1.Pivokonsky, M. et al. Occurrence of microplastics in raw and treated drinking water. Sci. Total. Environ. 643, 1644–1651 (2018).ADS
CAS
PubMed
Article
Google Scholar
2.Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
3.Courtene-Jones, W., Quinn, B., Gary, S. F., Mogg, A. O. & Narayanaswamy, B. E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the rockall trough, North Atlantic Ocean. Environ. Pollut. 231, 271–280 (2017).CAS
PubMed
Article
Google Scholar
4.Koongolla, J. B. et al. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environ. Pollut. 258, 113734 (2020).CAS
PubMed
Article
Google Scholar
5.Qu, M. et al. Nanopolystyrene at predicted environmental concentration enhances microcystin-LR toxicity by inducing intestinal damage in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 183, 109568 (2019).CAS
PubMed
Article
Google Scholar
6.Li, Y. et al. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma). J. Hazard. Mater. 385, 121586 (2020).CAS
PubMed
Article
Google Scholar
7.Shao, H. & Wang, D. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans. Environ. Pollut. 258, 113649 (2020).CAS
PubMed
Article
Google Scholar
8.Sørensen, L., Rogers, E., Altin, D., Salaberria, I. & Booth, A. M. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environ. Pollut. 258, 113844 (2020).PubMed
Article
CAS
Google Scholar
9.Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ. Sci. Technol. 47, 11278–11283 (2013).ADS
CAS
PubMed
Article
Google Scholar
10.Sun, X. et al. Toxicities of polystyrene nano-and microplastics toward marine bacterium Halomonas alkaliphila. Sci. Total. Environ. 642, 1378–1385 (2018).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
11.Ivask, A. et al. Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. Environ. Sci. Technol. 46, 2398–2405 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
12.Heinlaan, M. et al. Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total. Environ. 707, 136073 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
13.Miyazaki, J. et al. Bacterial toxicity of functionalized polystyrene latex nanoparticles toward Escherichia coli. Adv. Mat. Res. 699, 672–677 (2013).CAS
Google Scholar
14.Kwon, Y.-N. & Leckie, J. O. Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. J. Membr. Sci. 282, 456–464 (2006).CAS
Article
Google Scholar
15.Ateia, M., Kanan, A. & Karanfil, T. Microplastics release precursors of chlorinated and brominated disinfection byproducts in water. Chemosphere 251, 126452 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
16.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Mammo, F., Amoah, I., Gani, K., Pillay, L., Ratha, S., Bux, F. & Kumari, S. Microplastics in the environment: Interactions with microbes and chemical contaminants. Sci. Total. Environ. 743, 140518 (2020).18.Engler, R. E. The complex interaction between marine debris and toxic chemicals in the ocean. Environ. Sci. Technol. 46, 12302–12315 (2012).ADS
CAS
PubMed
Article
Google Scholar
19.Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L.-A. An emerging matter of environmental urgency. In Microplastic contamination in aquatic environments (ed. Zeng, E.) 379–399 (Elsevier, 2018).
Google Scholar
20.Sumampouw, O. J. & Risjani, Y. Bacteria as indicators of environmental pollution. Environment 51, 52 (2014).
Google Scholar
21.Hassan, S. H. et al. Real-time monitoring of water quality of stream water using sulfur-oxidizing bacteria as bio-indicator. Chemosphere 223, 58–63 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
22.Bowdre, J. H. & Krieg, N. R. Water quality monitoring: bacteria as indicators (Virginia Water Resources Research Center, 1974).
Google Scholar
23.Leusch, F. D. et al. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50, 420–431 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Federation, Water Environmental and American Public Health Association (APHA). Standard methods for the examination of water and wastewater, Vol. 2 , Washington, DC, USA, (1915).25.Belkin, S. et al. A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res. 31, 3009–3016 (1997).CAS
Article
Google Scholar
26.Bhuvaneshwari, M. et al. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. Water Res. 164, 114910 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Bianchi, E. et al. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil. Braz. J. Biol. 75, 68–74 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Melamed, S. et al. A printed nanolitre-scale bacterial sensor array. Lab Chip 11, 139–146 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Jia, K., Eltzov, E., Toury, T., Marks, R. S. & Ionescu, R. E, A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol. Environ. Saf. 84, 221–226 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Kim, B. C. & Gu, M. B, A bioluminescent sensor for high throughput toxicity classification. Biosens. Bioelectron 18, 1015–1021 (2003).CAS
PubMed
Article
Google Scholar
31.Gu, M. B., Min, J. & Kim, E. J, Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere 46, 289–294 (2002).ADS
CAS
PubMed
Article
Google Scholar
32.Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A. P. & Heringa, M. B, Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?. Anal Bioanal Chem 4, 915–929 (2011).Article
CAS
Google Scholar
33.Manivannan, B. et al. Water toxicity evaluations: comparing genetically modified bioluminescent bacteria and CHO cells as biomonitoring tools. Ecotoxicol. Environ. Saf. 203, 110984 (2020).CAS
PubMed
Article
Google Scholar
34.Gambardella, C. et al. Microplastics do not affect standard ecotoxicological endpoints in marine unicellular organisms. Mar. Pollut. Bull. 143, 140–143 (2019).CAS
PubMed
Article
Google Scholar
35.Magnusson, K. & Norén, F. Screening of microplastic particles in and down-stream a wastewater treatment plant (IVL Swedish Environmental Research Institute, 2014).
