More stories

  • in

    Optimized imaging methods for species-level identification of food-contaminating beetles

    The illumination system often is considered the key setting in most image acquisitions30. Thus, we first studied this system under three different settings, namely 2Pt_Rf, RRf_P and Trans due to their practical and scientific merits. The schematic ray diagrams showing the lighting conditions and their experimental set-ups have already been illustrated (Fig. 1). The 2Pt_Rf system is one of the most-used illumination systems in the field of entomology and food-filth detection, for it allows the operator to view a wide area of samples, even when they are dark and thick9. Beetle elytra (and other external surfaces of beetles) are coated with natural waxy substances and sometimes also with setae (hair-like features), which scatter reflected light, causing glare spots in their images31. Due to its reflective nature, this system, produced significant glare spots, often overshadowing the actual patterns of the elytra as seen on the top rows of Fig. 2a,b, and rendering it the least advantageous for our application.Figure 2Comparing three different illumination systems. Images of elytra under three different lighting conditions (top: 2Pt_Rf, middle: RRf_P and bottom: Trans), for two different families (a) Anobiidae, with species L. serricorne (1st column) and S. paniceum (2nd column) and (b) Tenebrionidae with species G. Cornutus (3rd column) and T. castaneum (4th column). All images were captured at 50x magnification, with the scale bars being 250 µm. The glare in images due to 2Pt_Rf illumination is evident. The RRf_P and Trans systems provide a much better alternative that significantly reduces glare, which obstruct elytral patterns. The extent of glare has been quantified as (c) percentage of elytra area obstructed due to glare, (d) number of glare spots (i.e. artifacts) due to setae when compared against three different illumination systems for two different families, which further highlights the advantages of RRf_P and Trans systems.Full size imageThe use of 2Pt_Rf light produced so much glare that it obstructed about 25% of the pattern area (Fig. 2c). Moreover, the dorsal setae produced a large number of tiny glare spots that could easily be confused for feature points (Fig. 2d), and led to misidentifications in previous studies21,22,23,24. Furthermore, we observed that the position of the glare spots did not remain constant, and varied with the angle of incident light and/or the ambient lighting conditions (Supplementary Figure S1). Such randomness in image illumination (i.e., brightness and contrast) makes this setting very inconsistent, (e.g., highly dependent on random, external factors) and rendering it ineffective for automated pattern analysis, particularly in developing computer models for pattern recognition27,28.The RRf_P system was a significant improvement over the 2Pt_Rf system, as it allowed us to remove many of the illumination inconsistencies (Fig. 2a,b, the middle row). The use of a ring light instead of two light bulbs provided a more uniform illumination, and the polarized filter helped minimize glare spots from the images by imaging in circular polarized light (also minimizing the incoherent scattering of light, responsible for glare)32. However, upon closer observation, we found that the illumination system could not completely remove all the glare spots, especially for the species with dorsal setae. The orientation of the polarizing filter can be adjusted to remove random scattering of light only from one particular plane and/or angle. Since dorsal setae lie at a slightly different angle to the elytra surface, it was not possible to simultaneously remove glare spots originating from both elytra and dorsal setae. However, this setting was found to be excellent in imaging whole insects and/or other thick, dark or shiny objects that may have been challenging when using the 2Pt_Rf setting33.Compared to RRf_P and 2Pt_Rf, the Trans system was a much simpler and more economical set-up that produced excellent glare-free images (Fig. 2a,b, the bottom row). The images of elytra revealed patterns clearly as they did not suffer from any reflective glares (Fig. 2c,d). Unlike the RRf_P system, images captured in Trans remained mostly unaffected by the polarizing filter or its orientation (Supplementary Figure S2). This makes Trans least susceptible to variations such as those in operating personnel and ambient lighting conditions; and it remained relatively unaffected by the change in intensity of the transmitted beam, (i.e., due to the camera’s automatic intensity balance setting). Methods that enable consistent acquisition of data are highly desirable for any automated processing as they help avoid any batch effect or unknown error34,35. In this regard, the Trans system provides an effective, yet simple solution for consistently capturing clear, high-quality images.We also captured images under the combined illumination of RRf_P and Trans systems. This combined lighting system, however, fell short by revealing both surface and internal features with equal precision, and its images more closely resembled the RRf_P-based images (Supplementary Figure S3). It was not possible to balance or equalize the illumination intensities of the two (i.e., reflected and transmitted) light beams. The ring light was higher in illumination intensity compared to the transmitted beam, which also underwent sample adsorption, possibly resulting from the camera’s greater expose to reflected light, producing images similar to those captured using RRf_P.The key to discerning between similar patterns lies in acquiring images that enable the visualization of fine pattern details. This would permit maximum information to be extracted from each image and could help identify a species with a much larger set of characteristic features. To ensure visualization of the most patterns, both sides (D and V) of elytra were imaged. We noted that both of these illumination systems were excellent in revealing the pattern details, as one can clearly observe differences in patterns for D and V sides of the same elytron. The lack of glare spots made distinguishing between beetles belonging to the same family relatively easy, as their pattern features such as color, design, and setae are quite different from each other when observed through either the RRf_P or Trans illumination systems (Supplementary Figure S4).Differences between species were subtler for beetles belonging to the same genus however. For instance, rectangular patterns are only slightly lighter with marginally thicker ridge lines between T. castaneum and T. confusum (both genus Tribolium), irrespective of the illumination system used (Fig. 3a,b). Differences also were found to be subtle between O. mercator and O. surinamensis (genus Oryzaephilus) (Supplementary Figure S4e). For the same species, the variation in elytra patterns due to two different illumination settings (RRf_P and Trans) could only be perceived during careful observation of the images (refer to first row for D & second row for V side in images Fig. 3a,b). This difference, though minute, originated from the variation in the imaging mechanism and deserves comprehensive interpretation. The RRf_P system uses a light beam that reflects back from the specimen surface to capture an image, which allows better visualization of surface features. On the contrary, the Trans system uses a transmitted light beam that traverses through the specimen allowing better visualization of internal structures, in our case this is the cytoskeletal pattern on each elytron. That may explain why the images captured through the Trans system did not appear significantly different between the D and V sides, as they did for RRf_P lighting (Fig. 3a,b).Figure 3Acquired patterns on either side of elytra dorsal (D) & ventral (V) sides for maximum visualization of the patterns and to compare the two different illumination systems, RRf_P and Trans, for (a) T. castenium, (b) T. confusum both belonging to the genus Tribolium; and are well known for their remarkably similar appearance; and (c) in visualizing surface features in O. surinamensis (OS), L. serricorne (LS), and T. confusum (TCo). Although, both systems seemed equally