More stories

  • in

    Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming

    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887 (2009).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Shen, M. et al. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 3, 633–651 (2022).Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).Article 

    Google Scholar 
    Park, H., Jeong, S.-J., Ho, C.-H., Park, C.-E. & Kim, J. Slowdown of spring green-up advancements in boreal forests. Remote Sens. Environ. 217, 191–202 (2018).Article 

    Google Scholar 
    IPCC. Summary for Policymakers (Cambridge Univ. Press, 2013).Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Change 6, 224–228 (2016).Article 

    Google Scholar 
    Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Ye, W., van Dijk, A. I. J. M., Huete, A. & Yebra, M. Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness. Int. J. Appl. Earth Obs. Geoinf. 94, 102238 (2021).
    Google Scholar 
    Zhang, J. et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS J. Photogramm. Remote Sens. 169, 1–16 (2020).Article 

    Google Scholar 
    Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).Article 

    Google Scholar 
    Shen, M. et al. Greater temperature sensitivity of vegetation greenup onset date in areas with weaker temperature seasonality across the Northern Hemisphere. Agric. For. Meteorol. 313, 108759 (2022).Article 

    Google Scholar 
    Zhang, C., Li, S., Luo, F. & Huang, Z. The global warming hiatus has faded away: an analysis of 2014–2016 global surface air temperatures. Int. J. Climatol. 39, 4853–4868 (2019).Article 

    Google Scholar 
    Gonsamo, A., Chen, J. M. & D’Odorico, P. Deriving land surface phenology indicators from CO2 eddy covariance measurements. Ecol. Indic. 29, 203–207 (2013).Article 

    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).Article 

    Google Scholar 
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Wang, S. et al. Temporal trends and spatial variability of vegetation phenology over the northern hemisphere during 1982–2012. PLoS ONE 11, e0157134 (2016).Article 

    Google Scholar 
    Chen, L. et al. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Glob. Change Biol. 24, 3969–3975 (2018).Article 

    Google Scholar 
    Ren, S., Yi, S. Peichl, M. & Wang, X. Diverse responses of vegetation phenology to climate change in different grasslands in inner Mongolia during 2000–2016. Remote Sens. 10, 17 (2017).Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. USA 115, 1004–1008 (2018).Article 

    Google Scholar 
    Zhu, Z. et al. The accelerating land carbon sink of the 2000s may not be driven predominantly by the warming Hiatus. Geophys. Res. Lett. 45, 1402–1409 (2018).Article 

    Google Scholar 
    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).Article 

    Google Scholar 
    Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845 (2020).Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018). More

