More stories

  • in

    Angiosperm pollinivory in a Cretaceous beetle

    1.Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B 365, 2959–2971 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Huang, D.-Y. et al. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci. Rep. 6, 23004 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2, 408 (2019).4.Bao, T., Wang, B., Li, J. & Dilcher, D. Pollination of Cretaceous flowers. Proc. Natl Acad. Sci. USA 116, 24707–24711 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Peris, D. et al. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience 23, 100913 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Ahrens, D., Schwarzer, J. & Vogler, A. P. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B 281, 20141470 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon, 1979).9.Poinar, G., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).
    Google Scholar 
    10.Davies, E. H. Palynological Analysis and Age Assignments of Two Burmese Amber Sample Sets (Branta Biostratigraphy for Leeward Capital, 2001).11.Barrón, E. et al. Palynology of Aptian and upper Albian (lower Cretaceous) amber-bearing outcrops of the southern margin of the Basque-Cantabrian basin (northern Spain). Cretac. Res. 52, 292–312 (2015).Article 

    Google Scholar 
    12.Azar, D., Dejax, J. & Masure, E. Palynological analysis of amber-bearing clay from the lower Cretaceous of central Lebanon. Acta Geol. Sin. Engl. Ed. 85, 942–949 (2011).Article 

    Google Scholar 
    13.Barrón, E., Comas-Rengifo, M. J. & Elorza, L. Contribuciones al estudio palinológico del Cretácico Inferior de la Cuenca Vasco-Cantábrica: los afloramientos ambarigenos de Peñacerrada (España). Coloq. Paleontol. 52, 135–156 (2001).
    Google Scholar 
    14.Cai, C. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 20182175 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Mao, Y. Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).Article 

    Google Scholar 
    16.Shi, G. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).Article 

    Google Scholar 
    17.Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 116, 11345–11350 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Jelínek, J. & Cline, A. R. in Handbook of Zoology, Arthropoda: Insecta, Coleoptera, Beetles Morphology and Systematics (eds Leschen, R. A. B. et al.) Vol. 2 386–390 (Walter De Gruyter, 2010).19.Hisamatsu, S. A review of the Japanese Kateretidae fauna (Coleoptera: Cucujoidea). Acta Entomol. Musei Natl Pragae 36, 551–585 (2011).
    Google Scholar 
    20.Peris, D. & Jelínek, J. Atypical short elytra in Cretaceous short-winged flower beetles (Coleoptera: Kateretidae). Palaeoentomology 2, 505–514 (2019).Article 

    Google Scholar 
    21.Peris, D. & Jelínek, J. Syninclusions of two new species of short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Kachin amber (Myanmar). Cretac. Res. 106, 104264 (2020).Article 

    Google Scholar 
    22.Poinar, G. & Brown, A. E. Furcalabratum burmanicum gen. et sp. nov., a short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Myanmar amber. Cretac. Res. 84, 240–244 (2018).Article 

    Google Scholar 
    23.Kirejtshuk, A. G. New species of nitidulid beetles (Coleoptera, Nitidulidae) of the Australian region. Entomol. Obozr. 65, 559–573 (1986).
    Google Scholar 
    24.Timerman, D., Greene, D. F., Ackerman, J. D., Kevan, P. G. & Nardone, E. Pollen aggregation in relation to pollination vector. Int. J. Plant Sci. 175, 681–687 (2014).Article 

    Google Scholar 
    25.Thomson, P. W. & Pflug, H. D. Pollen und sporen des mitteleuropäischen Tertiärs. Palaeontogr. Abt. B 94, 1–138 (1953).
    Google Scholar 
    26.Tekleva, M. V. & Maslova, N. P. A diverse pollen assemblage found on Friisicarpus infructescences (Platanaceae) from the Cenomanian–Turonian of Kazakhstan. Cretac. Res. 57, 131–141 (2016).Article 

    Google Scholar 
    27.Takahashi, K. Upper Cretaceous and lower Paleogene microfloras of Japan. Rev. Palaeobot. Palynol. 5, 227–234 (1967).Article 

    Google Scholar 
    28.Nadel, H., Peña, J. E. & Peña, J. E. Identity, behavior, and efficacy of nitidulid beetles (Coleoptera: Nitidulidae) pollinating commercial Annona species in Florida. Environ. Entomol. 23, 878–886 (1994).Article 

    Google Scholar 
    29.Sakai, S. A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J. Plant Res. 115, 0161–0168 (2002).Article 

    Google Scholar 
    30.Williams, G. & Adam, P. A review of rainforest pollination and plant–pollinator interactions with particular reference to Australian subtropical rainforests. Aust. Zool. 29, 177–212 (1994).Article 

    Google Scholar 
    31.Klavins, S. D., Kellogg, D. W., Krings, M., Taylor, E. L. & Taylor, T. N. Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol. Ecol. Res. 7, 479–488 (2005).
    Google Scholar 
    32.Chadwick, C. E., Stevenson, D. W. & Norstog, K. J. The roles of Tranes lyterioides and T. sparsus Boh. (Col., Curculiodidae) in the pollination of Macrozamia communis (Zamiaceae). In The Biology, Structure, and Systematics of the Cycadales: Proc. CYCAD 90, the 2nd International Conference on Cycad Biology (eds. Stevenson, D. W. & Norstog, K. J.) 77–88 (Palm & Cycad Societies of Australia, 1993).33.Post, D. C., Page, R. E. & Erickson, E. H. Honeybee (Apis mellifera L.) queen feces: source of a pheromone that repels worker bees. J. Chem. Ecol. 13, 583–591 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Weiss, H. B. & Boyd, W. M. Insect feculæ. J. N. Y. Entomol. Soc. 58, 154–168 (1950).
    Google Scholar 
    35.Lancucka-Srodoniowa, M. Tertiary coprolites imitating fruits of the Araliaceae. Acta Soc. Bot. Pol. 33, 469–473 (1964).Article 

    Google Scholar 
    36.Scott, A. C. Trace fossils of plant–arthropod interactions. Short Courses Paleontol. 5, 197–223 (1992).Article 

    Google Scholar 
    37.Weiss, H. B. & Boyd, W. M. Insect feculæ, II. J. N. Y. Entomol. Soc. 60, 25–30 (1952).
    Google Scholar 
    38.Parker, F. D., Tepedino, V. J. & Bohart, G. E. Notes on the biology of a common sunflower bee, Melissodes (Eumelissodes) agilis Cresson. J. N. Y. Entomol. Soc. 89, 43–52 (1981).
    Google Scholar 
    39.Sarzetti, L. C., Labandeira, C. C. & Genise, J. F. Reply to: Melittosphex (Hymenoptera: Melittosphecidae), a primitive bee and not a wasp. Palaeontology 52, 484 (2008).
    Google Scholar 
    40.Ohl, M. & Engel, M. S. Die Fossilgeschichte der Bienen und ihrer nächsten Verwandten (Hymenoptera: Apoidea). Denisia 20, 687–700 (2007).
    Google Scholar 
    41.Pant, D. D. & Singh, R. Preliminary observations on insect–plant relationships in Allahabad plants of Cycas. Palms Cycads 32, 10–14 (1990).
    Google Scholar 
    42.Labandeira, C. C. The paleobiology of pollination and its precursors. Paleontol. Soc. Pap. 6, 233–270 (2000).Article 

    Google Scholar 
    43.Procheş, Ş. & Johnson, S. D. Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am. J. Bot. 96, 1722–1730 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Tarno, H. et al. Types of frass produced by the ambrosia beetle Platypus quercivorus during gallery construction, and host suitability of five tree species for the beetle. J. For. Res. 16, 68–75 (2011).Article 

    Google Scholar 
    45.Friis, E. M., Pedersen, K. R. & Crane, P. R. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39, 226–239 (2000).Article 

    Google Scholar 
    46.Nambudiri, E. M. V. & Binda, P. L. Dicotyledonous fruits associated with coprolites from the upper Cretaceous (Maastrichtian) Whitemud Formation, southern Saskatchewan, Canada. Rev. Palaeobot. Palynol. 59, 57–66 (1989).Article 

    Google Scholar 
    47.Lupia, R., Herendeen, P. S. & Keller, J. A. A new fossil flower and associated coprolites: evidence for angiosperm–insect interactions in the Santonian (Late Cretaceous) of Georgia, U.S.A. Int. J. Plant Sci. 163, 675–686 (2002).Article 

    Google Scholar 
    48.Zhang, L. et al. The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Coiro, M., Doyle, J. A. & Hilton, J. How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol. 223, 83–99 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Liu, Z.-J., Huang, D., Cai, C. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Friis, E. M. & Pedersen, K. R. in Palynology: Principles and Applications (ed. Jansonius, J.) 409–426 (American Association of Stratigraphic Palynologists Foundation, 1996).52.Schönenberger, J. & Friis, E. M. Fossil flowers of ericalean affinity from the Late Cretaceous of southern Sweden. Am. J. Bot. 88, 467–480 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.The Angiosperm Phylogeny Group et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).54.Peris, D. et al. False blister beetles and the expansion of gymnosperm–insect pollination modes before angiosperm dominance. Curr. Biol. 27, 897–904 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Cai, C. et al. Beetle pollination of cycads in the Mesozoic. Curr. Biol. 28, 2806–2812 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Global climate and nutrient controls of photosynthetic capacity

    1.De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).Article 

    Google Scholar 
    2.Smith, N. G. & Keenan, T. F. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least‐cost optimality theory. Global Change Biol. 26, 5202–5216 (2020).Article 

    Google Scholar 
    3.Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Wullschleger, S. D. Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 Species. J. Exp. Bot. 44, 907–920 (1993).CAS 
    Article 

    Google Scholar 
    5.Lloyd, J., Bloomfield, K., Domingues, T. F. & Farquhar, G. D. Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol. 199, 311–321 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    7.Ferreira Domingues, T. et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia 178, 659–672 (2015).PubMed Central 
    Article 

    Google Scholar 
    8.Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell Environ. 33, 959–980 (2010).CAS 
    Article 

    Google Scholar 
    9.Walker, A. P. et al. The relationship of leaf photosynthetic traits -VcmaxandJmax- to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evol. 4, 3218–3235 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Smith, N. G. et al. Global photosynthetic capacity is optimized to the environment. Ecol. Lett. 22, 506–517 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Givnish, T. J. On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Vol. 6 (Cambridge University Press, 1986).14.Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).Article 

    Google Scholar 
    15.Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Ali, A. A. et al. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geosci. Model Dev. 9, 587–606 (2016).Article 