good for visualizing elytral patterns, the Trans system was found to be the least affected by minor surface features such as setae, thin surface coatings or occasional adherents, making it more advantageous for the imaging application.Full size imageIn an ideal scenario the RRf_P system should be used for imaging surface features such as setae, contours and the like, and the Trans system for such internal structures as ridges and bulges. In practice however we observed that the RRf_P system is more susceptible to dorsal setae or artifacts such as contaminants or adherents (Fig. 3c). In several of the elytron samples, especially in the case of deeply concave samples such as L. serricorne, we found thin adherent coatings (possibly from the medium in which the insect lived) on the V side of the elytra persisted even after thorough ultrasonic cleaning. We also observed occasional dust-like adherent on either side of the elytra, all of which masked the actual elytral patterns. Additionally, we foresee the loss of non-structural surface features such as setae in real-world samples that undergo aggressive sample preparation steps prior to analysis. The internal structures of elytra are made of well crosslinked chitin (or its modified version), which is known to have excellent mechanical and structural properties16,36. Thus, capturing images through the Trans system is advantageous in this regard, as it captures the internal structures which usually remain unaffected by minor surface adhesions, contamination or even vigorous sample preparation steps.Having studied the illumination systems, we focused on another important imaging parameter, namely, magnification. Figure 4b shows images of elytra from O. mercator and O. surinamensis at magnifications 20 x to 160 x under the Trans system. It is obvious that the patterns are visibly better and more prominent at higher magnifications. Moreover, the size and shape of an elytron varies from one species to another (Fig. 4a,c). For the seven beetle species examined in this study, their sizes varied from ~ 5 mm2 for genus Oryzaephilus to ~ 13 mm2 for genus Tribolium. At these sizes, 50 x to 100 x magnification seemed a good choice, as it enabled us to capture most of the elytra (Fig. 4b,d). Imaging at higher magnifications (such as 160 x) allowed significantly better visualization of individual patterns. On the other hand, it only revealed parts of the elytral patterns, with a large portion remaining out of the field of view, and thus unanalyzed.Figure 4Magnification considerations: (a) Elytra images captured at 50 ×  magnification, showing their overall appearance; (b) Elytra images of T. castaneum (TCa) and T. confusum (TCo) at various magnifications showing area of elytra captured in each frame/magnification, (c) variation in average elytra sizes (of 10 images per species) for the seven different species used in this study, (d) proportion (area imaged/total area) of elytra captured at various magnifications, (e) number of images required (elytra size/frame size) to visually represent the whole elytra and (f) change in frame area (area captured in an image) by magnification. Even though there is a variation in elytral sizes, collectively they can be represented effectively at a magnification of 100 x.Full size imageTo remedy this inconvenience, many images must be captured in order to visually represent the entire elytra (about five or so in some cases as shown in Fig. 4e). This would increase overlapping errors (i.e. same parts being imaged in multiple images) without significantly increasing the pattern information. It also makes the process more susceptible to vibrations, thus increasing the likelihood of introducing undesirable artifacts. Increasing the magnification also significantly reduces the frame area. The average size of pantry beetle elytra is approximately 10 mm2, which is similar in dimension to the area of the image frame at 100 x magnification (Fig. 4f). Therefore, images captured at this magnification (i.e. 100 x), would reveal all or most of the elytra structure for a majority of the pantry beetles (Fig. 5a). We thus concluded that this a good starting point for a more detailed investigation.Figure 5Elytra and their patterns at various magnifications; (a) elytral images of species O. mercator (OM) and O. surinamensis (OS) at magnifications 20x to 160x; (b) elytra patterns captured for six different species at 100x magnification under the Trans illumination system; and (c) various elytra patterns for the same six species at higher display resolution, which highlights that this setup (Trans at 100x) is capable of resolving the finest pattern details required to distinguish species belonging to the same genus or family from one another.Full size imageLike the sizes of elytra, morphology of the patterns also varied widely across family and genera, and even within the same genera, which could clearly be visible at 100 x magnification across all the species (Fig. 5b). For instance, the central bulges were more circular in shape and measured on average ~ 100 µm diameter for T. confusum compared to a less circular bulge shape that measured less than ~ 50 µm in diameter for T. castaneum. Interestingly, L. serricorne completely lacked any such bulges (a feature we observed on very few pantry beetles) and had distances of less than 20 µm between the seatal pits (hair roots). Such small feature size could not be resolved adequately at 50 x magnification (even at ~ 2400 × 1900 dpi image resolution). Imaging at 100 x magnification (and at ~ 2400 × 1900 dpi resolution) allowed us to visualize the patterns clearly enough to visibly distinguish one elytra pattern from another (Fig. 5c). We therefore, chose this magnification as optimal, as it struck a reasonable balance between appropriate field of view and adequate resolution of detailed elytral patterns. At this point we also began to concur that magnification of 100 x under Trans illumination yielded high quality elytra images that allowed one to visualize fine patterns in beetle elytra in a consistent manner. It could be the optimal imaging condition, as images captured this way enabled us to visually differentiate one species from another, at least for the set of beetle species under investigation.After optimizing the illumination and magnification settings (which were the hardware-based parameters), we focused our attention to digital parameters for improving the image quality. Amongst these parameters, sharpness, distortion and aberration were important for their significance in image processing. They also contribute to the visual clarity, by revealing the finest elytral patterns required for distinguishing one species from another. The corresponding FFT images of the images obtained using conventional (low resolution 2Pt_Rf), 2Pt-Rf and Trans settings (Supplementary Figure S5) highlights the difference in the pattern clarity. The central vertical line represents the horizonal groves in the pattern and the smaller spots on both sides possibly represent the rectangular box like features patterns. Their distinct nature for the FFT image, indicates that the pattern (obtained using the Trans setting) is clear due to the good image quality. On the contrary, the FFT patterns are increasingly diffused (due to glare and scattering, less sharpness and clarity) for 2Pt-Rf setting and lower resolution. The FFT patterns from species belong to different families shows variation. The FFTs from those belong to the same genus and family, shows some similarity (due to the similarity in their elytral patterns) but are not identical, further bolsters the superior image quality of Trans setting that allows distinction of one species from another.Image resolution, another of the image quality parameter, was kept at 2592 × 1944 dpi (~ 5-megapixel, image size: 14 MB per image). This was found to be adequate for our applications, as higher resolution (greater than 10 megapixel) increased the images size significantly without providing any additional information. This may also cause difficulty in handling and storage for a repository aimed to contain about 2000 images. Fortunately, most modern cameras, including the one we used, comes with well-documented, user-guided software interface that allows convenient optimization of the ‘soft’ parameters enabling easy capturing of good quality images. So, it was less arduous for us to obtain good quality elytral images of once the illumination and magnification settings were worked out. A step-wise details on how to capture a good quality image has been elaborated (Supplementary Information-Step-Wise Imaging Method) for consistency and reproducibility.Our ultimate objective is to obtain large number of high-quality elytral images for species identification through elytral pattern recognition using artificial intelligence (AI) based machine learning methods. However, developing such methods require both time and high-performing computational capability, which could be expensive. It may be prudent to run a ‘quick-check’ to observe if improving the image quality indeed showed any promise in improving species-level identification. Therefore, as a proof of concept, we used ImageJ to analyze the elytral patterns based on their difference in sizes and shapes. For this test, we analyzed elytra images of G. cornutus, T. castaneum and T. confusum, all three belonging to the same family Tenebrionidae, thus showing very similar elytral patterns (Fig. 6a). The processed images yield corresponding pattern outlines whose size and shape have been quantified by the area within the outlines and their circularity (area/perimeter2, 0 for line and 1 for circle) (Fig. 6b). It can be noted that their distributions created three different bell curves for the three species analyzed. The shape distributions did show three peaks having good overlap, probably indicating the similarity in pattern shapes for species belonging to the same family (Fig. 6c). The size distribution curves however are further apart for the species belonging to the same family but different genus and quite close for those of the same genus (Fig. 6d). This species wise classification using rudimentary size analysis of elytra patterns indicated that improving image quality may indeed help improve species-level identification.Figure 6Analysis of elytra patterns for 3 different species, namely G. cornutus (GC), T. confusum (TCo), & T. castaneum (TCa) belonging to the same family Tenebrionidae. (a) optical images captured in Trans illumination at 100x magnification showing elytra patterns, with the scale bars being 250 µm; (b) the corresponding binary image, that shows only the dominant patterns. The log-normal distribution of (c) ‘circularity’ (shape) and (d) ‘size’ of the patterns for the three different species. It can be noted that the shape of the patterns are similar (close ‘circularity’ distribution) for the species belonging to the same family. But the ‘size’ distribution varied for three species with TCo & TCa belonging to the same genus Tribolium, much closer compared to the other family member GC. The indexed numbers show the mean and SD of the distribution, with the size values bearing units of  10–3 mm2.Full size imageAny optimization technique must be tested for its robustness before being extended to a much wider range of samples. Thus, we wanted to observe whether the Trans setting at a 100x magnification could be used for other species of beetles. For this setting to work the transmitted light must pass through the elytra, which may seem difficult if the elytron is too dark and/or thick. Thus, we tested this system to image elytral patterns on rainbow scrap beetle (Phanaeus vindex), black dung beetle (Onitis aygulus) and click beetle (Orthostethus infuscatus), (none of which are pantry beetles), for they have some of the biggest, darkest and thickest elytral known to entomologists (Fig. 7a,b)36. It was indeed possible to capture elytra patterns for all three species using this setup. For comparison, images also were obtained using the RRf_P setting further highlighting the advantage of imaging in transmitted light, Trans remains least influenced by the presence of surface features such as pigmentation, excessive setae and the like as shown in the bottom row images in Fig. 7a–c. Since the setup worked well for some of the biggest and darkest elytra samples, presumably it could be used for imaging any species of pantry beetle (or other class of beetles) which are roughly 10 times smaller in size and have far thinner elytra.Figure 7Control study to evaluate imaging capability when using Trans at 100x magnification, which was employed to image (a) Rainbow Scrap Beetle (Phanaeus vindex); (b) Black Dung Beetle (Onitis aygulus) and (c) Click Beetle (Orthostethus infuscatus), which possess some of the thickest and darkest known elytra in beetles. For comparison, the bottom row imaged using the RRf_P system, shows colored pigmentation, waxy coating and excessive setae. The top row represents images captured using the Trans system showing only the cytoskeletal structure, and which remain mostly unaffected by nonuniform surface features.Full size imageHaving tested the Trans system at 100x magnification on thicker and darker elytral samples, we moved forward in capturing elytral images of other pantry beetles to further expand the robustness of this system. Figure 8 shows representative images of six more species, listed in Table 1, by their family and genus names. We observed that this system (100 x magnification with the Trans setting) yielded excellent images for most of the beetles. The only exception was Zabrotes subfasciatus (Z. subfasciatus- commonly known as Mexican bean weevil of family Chrysomelidae). Its dark dorsal setae with white stripes, combined with a deeply concave shape probably made auto-focusing difficult during image acquisition. This could have contributed to slightly imperfect stacking of multi-layer images resulting in a poorer 3D montage construction. Images of the same species obtained through the RRf_P system also were of poorer quality, leading us to conclude that elytra with surface setae of contrasting colors combined with deep concave shapes are more difficult to image compared to elytra with more uniform color, flatter shape and clear patterns. This, however, may not pose a significant challenge, as in a real-world scenario, elytra often lose both their dorsal setae and concave shape due to food processing steps and/or fragmentation.Figure 8Extending this imaging method to other species of food contaminating beetles. Elytra images of species belonging to (a) two completely different families; (b,c) of same genus. Sitophilus granarius and Sitophilus oryzae of genus Sitophilus; T. freemani and T. madens of genus Tribolium. The optimized imaging technique works well for imaging elytra of most species of pantry beetles. However, species with variegated dorsal setae and deep concave shapes are most difficult to image properly. The images are at 100x magnification, with the scale bars being 250 µm; the insets show the magnified patters with scale bar being 100 µm.Full size imageWe currently are extending this imaging method to a total of 40 different species and plan to create a publicly available database of these images. Such database is meant to serve the food safety and entomology communities by providing good quality images for referencing and taxonomical applications. The optimization of parameters required for machine learning methods for species identification through pattern recognition are quite different from those in image acquisition and is far beyond the scope of this manuscript. But this study is aimed to serve as a forerunner for such study as it provides the means to obtain a large set of good-quality, noise-free images for developing a good computational model, which has been one of the primary challenges in the field of AI and machine leaning. We hope that a publicly available database of images will encourage data scientists to develop state-of-the art species identification algorithms, thus eventually contribute to our long-term goal of efficient automated species identification of food contaminating beetles. We believe this work lays a solid foundation for such an exhaustive study, which would require more resources and would help predict the correct species of pantry pests with greater accuracy. We hope such efforts ultimately would expedite the entire process of taxonomical analysis and help better manage contamination scenarios or catalog ecological systems, in the foreseeable future. More