  • in

    Understanding microbial activity with isotope labelling of DNA

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Quantitative Biodiversity Dynamics, Ecology and Biodiversity, Utrecht University Botanic Gardens, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The NetherlandsEdwin PosNaturalis Biodiversity Center, PO Box 9517, Leiden, 2300 RA, The NetherlandsEdwin Pos, Olaf S. Bánki, Paul Maas, Tinde R. van Andel & Hans ter SteegeCoordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilLuiz de Souza Coelho, Diogenes de Andrade Lima Filho, Iêda Leão Amaral, Francisca Dionízia de Almeida Matos, Mariana Victória Irume, Maria Pires Martins, José Ferreira Ramos, Juan Carlos Montero, Charles Eugene Zartman, Henrique Eduardo Mendonça Nascimento, Juan David Cardenas Revilla, Flávia R. C. Costa, Juliana Schietti, Priscila Souza, Rogerio Gribel, Marcelo Petratti Pansonato, Edelcilio Marques Barbosa, Luiz Carlos de Matos Bonates, Ires Paula de Andrade Miranda & Cid FerreiraPrograma Professor Visitante Nacional Sênior Na Amazônia – CAPES, Universidade Federal Rural da Amazônia, Av. Perimetral, s/n, Belém, PA, BrazilRafael P. SalomãoCoordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Magalhães Barata 376, C.P. 399, Belém, PA, 66040-170, BrazilRafael P. Salomão, Ima Célia Guimarães Vieira, Leandro Valle Ferreira & Dário Dantas do AmaralEMBRAPA – Centro de Pesquisa Agroflorestal de Roraima, BR 174, km 8 – Distrito Industrial, Boa Vista, RR, 69301-970, BrazilCarolina V. CastilhoSchool of Geography, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UKOliver L. Phillips, Euridice N. Honorio Coronado, Ted R. Feldpausch, Roel Brienen, Fernanda Coelho de Souza, Tim R. Baker, Aurora Levesley, Karina Melgaço & Georgia PickavanceGrupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS, Universidad de Las Américas, Campus Queri, Quito, EcuadorJuan Ernesto GuevaraKeller Science Action Center, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605-2496, USAJuan Ernesto GuevaraDepartamento de Botânica, Instituto de Pesquisas Científicas e Tecnológicas do Amapá – IEPA, Rodovia JK, Km 10, Campus Do IEPA da Fazendinha, Amapá, 68901-025, BrazilMarcelo de Jesus Veiga Carim & José Renan da Silva GuimarãesHerbario Amazónico Colombiano, Instituto SINCHI, Calle 20 No 5-44, Bogotá, DC, ColombiaDairon Cárdenas López & Nicolás Castaño ArboledaCoordenação de Pesquisas em Ecologia, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilWilliam E. Magnusson, Alberto Vicentini, Thaise Emilio, Fernanda Antunes Carvalho & Fernanda Coelho de SouzaDepartment of Wetland Ecology, Institute of Geography and Geoecology, Karlsruhe Institute of Technology – KIT, Josefstr.1, 76437, Rastatt, GermanyFlorian Wittmann & John Ethan HouseholderBiogeochemistry, Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128, Mainz, GermanyFlorian WittmannAMAP, IRD, Cirad, CNRS, INRA, Université de Montpellier, 34398, Montpellier, FranceDaniel Sabatier, Jean-François Molino, Julien Engel & Émile FontyCoordenação de Dinâmica Ambiental, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilMaria Teresa Fernandez Piedade, Jochen Schöngart, Layon O. Demarchi, Adriano Quaresma, Aline Lopes, Daniel Praia Portela de Aguiar, Bianca Weiss Albuquerque & Maira RochaScience and Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL, 60605-2496, USANigel C. A. Pitman & Corine VriesendorpJardín Botánico de Missouri, Oxapampa, Pasco, PeruAbel Monteagudo Mendoza, Rodolfo Vasquez & Luis Valenzuela GamarraApplied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UKJoseph E. HawesICNHS, Universidade Federal de Mato Grosso, Av. Alexandre Ferronato, 1200, Sinop, MT, 78557-267, BrazilEverton José Almeida, Luciane Ferreira Barbosa, Larissa Cavalheiro & Márcia Cléia Vilela dos SantosDepartamento de Ecologia, Universidade Estadual Paulista – UNESP – Instituto de Biociências – IB, Av. 24 A, 1515, Bela Vista, Rio Claro, SP, 13506-900, BrazilBruno Garcia LuizeDivisao de Sensoriamento Remoto – DSR, Instituto Nacional de Pesquisas Espaciais – INPE, Av. Dos Astronautas, 1758, Jardim da Granja, São José Dos Campos, SP, 12227-010, BrazilEvlyn Márcia Moraes de Leão NovoHerbario Vargas, Universidad Nacional de San Antonio Abad del Cusco, Avenida de La Cultura, Nro 733, Cusco, Cuzco, PeruPercy Núñez Vargas, Isau Huamantupa-Chuquimaco & William Farfan-RiosBiological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UKThiago Sanna Freire SilvaCentro de Biociências, Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, Natal, RN, 59072-970, BrazilEduardo Martins VenticinqueDepartamento de Biologia, Universidade Federal de Rondônia, Rodovia BR 364 s/n Km 9, 5 – Sentido Acre, Unir, Porto Velho, RO, 76.824-027, BrazilAngelo Gilberto ManzattoPrograma de Pós- Graduação em Biodiversidade e Biotecnologia PPG- Bionorte, Universidade Federal de Rondônia, Campus Porto Velho Km 9, 5 Bairro Rural, Porto Velho, RO, 76.824-027, BrazilNeidiane Farias Costa Reis, Katia Regina Casula, Susamar Pansini & Adeilza Felipe SampaioDepartment of Biology and Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USAJohn TerborghCentre for Tropical Environmental and Sustainability Science and College of Science and Engineering, James Cook University, Cairns, QLD, 4870, AustraliaJohn Terborgh, William F. Laurance & Susan G. W. LauranceInstituto de Investigaciones de la Amazonía Peruana (IIAP), Av. A. Quiñones Km 2,5, Iquitos, Loreto, 784, PeruEuridice N. Honorio CoronadoInstituto Boliviano de Investigacion Forestal, Av. 6 de Agosto #28, Km. 14, Doble via La Guardia, 6204, Santa Cruz, Santa Cruz, Casilla, BoliviaJuan Carlos Montero & Juan Carlos LiconaPrograma de Pós-Graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, BrazilBeatriz S. Marimon & Ben Hur Marimon-JuniorGeography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, UKTed R. Feldpausch & Toby PenningtonDepartamento de Ciencias Forestales, Universidad Nacional de Colombia, Calle 64 X Cra 65, 1027, Medellín, Antioquia, ColombiaAlvaro Duque & Ligia Estela Urrego GiraldoInternational Center for Tropical Botany (ICTB) Department of Biological Sciences, Florida International University, 11200 SW 8Th Street, OE 243, Miami, FL, 33199, USAChris Baraloto, Julien Engel & Freddie DraperCirad UMR Ecofog, AgrosParisTech, CNRS, INRA, Univ Guyane, Campus Agronomique, 97379, Kourou Cedex, FrancePascal PetronelliAgteca-Amazonica, Santa Cruz, BoliviaTimothy J. KilleenFacultad de Ciencias Agrícolas, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Santa Cruz, BoliviaBonifacio MostacedoNatural History Museum, University of Oslo, Postboks 1172, 0318, Oslo, NorwayRafael L. AssisCentro de Investigaciones Ecológicas de Guayana, Universidad Nacional Experimental de Guayana, Calle Chile, Urbaniz Chilemex, Puerto Ordaz, Bolivar, VenezuelaHernán Castellanos & Lionel HernandezPrédio da Botânica e Ecologia, Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte, Brasilia, DF, 70770-917, BrazilMarcelo Brilhante de Medeiros & Marcelo Fragomeni SimonProjeto Dinâmica Biológica de Fragmentos Florestais, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo 2936, Petrópolis, Manaus, AM, 69067-375, BrazilAna Andrade & José Luís CamargoLaboratório de Ecologia de Doenças Transmissíveis da Amazônia (EDTA), Instituto Leônidas e Maria Deane, Fiocruz, Rua Terezina, 476, Adrianópolis, Manaus, AM, 69060-001, BrazilEmanuelle de Sousa FariasPrograma de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz – IOC/FIOCRUZ, Pav. Arthur Neiva – Térreo, Av. Brasil, 4365 – Manguinhos, Rio de Janeiro, RJ, 21040-360, BrazilEmanuelle de Sousa FariasInstituto de Ciências Biológicas, Universidade Federal do Pará, Av. Augusto Corrêa 01, Belém, PA, 66075-110, BrazilMaria Aparecida LopesPrograma de Pós-Graduação em Ecologia, Universidade Federal do Pará, Av. Augusto Corrêa 01, Belém, PA, 66075-110, BrazilJosé Leonardo Lima MagalhãesEmbrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro S/nº, Belém, PA, 66095-100, BrazilJosé Leonardo Lima Magalhães, Joice Ferreira & Ademir R. RuschelDiretoria Técnico-Científica, Instituto de Desenvolvimento Sustentável Mamirauá, Estrada do Bexiga, 2584, Tefé, AM, 69470-000, BrazilHelder Lima de QueirozPrograma de Ciencias del Agro y el Mar, Herbario Universitario (PORT), UNELLEZ-Guanare, Guanare, Portuguesa, 3350, VenezuelaGerardo A. C. AymardInstituto de Biociências – Department of Botanica, Universidade de Sao Paulo – USP, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, BrazilBruno Barçante Ladvocat CintraLaboratorio de Ecología de Bosques Tropicales y Primatología, Universidad de los Andes, Carrera 1 # 18a- 10, 111711, Bogotá, DC, ColombiaPablo R. Stevenson, Angela Cano, Diego F. Correa, Sasha Cárdenas & Luisa Fernanda CasasPrograma de Pós-Graduação Em Biologia (Botânica), Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilYuri Oliveira FeitosaInstitute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, Amsterdam, 1098 XH, The NetherlandsJoost F. DuivenvoordenEndangered Species Coalition, 8530 Geren Rd., Silver Spring, MD, 20901, USAHugo F. MogollónInventory and Monitoring Program, National Park Service, 120 Chatham Lane, Fredericksburg, VA, 22405, USAJames A. ComiskeyCenter for Conservation and Sustainability, Smithsonian Conservation Biology Institute, 1100 Jefferson Dr. SW, Suite 3123, Washington, DC, 20560-0705, USAJames A. Comiskey, Alfonso Alonso, Francisco Dallmeier & Reynaldo Linares-PalominoDepartment of Global Ecology, Carnegie Institution for Science, 260 Panama St., Stanford, CA, 94305, USAFreddie DraperUniversidade Federal do Amapá, Ciências Ambientais, Rod. Juscelino Kubitschek km2, Macapá, AP, 68902-280, BrazilJosé Julio de Toledo & Renato Richard HilárioDepartment of Integrative Biology, University of California, Berkeley, CA, 94720-3140, USAGabriel Damasco, Paul V. A. Fine & Italo MesonesBiologia Vegetal, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, SP, 13.083-970, BrazilNállarett DávilaDepartment of Ecology and Evolutionary Biology, Cornell University, Corson Hall, 215 Tower Road, Ithaca, NY, 14850, USARoosevelt García-VillacortaPeruvian Center for Biodiversity and Conservation (PCBC), Iquitos, PeruRoosevelt García-VillacortaDepartment of Ecology, University of Brasilia, Brasilia, DF, 70904-970, BrazilAline LopesICNHS, Federal University of Mato Grosso, Av. Alexandre Ferronato 1200, Setor Industrial, Sinop, MT, 78.557-267, BrazilJanaína Costa Noronha, Flávia Rodrigues Barbosa, Rainiellen de Sá Carpanedo & Domingos de Jesus RodriguesNatural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, TW9 3AB, Surrey, UKThaise Emilio & William MillikenPrograma de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, BrazilCarolina LevisForest Ecology and Forest Management Group, Wageningen University and Research, Droevendaalsesteeg 3, P.O. Box 47, Wageningen, 6700 AA, The NetherlandsCarolina Levis & Lourens PoorterEscola de Negócios Tecnologia e Inovação, Centro Universitário do Pará, Belém, PA, BrazilVitor H. F. GomesUniversidade Federal do Pará, Rua Augusto Corrêa 01, Belém, PA, 66075-110, BrazilVitor H. F. GomesFaculty of Natural Sciences, Department of Life Sciences, Imperial College London, South Kensington Campus, Silwood ParkLondon, SW7 2AZ, UKJon LloydEcosistemas, Biodiversidad y Conservación de Especies, Universidad Estatal Amazónica, Km. 2 1/2 Vía a Tena (Paso Lateral), Puyo, Pastaza, EcuadorDavid NeillMuseo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Avenida Irala 565 Casilla Post Al 2489, Santa Cruz, Santa Cruz, BoliviaAlejandro Araujo-Murakami, Luzmila Arroyo & Daniel VillarroelDepartamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Av. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, 31270-901, BrazilFernanda Antunes CarvalhoDepartment of Biology, University of Miami, Coral Gables, FL, 33146, USAKenneth J. FeeleyFairchild Tropical Botanic Garden, Coral Gables, FL, 33156, USAKenneth J. FeeleyInstituto de Biociências – Dept. Ecologia, Universidade de Sao Paulo – USP, Rua do Matão, Trav. 14, No. 321, Cidade Universitária, São Paulo, SP, 05508-090, BrazilMarcelo Petratti Pansonato, Alexandre A. Oliveira & Cláudia BaiderLancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, Lancashire, UKJos Barlow & Erika BerenguerEnvironmental Change Institute, University of Oxford, Oxford, OX1 3QY, Oxfordshire, UKErika BerenguerEmpresa Brasileira de Pesquisa Agropecuária, Embrapa Amapá, Rod. Juscelino Kubitschek Km 5, Macapá, Amapá, 68903-419, BrazilMarcelino Carneiro Guedes & Janaina Barbosa Pedrosa CostaGrupo de Ecología y Conservación de Fauna y Flora Silvestre, Instituto Amazónico de Investigaciones Imani, Universidad Nacional de Colombia Sede Amazonia, Leticia, Amazonas, ColombiaEliana M. JimenezUniversidad Regional Amazónica IKIAM, Km 7 Via Muyuna, Tena, Napo, EcuadorMaria Cristina Peñuela MoraSchool of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UKCarlos A. PeresDireccíon de Evaluación Forestal y de Fauna Silvestre, Av. Javier Praod Oeste 693, Magdalena del Mar, PeruBoris Eduardo Villa ZegarraEscuela de Biología Herbario Alfredo Paredes, Universidad Central, Ap. Postal 17.01.2177, Quito, Pichincha, EcuadorCarlos CerónDepartment of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA, 95521, USATerry W. HenkelMuseu Universitário / Centro de Ciências Biológicas e da Natureza / Laboratório de Botânica e Ecologia Vegetal, Universidade Federal do Acre, Rio Branco, AC, 69915-559, BrazilMarcos SilveiraInstitute of Biological and Health Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, Maceio, AL, 57072-970, BrazilJuliana StroppIwokrama International Centre for Rain Forest Conservation and Development, Georgetown, GuyanaRaquel Thomas-CaesarNew York Botanical Garden, 2900 Southern Blvd, Bronx, New York, NY, 10458-5126, USADoug DalySchool of Geosciences, University of Edinburgh, 201 Crew Building, King’s Buildings, Edinburgh, EH9 3JN, UKKyle G. DexterTropical Diversity Section, Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, Scotland, UKKyle G. Dexter & Toby PenningtonServicios de Biodiversidad EIRL, Jr. Independencia 405, Iquitos, Loreto, 784, PeruMarcos Ríos Paredes, Hilda Paulette Dávila Doza, George Pepe Gallardo Gonzales & Linder Felipe Mozombite PintoHerbario Nacional de Bolivia, Universitario UMSA, Casilla 10077 Correo Central, La Paz, La Paz, BoliviaAlfredo FuentesCenter for Conservation and Sustainable Development, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO, 63166-0299, USAAlfredo Fuentes, J. Sebastián Tello & William Farfan-RiosUniversidad Nacional de Jaén, Carretera Jaén San Ignacio Km 23, Jaén, Cajamarca, 06801, PeruJosé Luis Marcelo PenaBiology Department and Center for Energy, Environment and Sustainability, Wake Forest University, 1834 Wake Forest Rd, Winston Salem, NC, 27106, USAMiles R. Silman & Karina Garcia-CabreraLaboratoire Evolution et Diversité Biologique, CNRS and Université Paul Sabatier, UMR 5174 EDB, 31000, Toulouse, FranceJerome ChaveAndes to Amazon Biodiversity Program, Madre de Dios, Madre de Dios, PeruFernando Cornejo ValverdeDepartment of Anthropology, University of Texas at Austin, SAC 5.150, 2201 Speedway Stop C3200, Austin, TX, 78712, USAAnthony Di FioreFundación Puerto Rastrojo, Cra 10 No. 24-76 Oficina 1201, Bogotá, DC, ColombiaJuan Fernando PhillipsColegio de Ciencias Biológicas y Ambientales-COCIBA and Galapagos Institute for the Arts and Sciences-GAIAS, Universidad San Francisco de Quito-USFQ, Quito, Pichincha, EcuadorGonzalo Rivas-TorresDepartment of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USAGonzalo Rivas-TorresBiosystematics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB, The NetherlandsTinde R. van AndelFundación Estación de Biología, Cra 10 No. 24-76 Oficina, 1201, Bogotá, DC, ColombiaPatricio von HildebrandDirection Régionale de la Guyane, ONF, Cayenne, 97300, French GuianaÉmile FontyPROTERRA, Instituto de Investigaciones de la Amazonía Peruana (IIAP), Av. A. Quiñones Km 2,5, Iquitos, Loreto, 784, PeruRicardo Zárate GómezACEER Foundation, Jirón Cusco N° 370, Puerto Maldonado, Madre de Dios, PeruTherany GonzalesDepartement EV, Muséum National d’histoire Naturelle de Paris, 16 Rue Buffon, Paris, 75005, FranceJean-Louis GuillaumetAmazon Conservation Team, Doekhieweg Oost #24, Paramaribo, SurinameBruce HoffmanInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, SpainAndré Braga JunqueiraEnvironmental Change Institute, Dyson Perrins Building, Oxford University Centre for the Environment, South Parks Road, Oxford, OX1 3QY, England, UKYadvinder MalhiInstituto de Ciencias Naturales, Universidad Nacional de Colombia, 7945, Apartado, Bogotá, DC, ColombiaAdriana Prieto & Agustín RudasInstituto de Ciência Agrárias, Universidade Federal Rural da Amazônia, Av. Presidente Tancredo Neves 2501, Belém, PA, 66.077-830, BrazilNatalino SilvaEscuela Profesional de Ingeniería Forestal, Universidad Nacional de San Antonio Abad del Cusco, Jirón San Martín 451, Puerto Maldonado, Madre de Dios, PeruCésar I. A. VelaUniversidad Autónoma del Beni José Ballivián, Campus Universitario Final, Av. Ejercito, Riberalta, Beni, BoliviaVincent Antoine VosLaboratory of Human Ecology, Instituto Venezolano de Investigaciones Científicas – IVIC, Ado 20632, Caracas, 1020A, DC, VenezuelaEgleé L. Zent & Stanford ZentCambridge University Botanic Garden, 1 Brookside., Cambridge, CB2 1JE, UKAngela CanoSchool of Agriculture and Food Sciences – ARC Centre of Excellence for Environmental Decisions CEED, The University of Queensland, St. Lucia, QLD, 4072, AustraliaDiego F. CorreaPlant Biology Department, Rua Monteiro Lobato, University of Campinas, 255, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, São Paulo, CEP 13083-862, BrazilBernardo Monteiro FloresResource Ecology Group, Wageningen University and Research, Droevendaalsesteeg 3a, Lumen, Building Number 100, Wageningen, Gelderland, 6708 PB, The NetherlandsMilena HolmgrenLaboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Campos dos, Goyatacazes, RJ, 28013-620, BrazilMarcelo Trindade NascimentoInstituto de Investigaciones Para el Desarrollo Forestal (INDEFOR), Universidad de los Andes, Conjunto Forestal, Mérida, Mérida, 5101, VenezuelaHirma Ramirez-Angulo, Emilio Vilanova Torre & Armando Torres-LezamaDepartamento de Biologia, Universidade Federal do Amazonas – UFAM – Instituto de Ciências Biológicas – ICB1, Av General Rodrigo Octavio 6200, Manaus, AM, 69080-900, BrazilVeridiana Vizoni ScudellerGeoIS, el Día 369 y el Telégrafo, 3° Piso, Quito, Pichincha, EcuadorRodrigo Sierra & Milton TiradoDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USAMaria Natalia UmañaUniversity of Nottingham, University Park, Nottingham, NG7 2RD, UKGeertje van der HeijdenSchool of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195-2100, USAEmilio Vilanova TorreEnvironmental Science and Policy, Northern Arizona University, Flagstaff, AZ, 86011, USAOphelia WangGeography and the Environment, University of Texas at Austin, 305 E. 23Rd Street, CLA Building, Austin, TX, 78712, USAKenneth R. YoungMedio Ambiente, PLUSPRETOL, Iquitos, Loreto, PeruManuel Augusto Ahuite ReateguiThe Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry and Food Security, Reduit, 80835, MauritiusCláudia BaiderDepartment of Bioscience, Aarhus University, Building 1540 Ny Munkegade, 8000, Aarhus C, Aarhus, DenmarkHenrik BalslevLiving Earth Collaborative, Washington University in Saint Louis, St. Louis, MO, 63130, USAWilliam Farfan-RiosEscuela de Ciencias Forestales (ESFOR), Universidad Mayor de San Simon (UMSS), Sacta, Cochabamba, BoliviaCasimiro MendozaFOMABO, Manejo Forestal en Las Tierras Tropicales de Bolivia, Sacta, Cochabamba, BoliviaCasimiro MendozaTropenbos International, Lawickse Allee 11, PO Box 232, Wageningen, 6700 AE, The NetherlandsRoderick ZagtSchool of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury, Kent, CT2 7NR, UKMiguel N. AlexiadesHerbario Nacional del Ecuador, Universidad Técnica del Norte, Quito, Pichincha, EcuadorWalter Palacios CuencaInstituto de Biodiversidade e Floresta, Universidade Federal do Oeste do Pará, Rua Vera Paz, Campus Tapajós, Santarém, PA, 68015-110, BrazilDaniela PaulettoFacultad de Biologia, Universidad Nacional de la Amazonia Peruana, Pevas 5Ta Cdra, Iquitos, Loreto, PeruFreddy Ramirez Arevalo & Elvis H. Valderrama SandovalDepartment of Biology, University of Missouri, St. Louis, MO, 63121, USAElvis H. Valderrama SandovalDepartment of Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, P.O. Box 10 01 64, 07701, Jena, GermanyGerhard BoenischFunctional Biogeography, Max-Planck-Institute for Biogeochemistry, P.O. Box 10 01 64, 07701, Jena, GermanyJens KattgeDepartment of Ecology and Evolutionary Biology, UCLA, 621 Charles E. Young Drive South, Box 951606, Los Angeles, CA, 90095, USANathan KraftE.T.P. and H.T.S. designed the study. E.T.P. performed analyses and took the lead in writing the manuscript, H.T.S. supervised the writing and provided regular feedback both for the manuscript and the interpretation of the results. All other authors provided feedback on the manuscript and provided their data from the Amazon Tree Diversity Network or trait data. Authors E.T.P. to L.V.G. provided tree inventory data, authors G.B., J.K., N.K., A.L., K.M., G.P., L.P. provided data on functional traits, C.B., J.L., A.A.O. and H.T.S. provided both tree inventory and functional trait data. More

