholar 
    Huck, M., Davison, J. & Roper, T. J. Comparison of two sampling protocols and four home-range estimators using radio-tracking data from urban badgers Meles meles. Wildl. Biol. 14(4), 467–477 (2008).Article 

    Google Scholar 
    Scull, P., Palmer, M., Frey, F. & Kraly, E. A comparison of two home range modeling methods using Ugandan mountain gorilla data. Int. J. Geogr. Inf. Sci. 26(11), 2111–2121 (2012).Article 

    Google Scholar 
    Woodroffe, R. et al. Ranging behaviour of badgers Meles meles vaccinated with Bacillus Calmette Guerin. J. Appl. Ecol. 54(3), 718–725 (2017).Article 

    Google Scholar 
    Signer, J. & Fieberg, J. R. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ 9, e11031 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodroffe, R. et al. Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control. Ecology 19(10), 1201–1208 (2016).
    Google Scholar 
    Hijmans RJ. Introduction to the geosphere package (version 1 .5–10). Cran (2019).Dewhirst, O. P. et al. Improving the accuracy of estimates of animal path and travel distance using GPS drift-corrected dead reckoning. Ecol. Evol. 6(17), 6210–6222 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    QGIS.org. Working with vector data. QGIS Desktop 3.16 User Guide. pp 304. https://docs.qgis.org/3.22/en/docs/user_manual/index.html (2022).Qasem, L. et al. Tri-axial acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?. PLoS ONE 7(2), e31187 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies; a reappraisal. J anim Ecol. 89(1), 161–172 (2020).Article 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Barton K. Package “MuMin”. Cran (2018).Rogers, L. M., Cheeseman, C. L., Mallinson, P. J. & Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 242(4), 705–728 (1997).Article 

    Google Scholar 
    Macdonald, D. W. & Newman, C. Population dynamics of badgers (Meles meles) in Oxfordshire, UK: Numbers, density and cohort life histories, and a possible role of climate change in population growth. J. Zool. 256(1), 121–138 (2002).Article 

    Google Scholar 
    Kruuk, H., & MacDonald, D. Group territories of carnivores: empires and enclaves. In 25th Symposium of the British Ecological Society (1985).Roper, T. J., Shepherdson, D. J. & Davies, J. M. Scent marking with faeces and anal secretion in the European badger (Meles meles): seasonal and spatial characteristics of latrine use in relation to territoriality. Behaviour 97(1–2), 94–117 (1986).
    Google Scholar 
    Sleeman, D. P. et al. How many Eurasian badgers Meles meles L. are there in the republic of Ireland?. Eur. J. Wildl. Res. 55(4), 333–344 (2009).Article 

    Google Scholar 
    Carter, S. P. et al. BCG vaccination reduces risk of tuberculosis infection in vaccinated badgers and unvaccinated badger cubs. PLoS ONE 7(12), e49833 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Byrne, A., Parnell, A., O’Keeffe, J. & Madden, J. The challenge of estimating wildlife populations at scale: the case of the European badger (Meles meles) in Ireland. Eur. J. Wildl. Res. 67(5), 1–10 (2021).Article 

    Google Scholar 
    Minta, S. C. Sexual differences in spatio-temporal interaction among badgers. Oecologia 96(3), 402–409 (1993).Article 
    PubMed 

    Google Scholar 
    Annavi, G. et al. Neighbouring-group composition and within-group relatedness drive extra-group paternity rate in the European badger (Meles meles). J. Evol. Biol. 27(10), 2191–2203 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DEFRA. Monitoring regional changes in badger numbers. Research Project Final Report. http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=14237. Accessed 07 February 2023 (2009).Johnson, D. D., Jetz, W. & Macdonald, D. W. Environmental correlates of badger social spacing across Europe. J. Biogeogr. 29(3), 411–425 (2002).Article 

    Google Scholar 
    Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. J Zool. 184(1), 1–19 (1978).Article 

    Google Scholar 
    Macdonald, D., Newman, C., Dean, J., Buesching, C. & Johnson, P. The distribution of Eurasian badger, Meles meles, setts in a high-density area: field observations contradict the sett dispersion hypothesis. Oikos 106(2), 295–307 (2004).Article 

    Google Scholar 
    Sleeman, D. P. & Mulcahy, M. F. Loss of territoriality in a local badger Meles meles population at Kilmurry, Co Cork, Irealnd. Irish Nat. J. 28(1), 11–19 (2005).
    Google Scholar 
    Byrne, A. W., O’Keeffe, J., Buesching, C. D. & Newman, C. Push and pull factors driving movement in a social mammal: Context dependent behavioral plasticity at the landscape scale. Curr. Zool. 65(5), 517–525 (2019).Article 
    PubMed 

    Google Scholar 
    Cheeseman, C. L., Cresswell, W. J., Harris, S. & Mallinson, P. J. Comparison of dispersal and other movements in two Badger (Meles meles) populations. Mamm. Rev. 18(1), 51–59 (1988).Article 

    Google Scholar 
    Seebacher, F. & Krause, J. Epigenetics of social behaviour. TREE 34(9), 818–830 (2019).PubMed 

    Google Scholar 
    Allen, A. et al. European badger (Meles meles) responses to low-intensity, selective culling: Using mark–recapture and relatedness data to assess social perturbation. Ecol. Solut. Evid. 3(3), e12165 (2022).Article 

    Google Scholar 
    Loureiro, F., Rosalino, L. M., Macdonald, D. W. & Santos-Reis, M. Path tortuosity of Eurasian badgers (Meles meles) in a heterogeneous Mediterranean landscape. Ecol. Res. 22(5), 837–844 (2007).Article 

    Google Scholar 
    Sun, Q., Stevens, C., Newman, C., Buesching, C. & Macdonald, D. Cumulative experience, age-class, sex and season affect the behavioural responses of European badgers (Meles meles) to handling and sedation. Anim Welf. 24(4), 373–385 (2015).Article 

    Google Scholar 
    Conlan, A. et al. Potential benefits of cattle vaccination as a supplementary control for bovine tuberculosis. PLoS Comput. Biol. 11(2), e1004038 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gormley, E. et al. Oral vaccination of free-living badgers (Meles meles) with Bacille Calmette Guérin (BCG) vaccine confers protection against tuberculosis. PLoS ONE 12(1), e0168851 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benton, C. H. et al. Badger vaccination in England: Progress, operational effectiveness and participant motivations. People Nat. 2(3), 761–775 (2020).Article 