Google Scholar
36.Talvitie, J. et al. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci. Technol. 72, 1495–1504 (2015).CAS
PubMed
Article
Google Scholar
37.Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 91, 174–182 (2016).CAS
PubMed
Article
Google Scholar
38.Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 5, 592–599 (2015).Article
CAS
Google Scholar
39.HELCOM, 2014. Baltic Marine Environment Protection Commission, Preliminary study on Synthetic microfibers and particles at a municipal waste water treatment plant, BASE project 2012–2014.40.Lares, M., Ncibi, M. C., Sillanpää, M. & Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133, 236–246 (2018).CAS
PubMed
Article
Google Scholar
41.Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).ADS
CAS
PubMed
Article
Google Scholar
42.Garside, M. Global plastic production from 1950 to 2018. Statista. Available online at: https://www.statista.com/statistics/282732/global-production-ofplastics-since-1950 (2019).43.Jang, M. et al. H, Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environ Pollut. 231, 785–794 (2017).CAS
PubMed
Article
Google Scholar
44.De-la-Torre, G. E., Dioses-Salinas, D. C., Pizarro-Ortega, C. I. & Saldaña-Serran, M. Global distribution of two polystyrene-derived contaminants in the marine environment: A review. Mar. Pollut. Bull. 161, 111729 (2020).CAS
PubMed
Article
Google Scholar
45.Zitko, V. Expanded polystyrene as a source of contaminants. Mar. Pollut. Bull 10, 584–585 (1993).Article
Google Scholar
46.Hoerter, J. & Eisenstark, A. Synergistic killing of bacteria and phage by polystyrene and ultraviolet radiation. Environ. Mutagen. 12, 261–264 (1988).CAS
Article
Google Scholar
47.Miao, L. et al. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environ. Pollut. 255, 113300 (2019).CAS
PubMed
Article
Google Scholar
48.Rupe, L. A., Tuthill, L. B. & Leikhim, J. W. Thickened bleach compositions for treating hard-to-remove soils. U.S. Patent No. 4116851. (1978).49.Merritt, K., Hitchins, V. M. & Brown, S. A. Safety and cleaning of medical materials and devices. J. Biomed. Mater. Res. 53, 131–136 (2000).CAS
PubMed
Article
Google Scholar
50.https://www.dutscher.com/data/pdf_guides/en/CCTPPA.pdf Material Pour Laboratories ET Industries, Dominique Dutscher.51.Messing, A. & Sela, Y. SHAFDAN (Greater Tel Aviv Wastewater Treatment Plant): recent upgrade and expansion. Water Pract. Technol 2, 288–297 (2016).Article
Google Scholar
52.Eldad Spivak, Engineering Firm LTD., Raanana wastewater facility, Israel. http://www.spivak.co.il/en/projects/raanana-wastewater-facility.53.Balasha Jalon, Infrastructure systems LTD., Karmiel wastewater treatment plant- First stage- Israel. http://bj-is.com/karmiel-wwtp.54.Heinlaan, M. et al. & Kahru, A, Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total Environ. 707, 136073 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
55.Snead, M. C. Benefits of maintaining a chlorine residual in water supply systems, 600/2-80-0100 (US Environmental Protection Agency, 1980).56.Harp, D.L. Current technology for chlorine analysis in water and wastewater. Technical Information Series—Booklet No.17. Hach Company (2002).57.4500-Cl CHLORINE (RESIDUAL). Standard Methods For the Examination of Water and Wastewater, 23rd (2018).58.Engelhardt, T. & Malkov, V. B. Chlorination, chloramination and chlorine measurement 18–20 (HACH, 2015).
Google Scholar
59.https://www.polyfluor.nl/en/chemical-resistance/ptfe/. Specialist in PTFE, Engineering and Manufacturing Service, Polyfluor.60.Vollmer, A. C., Belkin, S., Smulski, D. R., Van Dyk, T. K. & LaRossa, R. A. Detection of DNA damage by use of Escherichia coli carrying recA’: lux, uvrA’: lux, or alkA’: lux reporter plasmids. Appl. Environ. Microbiol. 63, 2566–2571 (1997).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Van Dyk, T. K. et al. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 60, 1414–1420 (1994).PubMed
PubMed Central
Article
Google Scholar
62.Eltzov, E., Marks, R. S., Voost, S., Wullings, B. A. & Heringa, M. B. Flow-through real time bacterial biosensor for toxic compounds in water. Sensors Actuators B: Chem. 142, 11–18 (2009).CAS
Article
Google Scholar
63.Harpaz, D. et al. Measuring artificial sweeteners toxicity using a bioluminescent bacterial panel. Molecules 23, 2454 (2018).PubMed Central
Article
CAS
Google Scholar
64.Thiagarajan, V., Iswarya, V., Seenivasan, R., Chandrasekaran, N. & Mukherjee, A. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat. Toxicol. 207, 208–216 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Kelkar, V. P. et al. Chemical and physical changes of microplastics during sterilization by chlorination. Water Res. 163, 114871 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
66.Zhang, X. et al. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere 242, 125227 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
67.Yan, M., Roccaro, P., Fabbricino, M. & Korshin, G. V. Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere 191, 477–484 (2018).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
68.Hüffer, T. & Hofmann, T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ. Pollut. 214, 194–201 (2016).PubMed
Article
CAS
PubMed Central
Google Scholar More