    Google Scholar 
    17.Dewar, R. et al. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol. 217, 571–585 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Caldararu, S., Thum, T., Yu, L. & Zaehle, S. Whole-plant optimality predicts changes in leaf nitrogen under variable CO 2 and nutrient availability. New Phytol. 225, 2331–2346 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Wang, H. et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99, 500–500 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Wang, H. et al. Photosynthetic responses to altitude: an explanation based on optimality principles. New Phytol. 213, 976–982 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Lavergne, A. et al. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytol. 225, 2484–2497 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Fürstenau Togashi, H. et al. Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis. Biogeosciences 15, 3461–3474 (2018).Article 
    CAS 

    Google Scholar 
    25.Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 222, 768–784 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).Article 

    Google Scholar 
    27.Rogers, A. The use and misuse of V c,max in earth system models. Photosynth. Res. 119, 15–29 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481–495 (2017).CAS 
    Article 

    Google Scholar 
    29.Reich, P. B. & Schoettle, A. W. Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. Oecologia 77, 25–33 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Raaimakers, D., Boot, R. G. A., Dijkstra, P. & Pot, S. Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical rainforest trees. Oecologia 102, 120–125 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).CAS 
    Article 

    Google Scholar 
    32.Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Reich, P. B., Walters, M. B., Ellsworth, D. S. & Uhl, C. Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia 97, 62–72 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biol. 15, 976–991 (2009).Article 

    Google Scholar 
    36.Evans, J. R. & Clarke, V. C. The nitrogen cost of photosynthesis. J. Exp. Bot. 70, 7–15 (2018).Article 
    CAS 

    Google Scholar 
    37.Marschner, H. in Mineral Nutrition of Higher Plants, 405–435 (Elsevier, 1995).38.Niinemets, Ü., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol. 214, 1019–1032 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    40.Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Global Change Biol. 26, 2573–2583 (2020).Article 

    Google Scholar 
    41.Peng, Y., Bloomfield, K. J. & Prentice, I. C. A theory of plant function helps to explain leaf-trait and productivity responses to elevation. New Phytol. 226, 1274–1284, (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gvozdevaite, A. et al. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 38, 1912–1925 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Terrer, C. et al. Nitrogen and phosphorus constrain the CO 2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).CAS 
    Article 

    Google Scholar 
    44.Meir, P. et al. in Advances in Photosynthesis and Respiration, 89–105 (Springer International Publishing, 2017).45.Luo, X. & Keenan, T. F. Global evidence for the acclimation of ecosystem photosynthesis to light. Nat. Ecol. Evol. 4, 1351–1357 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).Article 

    Google Scholar 
    47.Lavergne, A., Sandoval, D., Hare, V. J., Graven, H. & Prentice, I. C. Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: insights from stable carbon isotope data. Global Change Biol. 26, 7158–7172 (2020).48.Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G. & Prentice, I. C. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. For. Meteorol. 182-183, 204–214 (2013).Article 

    Google Scholar 
    49.Zhou, S. et al. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Tree Physiol. 34, 1035–1046 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Katul, G., Manzoni, S., Palmroth, S. & Oren, R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot. 105, 431–442 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Manzoni, S. et al. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct. Ecol. 25, 456–467 (2011).Article 

    Google Scholar 
    52.Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biol. 17, 2134–2144 (2011).Article 

    Google Scholar 
    53.Crous, K. Y. et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Global Change Biol. 19, 3790–3807 (2013).Article 

    Google Scholar 
    54.Zhou, S.-X., Medlyn, B. E. & Prentice, I. C. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Ann. Bot. 117, 133–144 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Smith, N. G. & Dukes, J. S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Global Change Biol. 23, 4840–4853 (2017).Article 

    Google Scholar 
    56.Katul, G., Leuning, R. & Oren, R. Relationship between plant hydraulic and biochemical properties derived from a steady‐state coupled water and carbon transport model. Plant, Cell Environ. 26, 339–350 (2003).CAS 
    Article 

    Google Scholar 
    57.Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Kattge, J. & Knorr, W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell Environ. 30, 1176–1190 (2007).CAS 
    Article 

    Google Scholar 
    59.van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Quesada, M. et al. Succession and management of tropical dry forests in the Americas: review and new perspectives. For. Ecol. Manag. 258, 1014–1024 (2009).Article 

    Google Scholar 
    61.Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    63.Conroy, J. P., Smillie, R. M., Küppers, M., Bevege, D. I. & Barlow, E. W. Chlorophyll a fluorescence and photosynthetic and growth responses of pinus radiata to phosphorus deficiency, drought stress, and high CO2. Plant Physiol. 81, 423–429 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Loustau, D., Brahim, M. B., Gaudillere, J. P. & Dreyer, E. Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiol. 19, 707–715 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Warren, C. R. & Adams, M. A. Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster. Tree Physiol. 22, 11–19 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Bloomfield, K. J., Farquhar, G. D. & Lloyd, J. Photosynthesis–nitrogen relationships in tropical forest tree species as affected by soil phosphorus availability: a controlled environment study. Funct. Plant Biol. 41, 820–832 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Crous, K. Y., Ósvaldsson, A. & Ellsworth, D. S. Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant Soil 391, 293–305 (2015).CAS 
    Article 

    Google Scholar 
    68.Sivak, M. N. & Walker, D. A. Photosynthesis in vivo can be limited by phosphate supplY. New Phytol. 102, 499–512 (1986).CAS 
    Article 

    Google Scholar 
    69.Kiirats, O., Cruz, J. A., Edwards, G. E. & Kramer, D. M. Feedback limitation of photosynthesis at high CO2 acts by modulating the activity of the chloroplast ATP synthase. Funct. Plant Biol. 36, 893–901 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Ellsworth, D. S., Crous, K. Y., Lambers, H. & Cooke, J. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant, Cell Environ. 38, 1142–1156 (2015).CAS 
    Article 

    Google Scholar 
    71.Zhang, S. & Dang, Q. L. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings. Tree Physiol. 26, 1457–1467 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytol. 196, 1098–1108 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007).Article 

    Google Scholar 
    74.Kull, O. Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133, 267–279 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Field, C. & Mooney, H. in On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Evolutionary Constraints on Primary Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard Forest, August 1983 (Cambridge University Press, 1986).76.Niinemets, Ü. Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).Article 

    Google Scholar 
    77.Lloyd, J. et al. Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7, 1833–1859 (2010).CAS 
    Article 

    Google Scholar 
    78.Anten, N. P. R. Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann. Bot. 95, 495–506 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Alton, P. B. & North, P. Interpreting shallow, vertical nitrogen profiles in tree crowns: a three-dimensional, radiative-transfer simulation accounting for diffuse sunlight. Agric. For. Meteorol. 145, 110–124 (2007).Article 

    Google Scholar 
    80.Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 213, 22–42 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Tosens, T. & Laanisto, L. Mesophyll conductance and accurate photosynthetic carbon gain calculations. J. Exp. Bot. 69, 5315–5318 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Niinemets, Ü., Díaz-Espejo, A., Flexas, J., Galmés, J. & Warren, C. R. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J. Exp. Bot. 60, 2271–2282 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 9, 121–137 (1982).CAS 
    Article 

    Google Scholar 
    84.Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ. 24, 253–259 (2001).CAS 
    Article 

    Google Scholar 
    85.Bernacchi, C. J., Pimentel, C. & Long, S. P. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell Environ. 26, 1419–1430 (2003).CAS 
    Article 

    Google Scholar 
    86.Scafaro, A. P. et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. Global Change Biol. 23, 2783–2800 (2017).Article 

    Google Scholar 
    87.Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Team, R. C. R.: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).89.Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Bahar, N. H. A. et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytol. 214, 1002–1018 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    91.Bloomfield, K. J. et al. The validity of optimal leaf traits modelled on environmental conditions. New Phytol. 221, 1409–1423 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    92.Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M. & Turner, B. L. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).Article 

    Google Scholar 
    93.Xu, H. Y., et al. Predictability of leaf traits with climate and elevation: a case study in Gongga Mountain, China. Tree Physiol. https://doi.org/10.1093/treephys/tpab003 (2021).94.Walker, A. P., et al. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area (Oak Ridge National Laboratory Distributed Active Archive Center, 2014). https://doi.org/10.3334/ORNLDAAC/1224.95.Kattge, J. et al. TRY–a global database of plant traits. Global Change Biol. 17, 2905–2935 (2011).Article 

    Google Scholar 
    96.Collatz, G. J., Ribas-Carbo, M. & Berry, J. A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19, 519 (1992).Article 

    Google Scholar 
    97.Rogers, A., Serbin, S. P., Ely, K. S., Sloan, V. L. & Wullschleger, S. D. Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic. New Phytol. 216, 1090–1103 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Burnett, A. C., Davidson, K. J., Serbin, S. P. & Rogers, A. The “one‐point method” for estimating maximum carboxylation capacity of photosynthesis: a cautionary tale. Plant, Cell Environ. 42, 2472–2481 (2019).CAS 
    Article 

    Google Scholar 
    99.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2013).Article 

    Google Scholar 
    100.Jones, H. G. Plants and Microclimate (Cambridge University Press, 2009).101.Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    102.Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).Article 

    Google Scholar 
    103.Berberan-Santos, M. N., Bodunov, E. N. & Pogliani, L. On the barometric formula. Am. J. Phys. 65, 404–412 (1997).Article 

    Google Scholar 
    104.Peng, Y., et al. Dataset of Global Climate and Nutrient Controls of Photosynthetic Capacity (Zenodo, 2021). https://doi.org/10.5281/zenodo.4568148. More

  • in

    A theoretical analysis of tumour containment

    1.Norton, L. & Simon, R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317 (1977).CAS 
    PubMed 

    Google Scholar 
    2.Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).CAS 
    PubMed 

    Google Scholar 
    3.Gatenby, R. A. A change of strategy in the war on cancer. Nature 459, 508–509 (2009).CAS 
    Article 

    Google Scholar 
    4.Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).Article 

    Google Scholar 
    5.Martin, R. B., Fisher, M. E., Minchin, R. F. & Teo, K. L. Optimal control of tumor size used to maximize survival time when cells are resistant to chemotherapy. Math. Biosci. 110, 201–219 (1992).CAS 
    Article 

    Google Scholar 
    6.Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).CAS 
    Article 

    Google Scholar 
    7.Gatenby, R. & Brown, J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. 10, a040972 (2020).CAS 
    Article 

    Google Scholar 
    8.Bourguet, D. et al. Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 28, 110–118 (2013).Article 

    Google Scholar 
    9.Tabashnik, B. E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521 (2013).CAS 
    Article 