    Google Scholar  More

  • in

    Playing “hide and seek” with the Mediterranean monk seal: a citizen science dataset reveals its distribution from molecular traces (eDNA)

    Shaw, J., Weyrich, L. & Cooper, A. Using environmental (e)DNA sequencing for aquatic biodiversity surveys: A beginner’s guide. Mar. Freshw. Res. 68, 68 (2016).
    Google Scholar 
    Smith, K. J. et al. Stable isotope analysis of specimens of opportunity reveals ocean-scale site fidelity in an elusive whale species. Front. Conserv. Sci. 2, 1–11 (2021).Article 

    Google Scholar 
    Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS One 5, (2010).Cavanagh, R. D. & Gibson, C. Overview of the conservation status of cartilaginous fishes (Chondrichthyans) in the Mediterranean Sea. https://doi.org/10.2305/iucn.ch.2007.mra.3.en (2007).Pace, D. S., Tizzi, R. & Mussi, B. Cetaceans value and conservation in the Mediterranean Sea. Journal Biodivers. Endanger. Species S1:
    S1.004 (2015).Carlucci, R. et al. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Ecol. Indic. 69, 707–721 (2016).Article 

    Google Scholar 
    Boldrocchi, G. et al. Distribution, ecology, and status of the white shark, Carcharodon carcharias, in the Mediterranean Sea. Rev. Fish Biol. Fish. 27, 515–534 (2017).Article 

    Google Scholar 
    Karamanlidis, A. A. et al. The Mediterranean monk seal Monachus monachus: Status, biology, threats, and conservation priorities. Mammal Review 46, 92–105. https://doi.org/10.1111/mam.12053 (2016).Article 

    Google Scholar 
    Johnson, W. M. The role of the Mediterranean monk seal (Monachus monachus) in European history and culture, from the fall of Rome to the 20th century Monk Seals in Post-Classical History. (2004).Johnson, W. M. & Lavigne, D. M. The Mediterranean Monk Seal (Monachus monachus) in Ancient History and Literature Monk Seals in Antiquity. (1999).Israëls, l. D. Thirty Years of Mediterranean Monk Seal Protection – A Review. Netherlands Com- Mission Int. Nat. Prot. Inst. voor Taxon. Zoölogie/Zoölogische Museum, Univ. van Amsterdam, Amsterdam, Netherlands. Meded. No. 281–65. (1992).Stringer, C. B. et al. Neanderthal exploitation of marine mammals in Gibraltar. Proc. Natl. Acad. Sci. U. S. A. 105, 14319–14324 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    La Mesa, G., Lauriano, G., Mo, G., Paglialonga, A. & Tunesi, L. Assessment of the conservation status of marine species of the Habitats Directive (92/43/EEC) in Italy: results, drawbacks and perspectives of the fourth national report (2013–2018). Biodivers Conserv (2021).Adamantopoulou, S., Karamanlidis, A. A., Dendrinos, P. & Gimenez, O. Citizen science indicates significant range recovery and defines new conservation priorities for Earth’s most endangered pinniped in Greece. Anim. Conserv. https://doi.org/10.1111/acv.12806 (2022).Article 

    Google Scholar 
    Nicolaou, H., Dendrinos, P., Marcou, M., Michaelides, S. & Karamanlidis, A. A. Re-establishment of the Mediterranean monk seal Monachus monachus in Cyprus: Priorities for conservation. Oryx 55, 526–528 (2021).Article 

    Google Scholar 
    Tenan, S. et al. Evaluating mortality rates with a novel integrated framework for nonmonogamous species. Conserv. Biol. 30, 1307–1319 (2016).Article 
    PubMed 

    Google Scholar 
    Vanpe, C. et al. Estimating abundance of a recovering transboundary brown bear population with capture- recapture models. Peer Community Journal, 2, e71. (2022).Lecaudey, L. A., Schletterer, M., Kuzovlev, V. V., Hahn, C. & Weiss, S. J. Fish diversity assessment in the headwaters of the Volga River using environmental DNA metabarcoding. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1785–1800 (2019).Article 

    Google Scholar 
    Itakura, H. et al. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river-basin scale. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 361–373 (2019).Article 

    Google Scholar 
    Closek, C. J. et al. Marine vertebrate biodiversity and distribution within the central California current using environmental DNA (eDNA) metabarcoding and ecosystem surveys. Front. Mar. Sci. Vol. 6. (2019).Boldrocchi, G. & Storai, T. Data-mining social media platforms highlights conservation action for the Mediterranean Critically Endangered blue shark Prionace glauca. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 3087–3099 (2021).Article 

    Google Scholar 
    Thiel, M. et al. Citizen scientists and marine research: Volunteer participants, their contributions, and projection for the future. Oceanogr. Mar. Biol. An Annu. Rev. 52, 257–314 (2014).
    Google Scholar 
    Araujo, G. et al. Citizen science sheds light on the cryptic ornate eagle ray Aetomylaeus vespertilio. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 2012–2018 (2020).Article 

    Google Scholar 
    Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 24, 467–471 (2009).Article 
    PubMed 

    Google Scholar 
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, (2014).Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).Article 

    Google Scholar 
    Eichmiller, J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b05672 (2016).Article 
    PubMed 

    Google Scholar 
    Mächler, E., Osathanunkul, M. & Altermatt, F. Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms. PLoS ONE 13, 1–15 (2018).Article 

    Google Scholar 
    Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mauvisseau, Q. et al. The multiple states of environmental DNA and what is known about their persistence in aquatic environments. Environ. Sci. Technol. 56, 5322–5333 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valsecchi, E. et al. A species – specific qPCR assay provides novel insight into range expansion of the Mediterranean monk seal (Monachus monachus ) by means of eDNA analysis. Biodivers. Conserv. 31, 1175–1196 (2022).Article 

