More stories

  • in

    Effects of family planning on fertility behaviour across the demographic transition

    1.Becker, G. S. & Lewis, H. G. On the interaction between the quantity and quality of children. Journal of Political Economy 81(2, pt2), s279–s288 (1973).Article 

    Google Scholar 
    2.Bulatao, R. A. & Lee, R. D. Determinants of Fertility in Developing Countries (Academic Press, 1983).
    Google Scholar 
    3.Caldwell, J. C. The mechanisms of demographic change in historical perspective. Popul. Stud. 35(1), 1–27 (1981).Article 

    Google Scholar 
    4.Carlsson, G. The decline of fertility: innovation or adjustment process. Popul. Stud. 20(2), 149–174 (1966).CAS 
    Article 

    Google Scholar 
    5.Easterlin, R. A. & Crimmins, E. M. The Fertility Revolution (University of Chicago Press, 1985).
    Google Scholar 
    6.Winterhalder, B. & Leslie, P. Risk-sensitive fertility: The variance compensation hypothesis. Evol. Hum. Behav. 23(1), 59–82. https://doi.org/10.1016/S1090-5138(01)00089-7 (2002).Article 

    Google Scholar 
    7.Sear, R., Lawson, D. W., Kaplan, H. & Shenk, M. K. Understanding Variation in Human Fertility: What Can We Learn from Evolutionary Demography? (The Royal Society, 2016).
    Google Scholar 
    8.Wood, J. W. Dynamics of Human Reproduction (Aldine de Gruyter, 1994).
    Google Scholar 
    9.Hruschka, D. J. & Burger, O. How does variance in fertility change over the demographic transition?. Philos. Trans. R. Soc. B 371, 20150155. https://doi.org/10.1098/rstb.2015.0155 (2016).Article 

    Google Scholar 
    10.Henry, L. Some data on natural fertility. Eugen. Q. 8(2), 81–91 (1961).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Campbell, K. L. & Wood, J. W. Fertility in traditional societies. In Natural Human Fertility Social and Biological Determinants (eds Diggory, P. et al.) 39–61 (MacMillan Press, 1988).
    Google Scholar 
    12.Ellison, P. T. On Fertile Ground (Harvard University Press, 2001).
    Google Scholar 
    13.Colleran, H., Jasienska, G., Nenko, I., Galbarczyk, A. & Mace, R. 2015 Fertility decline and the changing dynamics of wealth, status and inequality. Proc. R. Soc. B: Biol. Sci. 282, 20150287 (1806).Article 

    Google Scholar 
    14.Colleran, H. The cultural evolution of fertility decline. Philos. Trans. R. Soc. B: Biol. Sci. 371(1692), 20150152 (2016).Article 

    Google Scholar 
    15.Knight, F. H. Risk, Uncertainty, and Profit (Houghton Mifflin, 1921).
    Google Scholar 
    16.Ellison, P. T. Energetics and reproductive effort. Am. J. Hum. Biol. 15, 342–351 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Jasienska, G. & Ellison, P. Energetic factors and seasonal changes in ovarian function in women from rural Poland. Am. J. Hum. Biol. 16, 563–580 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Jasienska, G. & Ellison, P. T. Physical work causes suppression of ovarian function in women. Proc. R. Soc. Lond. B 265, 1847–1851 (1998).CAS 
    Article 

    Google Scholar 
    19.Kramer, K. L. & McMillan, G. P. The effect of labor saving technology on longitudinal fertility changes. Curr. Anthropol. 47(1), 165–172 (2006).Article 

    Google Scholar 
    20.Panter-Brick, C. Lactation, birth spacing and maternal workloads among two cases in rural Nepal. J. Biosoc. Sci. 23, 137–154 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Sear, R., Steele, F., McGregor, I. A. & Mace, R. The effects of kin on child mortality in Gambia. Demography 39(1), 43–63 (2002).PubMed 
    Article 

    Google Scholar 
    22.Valeggia, C. R. & Ellison, P. T. Lactation, energetics, and postpartum fecundity. In Reproductive Ecology and Human Evolution (ed. Ellison, P. T.) 85–105 (Aldine de Gruyter, 2001).
    Google Scholar 
    23.Gibson, M. & Mace, R. An energy-saving development initiative increases birth rate and childhood malnutrition in rural Ethiopia. PloS Med. 3, 476–484 (2006).Article 

    Google Scholar 
    24.Kramer, K. L. & McMillan, G. P. Women’s labor, fertility, and the introduction of modern technology in a rural Maya village. J. Anthropol. Res. 55(4), 499–520 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Low, B., Simon, C. & Anderson, K. An evolutionary ecological perspective on demographic transitions: modeling multiple currencies. Am. J. Hum. Biol. 14(2), 149–167 (2002).PubMed 
    Article 

    Google Scholar 
    26.Low, B. S., Simon, C. S. & Anderson, K. G. The biodemography of modern women: tradeoffs when resources become limiting. In The Biodemography of Human Reproduction and Fertility (ed. Rodgers, J. L.) 105–134 (Kuwer Academic Publishers, 2003).
    Google Scholar 
    27.Dyson, T. & Murphy, M. The onset of fertility transition. Popul. Dev. Rev. 11(3), 399–440 (1985).Article 

    Google Scholar 
    28.Early, J. & Headland, T. N. Population Dynamics of a Philippine Rain Forest People (University of Florida Press, 1998).
    Google Scholar 
    29.Hill, K. & Hurtado, A. M. Ache Life History (Aldine de Gruyter, 1996).
    Google Scholar 
    30.Kramer, K. L. & Greaves, R. D. Changing patterns of infant mortality and fertility among Pumé foragers and horticulturalists. Am. Anthropol. 109(4), 713–726 (2007).Article 

    Google Scholar 
    31.Goldstein, J. R. & Klüsener, S. Spatial analysis of the causes of fertility decline in Prussia. Popul. Dev. Rev. 40(3), 497–525 (2014).Article 

    Google Scholar 
    32.Montgomery, M. R. & Casterline, J. B. The diffusion of fertility control in Taiwan: Evidence from pooled cross-section time-series models. Popul. Stud. 47(3), 457–479 (1993).CAS 
    Article 

    Google Scholar 
    33.Schmertmann, C. P., Assunção, R. M. & Potter, J. E. Knox meets Cox: Adapting epidemiological space-time statistics to demographic studies. Demography 47(3), 629–650 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Galloway, P. R., Hammel, E. A. & Lee, R. D. Fertility decline in Prussia, 1875–1910: A pooled cross-section time series analysis. Popul. Stud. 48(1), 135–158 (1994).CAS 
    Article 

    Google Scholar 
    35.Schmertmann C. P., Potter J. E. & Assunção R. M. 2011 An innovative methodology for space-time analysis with an application to the 1960–2000 Brazilian mortality transition. In Navigating Time and Space in Population Studies 19–36 (Dordrecht, 2011).36.Bongaarts, J., Cleland, J., Townsend, J. W., Bertrand, J. T. & Gupta, M. D. Family Planning Programs for the 21st Century (Population Council, 2012).
    Google Scholar 
    37.Casterline J. B. Diffusion processes and fertility transition: Introduction. In Diffusion processes and fertility transition: Selected perspectives (ed. Population N.R.C.C.o.) (National Academies Press, US, 2011).38.Cleland, J. The effects of improved survival on fertility: A reassessment. In Global Fertility Transitions Population and Development Review Supplement to Vol 27 (eds. Bulatao R.A., Casterline J.B.) (Population Council, 2001).39.Cleland, J. & Wilson, C. Demand theories of the fertility transition: an iconoclastic view. Popul. Stud. 41(1), 5–30 (1987).Article 

    Google Scholar 
    40.Montgomery, M. R. & Casterline, J. B. Social learning, social influence, and new models of fertility. Popul. Dev. Rev. 22, 151–175 (1996).Article 

    Google Scholar 
    41.Sear, R. Evolutionary contributions to the study of human fertility. Popul. Stud. 69(sup1), S39–S55 (2015).Article 

    Google Scholar 
    42.Knodel, J. & Van de Walle, E. Lessons from the past: Policy implications of historical fertility studies. Popul. Dev. Rev. 5(2), 217–245 (1979).Article 

    Google Scholar 
    43.Watkins, S. C. From local to national communities: The transformation of demographic regimes in Western Europe, 1870–1960. Popul. Dev. Rev. 16(2), 241–272 (1990).Article 

    Google Scholar 
    44.Bongaarts, J. & Watkins, S. C. Social interactions and contemporary fertility transitions. Popul. Dev. Rev. 22(4), 639–682 (1996).Article 

    Google Scholar 
    45.Boyd, R. & Richerson, P. Culture and the Evolutionary Process (Univ. Press, 1985).
    Google Scholar 
    46.Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton University Press, 1981).MATH 

    Google Scholar 
    47.Colleran, H., Jasienska, G., Nenko, I., Galbarczyk, A. & Mace, R. Community-level education accelerates the cultural evolution of fertility decline. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2013.2732 (2014).Article 

    Google Scholar 
    48.Conrad, C., Lechner, M. & Werner, W. East German fertility after unification: crisis or adaptation?. Popul. Dev. Rev. 22(2), 331–358. https://doi.org/10.2307/2137438 (1996).Article 

    Google Scholar 
    49.Easterlin, R. A. Towards a socio-economic theory of fertility: a survey of recent research on economic factors in American fertility. In Fertility and Family Planning: A World View (ed. Behrman, S. J.) 127–156 (University of Michigan Press, 1969).
    Google Scholar 
    50.Easterlin, R. A. An economic framework for fertility analysis. Stud. Fam. Plann. 6, 54–63 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Galloway, P. R., Lee, R. D. & Hammel, E. A. Infant mortality and the fertility transition: Macro evidence from Europe and new findings from Prussia. In From Death to Birth Mortality Decline and Reproductive Change (eds Montgomery, M. R. & Cohen, B.) 182–226 (National Academy Press, 1998).
    Google Scholar 
    52.Kaplan, H. A theory of fertility and parental investment in traditional and modern human societies. Yearb. Phys. Anthropol. 39, 91–135 (1996).Article 

    Google Scholar 
    53.Lee, R. D. & Bulatao, R. A. The demand for children: a critical essay. In Determinants of Fertility in Developing Countries (eds Bulatao, R. A. & Lee, R. D.) 233–287 (Academic Press, 1983).
    Google Scholar 
    54.Lesthaeghe R. & Wilson C. Modes of production secularization and the pace of the fertility decline in Western Europe 1870–1930 (1986).55.Turke, P. Evolution and demand for children. Popul. Dev. Rev. 15(1), 61–90 (1989).MathSciNet 
    Article 

    Google Scholar 
    56.Colleran, H. Farming in transition: land and property inheritance in a rural Polish population. Soc. Biol. Hum. Aff. 78, 7–19 (2014).
    Google Scholar 
    57.González-Bailón, S. & Murphy, T. E. The effects of social interactions on fertility decline in nineteenth-century France: an agent-based simulation experiment. Popul. Stud. 67(2), 135–155 (2013).Article 

    Google Scholar 
    58.Shenk, M. K., Towner, M. C., Kress, H. C. & Alam, N. A model comparison approach shows stronger support for economic models of fertility decline. Proc. Natl. Acad. Sci. 110(20), 8045–8050. https://doi.org/10.1073/pnas.1217029110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    59.Alvergne, A., Gurmu, E., Gibson, M. A. & Mace, R. Social transmission and the spread of modern contraception in rural Ethiopia. PLoS ONE 6, e22515. https://doi.org/10.1371/journal.pone.0022515 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Mace, R. & Colleran, H. Kin influence on the decision to start using modern contraception: a longitudinal study from rural Gambia. Am. J. Hum. Biol. 21, 472–477. https://doi.org/10.1002/ajhb.20940 (2009).Article 
    PubMed 

    Google Scholar 
    61.Montgomery, M., Casterline, J. B. & Heiland, F. Social Networks and the Diffusion of Fertility Control (Population Council, 1998).Book 

    Google Scholar 
    62.Veile, A. & Kramer, K. L. Pregnancy, birth and babies: motherhood and modernization in a Yucatec village. In Maternal Health, Pregnancy-Related Morbidity and Death among Indigenous Women of Mexico & Central America (ed. Schwartz, D.) 205–224 (Springer, Berlin, 2018).
    Google Scholar 
    63.Snopkowski, K., Towner, M. C., Shenk, M. K. & Colleran, H. Pathways from education to fertility decline: a multi-site comparative study. Philos. Trans. R. Soc. B: Biol. Sci. 371(1692), 20150156 (2016).Article 

