Projected effects of ocean warming on an iconic pelagic fish and its fishery
1.Bâki Iz, H. Is the global sea surface temperature rise accelerating?. Geod. Geodyn. 9, 432–438 (2018).Article
Google Scholar
2.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS
Article
Google Scholar
3.Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18 (2004).4.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).CAS
Article
Google Scholar
5.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).ADS
PubMed
Article
CAS
Google Scholar
6.Beaugrand, G. & Kirby, R. R. How do marine pelagic species respond to climate change? Theories and observations. Ann. Rev. Mar. Sci. 10, 169–197 (2018).PubMed
Article
Google Scholar
7.Verity, P. G., Smetacek, V. & Smayda, T. J. Status, trends and the future of the marine pelagic ecosystem. Environ. Conserv. 29, 207–237 (2002).Article
Google Scholar
8.Palko, B. J., Beardsley, G. L. & Richards, W. J. Synopsis of the biological data on dolphin-fishes, Coryphaena hippurus Linnaeus and Coryphaena equiselis Linnaeus. NOAA Tech. Rep. NMFS Circ. 443, 1–28 (1982).
Google Scholar
9.Oxenford, H. A. Biology of the dolphinfish (Coryphaena hippurus) in the western central Atlantic: A review. Sci. Mar. 63, 277–301 (1999).Article
Google Scholar
10.Moltó, V. et al. A global review on the biology of the dolphinfish (Coryphaena hippurus) and its fishery in the Mediterranean Sea: advances in the last two decades. Rev. Fish. Sci. Aquac. (2020).11.FAO. Coryphaena hippurus (Linnaeus, 1758). Species fact sheets. http://www.fao.org/fishery/species/3130/en (2019).12.Morales-Nin, B., Cannizzaro, L., Massuti, E., Potoschi, A. & Andaloro, F. An overview of the FADs fishery in the Mediterranean Sea. Proc. Tuna Fish. Fish Aggreg. Dev. Symp. 184–207 (2000).13.Morales-Nin, B. Mediterranean FADs fishery: An overview. In Second International Symposium on Tuna Fisheries and Fish Aggregating Devices (2011).14.Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, L08707 (2006).ADS
Article
Google Scholar
15.Durrieu de Madron, X. et al. Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog. Oceanogr. 91, 97–166 (2011).16.Adloff, F. et al. Mediterranean sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45, 2775–2802 (2015).Article
Google Scholar
17.Darmaraki, S. et al. Future evolution of marine heatwaves in the mediterranean sea. Clim. Dyn. 53, 1371–1392 (2019).Article
Google Scholar
18.Bignami, S., Sponaugle, S. & Cowen, R. K. Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahi Coryphaena hippurus. Aquat. Biol. 21, 249–260 (2014).Article
Google Scholar
19.Norton, J. G. Apparent habitat extensions of dolphinfish (Coryphaena hippurus) in response to climate transients in the California current*. Sci. Mar. 63, 239–260 (1999).Article
Google Scholar
20.Chang, S.-K. & Maunder, M. N. Aging material matters in the estimation of von Bertalanffy growth parameters for dolphinfish (Coryphaena hippurus). Fish. Res. 119–120, 147–153 (2012).Article
Google Scholar
21.Furukawa, S. et al. Age, growth, and reproductive characteristics of dolphinfish Coryphaena hippurus in the waters off west Kyushu, northern East China Sea. Fish. Sci. 78, 1153–1162 (2012).CAS
Article
Google Scholar
22.Asch, R. G., Stock, C. A. & Sarmiento, J. L. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob. Chang. Biol. 25, 2544–2559 (2019).ADS
PubMed
Article
Google Scholar
23.Shoji, J. et al. Possible effects of global warming on fish recruitment: shifts in spawning season and latitudinal distribution can alter growth of fish early life stages through changes in daylength. ICES J. Mar. Sci. 68, 1165–1169 (2011).Article
Google Scholar
24.R Core Team. R: A Language and Environment for Statistical Computing. Version 3.6.2. https://www.R-project.org/ (R Foundation for Satistical Computing, 2019).25.Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).Article
Google Scholar
26.Morrongiello, J. R., Thresher, R. E. & Smith, D. C. Aquatic biochronologies and climate change. Nat. Clim. Chang. 2, 849–857 (2012).ADS
Article
Google Scholar
27.Schismenou, E. et al. Seasonal changes in otolith increment width trajectories and the effect of temperature on the daily growth rate of young sardines. Fish. Oceanogr. 25, 362–372 (2016).Article
Google Scholar
28.Schismenou, E. et al. Disentangling the effects of inherent otolith growth and model-simulated ecosystem parameters on the daily growth rate of young anchovies. Mar. Ecol. Prog. Ser. 515, 227–237 (2014).ADS
Article
Google Scholar
29.Catalán, I. A. et al. Daily otolith growth and ontogenetic geochemical signatures of age-0 anchovy (Engraulis encrasicolus) in the gulf of cádiz (SW Spain). Mediterr. Mar. Sci. 15, 781–789 (2014).Article