    Google Scholar 
    Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. https://doi.org/10.1038/s42003-018-0192-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, B., P.M., B. & Timbros, K. The particle size distribution of environmental DNA varies with species and degradation. Sci. Total Environ. 797, 149175 (2021).Würtz, M. Mediterranean submarine canyons. in Ecology and Governance (ed. IUCN) 192 (2012).Valsecchi, E. et al. Ferries and environmental DNA: Underway sampling from commercial vessels provides new opportunities for systematic genetic surveys of marine biodiversity. Front. Mar. Sci. 8, 1–17 (2021).Article 

    Google Scholar 
    Bustin, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 622, 611–622 (2009).Article 

    Google Scholar 
    Klymus, K. E. et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ. DNA 1–12. https://doi.org/10.1002/edn3.29 (2019).Goldberg, G. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 1299–1307. https://doi.org/10.1111/2041-210X.12595 (2016).Farrell, J. A. et al. Detection and population genomics of sea turtle species via noninvasive environmental DNA analysis of nesting beach sand tracks and oceanic water. Mol. Ecol. Resour. (2022).Shamblin, B. M. et al. Loggerhead turtle eggshells as a source of maternal nuclear genomic DNA for population genetic studies. Mol. Ecol. Resour. 11, 110–115 (2011).Article 
    PubMed 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).Article 

    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 37–41 (1999).Akaike, H. Information theory and an extension of the maximum likelihood principle in Breakthroughs in Statistics, Vol.I, Foundations and Basic Theory, (eds. Kotz, S. and Johnson, N.L.) 610–624 (Springer-Verlag, New York, 1992).Adamantopoulou, S. et al. Movements of Mediterranean Monk Seals (Monachus monachus) in the Eastern Mediterranean Sea. Aquat. Mamm. 37, 256–261 (2011).Article 

    Google Scholar  More

  • in

    Adélie penguins north and east of the ‘Adélie gap’ continue to thrive in the face of dramatic declines elsewhere in the Antarctic Peninsula region

    Fraser, W., Trivelpiece, W., Ainley, D. & Trivelpiece, S. Increases in Antarctic penguin populations: Reduced competition with whales or a loss of sea ice due to environmental warming?. Polar Biol. 11, 525–531 (1992).Article 

    Google Scholar 
    Trivelpiece, W. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. PNAS 108, 7625–7628 (2011).Article 
    CAS 

    Google Scholar 
    Fraser, W. & Hofmann, E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).Article 

    Google Scholar 
    Hinke, J., Salwicka, K., Trivelpiece, S., Watters, G. & Trivelpiece, W. Divergent responses of Pygoscelis penguins reveal common environmental driver. Oecologia 153, 845–855 (2007).Article 

    Google Scholar 
    Poncet, S. & Poncet, J. Censuses of penguin populations of the Antarctic Peninsula, 1983–87. Br. Antarct. Surv. Bull. 77, 109–129 (1987).
    Google Scholar 
    Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: Winter-summer heterogeneity in the distribution of Adélie penguin populations. Found. For. Ecol. Res. West Antarct. Penins. 70, 257–272 (1996).Article 

    Google Scholar 
    Humphries, G. R. W. et al. Mapping application for penguin populations and projected dynamics (MAPPPD): Data and tools for dynamic management and decision support. Polar Rec. 53, 160–166 (2017).Article 

    Google Scholar 
    Lynch, H., Naveen, R., Trathan, P. N. & Fagan, W. F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012).Article 

    Google Scholar 
    Elliot, D. H., Watts, D. R., Alley, R. B. & Gracanin, T. M. Bird and seal observations at Joinville Island and offshore islands. Antarct. J. USA 13, 154–155 (1978).
    Google Scholar 
    Bender, N. A., Crosbie, K. & Lynch, H. Patterns of tourism in the Antarctic Peninsula region: A twenty-year re-analysis. Antarct. Sci. 28, 194–203 (2016).Article 

    Google Scholar 
    Lynch, H. J. & Schwaller, M. R. Mapping the abundance and distribution of Adélie penguins using Landsat-7: First steps towards an integrated multi-sensor pipeline for tracking populations at the continental scale. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie penguin. Auk 131, 457–466 (2014).Article 

    Google Scholar 
    Parkinson, C. L. & Cavalieri, D. J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6, 871–880 (2012).Article 

    Google Scholar 
    Parkinson, C. L. Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann. Glaciol. 34, 435–440 (2002).Article 

    Google Scholar 
    Jena, B. et al. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. NPJ Clim. Atmos. Sci. 5, 1–15 (2022).Article 

    Google Scholar 
    Kumar, A., Yadav, J. & Mohan, R. Seasonal sea-ice variability and its trend in the Weddell Sea sector of West Antarctica. Environ. Res. Lett. 16, 024046 (2021).
    Google Scholar 
    Strass, V. H., Rohardt, G., Kanzow, T., Hoppema, M. & Boebel, O. Multidecadal warming and density loss in the deep Weddell Sea. Antarct. J. Clim. 33, 9863–9881 (2020).Article 

    Google Scholar 
    Morioka, Y. & Behera, S. K. Remote and local processes controlling decadal sea ice variability in the Weddell Sea. J. Geophys. Res. Ocean 126, e2020JC017036 (2021).Article 

    Google Scholar 
    Veytia, D. et al. Circumpolar projections of Antarctic krill growth potential. Nat. Clim. Chang. 10, 568–575 (2020).Article 

    Google Scholar 
    Humphries, G. R. et al. Predicting the future is hard and other lessons from a population time series data science competition. Ecol. Inf. 48, 1–11 (2018).Article 

    Google Scholar 
    Borowicz, A. et al. A multi-modal survey of Adèlie penguin megacolonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).Article 

    Google Scholar 
    Cimino, M., Lynch, H., Saba, V. & Oliver, M. Projected asymmetric response of Adèlie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).Article 
    CAS 

    Google Scholar 
    McClintock, J., Silva-Rodriguez, P. & Fraser, W. Southerly breeding in gentoo penguins for the eastern Antarctic Peninsula: Further evidence for unprecedented climate change. Antarct. Sci. 22, 285–286 (2010).Article 

    Google Scholar 
    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001–2007. Mar. Ornithol. 36, 83–97 (2008).
    Google Scholar 
    Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).Article 