    Google Scholar 
    64.Schultz T. P. The Fertility Transition: Economic Explanations. Economic Growth Center Discussion Paper No. 833. Available at SSRN: https://ssrn.com/abstract=286291 (2001).65.Becker, S. O., Cinnirella, F. & Woessmann, L. Does women’s education affect fertility? Evidence from pre-demographic transition Prussia. Eur. Rev. Econ. Hist. 17(1), 24–44 (2013).Article 

    Google Scholar 
    66.Gandrud, C. simPH: an R package for illustrating estimates from cox proportional hazard models including for interactive and nonlinear effects. J. Stat. Softw. 65(3), 1–20 (2015).Article 

    Google Scholar 
    67.Seiber, E. E., Bertrand, J. T. & Sullivan, T. M. Changes in contraceptive method mix in developing countries. Int. Fam. Plan. Perspect. 33(3), 117–123 (2007).PubMed 
    Article 

    Google Scholar 
    68.Leite, I. D. C., Gupta, N. & Rodrigues, R. D. Female sterilization in Latin America: cross-national perspectives. J. Biosoc. Sci. 36(6), 683 (2004).Article 

    Google Scholar 
    69.Bertrand, J. T., Sullivan, T. M., Knowles, E. A., Zeeshan, M. F. & Shelton, J. D. Contraceptive method skew and shifts in method mix in low-and middle-income countries. Int. Perspect. Sexual Reprod. Health 40(3), 144–153 (2014).Article 

    Google Scholar 
    70.Leslie, P. & Winterhalder, B. Demographic consequences of unpredictability in fertility outcomes. Am. J. Hum. Biol. 14(2), 168–183 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Gibson, M. & Mace, R. Labor-saving technology and fertility increase in rural Africa. Curr. Anthropol. 43(4), 631–637 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Alvergne, A., Lawson, D. W., Clarke, P. M. R., Gurmu, E. & Mace, R. Fertility, parental investment, and the early adoption of modern contraception in rural Ethiopia. Am. J. Hum. Biol. 25(1), 107–115 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Mace, R., Allal, N., Sear, R. & Prentice, A. M. The uptake of modern contraception in a Gambian community: the diffusion of an innovation over 25 years. In Social Information Transmission and Human Biology (eds Wells, J. C. K. et al.) 191–206 (Taylor & Francis Group, 2006).
    Google Scholar 
    74.Lerner, I.M. Heredity, evolution and society. San Francisco: W.H. Freeman (1968)75.Lewontin, R. C. & Levins, R. Biology Under the Influence (Monthly Review Press, 2007).
    Google Scholar 
    76.Donaldson-Matasci, M. C., Lachmann, M. & Bergstrom, C. T. Phenotypic diversity as an adaptation to environmental uncertainty. Evol. Ecol. Res. 10(4), 493–515 (2008).
    Google Scholar 
    77.Meyers, L. A. & Bull, J. J. Fighting change with change: adaptive variation in an uncertain world. Trends Ecol. Evol. 17(12), 551–557 (2002).Article 

    Google Scholar 
    78.Sermonti, G. The butterfly and the lion. In Organisms, Genes and Evolution: Evolutionary Theory at the Crossroads; Proceedings of the 7th International Senckenberg Conference (eds Peters, S. T. & Weingarten, M.) 103 (Franz Steiner Verlag, 2000).
    Google Scholar 
    79.Boone, J. L. & Kessler, K. L. More status or more children? Social status, fertility reduction and long-term fitness. Evol. Hum. Behav. 20, 257–277 (1999).Article 

    Google Scholar 
    80.Nolin, D. A. & Ziker, J. P. Reproductive responses to economic uncertainty. Hum. Nat. 27(4), 351–371 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Jensen, R. The (perceived) returns to education and the demand for schooling. Q. J. Econ. 125(2), 515–548 (2010).Article 

    Google Scholar 
    82.Borgerhoff, M. M. The demographic transition: are we any closer to an evolutionary explanation?. Trends Ecol. Evol. 13, 266–270 (1998).Article 

    Google Scholar 
    83.Skirbekk, V. Fertility trends by social status. Demogr. Res. 18, 145–180 (2008).Article 

    Google Scholar 
    84.Vining, D. R. J. Social verses reproductive success: the central theoretical problem of human sociobiology. Behav. Brain Sci. 9(167), 216 (1986).
    Google Scholar 
    85.Kramer, K. L. Maya Children: Helpers at the Farm (Harvard University Press, 2005).
    Google Scholar 
    86.Kramer, K. L. & Boone, J. L. Why intensive agriculturalists have higher fertility: a household labor budget approach to subsistence intensification and fertility rates. Curr. Anthropol. 43(3), 511–517 (2002).Article 

    Google Scholar 
    87.Lee, R. D. & Kramer, K. L. Children’s economic roles in the Maya family life cycle: Cain, Caldwell and Chayanov revisited. Popul. Dev. Rev. 28(3), 475–499 (2002).Article 

    Google Scholar 
    88.Kramer, K. L. Reconsidering the cost of childbearing: the timing of children’s helping behavior across the life cycle of Maya families. In SocioEconomic Aspects of Human Behavioral Ecology (ed. Alvard, M.) 335–353 (Elsevier, 2004).
    Google Scholar 
    89.Kramer, K. L., Veile, A. & Otárola-Castillo, E. Sibling competition, growth tradeoffs. Biological vs. statistical significance. PLoS ONE 11(3), e0150126. https://doi.org/10.1371/journal.pone.0150126 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Veile, A. & Kramer, K. L. Shifting weanling’s optimum: breastfeeding ecology and infant health in Yucatan. In Anthropology and Breastfeeding (eds Tomori, C. et al.) Chapter 12 (Routledge Press, 2018).
    Google Scholar 
    91.Feltz, C. J. & Miller, G. E. An asymptotic test for the equality of coefficients of variation from k populations. Stat. Med. 15(6), 647–658 (1996).Article 

    Google Scholar 
    92.Marwick, B. & Krishnamoorthy. K. Cvequality: Tests for the Equality of Coefficients of Variation from Multiple Groups. R software package version 0.1.3 (2019). Retrieved from https://github.com/benmarwick/cvequality, on 05/01/2019.93.Cahoy, D. O. A bootstrap test for equality of variances. Comput. Stat. Data Anal. 54(10), 2306–2316 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    94.Therneau, T. A Package for Survival Analysis in S. version 2.38 (2015), https://CRAN.R-project.org/package=survival. More

  • in

    A heterocyte glycolipid-based calibration to reconstruct past continental climate change

    1.Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).3.Prahl, F. G. & Wakeham, S. G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330, 367–369 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Rampen, S. W. et al. Evaluation of long chain 1,14-alkyl diols in marine sediments as indicators for upwelling and temperature. Org. Geochem. 76, 39–47 (2014).CAS 
    Article 

    Google Scholar 
    6.Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (UK’37) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosyst. 7, Q02005 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).CAS 
    Article 

    Google Scholar 
    8.Robinson, S. A. et al. Early Jurassic North Atlantic sea‐surface temperatures from TEX86 palaeothermometry. Sedimentology 64, 215–230 (2017).Article 

    Google Scholar 
    9.Forster, A., Schouten, S., Baas, M. & Sinninghe Damsté, J. S. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35, 919–922 (2007).ADS 
    Article 

    Google Scholar 
    10.LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Zachos, J. C. et al. Extreme warming of mid-latitude coastal ocean during the Paleocene–Eocene Thermal Maximum: inferences from TEX86 and isotope data. Geology 34, 737–740 (2006).ADS 
    Article 

    Google Scholar 
    12.Powers, L. A. et al. Crenarchaeotal membrane lipids in lake sediments: a new paleotemperature proxy for continental paleoclimate reconstruction? Geology 32, 613–616 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Toney, J. L. et al. Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochim. Cosmochim. Acta 74, 1563–1578 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    14.De Jonge, C. et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141, 97–112 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Tierney, J. E. & Russell, J. M. Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT paleoproxy. Org. Geochem. 40, 1032–1036 (2009).CAS 
    Article 

    Google Scholar 
    16.Bauersachs, T., Rochelmeier, J. & Schwark, L. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers. Biogeosciences 12, 3741–3751 (2015).ADS 
    Article 

    Google Scholar 
    17.Gambacorta, A., Trincone, A., Soriente, A. & Sodano, G. Chemistry of glycolipids from the heterocysts of nitrogen-fixing cyanobacteria. Curr. Top. Phytochem. 2, 145–150 (1999).CAS 

    Google Scholar 
    18.Bauersachs, T. et al. Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry 70, 2034–2039 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Wörmer, L., Cirés, S., Velázquez, D., Quesada, A. & Hinrichs, K.-U. Cyanobacterial heterocyst glycolipids in cultures and environmental samples: diversity and biomarker potential. Limnol. Oceanogr. 57, 1775–1788 (2012).ADS 
    Article 

    Google Scholar 
    20.Whitton, B. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer Netherlands, 2012).21.Bauersachs, T., Stal, L. J., Grego, M. & Schwark, L. Temperature induced changes in the heterocyst glycolipid composition of N2 fixing heterocystous cyanobacteria. Org. Geochem. 69, 98–105 (2014).CAS 
    Article 

    Google Scholar 
    22.Stal, L. J. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ. Microbiol. 11, 1632–1645 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Loomis, S. E., Russell, J. M., Ladd, B., Street-Perrott, F. A. & Sinninghe Damsté, J. S. Calibration and application of the branched GDGT temperature proxy on East African lake sediments. Earth Planet. Sci. Lett. 357–358, 277–288 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    24.Loomis, S. E., Russell, J. M., Eggermont, H., Verschuren, D. & Sinninghe Damsté, J. S. Effects of temperature, pH and nutrient concentration on branched GDGT distributions in East African lakes: implications for paleoenvironmental reconstruction. Org. Geochem. 66, 25–37 (2014).CAS 
    Article 

    Google Scholar 
    25.Bauersachs, T. et al. Heterocyte glycolipids indicate polyphyly of stigonematalean cyanobacteria. Phytochemistry 166, 112059 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hecky, R. E. & Kling, H. J. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnol. Oceanogr. 26, 548–564 (1981).ADS 
    Article 

    Google Scholar 
    27.Descy, J.-P. & Sarmento, H. Microorganisms of the East African great lakes and their response to environmental changes. Freshw. Rev. 1, 59–73 (2008).Article 

    Google Scholar 
    28.McGlue, M. M. et al. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. J. Paleolimnol. 40, 635–653 (2008).ADS 
    Article 

    Google Scholar 
    29.Bale, N. J. et al. Impact of trophic state on the distribution of intact polar lipids in surface waters of lakes. Limnol. Oceanogr. 61, 1065–1077 (2016).ADS 
    Article 

    Google Scholar 
    30.Bauersachs, T. et al. Distribution of long chain heterocyst glycolipids in cultures of the thermophilic cyanobacterium Mastigocladus laminosus and a hot spring microbial mat. Org. Geochem. 56, 19–24 (2013).CAS 
    Article 

    Google Scholar 
    31.Rethemeyer, J. et al. Distribution of polar membrane lipids in permafrost soils and sediments of a small high Arctic catchment. Org. Geochem. 41, 1130–1145 (2010).CAS 
    Article 

    Google Scholar 
    32.D’Andrea, W. J., Huang, Y., Fritz, S. C. & Anderson, N. J. Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc. Natl Acad. Sci. USA 108, 9765–9769 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J. & Sinninghe Damsté, J. S. Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: effects of temperature, pH, and new lacustrine paleotemperature calibrations. Org. Geochem. 117, 56–69 (2018).CAS 
    Article 

    Google Scholar 
    34.Pérez, L. et al. Bioindicators of climate and trophic state in lowland and highland aquatic ecosystems of the Northern Neotropics. Rev. Biol. Trop. 61, 603–644 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S. & Verschuren, D. Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochim. Cosmochim. Acta 73, 4232–4249 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    36.Deng, L., Jia, G., Jin, C. & Li, S. Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org. Geochem. 96, 11–17 (2016).CAS 
    Article 

    Google Scholar 
    37.Vollmer, M. K. et al. Deep-water warming trend in Lake Malawi, East Africa. Limnol. Oceanogr. 50, 727–732 (2005).ADS 
    Article 