  • in

    Developing a non-destructive metabarcoding protocol for detection of pest insects in bulk trap catches

    1.Bik, H. M. et al. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 27(4), 233–243 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26(21), 5872–5895 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Porter, T. M. & Hajibabaei, M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27(2), 313–338 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Arulandhu, A. J. et al. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. GigaScience 6(10), gix080 (2017).Article 

    Google Scholar 
    5.Raclariu, A. C., Heinrich, M., Ichim, M. C. & de Boer, H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem. Anal. 29(2), 123–128 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Staats, M. et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 408(17), 4615–4630 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Comtet, T., Sandionigi, A., Viard, F. & Casiraghi, M. DNA (meta)barcoding of biological invasions: A powerful tool to elucidate invasion processes and help managing aliens. Biol. Invasions 17(3), 905–922 (2015).Article 

    Google Scholar 
    8.Piper, A. M. et al. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. GigaScience 8(8), giz092 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Tedersoo, L., Drenkhan, R., Anslan, S., Morales-Rodriguez, C. & Cleary, M. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Mol. Ecol. Resour. 19(1), 47–76 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Andújar, C. et al. Metabarcoding of freshwater invertebrates to detect the effects of a pesticide spill. Mol. Ecol. 27(1), 146–166 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J. & Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol. 8(10), 1265–1275 (2017).Article 

    Google Scholar 
    12.Brown, E. A., Chain, F. J. J., Zhan, A., MacIsaac, H. J. & Cristescu, M. E. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. Divers. Distrib. 22(10), 1045–1059 (2016).Article 

    Google Scholar 
    13.Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B Biol. Sci. 270(Suppl 1), S96–S99 (2003).CAS 

    Google Scholar 
    14.Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270(15), 313–321 (2003).CAS 
    Article 

    Google Scholar 
    15.Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14(6), 1160–1170 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Yu, D. W. et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3(4), 613–623 (2012).Article 

    Google Scholar 
    17.Brandon-Mong, G.-J. et al. DNA metabarcoding of insects and allies: An evaluation of primers and pipelines. Bull. Entomol. Res. 105(6), 717–727 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Freeland, J. R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome 60(4), 358–374 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Marquina, D., Andersson, A. F. & Ronquist, F. New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Mol. Ecol. Resour. 19(1), 90–104 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M. & Liebhold, A. M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15(8), 803–812 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Batovska, J. et al. Effective mosquito and arbovirus surveillance using metabarcoding. Mol. Ecol. Resour. 18, 32–40 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Liebhold, A. M. et al. Eradication of invading insect populations: From concepts to applications. Annu. Rev. Entomol. 61, 335–352 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28(2), 420–430 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10(7), e0130324 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Krehenwinkel, H. et al. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci. Rep. 7(1), 17668 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Piñol, J., Senar, M. A. & Symondson, W. O. C. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28(2), 407–419 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    27.Ashfaq, M. & Hebert, P. D. N. DNA barcodes for bio-surveillance: Regulated and economically important arthropod plant pests. Genome 59(11), 933–945 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14(2), 306–323 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Hauck, L. L., Weitemier, K. A., Penaluna, B. E., Garcia, T. S. & Cronn, R. Casting a broader net: Using microfluidic metagenomics to capture aquatic biodiversity data from diverse taxonomic targets. Environ. DNA 1(3), 251–267 (2019).Article 

    Google Scholar 
    30.Zhang, G. K., Chain, F. J. J., Abbott, C. L. & Cristescu, M. E. Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities. Evol. Appl. 11(10), 1901–1914 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Costello, M. et al. Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genomics 19(1), 332 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.MacConaill, L. E. et al. Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing. BMC Genomics 19(1), 30 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Bengtsson-Palme, J. et al. Strategies to improve usability and preserve accuracy in biological sequence databases. Proteomics 16(18), 2454–2460 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Shen, Y.-Y., Chen, X. & Murphy, R. W. Assessing DNA barcoding as a tool for species identification and data quality control. PLoS ONE 8(2), e57125 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Kozlov, A. M., Zhang, J., Yilmaz, P., Glöckner, F. O. & Stamatakis, A. Phylogeny-aware identification and correction of taxonomically mislabeled sequences. Nucleic Acids Res. 44(11), 5022–5033 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Simmons, M., Tucker, A., Chadderton, W. L., Jerde, C. L. & Mahon, A. R. Active and passive environmental DNA surveillance of aquatic invasive species. Can. J. Fish. Aquat. Sci. 73(1), 76–83 (2015).Article 
    CAS 

    Google Scholar 
    37.Olmos, A. et al. High-throughput sequencing technologies for plant pest diagnosis: Challenges and opportunities. EPPO Bull. 48(2), 219–224 (2018).Article 

    Google Scholar 
    38.Darling, J. A., Pochon, X., Abbott, C. L., Inglis, G. J. & Zaiko, A. The risks of using molecular biodiversity data for incidental detection of species of concern. Divers. Distrib. 26(9), 1116–1121 (2020).Article 

    Google Scholar 
    39.Carew, M. E., Coleman, R. A. & Hoffmann, A. A. Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding?. PeerJ 6, e4980 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Ji, Y. et al. SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Resour. 20(1), 256–267 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Nielsen, M., Gilbert, M. T. P., Pape, T. & Bohmann, K. A simplified DNA extraction protocol for unsorted bulk arthropod samples that maintains exoskeletal integrity. Environ. DNA 1(2), 144–154 (2019).Article 

    Google Scholar 
    42.Martins, F. M. S. et al. Have the cake and eat it: Optimizing nondestructive DNA metabarcoding of macroinvertebrate samples for freshwater biomonitoring. Mol. Ecol. Resour. 19(4), 863–876 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Zizka, V. M. A., Leese, F., Peinert, B. & Geiger, M. F. DNA metabarcoding from sample fixative as a quick and voucher-preserving biodiversity assessment method. Genome 62(3), 122–136 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Martoni, F., Valenzuela, I. & Blacket, M. J. Non-destructive DNA extractions from fly larvae (Diptera: Muscidae) enable molecular identification of species and enhance morphological features. Austral. Entomol. 58(4), 848–856 (2019).Article 