    Google Scholar 
    Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-1, Priority Areas for Conservation. SC-CAMLR- XXXVI/17. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-2, Priority Areas for Conservation. SC-CAMLR- XXXVI/18. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Teschke, K. et al. Planning marine protected areas under the CCAMLR regime—the case of the Weddell Sea (Antarctica). Mar. Policy 124, 104370 (2021).Article 

    Google Scholar 
    Herman, R. et al. Update on the global abundance and distribution of breeding Gentoo Penguins (Pygoscelis papua). Polar Biol. 43, 1947–1956 (2020).Article 

    Google Scholar 
    Korczak-Abshire, M., Hinke, J. T., Milinevsky, G., Juáres, M. A. & Watters, G. M. Coastal regions of the northern Antarctic Peninsula are key for gentoo populations. Biol. Lett. 17, 20200708 (2021).Article 

    Google Scholar 
    Miller, A. K., Karnovsky, N. J. & Trivelpiece, W. Z. Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands. Antarct. Mar. Biol. 156, 2527–2537 (2009).Article 

    Google Scholar 
    Herman, R. W. et al. Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol. 164, 1–13 (2017).Article 
    CAS 

    Google Scholar 
    Cimino, M. A., Fraser, W. R., Irwin, A. J. & Oliver, M. J. Satellite data identify decadal trends in the quality of Pygoscelis penguin chick-rearing habitat. Glob. Chang. Biol. 19, 136–148 (2013).Article 

    Google Scholar 
    Black, C. E. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol. 39, 405–432 (2016).Article 

    Google Scholar 
    Croxall, J. P. & Kirkwood, E. The Distribution of Penguins on the Antarctic Peninsula and Islands of the Scotia Sea (British Antarctic Survey, Cambridge, UK, 1979).
    Google Scholar 
    Naveen, R. et al. Censuses of penguin, blue-eyed shag, and southern giant petrel populations in the Antarctic Peninsula region, 1994–2000. Polar Rec. 36, 323–334 (2000).Article 

    Google Scholar 
    Woehler,E. J. The Distribution and Abundance of Antarctic and Subantarctic Penguins. In SCAR Comm. on Antarctic Res. Bird Biol. Subcomm. (Cambridge University Press, 1993).Naveen, R., Lynch, H. J., Forrest, S., Mueller, T. & Polito, M. First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biol. 35, 1879–1888 (2012).
    Google Scholar 
    Hallermann, N., Morgenthal, G. & Rodehorst, V. Unmanned aerial systems (UAS)–case studies of vision based monitoring of ageing structures. In Int. Symp. Non-Destructive Test. Civ. Eng. (NDT-CE) 15–17 (2015).Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 38, 421–430 (2013).Article 

    Google Scholar 
    Cavalieri, D. J., Germain, K. M. S. & Swift, C. T. Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I. J. Glaciol. 41, 455–464 (1995).Article 

    Google Scholar 
    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. Updated daily Sea Ice Index, Version 3. In Boulder, Colo.USA. NSIDC: Natl. Snow Ice Data Cent (2017).Iles, D. T. et al. Sea ice predicts long-term trends in Adélie penguin population growth, but not annual fluctuations: Results from a range-wide multiscale analysis. Glob. Change Biol. 26, 3788–3798 (2020).Article 

    Google Scholar 
    Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using mcmc. R package version 4. https://rdrr.io/cran/rjags/ (2016).Plummer, M. et al. Jags: A program for analysis of bayesian graphical models using gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, vol. 124, 1–10 (Vienna, Austria., 2003).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Youngflesh, C. MCMCvis: Tools to visualize, manipulate, and summarize MCMC output. J. Open Sourc. Softw. 3, 640 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2. Wiley Interdiscipl. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Kellner,K. jagsUI: A wrapper around rjags to streamline JAGS analyses. R package version 1, 2015 (2015).Herman, R. & Lynch, H. Age-structured model reveals prolonged immigration is key for colony establishment in Gentoo Penguins. Ornithol. Appl. 124, duac04 (2022).
    Google Scholar 
    Polito, M. J., Lynch, H. J., Naveen, R. & Emslie, S. D. Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar. Ecol. Prog. Ser. 421, 265–277 (2011).Article 

    Google Scholar 
    Ballerini, T., Tavecchia, G., Olmastroni, S., Pezzo, F. & Focardi, S. Nonlinear effects of winter sea ice on the survival probabilities of Adélie penguins. Oecologia 161, 253–265 (2009).Article 

    Google Scholar 
    Wilson, P. et al. Adélie penguin population change in the pacific sector of Antarctica: Relation to sea-ice extent and the Antarctic Circumpolar Current. Mar. Ecol. Prog. Ser. 213, 301–309 (2001).Article 

    Google Scholar 
    Wienecke, B. et al. Adélie penguin foraging behaviour and krill abundance along the Wilkes and Adélie land coasts, Antarctica. Deep. Sea Res. Part II Top. Stud. Oceanogr. 47, 2573–2587 (2000).Article 

    Google Scholar 
    Ainley, D. G. The Adélie Penguin: Bellwether of Climate Change (Columbia University Press, 2002).Book 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land. Antarct. Mar. Biol. 154, 813–821 (2008).Article 

    Google Scholar 
    Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: Chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).Article 

    Google Scholar 
    Ashford, J., Zane, L., Torres, J. J., La Mesa, M. & Simms, A. R. Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem 193–234 (Springer, 2017).Pakhomov, E. & Perissinotto, R. Antarctic neritic krill Euphausia crystallorophias: Spatio-temporal distribution, growth and grazing rates. Deep. Sea Res. Part I Oceanogr. Res. Pap. 43, 59–87 (1996).Article 

    Google Scholar 
    La Mesa, M. & Eastman, J. T. Antarctic silverfish: Life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13, 241–266 (2012).Article 

    Google Scholar 
    Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea. Antarct. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).Article 
    CAS 

    Google Scholar 
    Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).Article 

    Google Scholar 
    La Mesa, M., Piñones, A., Catalano, B. & Ashford, J. Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula. Fish. Oceanogr. 24, 150–161 (2015).Article 

    Google Scholar 
    La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).Article 

    Google Scholar 
    Handley, J. et al. Marine important bird and biodiversity areas for penguins in Antarctica, targets for conservation action. Front. Mar. Sci. 7, 256 (2021).Article 

