1.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS
Article
Google Scholar
2.Legendre, L. & Le Fèvre, J. Microbial food webs and the export of biogenic carbon in oceans. Aquat. Microb. Ecol. 9, 69–77 (1995).Article
Google Scholar
3.Legendre, L. & Rivkin, R. B. Planktonic food webs: Microbial hub approach. Mar. Ecol. Prog. Ser. 365, 289–309 (2008).ADS
Article
Google Scholar
4.Arístegui, J., Gasol, J. M., Duarte, C. M. & Herndl, G. J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).ADS
Article
Google Scholar
5.Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun. 8, 2036. https://doi.org/10.1038/s41467-017-02227-3 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
6.Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).ADS
CAS
Article
Google Scholar
7.Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton University Press, 2006).
Google Scholar
8.Armengol, L., Calbet, A., Franchy, G., Rodríguez-Santos, A. & Hernández-León, S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 9, 2044. https://doi.org/10.1038/s41598-019-38507-9 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
9.Hernández-León, S. et al. Large deep-sea zooplankton biomass mirrors primary production in the global ocean. Nat. Commun. 11, 6048. https://doi.org/10.1038/s41467-020-19875-7 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
10.Wilson, R. et al. Contribution of fish to the marine inorganic carbon cycle. Science 323, 359–362 (2009).ADS
CAS
PubMed
Article
Google Scholar
11.Jennings, S. & van der Molen, J. Trophic levels of marine consumers from nitrogen stable isotope analysis: Estimation and uncertainty. ICES J. Mar. Sci. 72, 2289–2300 (2015).Article
Google Scholar
12.Jennings, S., Maxwell, T. A. D., Schratzberger, M. & Milligan, S. P. Body-size dependent temporal variations in nitrogen stable isotope ratios in food webs. Mar. Ecol. Prog. Ser. 370, 199–206 (2008).ADS
Article
Google Scholar
13.Bernal, A., Olivar, M. P., Maynou, F. & de Puelles, M. L. F. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Prog. Oceanogr. 135, 1–17 (2015).ADS
Article
Google Scholar
14.Gutiérrez-Rodríguez, A., Décima, M., Popp, B. N. & Landry, M. R. Isotopic invisibility of protozoan trophic steps in marine food webs. Limnol. Oceanogr. 59, 1590–1598 (2014).ADS
Article
CAS
Google Scholar
15.Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).PubMed
Article
Google Scholar
16.Nielsen, J. M., Popp, B. N. & Winder, M. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms. Oecologia 178, 631–642 (2015).ADS
PubMed
Article
Google Scholar
17.Décima, M., Landry, M. R., Bradley, C. J. & Fogel, M. L. Alanine δ15N trophic fractionation in heterotrophic protists. Limnol. Oceanogr. 62, 2308–2322 (2017).ADS
Article
CAS
Google Scholar
18.Décima, M. & Landry, M. Resilience of plankton trophic structure to an eddy-stimulated diatom bloom in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 643, 33–48 (2020).ADS
Article
CAS
Google Scholar
19.Irigoien, X. et al. Large mesopelagic fish biomass and trophic efficiency in the Open Ocean. Nat. Commun. 5, 3271. https://doi.org/10.1038/ncomms4271 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
20.Cherel, Y., Fontaine, C., Richard, P. & Labat, J.-P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol. Oceanogr. 55, 324–332 (2010).ADS
CAS
Article
Google Scholar
21.Young, J. W. et al. Setting the stage for a global-scale trophic analysis of marine top predators: A multi-workshop review. Rev. Fish Biol. Fish. 25, 261–272 (2015).Article
Google Scholar
22.Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873. https://doi.org/10.1038/srep19873 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
23.Olivar, M. P. et al. Mesopelagic fishes across the tropical and equatorial Atlantic: Biogeographical and vertical patterns. Prog. Oceanogr. 151, 116–137 (2017).ADS
Article
Google Scholar
24.Eduardo, L. N. et al. Trophic ecology, habitat, and migratory behaviour of the viperfish Chauliodus sloani reveal a key mesopelagic player. Sci. Rep. 10, 20996. https://doi.org/10.1038/s41598-020-77222-8 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
25.Valls, M. et al. Trophic structure of mesopelagic fishes in the western Mediterranean based on stable isotopes of carbon and nitrogen. J. Mar. Syst. 138, 160–170 (2014).Article
Google Scholar