  • in

    Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks

    Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature https://doi.org/10.1038/nature04056 (2005).Article 
    PubMed 

    Google Scholar 
    Kazamia, E. et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02733.x (2012).Article 
    PubMed 

    Google Scholar 
    Bunbury, F. et al. Exploring the onset of B12-based mutualisms using a recently evolved Chlamydomonas auxotroph and B12-producing bacteria. Environ. Microbiol. 24, 3134–3147 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Butler, A. Acquisition and utilization of transition metal ions by marine organisms. Science https://doi.org/10.1126/science.281.5374.207 (1998).Article 
    PubMed 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0905512106 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature https://doi.org/10.1038/nature14488 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. https://doi.org/10.1111/j.1550-7408.2004.tb00538.x (2004).Article 
    PubMed 

    Google Scholar 
    Bagwell, C. E. et al. Discovery of bioactive metabolites in biofuel microalgae that offer protection against predatory bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00516 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoeger, A. L., Jehmlich, N., Kipping, L., Griehl, C. & Noll, M. Associated bacterial microbiome responds opportunistic once algal host Scenedesmus vacuolatus is attacked by endoparasite Amoeboaphelidium protococcarum. Sci. Rep. https://doi.org/10.1038/s41598-022-17114-1 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mars Brisbin, M., Mitarai, S., Saito, M. A. & Alexander, H. Microbiomes of bloom-forming Phaeocystis algae are stable and consistently recruited, with both symbiotic and opportunistic modes. ISME J. https://doi.org/10.1038/s41396-022-01263-2 (2022).Article 
    PubMed 

    Google Scholar 
    Milici, M. et al. Co-occurrence analysis of microbial taxa in the Atlantic ocean reveals high connectivity in the free-living bacterioplankton. Front. Microbiol. 7, 1–20 (2016).Article 

    Google Scholar 
    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).Article 
    PubMed 

    Google Scholar 
    Tucker, A. E. & Brown, S. P. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chun, S. J. et al. Network analysis reveals succession of microcystis genotypes accompanying distinctive microbial modules with recurrent patterns. Water Res. https://doi.org/10.1016/j.watres.2019.115326 (2020).Article 
    PubMed 