    Google Scholar 
    Brooks, C. et al. Workshop on identifying key biodiversity areas for the Southern Ocean using tracking data. In Tech.Rep. SC-CAMLR-41/BG/22, CCAMLR (2022).Lynch, H. J., Naveen, R. & Casanovas, P. Antarctic site inventory breeding bird survey data, 1994–2013: Ecological Archives E094–243. Ecology 94, 2653–2653 (2013).Article 

    Google Scholar 
    Myrcha, A., Tatur, A. & Valle, R. D. V. Numbers of Adélie penguins breeding at Hope Bay and Seymour Island rookeries (West Antarctica) in 1985. Pol. Polar Res. 8, 411–422 (1987).
    Google Scholar 
    Montalti, D. & Soave, G. E. The birds of Seymour Island, Antarctica. Ornitol. Neotrop. 13, 267–271 (2002).
    Google Scholar 
    Perchivale, P. J. et al. Updated estimate of the Breeding Population of Adélie penguins (Pygoscelis adeliae) at Penguin Point, Marambio/Seymour Island within the proposed Weddell Sea Marine Protected Area (2022). https://www.researchsquare.com/article/rs-2117503/v1.Che-Castaldo, C. et al. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nat. Commun. 8, 832 (2017).Article 

    Google Scholar 
    Hinke, J. T., Trivelpiece, S. G. & Trivelpiece, W. Z. Variable vital rates and the risk of population declines in Adélie penguins from the Antarctic Peninsula region. Ecosphere 8, e01666 (2017).Article 

    Google Scholar  More

  • in

    Evaluating red tide effects on the West Florida Shelf using a spatiotemporal ecosystem modeling framework

    Brown, A. R. et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev. Aquac. 12, 1663–1688 (2020).
    Google Scholar 
    Bechard, A. Red tide at morning, tourists take warning? County-level economic effects of HABS on tourism dependent sectors. Harmful Algae 85, 101689–101689 (2019).Article 

    Google Scholar 
    Landsberg, J. H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 10, 113–390 (2002).Article 

    Google Scholar 
    Flewelling, L. J. et al. Brevetoxicosis: Red tides and marine mammal mortalities. Nature 435, 755–756 (2005).Article 
    CAS 

    Google Scholar 
    Gannon, D. P. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).Article 
    CAS 

    Google Scholar 
    Driggers, W. B. et al. Environmental conditions and catch rates of predatory fishes associated with a mass mortality on the West Florida Shelf. Estuar. Coast. Shelf Sci. 168, 40–49 (2016).Article 
    CAS 

    Google Scholar 
    Hallett, C. S., Valesini, F. J., Clarke, K. R. & Hoeksema, S. D. Effects of a harmful algal bloom on the community ecology, movements and spatial distributions of fishes in a microtidal estuary. Hydrobiologia 763, 267–284 (2016).Article 

    Google Scholar 
    Anderson, D. M. et al. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae 102, 101975–101975 (2021).Article 
    CAS 

    Google Scholar 
    Steidinger, K. A. & Haddad, K. Biologic and hydrographic aspects of red tides. Bioscience 31, 814–819 (1981).Article 

    Google Scholar 
    Soto, I. M. et al. Advection of Karenia brevis blooms from the Florida Panhandle towards Mississippi coastal waters. Harmful Algae 72, 46–64 (2018).Article 

    Google Scholar 
    Steidinger, K. A. & Ingle, R. M. Observations on the 1971 summer red tide in tampa bay, Florida1. Environ. Lett. 3, 271–278 (1972).Article 
    CAS 

    Google Scholar 
    Liu, Y. et al. Offshore forcing on the “pressure point” of the West Florida Shelf: Anomalous upwelling and its influence on harmful algal blooms. J. Geophys. Res. 121, 5501–5515 (2016).Article 

    Google Scholar 
    Liu, Y., Weisberg, R. H., Zheng, L., Heil, C. A. & Hubbard, K. A. Termination of the 2018 Florida red tide event: A tracer model perspective. Estuar. Coast. Shelf Sci. 272, 107901 (2022).Article 

    Google Scholar 
    Weisberg, R. H. & Liu, Y. Local and deep-ocean forcing effects on the West Florida continental shelf circulation and ecology. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.863227 (2022).Article 

    Google Scholar 
    Walsh, J. J. et al. Red tides in the Gulf of Mexico: Where, when, and why? Journal of Geophysical Research: Oceans 111, (2006).Lapointe, B. E., Herren, L. W., Debortoli, D. D. & Vogel, M. A. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae 43, 82–102 (2015).Article 
    CAS 

    Google Scholar 
    Medina, M. et al. Nitrogen-enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida. Sci. Total Environ. 827, 154149–154149 (2022).Article 
    CAS 

    Google Scholar 
    Perkins, S. Ramping up the fight against Florida’s red tides. Proc. Natl. Acad. Sci. U.S.A. 116, 6510–6512 (2019).Article 
    CAS 

    Google Scholar 
    Skripnikov, A. et al. Using localized Twitter activity to assess harmful algal bloom impacts of Karenia brevis in Florida, USA. Harmful Algae 110, 102118–102118 (2021).Article 
    CAS 

    Google Scholar 
    SEDAR. SEDAR 33 Update – Gulf of Mexico gag grouper stock assessment report, 123. https://sedarweb.org/docs/suar/GagUpdateAssessReport_Final_0.pdf (2016).SEDAR. SEDAR 61 – Gulf of Mexico red grouper stock assessment report, 285. https://sedarweb.org/docs/sar/S61_Final_SAR.pdf (2019).SEDAR. SEDAR 10 Stock Assessment Report 2: Gulf of Mexico Gag Grouper, 250. www.sedarweb.org (2004).SEDAR. SEDAR 10 Update – Gulf of Mexico gag grouper stock assessment report. http://www.sedarweb.org (2009).SEDAR. SEDAR 72—Gulf of Mexico gag grouper stock assessment report, 318–318. https://sedarweb.org/docs/sar/S72_SAR_FINAL.pdf%0A (2021).Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).Article 