    Google Scholar 
    38.Kraemer, B. M. et al. Century-long warming trends in the upper water column of Lake Tanganyika. PLoS ONE 10, e0132490 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Moisander, P. H., Paerl, H. W. & Zehr, J. P. Effects of inorganic nitrogen on taxa-specific cyanobacterial growth and nifH expression in a subtropical estuary. Limnol. Oceanogr. 53, 2519–2532 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kahru, M., Leppänen, J.-M. & Rud, O. Cyanobacterial blooms cause heating of the sea surface. Mar. Ecol. Prog. Ser. 101, 1–7 (1993).ADS 
    Article 

    Google Scholar 
    43.Wurl, O. et al. Warming and inhibition of salinization at the ocean’s surface by cyanobacteria. Geophys. Res. Lett. 45, 4230–4237 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Capone, D. et al. An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Mar. Ecol. Prog. Ser. 172, 281–292 (1998).ADS 
    Article 

    Google Scholar 
    45.Tierney, J. E. et al. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252–255 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Gasse, F., Lédée, V., Massault, M. & Fontes, J. C. Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342, 57–59 (1989).ADS 
    Article 

    Google Scholar 
    47.Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. Compilations and splined-smoothed calculations of continuous records of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing since the penultimate glacial maximum. Earth Syst. Sci. Data 9, 363–387 (2017).ADS 
    Article 

    Google Scholar 
    48.Ivory, S. J. & Russell, J. Lowland forest collapse and early human impacts at the end of the African Humid Period at Lake Edward, equatorial East Africa. Quat. Res. 89, 7–20 (2018).Article 

    Google Scholar 
    49.Powers, L. A. Large temperature variability in the southern African tropics since the last glacial maximum. Geophys. Res. Lett. 32, L08706 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Woltering, M., Johnson, T. C., Werne, J. P., Schouten, S. & Sinninghe Damsté, J. S. Late Pleistocene temperature history of Southeast Africa: a TEX86 temperature record from Lake Malawi. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303, 93–102 (2011).Article 

    Google Scholar 
    51.Berke, M. A., Johnson, T. C., Werne, J. P., Schouten, S. & Sinninghe Damsté, J. S. A mid-Holocene thermal maximum at the end of the African Humid Period. Earth Planet. Sci. Lett. 351–352, 95–104 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Bonnefille, R., Roeland, J. C. & Guiot, J. Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature 346, 347–349 (1990).ADS 
    Article 

    Google Scholar 
    53.Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S. & Verschuren, D. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quat. Sci. Rev. 50, 43–54 (2012).ADS 
    Article 

    Google Scholar 
    54.Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).ADS 
    Article 

    Google Scholar 
    55.Berke, M. A. et al. Characterization of the last deglacial transition in tropical East Africa: insights from Lake Albert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 1–8 (2014).Article 

    Google Scholar 
    56.Loomis, S. E. et al. The tropical lapse rate steepened during the last glacial maximum. Sci. Adv. 3, e1600815 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Tierney, J. E., Russell, J. M. & Huang, Y. A molecular perspective on Late Quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. Quat. Sci. Rev. 29, 787–800 (2010).ADS 
    Article 

    Google Scholar 
    58.Schouten, S., Rijpstra, W. I. C., Durisch-Kaiser, E., Schubert, C. J. & Sinninghe Damsté, J. S. Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake Tanganyika. Org. Geochem. 53, 34–37 (2012).CAS 
    Article 

    Google Scholar 
    59.Haberyan, K. A. & Hecky, R. E. The late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeogr. Palaeoclimatol. Palaeoecol. 61, 169–197 (1987).CAS 
    Article 

    Google Scholar 
    60.Berke, M. A. et al. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa. Quat. Sci. Rev. 55, 59–74 (2012).ADS 
    Article 

    Google Scholar 
    61.Weijers, J. W. H., Schefuß, E., Schouten, S. & Sinninghe Damsté, J. S. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315, 1701–1704 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Costa, K. M., Russell, J. M., Vogel, H. & Bijaksana, S. Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 467–475 (2015).Article 

    Google Scholar 
    65.Ohlendorf, C. et al. Mechanisms of lake-level change at Laguna Potrok Aike (Argentina) – insights from hydrological balance calculations. Quat. Sci. Rev. 71, 27–45 (2013).ADS 
    Article 

    Google Scholar 
    66.Hawes, I., Howard-Williams, C. & Sorrell, B. Decadal timescale variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, southern Victoria Land, Antarctica. Antarct. Sci. 26, 219–230 (2014).ADS 
    Article 

    Google Scholar 
    67.Bauersachs, T. et al. Rapid analysis of long-chain glycolipids in heterocystous cyanobacteria using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 1387–1394 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Shirkhorshidi, A. S., Aghabozorgi, S. & Wah, T. Y. A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS ONE 10, e0144059 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Kelly, M. A. et al. Expanded glaciers during a dry and cold last glacial maximum in equatorial East Africa. Geology 42, 519–522 (2014).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans

    1.Danovaro, R., Snelgrove, P. V. R. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).PubMed 
    Article 

    Google Scholar 
    2.Ebbe, B. et al. In Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 139–160 (Blackwell Publishing Ltd, 2010).3.Edgcomb, V. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr. Opin. Microbiol. 31, 169–175 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bienhold, C., Zinger, L., Boetius, A. & Ramette, A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS ONE 11, e0148016 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.del Campo, J. & Massana, R. Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162, 435–448 (2011).PubMed 
    Article 

    Google Scholar 
    6.López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).PubMed 
    Article 

    Google Scholar 
    7.Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean—challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).PubMed 
    Article 

    Google Scholar 
    8.Caron, D. A. et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15, 6–20 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Jürgens, K. & Massana, R. In Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 383–441 (Wiley, 2008).10.Moran, M. A. The global ocean microbiome. Science 350, aac8455 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).Article 

    Google Scholar 
    13.Patterson, D. J., Nygaard, K., Steinberg, G. & Turley, C. M. Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J. Mar. Biol. Assoc. UK 73, 67 (1993).Article 

    Google Scholar 
    14.Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Arndt, H. et al. In The Flagellates—Unity, Diversity and Evolution (eds. Leadbeater, B. S. & Green, J. C.) 240–268 (Taylor & Francis Ltd, 2000).16.Boenigk, J. & Arndt, H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van. Leeuwenhoek 81, 465–480 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Caron, D. A., Davis, P. G., Madin, L. P. & Sieburth, J. M. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218, 795–797 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Gooday, A. J. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J. Oceanogr. 58, 305–332 (2002).CAS 
    Article 

    Google Scholar 
    19.Molari, M., Manini, E. & Dell’Anno, A. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Glob. Biogeochem. Cycles 27, 212–221 (2013).CAS 
    Article 

    Google Scholar 
    20.Pasulka, A. et al. SSU-rRNA gene sequencing survey of benthic microbial eukaryotes from Guaymas Basin hydrothermal vent. J. Eukaryot. Microbiol. 66, 637–653 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Stoeck, T., Taylor, G. T. & Epstein, S. S. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl. Environ. Microbiol. 69, 5656–5663 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Pachiadaki, M. G. et al. In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs. Deep Sea Res. Part II Top. Stud. Oceanogr. 129, 223–231 (2016).Article 

    Google Scholar 
    23.Cordier, T., Barrenechea, I., Lejzerowicz, F., Reo, E. & Pawlowski, J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Prog. Oceanogr. 178, 102175 (2019).Article 

    Google Scholar 
    24.Pawlowski, J. et al. Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS ONE 6, e18169 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Scheckenbach, F., Hausmann, K., Wylezich, C., Weitere, M. & Arndt, H. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc. Natl Acad. Sci. USA 107, 115–120 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Schlitzer, R. Ocean Data View (2012). http://odv.awi.de.28.Schoenle, A., Nitsche, F., Werner, J. & Arndt, H. Deep-sea ciliates: recorded diversity and experimental studies on pressure tolerance. Deep Sea Res. Part I: Oceanograp. Res. Pap. 128, 55–66 (2017).CAS 
    Article 

    Google Scholar 
    29.Živaljić, S. et al. A barotolerant ciliate isolated from the abyssal deep sea of the North Atlantic: Euplotes dominicanus sp. n. (Ciliophora, Euplotia). Eur. J. Protistol. 73, 125664 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Logares, R. et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome 8, 55 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 0091 (2017).Article 

    Google Scholar 
    32.Forster, D. et al. Benthic protists: the under-charted majority. FEMS Microbiol. Ecol. 92, fiw120 (2016).33.Schoenle, A., Hohlfeld, M., Hermanns, K. & Arndt, H. V9_DeepSea (Deep Sea Reference Database) [Data set]. Commun. Biol., Zenodo https://doi.org/10.5281/zenodo.4305675 (2021).34.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucl. Acids Res. 41, D597–D604 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Clopton, R. E., Janovy, J. & Percival, T. J. Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor. J. Parasitol. 78, 334–337 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Leander, B. S. Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol. 24, 60–67 (2008).PubMed 
    Article 

    Google Scholar 
    38.del Campo, J. et al. Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front. Microbiol. 10, 2373 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Baker, P. et al. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 148, 21–34 (2018).Article 

    Google Scholar 
    41.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).CAS 
    Article 

    Google Scholar 
    43.Xu, D. et al. Pigmented microbial eukaryotes fuel the deep sea carbon pool in the tropical Western Pacific Ocean. Environ. Microbiol. 20, 3811–3824 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Schoenle, A. et al. Global comparison of bicosoecid Cafeteria-like flagellates from the deep ocean and surface waters, with reorganization of the family Cafeteriaceae. Eur. J. Protistol. 73, 125665 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Massana, R. et al. Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate. ISME J. 15, 154–167 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Živaljić, S. et al. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: literature review and own experiments. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 251–259 (2018).Article 
    CAS 

    Google Scholar 
    48.Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Devey, C. W. et al. Habitat characterization of the Vema Fracture Zone and Puerto Rico Trench. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 7–20 (2018).Article 

    Google Scholar 
    50.Levin, L. A. & Sibuet, M. Understanding continental margin biodiversity: a new imperative. Annu. Rev. Mar. Sci. 4, 79–112 (2012).Article 

    Google Scholar 
    51.Gooday, A. J. In Encyclopedia of Ocean Science (eds. Cochran, J. et al.) 684–705 (Elsevier, 2019).52.Vuillemin, A. et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci. Adv. 5, eaaw4108 (2019).53.De Corte, D., Paredes, G., Yokokawa, T., Sintes, E. & Herndl, G. J. Differential response of Cafeteria roenbergensis to different bacterial and archaeal prey characteristics. Micro. Ecol. 78, 1–5 (2019).Article 

    Google Scholar 
    54.Ballen-Segura, M., Felip, M. & Catalan, J. Some mixotrophic flagellate species selectively graze on Archaea. Appl. Environ. Microbiol. 83, e02317–16 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Schoenle, A. et al. Methodological studies on estimates of abundance and diversity of heterotrophic flagellates from the deep-sea floor. J. Mar. Sci. Eng. 4, 22 (2016).Article 

    Google Scholar 
    56.Schoenle, A. et al. New phagotrophic euglenids from deep sea and surface waters of the Atlantic Ocean (Keelungia nitschei, Petalomonas acorensis, Ploeotia costaversata). Eur. J. Protistol. 69, 102–116 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Danovaro, R. Methods for the Study of Deep-sea Sediments, their Functioning and Biodiversity (ed. Danovaro, R.) 181–196 (CRC Press, 2010).58.Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Butler, H. & Rogerson, A. Temporal and spatial abundance of naked amoebae (gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 42, 724–730 (1995).Article 

    Google Scholar 
    60.Goryatcheva, N. V. The cultivation of colourless marine flagellate Bodo marina. Biol. Inland Waters Bull. 11, 25–28 (1971).
    Google Scholar 
    61.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Van der Auwera, G., Chapelle, S. & De Wächter, R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 338, 133–136 (1994).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Hillis, D. M., Dixon, M. T. & Ribosomal, D. N. A. Molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411–453 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).Article 

    Google Scholar 
    65.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Mahé, F. Stampa: sequence taxonomic assigment by massive pairwise aligments. https://github.com/frederic-mahe/stampa (2018).68.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).69.Vavrek, M. J. Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 1T (2011).
    Google Scholar 
    70.Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).Article 