Google Scholar
30.Tanner, S. E. et al. Regional climate, primary productivity and fish biomass drive growth variation and population resilience in a small pelagic fish. Ecol. Indic. 103, 530–541 (2019).Article
Google Scholar
31.Ito, S., Okunishi, T., Kishi, M. J. & Wang, M. Modelling ecological responses of Pacific saury (Cololabis saira) to future climate change and its uncertainty. ICES J. Mar. Sci. 70, 980–990 (2013).Article
Google Scholar
32.Vinagre, C., Ferreira, T., Matos, L., Costa, M. J. & Cabral, H. N. Latitudinal gradients in growth and spawning of sea bass, Dicentrarchus labrax, and their relationship with temperature and photoperiod. Estuar. Coast. Shelf Sci. 81, 375–380 (2009).ADS
Article
Google Scholar
33.Suthers, I. M. & Sundby, S. Role of the midnight sun: Comparative growth of pelagic juvenile cod (Gadus morhua) from the Arcto-Norwegian and a Nova Scotian stock. ICES J. Mar. Sci. 53, 827–836 (1996).Article
Google Scholar
34.Pepin, P. et al. Once upon a larva: Revisiting the relationship between feeding success and growth in fish larvae. ICES J. Mar. Sci. 72, 359–373 (2015).Article
Google Scholar
35.Fablet, R. et al. Shedding light on fish otolith biomineralization using a bioenergetic approach. PLoS ONE 6, e27055 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
36.Lorenzen, K. Toward a new paradigm for growth modeling in fisheries stock assessments: Embracing plasticity and its consequences. Fish. Res. 180, 4–22 (2016).Article
Google Scholar
37.Campos-Candela, A., Palmer, M., Balle, S., Álvarez, A. & Alós, J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol. Lett. 22, 213–232 (2019).PubMed
Article
PubMed Central
Google Scholar
38.Payne, M. R. et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 73, 1272–1282 (2016).Article
Google Scholar
39.Fernandes, J. A. et al. Can we project changes in fish abundance and distribution in response to climate? Glob. Chang. Biol. (2020).40.Ramírez-Romero, E. et al. Assessment of the skill of coupled physical-biogeochemical models in the NW Mediterranean. Front. Mar. Sci. (2020).41.Rountrey, A. N., Coulson, P. G., Meeuwig, J. J. & Meekan, M. Water temperature and fish growth: Otoliths predict growth patterns of a marine fish in a changing climate. Glob. Chang. Biol. 20, 2450–2458 (2014).ADS
PubMed
Article
Google Scholar
42.Moltó, V., Ospina-Alvarez, A., Gatt, M., Palmer, M. & Catalán, I. A. A Bayesian approach to recover the theoretical temperature-dependent hatch date distribution from biased samples: The case of the common dolphinfish (Coryphaena hippurus). Preprint at: https://arxiv.org/abs/2004.01000 (2020).43.Catalán, I. A. et al. Critically examining the knowledge base required to mechanistically project climate impacts: A case study of Europe’s fish and shellfish. Fish Fish. 1–17 (2019).44.Morrongiello, J. R., Walsh, C. T., Gray, C. A., Stocks, J. R. & Crook, D. A. Environmental change drives long-term recruitment and growth variation in an estuarine fish. Glob. Chang. Biol. 20, 1844–1860 (2014).ADS
PubMed
Article
Google Scholar
45.Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Tara Marshall, C. Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Glob. Chang. Biol. 20, 1023–1031 (2014).46.Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Chang. Biol. 24, e15–e26 (2018).ADS
PubMed
Article
Google Scholar
47.Wenger, A. S., Whinney, J., Taylor, B. & Kroon, F. The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish. Sci. Rep. 6, 1–10 (2016).Article
CAS
Google Scholar
48.García, A. et al. Climate-induced environmental conditions influencing interannual variability of Mediterranean bluefin (Thunnus thynnus) larval growth. Fish. Oceanogr. 22, 273–287 (2013).Article
Google Scholar
49.Pimentel, M., Pegado, M., Repolho, T. & Rosa, R. Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae. Mar. Biol. 161, 725–729 (2014).CAS
Article
Google Scholar
50.FAO-CopeMed II. Report of the CopeMed II-MedSudMed Workshop on the Status of Coryphaena hippurus Fisheries in the Western-Central Mediterranean, Cádiz, Spain, 8–9 October 2019. CopeMed Technical Documents No. 54 (GCP/INT/028SPA-GCP/INT/362/EC). 1–22 (2019).51.Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1. 0. Geosci. Model Dev. 11, 1421–1442 (2018).52.Massutí, E. & Morales-Nin, B. Reproductive biology of dolphin-fish (Coryphaena hippurus L.) off the island of Majorca (western Mediterranean). Fish. Res. 30, 57–65 (1997).53.Massutí, E. & Morales-Nin, B. Seasonality and reproduction of dolphin-fish (Coryphaena hippurus) in the Western Mediterranean*. Sci. Mar. 59, 357–364 (1995).
