Effects of sediment replenishment on riverbed environments and macroinvertebrate assemblages downstream of a dam
Study areaThe study was conducted along the Agi-gawa River, a tributary of the Kiso-gawa River system in central Japan (35°23 42″–35°26 49″N, 137°25 12″–137°28 01″E; Fig. 1), with the Agi-gawa Dam (110 km from the river mouth, 418 m a.s.l.). The Agi-gawa River is a 3rd to 4th-order river with a naturally sand-rich bed derived from weathered granite that characterizes the local geology36. The Agi-gawa Dam (35°25 32″N, 137°25 55″E) had begun operations in 1990; it is a 102 m high rockfill dam with a catchment area of 82 km2, a storage capacity of 4.8 × 107 m3, a mean depth of ~ 45 to 50 m at the dam site, and a hydraulic residence time of 71 days. Although three small sub-dams at the upstream end of the impoundment trap particulates, the sediment speed in the reservoir has been 1,000,000 m3 for 24 years. The dam serves multiple purposes, including flood control, industrial and urban water supply, and the maintenance of baseflow. Further information on the Agi-gawa Dam is available in Katano et al.37.Figure 1The study area shows six study reaches in three stream segments along the Agi-gawa River and Iinuma-gawa Stream, Gifu Prefecture, Japan. Gray circles denote reaches, which are numbered from upstream to downstream within each segment: UD1 and UD2 are upstream of the dam, DD1 and DD2 are downstream of the dam, whilst TR1 and TR2 are in the tributary. The two black circles denote the sediment replenished reaches (S1 and S2). The three small rectangles at the upstream ends of the impoundment are sub-dams, constructed to reduce the inputs of particulates to the impoundment. This map is based on the Digital Topographic Map 25,000 published by Geospatial Information Authority of Japan.Full size imageSediment replenishment and sampling sitesSediment replenishment was undertaken 0.8 and 1.8 km downstream of the Agi-gawa Dam (S1 and S2, Fig. 1) on February 16 and 27, 2005. A total of 1,200 m3 of sediment (D50 ≈ 0.6 mm; mainly sand) was mined from the upstream sub-dams and transported to S1 and S2. We estimate that this constituted 0.086% of the annual sedimentation in the Agi-gawa Dam (e.g., in 2007, replenished sediment per year × 100/sedimentation in the reservoir). The sediment (800 and 400 m3) was replenished at high-flow banks in both sites. The replenished sediment was gradually washed during the high flows at the end of June (visual observation by dam administrators) (Fig. 2). We confirmed that this replenished sediment remained on both banks in March, and no sediments remained on both banks in early July.Figure 2(a) Precipitation (mm·d) (b) mean inflow to the impoundment per day (m3·s-1); and (c) mean outflow from the Agi-gawa Dam per day (m3·s-1). The vertical broken line indicates the study period. Note that the y-axes for (b) and (c) have a logarithmic scale.Full size imageField sampling was conducted twice between March 15 and 18, 2005, prior to sediment flushing and between August 22 and 24, 2005, following sediment flushing [7 weeks after the end of the sediment drift out (Fig. 2)]. The later sampling date was scheduled to investigate the continuous effects (i.e., not immediate effects) of replenished sediment on the riverbed environment and macroinvertebrate assemblages before the replenished sediment had completely been transported further downstream from S1 and S2.Three study segments (length: 1–2 km each) were selected: (1) upstream of the dam and impounded area (UD); (2) downstream of the dam (DD); and (3) in the tributary (TR). These sites were along a 6.0 km stretch of the Agi-gawa River and a 1.0 km stretch of the Iinuma-gawa Stream (catchment area = 24 km2); the latter is a tributary that flows into the Agi-gawa River 2.7 km, downstream of the dam (Fig. 1, Table 1). Each segment contained two study reaches (six reaches in total), and each study reach was 160 m long with several pool–riffle sequences; all reaches were > 300 m apart. DD1 and DD2 were located immediately downstream of the sediment-displaced banks (S1 and S2; 100 m upstream of DD1 and DD2, respectively). Measurements at the two reaches within the same segment were completed on the same day, and the reaches were surveyed in an upstream direction. The dominant land use along the study area was paddy fields, with sparse riparian forest.Table 1 General characteristics of the three study segments and two seasons.Full size tableAlthough the most suitable reference site for DD is the DD prior to dam construction, we were unable to investigate the site prior to dam construction. Therefore, we treated the reference sites as sites that were less affected by the dam than DD on the present day. Katano et al.37 indicated that the difference between the TR and UD sites was smaller than that between DD and UD/TR sites in terms of biota and geology. However, UD was characterized by a wider channel and higher discharge than TR, due to differences in their catchment areas (Table 1). As we did not have a definitive reference, we treated both UD and