    Google Scholar 
    10.Cunningham, J. J. A call for integrated metastatic management. Nat. Ecol. Evol. 3, 996–998 (2019).Article 

    Google Scholar 
    11.Bacevic, K. Spatial competition constrains resistance to targeted cancer therapy. Nat. Commun. 8, 1995 (2017).Article 

    Google Scholar 
    12.Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).CAS 
    Article 

    Google Scholar 
    13.Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8, 327ra24 (2016).Article 

    Google Scholar 
    14.Monro, H. C. & Gaffney, E. A. Modelling chemotherapy resistance in palliation and failed cure. J. Theor. Biol. 257, 292–302 (2009).CAS 
    Article 

    Google Scholar 
    15.Carrère, C. Optimization of an in vitro chemotherapy to avoid resistant tumours. J. Theor. Biol. 413, 24–33 (2017).Article 

    Google Scholar 
    16.Gallaher, J. A., Enriquez-Navas, P. M., Luddy, K. A., Gatenby, R. A. & Anderson, A. R. A. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer Res. 78, 2127–2139 (2018).CAS 
    Article 

    Google Scholar 
    17.Hansen, E., Woods, R. J. & Read, A. F. How to use a chemotherapeutic agent when resistance to it threatens the patient. PLoS Biol. 15, e2001110 (2017).Article 

    Google Scholar 
    18.Cunningham, J. J., Brown, J. S., Gatenby, R. A. & Staňková, K. Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer. J. Theor. Biol. 459, 67–78 (2018).CAS 
    Article 

    Google Scholar 
    19.West, J., Ma, Y. & Newton, P. K. Capitalizing on competition: an evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment. J. Theor. Biol. 455, 249–260 (2018).Article 

    Google Scholar 
    20.Pouchol, C., Clairambault, J., Lorz, A. & Trélat, E. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J. Math. Pures Appl. 116, 268–308 (2018).Article 

    Google Scholar 
    21.Carrère, C. & Zidani, H. Stability and reachability analysis for a controlled heterogeneous population of cells. Optim. Control Appl. Methods 41, 1678–1704 (2020).Article 

    Google Scholar 
    22.Greene, J. M., Sanchez-Tapia, C. & Sontag, E. D. Mathematical details on a cancer resistance model. Front. Bioeng. Biotechnol. 8, 501 (2020).Article 

    Google Scholar 
    23.Martin, R. B., Fisher, M. E., Minchin, R. F. & Teo, K. L. Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells. Math. Biosci. 110, 221–252 (1992).CAS 
    Article 

    Google Scholar 
    24.Gerlee, P. The model muddle: in search of tumor growth laws. Cancer Res. 73, 2407–2411 (2013).CAS 
    Article 

    Google Scholar 
    25.Noble, R., Burri, D., Kather, J. N. & Beerenwinkel, N. Spatial structure governs the mode of tumour evolution. Preprint at bioRxiv https://doi.org/10.1101/586735 (2019).26.Hansen, E. & Read, A. F. Cancer therapy: attempt cure or manage drug resistance? Evol. Appl. 13, 1660–1672 (2020).Article 

    Google Scholar 
    27.Enriquez-Navas, P. M., Wojtkowiak, J. W. & Gatenby, R. A. Application of evolutionary principles to cancer therapy. Cancer Res. 75, 4675–4680 (2015).CAS 
    Article 

    Google Scholar 
    28.Gatenby, R. A. & Brown, J. S. Integrating evolutionary dynamics into cancer therapy. Nat. Rev. Clin. Oncol. 17, 675–686 (2020).Article 

    Google Scholar 
    29.Strobl, M. A. R. et al. Turnover modulates the need for a cost of resistance in adaptive therapy. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-20-0806 (2020).Article 
    PubMed 

    Google Scholar 
    30.Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).Article 

    Google Scholar 
    31.Pérez-García, V. M. et al. Universal scaling laws rule explosive growth in human cancers. Nat. Phys. 16, 1232–1237 (2020).Article 

    Google Scholar 
    32.Greene, J. M., Gevertz, J. L. & Sontag, E. S. Mathematical approach to differentiate spontaneous and induced evolution to drug resistance during cancer treatment. JCO Clin. Cancer Inform. 3, CCI.18.00087 (2019).PubMed Central 

    Google Scholar 
    33.Kuosmanen, T. et al. Drug-induced resistance evolution necessitates less aggressive treatment. Preprint at bioRxiv https://doi.org/10.1101/2020.10.07.330134 (2020).34.Fusco, D., Gralka, M., Kayser, J., Anderson, A. & Hallatschek, O. Excess of mutational jackpot events in expanding populations revealed by spatial Luria–Delbrück experiments. Nat. Commun. 7, 12760 (2016).CAS 
    Article 

    Google Scholar 
    35.Mistry, H. B. Evolutionary based adaptive dosing algorithms: beware the cost of cumulative risk. Preprint at bioRxiv https://doi.org/10.1101/2020.06.23.167056 (2020).36.Benzekry, S. et al. Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput. Biol. 10, e1003800 (2014).Article 

    Google Scholar 
    37.Vaghi, C. et al. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput. Biol. 16, e1007178 (2020).CAS 
    Article 

    Google Scholar 
    38.Hansen, E., Karslake, J., Woods, R. J., Read, A. F. & Wood, K. B. Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLoS Biol. 18, e3000713 (2020).CAS 
    Article 

    Google Scholar 
    39.Soetaert, K. E. R., Petzoldt, T. & Setzer, R. W. Solving differential equations in R : package deSolve. J. Stat. Softw. 33, 9 (2010). More

  • in

    Corrosion and transformation of solution combustion synthesized Co, Ni and CoNi nanoparticles in synthetic freshwater with and without natural organic matter

    1.Inshakova, E. & Inshakova, A. Nanomaterials and nanotechnology: prospects for technological re-equipment in the power engineering industry. IOP Conference Series: Materials Science and Engineering 709, 033020. https://doi.org/10.1088/1757-899x/709/3/033020 (2020).CAS 
    Article 

    Google Scholar 
    2.Grassian, V. H. When size reallymatters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C 112, 18303–18313. https://doi.org/10.1021/jp806073t (2008).CAS 
    Article 

    Google Scholar 
    3.Jayathilaka, W. et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 31, e1805921. https://doi.org/10.1002/adma.201805921 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Pokhrel, S. & Mädler, L. Flame made particles for sensors, catalysis and energy storage applications. Energy Fuels https://doi.org/10.1021/acs.energyfuels.0c02220 (2020).Article 
    PubMed 

    Google Scholar 
    5.Anthony, L. S., Perumal, V., Mohamed, N. M., Saheed, M. S. M. & Gopinath, S. C. B. in Nanomaterials for Healthcare, Energy and Environment Advanced Structured Materials Ch. Chapter 3, 51–69 (2019).
    Google Scholar 
    6.Sharma, N., Ojha, H., Bharadwaj, A., Pathak, D. P. & Sharma, R. K. Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 5, 53381–53403. https://doi.org/10.1039/c5ra06778b (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Xin, Y. et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306. https://doi.org/10.1021/acscatal.0c03617 (2020).CAS 
    Article 

    Google Scholar 
    8.Wu, W. Inorganic nanomaterials for printed electronics: a review. Nanoscale 9, 7342–7372. https://doi.org/10.1039/c7nr01604b (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Abdalla, A. M. et al. Nanomaterials for solid oxide fuel cells: a review. Renew. Sustain. Energy Rev. 82, 353–368. https://doi.org/10.1016/j.rser.2017.09.046 (2018).CAS 
    Article 

    Google Scholar 
    10.Choudhary, N. et al. Asymmetric supercapacitor electrodes and devices. Adv. Mater. https://doi.org/10.1002/adma.201605336 (2017).Article 
    PubMed 

    Google Scholar 
    11.Yu, Z., Tetard, L., Zhai, L. & Thomas, J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730. https://doi.org/10.1039/c4ee03229b (2015).CAS 
    Article 

    Google Scholar 
    12.Das, S., Sen, B. & Debnath, N. Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ. Sci. Pollut. Res. Int. 22, 18333–18344. https://doi.org/10.1007/s11356-015-5491-6 (2015).Article 
    PubMed 

    Google Scholar 
    13.Santhosh, C. et al. Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137. https://doi.org/10.1016/j.cej.2016.08.053 (2016).CAS 
    Article 

    Google Scholar 
    14.Riley, M. K. & Vermerris, W. Recent advances in nanomaterials for gene delivery-a review. Nanomater. (Basel) https://doi.org/10.3390/nano7050094 (2017).Article 

    Google Scholar 
    15.Dasari Shareena, T. P., McShan, D., Dasmahapatra, A. K. & Tchounwou, P. B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett. https://doi.org/10.1007/s40820-018-0206-4 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M. H. & Kim, J. H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomater. (Basel) https://doi.org/10.3390/nano9121719 (2019).Article 

    Google Scholar 
    17.Abazari, S., Shamsipur, A., Bakhsheshi-Rad, H. R., Ramakrishna, S. & Berto, F. Graphene family nanomaterial reinforced magnesium-based matrix composites for biomedical application: a comprehensive review. Metals https://doi.org/10.3390/met10081002 (2020).Article 

    Google Scholar 
    18.Siddique, S. & Chow, J. C. L. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomater. (Basel) https://doi.org/10.3390/nano10091700 (2020).Article 

    Google Scholar 
    19.Mayakrishnan, G., Elayappan, V., Kim, I. S. & Chung, I. M. Sea-island-like morphology of cuni bimetallic nanoparticles uniformly anchored on single layer graphene oxide as a highly efficient and noble-metal-free catalyst for cyanation of aryl halides. Sci. Rep. 10, 677. https://doi.org/10.1038/s41598-020-57483-z (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    20.Sheikh-Mohseni, M. A., Hassanzadeh, V. & Habibi, B. Reduced graphene oxide supported bimetallic Ni–Co nanoparticles composite as an electrocatalyst for oxidation of methanol. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2019.106022 (2019).Article 

    Google Scholar 
    21.Khort, A., Romanovski, V., Leybo, D. & Moskovskikh, D. CO oxidation and organic dyes degradation over graphene–Cu and graphene–CuNi catalysts obtained by solution combustion synthesis. Sci. Rep. https://doi.org/10.1038/s41598-020-72872-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Wang, D. et al. Nickel-cobalt layered double hydroxide nanosheets with reduced graphene oxide grown on carbon cloth for symmetric supercapacitor. Appl. Surf. Sci. 483, 593–600. https://doi.org/10.1016/j.apsusc.2019.03.345 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    23.Khort, A. et al. Graphene@metal nanocomposites by solution combustion synthesis. Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.0c00673 (2020).Article 
    PubMed 