    Google Scholar 
    Huang, S. Back to the biology in systems biology: What can we learn from biomolecular networks?. Briefings Funct. Genom. Proteom. https://doi.org/10.1093/bfgp/2.4.279 (2004).Article 

    Google Scholar 
    Ma’ayan, A. Introduction to network analysis in systems biology. Sci. Signal. https://doi.org/10.1126/scisignal.2001965 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, R. J., Howe, A. & Hofmockel, K. S. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5, 1–10 (2014).Article 

    Google Scholar 
    Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro3417 (2015).Article 
    PubMed 

    Google Scholar 
    Chafee, M. et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 12, 237–252 (2018).Article 
    PubMed 

    Google Scholar 
    Zamkovaya, T., Foster, J. S., de Crécy-Lagard, V. & Conesa, A. A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME J. 15, 228–244 (2021).Article 
    PubMed 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science https://doi.org/10.1126/science.1262073 (2015).Article 
    PubMed 

    Google Scholar 
    Bennke, C. M. et al. The distribution of phytoplankton in the Baltic Sea assessed by a prokaryotic 16S rRNA gene primer system. J. Plankton Res. 40, 244–254 (2018).Article 
    CAS 

    Google Scholar 
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00219 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).Article 
    PubMed 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature https://doi.org/10.1038/nature24621 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez, A. et al. Qiita: Rapid, web-enabled microbiome meta-analysis. Nat. Methods https://doi.org/10.1038/s41592-018-0141-9 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1000080107 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. https://doi.org/10.1038/ismej.2012.8 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods https://doi.org/10.1038/nmeth.3869 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome https://doi.org/10.1186/s40168-018-0470-z (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Major oceanic 16S/18S databases in qiime2 format. https://github.com/ndu-invitae/Oceanic_database/tree/master/PhytoRef.Hemprich-Bennett, D. R., Oliveira, H. F. M., Le Comber, S. C., Rossiter, S. J. & Clare, E. L. Assessing the impact of taxon resolution on network structure. Ecology https://doi.org/10.1002/ecy.3256 (2021).Article 
    PubMed 

    Google Scholar 
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: Rapid and scalable correlation estimation for compositional data. Bioinformatics https://doi.org/10.1093/bioinformatics/bty734 (2019).Article 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1002687 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Csardi, G., & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Systems. igraph Softw. Packag. (2006).Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. https://doi.org/10.1101/gr.1239303 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Assenov, Y., Ramírez, F., Schelhorn, S. E. S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics https://doi.org/10.1093/bioinformatics/btm554 (2008).Article 
    PubMed 

    Google Scholar 
    Barabási, A. L. Scale-free networks: A decade and beyond. Science https://doi.org/10.1126/science.1173299 (2009).Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Morris, J. H. et al. ClusterMaker: A multi-algorithm clustering plugin for cytoscape. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-436 (2011).Article 

    Google Scholar 
    Van Dongen, S. & Abreu-Goodger, C. Using MCL to extract clusters from networks. Methods Mol. Biol. https://doi.org/10.1007/978-1-61779-361-5_15 (2012).Article 
    PubMed 

    Google Scholar 
    Raivo, K. Pheatmap: Pretty heatmaps. R Pacakage Version (2012).Albert, R., Jeong, H. & Barabási, A. L. Diameter of the world-wide web. Nature https://doi.org/10.1038/43601 (1999).Article 

    Google Scholar 
    Eisenberg, E. & Levanon, E. Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.91.138701 (2003).Article 
    PubMed 

    Google Scholar 
    Ma, B. et al. Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome 8, 82 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105, 227–235 (2017).Article 
    CAS 

    Google Scholar 
    Goecke, F., Thiel, V., Wiese, J., Labes, A. & Imhoff, J. F. Algae as an important environment for bacteria—Phylogenetic relationships among new bacterial species isolated from algae. Phycologia https://doi.org/10.2216/12-24.1 (2013).Article 

    Google Scholar 
    Krohn-Molt, I. et al. Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01641-13 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woebken, D. et al. Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J. https://doi.org/10.1038/ismej.2007.63 (2007).Article 
    PubMed 

    Google Scholar 
    Faria, M. et al. Planctomycetes attached to algal surfaces: Insight into their genomes. Genomics https://doi.org/10.1016/j.ygeno.2017.10.007 (2018).Article 
    PubMed 

    Google Scholar 
    Barbeyron, T., L’Haridon, S., Corre, E., Kloareg, B. & Potin, P. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. Nov.. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/00207713-51-3-985 (2001).Article 
    PubMed 

    Google Scholar 
    Nedashkovskaya, O. I. et al. Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijs.0.02626-0 (2003).Article 
    PubMed 

    Google Scholar 
    Kim, B. H., Ramanan, R., Cho, D. H., Oh, H. M. & Kim, H. S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2014.07.015 (2014).Article 

    Google Scholar 
    Rivas, M. O., Vargas, P. & Riquelme, C. E. Interactions of Botryococcus braunii cultures with bacterial biofilms. Microb. Ecol. https://doi.org/10.1007/s00248-010-9686-6 (2010).Article 
    PubMed 

    Google Scholar 
    Cole, J. J. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. https://doi.org/10.1146/annurev.es.13.110182.001451 (1982).Article 

    Google Scholar 
    Fulbright, S. P. et al. Bacterial community changes in an industrial algae production system. Algal Res. https://doi.org/10.1016/j.algal.2017.09.010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01201 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, M., Glöckner, F. O. & Amann, R. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquat. Microb. Ecol. https://doi.org/10.3354/ame018275 (1999).Article 

    Google Scholar 
    Brussaard, C. P. D., Mari, X., Van Bleijswijk, J. D. L. & Veldhuis, M. J. W. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae https://doi.org/10.1016/j.hal.2004.12.012 (2005).Article 

    Google Scholar 
    Janse, I., Zwart, G., Van der Maarel, M. J. E. C. & Gottschal, J. C. Composition of the bacterial community degrading Phaeocystis mucopolysaccharides in enrichment cultures. Aquat. Microb. Ecol. https://doi.org/10.3354/ame022119 (2000).Article 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).Article 
    PubMed 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. https://doi.org/10.1007/s00248-006-9162-5 (2007).Article 
    PubMed 

    Google Scholar 
    Sapp, M., Wichels, A. & Gerdts, G. Impacts of cultivation of marine diatoms on the associated bacterial community. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02274-06 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milici, M. et al. Bacterioplankton biogeography of the Atlantic ocean: A case study of the distance-decay relationship. Front. Microbiol. 7, 1–15 (2016).Article 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. https://doi.org/10.1038/s41467-021-25646-9 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: An unexpected contribution of verrucomicrobia. PLoS ONE https://doi.org/10.1371/journal.pone.0035314 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dell’Anno, F. et al. Highly contaminated marine sediments can host rare bacterial taxa potentially useful for bioremediation. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.584850 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newton, R. J. et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. https://doi.org/10.1038/ismej.2009.150 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. https://doi.org/10.1146/annurev-marine-120710-100912 (2014).Article 
    PubMed 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1413137112 (2015).Article 
    PubMed 

    Google Scholar 
    Proulx, S. R., Promislow, D. E. L. & Phillips, P. C. Network thinking in ecology and evolution. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.04.004 (2005).Article 
    PubMed 

    Google Scholar 
    Coelho, F. J. R. C. et al. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Queiroz, L. L. et al. Bacterial diversity in deep-sea sediments under influence of asphalt seep at the São Paulo Plateau. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 8, 9. https://doi.org/10.1007/s10482-020-01384-8 (2020).Article 
    CAS 

    Google Scholar 
    de Voogd, N. J., Cleary, D. F. R., Polónia, A. R. M. & Gomes, N. C. M. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiv019 (2015).Article 
    PubMed 

    Google Scholar 
    Vigneron, A. et al. Multiple strategies for light-harvesting, photoprotection, and carbon flow in high latitude microbial mats. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02881 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pushpakumara, B. L. D. U., Tandon, K., Willis, A. & Verbruggen, H. The bacterial microbiome of the coral skeleton algal symbiont Ostreobium shows preferential associations and signatures of phylosymbiosis. bioRxiv https://doi.org/10.1101/2022.12.13.520198 (2022).Article 

    Google Scholar 
    Lage, O. M. & Bondoso, J. Planctomycetes diversity associated with macroalgae. FEMS Microbiol. Ecol. https://doi.org/10.1111/j.1574-6941.2011.01168.x (2011).Article 
    PubMed 

    Google Scholar 
    Longford, S. R. et al. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat. Microb. Ecol. https://doi.org/10.3354/ame048217 (2007).Article 

    Google Scholar 
    Bengtsson, M. M. & Øvreås, L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. https://doi.org/10.1186/1471-2180-10-261 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludington, W. B. et al. Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater. PLoS ONE https://doi.org/10.1371/journal.pone.0174930 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vidal-Melgosa, S. et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat. Commun. 12, 1–13 (2021).Article 

    Google Scholar 
    Walker, A. M., Leigh, M. B. & Mincks, S. L. Patterns in benthic microbial community structure across environmental gradients in the beaufort sea shelf and slope. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.581124 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morris, R. M., Longnecker, K. & Giovannoni, S. J. Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2006.01029.x (2006).Article 
    PubMed 

    Google Scholar 
    Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. https://doi.org/10.1038/s41564-020-0720-2 (2020).Article 
    PubMed 

    Google Scholar 
    Bohórquez, J. et al. Different types of diatom-derived extracellular polymeric substances drive changes in heterotrophic bacterial communities from intertidal sediments. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00245 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Landa, M. et al. Phylogenetic and structural response of heterotrophic bacteria to dissolved organic matter of different chemical composition in a continuous culture study. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12242 (2014).Article 
    PubMed 