TR as reference sites (see “Statistical analysis” section). Therefore, how DD in March and DD in August is different from UD and TR can be interpreted as the effect of sediment reduction.Physical environment and water qualitySix riffles were selected at each study reach, and a sampling location (50 × 50 cm quadrat) was established in the mid-channel area of each riffle. Prior to invertebrate sampling, physical environmental variables were measured.Substrate coarseness was measured by gently floating a Plexiglas observation box (50 × 50 × 10 cm deep) divided into four grid squares (25 × 25 cm) on the surface water such that the grid had projected onto the streambed. The size of the substrate material was coded based on the intermediate-axis length: 1 = sand (particles 16 mm) and sieved through a 0.25 mm mesh sieve. Sieved samples and substrate material smaller than pebbles were mixed in a container and preserved in 5% formalin in the field.The material in each container was later divided into two size fractions using 1-and 0.25 mm mesh sieves. To simplify the sorting process, all material retained in the 0.25 mm sieve was mixed and divided into 2n subsamples (maximum n = 32) using a splitter (Idea Co., Tokyo, Japan), following the method described by Vinson and Hawkins43. All macroinvertebrates in subsamples in the 1 mm sieve were counted and identified to the lowest taxonomic level possible, usually to genus or species level using the taxonomic keys of Kawamura and Ueno44, Merritt and Cummins34, Kathman and Brinkhurst45, Kawai and Tanida35, and Torii46.Macroinvertebrate taxa were also classified into five functional feeding groups (FFGs) according to Kawamura and Ueno44, Merritt and Cummins34, Kathman and Brinkhurst45, Kawai and Tanida (2005)35, and Torii46. FFGs were defined as collector-filterers, collector-gatherers, predators, scrapers, and shredders. If a species belonged to ≥ 2 FFGs, the number of individuals was apportioned across the FFGs. We also counted the number of burrowers (#burrowers), inorganic case-bearing caddisflies (#ICB), and net-spinners (#net spinners) of macroinvertebrate assemblages according Kawamura and Ueno44, Merritt and Cummins34, Kathman and Brinkhurst45, Kawai and Tanida35, and Torii46 (see Supplementary Table S1). This classification was carried out as such life-habit traits are important for surviving in a regulated river containing reduced quantities of sand and gravel on the riverbed37. The Chironomidae family was excluded in the life-habit analysis as they consist of various life forms. Once all invertebrates were removed, dry mass (mg m−2) and ash-free dry mass (AFDM, mg m−2) of benthic coarse particulate organic matter (BCPOM, > 1 mm), and benthic fine particulate organic matter (BFPOM, 0.25 mm) were obtained by drying in an oven at 60 °C for 1 day and combusting in a muffle furnace at 550 °C for 4 h. BCPOM and BFPOM were calculated based on the difference between the dry mass and the AFDM.The total number of invertebrate individuals and the AFDM of BFPOM in each sample were estimated by multiplying by the corresponding 2n value. The number of taxa and density of invertebrates in each sample were calculated as the sum of the values in both size fractions. Additionally, we determined Shannon’s diversity index (H), Simpson’s evenness index, and the percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT)47. A sample from UD2 in March had been lost and therefore could not be included in the analyses.Periphyton was sampled from cobbles adjacent to each sampling location. Periphyton was removed from a 5 × 5 cm area on the upper surface of each cobble with a toothbrush. Each sample was placed in a separate container with 250 mL of water. Within 24 h of sample collection, a subsample of the well-mixed content in each container was filtered using a glass-fiber filter (GF/C; Whatman Co., Maidstone, UK). Each filter was placed in a separate vial with 20 mL of 99.5% ethanol and stored in a dark refrigerator at 4 °C for 24 h. The extracted pigments were measured using a spectrophotometer (U-1800; Shimadzu Co., Kyoto, Japan), following the method of Lorenzen48.Analysis of case materials of an inorganic case-bearing caddisflyWe compared the particle size structure of replenished sediment, riverbed sediment, and case materials for case-bearing caddisfly. The replenished sediment was directly sampled in a 1 L polyethylene jar at the upstream replenished bank (S1) on March 16, 2005 (Fig. 1). Riverbed sediment was sampled at two stations; 100 m upstream of S1, and 100 m upstream of DD1 between August 22 and 24, 2005. At each station of the river, a metallic narrow cup (200 mL) with a lid was pushed into a vacancy between the cobbles, which had been randomly selected, and fine sediments (up to small gravel) in the vacancies were sampled by closing the lid underwater. Sampling was carried out three times (i.e., three different vacancies in the cobbles), and subsamples were pooled for measurement. The replenished and riverbed sediment was combusted at 550 °C for 2 h in a muffle furnace to remove