    Google Scholar 
    24.Xu, L. et al. The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials. Small https://doi.org/10.1002/smll.202003691 (2020).Article 
    PubMed 

    Google Scholar 
    25.Wang, X., Odnevall Wallinder, I. & Hedberg, Y. Bioaccessibility of nickel and cobalt released from occupationally relevant alloy and metal powders at simulated human exposure scenarios. Ann. Work Expo. Health https://doi.org/10.1093/annweh/wxaa042 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Atapour, M., Wang, X., Färnlund, K., Odnevall Wallinder, I. & Hedberg, Y. Corrosion and metal release investigations of selective laser melted 316L stainless steel in a synthetic physiological fluid containing proteins and in diluted hydrochloric acid. Electrochim. Acta 354, 136748. https://doi.org/10.1016/j.electacta.2020.136748 (2020).CAS 
    Article 

    Google Scholar 
    27.Mei, N., Hedberg, J., Odnevall Wallinder, I. & Blomberg, E. Influence of biocorona formation on the transformation and dissolution of cobalt nanoparticles under physiological conditions. ACS Omega 4, 21778–21791. https://doi.org/10.1021/acsomega.9b02641 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Ekvall, M. T., Hedberg, J., Odnevall Wallinder, I., Hansson, L. A. & Cedervall, T. Long-term effects of tungsten carbide (WC) nanoparticles in pelagic and benthic aquatic ecosystems. Nanotoxicology 12, 79–89. https://doi.org/10.1080/17435390.2017.1421274 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Hedberg, J., Ekvall, M. T., Hansson, L.-A., Cedervall, T. & Odnevall Wallinder, I. Tungsten carbide nanoparticles in simulated surface water with natural organic matter: dissolution, agglomeration, sedimentation and interaction with Daphnia magna. Environ. Sci. Nano 4, 886–894. https://doi.org/10.1039/c6en00645k (2017).CAS 
    Article 

    Google Scholar 
    30.Hedberg, J., Blomberg, E. & Odnevall Wallinder, I. In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: a critical review. Environ. Sci. Technol. 53, 4030–4044. https://doi.org/10.1021/acs.est.8b05012 (2019).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    31.Cappellini, F. et al. Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology 12, 602–620. https://doi.org/10.1080/17435390.2018.1470694 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Varma, A., Mukasyan, A. S., Rogachev, A. S. & Manukyan, K. V. Solution combustion synthesis of nanoscale materials. Chem Rev 116, 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Khort, A., Podbolotov, K., Serrano-García, R. & Gunko, Y. One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: the fuel effect. J. Solid State Chem. https://doi.org/10.1016/j.jssc.2017.05.043 (2017).Article 

    Google Scholar 
    34.Podbolotov, K. B. et al. Solution combustion synthesis of copper nanopowders: the fuel effect. Combust. Sci. Technol. 189, 1878–1890. https://doi.org/10.1080/00102202.2017.1334646 (2017).CAS 
    Article 

    Google Scholar 
    35.Khort, A., Podbolotov, K., Serrano-Garcia, R. & Gun’ko, Y. One-step solution combustion synthesis of cobalt nanopowder in air atmosphere: the fuel effect. Inorg. Chem. 57, 1464–1473. https://doi.org/10.1021/acs.inorgchem.7b02848 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Yermekova, Z., Roslyakov, S. I., Kovalev, D. Y., Danghyan, V. & Mukasyan, A. S. One-step synthesis of pure γ-FeNi alloy by reactive sol–gel combustion route: mechanism and properties. J. Sol-Gel Sci. Technol. https://doi.org/10.1007/s10971-020-05252-9 (2020).Article 

    Google Scholar 
    37.Khort, A. A. & Podbolotov, K. B. Preparation of BaTiO3 nanopowders by the solution combustion method. Ceram. Int. 42, 15343–15348. https://doi.org/10.1016/j.ceramint.2016.06.178 (2016).CAS 
    Article 

    Google Scholar 
    38.Xiang, H.-Z., Xie, H.-X., Mao, A., Jia, Y.-G. & Si, T.-Z. Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis. Int. J. Mater. Res. https://doi.org/10.3139/146.111874 (2020).Article 

    Google Scholar 
    39.Mukasyan, A. S., Rogachev, A. S. & Aruna, S. T. Combustion synthesis in nanostructured reactive systems. Adv. Powder Technol. 26, 954–976. https://doi.org/10.1016/j.apt.2015.03.013 (2015).CAS 
    Article 

    Google Scholar 
    40.Pradhan, S. et al. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles—a tentative exposure scenario. PLoS ONE 13, e0192553. https://doi.org/10.1371/journal.pone.0192553 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18, 285. https://doi.org/10.1007/s11051-016-3597-5 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    42.Malloy, A. & Carr, B. NanoParticle tracking analysis—the haloTM system. Part. Part. Syst. Charact. 23, 197–204. https://doi.org/10.1002/ppsc.200601031 (2006).Article 

    Google Scholar 
    43.Patil, K. C., Hegde, M. S., Rattan, T. & Aruna, S. T. Chemistry of Nanocrystalline Oxide Materials. Combustion Synthesis, Properties and Applications (World Scientific Publishing Co. Pte. Ltd., 2008).44.Sdobnyakov, N. et al. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles. Comput. Mater. Sci. 184, 109936. https://doi.org/10.1016/j.commatsci.2020.109936 (2020).CAS 
    Article 

    Google Scholar 
    45.Niu, B. et al. Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sci. Rep. 7, 3421. https://doi.org/10.1038/s41598-017-03644-6 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    46.Cheng, M. et al. Core@shell CoO@Co 3 O 4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors. Chem. Eng. J. 327, 100–108. https://doi.org/10.1016/j.cej.2017.06.042 (2017).CAS 
    Article 

    Google Scholar 
    47.Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    48.Dubey, P., Kaurav, N., Devan, R. S., Okram, G. S. & Kuo, Y. K. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 8, 5882–5890. https://doi.org/10.1039/c8ra00157j (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    49.Preda, I. et al. Surface contributions to the XPS spectra of nanostructured NiO deposited on HOPG. Surf. Sci. 606, 1426–1430. https://doi.org/10.1016/j.susc.2012.05.005 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    50.Lynch, I., Dawson, K. A., Lead, J. R. & Valsami-Jones, E. In Nanoscience and the Environment Vol. 7 (eds Jamie R. Lead & Eugenia Valsami-Jones) Ch. 4, 127–156 (Elsiver, 2014).51.Lefevre, G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interface Sci. 107, 109–123. https://doi.org/10.1016/j.cis.2003.11.002 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Hay, M. B. & Myneni, S. C. B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta 71, 3518–3532. https://doi.org/10.1016/j.gca.2007.03.038 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    53.Mudunkotuwa, I. A. & Grassian, V. H. Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environ. Sci. Nano 2, 429–439. https://doi.org/10.1039/c4en00215f (2015).CAS 
    Article 

    Google Scholar 
    54.Li, H. et al. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis. Combust. Flame 215, 389–400. https://doi.org/10.1016/j.combustflame.2020.02.004 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Xu, C. et al. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries. Carbon 142, 51–59. https://doi.org/10.1016/j.carbon.2018.10.016 (2019).CAS 
    Article 

    Google Scholar 
    56.Trusov, G. V. et al. Spray solution combustion synthesis of metallic hollow microspheres. J. Phys. Chem. C 120, 7165–7171. https://doi.org/10.1021/acs.jpcc.6b00788 (2016).CAS 
    Article 

    Google Scholar 
    57.Hedberg, Y. S. & Odnevall Wallinder, I. Metal release from stainless steel in biological environments: a review. Biointerphases 11, 018901. https://doi.org/10.1116/1.4934628 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Dale, A. L., Lowry, G. V. & Casman, E. A. Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution. Environ. Sci. Nano 4, 89–104. https://doi.org/10.1039/c6en00330c (2017).CAS 
    Article 

    Google Scholar 
    59.He, D., Bligh, M. W. & Waite, T. D. Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environ. Sci. Technol. 47, 9148–9156. https://doi.org/10.1021/es400391a (2013).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    60.Korshin, G. V., Perry, S. A. L. & Ferguson, J. F. Influence of NOM on copper corrosion. J. Am. Water Works Assoc. 88, 36–47. https://doi.org/10.1002/j.1551-8833.1996.tb06583.x (1996).CAS 
    Article 

    Google Scholar 
    61.Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980. https://doi.org/10.1038/s41467-018-07160-7 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    62.Pei, Z., Yin, J., Hawk, J. A., Alman, D. E. & Gao, M. C. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. npj Comput. Mater. https://doi.org/10.1038/s41524-020-0308-7 (2020).Article 

    Google Scholar 
    63.Balasubramanian, K., Khare, S. V. & Gall, D. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Mater. 152, 175–185. https://doi.org/10.1016/j.actamat.2018.04.033 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    64.Moskovskikh, D. et al. Extremely hard and tough high entropy nitride ceramics. Sci. Rep. 10, 19874. https://doi.org/10.1038/s41598-020-76945-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    65.Sangiovanni, D. G., Hultman, L. & Chirita, V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Mater. 59, 2121–2134. https://doi.org/10.1016/j.actamat.2010.12.013 (2011).CAS 
    Article 
    ADS 

    Google Scholar  More

  • in

    Trees outside forests are an underestimated resource in a country with low forest cover

    1.Turner, W. R., Nakamura, T. & Dinetti, M. Global urbanization and the separation of humans from nature. Bioscience 54, 585–590 (2004).Article 

    Google Scholar 
    2.Schnell, S., Kleinn, C. & Ståhl, G. Monitoring trees outside forests: a review. Environ. Monitor. Assess. 187, 600 (2015).Article 

    Google Scholar 
    3.Ahmed, P. Trees outside forests (TOF): a case study of wood production and consumption in Haryana. Int. For. Rev. 10, 165–172 (2008).
    Google Scholar 
    4.Krishnankutty, C. N., Thampi, K. B. & Chundamannil, M. Trees outside forests (TOF): a case study of the wood productionconsumption situation in Kerala. Int. For. Rev. 10, 156–164 (2008).
    Google Scholar 
    5.Smeets, E. M. W. & Faaij, A. P. C. Bioenergy potentials from forestry in 2050: an assessment of the drivers that determine the potentials. Clim. Change 81, 353–390 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    6.Schnell, S., Altrell, D., Ståhl, G. & Kleinn, C. The contribution of trees outside forests to national tree biomass and carbon stocks-a comparative study across three continents. Environ. Monitor. Assess. 187, 4197 (2015).Article 