    Google Scholar 
    Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. https://doi.org/10.1038/ismej.2016.20 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Info-gap theory to determine cost-effective eradication of invasive species

    Peterson, A. T. & Vieglais, D. A. Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. Bioscience 51, 363–371 (2001).Article 

    Google Scholar 
    Atkinson, I. A. E. Introduced mammals and models for restoration. Biol. Conserv. 99, 81–96 (2001).Article 

    Google Scholar 
    Parkes, J. P. & Panetta, F. D. Eradication of invasive species: progress and emerging issues in the 21st century. In Invasive Species Management: A Handbook of Principles and Techniques (eds Clout, M. N. & Williams, P. A.) (Oxford University Press, 2009).
    Google Scholar 
    Baker, C. M., Hodgson, J. C., Tartaglia, E. & Clarke, R. H. Modelling tropical fire ant (Solenopsis geminata) dynamics and detection to inform an eradication project. Biol. Invasions 19, 2959–2970 (2017).Article 

    Google Scholar 
    Simberloff, D. How much information on population biology is needed to manage introduced species?. Conserv. Biol. 17, 83–92 (2003).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Sanchirico, J. N., Albers, H. J., Fischer, C. & Coleman, C. Spatial Management of invasive species: Pathways and policy options. Environ. Resour. Econ. 45, 517–535 (2010).Article 

    Google Scholar 
    Caplat, P., Hui, C., Maxwell, B. D. & Peltzer, D. A. Cross-scale management strategies for optimal control of trees invading from source plantations. Biol. Invasions 16, 677–690 (2014).Article 

    Google Scholar 
    Long, Y., Van der Merwe, J., Thomas, M. L., McKirdy, S. & Kompas, T. Biosecurity for valuable environmental island assets: Spatial post-border surveillance for early detection. Ecol. Econ. forthcoming (2022).Kroetz, K. & Sanchirico, J. N. The bioeconomics of spatial-dynamic systems in natural resource management. Annu. Rev. Resour. Econ. 7, 189–207 (2015).Article 

    Google Scholar 
    Liu, Y., Wang, P., Thomas, M. L., Zheng, D. & McKirdy, S. J. Cost-effective surveillance of invasive species using info-gap theory. Sci. Rep. 11, 22828 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Homans, F. & Horie, T. Optimal detection strategies for an established invasive pest. Ecol. Econ. 70, 1129–1138 (2011).Article 

    Google Scholar 
    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).Article 

    Google Scholar 
    Moffitt, L. J., Stranlund, J. K. & Osteen, C. D. Robust detection protocols for uncertain introductions of invasive species. J. Environ. Manage. 89, 293–299 (2008).Article 
    PubMed 

    Google Scholar 
    Yokomizo, H., Possingham, H. P., Hulme, P. E., Grice, A. C. & Buckley, Y. M. Cost-benefit analysis for intentional plant introductions under uncertainty. Biol. Invasions 14, 839–849 (2011).Article 

    Google Scholar 
    Ben-Haim, Y. Info-gap Decision Theory: Decisions Under Severe Uncertainty 2nd edn. (Academic Press, 2006).
    Google Scholar 
    Knight, F. H. Risk, Uncertainty, and Profit (Houghton Mifflin Company, 1921).
    Google Scholar 
    Regan, H. M. et al. Robust decision-making under severe uncertainty for conservation management. Ecol. Appl. 15, 1471–1477 (2005).Article 

    Google Scholar 
    Ben-Haim, Y. Uncertainty, probability and information-gaps. Reliab. Eng. Syst. Saf. 85, 249–266 (2004).Article 

    Google Scholar 
    Ben-Haim, Y. & Demertzis, M. Decision making in times of Knightian uncertainty: An info-gap perspective. Economics 10, 1 (2016).Article 

    Google Scholar 
    Lever, C. Naturalized Reptiles and Amphibians of the World (Oxford University Press, 2003).
    Google Scholar 
    Wilson, J. R. U., Dormontt, E. E., Prentis, P. J., Lowe, A. J. & Richardson, D. M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 24, 136–144 (2009).Article 
    PubMed 

    Google Scholar 
    Torres-Carvajal, O. On the origin of South American populations of the common house gecko (Gekkonidae: Hemidactylus frenatus). NeoBiota 27, 69–79 (2015).Article 

    Google Scholar 
    Hoskin, C. J. The invasion and potential impact of the Asian House Gecko (Hemidactylus frenatus) in Australia. Austral Ecol. 36, 240–251 (2011).Article 

    Google Scholar 
    Barnett, L. K. Understanding Range Expansion of Asian House Geckos (Hemidactylus frenatus) in Natural Environments (James Cook University, 2017).
    Google Scholar 
    Norval, G. & Mao, J.-J. An instance of a house gecko (Hemidactylus frenatus Schlegel, 1836) utilizing an electrical timer for thermoregulation. IRCF Reptil. Amphib. 22, 76–78 (2015).Article 

    Google Scholar 
    Greenslade, P., Burbidge, A. A. & Lynch, A. J. J. Keeping Australias islands free of introduced rodents Barrow Island. Pac. Conserv. Biol. 19, 284–294 (2013).Article 

    Google Scholar 
    Perella, C. D. & Behm, J. E. Understanding the spread and impact of exotic geckos in the greater Caribbean region. Biodivers. Conserv. 29, 1109–1134 (2020).Article 

    Google Scholar 
    Davis, M. A. Invasion biology. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 364–369 (University of California Press, 2011).
    Google Scholar 
    García-Díaz, P., Ross, J. V., Vall-llosera, M. & Cassey, P. Low detectability of alien reptiles can lead to biosecurity management failure: A case study from Christmas Island (Australia). NeoBiota. 45, 75–92 (2019).Article 

    Google Scholar 
    Koopman, B. O. Search and Screening. Operations Evaluation Group (OEG) Report. (1946).Grasinger, M., O’Malley, D., Vesselinov, V. & Karra, S. Decision analysis for robust CO2 injection: Application of Bayesian-Information-Gap Decision Theory. Int. J. Greenh. Gas Control 49, 73–80 (2016).Article 
    CAS 

    Google Scholar 
    MathWorks. MATLAB R2018b. (MathWorks, 2018).Commonwealth Government of Australia. Approval—Gorgon Gas Development (EPBC Reference: 2008/4178). (2009).Kalaris, T. et al. The role of surveillance methods and technologies in plant biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 309–337 (Springer, 2014).Chapter 

    Google Scholar 
    Sharma, S., Mckirdy, S. & Macbeth, F. The biosecurity continuum and trade: Tools for post-border biosecurity. In The Handbook of Plant Biosecurity: Principles and Practices for the Identification, Containment and Control of Organisms that Threaten Agriculture and the Environment Globally (eds Gordh, G. & McKirdy, S.) 189–206 (Springer, 2014).Chapter 

    Google Scholar 
    Epanchin-Niell, R. S. Economics of invasive species policy and management. Biol. Invasions 19, 3333–3354 (2017).Article 

    Google Scholar 
    Gregg, H. et al. Invasive rodent eradication on islands. Conserv. Biol. 21, 1258–1268 (2007).Article 

    Google Scholar 
    Parkes, J. Feasibility plan to eradicate Common mynas (Acridotheres tristis) from Mangaia Island, Cook Islands. Landcare Research Contract Report LC0506/184. (2006).Barun, A. & Simberloff, D. Carnivores. In Encyclopedia of Biological Invasions (eds Simberloff, D. & RejmÁNek, M.) 95–100 (University of California Press, 2011).
    Google Scholar 
    Pluess, T. et al. When are eradication campaigns successful? A test of common assumptions. Biol. Invasions 14, 1365–1378 (2012).Article 

    Google Scholar 
    Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M. & Liebhold, A. M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15, 803–812 (2012).Article 
    PubMed 

    Google Scholar 
    Rout, T. M., Thompson, C. J. & McCarthy, M. A. Robust decisions for declaring eradication of invasive species. J. Appl. Ecol. 46, 782–786 (2009).Article 

    Google Scholar 
    Hauser, C. E. & McCarthy, M. A. Streamlining “search and destroy”: Cost-effective surveillance for invasive species management. Ecol. Lett. 12, 683–692 (2009).Article 
    PubMed 

    Google Scholar 
    Epanchin-Niell, R. S. & Hastings, A. Controlling established invaders: Integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13, 528–541 (2010).Article 
    PubMed 

    Google Scholar 
    Moore, J. L. et al. Protecting islands from pest invasion: Optimal allocation of biosecurity resources between quarantine and surveillance. Biol. Conserv. 143, 1068–1078 (2010).Article 

    Google Scholar 
    Rout, T. M., Moore, J. L., Possingham, H. P. & McCarthy, M. A. Allocating biosecurity resources between preventing, detecting, and eradicating island invasions. Ecol. Econ. 71, 54–62 (2011).Article 

    Google Scholar  More

  • in

    Faunal engineering stimulates landscape-scale accretion in southeastern US salt marshes