organic contamination. Combusted samples were separated with eight sieves with a mesh size range of 0.075–9.5 mm (JIS A 1204). Each fraction was weighed, and the grain size accumulation curve of each type of sediment and its D50 were obtained.In a macroinvertebrate sample at DD1 between August 22 and 24, 2005, ten individuals from two case-bearing caddisfly larvae, Glossosoma sp. and Gumaga orientalis, which were prevalent at DD1 during this period (see Results), were randomly selected from the formalin-fixed sample. The case was carefully removed from the larvae and combusted as described above for the replenished and riverbed sediment. The number of case material grains was measured using a dissection microscope.Statistical analysesWe described results based on two main assumptions: (1) the DD in March is the dam-affected reach (cf. unregulated reaches UD and TR), and (2) the changes in DD from March to August were mainly a result of sediment replenishment. In the statistical analyses, the p criterion (⍺) was set at 0.05.To consider the effects of the segment, replicate reach, and season on variables, nested multivariate analysis of variance (MANOVA) was used to test whether any measured variables at the riffle scale differed between segments (UD, DD, and TR). Three segments and two replicate reaches were nested within each season (March and August) and segment (i.e., Season/Segment/Reach), whereby measurements within each reach were treated as subsamples. In the MANOVA, we also consider the interactions of the variances to interpret the interactions among the sampling segments and seasons to consider the independent effects on the factors.To perform MANOVA, we assumed that temporal variability was greater than spatial variability within each reach for variables measured over 24 h (e.g., water quality), and the opposite would hold true for variables measured only once (e.g., macroinvertebrates). Therefore, subsamples within each reach were either spatially or temporally replicated, depending on the variable type. Temporal replicates (four samples collected every 6 h) were treated as a repeated factor (time factor). A nested MANOVA was used for variables quantified once at each location (e.g., macroinvertebrates), and nested repeated-measures MANOVA (rm-MANOVA) were used for variables quantified over a 24 h period at each reach (e.g., water quality). When a significant difference was detected by MANOVA with non-significant interactions, each variable was tested separately with a nested ANOVA for variable groups once at each location or the nested rm-ANOVA for repeated-measured variables, as appropriate for the particular variable. The risk of inflating Type 1 errors for the ANOVA was reduced using Bonferroni adjustments.These MANOVA and ANOVA tests were conducted with R version 3.6.049. The residuals of each variable in each MANOVA and ANOVA model were verified using the Shapiro–Wilk normality test prior to analyses, and normality was improved using arcsine(x) or log (x + 1) transformation when appropriate.Tukey’s multiple comparison test in a one-way ANOVA model (Season/Segment/Reach) was used for comparisons between segments. Any significant changes in values for variables from UD to DD were interpreted as the effects of the dam based on the assumption that conditions in UD and DD were similar prior to dam construction; this was because replenished sediment had not been supplied in March (see before). However, UD may be unsuitable as a reference site compared with TR as the former may be at least partly affected by the dam. This may particularly be the case for benthic invertebrates, such as the interruption of the upstream flight of adult females50. Therefore, UD and TR were treated as reference sites for reservoir and tributary effects, respectively. This was because both were unaffected by the dam, and sediment replenishment as tributaries may function as sites for resource recovery for the dam-affected mainstem of the river37,51,52, despite differing watershed areas. Therefore, the similarity of variables between the TR and UD sites was statistically confirmed such that they could be treated as reference sites. As such, the recovery from March to August could reliably demonstrate the effect of sediment replenishment. For example, although the value at DD differed from that at TR and/or UD in March, it was similar to that at UD and/or TR in August.Multivariate analyses were conducted using the R “vegan” package version 2.5.6 to compare invertebrate assemblage structures between segments. Bray–Curtis coefficients based on species abundance were used to calculate a dissimilarity matrix, and dissimilarities between UD and DD, and between TR and DD in each season were tested using two-way ANOVA and Tukey post-hoc tests.Macroinvertebrate assemblage organization in relation to environmental gradients was analyzed using redundancy analysis (RDA) with the “rda” function of “vegan” package. This was because the preliminary analysis using detrended correspondence analysis (DCA) showed that the gradient lengths of DCA were More