    Google Scholar 
    7.Zomer, R. J. et al. Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. World Agroforestry Center Working Paper 179 (2014).8.Ghosh, M. & Sinha, B. Policy analysis for realizing the potential of timber production from trees outside forests (TOF) in India. Int. For. Rev. 20, 89–103 (2018).
    Google Scholar 
    9.Pain-Orcet, M. & Bellefontaine, R. Trees outside the forest: a new perspective on the management of forest resources in the tropics. Beyond tropical deforestation: from tropical deforestation to forest cover dynamics and forest development, 423–430 (2004)10.Bellefontaine, R., Petit, S., Pain Orcet, M., Deleporte, P. & Bertault, J.G. Trees outside forests: towards better awareness. Food and Agriculture Organization, 216 (Rome, 2002)11.Kleinn, C. On large-area inventory and assessment of trees outside forests. UNASYLVA-FAO- 3–10 (2000).12.FAO. Global forest resources assessment 2005: Progress towards sustainable forest management. Food and Agriculture Organization of the United Nations (2006).13.Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC guidelines for national greenhouse gas inventories Vol. 5 (Institute for Global Environmental Strategies Hayama, Japan, 2006).14.FAO. World Urbanization Prospects the Revision 2012 (Technical Report, 2011).15.Tewari, V. P., Sukumar, R., Kumar, R. & Gadow, K. Forest observational studies in India: past developments and considerations for the future. For. Ecol. Manag. 316, 32–46 (2014).Article 

    Google Scholar 
    16.Nath, T. K. & Inoue, M. Impacts of participatory forestry on livelihoods of ethnic people: experience from Bangladesh. Soc. Nat. Resour. 23, 1093–1107 (2010).Article 

    Google Scholar 
    17.Islam, S.S. Stratified Two-Stage Sampling (Self-Weighted) for assessment of village forest resources. J. Trop. For. Sci., 9–16 (2004)18.Zashimuddin, M. Community forestry for poverty reduction in Bangladesh. For. Poverty Reduct. Commun. For. Make Money, 81–94 (2004).19.FAO. Global Forest Resources Assessment 2015. Technical Report, Rome (2015).20.Muhammed, N., Koike, M. & Haque, F. Forest policy and sustainable forest management in Bangladesh: an analysis from national and international perspectives. New For. 36, 201–216 (2008).Article 

    Google Scholar 
    21.Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures-implications for conservation. Biol. Conserv. 132, 311–321 (2006).Article 

    Google Scholar 
    22.Potapov, P. et al. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000–2014. Environ. Res. Lett. 12, 104015 (2017).Article 
    ADS 

    Google Scholar 
    23.Schumacher, J. & Nord-Larsen, T. Wall-to-wall tree type classification using airborne lidar data and CIR images. Int. J. Remote Sens. 35, 3057–3073 (2014).Article 
    ADS 

    Google Scholar 
    24.Ouma, Y. O. & Tateishi, R. Urban-trees extraction from Quickbird imagery using multiscale spectex-filtering and non-parametric classification. ISPRS J. Photogramm. Remote Sens. 63, 333–351 (2008).Article 
    ADS 

    Google Scholar 
    25.Levin, N. et al. Mapping forest patches and scattered trees from SPOT images and testing their ecological importance for woodland birds in a fragmented agricultural landscape. Int. J. Remote Sens. 30, 3147–3169 (2009).Article 
    ADS 

    Google Scholar 
    26.Sandberg, G., Ulander, L. M. H., Wallerman, J. & Fransson, J. E. S. Measurements of forest biomass change using P-band synthetic aperture radar backscatter. IEEE Trans. Geosci. Remote Sens. 52, 6047–6061 (2014).Article 
    ADS 

    Google Scholar 
    27.Mitchard, E. T. A. et al. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: overcoming problems of high biomass and persistent cloud. Biogeosciences 9, 179–191 (2012).Article 
    ADS 

    Google Scholar 
    28.Minh, D. H. T. et al. Relating P-band synthetic aperture radar tomography to tropical forest biomass. IEEE Trans. Geosci. Remote Sens. 52, 967–979 (2013).Article 

    Google Scholar 
    29.Stovall, A. E. L., Shugart, H. & Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 10, 1–6 (2019).Article 

    Google Scholar 
    30.Swatantran, A., Tang, H., Barrett, T., DeCola, P. & Dubayah, R. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. Sci. Rep. 6, 28277 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    31.Stovall, A. E. L. & Shugart, H. H. Improved biomass calibration and validation with terrestrial LiDAR: implications for future LiDAR and SAR missions. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11, 3527–3537 (2018).Article 
    ADS 

    Google Scholar 
    32.Hansen, M.C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    33.Martone, M. et al. The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote Sens. Environ. 205, 352–373 (2018).Article 
    ADS 

    Google Scholar 
    34.Lang, N., Schindler, K. & Wegner, J. D. Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sens. Environ. 233, 111347 (2019).Article 
    ADS 

    Google Scholar 
    35.UNFAO. The State of World fisheries and Aquaculture 2014, vol. 24 (2014).36.Reddy, C. S., Pasha, S. V., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Development of national database on long-term deforestation (1930–2014) in Bangladesh. Glob. Planet. Change 139, 173–182 (2016).Article 
    ADS 

    Google Scholar 
    37.Long, A. J. & Nair, P. K. R. Trees outside forests: agro-, community, and urban forestry. In Planted Forests: Contributions to the Quest for Sustainable Societies, 145–174 (Springer, 1999).38.Muhammed, N., Masum, M. F. H., Hossain, M. M., Chakma, S. & Oesten, G. Economic dependence of rural people on homestead forestry in Mymensingh, Bangladesh. J. For. Res. 24, 591–597 (2013).Article 

    Google Scholar 
    39.Motiur, R. M., Furukawa, Y., Kawata, I., Rahman, M. M. & Alam, M. Role of homestead forests in household economy and factors affecting forest production: a case study in southwest Bangladesh. J. For. Res. 11, 89–97 (2006).Article 

    Google Scholar 
    40.Salam, M. A., Noguchi, T. & Koike, M. Understanding why farmers plant trees in the homestead agroforestry in Bangladesh. Agrofor. Syst. 50, 77–93 (2000).Article 

    Google Scholar 
    41.Rossi, J.-P. & Rousselet, J. The spatial distribution of trees outside forests in a large open-field region and its potential impact on habitat connectivity for forest insects. Türkiye Ormancılık Dergisi 17, 62–64 (2016).Article 

    Google Scholar 
    42.Kabir, M. E. & Webb, E. L. Can homegardens conserve biodiversity in Bangladesh?. Biotropica 40, 95–103 (2008).
    Google Scholar 
    43.Gibbons, P. et al. The future of scattered trees in agricultural landscapes. Conserv. Biol. 22, 1309–1319 (2008).CAS 
    Article 

    Google Scholar 
    44.World Bank. No Title (2018).45.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on eartha new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    46.Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31. https://doi.org/10.1016/j.rse.2014.04.014 (2014).Article 
    ADS 

    Google Scholar 
    47.GDAL/OGR contributors (2019). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. https://gdal.org.48.Montesano, P. M., Sun, G., Dubayah, R. & Ranson, K. J. The uncertainty of plot-scale forest height estimates from complementary spaceborne observations in the taiga-tundra ecotone. Remote Sens. 6, 10070–10088 (2014).Article 
    ADS 

    Google Scholar 
    49.Montesano, P. M., Sun, G., Dubayah, R. O. & Ranson, K. J. Spaceborne potential for examining taiga-tundra ecotone form and vulnerability. Biogeosciences 13, 3847–3861 (2016).Article 
    ADS 

    Google Scholar 
    50.Montesano, P. M. et al. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. Remote Sens. Environ. 196, 76–88 (2017).Article 
    ADS 

    Google Scholar 
    51.Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).Article 
    ADS 

    Google Scholar  More

  • in

    On species delimitation, hybridization and population structure of cassava whitefly in Africa

    1.Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U.S.A. 101, 14812–14817. https://doi.org/10.1073/pnas.0406166101 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Saez, A. G. & Lozano, E. Body doubles. Nature 433, 111. https://doi.org/10.1038/433111a (2005).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    3.Vyskočilová, S., Tay, W. T., van Brunschot, S., Seal, S. & Colvin, J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci. Rep. 8, 10886. https://doi.org/10.1038/s41598-018-29305-w (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    4.Liu, S. S. et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318, 1769–1772. https://doi.org/10.1126/science.1149887 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    5.Vyskocilova, S., Seal, S. & Colvin, J. Relative polyphagy of “Mediterranean” cryptic Bemisia tabaci whitefly species and global pest status implications. J. Pest Sci. 92, 1071–1088. https://doi.org/10.1007/s10340-019-01113-9 (2019).Article 

    Google Scholar 
    6.Behere, G. T., Tay, W. T., Russell, D. A. & Batterham, P. Molecular markers to discriminate among four pest species of Helicoverpa (Lepidoptera: Noctuidae). Bull. Entomol. Res. 98, 599–603. https://doi.org/10.1017/S0007485308005956 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Elfekih, S., Tay, W. T., Gordon, K., Court, L. N. & De Barro, P. J. Standardized molecular diagnostic tool for the identification of cryptic species within the Bemisia tabaci complex. Pest Manag. Sci. 74, 170–173. https://doi.org/10.1002/ps.4676 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Walsh, T. K. et al. Mitochondrial DNA genomes of five major Helicoverpa pest species from the Old and New Worlds (Lepidoptera: Noctuidae). Ecol. Evol. 9, 2933–2944. https://doi.org/10.1002/ece3.4971 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Anderson, C. J., Tay, W. T., McGaughran, A., Gordon, K. & Walsh, T. K. Population structure and gene flow in the global pest, Helicoverpa armigera. Mol. Ecol. 25, 5296–5311. https://doi.org/10.1111/mec.13841 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Elfekih, S. et al. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 13, e0190555. https://doi.org/10.1371/journal.pone.0190555 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Anderson, C. J. et al. Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc. Natl. Acad. Sci. U.S.A. 115, 5034–5039. https://doi.org/10.1073/pnas.1718831115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.FAOSTAT. http://www.fao.org/faostat/en/#data/QC/visualize (2017).13.Legg, J. P. et al. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res. 186, 61–75. https://doi.org/10.1016/j.virusres.2013.11.018 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: Actual knowledge and perspectives. Mol. Plant Pathol. 10, 685–701. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Macfadyen, S. et al. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: A review of the factors determining abundance. Bull. Entomol. Res. 108, 565–582. https://doi.org/10.1017/S0007485318000032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Minato, N. et al. Surveillance for Sri Lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS ONE 14, e0212780. https://doi.org/10.1371/journal.pone.0212780 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Wang, H. L. et al. First Report of Sri Lankan cassava mosaic virus Infecting Cassava in Cambodia. Plant Dis. 100, 1029–1029. https://doi.org/10.1094/Pdis-10-15-1228-Pdn (2016).Article 