    Google Scholar 
    45.Plant Health Australia. Tomato-potato psyllid (2019). Retrieved 10 April, 2019 from http://www.planthealthaustralia.com.au/pests/tomatopotato-psyllid/.46.Yazdani, M. et al. First detection of Russian wheat aphid Diuraphis noxia Kurdjumov (Hemiptera: Aphididae) in Australia: A major threat to cereal production. Austral. Entomol. 57(4), 410–417 (2018).Article 

    Google Scholar 
    47.Pirtle, E., Maino, J., Lye, J., Umina, P., Heddle, T. & van Helden, M. Managing Russian wheat aphid risk—early season considerations. Centre for Environmental Stress and Adaptation Research (CESAR) (2019). Retrieved February 7, 2020 from http://www.cesaraustralia.com/assets/Uploads/PDFs/RWA-portal/Russian-wheat-aphid-green-bridge-surveillence-update-May-2019.pdf.48.Wilson, C., Rowbottom, R., Walker, P., Allen, G., Tegg, R. & Quarrell, S. Surveillance of tomato potato psyllid in the Eastern States and South Australia. Horticulture Innovation Australia (2018). Retrieved February 7, 2020 from https://ausveg.com.au/app/uploads/technical-insights/MT16016.pdf.49.Blackman, R. L. & Eastop, V. F. Aphids on the world’s crops: an identification and information guide. Aphids Worlds Crops Identif. Inf. Guide 2nd edn (2000).50.Kent, D. & Taylor, G. Two new species of Acizzia Crawford (Hemiptera: Psyllidae) from the Solanaceae with a potential new economic pest of eggplant, Solanum melongena. Aust. J. Entomol. 49(1), 73–81 (2010).Article 

    Google Scholar 
    51.Subcommittee on Plant Health Diagnostic Standards (SPHDS). Diagnostic protocol for the detection of the Tomato Potato Psyllid, Bactericera cockerelli (Šulc). Department of Agriculture, Australia (2017). Retrieved December 8, 2019 from https://www.plantbiosecuritydiagnostics.net.au/app/uploads/2018/11/NDP-20-Tomato-potato-psyllid-Bactericera-cockerelli-V1.2.pdf.52.Farrow, R. & Greenslade, P. Description of a robust interception trap for collecting airborne arthropods in climatically challenging regions. Antarct. Sci. 25(5), 657–662 (2013).ADS 
    Article 

    Google Scholar 
    53.Ferro, M. L. & Park, J.-S. Effect of propylene glycol concentration on mid-term DNA preservation of Coleoptera. Coleopt. Bull. 67(4), 581–586 (2013).Article 

    Google Scholar 
    54.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Martoni, F. Biodiversity, evolution and microbiome of the New Zealand Psylloidea (Hemiptera: Sternorrhyncha) (2017).56.Ouvrard, D., Campbell, B. C., Bourgoin, T. & Chan, K. L. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). Mol. Phylogenet. Evol. 16(3), 403–417 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16), 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7(3), 355–364 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 37(Database issue), D26–D31 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Chamberlain, S. bold: Interface to Bold Systems API. R package version 0.5.0 (2017). https://github.com/ropensci/bold.62.Winter, D. J. rentrez: An R package for the NCBI eUtils API. R J. 9(2), 520–526 (2017).Article 

    Google Scholar 
    63.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2014). http://www.R-project.org/.64.Sherrill-Mix, S. taxonomizr: Functions to Work with NCBI Accessions and Taxonomy. R package version 0.5.2 (2018). https://rdrr.io/cran/taxonomizr/.65.Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences (2013). http://metabarcoding.org.66.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Bushnell, B. BBMap short read aligner, and other bioinformatic tools (2017). https://sourceforge.net/projects/bbmap/.68.Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N. & Delsuc, F. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35(10), 2582–2584 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Saitoh, S. et al. A quantitative protocol for DNA metabarcoding of springtails (Collembola). Genome 59(9), 705–723 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Wilcox, T. M. et al. Capture enrichment of aquatic environmental DNA: A first proof of concept. Mol. Ecol. Resour. 18(6), 1392–1401 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
    Google Scholar 
    73.Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4), 506–513 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.ABRS. Australian Faunal Directory. Australian Biological Resources Study, Canberra (2009). Retrieved October 30, 2019 from https://biodiversity.org.au/afd/mainchecklist.76.Bista, I. et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol. Ecol. Resour. 18, 1020–1103 (2018).CAS 
    Article 

    Google Scholar 
    77.Illumina. Effects of index misassignment on multiplexing and downstream analysis [White paper] (2017). Retrieved November 25, 2019 from https://www.illumina.com/content/dam/illumina-marketing/documents/products/whitepapers/index-hopping-white-paper-770-2017-004.pdf.78.Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4(4), e00186-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Galan, M. et al. Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Mol. Ecol. Resour. 18(3), 474–489 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Meusnier, I. et al. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9, 214 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Elbrecht, V. & Steinke, D. Scaling up DNA metabarcoding for freshwater macrozoobenthos monitoring. Freshw. Biol. 64(2), 380–387 (2019).CAS 