    Google Scholar 
    71.Oksanen, J. et al. vegan: Community Ecology Package. The R Project for Statistical Computing. https://cran.r-project.org, https://github.com/vegandevs/vegan (2019).72.Hennig, C. fpc: Flexible Procedures for Clustering. The R Project for Statistical Computing. https://www.unibo.it/sitoweb/christian.hennig/en/ (2019).73.Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. The R Project for Statistical Computing. https://rdrr.io/cran/VennDiagram/ (2018).74.Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Kolde, R. pheatmap: Pretty Heatmaps. The R Project for Statistical Computing. https://CRAN.R-project.org/package=pheatmap (2019).76.Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. Handbook of the Protists. (eds. Archibald, J. M. et al.) 1–1657 (Springer, 2017).77.Okamura, T. & Kondo, R. Suigetsumonas clinomigrationis gen. et sp. nov., a novel facultative anaerobic nanoflagellate isolated from the meromictic Lake Suigetsu, Japan. Protist 166, 409–421 (2015).PubMed 
    Article 

    Google Scholar 
    78.Rybarski, A. et al. Revision of the phylogeny of Placididea (Stramenopiles): molecular and morphological diversity of novel placidid protists from extreme aquatic environments. Eur. J. Protistol.(in press).79.Scheckenbach, F., Wylezich, C., Weitere, M., Hausmann, K. & Arndt, H. Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquat. Microb. Ecol. 38, 239–247 (2005).Article 

    Google Scholar 
    80.Park, J. S. & Simpson, A. G. B. Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles: novel halotolerant heterotrophic stramenopiles. Environ. Microbiol. 12, 1173–1184 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Moriya, M., Nakayama, T. & Inouye, I. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae Sedis). Protist 151, 41–55 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Živaljić, S. et al. Influence of hydrostatic pressure on the behaviour of three ciliate species isolated from the deep sea. Mar. Biol. 167, 63 (2020).Article 

    Google Scholar  More

  • in

    Division of labor in work shifts by leaf-cutting ants

    1.Roces, F. Individual complexity and self-organization in foraging by leaf-cutting ants. Biol. Bull. 202, 306–313 (2002).PubMed 
    Article 

    Google Scholar 
    2.Cerdá, X., Angulo, E., Boulay, R. & Lenoir, A. Individual and collective foraging decisions: A field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behav. Ecol. Sociobiol. 63, 551–562 (2009).Article 

    Google Scholar 
    3.Dussutour, A., Deneubourg, J.-L., Beshers, S. & Fourcassié, V. Individual and collective problem-solving in a foraging context in the leaf-cutting ant Atta colombica. Anim. Cogn. 12, 21–30 (2009).PubMed 
    Article 

    Google Scholar 
    4.Leboeuf, A. C. & Grozinger, C. M. Me and we: The interplay between individual and group behavioral variation in social collectives. Curr. Opin. Insect Sci. 5, 16–24 (2014).PubMed 
    Article 

    Google Scholar 
    5.Feinerman, O. & Korman, A. Individual versus collective cognition in social insects. J. Exp. Biol. 220, 73–82 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Frank, E. T. & Linsenmair, K. E. Individual versus collective decision making: Optimal foraging in the group-hunting termite specialist Megaponera analis. Anim. Behav. 130, 27–35 (2017).Article 

    Google Scholar 
    7.Menzel, R., Leboulle, G. & Eisenhardt, D. Small brains, bright minds. Cell 124, 237–239 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Leadbeater, E. & Chittka, L. Social learning in insects—From miniature brains to consensus building. Curr. Biol. 17, 703–713 (2007).Article 
    CAS 

    Google Scholar 
    9.Giurfa, M. Cognition with few neurons: Higher-order learning in insects. Trends Neurosci. 36, 285–294 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Guerrieri, F. J. & D’Ettorre, P. Associative learning in ants: Conditioning of the maxilla-labium extension response in Camponotus aethiops. J. Insect Physiol. 56, 88–92 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Gordon, D. M. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34, 1402–1419 (1986).Article 

    Google Scholar 
    12.Goss, S., Aron, S., Deneubourg, J. L. & Pasteels, J. M. Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579–581 (1989).ADS 
    Article 

    Google Scholar 
    13.Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Czaczkes, T. J. et al. Composite collective decision-making. Proc. Biol. Sci. 282, 20142723 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    15.Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. TREE 12, 188–194 (1997).CAS 
    PubMed 

    Google Scholar 
    16.Boomsma, J. J. & Franks, N. R. Social insects: From selfish genes to self organisation and beyond. Trends Ecol. Evol. 21, 303–308 (2006).PubMed 
    Article 

    Google Scholar 
    17.Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E. Self-Organization in Biological Systems. (Princeton University Press, 2003).18.Constant, N., Santorelli, L.A., Lopes, J.F.S., Hughes, W.O.H. The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav. Ecol. 23, 1284–1288 (2012).19.Feinerman, O. & Traniello, J. F. A. Social complexity, diet, and brain evolution: Modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav. Ecol. Sociobiol. 70, 1063–1074 (2016).Article 

    Google Scholar 
    20.McCluskey, E.S. Circadian-rhythms in male-ants of five diverse species. Science (80- ) 150, 1037–1039 (1965).21.North, R. D. Circadian rhythm of locomotor activity in individual workers of the wood ant Formica rufa. Physiol. Entomol. 12, 445–454 (1987).Article 

    Google Scholar 
    22.Cros, S., Cerdá, X., Retana, J., De, E. U. & De, C. F. Spatial and temporal variations in the activity patterns of Mediterranean ant communities. Écoscience 4, 269–278 (1997).Article 

    Google Scholar 
    23.Bellusci, S. & David, M. M. Circadian activity rhythm of the foragers of a eusocial bee (Scaptotrigona aff depilis, Hymenoptera, Apidae, Meliponinae) outside the nest. Biol. Rhythm Res. 32, 117–124 (2001).Article 

    Google Scholar 
    24.Narendra, A., Reid, S.F., Greiner, B., Peters, R.A., Hemmi, J.M., Ribi, W.A. et al. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc. Biol. Sci. 278, 1141–1149 (2011).25.Yilmaz, A., Aksoy, V., Camlitepe, Y. & Giurfa, M. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front. Behav. Neurosci. 8, 205 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Nickele, M. A., Filho, W. R., Pie, M. R. & Penteado, S. R. C. Daily foraging activity of Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Sociobiology 63, 645–650 (2016).Article 

    Google Scholar 
    27.Aschoff, J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25, 11–28 (1960).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Hall, J. C. Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48, 1–280 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Sandrelli, F., Costa, R., Kyriacou, C. P. & Rosato, E. Comparative analysis of circadian clock genes in insects. Insect Mol. Biol. 17, 447–463 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).CAS 
    Article 

    Google Scholar 
    31.Abbot, P., Abe, J., Alcock, J., Alizon, S., Alpedrinha, J.A.C., Andersson, M. et al. Inclusive fitness theory and eusociality. Nature 471, E1–E4 (2011).32.Kost, C., De Oliveira, E. G., Knoch, T. A. & Wirth, R. Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (Atta spp.). J. Trop. Ecol. 21, 677–688 (2005).33.Bochynek, T., Meyer, B. & Burd, M. Energetics of trail clearing in the leaf-cutter ant Atta. Behav. Ecol. Sociobiol. 71, 1–10 (2017).Article 

    Google Scholar 
    34.Bouchebti, S., Travaglini, R. V., Forti, L. C. & Fourcassié, V. Dynamics of physical trail construction and of trail usage in the leaf-cutting ant Atta laevigata. Ethol. Ecol. Evol. 31, 105–120 (2019).Article 

    Google Scholar 
    35.Cherrett, J. M. The foraging behavior of Atta cephalotes L. J. Anim. Ecol. 37, 387–403 (1968).Article 

    Google Scholar 
    36.Lewis, T., Pollard, G.V., Dibley, G.C. Rhythmic foraging in the leaf-cutting ant Atta cephalotes (L.) (Formicidae: Attini). J. Anim. Ecol. 43, 129 (1974).37.Sharma, V. K., Lone, S. R., Mathew, D., Goel, A. & Chandrashekaran, M. K. Possible evidence for shift work schedules in the media workers of the ant species Camponotus compressus. Chronobiol. Int. 21, 297–308 (2004).PubMed 
    Article 

    Google Scholar 
    38.Koto, A., Mersch, D., Hollis, B. & Keller, L. Social isolation causes mortality by disrupting energy homeostasis in ants. Behav. Ecol. Sociobiol. 69, 583–591 (2015).Article 

    Google Scholar 
    39.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) I. The overall pattern in A. sexdens. Behav. Ecol. Sociobiol. 7, 143–156 (1980).40.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera : Formicidae : Atta) II. The ergonomic optimization of leaf cutting. Behav. Ecol. Sociobiol. 7, 157–165 (1980).41.Holbrook, C. T., Eriksson, T. H., Overson, R. P., Gadau, J. & Fewell, J. H. Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insect. Soc. 60, 191–201 (2013).Article 

    Google Scholar 
    42.Martinoya, C., Bloch, S., Ventura, D. F. & Puglia, N. M. Spectral efficiency as measured by ERG in the ant (Atta sexdens rubropilosa). J. Comp. Physiol A 104, 205–210 (1975).Article 

    Google Scholar 
    43.Kaiser, W. Busy bees need rest, too. J. Comp. Physiol. A 163, 565–584 (1988).Article 

    Google Scholar 
    44.Sauer, S., Herrmann, E. & Kaiser, W. Sleep deprivation in honey bees. J. Sleep Res. 13, 145–152 (2004).PubMed 
    Article 

    Google Scholar 
    45.Klein, B. A., Klein, A., Wray, M. K., Mueller, U. G. & Seeley, T. D. Sleep deprivation impairs precision of waggle dance signaling in honey bees. Proc. Natl. Acad. Sci. 107, 22705–22709 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Mildner, S. & Roces, F. Plasticity of daily behavioral rhythms in foragers and nurses of the ant Camponotus rufipes: Influence of social context and feeding times. PLoS ONE 12, e0169244 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Fujioka, H. et al. Ant circadian activity associated with brood care type. Biol. Lett. 13, 20160743 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Klein, B. A., Olzsowy, K. M., Klein, A., Saunders, K. M. & Seeley, T. D. Caste-dependent sleep of worker honey bees. J. Exp. Biol. 211, 3028–3040 (2008).PubMed 
    Article 

    Google Scholar 
    49.Bloch, G., Toma, D. P. & Robinson, G. E. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J. Biol. Rhythms 16, 444–456 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Bloch, G. The social clock of the honeybee. J. Biol. Rhythms 25, 307–317 (2010).PubMed 
    Article 

    Google Scholar 
    51.Bloch, G., Sullivan, J. P. & Robinson, G. E. Juvenile hormone and circadian locomotor activity in the honey bee Apis mellifera. J. Insect Physiol. 48, 1123–1131 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Bernhard Kraus, F., Gerecke, E., Moritz, R.F.A. Shift work has a genetic basis in honeybee pollen foragers (Apis mellifera L.). Behav. Genet. 41, 323–328 (2011).53.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) III. Ergonomic resiliency in foraging by A. cephalotes. Behav. Ecol. Sociobiol. 14, 55–60 (1983).54.Detrain, C., Pasteels, J.M. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, Pheidole pallidula (Nyl.) (Hymenoptera: Myrmicinae). J. Insect Behav. 4, 157–176 (1991).55.Lighton, J. R. B. & QuinlanJr, M. C. D. H. F. Is bigger better? Water balance in the polymorphic desert harvester ant Messor pergandei. Physiol. Entomol. 19, 325–334 (1994).Article 

    Google Scholar 
    56.Cerdá, X. & Retana, J. Links between worker polymorphism and thermal biology in a thermophilic ant species. Oikos 78, 467 (1997).Article 

    Google Scholar 
    57.Clémencet, J., Cournault, L., Odent, A. & Doums, C. Worker thermal tolerance in the thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). Insectes Soc. 57, 11–15 (2010).Article 

    Google Scholar 
    58.Gadagkar, R. The evolution of caste polymorphism in social insects: Genetic release followed by diversifying evolution. J. Genet. 76, 167–179 (1997).Article 