    Regional contextTo understand the variation in salt marsh geomorphology and mussel coverage across the South Atlantic Bight (SAB), we assessed density and areal coverage of1 tidal creekheads and2 mussel aggregations with a combination of published data and new field surveys across the region. First, to assess creekhead density, we selected 10 sites ranging from Cape Romain (SC) to Amelia Island (FL). Given that all of our experiments were conducted on Sapelo Island and the surrounding marsh islands, we selected three sites on Sapelo Island for comparison with four sites to the north and three to the south61. At each site, we scored the total number of tidal creekheads in a 1 km2 contiguous marsh area using Google Earth. Assuming each tidal creekhead constitutes approximately 0.0025 km2, we calculate the creekhead areal coverage to be:$$Creekhead,Areal,Coverage,(%)=frac{(0.0025k{m}^{2})times {{{{{rm{Creekhead}}}}}},{{{{{rm{Density}}}}}}(#k{m}^{-2})}{{{{{{rm{Marsh}}}}}},{{{{{rm{Creekshed}}}}}},{{{{{rm{Area}}}}}},(1k{m}^{2})}times 100%$$
    (1)
    Differences across northern, Sapelo Island, and southern sites were assessed with a one-way ANOVA with location as the main factor.To next test the hypothesis that creekhead mussel coverage is similar at sites across the SAB, we conducted surveys of mussel aggregations at 12 sites across the region from Edisto Beach (SC) to Amelia Island (FL). Previous work14 has shown that mussel aggregations decrease in size and density with increasing distance from the tidal creekhead, so we focused our measurements at three distances from one tidal creekhead onto the marsh platform: 0 m, 20 m, and 40 m. We note that at all sites, mussel aggregations extended >40 m from the tidal creekhead. Sites were again distributed across the region, and included 3 sites to the north, 3 sites to the south, and 6 sites on Sapelo and its back barrier marsh islands. At each site, we selected one representative creek 100–175 m in length and ensured that the tidal creekhead did not overlap spatially with a tidal creekhead of an adjacent creek. At each distance from creekhead, we established one 50 m x 1 m transect. Walking the transect line, we scored each mussel aggregation, counting the total number of mussels and measuring the mound dimensions (L x W x H). We then calculated the areal coverage of mussels within each transect (50 m2) and took the mean value across the three distances as the measure for the site. All data was collected between May and August in 2016 and 2017. Differences across northern, Sapelo Island, and southern sites were assessed with a one-way ANOVA with location as the main factor. Finally, we calculated creekshed mussel areal coverage in the three sub-regions, as the product of the percent of creekshed occupied by creekheads (sub-region mean, %) and the proportion of creekhead area occupied by mussels at each site.Landscape assays of sediment deposition over seasons and tidal phasesTo quantify the relative rates of sediment deposition across marsh landscapes, we deployed 9-cm diameter filter papers (Whatman Quantitative Filter Paper, Grade 42 Circles, Ashless, 90 mm; 57) at 13 location types across 3 sites. Locations included: 1) outer marsh levee (‘outer levee’), 2) marsh platform 10 m inland from outer marsh levee (‘outer levee-adjacent’), 3) inner tidal creek levee (‘inner levee’), 4) marsh platform 10 m inland from inner tidal creek levee (‘inner levee-adjacent’), 5) non-mussel marsh platform ( >50 m from mussel creekhead), 6,7) ridge/runnel area at tidal creekhead (‘ridge’ and ‘runnel’), 8,9) mussel aggregations and adjacent non-mussel marsh areas at the tidal creekhead (‘0 m ON mussel mound’ and ‘0 m OFF mound’), 10,11) mussel aggregations and adjacent marsh areas 10 m onto marsh platform from tidal creekhead (‘10 m ON mussel mound’ and ‘10 m OFF mound’), and 12,13) mussel aggregations and adjacent marsh areas 20 m onto marsh platform from tidal creekhead (‘20 m ON mussel mound’ and ‘20 m OFF mound’). At each location type, we used 15 replicate filters, spaced 1–2 m apart. Each pre-weighed and labeled filter paper was deployed attached to a Polystyrene Petri Dish (100 × 15 mm) using 1.5 mm steel wire. After 24 h in the field, all filters were harvested, dried in an oven at 60 °C, and reweighed. Filter papers were deployed at four tides: Summer Spring (August 2017, +2.5 m), Summer Neap (August 2017, +2.1 m), Winter Spring (February 2018, +2.5 m), and Winter Neap (February 2018, +2.0 m).To quantify the total and percent inorganic and organic material that was deposited on the marsh surface over a 24 h period, we deployed 8 replicate 4.7 cm diameter filter papers (Whatman Glass Microfiber Filter Paper, Grade GF/F Circles, 47 mm) across five marsh locations at one site. Locations included: 1) outer marsh levee (‘outer levee’), 2) marsh platform 10 m inland from outer marsh levee (‘outer levee-adjacent’), 3–4) mussel aggregations and adjacent non-mussel marsh areas at the tidal creekhead (‘0 m ON mussel mound’ and ‘0 m OFF mound’), and 5) non-mussel marsh platform. Prior to deployment, filter papers were combusted in a 450 °C furnace for 4 h and stored in aluminum foil packets. Packeted filter papers were then labeled and pre-weighed. Once in the field, filter papers were removed from their packet with forceps, placed on a petri dish inserted into the marsh sediment during a Summer Spring low tide (+2.5 m), and secured with 1.5 mm steel wire.After 24 h, the filter papers were collected with forceps and inserted back in their corresponding packet. Upon transport back to the lab, the packeted filter papers were dried in a 60 °C oven until constant mass was obtained and re-weighed. The change in weight between pre- and post-deployment was used to calculate total dry weight. Packeted filter papers were combusted again in a 450 °C furnace for 4 h and re-weighed. The total dry weight and the weight lost from the second combustion were then used to calculate total inorganic and organic dry weight and percent organic material for each filter paper.To calculate the organic and inorganic material in persistent in marsh sediment layers, 5-cm cores were collected from the sediment layer using a 60 mL syringe with a 2.5 cm diameter. Cores were taken at same five location types: levee crest, levee-adjacent, on-mound, mound-adjacent, and non-mussel marsh platforms. Eight cores, 1–2 m apart, were collected from each location and placed into pre-weighed foil packets. Cores were dried at 60 °C in an oven until constant mass was obtained, weighed, and combusted in a 450 °C furnace for 4 h. The cores were then reweighed, and the weight loss after combustion was used to calculate the percent organic (and inorganic) material.The mass of both organic and inorganic material deposited on each mussel aggregation filter was far greater (0.11 g and 0.50 g, organic and inorganic sediment, respectively, here and below) than that deposited on levee crests (0.02 g and 0.06 g), levee-adjacent (0.04 g and 0.15 g), and non-mussel marsh platforms (0.04 g and 0.19 g; F4,38 = 9.5; p  0.20), with all locations exhibiting 13–14% organic content (Fig. S3).Field experiment 1: fate of mussel biodepositsTo assess the distribution of sediment supplemented by mussels via local biodeposition and, in turn, their contribution to sediment supply across the broader marsh landscape, we measured the transport of previously settled biodeposits as well as those actively deposited over one tidal cycle. For each process, we selected 6 mussel mounds in two marsh zones where mussels commonly aggregate: 1) the creekhead and 2) 20 meters away from the creekhead on the marsh platform. All focal mounds were at least 5 meters apart to avoid mixing of biodeposits. We addressed the transport of previously settled biodeposits by first removing 2 cm of each mound’s biodeposit layer, homogenizing it with fluorescent chalk (Irwin Straight-Line Fluorescent Orange Marking Chalk) at a 2:1 ratio (biodepost:chalk), and evenly distributing the mixture back on the mounds. We then revisited the mounds at night after one tide had flooded over the mounds (max tidal height +2.2 m) and traced the distribution of fluorescent material through black light detection. We measured the maximum distance fluorescent material traveled in each direction to quantify transport of previously settled biodeposits across the marsh landscape.To account for the distribution of biodeposits ejected by actively filter-feeding mussels, we collected 10 mussels from each mound, transported them back to University of Georgia Marine Institute’s wet lab, depurated them in saltwater (Instant Ocean, 28 ppt) for 24 h, and allowed them to feed on a mixture of seawater and fluorescent chalk for 2 h. We then rinsed the mussels to remove any loose fluorescent material from their shells before transplanting them back into the focal mounds at low tide. We then revisited the mounds at night after one tide had flooded over the mounds and traced the distribution of fluorescent material through black light detection. We measured the maximum distance fluorescent material traveled in each direction to quantify transport of actively ejected biodeposits across the marsh landscape.Field experiment 2: local scale depositional effects of mussels and cordgrassThe second experimental study was conducted at Airport Marsh on Sapelo Island, Georgia, USA. At this site, the experiment was deployed at two zones: the marsh platform >85 m from the nearest tidal creek (31°25’25.3“N 81°17’29.8“W) and the creekhead, where the tidal creek enters onto the marsh platform and tidal water first floods the marsh (31°25’28.1“N 81°17’30.2“W). Within each zone, we deployed seven experimental treatments (n = 5 replicates per treatment per zone) in which we varied mussel (M) presence and density, as well as cordgrass (C) presence. The full set of seven treatments included: 1) no-mussel, no-cordgrass controls (0 M, 0 C); 2) cordgrass-only controls (0 M, C + ); 3) 1-mussel (1 M, 0 C) blocks; 4) small mussel aggregations (20 M, 0 C); 5) intermediate size mussel aggregations (50 M, 0 C); 6) intermediate size mussel aggregations plus cordgrass (50 M, C + ); and 7) large mussel aggregations (80 M, 0 C; Fig. S5).In July 2017, we harvested 70 blocks of marsh peat (50 cm x 50 cm x 20 cm) from the experimental site using flat-edge shovels. We selected 30 blocks of standardized cordgrass density (48.9 ± 9.0 g dry biomass per block; mean ± SD) from non-mussel areas, 10 blocks containing small mussel aggregations (~20 mussels), 20 blocks of intermediate-size mussel aggregations (~50 mussels), and 10 blocks of large mussel aggregations (~80 mussels). All marsh blocks were transported back to the lab where they were washed completely clean of all surface sediment. With the exception of 10 non-mussel blocks and 10 intermediate-size mussel aggregation blocks, all cordgrass was clipped to the marsh surface. For the 1-mussel treatments, we harvested 10 mussels (6–8 cm in length) from the experimental site and individually inserted them in the center of the marsh block so that they were 40–50% below the marsh surface.After cleaning and cordgrass removal, all blocks were cut to new dimensions (36 cm x 36 cm x 16 cm) and placed within plastic-encased bins of the same dimensions. Bins containing marsh blocks were then centrally placed and fitted within an additional larger bin (61 cm x 61 cm x 8 cm), with the top of each box flush to the same height. The outside bin was filled with 64, 5 cm diameter PVC poles and 32, 2.5 cm diameter PVC poles (both 8 cm in height) so that all bin edges were held upright and PVC was rigidly filling all space within the outer box (Fig. S4). PVC poles were oriented in this way to capture all deposited sediment and minimize resuspension by substantially decreasing the fetch within the catchment bins. These sediment catchment units were then transported back to the experimental site where recipient holes were dug to the exact dimensions, so that the top of the marsh block (along with the top of each PVC pole) was exactly flush with the marsh surface sediment. We stapled 1-cm hardware cloth mesh (66 cm x 66 cm, with central 36 cm x 36 cm cutout) above PVC and flush to the marsh surface to allow invertebrate access to and from mussel aggregations and to limit the amount of disturbance to and resuspension of the settled material. Finally, to minimize mussel mortality in the absence of cordgrass, we built shades using 2 layers of 5-cm Aquamesh, attached these shades to four bamboo stakes, and inserted them above each plot at a height of ~1 m. The experiment ran for one month, from July 18 to August 18, 2017.After one month in the field, all experimental units and their contents were returned to the lab, rinsed into recipient aluminum tins, dried, and weighed. The contents of the central bins and sediment on plant tissue were dislodged and collected using spatulas, scraper tools, and a Waterpik Flosser device. After all sediment was collected, each mussel was removed from the aggregation, measured for length, and weighed for biomass. Finally, from treatments containing vegetation, all aboveground cordgrass biomass was harvested, dried, and weighed (Fig. S6).Delft3D ModelTo evaluate the contribution of mussel mounds to marsh accretion, we performed numerical simulations using the Delft3D-FLOW model63,64. We first modified the source code by adding a bivalve module (Delft3D-BIVALVES) to simulate sediment filtration and deposition processes that lead to mussel mound formations. In building this module, we assumed that mussels remove sediments from the water column because of filtration, and expel them as very cohesive pseudofeces, which are attached to the mounds, increasing their elevation. These processes are simulated by adding, in the computational cells containing the mussel mounds, a depositional term due to mussel filtration that reads:$${triangle z}_{{FILT}}={rho }_{{MM}}cdot {f}_{{MM}}cdot {C}_{{sed}}cdot {dt}cdot {{rho }_{{sed},{dry}}}^{-1},$$
    (2)