26.Choy, C. A., Popp, B. N., Hannides, C. C. S. & Drazen, J. C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the North Pacific Subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60, 1156–1171 (2015).ADS
Article
Google Scholar
27.Olivar, M. P., Bode, A., López-Pérez, C., Hulley, P. A. & Hernández-León, S. Trophic position of lanternfishes (Pisces: Myctophidae) of the tropical and equatorial Atlantic estimated using stable isotopes. ICES J. Mar. Sci. 76, 649–661 (2019).Article
Google Scholar
28.Richards, T. M., Sutton, T. T. & Wells, R. J. D. Trophic structure and sources of variation influencing the stable isotope signatures of meso- and bathypelagic micronekton fishes. Front. Mar. Sci. 7, 507992. https://doi.org/10.3389/fmars.2020.507992 (2020).Article
Google Scholar
29.Choy, C. A. et al. Global trophic position comparison of two dominant mesopelagic fish families (Myctophidae, Stomiidae) using amino acid nitrogen isotopic analyses. PLoS ONE 7, e50133. https://doi.org/10.1371/journal.pone.0050133 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
30.Wang, F. et al. Trophic interactions of mesopelagic fishes in the South China Sea illustrated by stable isotopes and fatty acids. Front. Mar. Sci. 5, 522. https://doi.org/10.3389/fmars.2018.00522 (2019).Article
Google Scholar
31.Czudaj, S. et al. Spatial variation in the trophic structure of micronekton assemblages from the eastern tropical North Atlantic in two regions of differing productivity and oxygen environments. Deep Sea Res. 163, 103275. https://doi.org/10.1016/j.dsr.2020.103275 (2020).CAS
Article
Google Scholar
32.FishBase. A Global Information System on Fishes (University of California, 2021).
Google Scholar
33.Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).CAS
PubMed
Article
Google Scholar
34.Coplen, T. B. Guidelines and recommended terms for expression of stable isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).ADS
CAS
PubMed
Article
Google Scholar
35.Chikaraishi, Y. et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7, 740–750 (2009).CAS
Article
Google Scholar
36.McCarthy, M. D., Lehman, J. & Kudela, R. Compound-specific amino acid δ15N patterns in marine algae: Tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean. Geochim. Cosmochim. Acta 103, 104–120 (2013).ADS
CAS
Article
Google Scholar
37.Mompeán, C., Bode, A., Gier, E. & McCarthy, M. D. Bulk vs. aminoacid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size-fractionated zooplankton biomass in the subtropical N Atlantic. Deep Sea Res. 114, 137–148 (2016).Article
CAS
Google Scholar
38.McClelland, J. W. & Montoya, J. P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83, 2173–2180 (2002).Article
Google Scholar
39.McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid d15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, e01511. https://doi.org/10.1002/ecs2.1511 (2016).Article
Google Scholar
40.Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).PubMed
Article
Google Scholar
41.Bradley, C. J. et al. Trophic position estimates of marine teleosts using amino acid compound specific isotopic analysis. Limnol. Oceanogr. Methods 13, 476–493 (2015).Article
Google Scholar
42.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Google Scholar
43.McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744 (2007).ADS
CAS
Article
Google Scholar
44.Hannides, C. C. S., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946 (2013).ADS
CAS
Article
Google Scholar
45.Gloeckler, K. et al. Stable isotope analysis of micronekton around Hawaii reveals suspended particles are an important nutritional source in the lower mesopelagic and upper bathypelagic zones. Limnol. Oceanogr. 63, 1168–1180 (2018).ADS
CAS
Article
Google Scholar
46.Robison, B. H. Conservation of deep pelagic biodiversity. Conserv. Biol. 23, 847–858 (2009).PubMed
Article
Google Scholar
47.Brun, P. et al. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic. Nat. Ecol. Evol. 3, 416–423 (2019).PubMed
Article
Google Scholar
48.Bode, M. et al. Feeding strategies of tropical and subtropical calanoid copepods throughout the eastern Atlantic Ocean: Latitudinal and bathymetric aspects. Prog. Oceanogr. 138, 268–282 (2015).ADS
Article
Google Scholar
49.Herndl, G. J. et al. Contribution of Archaea to total prokarytic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Varela, M. M., van Aken, H. M., Sintes, E., Reinthaler, T. & Herndl, G. J. Contribution of Crenarchaeota and bacteria to autotrophy in the North Atlantic interior. Environ. Microbiol. 13, 1524–1533 (2011).PubMed