    Google Scholar 
    59.Helms Cahan, S. & Keller, L. Complex hybrid origin of genetic caste determination in harvester ants. Nature 424, 306–309 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Fjerdingstad, E. J. & Crozier, R. H. The evolution of worker caste diversity in social insects. Am. Nat. 167, 390–400 (2012).Article 

    Google Scholar 
    61.Trible, W. et al. Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170(727–735), e10 (2017).
    Google Scholar 
    62.De, T. M. A. et al. Two castes sizes of leafcutter ants in task partitioning in foraging activity. Ciênc. Rural 46, 1902–1908 (2016).Article 

    Google Scholar 
    63.Sharkey, K. M. & Eastman, C. I. Melatonin phase shifts human circadian rhythms in a placebo-controlled simulated night-work study. Am. J. Physiol. Integr. Comp. Physiol. 282, R454–R463 (2002).CAS 
    Article 

    Google Scholar  More

  • in

    Deep-sea shipwrecks represent island-like ecosystems for marine microbiomes

    1.Anderson RE, Sogin ML, Baross JA. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents. FEMS Microbiol Ecol. 2015;91:1–11.Article 

    Google Scholar 
    2.Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA. 2009;106:22427–32.CAS 
    Article 

    Google Scholar 
    3.Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    Article 

    Google Scholar 
    4.Lindstrom ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Env Microbiol Rep. 2012;4:1–9.Article 

    Google Scholar 
    5.Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    Article 

    Google Scholar 
    6.Ramette A, Tiedje JM. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Micro Ecol. 2007;53:197–207.Article 

    Google Scholar 
    7.Teittinen A, Soininen J. Testing the theory of island biogeography for microorganisms-patterns for spring diatoms. Aquat Micro Ecol. 2015;75:239–50.Article 

    Google Scholar 
    8.Salazar G, Cornejo-Castillo FM, Benitez-Barrios V, Fraile-Nuez E, Alvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016;10:596–608.Article 

    Google Scholar 
    9.Longhurst AR. Chapter 1 – Toward an ecological geography of the sea. Ecological Geography of the Sea, 2nd ed. Burlington: Academic Press; 2007. p. 1–17.10.Duchinski K, Moyer CL, Hager K, Fullerton H. Fine-scale biogeography and the inference of ecological interactions among neutrophilic iron-oxidizing Zetaproteobacteria as determined by a rule-based microbial network. Front Microbiol. 2019;10:1–11.Article 

    Google Scholar 
    11.Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin. Proc Natl Acad Sci USA. 2006;103:2815–20.CAS 
    Article 

    Google Scholar 
    12.Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA. 2015;112:4015–20.CAS 
    Article 

    Google Scholar 
    13.Meyer KS. Chapter One – Islands in a sea of mud: Insights from terrestrial island theory for community assembly on insular marine substrata. In: Curry BE, editor. Advances in Marine Biology. 76: Cambridge, Massachusetts: Academic Press; 2017. p. 1–40.14.Paul WS, Amy DA, Gregory SB. Expansion of coral communities within the Northern Gulf of Mexico via offshore oil and gas platforms. Mar Ecol Prog Ser. 2004;280:129–43.Article 

    Google Scholar 
    15.Perkol-Finkel S, Benayahu Y. Recruitment of benthic organisms onto a planned artificial reef: shifts in community structure one decade post-deployment. Mar Environ Res. 2005;59:79–99.CAS 
    Article 

    Google Scholar 
    16.Perkol-Finkel S, Shashar N, Barneah O, Ben-David-Zaslow R, Oren U, Reichart T, et al. Fouling reefal communities on artificial reefs: does age matter? Biofouling. 2005;21:127–40.CAS 
    Article 

    Google Scholar 
    17.Svane I, Petersen JK. On the problems of epibioses, fouling and artificial reefs, a review. Mar Ecol. 2001;22:169–88.Article 

    Google Scholar 
    18.Meyer-Kaiser K, Brooke SD, Sweetman A, Wolf M, Young C. Invertebrate communities on historical shipwrecks in the western Atlantic: relation to islands. Mar Ecol Prog Ser. 2017;566:17–29.Article 

    Google Scholar 
    19.Macarthur RH, Wilson EO, Wilson EO. The theory of island biogeography. Revised ed: Princeton, New Jersey: Princeton University Press; 1967.20.Losos JB, Ricklefs RE, MacArthur RH. The theory of island biogeography revisited. Princeton: Princeton University Press; 2010. xvi, 476 p.21.Stieglitz TC. Habitat engineering by decadal-scale bioturbation around shipwrecks on the Great Barrier Reef mid-shelf. Mar Ecol Prog Ser. 2013;477:29–40.Article 

    Google Scholar 
    22.Hamdan LJ, Salerno JL, Reed A, Joye SB, Damour M. The impact of the Deepwater Horizon blowout on historic shipwreck-associated sediment microbiomes in the northern Gulf of Mexico. Sci Rep. 2018;8:9057.Article 

    Google Scholar 
    23.Church R, Warren D, Cullimore R, Johnston L, Schroeder WW, Patterson W, et al. Archaeological and biological analysis of World War II shipwrecks in the Gulf of Mexico: Artifical reef effect in deep water. New Orleans, LA: U.S. Department of the Interior; 2007. Report No.: MMS 2007-015.24.Mugge RL, Brock ML, Salerno JL, Damour M, Church RA, Lee JS, et al. Deep-sea biofilms, historic shipwreck preservation and the Deepwater Horizon spill. Front Marine Sci. 2019;6:1–17.Article 

    Google Scholar 
    25.Comeau AM, Li WK, Tremblay JE, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. Plos One. 2011;6:e27492.CAS 
    Article 

    Google Scholar 
    26.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    27.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    28.Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett. 2004;7:601–13.Article 

    Google Scholar 
    29.Levin LA, Baco AR, Bowden DA, Colaco A, Cordes EE, Cunha MR, et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front Mar Sci. 2016;3:1–23.Article 

    Google Scholar 
    30.Goffredi SK, Orphan VJ. Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea. Environ Microbiol. 2010;12:344–63.CAS 
    Article 

    Google Scholar 
    31.Smith CR, Baco-Taylor A. Ecology of whale falls at the deep-sea floor. Oceanography and marine biology: an annual review. London: Abredeen University Press; 2003.32.Smith C, Baco-Taylor A, Glover A. Faunal succession on replicate deep-sea whale falls: time scales and vent-seep affinities. Cah Biol Mar. 2002;43:293–7.
    Google Scholar 
    33.Grupe BM, Krach ML, Pasulka AL, Maloney JM, Levin LA, Frieder CA. Methane seep ecosystem functions and services from a recently discovered southern California seep. Mar Ecol. 2015;36:91–108.CAS 
    Article 

    Google Scholar 
    34.Harris PT. Shelf and deep-sea sedimentary environments and physical benthic disturbance regimes: a review and synthesis. Mar Geol. 2014;353:169–84.Article 

    Google Scholar 
    35.Damour M, Church R, Warren D, Horrell C, Hamdan LJ. Gulf of Mexico Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology (GOM-SCHEMA) Project: studying the effects of a major oil spill on submerged cultural resources. In 2015 Society for Historical Archaeology Annual Conference Proceedings; Seattle, WA: Society for Historical Archaeology; 2016. p. 51–61.36.BOEM. Bureau of Ocean Energy Management Data Center BOEM; 2020. https://www.data.boem.gov/.37.BSEE. Bureau of Safety and Environmental Enforcement (BSEE): Gulf of Mexico OCS Region Facts. New Orleans, Louisiana: Bureau of Safety and Environmental Enforcement; 2020.38.Costello MJ, Tsai P, Wong PS, Cheung AKL, Basher Z, Chaudhary C. Marine biogeographic realms and species endemicity. Nat Commun. 2017;8:1057.Article 

    Google Scholar  More

  • in

    Barrier properties of fungal fruit body skins, pileipelles, contribute to protection against water loss

    1.Nobel, P. S. Physicochemical and Environmental Plant Physiology (Academic Press, 2005).
    Google Scholar 
    2.Hsiao, T. C. Plant responses to water stress. Annu. Rev. Plant Physiol. 24, 519–570 (1973).CAS 
    Article 

    Google Scholar 
    3.Schönherr, J. Resistance of plant surfaces to water loss : transport properties of cutin, suberin and associated lipids. In Encyclopedia Plant Physiology, NS Vol. 12B (eds Lange, O. L. et al.) 154–179 (Springer, 1982).
    Google Scholar 
    4.Lendzian, K. J. Gas permeability of plant cuticles: oxygen permeability. Planta 155, 310–315 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Langenfeld-Heyser, R. Physiological functions of lenticels. In Trees—Contributions to Modern Tree Physiology (eds Rennenberg, H. et al.) 43–56 (Backhuys, 1997).
    Google Scholar 
    6.Riederer, M. & Schreiber, L. Protecting against water loss: analysis of the barrier properties of plant cuticles. J. Exp. Bot. 52, 2023–2032 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Kerstiens, G. Parameterization, comparison, and validation of models quantifying relative change of cuticular permeability with physicochemical properties of diffusants. J. Exp. Bot. 57, 2525–2533 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Schönherr, J. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J. Exp. Bot. 57, 2471–2491 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    9.Groh, B., Hübner, C. & Lendzian, K. J. Water and oxygen permeance of phellems isolated from trees: the role of waxes and lenticels. Planta 215, 794–801 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Lendzian, K. J. Survival strategies of plants during secondary growth: barrier properties of phellems and lenticels towards water, oxygen, and carbon dioxide. J. Exp. Bot. 57, 2535–2546 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Renault, H. et al. (2017) A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat. Commun. 8, 14713 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Haas, K. Phytochemische und rasterelektronenmikroskopische Untersuchungen zum Oberflächenwachs von Laubmoosen (Bryatae) (Grauer, 1999).
    Google Scholar 
    13.Clémençon, H., Emmett, V. & Emmett, E. E. Cytology and Plectology of the Hymenomycetes (J Cramer, 2012).
    Google Scholar 
    14.Moore, D., Gange, A. C., Gange, E. G. & Boddy, L. Fruit bodies: their production and development in relation to environment. In Ecology of Saprotrophic Basidiomycetes (eds Boddy, L. et al.) 79–103 (Elsevier Academic Press, 2008).
    Google Scholar 
    15.Halbwachs, H., Simmel, J. & Bässler, C. Tales and mysteries of fungal fruiting: how morphological and physiological traits affect a pileate lifestyle. Fungal Biol. Rev. 30, 36–61 (2016).Article 

    Google Scholar 
    16.Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev. 32, 236–248 (2018).Article 

    Google Scholar 
    17.Straatsma, G., Ayer, F. & Egli, S. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol. Res. 105(5), 515–523 (2001).Article 

    Google Scholar 
    18.Kües, U. & Liu, Y. Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol. 54, 141–152 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Beluhan, S. & Ranogajec, A. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 124, 1076–1082 (2011).CAS 
    Article 

    Google Scholar 
    20.Beecher, T. M., Magan, N. & Burton, K. S. Water potentials and soluble carbohydrate concentrations in tissues of freshly harvested and stored mushrooms (Agaricusbisporus). Postharvest Biol. Technol. 22, 121–131 (2001).CAS 
    Article 

    Google Scholar 
    21.Bonnier G, Mangin L (1884) Recherches sur la respiration et la transpiration des champignons. Ann. Sc. Natur., sér. VI, t. XVII:210–30522.Moser, M. Transpirationsschutz bei höheren Pilzen. Schweizerische Zeitschrift für Pilzkunde 42(4), 50–54 (1964).
    Google Scholar 
    23.Pieschel, E. Über die Transpiration und die Wasserversorgung der Hymenomyceten. Bot. Archiv. VIII, 64–104 (1924).
    Google Scholar 
    24.Seybold, A. Weitere Beiträge zur Transpirationsanalyse. IV. Über die Transpiration der Hutpilze. Planta 16, 518–525 (1932).Article 

    Google Scholar 
    25.Becker, M., Kerstiens, G. & Schönherr, J. Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1, 54–60 (1986).CAS 
    Article 

    Google Scholar 
    26.Schreiber, L. & Schönherr, J. Water and Solute Permeability of Plant Cuticles. Measurement and Data Analysis (Springer, 2009).
    Google Scholar 
    27.Schönherr, J. & Lendzian, K. J. A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z Pflanzenphysiol 102, 321–327 (1981).Article 