    where ({rho }_{{MM}}) is the density of mussels in the mounds [mussel m−2], set equal to 177 mussel m−214, and ({f}_{{MM}}) is the volume of water filtered by each mussel per unit of time [m3 s−1 mussel−1], set equal to 0.115 m3 s−1 mussel−1. ({C}_{{sed}}) is the sediment concentration in the water column above each mussel mound [kg m−3], ({dt}) is the simulation time step [s], set equal to 0.6 s, and ({rho }_{{sed},{dry}}) is the dry density of the sediments [kg m−3], set equal to 800 kg m−373. The volume of sediments correspondent to the mussel filtration depositional term obtained from Eq 2. is removed from the lower computational layer of the water column above the mussel aggregation by adding the following sink term in the advection-diffusion equation:$${SINK}={rho }_{{MM}}cdot {f}_{{MM}}cdot {C}_{{sed}}cdot {A}_{{cell}},$$
    (3)
    where ({A}_{{cell}}) is the area of the computational cell [m2]. Numerically, the term is implemented implicitly to prevent the appearance of negative concentrations. For settling velocity, we used a value of 0.1 mm s−1. This value provides the best fit of the Total Suspended Sediment (TSS) concentration we surveyed in a creek, on the adjacent Little Sapelo Island, with an error of 0.022 ± 0.025 kg m−3 (Fig. S8, MAE + RMSE). The fit was obtained by using the exponential decay formulation that reads:$${C}_{s}={C}_{s0}{e}^{-{tcdot w}_{s}/h},$$
    (4)
    where ({w}_{s}) is the settling velocity in [m s−1], (h) is the slow depth in [m], ({C}_{s0}) is the initial sediment concentration in [kg m−3], and (t) is the time in [s]. We set ({C}_{s0}) equal to 0.10 g m−3, which approximates the average value measured during flood tide, at the same location and tidal cycle. In addition, we set h equal to 0.30 m, which is the local mean annual high tide, calculated for 2018. To assess the sensitivity of the results to settling velocity, we ran a simulation in which we increased settling velocity by 50% (i.e., settling velocity equal to 0.15 mm s−1), and extra deposition due to mussel mounds varied by only approximately 6.5% of the original value.We next established a rectangular model domain to describe our study area in a simplified fashion (Fig. 5a). Within the model domain, the marsh platform is connected to the main channel by a tidal creek. The domain extends for 50 m and 207 m in the long-shore and landward directions, respectively. It is discretized using a rectangular grid constituted of 50 cm × 50 cm cells at the creek head and 50 cm × 100 cm cells elsewhere. In our model domain, mussel aggregations occupy only the creekhead, which is the 50 m × 50 m area between the creek and the upper part of the domain. We assign that each mussel mound has an area of 0.25 m2, corresponding to a mound diameter of ~0.5 m. At our resolution, a mound occupies a single cell. A sensitivity analysis using cells of 0.25 m and 0.125 m showed negligible changes in the results. The main channel occupies the lower 20 m of the domain, and its depth goes from 0 m AMSL at the marsh edge to −6 m at the seaward boundary. The tidal creek is located in the middle of the marsh platform and stops 50 m from the landward boundary of the domain. It is 2 m wide, and its depth goes from 0.79 m AMSL at the creek head to −1 m where it connects to the main channel. The marsh system consists of four subareas: (i) the levees (0.94 m AMSL), which are 5 m wide cordons separating the marsh platform from the channel and the creek (except at the creek head) and are vegetated by tall-form cordgrass; (ii) the levee adjacent areas (0.79 m AMSL), which are 10 m wide and vegetated by intermediate size cordgrass, (iii) mussel aggregations, which occupy a set proportion of the creek head (0, 10, or 20%), are vegetated by short-form cordgrass, and form a regular array (0.79 m AMSL, a newly formed mound); and (iv) the marsh platform, all remaining area consisting of short-form cordgrass and located at a uniform elevation of 0.79 m AMSL (Table S2).We used the Delft3D “trachytopes” functionality to impose vegetation resistance on flow propagating through the model domain. At every time step, a Chézy friction coefficient ((C)) is calculated for the vegetation, using a formulation developed by83. The formula is based on the unvegetated bed roughness (({C}_{b})), the drag coefficient (({C}_{D})), the vegetation height (({h}_{v})), and the vegetation density ((n)), expressed as the number of stems per square meter ((m)) times the stem diameter (({D}_{S})). In our model, only cells with an elevation higher than 0 m above MSL are vegetated. We considered four vegetation zones, as described above (Table S2; see details for collection of cordgrass and mussel parameters below). For each vegetation type, we used the same ({C}_{b}) and ({C}_{D}), equal to 45 m1/2s−1 and 1.65, respectively84. The vegetation properties, for each class, are based on local surveys and are reported in Table S1. For each of the three mussel scenarios analyzed, we considered two vegetation distributions. The first one sticks with the description of the vegetation zones we report above. In the second scenario, the vegetation is absent from the entire domain.To compute the sediment deposition in our numerical model, we simulated deposition from October 6th to October 22nd, 2018. This period contains the most representative spring and neap tides of the year and was obtained using the following procedure. First, we reconstructed the astronomic signal for 2018 using the tidal components of the NOAA station “Daymark #156, Head of Mud River, GA” # 8674975”, which is the closest to our study area. We then calculated the tidal ranges in 2018 using consecutive low and high tide levels extrapolated from the astronomic tidal signal. Next, we classified the tidal ranges using the 25th and 75th quantiles of their distribution (i.e., Q25 and Q75): ranges lower than the 25th quartile were neap tides and ranges greater than the 75th were spring tides. The 2018 astronomic tide was then divided into periods containing a spring and a consecutive neap tide. For each period, we identified the tidal ranges associated with spring and neap tides by using Q25 and Q75. Finally, for each period, we calculated the average tidal range for neap and spring tide, the difference between these average values and the yearly average, and the sum of these two differences. The period with the lowest value of this sum contains the most representative spring and neap tides of 2018. For this date range, we then ran our model under six scenarios: mussel cover at 0, 10, and 20%, but with and without vegetation present. We report both sediment deposition and annual accretion in the five location types (i.e., levee crest, levee-adjacent, mussel aggregation, aggregation-adjacent, and non-mussel marsh platform) at local (1 m2), creekhead (2500 m2) and entire domain scales (10,350-m2).Field experiment 3: creekshed mussel manipulationTo assess the effects of mussel presence and population size on marsh accretion at the creekshed scale, we first selected a marsh creekshed with three adjacent tidal creeks of similar length, structure, associated mussel populations, and marsh platform characteristics (i.e., size, elevation, and cordgrass characteristics). For each of the three tidal creeks, we first delineated a 50 m by 50 m creekhead area, oriented perpendicular to the direction of the tidal creek entry into the marsh, and located with midpoint of the front edge positioned at the point of tidal creek entry into the marsh. We then delineated a larger creekshed area associated with each creek of ≥10,000 m2 within which we would deploy our experimental treatments. To quantify initial mussel and cordgrass cover, we set up three 50 m2 transects (50 m long, 1 m wide) within the creekhead area, located at 0 m, 20 m, and 40 m distance from the tidal creek point of entry (and oriented perpendicular to the direction of flow). Within each transect, we counted each mussel aggregation, scoring each individual mussel as well as the length, width, and height from marsh platform of each mussel aggregation structure.For a subset of 20 mussel aggregations randomly selected within each transect (3 transects per creek, 180 aggregations total), we scored the total number of cordgrass tillers on each aggregation. For a subset of 5 randomly selected tillers on each aggregation, we measured both length and width. To assess the differences in cordgrass characteristics between mussel aggregations and aggregation-adjacent areas, we also measured cordgrass stem density, height, and diameter in non-aggregation areas (1 m2) located 1m away from each mussel aggregation.After all initial data was collected, we removed and transplanted approximately 200,000 mussels from one tidal creekhead to another. To do so, we initially flagged approximately 4000 mussel aggregations within the creekshed area of the “Removal” creek, encompassing both the 2500 m2 creekhead area as well as the surrounding ≥10,000 m2 creekshed extent. Mussel individuals were removed by hand over the course of 16 weeks, with all field personnel taking care to leave all pseudofeces in place and cordgrass intact. Field crews were split between the mussel removal and mussel addition creek, such that mussels were re-transplanted within 24 h of removal to minimize mortality. Due to logistical and permitting constraints, it was not feasible to replicate the treatments across multiple sites; instead, the three plots occupied a single contiguous creekshed (Fig. 6a, b).To assess changes in marsh elevation, we first quantified initial creekhead elevation (mean m AMSL in 2500-ft2 area perpendicular to point of entry) using two metrics: 1) Real Time Kinematic (RTK) elevation datapoints (Trimble R6 GNSS System) distributed across the creekshed; and 2) measurements of mussel mound heights throughout each transect at set distances from the point of water entry. For the RTK datapoints, we collected 86 total points across the creekshed in June 2017. Elevation datapoints were randomly selected in each 2500 m2 creekhead zone (minimum of 20 points per creekhead; Fig. S7). However, given the low number of RTK points across a large area, we additionally utilized mussel mound height calculations to provide a second estimate of initial elevation across the creekshed. Mussel aggregations and other bivalves, such as oysters, exhibit a height ceiling of growth, above which survivorship and growth are hypothesized to decrease. Previous work on Sapelo Island marshes reported the height ceiling to be +0.84 ± 0.004 m AMSL (mean ± SE). Therefore, assuming mature mussel aggregations (i.e., with tops at the aforementioned height ceiling), then mussel aggregation height (i.e., the distance between the marsh platform and the topmost point of the mussel aggregation mounded structure) will inform our knowledge of the marsh platform elevation by the following equation: Marsh Elevation (m AMSL) = Mussel Height Ceiling (+0.84 m AMSL) – Mussel Aggregation Height (m AMSL). For each distance from creekhead from which we conducted a 50 m2 transect (0, 20, and 40 m), we estimated mean platform elevation using each of the measured mussel aggregation heights. We then took the mean value of marsh elevation across the three distances (0 m, 20 m, and 40 m) as a measure of creekhead elevation in 2017 for each of our experimental creeks ( >60 mounds per creekhead; 250 total).To assess elevation three years after treatment deployment, we compared creekhead elevation using a 2020 Digital Elevation Model (DEM) of the creekshed. To build the DEM, we flew a DJI Matrice 600 Pro drone carrying a custom build Lidar payload in August 2020. The payload consisted of a Velodyne Puck Lite VLP16, paired with a Novatel Stim300 Inertial Measurement Unit. The point clouds from the drone were orthorectified from GPS data continuously measured on the drone (see the procedure described in 85,86). To remove the vegetation and any other surface perturbations (i.e., from digital surface model to digital elevation model), we used the CloudCompare software (https://github.com/cloudcompare/cloudcompare). The cloth Simulation Filter (CSF; 87) was applied twice to the dataset, which successfully removed the vegetation data. The point cloud of the marsh surface was then exported to ArcGIS 10.7 where the DEM was generated by raster interpolation. Once completed, the mean elevation within each 2500 m2 creekhead location was calculated using the Zonal Statistics tool in ArcGIS 10.7.Statistical analysesTo quantify the effects of season, tidal phase, and location type on short-term deposition, we first square root transformed short-term sediment deposition (i.e., filter paper results) to meet the assumptions of parametric statistics. We then conducted a three-way fully factorial ANOVA, with main effects season, tidal phase, and location type. Post-hoc analyses were conducted with Tukey HSD test, with Bonferroni-corrected p-values (STATA v 15.1). We further analyzed the effects of site, season, tide, and marsh location on short-term sediment deposition using regression tree analysis (rpart, R version 3.1.0). Over-fitted trees were pruned using k fold cross-validation. To next assess the effects of marsh location type on total organic material deposited over 24 h (surface) and percent organic material (surface and to 5 cm depth), we ran three separate one-way ANOVAs. Post-hoc analyses were again conducted with Tukey HSD tests, with Bonferroni-corrected p-values (STATA v 15.1). For Experiment 1, we assessed the fate of mussel biodeposits, both previously settled and newly ejected, with a one-way ANOVA with location (creekhead versus platform) as the main effect. Finally, for Experiment 2, to assess whether cordgrass and mussel aggregations significantly affected sediment deposition over the one-month experimental deployment, we used multiple regression analysis with cordgrass biomass and mussel biomass as predictor variables for sediment biomass collected in each zone (STATA v 15.1; Table S1).Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Combating the unseen enemy of yam