    Google Scholar 
    18.De Barro, P. J., Liu, S. S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19. https://doi.org/10.1146/annurev-ento-112408-085504 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Hopkinson, J. et al. Insecticide resistance status of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) in Australian cotton production valleys. Austral Entomol. 59, 202–214 (2020).Article 

    Google Scholar 
    20.Hadjistylli, M., Roderick, G. K. & Gauthier, N. First report of the Sub-Saharan Africa 2 species of the Bemisia tabaci complex in the Southern France. Phytoparasitica 43, 679–687. https://doi.org/10.1007/s12600-015-0480-3 (2015).Article 

    Google Scholar 
    21.Lee, W., Park, J., Lee, G. S., Lee, S. & Akimoto, S. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS ONE 8, e63817. https://doi.org/10.1371/journal.pone.0063817 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Mugerwa, H. et al. African ancestry of New World, Bemisia tabaci-whitefly species. Sci. Rep. 8, 2734. https://doi.org/10.1038/s41598-018-20956-3 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Martin, J. H. An identification guide to common whitefly pest species of the world (Homopt Aleyrodidae). Int. J. Pest Manag. 334, 298–322. https://doi.org/10.1080/09670878709371174 (1987).Article 

    Google Scholar 
    24.Martin, J. H. & Mound, L. A. An annotated check list of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). Zootaxa 1492, 1–84 (2007).Article 

    Google Scholar 
    25.Mound, L. A. Host-correlated variation in Bemisia tabaci (Gennadius). Proc. R. Entomol. Soc. Lond. A38, 171–180 (1963).ADS 

    Google Scholar 
    26.Tay, W. T. et al. Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens. Sci. Rep. https://doi.org/10.1038/s41598-017-00528-7 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Tay, W. T., Evans, G. A., Boykin, L. M. & De Barro, P. J. Will the real Bemisia tabaciplease stand up?. PLoS ONE https://doi.org/10.1371/journal.pone.0050550 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. M. & De Barro, P. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 103, 196–208. https://doi.org/10.1603/An09061 (2010).Article 

    Google Scholar 
    29.Kunz, D., Tay, W. T., Elfekih, S., Gordon, K. H. J. & De Barro, P. J. Take out the rubbish – Removing NUMTs and pseudogenes from the Bemisia tabacicryptic species mtCOI database. bioRxiv. https://doi.org/10.1101/724765 (2019).Article 

    Google Scholar 
    30.Wongnikong, W., van Brunschot, S. L., Hereward, J. P., De Barro, P. J. & Walter, G. H. Testing mate recognition through reciprocal crosses of two native populations of the whitefly Bemisia tabaci (Gennadius) in Australia. Bull. Entomol. Res. 110, 328–339. https://doi.org/10.1017/S0007485319000683 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Mugerwa, H., Wang, H.-L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).Article 
    PubMed 

    Google Scholar 
    32.Delatte, H. et al. A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. Bull. Entomol. Res. 95, 29–35. https://doi.org/10.1079/Ber2004337 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Boykin, L. M., Savill, A. & De Barro, P. Updated mtCOI reference dataset for the Bemisia tabaci species complex. F1000Research 6, 1835. https://doi.org/10.12688/f1000research.12858.1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Liu, S. S., Colvin, J. & De Barro, P. J. Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there?. J Integr Agr 11, 176–186. https://doi.org/10.1016/S2095-3119(12)60002-1 (2012).Article 

    Google Scholar 
    35.Tay, W. T. et al. The trouble with MEAM2: Implications of pseudogenes on species delimitation in the globally invasive Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex. Genome Biol. Evol. 9, 2732–2738. https://doi.org/10.1093/gbe/evx173 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Kunz, D. et al. Draft mitochondrial DNA genome of a 1920 Barbados cryptic Bemisia tabaci “New World” species (Hemiptera: Aleyrodidae). Mitochondrial DNA B 4, 1183–1184. https://doi.org/10.1080/23802359.2019.1591197 (2019).Article 

    Google Scholar 
    37.Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. U.S.A. 113, 7575–7579. https://doi.org/10.1073/pnas.1602205113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Wosula, E. N., Chen, W. B., Fei, Z. J. & Legg, J. P. Unravelling the genetic diversity among cassava Bemisia tabaci whiteflies using NextRAD sequencing. Genome Biol. Evol. 9, 2958–2973. https://doi.org/10.1093/gbe/evx219 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Thresh, J. M., Fargette, D. & Otim-Nape, G. W. Effects of African cassava mosaic geminivirus on the yield of cassava. Trop. Sci. 34, 26–42 (1994).
    Google Scholar 
    40.Legg, J. et al. A global alliance declaring war on cassava viruses in Africa. Food Secur. 6, 231–248. https://doi.org/10.1007/s12571-014-0340-x (2014).Article 

    Google Scholar 
    41.Legg, J. P. et al. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag. Sci. 70, 1446–1453. https://doi.org/10.1002/ps.3793 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Berry, S. D. et al. Molecular evidence for five distinct Bemisia tabaci (Homoptera: Aleyrodidae) geographic haplotypes associated with cassava plants in sub-Saharan Africa. Ann. Entomol. Soc. Am. 97, 852–859. https://doi.org/10.1603/0013-8746(2004)097[0852:Meffdb]2.0.Co;2 (2004).CAS 
    Article 

    Google Scholar 
    43.Mugerwa, H., Rey, M. E. C., Tairo, F., Ndunguru, J. & Sseruwagi, P. Two sub-Saharan Africa 1 populations of Bemisia tabaci exhibit distinct biological differences in fecundity and survivorship on cassava. Crop Prot. 117, 7–14. https://doi.org/10.1016/j.cropro.2018.11.011 (2019).Article 

    Google Scholar 
    44.Ghosh, S., Bouvaine, S. & Maruthi, M. N. Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa. BMC Microbiol. https://doi.org/10.1186/s12866-015-0425-5 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population-structure. Evolution 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Ghosh, S., Bouvaine, S., Richardson, S. C. W., Ghanim, M. & Maruthi, M. N. Fitness costs associated with infections of secondary endosymbionts in the cassava whitefly species Bemisia tabaci. J. Pest Sci. 91, 17–28. https://doi.org/10.1007/s10340-017-0910-8 (2018).Article 

    Google Scholar 
    47.Elfekih, S. et al. Evolutionary genomics of Bemisia tabaci and characterization of its endosymbiont metacommunities using nextRAD sequencing. International Plant and Animal Genome Asia, Singapore 23–25 July 2015 (2015).48.Elfekih, S. et al. Genome-wide SNPs Decipher Global Incursion pathways in the Bemisia tabaci species complex. International Plant and Animal Genome Conferences San Diego, 9–13 January 2016 (2016).49.Elfekih, S. et al. Genome-wide scans unravel fine-scale invasion routes in the Bemisia tabaci species complex. 2nd International Whitefly Symposium, Arusha, Tanzania. p38, 14–19 February 2016 (2016).50.Boykin, L. M., Bell, C. D., Evans, G., Small, I. & De Barro, P. J. Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)? Dating, diversification and biogeographic evidence revealed. BMC Evol. Biol. 13, 228. https://doi.org/10.1186/1471-2148-13-228 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Boykin, L. M. et al. Review and guide to a future naming system of African Bemisia tabaci species. Syst. Entomol. 43, 427–433. https://doi.org/10.1111/syen.12294 (2018).Article 

    Google Scholar 
    52.Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
    Article 

    Google Scholar 
    53.Hanemaaijer, M. J. et al. Mitochondrial genomes of Anophelesarabiensis, An. gambiae and An. coluzzii show no clear species division [version 2; peer review: 2 approved]. F1000Research 7, 347. https://doi.org/10.12688/f1000research.13807.2 (2019).Article 
    PubMed Central 

    Google Scholar 
    54.Tabachnick, W. J. Culicoides variipennis and bluetongue-virus epidemiology in the United States. Annu. Rev. Entomol. 41, 23–43. https://doi.org/10.1146/annurev.en.41.010196.000323 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Legg, J. P., French, R., Rogan, D., Okao-Okuja, G. & Brown, J. K. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Mol. Ecol. 11, 1219–1229. https://doi.org/10.1046/j.1365-294X.2002.01514.x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Colvin, J., Omongo, C. A., Maruthi, M. N., Otim-Nape, G. W. & Thresh, J. M. Dual begomovirus infections and high Bemisia tabaci populations: Two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathol. 53, 577–584. https://doi.org/10.1111/j.1365-3059.2004.01062.x (2004).Article 

    Google Scholar 
    57.Polston, J. E., De Barro, P. & Boykin, L. M. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Manag. Sci. 70, 1547–1552. https://doi.org/10.1002/ps.3738 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Ally, H. M. et al. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades?. Sci. Rep. https://doi.org/10.1038/s41598-019-50259-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Kalyebi, A. et al. Within-season changes in land use impact pest abundance in smallholder African cassava production systems. Insects (2021) (Revised Submitted).60.Kalyebi, A. et al. African cassava whitefly, Bemisia tabaci, cassava colonization preferences and control implications. PLoS ONE 13, e0204862. https://doi.org/10.1371/journal.pone.0204862 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Macfadyen, S. et al. Landscape factors and how they influence whitefly pests in cassava fields across East Africa. Landsc. Ecol. 36, 45–67. https://doi.org/10.1007/s10980-020-01099-1 (2021).Article 