    Google Scholar 
    28.Weast, R. C. CRC Handbook of Chemistry and Physics: Humidity Constant (CRC Press, 1983).
    Google Scholar 
    29.Riederer, M. & Schneider, G. Comparative study of the composition of waxes extracted from isolated leaf cuticules and from whole leaves of Citrus: evidence for selective extraction. Physiol. Plant 77, 373–384 (1989).CAS 
    Article 

    Google Scholar 
    30.Lendzian, K. J. & Kerstiens, G. Sorption and transport of gases and vapors in plant cuticles. Rev. Environ. Cont. Tox. 121, 65–128 (1991).CAS 

    Google Scholar 
    31.Kerstiens, G., Federholzner, R. & Lendzian, K. J. Dry deposition and cuticular uptake of pollutant gases. Agric. Ecosyst. Environ. 42, 239–253 (1992).CAS 
    Article 

    Google Scholar 
    32.Metzler, H. & Krause, B. Angewandte Statistik (Dt Verlag Wiss, 1983).
    Google Scholar 
    33.Baur, P. Lognormal distribution of water permeability and organic solute mobility in plant cuticles. Plant Cell Environ. 20, 167–177 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Stamets, P. Growing Gourmet and Medicinal Mushrooms (Ten Speed Press, 1993).
    Google Scholar 
    35.Moser, M. Fungal growth and fructification under stress conditions. Ukrainian Botanical J. 50, 5–12 (1993).
    Google Scholar 
    36.Pinna, S., Gevry, M. F., Côté, M. & Sirois, L. Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. For. Ecol. Manag. 260(3), 294–301 (2010).Article 

    Google Scholar 
    37.Buller, A. H. R. Researches on Fungi. II. Further Investigations Upon the Production and Liberation of Spores in Hymenomyctes (Hafner Publishing Co, 1922).
    Google Scholar 
    38.Kües, U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64, 316–353 (2000).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Money, N. More g’s than the space shuttle: ballistospore discharge. Mycologia 90, 547–558 (1998).Article 

    Google Scholar 
    40.Husher, J. et al. Evaporative cooling of mushrooms. Mycologia 91, 351–352 (1999).Article 

    Google Scholar 
    41.Dressaire, E., Yamada, L., Song, B. & Roper, M. Mushrooms use convectively created airflows to disperse their spores. Proc. Natl. Acad. Sci. U. S. A. 113, 2833–2838 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.De Groot, P. W., Schaap, P. J., Sonnenberg, A. S., Visser, J. & Van Griensven, L. J. The Agaricus bisporus hypAgene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. J. Mol. Biol. 257, 1008–1018 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Wösten, H. A. B. & Wessels, J. G. H. The emergence of fruiting bodies in basidiomycetes. In Growth, Differentiation and Sexuality. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), Vol. 1 (eds. Kües, U. & Fischer, R.) (Springer, 2006).44.Itoh, Y. H., Sugai, A., Uda, I. & Itoh, T. The evolution of lipids. Adv. Space Res. 28, 719–724 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Segré, D., Ben-Eli, D., Deamer, D. W. & Lancet, D. The lipid world. Origins Life Evol. Biosphere 31, 119–145 (2001).ADS 
    Article 

    Google Scholar 
    46.Samson, R. A., Stalpers, J. A. & Verkerke, W. A simplified technique to prepare fungal specimens for scanning electronmicroscopy. Cytobios 24, 7–11 (1979).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Revisiting traditional SSR based methodologies available for elephant genetic studies

    1.Whyte, I. Studying elephant movements, in studying elephants, in African Wildl. Found. Tech. Ser. 7. African Wildl. Found. (ed Kangwana, K.) 75–89 (1996).2.Rasmussen, L. E. L. & Krishnamurthy, V. How chemical signals integrate Asian elephant society: The known and the unknown. Zoo Biol. 19, 405–423 (2000).CAS 
    Article 

    Google Scholar 
    3.Nair, S., Balakrishnan, R., Seelamantula, C. S. & Sukumar, R. Vocalizations of wild Asian elephants (Elephas maximus ): structural classification and social context. J. Acoust. Soc. Am. 126, 2768–2778 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Stoeger, A. S. & Manger, P. Vocal learning in elephants: neural bases and adaptive context. Curr. Opin. Neurobiol. 28, 101–107 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Moss, C. J. & Poole, J. H. Relationships and social structure in African elephants. Primate Soc. Relationsh.: An Integr. Approach 315-325 (1983).
    Google Scholar 
    6.Foerder, P., Galloway, M., Barthel, T., Moore, D. E. & Reiss, D. Insightful problem solving in an asian elephant. PLoS ONE 6, e23251 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Lee, P. C. Allomothering among African elephant. Animal Behaviour 35, 278-291 (1987).8.Byrne, R. W., Bates, L. & Moss, C. J. Comparative cognition & behavior reviews. Elephant Cogn. 4, 65–79 (2009).
    Google Scholar 
    9.Bates, L. A., Poole, J. H. & Byrne, R. W. Elephant cognition. Curr. Biol. 18, 544–546 (2008).Article 
    CAS 

    Google Scholar 
    10.Vance, E. A., Archie, E. A. & Moss, C. J. Social networks in African elephants. Comput. Math. Organ. Theory 15, 273–293 (2009).Article 

    Google Scholar 
    11.de Silva, S. & Wittemyer, G. A comparison of social organization in Asian elephants and African savannah elephants. Int. J. Primatol. 33, 1125–1141 (2012).Article 

    Google Scholar 
    12.Shoshani, J. Understanding proboscidean evolution: a formidable task. Trends Ecol. Evol. 13, 480–487 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Rohland, N. et al. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup. PLoS Biol. 5, 1663–1671 (2007).CAS 
    Article 

    Google Scholar 
    14.de Flamingh, A. Genetic structure of the savannah elephant population (Loxodonta africana (Blumenbach 1797)) in the Kavango-Zambezi Transfrontier Conservation Area. ProQuest Diss. Theses 102 (2013).15.Grubb, P., Groves, C. P., Dudley, J. P. & Shoshani, J. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900). Elephant 2, 1–4 (2000).Article 

    Google Scholar 
    16.Roca, A. L., Georgiadis, N., Pecon-Slattery, J. & O’Brien, S. J. Genetic evidence for two species of elephant in Africa. Science 293, 1473–1477 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Roca, A. L. et al. Elephant natural history: a genomic perspective. Annu. Rev. Anim. Biosci. 3, 139–167 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Wasser, S. K. et al. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc. Natl. Acad. Sci. U. S. A. 101, 14847–14852 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ishida, Y. et al. Distinguishing forest and savanna African elephants using short nuclear DNA sequences. J. Hered. 102, 610–616 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Comstock, K. E. et al. Patterns of molecular genetic variation among African elephant populations. Mol. Ecol. 11, 2489–2498 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Palkopoulou, E. et al. A comprehensive genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. U. S. A. 115, E2566–E2574 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Shoshani, J. & Eisenberg, J. F. Elephas maximus. Mamm. Species 182, 1–8 (1982).Article 

    Google Scholar 
    23.Sukumar, R. The Living Elephants (Oxford University Press, 2003).
    Google Scholar 
    24.Sukumar, R. A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. Int. Zoo Yearb. 40, 1–8 (2006).Article 

    Google Scholar 
    25.Olivier, R. Distribution and status of the Asian elephant. Oryx 14(4), 379–424. https://doi.org/10.1017/S003060530001601X (1978).Article 

    Google Scholar 
    26.Santiapillai, C. The Asian elephant conservation: a global strategy. Gajah 18, 21–39 (1997).
    Google Scholar 
    27.Sukumar, R. Ecology of the Asian elephant in Southern India. i. movement and habitat utilization patterns. J. Trop. Ecol. 5, 1–18 (1989).Article 

    Google Scholar 
    28.Vidya, T. N. C., Fernando, P., Melnick, D. J. & Sukumar, R. Population genetic structure and conservation of Asian elephants (Elephas maximus) across India. Anim. Conserv. 8, 377–388 (2005).Article 

    Google Scholar 
    29.Fleischer, R. C., Perry, E. A., Muralidharan, K., Stevens, E. E. & Wemmer, C. M. Phylogeography of the Asian elephant (Elephas maximus) based on mitochondrial DNA. Evolution (N. Y.) 55, 1882–1892 (2001).CAS 

    Google Scholar 
    30.Fernando, P., Pfrender, M. E., Encalada, S. E. & Lande, R. Mitochondrial DNA variation, phylogeography and population structure of the Asian elephant. Heredity (Edinb). 84, 362–372 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Fernando, P. Elephants in Sri Lanka: past, present, and future. Loris 22, 38–44 (2000).
    Google Scholar 
    32.Hendavitharana, W., Dissanayake, S. & de Silva, M. The survey of elephants in Sri Lanka. Gajah 12, 1–30 (1994).
    Google Scholar 
    33.Eggert, L. S., Rasner, C. A. & Woodruff, D. S. The evolution and phylogeography of the African elephant inferred from mitochondrial DNA sequence and nuclear microsatellite markers. Hungarian Q. 49, 1993–2006 (2008).
    Google Scholar 
    34.Ishida, Y., Georgiadis, N. J., Hondo, T. & Roca, A. L. Triangulating the provenance of African elephants using mitochondrial DNA. Evol. Appl. 6, 253–265 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Liu, C. Z., Wang, L., Xia, X. J. & Jiang, J. Q. Characterization of the complete mitochondrial genome of cape elephant shrew, Elephantulus edwardii. Mitochondrial DNA Part B Resour. 3, 738–739 (2018).Article 

    Google Scholar 
    36.Fernando, P. et al. DNA analysis indicates that Asian elephants are native to Borneo and are therefore a high priority for conservation. PLoS Biol. 1, 110–115 (2003).CAS 
    Article 

    Google Scholar 
    37.Ahlering, M. A. et al. Genetic diversity, social structure, and conservation value of the elephants of the Nakai Plateau, Lao PDR, based on non-invasive sampling. Conserv. Genet. 12, 413–422 (2011).Article 

    Google Scholar 
    38.Goossens, B. et al. Habitat fragmentation and genetic diversity in natural populations of the Bornean elephant: implications for conservation. BIOC 196, 80–92 (2016).
    Google Scholar 
    39.Shoshani, J., Golenberg, E. M. & Yang, H. Elephantidae phylogeny: Morphological versus molecular results. Acta Theriol. (Warsz) 43, 89–122 (1998).Article 

    Google Scholar 
    40.Vidya, T. N. C. & Sukumar, R. Amplification success and feasibility of using microsatellite loci amplified from dung to population genetic studies of the Asian elephant (Elephas maximus). Curr. Sci. 88, 489–492 (2005).CAS 

    Google Scholar 
    41.Vidya, T. N. C., Varma, S., Dang, N. X., Van Thanh, T. & Sukumar, R. Minimum population size, genetic diversity, and social structure of the Asian elephant in Cat Tien National Park and its adjoining areas, Vietnam, based on molecular genetic analyses. Conserv. Genet. 8, 1471–1478 (2007).Article 

    Google Scholar 
    42.Suwattana, D., Jirasupphachok, J., Kanchanapangka, S. & Koykul, W. Tetranucleotide microsatellite markers for molecular testing in Thai domestic elephants (Elephas maximus indicus). Thai J. Vet. Med. 40, 405–409 (2010).
    Google Scholar 
    43.Eggert, L. S. et al. Using genetic profiles of African forest elephants to infer population structure, movements, and habitat use in a conservation and development landscape in Gabon. Conserv. Biol. 28, 107–118 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Kinuthia, J. et al. The selection of a standard STR panel for DNA profiling of the African elephant (Loxodonta africana) in Kenya. Conserv. Genet. Resour. 7, 305–307 (2015).Article 

    Google Scholar 
    45.Hedges, S. Monitoring elephant populations and assessing threats. Universities Press (India) Pvt. Ltd., Hyderabad, India 259–292 (2012).46.Eggert, L. S., Ramakrishnan, U., Mundy, N. I. & Woodruff, D. S. Polymorphic microsatellite DNA markers in the African elephant (Loxondonta africana) and their use in the Asian elephant (Elephas maximus). Mol. Ecol. 9, 2222–2224 (2000).Article 

    Google Scholar 
    47.Nyakaana, S., Arctander, P. & Siegismund, H. R. Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci. Heredity (Edinb). 89, 90–98 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Kongrit, C. et al. Isolation and characterization of dinucleotide microsatellite loci in the Asian elephant (Elephas maximus). Mol. Ecol. Resour. 8, 175–177 (2007).Article 
    CAS 