    Google Scholar 
    Steenbeek, J. et al. Making spatial-temporal marine ecosystem modelling better—A perspective. Environ. Model. Softw. 145, 105209–105209 (2021).Article 

    Google Scholar 
    Gray DiLeone, A. M. & Ainsworth, C. H. Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf. Ecol. Model. 392, 250–267 (2019).Article 

    Google Scholar 
    Perryman, H. A. et al. A revised diet matrix to improve the parameterization of a West Florida Shelf Ecopath model for understanding harmful algal bloom impacts. Ecol. Model. 416, 108890–108890 (2020).Article 

    Google Scholar 
    Mayer-Pinto, M., Ledet, J., Crowe, T. P. & Johnston, E. L. Sublethal effects of contaminants on marine habitat-forming species: A review and meta-analysis. Biol. Rev. 95, 1554–1573 (2020).Article 

    Google Scholar 
    Reis Costa, P. Impact and effects of paralytic shellfish poisoning toxins derived from harmful algal blooms to marine fish. Fish Fish. 17, 226–248 (2016).Article 

    Google Scholar 
    Dahood, A., de Mutsert, K. & Watters, G. M. Evaluating Antarctic marine protected area scenarios using a dynamic food web model. Biol. Cons. 251, 108766–108766 (2020).Article 

    Google Scholar 
    de Mutsert, K. et al. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model. Ecol. Model. 331, 142–150 (2016).Article 

    Google Scholar 
    de Mutsert, K., Lewis, K. A., White, E. D. & Buszowski, J. End-to-end modeling reveals species-specific effects of large-scale coastal restoration on living resources facing climate change. Front. Mar. Sci. 8, 104–104 (2021).Article 

    Google Scholar 
    Bauer, B. et al. Erratum: Reducing eutrophication increases spatial extent of communities supporting commercial fisheries: A model case study (ICES Journal of Marine Science (2018) DOI: https://doi.org/10.1093/icesjms/fsy003). ICES Journal of Marine Science, 75, 1155–1155 (2018).Sadchatheeswaran, S., Branch, G. M., Shannon, L. J., Coll, M. & Steenbeek, J. A novel approach to explicitly model the spatiotemporal impacts of structural complexity created by alien ecosystem engineers in a marine benthic environment. Ecol. Model. 459, 109731–109731 (2021).Article 

    Google Scholar 
    Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 7, 741–741 (2020).Article 

    Google Scholar 
    Hernvann, P. Y. et al. The celtic sea through time and space: Ecosystem modeling to unravel fishing and climate change impacts on food-web structure and dynamics. Front. Mar. Sci. 7, 1018–1018 (2020).Article 

    Google Scholar 
    Walters, C. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2, 539–554 (1999).Article 

    Google Scholar 
    Christensen, V., Walters, C. J., Pauly, D. & Forrest, R. Ecopath with Ecosim version 6 user guide. Fish. Cent. Univ. Br. Columbia Vanc. Can. 281, 1–235 (2008).
    Google Scholar 
    Okey, T. A., Mahmoudi, B., Mackinson, S., Vasconcellos, M. & Vidal-Hernandez, L. An ecosystem model of the West Florida Shelf for use in fisheries management and ecological research: Volume II. Model construction. Fish. Manag. II, 163–163 (2002).
    Google Scholar 
    Liu, Y. & Weisberg, R. H. Seasonal variability on the West Florida Shelf. Prog. Oceanogr. 104, 80–98 (2012).Article 

    Google Scholar 
    Moretzsohn, F., Chávez-Sánchez, J. A. & J.W. Tunnell, Jr. GulfBase: Resource Database for Gulf of Mexico Research. World Wide Web electronic publication (2016).Murawski, S. A., Peebles, E. B., Gracia, A., Tunnell, J. W. & Armenteros, M. Comparative abundance, species composition, and demographics of continental shelf fish assemblages throughout the Gulf of Mexico. Mar. Coast. Fish. 10, 325–346 (2018).Article 

    Google Scholar 
    Darnell, R. M. The American sea: A natural history of the gulf of Mexico. The American Sea: A Natural History of the Gulf of Mexico, 557, https://doi.org/10.5860/choice.193769 (2015).Brochure, I. Marine recreational information program: Implementation plan (2008).Florida Fish and Wildlife Conservation Commission. Commercial fisheries landings summaries (2021).Murawski, S. A. et al. How did the deepwater horizon oil spill affect coastal and continental shelf ecosystems of the Gulf of Mexico?. Oceanography 29, 160–173 (2016).Article 

    Google Scholar 
    Chagaris, D. D., Patterson, W. F. & Allen, M. S. Relative effects of multiple stressors on reef food webs in the Northern Gulf of Mexico revealed via ecosystem modeling. Front. Mar. Sci. 7, 513–513 (2020).Article 

    Google Scholar 
    South, A. rnaturalearth: world map data from Natural Earth. R package version 0.1.0. The R Foundation. https://CRAN.R-project.org/package=rnaturalearth (2017).Colleter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).Article 

    Google Scholar 
    Ahrens, R. N., Walters, C. J. & Christensen, V. Foraging arena theory. Fish fish. 13, 41–59 (2012).Article 

    Google Scholar 
    Christensen, V. et al. Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412 (2014).Article 
    CAS 

    Google Scholar 
    Steenbeek, J. et al. Bridging the gap between ecosystem modeling tools and geographic information systems: Driving a food web model with external spatial–temporal data. Ecol. Model. 263, 139–151 (2013).Article 

    Google Scholar 
    Walters, C., Christensen, V., Walters, W. & Rose, K. Representation of multistanza life histories in Ecospace models for spatial organization of ecosystem trophic interaction patterns. Bull. Mar. Sci. 86, 439–459 (2010).
    Google Scholar 
    Heymans, J. J. et al. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol. Model. 331, 173–184 (2016).Article 

    Google Scholar 
    Okey, T. Simulating community effects of sea floor shading by plankton blooms over the West Florida Shelf. Ecol. Model. 172, 339–359 (2004).Article 