Google Scholar
54.Potoschi, A., Reñones, O. & Cannizzaro, L. Sexual development, maturity and reproduction of dolphinfish (Coryphaena hippurus) in the western and central Mediterranean*. Sci. Mar. 63, 367–372 (1999).Article
Google Scholar
55.Alemany, F. et al. Influence of physical environmental factors on the composition and horizontal distribution of summer larval fish assemblages off Mallorca island (Balearic archipelago, western Mediterranean). J. Plankton Res. 28, 473–487 (2006).Article
Google Scholar
56.Torres, A. P. et al. Decapod crustacean larval communities in the Balearic Sea (western Mediterranean): Seasonal composition, horizontal and vertical distribution patterns. J. Mar. Syst. 138, 112–126 (2014).Article
Google Scholar
57.Massutí, E., Deudero, S., Sánchez, P. & Morales-Nin, B. Diet and Feeding of Dolphin (Coryphaena hippurus) in Western Mediterranean Waters. Bull. Mar. Sci. 63, 329–341 (1998).
Google Scholar
58.Merten, W., Appeldoorn, R., Rivera, R. & Hammond, D. Diel vertical movements of adult male dolphinfish (Coryphaena hippurus) in the western central atlantic as determined by use of pop-up satellite archival transmitters. Mar. Biol. 161, 1823–1834 (2014).Article
Google Scholar
59.D’Ortenzio, F. & D’Alcalà, M. R. On the trophic regimes of the Mediterranean Sea: A satellite analysis. Biogeosciences 5, 2959–2983 (2008).
Google Scholar
60.IPCC. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Core Writing Team, Pachauri, R.K., Meyer, L.A. eds.). (IPCC, 2014).61.Grazzini, F. & Viterbo, P. Record-breaking warm sea surface temperature of the Mediterranean Sea. ECMWF Newsl. 98, 30–31 (2003).
Google Scholar
62.Olita, A., Sorgente, R., Ribotti, A., Natale, S. & Gaberšek, S. Effects of the 2003 European heatwave on the Central Mediterranean Sea surface layer: a numerical simulation. Eur. Geosci. Union 3, 85–125 (2006).
Google Scholar
63.Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Chang. Biol. 15, 1090–1103 (2009).ADS
Article
Google Scholar
64.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS
Article
Google Scholar
65.Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).Article
Google Scholar
66.Schlegel, R. W. Marine Heatwave Tracker. http://www.marineheatwaves.org/tracker. https://doi.org/10.5281/zenodo.3787872 (2020).67.Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Bd. Can. 191, 1–382 (1975).68.Solano-Fernández, M., Montoya-Márquez, J. A., Gallardo-Cabello, M. & Espino-Barr, E. Age and growth of the Dolphinfish Coryphaena hippurus in the coast of Oaxaca and Chiapas, Mexico. Rev. Biol. Mar. Oceanogr. 50, 491–505 (2015).Article
Google Scholar
69.Höhne, L. et al. Environmental determinants of perch (Perca fluviatilis) growth in gravel pit lakes and the relative performance of simple versus complex ecological predictors. Ecol. Freshw. Fish 00, 1–17 (2020).
Google Scholar
70.Kuhn, M. caret: Classification and Regression Training. R package. Version 6.0-86. https://CRAN.R-project.org/package=caret (2020).71.Su, Y.-S. & Yajima, M. R2jags: Using R to Run ‘JAGS’. R Package Version 0.5-7. https://CRAN.R-project.org/package=R2jags (2015).72.Plummer, M. rjags: Bayesian Graphical Models Using MCMC. R Package Version 4-10. https://CRAN.R-project.org/package=rjags (2015).73.Then, A. Y., Hoenig, J. M., Hall, N. G. & Hewitt, D. A. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES J. Mar. Sci. 72, 82–92 (2015).Article
Google Scholar
74.Massutí, E., Morales-Nin, B. & Moranta, J. Otolith microstructure, age, and growth patterns of dolphin, Coryphaena hippurus, in the western Mediterranean. Fish. Bull. 97, 891–899 (1999).
Google Scholar
75.Copemed II. Report of the CopeMed II-MedSudMed Workshop on Stock Assessment of Coryphaena hippurus in the Western-Central Mediterranean. Málaga, Spain 13–15 September 2016. Copemed II Technical Documents No. 44 (GCP/INT/028/SPA – GCP/INT/006/EC). Málaga, 2016. 1–31. http://www.faocopemed.org/pdf/publications/CopeMedII_TD44.pdf (2016). More