    Google Scholar 
    83.Larsson, A. J. M., Stanley, G., Sinha, R., Weissman, I. L. & Sandberg, R. Computational correction of index switching in multiplexed sequencing libraries. Nat. Methods 15(5), 305–307 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Gibbons, S. M., Duvallet, C. & Alm, E. J. Correcting for batch effects in case–control microbiome studies. PLoS Comput. Biol. 14(4), 1006102 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    85.Yeh, Y.-C., Needham, D. M., Sieradzki, E. T. & Fuhrman, J. A. Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run. mSystems 3(3), e00023-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and correctable bias in metagenomic sequencing experiments. eLife 8, e46923 https://doi.org/10.7554/eLife.46923 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Thomas, A. C., Deagle, B. E., Eveson, J. P., Harsch, C. H. & Trites, A. W. Quantitative DNA metabarcoding: Improved estimates of species proportional biomass using correction factors derived from control material. Mol. Ecol. Resour. 16(3), 714–726 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Dowle, E. J., Pochon, X., Banks, C. & J., Shearer, K., and Wood, S.A. ,. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: A case study using freshwater macroinvertebrates. Mol. Ecol. Resour. 16(5), 1240–1254 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Peñalba, J. V. et al. Sequence capture using PCR-generated probes: A cost-effective method of targeted high-throughput sequencing for nonmodel organisms. Mol. Ecol. Resour. 14(5), 1000–1010 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    90.Liu, S. et al. Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis. Mol. Ecol. Resour. 16(2), 470–479 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Blackman, R. L. & Eastop, V. F. Aphids on the World’s Herbaceous Plants and Shrubs, 2 Volume Set (Wiley, 2008).
    Google Scholar 
    92.Edgar, R. C. Taxonomy annotation and guide tree errors in 16S rRNA databases. PeerJ 6, e5030 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47(D1), D259–D264 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Tang, C. Q. et al. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc. Natl. Acad. Sci. U.S.A. 109(40), 16208–16212 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of littoral hard-bottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ 6, e4705 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8(1), 4226 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    97.Porter, T. M. et al. Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naïve Bayesian classifier. Mol. Ecol. Resour. 14(5), 929–942 (2014).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    98.Edgar, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv https://doi.org/10.1101/2020.05.12.088096 (2016).Article 

    Google Scholar  More

  • in

    How the west was won: genetic reconstruction of rapid wolf recolonization into Germany’s anthropogenic landscapes

    Åkesson M, Liberg O, Sand H, Wabakken P, Bensch S, Flagstad Ø (2016) Genetic rescue in a severely inbred wolf population. Mol Ecol 25:4745–4756PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen LW, Harms V, Caniglia R, Czarnomska SD, Fabbri E, Jędrzejewska B et al. (2015) Long-distance dispersal of a wolf, Canis lupus, in northwestern Europe. Mamm Res 60:163–168Article 

    Google Scholar 
    Ansorge H, Kluth G, Hahne S (2006) Feeding ecology of wolves Canis lupus returning to Germany. Acta Theriol 51:99–106Article 

    Google Scholar 
    Beugin M-P, Gayet T, Pontier D, Devillard S, Jombart T (2018) A fast likelihood solution to the genetic clustering problem. Methods Ecol Evol 9:1006–1016PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caniglia R, Fabbri E, Galaverni M, Milanesi P, Randi E (2014) Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population. J Mammal 95:41–59Article 

    Google Scholar 
    Caniglia R, Fabbri E, Mastrogiuseppe L, Randi E (2013) Who is who? Identification of livestock predators using forensic genetic approaches. Forensic Sci Int Genet 7:397–404CAS 
    PubMed 
    Article 

    Google Scholar 
    Carter NH, Linnell JDC (2016) Co-adaptation is key to coexisting with large carnivores. Trends Ecol Evol 31:575–578PubMed 
    Article 

    Google Scholar 
    Chapron G, Kaczensky P, Linnell JDC, von Arx M, Huber D, Andrén H et al. (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346:1517–1519CAS 
    PubMed 
    Article 

    Google Scholar 
    Ciucci P, Reggioni W, Maiorano L, Boitani L (2009) Long-distance dispersal of a rescued wolf from the northern Apennines to the Western Alps. J Wildl Manag 73:1300–1306Article 

    Google Scholar 
    Curran JM, Tvedebrink T (2013) DNAtools: tools for empirical testing of DNA match probabilities. R packageCzarnomska SD, Jędrzejewska B, Borowik T, Niedziałkowska M, Stronen AV, Nowak S et al. (2013) Concordant mitochondrial and microsatellite DNA structuring between Polish lowland and Carpathian Mountain wolves. Conserv Genet 14:573–588Article 

    Google Scholar 
    DBBW (2017) Dokumentations- und Beratungsstelle des Bundes zum Thema Wolf. Wölfe in Deutschland—Statusbericht 2015/2016. p 1–28Di Marco M, Boitani L, Mallon D, Hoffmann M, Iacucci A, Meijaard E et al. (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Conserv Biol 28:1109–1118PubMed 
    Article 

    Google Scholar 
    Dufresnes C, Miquel C, Remollino N, Biollaz F, Salamin N, Taberlet P et al. (2018) Howling from the past: historical phylogeography and diversity losses in European grey wolves. Proc R Soc B 285:20181148PubMed 
    Article 
    CAS 

    Google Scholar 
    Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501Article 

    Google Scholar 
    Fabbri E, Miquel C, Lucchini V, Santini A, Caniglia R, Duchamp C et al. (2007) From the Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population. Mol Ecol 16:1661–1671CAS 
    PubMed 
    Article 

    Google Scholar 
    Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA (1996) A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 7:359–362CAS 
    PubMed 
    Article 

    Google Scholar 
    Fredholm M, Winterø AK (1995) Variation of short tandem repeats within and between species belonging to the Canidae family. Mamm Genome 6:11–18CAS 
    PubMed 
    Article 

    Google Scholar 
    Geffen E, Kam M, Hefner R, Hersteinsson P, Angerbjörn A, Dalèn L et al. (2011) Kin encounter rate and inbreeding avoidance in canids. Mol Ecol 20:5348–5358PubMed 
    Article 

    Google Scholar 
    Gese ME, Mech LD (1991) Dispersal of wolves (Canis lupus) in northeastern Minnesota, 1969–1989. Can J Zool 69:2946–2955Article 

    Google Scholar 
    Gorjanc G, Henderson DA (2007) GeneticsPed: pedigree and genetic relationship functions. R package version 1.40.0Goudet J (2005) hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186Article 

    Google Scholar 
    Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114CAS 
    PubMed 
    Article 

    Google Scholar 
    Granroth-Wilding H, Primmer C, Lindqvist M, Poutanen J, Thalmann O, Aspi J et al. (2017) Non-invasive genetic monitoring involving citizen science enables reconstruction of current pack dynamics in a re-establishing wolf population. BMC Ecol 17:44PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harmoinen J, von Thaden A, Aspi J, Kvist L, Cocchiararo B, Jarausch A et al. (2020) Reliable wolf-dog hybrid detection in Europe using a reduced SNP panel developed for non-invasively collected samples, PREPRINT (Version 1). Research Square. https://doi.org/10.21203/rs.3.rs-113866/v1Hausknecht R, Gula R, Pirga B, Kuehn R (2007) Urine— a source for noninvasive genetic monitoring in wildlife. Mol Ecol Notes 7:208–212CAS 
    Article 