    Google Scholar 
    Chagaris, D. D. Ecosystem-based Evaluation of Fishery Policies and Tradeoffs on the West Florida Shelf Vol. 53, 1699 (University of Florida, 2013).
    Google Scholar 
    Chagaris, D. D., Mahmoudi, B., Walters, C. J. & Allen, M. S. Simulating the trophic impacts of fishery policy options on the west florida shelf using ecopath with ecosim. Mar. Coast. Fish. 7, 44–58 (2015).Article 

    Google Scholar 
    Chagaris, D. et al. An ecosystem-based approach to evaluating impacts and management of invasive lionfish. Fisheries 42, 421–431 (2017).Article 

    Google Scholar 
    Chagaris, D. West Florida Shelf Ecosystem Model. University of Florida. https://ufdc.ufl.edu/IR00011604/00001%0A West Florida Shelf Ecosystem Model (2021).Vilas, D. Spatiotemporal Ecosystem Dynamics on the West Florida Shelf: Prediction, Validation, and Application to Red Tides and Stock Assessment (University of Florida, 2022).
    Google Scholar 
    Chassignet, E. P. et al. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. 65, 60–83 (2007).Article 

    Google Scholar 
    NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 3—Florida and East Gulf of Mexico. https://doi.org/10.7289/V5W66HP (2001).NASA. Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Earth Data (2018).Casey, L. Nutrient and pesticide data collected from the USGS National Water Quality Network and previous networks, 1950–2020: U.S. Geological Survey, https://doi.org/10.5066/P9P2PF1N (2021).Chagaris, D. & Vilas, D. NOAA RESTORE Science Program: Ecosystem modeling to improve fisheries management in the Gulf of Mexico: model inputs and outputs for the West Florida Shelf, 1985–01–01 to 2018–12–31 (NCEI Accession 0242339), https://doi.org/10.25921/t26e-wj91. (2022).Püts, M. et al. Insights on integrating habitat preferences in process-oriented ecological models—A case study of the southern North Sea. Ecol. Model. 431, 109189–109189 (2020).Article 

    Google Scholar 
    Vilas, D., Fletcher, R. J. Jr., Siders, Z. A. & Chagaris, D. Understanding the temporal dynamics of estimated environmental niche hypervolumes for marine fishes. Ecol. Evol. 12, e9604 (2022).Article 

    Google Scholar 
    Grubbs, R. D., Musick, J. A., Conrath, C. L. & Romine, J. G. Long-term movements, migration, and temporal delineation of a summer nursery for Juvenile Sandbar Sharks in the Chesapeake Bay region. In Shark Nursery Grounds of the Gulf of Mexico and the East Coast Waters of the United States. American Fisheries Society Symposium 50 Vol. 50 (eds Grubbs, R. D. et al.) 87–107 (American Fisheries Society, 2007).
    Google Scholar 
    Addis, D. T., Patterson, W. F., Dance, M. A. & Ingram, G. W. Implications of reef fish movement from unreported artificial reef sites in the northern Gulf of Mexico. Fish. Res. 147, 349–358 (2013).Article 

    Google Scholar 
    Akins, J. L., Morris, J. A. & Green, S. J. In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish. Ecol. Evol. 4, 3768–3777 (2014).Article 

    Google Scholar 
    Chen, Z., Xu, S., Qiu, Y., Lin, Z. & Jia, X. Modeling the effects of fishery management and marine protected areas on the Beibu Gulf using spatial ecosystem simulation. Fish. Res. 100, 222–229 (2009).Article 

    Google Scholar 
    Steenbeek, J. et al. Ecopath with ecosim as a model-building toolbox: Source code capabilities, extensions, and variations. Ecol. Model. 319, 178–189 (2016).Article 

    Google Scholar 
    Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).Article 

    Google Scholar 
    Hu, C. et al. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 97, 311–321 (2005).Article 

    Google Scholar 
    Chagaris, D., Vilas, D., Siders, Z. A. & Sinnickson, D. Monthly maps of red tide on the West Florida Shelf 2002–2021: A simple approach combining remote sensing and in situ measurements (in prep).Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute. Statewide harmful algal bloom karenia brevis current status map (2022).Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics (2016).Landsberg, J. H., Flewelling, L. J. & Naar, J. Karenia brevis red tides, brevetoxins in the food web, and impacts on natural resources: Decadal advancements. Harmful Algae 8, 598–607 (2009).Article 
    CAS 

    Google Scholar 
    Gianelli, I., Ortega, L. & Defeo, O. Modeling short-term fishing dynamics in a small-scale intertidal shellfishery. Fish. Res. 209, 242–250 (2019).Article 

    Google Scholar 
    Moore, S. K. et al. An index of fisheries closures due to harmful algal blooms and a framework for identifying vulnerable fishing communities on the U.S. West Coast. Mar. Policy 110, 103543–103543 (2019).Article 

    Google Scholar 
    GSMFC. SEAMAP: Environmental and Biological Atlas of the Gulf of Mexico. www.seamap.org (2020).Bechard, A. Harmful algal blooms and tourism: The economic impact to counties in Southwest Florida. Rev. Reg. Stud. 50, 170–188 (2020).
    Google Scholar 
    Foley, A. M. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).Article 

    Google Scholar 
    Karnauskas, M. et al. Timeline of severe red tide events on the West Florida Shelf: insights from oral histories. http://sedarweb.org/docs/wpapers/S61_WP_20_Karnauskasetal_red_tide.pdf (2019).Sagarese, S. R., Gruss, A., Karnauskas, M. & Walter, J. F. Ontogenetic spatial distributions of red grouper (Epinephelus morio) within the northeastern Gulf of Mexico and spatio‐ temporal overlap with red tide events, 35–35. http://sedarweb.org/docs/wpapers/S42_DW_04_Red_tide_distribution.pdf (2014).Sagarese, S. R., Vaughan, N. R., Walter, J. F. & Karnauskas, M. Enhancing single-species stock assessments with diverse ecosystem perspectives: A case study for gulf of mexico red grouper (epinephelus morio) and red tides. Can. J. Fish. Aquat. Sci. 78, 1168–1180 (2021).Article 

    Google Scholar 
    Sagarese, S. R. & Harford, W. J. Evaluating the risks of red tide mortality misspecification when modeling stock dynamics. Fish. Res. 250, 106271–106271 (2022).Article 