    Bjornlund, V., Bjornlund, H. & Van Rooyen, A. F. Int. J. Water Resour. Dev. 36 (Suppl. 1), S20–S53 (2020).World Population Prospects: the 2017 Revision (United Nations Department of Economic and Social Affairs Population Division, 2017).Affokpon, A. et al. In 69th International Symposium on Crop Protection (2017).Adesiyan, S. O. & Odihirin, R. A. Nematologica 24, 132–134a (1978).Article 

    Google Scholar 
    Gao, Q. K. Chinese Vegetables 5, 24–25 (1992).
    Google Scholar 
    Pirzada, T. et al. Nat. Food https://doi.org/10.1038/s43016-023-00695-z (2023).Article 

    Google Scholar 
    Hague, N. G. M. Nematodes, The Unseen Enemy: A Guide to Nematode Damage (Du Pont, 1980).Zasada, I. A. et al. Annu. Rev. Phytopathol. 48, 311–328 (2010).Article 
    CAS 

    Google Scholar 
    Ochola, J. et al. Nat. Sustain. 5, 425–433 (2022).Article 

    Google Scholar 
    Pirzada, T. et al. ACS Sustain. Chem. Eng. 8, 6590–6600 (2020).Article 
    CAS 

    Google Scholar 
    Cao, J. et al. Cellulose 23, 673–687 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    The case for the reintroduction of cheetahs to India

    Gopalaswamy, A. M. et al. Nat. Ecol. Evol. 6, 1794–1795 (2022).Article 
    PubMed 

    Google Scholar 
    Sandom, C., Donlan, C. J., Svenning, J. C. & Hansen, D. in Key Topics In Conservation Biology 2 (eds MacDonald, D. W. & Willis, K. J.) 430–451 (2013).Ripple, W. J. et al. Science 343, 1241484 (2014).Article 
    PubMed 

    Google Scholar 
    Jhala, Y. V., Ranjitsinh, M. K., Bipin, C. M. & Yadav, S. P. Action Plan For Introduction Of Cheetah In India (2021).Divyabhanusinh & Kazami J. Bombay Nat. Hist. Soc. 116, 22–43 (2019).
    Google Scholar 
    IUCN/SSG. Guidelines For Reintroductions And Other Conservation Translocations IUCN. Ecological Applications 20 (IUCN Species Survival Commission, 2013).Prost, S. et al. Mol. Ecol. 31, 4208–4223 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buk, K. G., van der Merwe, V. C., Marnewick, K. & Funston, P. J. Conservation Of Severely Fragmented Populations: Lessons From The Transformation Of Uncoordinated Reintroductions Of Cheetahs (Acinonyx jubatus) Into A Managed Metapopulation With Self-Sustained Growth. Biodiversity And Conservation 27 (Springer Netherlands, 2018).Scientific Authority of South Africa. Gov. Gaz. Repub. South Africa 677, 1–4 (2021).Walker, E. H., Verschueren, S., Schmidt-Küntzel, A. & Marker, L. Oryx 56, 495–504 (2022).Article 

    Google Scholar 
    Tordiffe, A. S. W. et al. Disease Risk Analysis For Introduction Of Cheetahs (Acinonyx jubatus) To India (2022).Brugière, D., Chardonnet, B. & Scholte, P. Trop. Conserv. Sci. 8, 513–527 (2015).Article 

    Google Scholar 
    Jhala, Y. V. et al. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00312 (2019).Jhala, Y. et al. People Nat. 3, 281–293 (2021).Article 

    Google Scholar 
    Hayward, M. W., O’Brien, J. & Kerley, G. I. H. Biol. Conserv. 139, 219–229 (2007).Article 

    Google Scholar 
    Ogutu, J. O., Owen-Smith, N., Piepho, H. P. & Said, M. Y. J. Zool. 285, 99–109 (2011).Article 

    Google Scholar 
    Houser, A. M., Somers, M. J. & Boast, L. K. J. Zool. 278, 108–115 (2009).Article 

    Google Scholar  More