    Google Scholar 
    Hedrick PW, Peterson RO, Vucetich LM, Adams JR, Vucetich JA (2014) Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conserv Genet 15:1111–1121Article 

    Google Scholar 
    Hijmans RJ, Williams E, Vennes C (2017) geosphere: spherical trigonometry. R package version 1:5–7Hindrikson M, Remm J, Pilot M, Godinho R, Stronen AV, Baltrūnaité L et al. (2017) Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev Camb Philos Soc 92:1601–1629PubMed 
    Article 

    Google Scholar 
    Hulva P, Černá Bolfíková B, Woznicová V, Jindřichová M, Benešová M, Mysłajek RW et al. (2018) Wolves at the crossroad: Fission-fusion range biogeography in the Western Carpathians and Central Europe. Divers Distrib 24:179–192Article 

    Google Scholar 
    Jimenez MD, Bangs EE, Boyd DK, Smith DW, Becker SA, Ausband DE et al. (2017) Wolf dispersal in the Rocky Mountains, Western United States: 1993-2008. J Wildl Manag 81:581–592Article 

    Google Scholar 
    Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30PubMed 
    Article 

    Google Scholar 
    Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555PubMed 
    Article 

    Google Scholar 
    Kaczensky P, Kluth G, Knauer F, Rauer G, Reinhardt I, Wotschikowsky U (2009) Monitoring of large carnivores in Germany. BfN-Skripten 251:1–99
    Google Scholar 
    Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106Article 

    Google Scholar 
    Kardos M, Åkesson M, Fountain T, Flagstad Ø, Liberg O, Olason P et al. (2018) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:124–131PubMed 
    Article 

    Google Scholar 
    Koch E, Schweizer RM, Schweizer TM, Stahler DR, Smith DW, Wayne RK et al. (2019) De novo mutation rate estimation in wolves of known pedigree. Mol Biol Evol 36:2536–2547CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Kojola I, Aspi J, Hakala A, Heikkinen S, Ilmoni C, Ronkainen S (2006) Dispersal in an expanding wolf population in Finland. J Mammal 87:281–286Article 

    Google Scholar 
    Kramer-Schadt S, Wenzler M, Gras P, Knauer F (2020) Habitatmodellierung und Abschätzung der potenziellen Anzahl von Wolfsterritorien in Deutschland. BfN-Skripten 556:1–30
    Google Scholar 
    Lesniak I, Heckmann I, Heitlinger E, Szentiks CA, Nowak C, Harms V et al. (2017) Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population. Sci Rep 7:41730CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liberg O, Andrén H, Pedersen H-C, Sand H, Sejberg D, Wabakken P et al. (2005) Severe inbreeding depression in a wild wolf (Canis lupus) population. Biol Lett 1:17–20CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Libiseller C, Grimvall A (2002) Performance of partial Mann–Kendall tests for trend detection in the presence of covariates. Environmetrics 13:71–84CAS 
    Article 

    Google Scholar 
    Mech LD, Boitani L (2003) Wolf social ecology. In: Mech LD, Boitani L (eds) Wolves: behavior, ecology, and conservation. University of Chicago Press, Chicago & London, p 1–34Meuwissen THE, Luo Z (1992) Computing inbreeding coefficients in large populations. Genet Sel Evol 24:305–313PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Neff MW, Broman KW, Mellersh CS, Ray K, Acland GM, Aguirre GD et al. (1999) A second-generation genetic linkage map of the domestic dog, Canis familiaris. Genetics 151:803–820CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowak S, Mysłajek RW (2016) Wolf recovery and population dynamics in Western Poland, 2001–2012. Mamm Res 61:83–98Article 

    Google Scholar 
    Parreira BR, Chikhi L (2015) On some genetic consequences of social structure, mating systems, dispersal, and sampling. Proc Natl Acad Sci U S A 112:E3318–E3326CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295Article 

    Google Scholar 
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Petit RJ (2011) Early insights into the genetic consequences of range expansions. Heredity 106:203–204CAS 
    PubMed 
    Article 

    Google Scholar 
    Pilot M, Branicki W, Jędrzejewski W, Goszczyński J, Jędrzejewska B, Dykyy I et al. (2010) Phylogeographic history of grey wolves in Europe. BMC Evol Biol 10:104PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pohlert T (2018) trend: non-parametric trend tests and change-point detection. R package version 1.1.0R Core Team (2017) R: a language and environment for statistical computing. Vienna, AustriaRaymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Article 

    Google Scholar 
    Ražen N, Brugnoli A, Castagna C, Groff C, Kaczensky P, Kljun F et al. (2016) Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf (Canis lupus) populations. Eur J Wildl Res 62:137–142Article 

    Google Scholar 
    Reinhardt I, Kaczensky P, Knauer F, Rauer G, Kluth G, Wölfl S et al. (2015) Monitoring von Wolf, Luchs und Bär in Deutschland. BfN-Skripten 413:1–96
    Google Scholar 
    Reinhardt I, Kluth G (2007) Leben mit Wölfen. Leitfaden für den Umgang mit einer konfliktträchtigen Tierart in Deutschland. BfN-Skripten 201:1–180
    Google Scholar 
    Reinhardt I, Kluth G, Blum C, Möslinger H, Harms V (2014) Wölfe in der Lausitz. Statusbericht für das Monitoringjahr 2013/2014. https://www.wolf.sachsen.de/download/Statusbericht_Sachsen_2013_2014.pdf. (Mar 2, 2020)Reinhardt I, Kluth G, Nowak C, Szentiks CA, Krone O, Ansorge H et al. (2019) Military training areas facilitate the recolonization of wolves in Germany. Conserv Lett 10:e12635
    Google Scholar 
    Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M et al. (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484PubMed 
    Article 
    CAS 

    Google Scholar 
    Robinson JA, Räikkönen J, Vucetich LM, Vucetich JA, Peterson RO, Lohmueller KE et al. (2019) Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci Adv 5:eaau0757PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robinson SP, Simmons LW, Kennington WJ (2013) Estimating relatedness and inbreeding using molecular markers and pedigrees: the effect of demographic history. Mol Ecol 22:5779–5792CAS 
    PubMed 
    Article 

    Google Scholar 
    Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 
    Article 

    Google Scholar 
    Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464Article 

    Google Scholar 
    Seddon JM (2005) Canid-specific primers for molecular sexing using tissue or non-invasive samples. Conserv Genet 6:147–149Article 

    Google Scholar 
    Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389Article 