Article
Google Scholar
51.Clifford, E. L. et al. Taurine is a major carbon and energy source for marine prokaryotes in the North Atlantic Ocean off the Iberian Peninsula. Microb. Ecol. 78, 299–312 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Hoen, D. K. et al. Amino acid 15N trophic enrichment factors of four large carnivorous fishes. J. Exp. Mar. Biol. Ecol. 453, 76–83 (2014).CAS
Article
Google Scholar
53.McMahon, K. W. & McCarthy, M. D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, e01511. https://doi.org/10.1002/ecs2.1511 (2016).Article
Google Scholar
54.Pauly, D., Christensen, V. & Walters, C. Ecopath, ecosim, and ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57, 697–706 (2000).Article
Google Scholar
55.Christensen, V. & Walters, C. Ecopath with ecosim: Methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).Article
Google Scholar
56.McClain-Counts, J. P., Demopoulos, A. W. J. & Ross, S. W. Trophic structure of mesopelagic fishes in the Gulf of Mexico revealed by gut content and stable isotope analyses. Mar. Ecol. 38, e12449. https://doi.org/10.1111/maec.12449 (2017).ADS
CAS
Article
Google Scholar
57.Olivar, M. P. et al. The contribution of migratory mesopelagic fishes to neuston fish assemblages across the Atlantic, Indian and Pacific Oceans. Mar. Freshw. Res. 67, 1114–1127 (2016).Article
Google Scholar
58.Gartner, J. V. & Musick, J. A. Feeding habits of the deep-sea fish, Scopelogadus beanii (Pisces: Melamphaide), in the western North Atlantic. Deep Sea Res. A Oceanogr. Res. Pap. 36(10), 1457–1469. https://doi.org/10.1016/0198-0149(89)90051-4 (1989).ADS
Article
Google Scholar
59.Clarke, L. J., Trebilco, R., Walters, A., Polanowski, A. M. & Deagle, B. E. DNA-based diet analysis of mesopelagic fish from the southern Kerguelen axis. Deep-Sea Res. II Top. Stud. Oceanogr. https://doi.org/10.1016/j.dsr2.2018.09.001 (2020).Article
Google Scholar
60.Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: Impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).Article
Google Scholar
61.Calbet, A. & Saiz, E. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157–167 (2005).Article
Google Scholar
62.Zeldis, J. R. & Décima, M. Mesozooplankton connect the microbial food web to higher trophic levels and vertical export in the New Zealand subtropical convergence zone. Deep Sea Res. 155, 103146 (2020).CAS
Article
Google Scholar
63.Jennings, S., Pinnegar, J. K., Polunin, N. V. C. & Boon, T. W. Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J. Anim. Ecol. 70, 934–944 (2001).Article
Google Scholar
64.Bode, A., Carrera, P. & Lens, S. The pelagic foodweb in the upwelling ecosystem of Galicia (NW Spain) during spring: Natural abundance of stable carbon and nitrogen isotopes. ICES J. Mar. Sci. 60, 11–22 (2003).CAS
Article
Google Scholar
65.Hunt, B. P. V. et al. A coupled stable isotope-size spectrum approach to understanding pelagic food-web dynamics: A case study from the southwest sub-tropical Pacific. Deep Sea Res. 113, 208–224 (2015).CAS
Article
Google Scholar
66.Romero-Romero, S., Molina-Ramírez, A., Höfer, J. & Acuña, J. L. Body size-based trophic structure of a deep marine ecosystem. Ecology 97, 171–181 (2016).PubMed
Article
Google Scholar
67.Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232 (2010).PubMed
Article
Google Scholar
68.Schoener, T. W. Food webs from the small to the large. Ecology 70, 1559–1589 (1989).Article
Google Scholar
69.Zhou, M. What determines the slope of a plankton biomass spectrum?. J. Plankton Res. 28, 437–448 (2006).Article
Google Scholar
70.Van der Zanden, M. J. & Fetzer, W. Global patterns of aquatic food chain length. Oikos 116, 1378–1388 (2007).Article
Google Scholar
71.Basedow, S. L., de Silva, N. A. L., Bode, A. & van Beusekorn, J. Trophic positions of mesozooplankton across the North Atlantic: estimates derived from biovolume spectrum theories and stable isotope analyses. J. Plankton Res. 38, 1364–1378 (2016).CAS
Google Scholar
72.Williams, R. J. & Martinez, N. D. Limits to trophic levels and omnivory in complex food webs: Theory and data. Am. Nat. 163, 458–468 (2004).PubMed
Article
Google Scholar
73.Nagata, T. et al. Emerging concepts on microbial processes in the bathypelagic ocean – ecology, biogeochemistry, and genomics. Deep Sea Res. II 57, 1519–1536 (2010).ADS
CAS
Article
Google Scholar More