    Google Scholar 
    Whitehouse, G. A. & Aydin, K. Y. Assessing the sensitivity of three Alaska marine food webs to perturbations: An example of Ecosim simulations using Rpath. Ecol. Model. 429, 109074–109074 (2020).Article 

    Google Scholar 
    Walter, J. F. et al. Satellite derived indices of red tide severity for input for Gulf of Mexico Gag grouper stock assessment. SEDAR33-DW08 SEDAR. North Charlest. S. C. 43, 40–40 (2013).
    Google Scholar 
    Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: From individuals to ecosystems. Trends Ecol. Evol. 36, 402–410 (2021).Article 

    Google Scholar 
    Walters, S., Lowerre-Barbieri, S., Bickford, J., Tustison, J. & Landsberg, J. H. Effects of Karenia brevis red tide on the spatial distribution of spawning aggregations of sand seatrout Cynoscion arenarius in Tampa Bay Florida. Mar. Ecol. Prog. Ser. 479, 191–202 (2013).Article 

    Google Scholar 
    Reynolds, D. A., Yoo, M. J., Dixson, D. L. & Ross, C. Exposure to the Florida red tide dinoflagellate, Karenia brevis, and its associated brevetoxins induces ecophysiological and proteomic alterations in Porites astreoides. PLoS One 15, e0228414–e0228414 (2020).Article 
    CAS 

    Google Scholar 
    Bornman, E., Cowley, P. D., Adams, J. B. & Strydom, N. A. Daytime intra-estuary movements and harmful algal bloom avoidance by Mugil cephalus (family Mugilidae). Estuar. Coast. Shelf Sci. 260, 107492–107492 (2021).Article 
    CAS 

    Google Scholar 
    Moreira-Santos, M., Ribeiro, R. & Araújo, C. V. M. What if aquatic animals move away from pesticide-contaminated habitats before suffering adverse physiological effects? A critical review. Crit. Rev. Environ. Sci. Technol. 49, 989–1025 (2019).Article 
    CAS 

    Google Scholar 
    Schreck, C. B. & Tort, L. The concept of stress in fish. In Fish Physiology Vol. 35 (eds Schreck, C. B. & Tort, L.) 1–34 (Elsevier, 2016).
    Google Scholar 
    Madin, E. M. P., Dill, L. M., Ridlon, A. D., Heithaus, M. R. & Warner, R. R. Human activities change marine ecosystems by altering predation risk. Glob. Change Biol. 22, 44–60 (2016).Article 

    Google Scholar 
    Walsh, J. R., Carpenter, S. R. & Van Der Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl. Acad. Sci. U.S.A. 113, 4081–4085 (2016).Article 
    CAS 

    Google Scholar 
    Short, J. W. et al. Evidence for ecosystem-level trophic cascade effects involving gulf menhaden (Brevoortia patronus) triggered by the Deepwater horizon blowout. J. Mar. Sci. Eng. 9, 1–20 (2021).Article 

    Google Scholar 
    Zohdi, E. & Abbaspour, M. Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction. Int. J. Environ. Sci. Technol. 16, 1789–1806 (2019).Article 

    Google Scholar 
    Weisberg, R. H., Barth, A., Alvera-Azcarate, A. & Zheng, L. A coordinated coastal ocean observing and modeling system for the West Florida Continental Shelf. Harmful Algae 8, 585–597 (2009).Article 

    Google Scholar 
    Turley, B. D., Karnauskas, M., Campbell, M. D., Hanisko, D. S. & Kelble, C. R. Relationships between blooms of Karenia brevis and hypoxia across the West Florida Shelf. Harmful Algae 114, 102223 (2022).Article 

    Google Scholar 
    Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: Insights from ecosystem-level management strategy evaluation. PLoS One 9, e84242 (2014).Article 

    Google Scholar 
    Flynn, K. J. & McGillicuddy, D. J. Modeling marine harmful algal blooms: Current status and future prospects. Harmful Algal Blooms https://doi.org/10.1002/9781118994672.ch3 (2018).Article 

    Google Scholar 
    Thorson, J. T. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res. 210, 143–161 (2019).Article 

    Google Scholar 
    Fossum, T. O., Travelletti, C., Eidsvik, J., Ginsbourger, D. & Rajan, K. Learning excursion sets of vector-valued gaussian random fields for autonomous ocean sampling. Ann. Appl. Stat. 15, 597–618 (2021).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Fu, F. X., Place, A. R., Garcia, N. S. & Hutchins, D. A. CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquat. Microb. Ecol. 59, 55–65 (2010).Article 

    Google Scholar 
    Hardison, D. R., Sunda, W. G., Shea, D. & Litaker, R. W. Increased toxicity of Karenia brevis during phosphate limited growth: Ecological and evolutionary implications. PLoS One 8, e58545–e58545 (2013).Article 
    CAS 

    Google Scholar 
    Errera, R. M., Yvon-Lewis, S., Kessler, J. D. & Campbell, L. Reponses of the dinoflagellate Karenia brevis to climate change: PCO2 and sea surface temperatures. Harmful Algae 37, 110–116 (2014).Article 
    CAS 

    Google Scholar 
    Wells, M. L. et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 91, 101632–101632 (2020).Article 

    Google Scholar 
    Wolny, J. L. et al. Current and future remote sensing of harmful algal blooms in the chesapeake bay to support the shellfish industry. Front. Mar. Sci. 7, 337–337 (2020).Article 

    Google Scholar 
    Reum, J. C. P. et al. It’s not the destination, It’s the journey: Multispecies model ensembles for ecosystem approaches to fisheries management. Front. Mar. Sci. 8, 75–75 (2021).Article 

    Google Scholar 
    Howell, D. et al. Combining ecosystem and single-species modeling to provide ecosystem-based fisheries management advice within current management systems. Front. Mar. Sci. 7, 607831 (2021).Article 

    Google Scholar 
    McPherson, W. C. and J. C. and J. A. and Y. X. and J. shiny: Web application framework for R. R package version 1.4.0, 115–115 (2019). More

  • in

    The changing climate could lead to carbon losses in the tropics

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Uribe, M. R. et al. Net loss of biomass predicted for tropical biomes in a changing climate. Nat. Clim. Change https://doi.org/10.1038/s41558-023-01600-z (2023). More