    Google Scholar 
    62.Tay, W. T. et al. A high-throughput amplicon sequencing approach for population-wide species diversity and composition survey. bioRxiv https://doi.org/10.1101/2020.10.12.336545 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Manani, D. M., Ateka, E. M., Nyanjom, S. R. G. & Boykin, L. M. Phylogenetic relationships among whiteflies in the Bemisia tabaci(Gennadius) species complex from major cassava growing areas in Kenya. Insects https://doi.org/10.3390/insects8010025 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Gottelli, D., Marino, J., Sillero-Zubiri, C. & Funk, S. M. The effect of the last glacial age on speciation and population genetic structure of the endangered Ethiopian wolf (Canis simensis). Mol. Ecol. 13, 2275–2286. https://doi.org/10.1111/j.1365-294X.2004.02226.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15, 407–420. https://doi.org/10.1111/j.1365-294X.2005.02761.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Lehmann, T. et al. The rift valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J. Hered. 90, 613–621. https://doi.org/10.1093/jhered/90.6.613 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Schmidt, H. et al. Transcontinental dispersal of Anopheles gambiae occurred from West African origin via serial founder events. Commun. Biol. 2, 473. https://doi.org/10.1038/s42003-019-0717-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Mairal, M. et al. Geographic barriers and Pleistocene climate change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot. Sci. Rep. 7, 45749. https://doi.org/10.1038/srep45749 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    69.Freilich, X. et al. Comparative Phylogeography of Ethiopian anurans: Impact of the Great Rift Valley and Pleistocene climate change. BMC Evol. Biol. 16, 206. https://doi.org/10.1186/s12862-016-0774-1 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Huhndorf, M. H., Peterhans, J. C. K. & Loew, S. S. Comparative phylogeography of three endemic rodents from the Albertine Rift, east central Africa. Mol. Ecol. 16, 663–674. https://doi.org/10.1111/j.1365-294X.2007.03153.x (2007).Article 
    PubMed 

    Google Scholar 
    71.Matsubayashi, K. W., Ohshima, I. & Nosil, P. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 134, 1–27. https://doi.org/10.1111/j.1570-7458.2009.00916.x (2010).Article 

    Google Scholar 
    72.Malka, O. et al. Species-complex diversification and host-plant associations in Bemisia tabaci: A plant-defence, detoxification perspective revealed by RNA-Seq analyses. Mol. Ecol. 27, 4241–4256. https://doi.org/10.1111/mec.14865 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Chen, W. B. et al. The draft genome of whitefly Bemisia tabaciMEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. https://doi.org/10.1186/s12915-016-0321-y (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Xie, W. et al. The invasive MED/Q Bemisia tabaci genome: A tale of gene loss and gene gain. BMC Genomics 19, 68. https://doi.org/10.1186/s12864-018-4448-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595. https://doi.org/10.1093/bioinformatics/btp698 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Eaton, D. A. R. PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30, 1844–1849. https://doi.org/10.1093/bioinformatics/btu121 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Zheng, X. W. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328. https://doi.org/10.1093/bioinformatics/bts606 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002967 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Decker, J. E. et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 10, e1004254. https://doi.org/10.1371/journal.pgen.1004254 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Gompert, Z. et al. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants. Mol. Ecol. 23, 4555–4573. https://doi.org/10.1111/mec.12811 (2014).Article 
    PubMed 

    Google Scholar  More

  • in

    Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population

    1.Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 217, 10–29 (2010).Article 

    Google Scholar 
    2.Broughton, J. M. & Weitzel, E. M. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat. Commun. 9, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    3.Haynes, G. in The Encyclopedia of the Anthropocene 1 (eds. DellaSala, D. A., & Goldstein, M. I.) 219–226 (Springer, 2018).4.Wolfe, A. L. & Broughton, J. M. A foraging theory perspective on the associational critique of North American Pleistocene overkill. J. Archaeol. Sci. 119, 105162 (2020).Article 

    Google Scholar 
    5.Rothschild, B. M. & Laub, R. Hyperdisease in the late Pleistocene: validation of an early 20th century hypothesis. Naturwissenschaften 93, 557–564 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Borrero, L. A. in American megafaunal extinctions at the end of the Pleistocene (ed. Haynes, G.) 145–168 (Springer, 2009).7.Cione, A. L., Tonni, E. P., & Soibelzon, L. in American megafaunal extinctions at the end of the Pleistocene (ed. Haynes, G.) 125–144 (Springer, 2009).8.Lima-Ribeiro, M. S., Nogués-Bravo, D., Terribile, L. C., Batra, P. & Diniz-Filho, J. A. F. Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 392, 546–556 (2013).Article 

    Google Scholar 
    9.Grayson, D. K. & Meltzer, D. J. A requiem for North American overkill. J. Archaeol. Sci. 30, 585–593 (2003).Article 

    Google Scholar 
    10.Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. PNAS 104, 16016–16021 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Waters, M. R. & Stafford, T. W. in Paleoamerican Odyssey (eds. Graf, K. E., Ketron, C. V. & Waters, M.) 543–562 (Texas A&M University Press, 2013).12.Politis, G., Prado, J. L., & Beukens, R. P. in Ancient Peoples and Landscapes (ed. Johnson, E.) 187–205 (Tech University Press, 1995).13.Martin, P. S. The Discovery of America: The first Americans may have swept the Western Hemisphere and decimated its fauna within 1000 years. Science 179, 969–974 (1973).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Fiedel, S. J. in Paleoamerican origins: beyond Clovis (eds. Bonnichsen, R., Lepper, B. T., Stanford, D. & Waters M. R.) 97–102 (Texas A&M University Press, 2005).15.Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. PNAS 113, 886–891 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Pedro, J. B. et al. Southern Ocean deep convection as a driver of Antarctic warming events. Geophys. Res. Lett. 43, 2192–2199 (2016).ADS 
    Article 

    Google Scholar 
    17.Politis, G. in Clovis. Origins and Adaptations (eds Bonnichsen, R. & Turnmire, K.) 287–301 (Texas A&M University Press, 1991).18.Nami, H. G. Fishtailed projectile points in the Americas: Remarks and hypotheses on the peopling of northern South America and beyond. Quat. Int., in press (2020).19.Waters, M. R., Amorosi, T. & Stafford, T. W. Redating Fell’s cave, Chile and the chronological placement of the Fishtail projectile point. Am. Antiq. 80, 376–386 (2015).Article 

    Google Scholar 
    20.Loponte, D., Carbonera, M. & Silvestre, R. Fishtail projectile points from South America: the Brazilian record. Archaeol. Discov. 3, 85 (2015).Article 

    Google Scholar 
    21.Nami, H. G. & Yataco Capcha, J. Further Data on Fell Points from the Southern Cone of South America. PaleoAmerica 6, 379–386 (2020).Article 

    Google Scholar 
    22.Weitzel, C., Mazzia, N. & Flegenheimer, N. Assessing Fishtail points distribution in the southern Cone. Quat. Int. 473, 161–172 (2018).Article 

    Google Scholar 
    23.Martínez, G., Gutiérrez, M. A. & Tonni, E. P. Paleoenvironments and faunal extinctions: analysis of the archaeological assemblages at the Paso Otero locality (Argentina) during the Late Pleistocene–Early Holocene. Quat. Int 299, 53–63 (2013).Article 

    Google Scholar 
    24.Prates, L., Politis, G. G. & Perez, S. I. Rapid radiation of humans in South America after the last glacial maximum: a radiocarbon-based study. PLoS ONE 15, e0236023 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Buchanan, B., Collard, M., Hamilton, M. J. & O’Brien, M. J. Points and prey: a quantitative test of the hypothesis that prey size influences early Paleoindian projectile point form. J. Archaeol. Sci. 38, 852–864 (2011).Article 

    Google Scholar 
    27.Timpson, A. et al. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).Article 

    Google Scholar 
    28.Crema, E. R., Habu, J., Kobayashi, K. & Madella, M. Summed probability distribution of 14C dates suggests regional divergences in the population dynamics of the Jomon period in eastern Japan. PLoS ONE 11, e0154809 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    30.Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    31.d’Amen, M. et al. Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models. J. Biogeog. 42, 1255–1266 (2015).Article 

    Google Scholar 
    32.McCulloch, R. D. et al. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J. Quat. Sci.: Published Quat. Res. Assoc. 15, 409–417 (2000).Article 

    Google Scholar 
    33.Moreno, P. I., Villa-Martínez, R., Cárdenas, M. L. & Sagredo, E. A. Deglacial changes of the southern margin of the southern westerly winds revealed by terrestrial records from SW Patagonia (52 S). Quat. Sci. Rev. 41, 1–21 (2012).ADS 
    Article 

    Google Scholar 
    34.Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. PNAS 113, 856–861 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Politis, G. & Messineo, P. The Campo Laborde site: New evidence for the Holocene survival of Pleistocene megafauna in the Argentine Pampas. Quat. Int. 191, 98–114 (2008).Article 

    Google Scholar 
    36.Politis, G. G., Messineo, P. G., Stafford, T. W. & Lindsey, E. L. Campo Laborde: a Late Pleistocene giant ground sloth kill and butchering site in the Pampas. Sci. Adv. 5, eaau4546 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open‐source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    38.Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358 (2017).Article 

    Google Scholar 
    39.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 1–9 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    40.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).41.Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Tonni, E. P., Carlini, A. A., Yané, G. J. S. & Figini, A. J. Cronología radiocarbónica y condiciones climáticas en la “Cueva del Milodón” (sur de Chile) durante el Pleistoceno Tardío. Ameghiniana 40, 609–615 (2003).
    Google Scholar 
    43.Tonni, E. P. & Carlini, A. A. Neogene vertebrates from Argentine Patagonia: their relationship with the most significant climatic changes. Dev. Quat. Sci. 11, 269–283 (2008).
    Google Scholar 
    44.Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F. & Birnbaum, P. ssdm: an r package to predict distribution of species richness and composition based on stacked species distribution models. Methods Ecol. Evol. 8, 1795–1803 (2017).Article 

    Google Scholar 
    45.Mothé, D. et al. An artifact embedded in an extinct proboscidean sheds new light on human-megafaunal interactions in the quaternary of South America. Quat. Sci. Rev. 229, 106125 (2020).Article 

    Google Scholar 
    46.Jaimes, A. Condiciones tafonómicas, huesos modificados y comportamiento humano en los sitios de matanza de El Vano (Tradición El Jobo) y Lange/Ferguson (Tradición Clovis). Bol. Antropol. Am. 41, 159–184 (2005).
    Google Scholar 
    47.Moreno, P. I. et al. Renewed glacial activity during the Antarctic Cold reversal and persistence of cold conditions until 11.5 ka in SW Patagonia. Geology 37, 375–378 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Obase, T. & Abe‐Ouchi, A. Abrupt Bølling‐Allerød warming simulated under gradual forcing of the last deglaciation. Geophys. Res. Lett. 46, 11397–11405 (2019).ADS 
    Article 

    Google Scholar 
    49.de Porras, M. E. et al. Environmental and climatic changes in central Chilean Patagonia since the late glacial (Mallín El Embudo, 44 S). Clim 10, 1063–1078 (2014).ADS 

    Google Scholar 
    50.Mendelová, M., Hein, A. S., Rodes, A., Smedley, R. K. & Xu, S. Glacier expansion in central Patagonia during the Antarctic Cold Reversal followed by retreat and stabilisation during the Younger Dryas. Quat. Sci. Rev. 227, 106047 (2020).Article 

