Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways
1.Baker, B. J. et al. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 5, 887–900 (2020).PubMed
Article
CAS
Google Scholar
2.Baker, B. J., Appler, K. E. & Gong, X. New microbial biodiversity in marine sediments. Ann. Rev. Mar. Sci. 13, 161–175 (2020).PubMed
Article
Google Scholar
3.Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).CAS
PubMed
Article
Google Scholar
4.Kozubal, M. A. et al. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J. 7, 622–634 (2013).CAS
PubMed
Article
Google Scholar
5.Jay, Z. J. et al. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat. Microbiol. 3, 732–740 (2018).CAS
PubMed
Article
Google Scholar
6.Hua, Z. S. et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat. Commun. 9, 2832 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
7.Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
8.Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).CAS
PubMed
Article
Google Scholar
9.Orsi, W. D. et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat. Microbiol. 5, 248–255 (2020).CAS
PubMed
Article
Google Scholar
10.Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).CAS
PubMed
Article
Google Scholar
11.Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).ADS
CAS
PubMed
Article
Google Scholar
12.Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. U.S.A. 114, E4602 –E4611 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
13.Spang, A., Caceres, E. F. & Ettema, T. J. G. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357, eaaf3883 (2017).14.Trembath-Reichert, E. et al. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proc. Natl Acad. Sci. USA 114, E9206–E9215 (2017).CAS
PubMed
Article
Google Scholar
15.Zhuang, G. C., Peña-Montenegro, T. D., Montgomery, A., Hunter, K. S. & Joye, S. B. Microbial metabolism of methanol and methylamine in the Gulf of Mexico: insight into marine carbon and nitrogen cycling. Environ. Microbiol. 20, 4543–4554 (2018).CAS
PubMed
Article
Google Scholar
16.Chistoserdova, L. Modularity of methylotrophy, revisited. Environ. Microbiol. 13, 2603–2622 (2011).CAS
PubMed
Article
Google Scholar
17.Chistoserdova, L. & Kalyuzhnaya, M. G. Current trends in methylotrophy. Trends Microbiol. 26, 703–714 (2018).CAS
PubMed
Article
Google Scholar
18.Sun, J., Mausz, M. A., Chen, Y. & Giovannoni, S. J. Microbial trimethylamine metabolism in marine environments. Environ. Microbiol. 21, 513–520 (2018).PubMed
Article
Google Scholar
19.Zhuang, G.-C., Montgomery, A. & Joye, S. B. Heterotrophic metabolism of C1 and C2 low molecular weight compounds in northern Gulf of Mexico sediments: controlling factors and implications for organic carbon degradation. Geochim. Cosmochim. Acta 247, 243–260 (2019).ADS
CAS
Article
Google Scholar
20.Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).CAS
PubMed
Article
Google Scholar
21.Lazar, C. S. et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. 18, 1200–1211 (2016).CAS
PubMed
Article
Google Scholar
22.Zhuang, G. Methylotrophic methanogenesis and potential methylated substrates in marine sediment. (University of Bremen, 2014).23.Richards, M. A. et al. Exploring hydrogenotrophic methanogenesis: a genome scale metabolic reconstruction of Methanococcus maripaludis. J. Bacteriol. 198, 3379–3390 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
24.Sousa, D. Z. et al. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways. Nat. Commun. 9, 239 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
25.Dombrowski, N., Teske, A. P. & Baker, B. J. Extensive metabolic versatility and redundancy in microbially diverse, dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).26.Fricke, W. F. et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis †. J. Bacteriol. 188, 642–658 (2006).27.McKay L., et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol.4, 614–622 (2019).28.Muñoz-Velasco, I. et al. Methanogenesis on early stages of life: ancient but not primordial. Orig. Life Evol. Biosph. 48, 407–420 (2019).29.Adam, P. S., Borrel, G. & Gribaldo, S. An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy. Nat. Microbiol. 4, 2155–2163 (2019).30.Swan, B., Reifel, K. & Valentine, D. Periodic sulfide irruptions impact microbial community structure and diversity in the water column of a hypersaline lake. Aquat. Microb. Ecol. 60, 97–108 (2010).Article
Google Scholar
31.Adam, P. S., Borrel, G. & Gribaldo, S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. PNAS 115, E5837 (2018).Article
CAS
Google Scholar
32.Orita, I. et al. The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. J. Bacteriol. 188, 4698–4704 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Urschel, M. R., Kubo, M. D., Hoehler, T. M., Peters, J. W. & Boyd, E. S. Carbon source preference in chemosynthetic hot spring communities. Appl. Environ. Microbiol. 81, 3834–3847 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
34.Yokohama, H., Wagner, I. D. & Wiegel, J. Caldicoprobacter oshimai gen. nov., sp. nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from sheep faeces, and proposal of Caldicoprobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 60, 67–71 (2010).Article
CAS
Google Scholar
35.Zhang, X. et al. Petroclostridium xylanilyticum gen. Nov., sp. nov., a xylan-degrading bacterium isolated from an oilfield, and reclassification of clostridial cluster iii members into four novel genera in a new hungateiclostridiaceae fam. nov.Int. J. Syst. Evol. Microbiol. 68, 3197–3211 (2018).CAS
PubMed
Article
Google Scholar
36.Girbal, L., Croux, C., Vasconcelos, I. & Soucaille, P. Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol. Rev. 17, 287–297 (1995).CAS
Article
Google Scholar
37.Qi, F. et al. Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability. J. Ind. Microbiol. Biotechnol. 45, 993–1002 (2018).CAS
PubMed
Article
Google Scholar