    Google Scholar 
    49.Fernando, P., Vidya, T. N. C. & Melnick, D. J. Isolation and characterization of tri- and tetranucleotide microsatellite loci in the Asian elephant, Elephas maximus. Mol. Ecol. Resour. 8, 232–233 (2001).Article 

    Google Scholar 
    50.Archie, E. A., Moss, C. J. & Alberts, S. C. Characterization of tetranucleotide microsatellite loci in the African Savannah Elephant (Loxodonta africana africana). Mol. Ecol. Notes 3, 244–246 (2003).CAS 
    Article 

    Google Scholar 
    51.Lieckfeldt, D., Schmidt, A. & Pitra, C. Isolation and characterization of microsatellite loci in the great bustard, Otis tarda. Mol. Ecol. Notes 1, 133–134 (2001).CAS 
    Article 

    Google Scholar 
    52.Nyakaana, S., Okello, J. B. A., Muwanika, V. & Siegismund, H. R. Six new polymorphic microsatellite loci isolated and characterized from the African savannah elephant genome. Mol. Ecol. Notes 5, 223–225 (2005).CAS 
    Article 

    Google Scholar 
    53.Okello, J. B. A. et al. Population genetic structure of savannah elephants in Kenya: conservation and management implications. J. Hered. 99, 443–452 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Nyakaana, S. & Arctander, P. Isolation and characterization of microsatellite loci in the African elephant, Loxodonta africana. Mol. Ecol. 10, 1436–1437 (1998).
    Google Scholar 
    55.Comstock, K. E., Wasser, S. K. & Ostrander, E. A. Polymorphic microsatellite DNA loci identified in the African elephant (Loxodonta africana). Mol. Ecol. 9, 1004–1006 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Hartl, G. B., Hartl, K. F., Hemmer, W. & Nadlinger, K. Electrophoretic and chromosomal variation in captive Asian elephants (Elephas maximus). Zoo Biol. 14, 87–95 (1995).Article 

    Google Scholar 
    57.Bourgeois, S. et al. Single-nucleotide polymorphism discovery and panel characterization in the African forest elephant. Ecol. Evol. 8, 2207–2217 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    58.Sharma, R. et al. Two different high throughput sequencing approaches identify thousands of De Novo genomic markers for the genetically depleted Bornean elephant. PLoS ONE 7, e49533 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Reddy, P. C. et al. Comparative sequence analyses of genome and transcriptome reveal novel transcripts and variants in the Asian elephant Elephas maximus. J. Biosci. 40, 891–907 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Mondol, S. et al. New evidence for hybrid zones of forest and savanna elephants in Central and West Africa. Mol. Ecol. 24, 6134–6147 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Hou, Z. C. et al. Elephant transcriptome provides insights into the evolution of eutherian placentation. Genome Biol. Evol. 4, 713–725 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Tollis, M. et al. Elephant Genomes Reveal Insights into Differences in Disease Defense Mechanisms between Species. bioRxiv 2020.05.29.124396 (2020).63.Rohland, N. et al. Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLoS Biol. 8, 16–19 (2010).Article 
    CAS 

    Google Scholar 
    64.Lynch, V. J. et al. Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep. 12, 217–228 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Yang, H., Golenberg, E. M. & Shoshani, J. Phylogenetic resolution within the elephantidae using fossil DNA sequence from the American mastodon (Mammut americanum) as an outgroup. Proc. Natl. Acad. Sci. U. S. A. 93, 1190–1194 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Orlando, L., Hänni, C. & Douady, C. J. Mammoth and elephant phylogenetic relationships: Mammut americanum, the missing outgroup. Evol. Bioinforma. 3, 45–51 (2007).CAS 
    Article 

    Google Scholar 
    67.Eggert, L. S., Eggert, J. A. & Woodruff, D. S. Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol. Ecol. 12, 1389–1402 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Vidya, T. N. C. Evolutionary history and population genetic structure of Asian elephants in India. Indian J. Hist. Sci. 51, 391–405 (2016).
    Google Scholar 
    69.Schuttler, S. G., Whittaker, A., Jeffery, K. J. & Eggert, L. S. African forest elephant social networks: fission-fusion dynamics, but fewer associations. Endanger. Species Res. 25, 165–173 (2014).Article 

    Google Scholar 
    70.Ahlering, M. A. et al. Identifying source populations and genetic structure for savannah elephants in human-dominated landscapes and protected areas in the Kenya-Tanzania borderlands. PLoS ONE 7, e52288 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Vidya, T. N. C., Fernando, P., Melnick, D. J. & Sukumar, R. Population differentiation within and among Asian elephant (Elephas maximus) populations in southern India. Heredity (Edinb). 94, 71–80 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Sukumar, R., Ramakrishnan, U. & Santosh, J. A. Impact of poaching on an Asian elephant population in Periyar, southern India: a model of demography and tusk harvest. Anim. Conserv. 1, 281–291 (1998).Article 

    Google Scholar 
    73.Mondol, S., Mailand, C. R. & Wasser, S. K. Male biased sex ratio of poached elephants is negatively related to poaching intensity over time. Conserv. Genet. 15, 1259–1263 (2014).Article 

    Google Scholar 
    74.Breuer, T., Maisels, F. & Fishlock, V. The consequences of poaching and anthropogenic change for forest elephants. Conserv. Biol. 30, 1019–1026 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Mailand, C. & Wasser, S. K. Isolation of DNA from small amounts of elephant ivory. Nat. Protoc. 2, 2228–2232 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Lee, E. et al. The identification of elephant ivory evidences of illegal trade with mitochondrial cytochrome b gene and hypervariable D-loop region. J. Forensic Leg. Med. 20, 174–178 (2015).Article 

    Google Scholar 
    77.Chakraborty, S., Boominathan, D., Desai, A. A. & Vidya, T. N. C. Using genetic analysis to estimate population size, sex ratio, and social organization in an Asian elephant population in conflict with humans in Alur, southern India. Conserv. Genet. 15, 897–907 (2014).Article 

    Google Scholar 
    78.Fernando, P. & Pastorini, J. Range-wide status of Asian elephants. Gajah 35, 15–20 (2011).
    Google Scholar 
    79.Ishida, Y., Gugala, N. A., Georgiadis, N. J. & Roca, A. L. Evolutionary and demographic processes shaping geographic patterns of genetic diversity in a keystone species, the African forest elephant (Loxodonta cyclotis). Ecol. Evol. 8, 4919–4931 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Kongrit, C. Genetic tools for the conservation of wild Asian elephants. Int. J. Biol. 9, 1 (2017).Article 

    Google Scholar 
    81.McComb, K., Shannon, G., Sayialel, K. N. & Moss, C. Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. Proc. Natl. Acad. Sci. U. S. A. 111, 5433–5438 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Prithiviraj, F. & Melnick, D. J. Molecular sexing eutherina mammals. Mol. Ecol. Notes 1, 350–353 (2001).Article 

    Google Scholar 
    83.Vandebona, H. et al. DNA fingerprints of the Asian elephant in Sri Lanka, Elephas maximus maximus, using multilocus probe 33.15 (Jeffreys). J. Natl. Sci. Found. Sri Lanka 32, 83–96 (2004).CAS 
    Article 

    Google Scholar 
    84.Gugala, N. A., Ishida, Y., Georgiadis, N. J. & Roca, A. L. Development and characterization of microsatellite markers in the African forest elephant (Loxodonta cyclotis). BMC Res. Notes 9, 4–9 (2016).Article 
    CAS 

    Google Scholar 
    85.Zhang, L. et al. Asian elephants in China: estimating population size and evaluating habitat suitability. PLoS ONE 10, 1–13 (2015).
    Google Scholar 
    86.Vartia, S. et al. A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. R. Soc. Open Sci. 3, 150565 (2016).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Tighe, A. J. et al. Testing PCR amplification from elephant dung using silica-dried swabs. Pachyderm 59, 56–65 (2018).
    Google Scholar 
    88.Bourgeois, S. et al. Improving cost-efficiency of faecal genotyping: new tools for elephant species. PLoS ONE 14, e0210811 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Hedges, S., Johnson, A., Ahlering, M., Tyson, M. & Eggert, L. S. Accuracy, precision, and cost-effectiveness of conventional dung density and fecal DNA based survey methods to estimate Asian elephant (Elephas maximus) population size and structure. Biol. Conserv. 159, 101–108 (2013).Article 

    Google Scholar 
    90.Moßbrucker, A. M. et al. Non-invasive genotyping of Sumatran elephants : implications for conservation The Sumatran elephant (Elephas maximus sumatranus) is one of three currently recognized subspecies. Trop. Conserv. Sci. 8, 745–759 (2015).Article 

    Google Scholar 
    91.Ishida, Y. et al. Short amplicon microsatellite markers for low quality elephant DNA. Conserv. Genet. Resour. 4, 491–494 (2012).Article 

    Google Scholar 
    92.Thitaram, C. et al. Evaluation and selection of microsatellite markers for an identification and parentage test of Asian elephants (Elephas maximus). Conserv. Genet. 9, 921–925 (2008).CAS 
    Article 

    Google Scholar 
    93.Lorenz, T. C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 2, 1–15. https://doi.org/10.3791/3998 (2012).CAS 
    Article 

    Google Scholar 
    94.Litt, M. & Luty, J. A. Hypervariable amplification. Am. J. Hum. Genet. 44, 397–401 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Park, Y. J., Lee, J. K. & Kim, N. S. Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14, 4546–4569 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Vieira, M. L. C., Santini, L., Diniz, A. L. & Munhoz, C. D. F. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39, 312–328 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Stafne, E. T., Clark, J. R., Weber, C. A., Graham, J. & Lewers, K. S. Simple sequence repeat (SSR) markers for genetic mapping of raspberry and blackberry. J. Am. Soc. Hortic. Sci. 130, 722–728 (2005).CAS 
    Article 

    Google Scholar 
    98.Tommasini, L. et al. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor. Appl. Genet. 106, 1091–1101 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Norrgard, K. Forensics, DNA Fingerprinting, and CODIS. Nat. Educ. 1, 35 (2008).
    Google Scholar 
    100.Maroju, P. A. et al. Schrodinger’s scat: A critical review of the currently available tiger (Panthera Tigris) and leopard (Panthera pardus) specific primers in India, and a novel leopard specific primer. BMC Genet. 17, 1–6 (2016).Article 

    Google Scholar 
    101.Waits, L. P. & Pearkau, D. Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J. Wildl. Manag. 69, 1419–1433 (2005).Article 

    Google Scholar 
    102.Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, 1–7 (2008).Article 
    CAS 

    Google Scholar 
    103.Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A. & Johnson, E. A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17, 240–248 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Delord, C. et al. A cost-and-time effective procedure to develop SNP markers for multiple species: a support for community genetics. Methods Ecol. Evol. 9, 1959–1974 (2018).Article 

    Google Scholar 
    105.Magwanga, R. O. et al. GBS mapping and analysis of genes conserved between Gossypium tomentosum and Gossypium hirsutum cotton cultivars that respond to drought stress at the seedling stage of the BC2F2generation. Int. J. Mol. Sci. 19, 1614 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    106.Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, 1–10 (2011).Article 
    CAS 

    Google Scholar 
    107.Chandrasekara, C. H. W. M. R. B., Wijesundera, W. S. S., Perera, H. N., Chong, S. S. & Rajan-Babu, I. S. Cascade screening for fragile X syndrome/CGG repeat expansions in children attending special education in Sri Lanka. PLoS ONE 10, 1–10 (2015).
    Google Scholar 
    108.Felsenstein, J. 2002. {PHYLIP}(Phylogen. I. P. ver. 3. 6a3.—P. by the author. PHYLIP(Phylogeny Inference Package) ver. 3.6a3. (2002).109.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76, 5269–5273 (1979).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    110.Rambaut, A. FigTree ver.1. 3.1: tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree. (2009). More

  • in

    Keeping an eye on the use of eye-lens weight as a universal indicator of age for European wild rabbits

    1.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
    Google Scholar 
    2.Caughley, G. & Sinclair, A. R. E. Wildlife Ecology and Management (Blackwell Science, 1994).
    Google Scholar 
    3.Servanty, S. et al. Influence of harvesting pressure on demographic tactics: Implications for wildlife management. J. Appl. Ecol. 48(4), 835–843 (2011).Article 