    Google Scholar 
    51.Villavicencio, N. A. et al. Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 39, 125–140 (2016).Article 

    Google Scholar 
    52.Prieto, A. R. Vegetational History of the Late glacial-holocene transition in the grasslands of Eastern Argentina. Palaeogr. Palaeoclimatol. Palaeoecol. 157, 167–188 (2000).ADS 
    Article 

    Google Scholar 
    53.Miotti, L., Tonni, E. & Marchionni, L. What happened when the Pleistocene megafauna became extinct? Quat. Int. 473, 173–189 (2018).Article 

    Google Scholar 
    54.Méndez, C. et al. J. L. Human effects in Holocene fire dynamics of central Western Patagonia (~ 44° S, Chile). Front. Ecol. Evol. 4, 100 (2016).Article 

    Google Scholar 
    55.Pires, M. M. et al. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. Lon. [Biol.] 282, 20151367 (2015).
    Google Scholar 
    56.Pires, M. et al. Before, during and after megafaunal extinctions: human impact on Pleistocene-Holocene trophic networks in South Patagonia. Quat. Sci. Rev. 250, 106296 (2020).Article 

    Google Scholar 
    57.Haynes, G. & Klimowicz, J. Recent elephant-carcass utilization as a basis for interpreting mammoth exploitation. Quat. Int. 359, 19–37 (2015).Article 

    Google Scholar 
    58.Surovell, T. A. & Grund, B. S. The associational critique of quaternary overkill and why it is largely irrelevant to the extinction debate. Am. Antiq. 77, 672–687 (2012).Article 

    Google Scholar 
    59.Rindel, D. D., Moscardi, B. F., & Perez, S. I. The distribution of the guanaco (Lama guanicoe) in Patagonia during Late Pleistocene–Holocene and its importance for prehistoric human diet. Holocene, https://doi.org/10.1177/0959683620981689 (2020).60.Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Sci. Adv. 2, e1501682 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Villavicencio, N. A., Corcoran, D. & Marquet, P. A. Assessing the causes behind the late quaternary extinction of Hhorses in South america using species distribution models. Fron. Ecol. Evol. 7, 226 (2019).Article 

    Google Scholar 
    62.Prado, J. L., & Alberdi, M. T. Fossil Horses of South America. Phylogeny, Systemics and Ecology. (Springer, 2017).63.Varela, L. & Fariña, R. A. Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene. Quat. Res. 85, 66–74 (2016).Article 

    Google Scholar 
    64.R-Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).65.Menegaz, A. N., Goin, F. J. & Jaureguizar, E. O. Análisis morfológico y morfométrico multivariado de los representantes fósiles y vivientes del género Lama (Artiodactyla, Camelidae). Sus implicancias sistemáticas, biogeográficas, ecológicas y biocronológicas. Ameghiniana 26, 153–172 (1989).
    Google Scholar 
    66.Scherer, C. S. Os Camelidae Lamini (Mammalia, Artiodactyla) do plesistoceno da América do Sul: aspectos taxonômicos e filogenéticos. Unpublished PhD Thesis, Universidade Federal do Rio Grande do Sul. (2009).67.Weinstock, J. et al. The Late Pleistocene distribution of vicuñas (Vicugna vicugna) and the “extinction” of the gracile llama (“Lama gracilis”): new molecular data. Quat. Sci. Rev. 28, 1369–1373 (2009).ADS 
    Article 

    Google Scholar 
    68.Mothé, D., Avilla, L. S. & Cozzuol, M. A. The south American gomphotheres (Mammalia, Proboscidea, Gomphotheriidae): taxonomy, phylogeny, and biogeography. J. Mamm. Evol. 20, 23–32 (2013).Article 

    Google Scholar 
    69.Prado, J. L. & Alberdi, M. T. Global evolution of equidae and gomphotheriidae from South America. Integ. Zool. 9, 434–443 (2014).Article 

    Google Scholar  More

  • in

    Estimation of tuna population by the improved analytical pipeline of unique molecular identifier-assisted HaCeD-Seq (haplotype count from eDNA)

    1.Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P. & Ramana Murthy, M. V. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Biotechnol. 18, 389–411 (2019).CAS 
    Article 

    Google Scholar 
    2.Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. REVIEW: The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).CAS 
    Article 

    Google Scholar 
    3.Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).Article 

    Google Scholar 
    4.Thomsen, P. F. & Willerslev, E. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).Article 

    Google Scholar 
    5.Knudsen, S. W. et al. Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. J. Exp. Mar. Biol. Ecol. 510, 31–45 (2019).CAS 
    Article 

    Google Scholar 
    6.Salter, I., Joensen, M., Kristiansen, R., Steingrund, P. & Vestergaard, P. Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters. Commun. Biol. 2, 1–9 (2019).Article 
    CAS 

    Google Scholar 
    7.Stoeckle, M. Y. et al. Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa225 (2020).Article 

    Google Scholar 
    8.Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9, e114639 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Jane, S. F. et al. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 15, 216–227 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Yoshitake, K. et al. HaCeD-Seq: a novel method for reliable and easy estimation about the fish population using haplotype count from eDNA. Mar. Biotechnol. N. Y. 21, 813–820 (2019).CAS 
    Article 

    Google Scholar 
    11.Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. 108, 9530–9535 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    12.Casbon, J. A., Osborne, R. J., Brenner, S. & Lichtenstein, C. P. A method for counting PCR template molecules with application to next-generation sequencing. Nucleic Acids Res. 39, e81–e81 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).CAS 
    Article 

    Google Scholar 
    14.Vander Heiden, J. A. et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30, 1930–1932 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Shugay, M. et al. MAGERI: Computational pipeline for molecular-barcoded targeted resequencing. PLOS Comput. Biol. 13, e1005480 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Clement, K., Farouni, R., Bauer, D. E. & Pinello, L. AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing. Bioinformatics 34, i202–i210 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Kumar, G., Kocour, M. & Kunal, S. P. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region. Mitochondrial DNA Part A 27, 1976–1980 (2016).CAS 
    Article 

    Google Scholar 
    18.Nomura, S. et al. Genetic population structure of the Pacific bluefin tuna Thunnus orientalis and the yellowfin tuna Thunnus albacares in the North Pacific Ocean. Fish. Sci. 80, 1193–1204 (2014).CAS 
    Article 

    Google Scholar 
    19.Gleiss, A. C., Schallert, R. J., Dale, J. J., Wilson, S. G. & Block, B. A. Direct measurement of swimming and diving kinematics of giant Atlantic bluefin tuna (Thunnus thynnus). R. Soc. Open Sci. 6, 190203 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Juan-Jordá, M. J., Mosqueira, I., Freire, J. & Dulvy, N. K. The conservation and management of tunas and their relatives: setting life history research priorities. PLoS ONE 8, e70405 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Shibata, M. et al. Transcriptomic features associated with energy production in the muscles of Pacific bluefin tuna and Pacific cod. Biosci. Biotechnol. Biochem. 80, 1114–1124 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Swanson, D., Block, R. & Mousa, S. A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv. Nutr. Bethesda Md 3, 1–7 (2012).CAS 
    Article 

    Google Scholar 
    23.Collette, B. B. et al. Conservation. High value and long life–double jeopardy for tunas and billfishes. Science 333, 291–292 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Kumai, H. & Miyashita, S. Life cycle of the Pacific bluefin tuna is completed under reared condition. Nippon Suisan Gakkaishi Jpn. 69, 124–127 (2003).Article 

    Google Scholar 
    25.Miyashita, S. et al. Maturation and spawning of cultured bluefin tuna, Thunnus thynnus. Suisanzoushoku Jpn. 48, 475–488 (2000).
    Google Scholar 
    26.Cho, J. et al. Production performance of Pacific bluefin tuna Thunnus orientalis larvae and juveniles fed commercial diets and effects of switching diets. Aquac. Sci. 64, 359–370 (2016).CAS 

    Google Scholar 
    27.Tsuji, S. et al. Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13165 (2020).Article 
    PubMed 

    Google Scholar 
    28.Tsuji, S. et al. Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: a case study using tank water. Environ. DNA 2, 42–52 (2020).Article 

    Google Scholar 
    29.Ppyun, H. et al. Improved PCR performance and fidelity of double mutant Neq A523R/N540R DNA polymerase. Enzym. Microb. Technol. 82, 197–204 (2016).CAS 
    Article 

    Google Scholar 
    30.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).Article 

    Google Scholar 
    31.Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Bravington, M., Grewe, P. & Davies, C. Fishery-independent estimate of spawning biomass of southern bluefin tuna through identification of close-kin using genetic markers. FRDC Report2007034CSIRO Aust. (2014).34.Bravington, M. V., Grewe, P. M. & Davies, C. R. Absolute abundance of southern bluefin tuna estimated by close-kin mark-recapture. Nat. Commun. 7, 13162 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Song, N., Jia, N., Yanagimoto, T., Lin, L. & Gao, T. Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 24, 705–712 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Zhu, Y., Cheng, Q. & Rogers, S. M. Genetic structure of Scomber japonicus (Perciformes: Scombridae) along the coast of China revealed by complete mitochondrial cytochrome b sequences. Mitochondrial DNA Part DNA Mapp. Seq. Anal. 27, 3828–3836 (2016).CAS 
    Article 

    Google Scholar 
    37.Tzeng, T.-D. Population structure and historical demography of the spotted mackerel (Scomber australasicus) off Taiwan inferred from mitochondrial control region sequencing. Zool. Stud. 8, 656–663 (2007).
    Google Scholar 
    38.Ichinokawa, M., Okamura, H. & Kurota, H. The status of Japanese fisheries relative to fisheries around the world. ICES J. Mar. Sci. 74, 1277–1287 (2017).Article 

    Google Scholar 
    39.Pikitch, E. K. et al. Ecosystem-based fishery management. Science 305, 346–347 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).Article 

    Google Scholar 
    41.Lacoursière Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Yamamoto, S. et al. Environmental DNA as a ‘Snapshot’ of fish distribution: a case study of Japanese jack mackerel in Maizuru bay, Sea of Japan. PLoS ONE 11, e0149786 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Sekino, M. & Yamashita, H. Mitochondrial DNA barcoding for Okinawan oysters: a cryptic population of the Portuguese oyster Crassostrea angulata in Japanese waters. Fish. Sci. 79, 61–76 (2013).CAS 
    Article 

    Google Scholar 
    45.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Minamoto, T., Naka, T., Moji, K. & Maruyama, A. Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction. Limnology 17, 23–32 (2016).CAS 
    Article 

    Google Scholar 
    47.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More