38.Branduardi, P., Longo, V., Berterame, N. M., Rossi, G. & Porro, D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol. Biofuels 6, 68 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
39.Johnsen, U. & Schönheit, P. Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J. Bacteriol. 186, 6198–6207 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Ravachol, J. et al. Mechanisms involved in xyloglucan catabolism by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Sci. Rep. 6, 22770 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
41.Macdonald, S. S., Blaukopf, M. & Withers, S. G. N-acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/Base catalyst in place of glutamic acid. J. Biol. Chem. 290, 4887–4895 (2015).CAS
PubMed
Article
Google Scholar
42.Wang, Y. et al. Environmental conditions constrain the distribution and diversity of Archaeal merA in Yellowstone National Park, Wyoming, U.S.A. Microb. Ecol. 62, 739–752 (2011).CAS
PubMed
Article
Google Scholar
43.Nunes, C. I. P. et al. ArsC3 from Desulfovibrio alaskensis G20, a cation and sulfate-independent highly efficient arsenate reductase. J. Biol. Inorg. Chem. 19, 1277–1285 (2014).CAS
PubMed
Article
Google Scholar
44.Silver, S. & Phung, L. T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71, 599–608 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
45.Colman, D. R., Lindsay, M. R. & Boyd, E. S. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat. Commun. 10, 681 (2019).46.Zhou, Z. et al. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems 5, e00795-19 (2020).PubMed
PubMed Central
Article
Google Scholar
47.Rabus, R., Venceslau, S. S., Lars, W., Wall, J. D. & Pereira, I. A. C. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Adv. Micro. Physiol. 66, 55–321 (2015).CAS
Article
Google Scholar
48.Tóth, A., Takács, M., Groma, G., Rákhely, G. & Kovács, K. L. A novel NADPH-dependent oxidoreductase with a unique domain structure in the hyperthermophilic Archaeon, Thermococcus litoralis. FEMS Microbiol. Lett. 282, 8–14 (2008).PubMed
Article
CAS
Google Scholar
49.Ma, K., Weiss, R. & Adams, M. W. W. Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J. Bacteriol. 182, 1864–1871 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Jenney, F. E. & Adams, M. W. W. Hydrogenases of the model hyperthermophiles. Ann. N. Y. Acad. Sci. 1125, 252–266 (2008).ADS
CAS
PubMed
Article
Google Scholar
51.Van Haaster, D. J., Silva, P. J., Hagedoorn, P. L., Jongejan, J. A. & Hagen, W. R. Reinvestigation of the steady-state kinetics and physiological function of the soluble NiFe-hydrogenase I of Pyrococcus furiosus. J. Bacteriol. 190, 1584–1587 (2008).PubMed
Article
CAS
Google Scholar
52.Greening, C. et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016).CAS
PubMed
Article
Google Scholar
53.Stetter, K. O. Hyperthermophiles in the history of life. Philos. Trans. R. Soc. B Biol. Sci. 361, 1837–1842 (2006).CAS
Article
Google Scholar
54.Collins, T., Gerday, C. & Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005).CAS
PubMed
Article
Google Scholar
55.Schädel, C., Richter, A., Blöchl, A. & Hoch, G. Hemicellulose concentration and composition in plant cell walls under extreme carbon source-sink imbalances. Physiol. Plant. 139, 241–255 (2010).PubMed
Google Scholar
56.Chen, S. et al. The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. 117, 10414–10421 (2020).57.Rogers, K. L. & Schulte, M. D. Organic sulfur metabolisms in hydrothermal environments. Geobiology 10, 320–332 (2012).CAS
PubMed
Article
Google Scholar
58.Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016).CAS
PubMed
Article
Google Scholar
59.Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol. 18, 241–256 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).PubMed
PubMed Central
Article
Google Scholar
61.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
62.Dick, G. J. et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 10, R85 (2009).63.Darling, A. E. et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2, e243 (2014).PubMed
PubMed Central
Article
Google Scholar
64.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
65.Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS
PubMed
Article
Google Scholar
66.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article
CAS
Google Scholar
67.Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS
PubMed
Article
Google Scholar
68.Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
69.Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
70.Zhang, H. et al. DbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
71.De Anda, V. et al. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 6, 1–17 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
72.Zhichao, Z. et al METABOLIC: High-throughput. profiling of microbial genomes for functional traits, biogeochemistry, and community-scale metabolic networks. Preprint at bioRxiv 761643 (2019).73.Rawlings, N. D., Morton, F. R., Kok, C. Y., Kong, J. & Barrett, A. J. MEROPS: the peptidase database. Nucleic Acids Res. 38, D227–D233 (2010).CAS
PubMed
Article
Google Scholar
74.Taboada, B., Estrada, K., Ciria, R. & Merino, E. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34, 4118–4120 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
75.Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).CAS
PubMed
Article
Google Scholar
76.Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
77.Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59 (2018).78.Hua, Z. S. et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat. Commun. 10, 4574 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
79.Chaumeil, P., Mussig, A. J., Parks, D. H. & Hugenholtz, P. Genome analysis GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).80.Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R. J. 5, 144–161 (2013).Article
Google Scholar More