    Google Scholar 
    4.Marboutin, E., Bray, Y., Péroux, R., Mauvy, B. & Lartiges, A. Population dynamics in European hare: Breeding parameters and sustainable harvest rates. J. Appl. Ecol. 40(3), 580–591 (2003).Article 

    Google Scholar 
    5.Stoneberg, R. P. & Jonkel, C. L. Age determination of black bears by cementum layers. J. Wildlife Manage. 30(2), 411–414 (1966).Article 

    Google Scholar 
    6.Roth, V. L. & Shoshani, J. Dental identification and age determination in Elephas maximus. J. Zool. 214, 567–588 (1988).Article 

    Google Scholar 
    7.Dutta, S. & Sengupta, P. Men and mice: Relating their ages. Life Sci. 152, 244–248 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Dimmick, R. W. & Pelton, M. R. Criteria of sex and age. In Research and Management Techniques for Wildlife and Habitats 5th edn, (ed. Bookhout, T.
    A.) 169–214 (The Wildlife Society, Bethesda, MA, US, 1994).
    Google Scholar 
    9.Morris, P. A review of mammalian age determination methods. Mamm. Rev. 2, 69–103 (1972).Article 

    Google Scholar 
    10.Augusteyn, R. C. On the relationship between rabbit age and lens dry weight: Improved determination of the age of rabbits in the wild. Mol. Vis. 13, 2030–2034 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Augusteyn, R. C. Growth of the lens: In vitro observations. Clin. Exp. Optom. 91(3), 226–239 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Augusteyn, R. C. Growth of the eye lens: I. Weight accumulation in multiple species. Mol. Vis. 20, 410–426 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    13.Lord, D. R. The lens as an indicator of age in cottontail rabbits. J. Wildl. Manage. 23, 358–360 (1959).Article 

    Google Scholar 
    14.Forsyth, D. M., Garel, M. & McLeod, S. R. Estimating age and age class of harvested hog deer from eye lens mass using frequentist and Bayesian methods. Wildlife biol. 22(4), 137–143 (2016).Article 

    Google Scholar 
    15.Dudzinski, M. L. & Mykytowycz, R. The eye lens as an indicator of age in the wild rabbit in Australia. CSIRO Wildl. Res. 6, 156–159 (1961).Article 

    Google Scholar 
    16.Myers, K. & Gilbert, N. Determination of age of wild rabbits in Australia. J. Wildl. Manage. 32, 841–849 (1968).Article 

    Google Scholar 
    17.Wheeler, S. H. & King, D. R. The use of eye-lens weights for aging wild rabbits, Oryctolagus cuniculus (L.) in Australia. Aust. Wildl. Res. 7, 79–84 (1980).Article 

    Google Scholar 
    18.Tablado, Z., Revilla, E. & Palomares, F. Breeding like rabbits: Global patterns of variability and determinants of European wild rabbit reproduction. Ecography 32, 310–320. https://doi.org/10.1111/j.1600-0587.2008.05532.x (2009).Article 

    Google Scholar 
    19.Ferreira, C. et al. Biometrical analysis reveals major differences between the two subspecies of the European rabbit. Biol. J. Linn. Soc. 116, 106–116 (2015).Article 

    Google Scholar 
    20.Branco, M., Monnerot, M., Ferrand, N. & Templeton, A. R. Postglacial dispersal of the European rabbit (Oryctolagus cuniculus) on the Iberian Peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation. Evolution 56, 792–803. https://doi.org/10.1111/j.0014-3820.2002.tb01390.x (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Gómez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography in Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2006).
    Google Scholar 
    22.Geraldes, A. et al. Reduced introgression of the Y chromosome between subspecies of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula. Mol. Ecol. 17, 4489–4499 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Carneiro, M., Ferrand, N. & Nachman, M. W. Recombination and speciation: Loci near centromeres are more differentiated than loci near telomeres between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 181, 593–606 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Rafati, N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478. https://doi.org/10.1111/mec.14494 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Vaquerizas, P. H. et al. The paradox of endangered European rabbits regarded as pests in the Iberian Peninsula: Subspecies differences in trends matter. Endang. Species Res. 43, 99–102 (2020).Article 

    Google Scholar 
    26.Arques, J. & Peiró, V. Estructura de Sexos y Edades de una población de Conejos (Oryctolagus cuniculus) del sudeste de España. Mediterránea. Serie de Estudios Biológicos 18, 1–33 (2005).
    Google Scholar 
    27.Trout, R. C. & Smith, G. C. The reproductive productivity of the wild rabbit (Oryctolagus cuniculus) in southern England on sites with different soils. J. Zool. 237(3), 411–422 (1995).Article 

    Google Scholar 
    28.Boussès, P., Arthur, C. & Chapuis, J. L. Rôle du facteur trophique sur la biologie des populations de lapins (Oryctolagus cuniculus L.) des Iles Kerguelen. Revue d’écologie 43, 329–343 (1988).
    Google Scholar 
    29.Bonino, N. & Donadio, E. Body parameters and sexual dimorphism in the European wild rabbit (Oryctolagus cuniculus) introduced in Argentina. Mastozool. Neotrop. 17(1), 123–127 (2010).
    Google Scholar 
    30.Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basic for phenotypic change during domestication. Science 345(6200), 1074–1079 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Myers, K. The rabbit in Australia. In Dynamics of Numbers in Populations (eds den Boer, P. J. & Gradwell, G. R.) 478–506 (Proceedings of the NATO Advanced Study Institute Oosterbeek, 1970).
    Google Scholar 
    32.Delibes-Mateos, M., Villafuerte, R., Cooke, B. & Alves, P. C. Oryctolagus cuniculus (Linnaeus, 1758). In Lagomorphs: Pikas, Rabbits and Hares of the World (eds Smith, A. T. et al.) 99–104 (John Hopkins University Press, 2018).
    Google Scholar 
    33.Carneiro, M. et al. The genomic architecture of population divergence between subspecies of the European rabbit. PLoS. Genet. 10(8), e1003519. https://doi.org/10.1371/journal.pgen.1003519 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Bonino, N. & Soriguer, R. Genetic lineages of feral populations of the Oryctolagus cuniculus (Leporidae, Lagomorpha) in Argentina. Mammalia 72, 355–357 (2008).Article 

    Google Scholar 
    35.Branco, M. & Ferrand, N. Biochemical and population genetics of the rabbit, Oryctolagus cuniculus, carbonic anhydrases I and II, from the Iberian Peninsula and France. Biochem. Genet. 41, 391–404. https://doi.org/10.1023/B:BIGI.0000007774.39262.8e (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Geraldes, A., Ferrand, N. & Nachman, M. W. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 173, 919–933 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Lo Valvo, M., Scala, A. & Scalisi, M. Biometric characterization and taxonomic considerations of European rabbit Oryctolagus cuniculus (Linnaeus 1758) in Sicily (Italy). World Rabbit Sci. 22(3), 207–214. https://doi.org/10.4995/wrs.2014.1467 (2014).Article 

    Google Scholar 
    38.Miller, G. S. Catalogue of the Mammals of Western Europe in the Collection of the British Museum (Trustees of the British Museum, 1912).
    Google Scholar 
    39.Sharples, C. M., Fa, J. E. & Bell, D. J. Geographical variation in size in the European rabbit Oryctolagus cuniculus (Lagomorpha: Leporidae) in western Europe and North Africa. Zool. J. Linn. Soc-Lond. 117, 141–158. https://doi.org/10.1111/j.1096-3642.1996.tb02153.x (1996).Article 

    Google Scholar 
    40.Carro, F., Ortega, M. & Soriguer, R. C. Is restocking a useful tool for increasing rabbit densities?. Global Ecol. Conserv. 17, e00560. https://doi.org/10.1016/j.gecco.2019.e00560 (2019).Article 

    Google Scholar 
    41.Angulo, E. & Villafuerte, R. Modelling hunting strategies for the conservation of wild rabbit populations. Biol. Conserv. 115, 291–301 (2003).Article 

    Google Scholar 
    42.Delibes-Mateos, M., Delibes, M., Ferreras, P. & Villafuerte, R. Key role of European rabbits in the conservation of the Western Mediterranean Basin Hotspot. Conserv. Biol. 22, 1106–1117 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Garrido, J. L., Ferreres, J. & Gortázar, C. Las especies cinegéticas españolas en el siglo XXI. (eds. Garrido, J. L., Ferreres, J. & Gortázar, C.)
    (Independently published, Ciudad Real, Spain, 2019).
    Google Scholar 
    44.Ríos-Saldaña, C. et al. Control of the European rabbit in central Spain. Eur. J. Wildlife Res. 59, 573–580. https://doi.org/10.1007/s10344-013-0707-x (2013).Article 

    Google Scholar 
    45.Lees, A. C. & Bell, D. J. A conservation paradox for the 21st century: The European wild rabbit Oryctolagus cuniculus, an invasive alien and an endangered native species. Mammal Rev. 38, 304–320 (2008).Article 

    Google Scholar 
    46.Cooke, B. D. Rabbits: Manageable environmental pests or participants in new Australian ecosystems?. Wildlife Res. 39, 279–289 (2013).ADS 
    Article 

    Google Scholar 
    47.Calvete, C., Angulo, E. & Estrada, R. Conservation of European wild rabbit populations when hunting is age and sex selective. Biol. Conserv. 121(4), 623–634 (2005).Article 

    Google Scholar 
    48.Delibes-Mateos, M., Ramírez, E., Ferreras, P. & Villafuerte, R. Translocations as a risk for the conservation of European wild rabbit Oryctolagus cuniculus lineages. Oryx 42(2), 259–264 (2008).Article 

    Google Scholar 
    49.Andersen, J. & Jensen, B. Studies on the European hare. XXVIII. The weight of the eye lens in the European hares of known age. Acta Theriol. 17, 87–92 (1972).Article 

    Google Scholar 
    50.Suchentrunck, F., Willing, R. & Hartl, G. B. On eye lens weights and other age criteria of the Brown hare (Lepus europaeus Pallas, 1778). Z. Säugetierkd. 56, 365–374 (1991).
    Google Scholar 
    51.Villafuerte, R. et al. Large-scale assessment of myxomatosis prevalence in European wild rabbits (Oryctolagus cuniculus) 60 years after first outbreak in Spain. Res. Vet. Sci. 114, 281–286 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Rouco, C., Villafuerte, R., Castro, F. & Ferreras, P. Effect of artificial warren size on a restocked European wild rabbit population. Anim. Conserv. 14, 117–123 (2011).Article 

    Google Scholar 
    53.Southern, N. The ecology and population dynamics of the wild rabbit (Oryctolagus cuniculus). Ann. Appl. Biol. 27, 509–514 (1940).Article 

    Google Scholar 
    54.Dunnet, G. M. Growth rate of young rabbits, Oryctolagus cuniculus (L.). CSIRO Wildl. Res. 1, 66–67 (1956).Article 

    Google Scholar 
    55.Ferreira, A. & Ferreira, A. J. Post-weaning growth of endemic Iberian wild rabbit subspecies, Oryctolagus cuniculus algirus, kept in a semi-extensive enclosure: Implications for management and conservation. World Rabbit Sci. 22, 129–136. https://doi.org/10.4995/wrs.2014.1673 (2014).Article 

    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (Vienna,
    Austria, 2020).
    Google Scholar 
    57.du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    58.Burnham, K. P. & Anderson, D. R. Monte Carlo insights and extended examples. In Model Selection and Multimodel Inference, (eds. Burnham K. P. &
    Anderson D. R.) https://doi.org/10.1007/978-0-387-22456-5_5). (Springer, New York, NY, US, 2002).59.Pastore, M. Overlapping: A R package for estimating overlapping in empirical distributions. J. Open Source Softw. 32, 1023 (2018).ADS 
    Article 

    Google Scholar 
    60.Pastore, M. & Calcagnì, A. Measuring distribution similarities between samples: A distribution-free overlapping Index. Front. Psychol. 10, 1089 https://doi.org/10.3389/fpsyg.2019.01089 (2019).Article 

    Google Scholar 
    61.Williams, C. & Moore, R. Phenotypic adaptation and natural selection in the wild rabbit, Oryctolagus cuniculus, Australia. J. Anim. Ecol. 58(2), 495–507. https://doi.org/10.2307/4844 (1989).Article 

    Google Scholar  More