Testing average wind speed using sampling plan for Weibull distribution under indeterminacy
1.Ajayi, O. O., Fagbenle, R. O., Katende, J., Aasa, S. A. & Okeniyi, J. O. Wind profile characteristics and turbine performance analysis in Kano, north-western Nigeria. Int. J. Energy Environ. Eng. 4, 1–15 (2013).Article
Google Scholar
2.Yan, A., Liu, S. & Dong, X. Variables two stage sampling plans based on the coefficient of variation. J. Adv. Mech. Des. Syst. Manuf. 10, JAMDSM0002 (2016).Article
Google Scholar
3.Yen, C.-H., Lee, C.-C., Lo, K.-H., Shiue, Y.-R. & Li, S.-H. A rectifying acceptance sampling plan based on the process capability index. Mathematics 8, 141 (2020).Article
Google Scholar
4.Akpinar, E. K. & Akpinar, S. A statistical analysis of wind speed data used in installation of wind energy conversion systems. Energy Convers. Manag. 46, 515–532 (2005).Article
Google Scholar
5.Yilmaz, V. & Çelik, H. E. A statistical approach to estimate the wind speed distribution: the case of Gelibolu region. Doğuş Üniversitesi Dergisi 9, 122–132 (2011).
Google Scholar
6.Ali, S., Lee, S.-M. & Jang, C.-M. Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island-Incheon, South Korea. Renew. Energy 123, 652–663 (2018).Article
Google Scholar
7.Arias-Rosales, A. & Osorio-Gómez, G. Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy. Appl. Energy 228, 980–998 (2018).Article
Google Scholar
8.Akgül, F. G. & Şenoğlu, B. Comparison of wind speed distributions: a case study for Aegean coast of Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18 (2019).9.Ozay, C. & Celiktas, M. S. Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region. Energy Convers. Manag. 121, 49–54 (2016).Article
Google Scholar
10.Qing, X. Statistical analysis of wind energy characteristics in Santiago island, Cape Verde. Renew. Energy 115, 448–461 (2018).Article
Google Scholar
11.Mahmood, F. H., Resen, A. K. & Khamees, A. B. Wind Characteristic Analysis Based on Weibull Distribution of Al-Salman site (Iraq, 2019).
Google Scholar
12.Campisi-Pinto, S., Gianchandani, K. & Ashkenazy, Y. Statistical tests for the distribution of surface wind and current speeds across the globe. Renew. Energy 149, 861–876 (2020).Article
Google Scholar
13.ul Haq, M. A., Rao, G. S., Albassam, M. & Aslam, M. Marshall-Olkin Power Lomax distribution for modeling of wind speed data. Energy Rep. 6, 1118–1123 (2020).Article
Google Scholar
14.Bludszuweit, H., Domínguez-Navarro, J. A. & Llombart, A. Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 23, 983–991 (2008).ADS
Article
Google Scholar
15.Brano, V. L., Orioli, A., Ciulla, G. & Culotta, S. Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew. Energy 36, 1026–1039 (2011).Article
Google Scholar
16.Katinas, V., Gecevicius, G. & Marciukaitis, M. An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Appl. Energy 218, 442–451 (2018).Article
Google Scholar
17.Zaman, B., Lee, M. H. & Riaz, M. An improved process monitoring by mixed multivariate memory control charts: an application in wind turbine field. Comput. Ind. Eng. 142, 106343 (2020).Article
Google Scholar
18.Jamkhaneh, E. B., Sadeghpour-Gildeh, B. & Yari, G. Important criteria of rectifying inspection for single sampling plan with fuzzy parameter. Int. J. Contemp. Math. Sci. 4, 1791–1801 (2009).MATH
Google Scholar
19.Jamkhaneh, E. B., Sadeghpour-Gildeh, B. & Yari, G. Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidiscip. Optim. 43, 555–560 (2011).MATH
Article
Google Scholar
20.Sadeghpour Gildeh, B., Baloui Jamkhaneh, E. & Yari, G. Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 8, 47–55 (2011).MathSciNet
MATH
Google Scholar
21.Afshari, R. & Sadeghpour Gildeh, B. Designing a multiple deferred state attribute sampling plan in a fuzzy environment. Am. J. Math. Manag. Sci. 36, 328–345 (2017).MATH
Google Scholar
22.Tong, X. & Wang, Z. Fuzzy acceptance sampling plans for inspection of geospatial data with ambiguity in quality characteristics. Comput. Geosci. 48, 256–266 (2012).ADS
Article
Google Scholar
23.Uma, G. & Ramya, K. Impact of fuzzy logic on acceptance sampling plans–a review. Autom. Auton. Syst. 7, 181–185 (2015).
Google Scholar
24.Smarandache, F. Neutrosophy. Neutrosophic probability, set, and logic, proquest information & learning. Ann Arbor, Michigan, USA 105, 118–123 (1998).25.Smarandache, F. & Khalid, H. E. Neutrosophic Precalculus and Neutrosophic Calculus. (Infinite Study, 2015).26.Peng, X. & Dai, J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput. Appl. 29, 939–954 (2018).Article
Google Scholar
27.Abdel-Basset, M., Mohamed, M., Elhoseny, M., Chiclana, F. & Zaied, A.E.-N.H. Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif. Intell. Med. 101, 101735 (2019).PubMed
Article
Google Scholar
28.Nabeeh, N. A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H. A. & Aboelfetouh, A. An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access 7, 29734–29744 (2019).Article
Google Scholar
29.Pratihar, J., Kumar, R., Dey, A. & Broumi, S. In Neutrosophic Graph Theory and Algorithms 180–212 (IGI Global, 2020).30.Pratihar, J., Kumar, R., Edalatpanah, S. & Dey, A. Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell. Syst. 7, 1–12 (2020).
Google Scholar
31.Smarandache, F. Introduction to neutrosophic statistics. (Infinite Study, 2014).32.Chen, J., Ye, J. & Du, S. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 9, 208 (2017).Article
Google Scholar
33.Chen, J., Ye, J., Du, S. & Yong, R. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 9, 123 (2017).Article
Google Scholar
34.Aslam, M. Introducing Kolmogorov–Smirnov tests under uncertainty: an application to radioactive data. ACS Omega 5, 9914–9917 (2019).
Google Scholar
35.Aslam, M. A new sampling plan using neutrosophic process loss consideration. Symmetry 10, 132 (2018).Article
Google Scholar
36.Aslam, M. Design of sampling plan for exponential distribution under neutrosophic statistical interval method. IEEE Access 6, 64153–64158 (2018).Article
Google Scholar
37.Aslam, M. A new attribute sampling plan using neutrosophic statistical interval method. Complex Intell. Syst. 11, 1–6 (2019).
Google Scholar
38.Aslam, M., Jeyadurga, P., Balamurali, S. & Marshadi, A. H. Time-Truncated Group Plan under a Weibull Distribution based on Neutrosophic Statistics. Mathematics 7, 905 (2019).Article
Google Scholar
39.Alhasan, K. F. H. & Smarandache, F. Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution. (Infinite Study, 2019).40.Cheema, A. N., Aslam, M., Almanjahie, I. M. & Ahmad, I. Mixture modeling of exponentiated pareto distribution in bayesian framework with applications of wind-speed and tensile strength of carbon fiber. IEEE Access 8, 178514–178525 (2020).Article
Google Scholar
41.Deep, S., Sarkar, A., Ghawat, M. & Rajak, M. K. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Renew. Energy 161, 319–339 (2020).Article
Google Scholar
42.Gugliani, G., Sarkar, A., Ley, C. & Mandal, S. New methods to assess wind resources in terms of wind speed, load, power and direction. Renew. Energy 129, 168–182 (2018).Article
Google Scholar More