    Google Scholar 
    Shibuya H, Collins BK, Huang TH-M, Johnson GS (1994) A polymorphic (AGGAAT), tandem repeat in an intron of the canine von Willebrand factor gene. Anim Genet 25:122CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith D, Meier T, Geffen E, Mech LD, Burch JW, Adams LG et al. (1997) Is incest common in gray wolf packs? Behav Ecol 8:384–391Article 

    Google Scholar 
    Sugg DW, Chesser RK, Dobson FS, Hoogland JL (1996) Population genetics meets behavioural ecology. Trends Ecol Evol 11:338–342CAS 
    PubMed 
    Article 

    Google Scholar 
    Szewczyk M, Nowak S, Niedźwiecka N, Hulva P, Špinkytė-Bačkaitienė R, Demjanovičová K et al. (2019) Dynamic range expansion leads to establishment of a new, genetically distinct wolf population in Central Europe. Sci Rep 9:481Article 
    CAS 

    Google Scholar 
    Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tvedebrink T, Eriksen PS, Curran JM, Mogensen HS, Morling N (2012) Analysis of matches and partial-matches in a Danish STR data set. Forensic Sci Int Genet 6:387–392CAS 
    PubMed 
    Article 

    Google Scholar 
    van Eeden LM, Crowther MS, Dickman CR, Macdonald DW, Ripple WJ, Ritchie EG et al. (2018) Managing conflict between large carnivores and livestock. Conserv Biol 32:26–34PubMed 
    Article 

    Google Scholar 
    van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538Article 
    CAS 

    Google Scholar 
    vonHoldt BM, Stahler DR, Smith DW, Earl DA, Pollinger JP, Wayne RK (2008) The genealogy and genetic viability of reintroduced Yellowstone grey wolves. Mol Ecol 17:252–274PubMed 
    Article 

    Google Scholar 
    Wabakken P, Sand H, Kojola I, Zimmermann B, Arnemo JMON, Pedersen HC et al. (2007) Multistage, long-range natal dispersal by a Global Positioning System-Collared Scandinavian Wolf. J Wildl Manag 71:1631–1634Article 

    Google Scholar 
    Wabakken P, Sand H, Liberg O, Bjärvall A (2001) The recovery, distribution, and population dynamics of wolves on the Scandinavian peninsula, 1978-1998. Can J Zool 79:710–725Article 

    Google Scholar 
    Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256CAS 
    PubMed 
    Article 

    Google Scholar 
    Walling CA, Pemberton JM, Hadfield JD, Kruuk LEB (2010) Comparing parentage inference software: reanalysis of a red deer pedigree. Mol Ecol 19:1914–1928PubMed 
    Article 

    Google Scholar 
    Watson JEM, Shanahan DF, Di Marco M, Allan J, Laurance WF, Sanderson EW et al. (2016) Catastrophic declines in wilderness areas undermine global environment targets. Curr Biol 26:2929–2934CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Population genomics and antimicrobial resistance dynamics of Escherichia coli in wastewater and river environments

    Escherichia coli is amongst the dominant pan-aminoglycoside-resistant bacteria from wastewater and river waterA total of 168 bacteria highly resistant to aminoglycosides were obtained by growing collected samples in MacConkey media supplemented with high aminoglycoside concentrations, from both WWTPs (66 isolates) and rivers (102 isolates) sampled at the same period of time and located in the Barcelona region. Most of the isolates were identified as Escherichia coli, being the predominant Enterobacteriaceae species in WWTPs (50 isolates, 75.76%) and the second most prevalent in rivers (20 isolates, 19.61%). Klebsiella pneumoniae was the predominant bacterium identified in river environments (50 isolates, 49.02%), although its presence in WWTP samples was scarce (7 isolates, 10.61%). The remaining aminoglycoside-resistant species, members of genus Enterobacter, Citrobacter and Aeromonas among others, represented a low fraction in WWTPs (9 isolates, 13.64%) comparing to river environments (32 isolates, 31.37%), showing a higher bacterial diversity of natural over WWTP niches (Fig. 1, Supplementary Data 1).Fig. 1: Geographical distribution of sampled points in the region of Barcelona (Spain).The location of Barcelona city is indicated by black circled city icon. The Llobregat river is presented in light blue and the Cardener river in dark blue. The three river sampled locations are indicated by black circled river icon. The two sampled WWTPs are indicated by black circled droplet icon. The collection area of the El Prat WWTP is highlighted in dark green, whereas the area of the Gavà WWTP is highlighted in pale green, collecting the wastewater of 2,000,000 and 370,000 inhabitants, respectively. Total number of pan-aminoglycoside-resistant bacteria collected from each sampling location is indicated in the center of the sunburn diagrams. Inner rings represent the proportion of different pan-aminoglycoside-resistant bacterial species identified in each sampling location, indicating the total number of E. coli, K. pneumoniae and other species, and the number of E. coli isolates selected for later Illumina (I) and Nanopore sequencing (N). Outer rings show the 16S-RMTase gene harbored by these bacteria.Full size imageAntimicrobial resistance in E. coli varies between wastewater and river water environmentsResistance to diverse antibiotic compounds was related to the sampling origin and the species of the isolates. All isolates were highly resistant to 4,6-DOS aminoglycosides, since they were selected according to their resistance to this family of antibiotics. The 16S-RMTase gene identified in most wastewater isolates was rmtB (55 isolates, 83.33%), whereas armA was the responsible in the remainder (11 isolates, 16.67%). On the contrary, 100% of isolates from river environments harbored the armA gene (Fig. 1, Supplementary Data 1). No other 16S-RMTase gene was detected neither in wastewater nor river isolates. Bacteria from wastewater samples showed higher MIC values to all tested antibiotics (e.g., 77.3% isolates resistant to cefotaxime) than bacteria from freshwater environments (e.g., 0% isolates resistant to cefotaxime), even when comparing isolates belonging to the same species. This was also the case for E. coli, where isolates from WWTPs were among the most resistant (e.g., 90% isolates resistant to cefotaxime) while those from rivers were among the most susceptible ones (e.g., 0% isolates resistant to cefotaxime), highlighting key differences between bacteria from these different ecological niches (Supplementary Data 1).Distinct E. coli populations exist in wastewater and river water environmentsPulsed-field gel electrophoresis (PFGE) of E. coli isolates revealed the existence of two highly prevalent pulsotypes present in the two WWTPs (31 isolates, 62%), and a total of 5 characterized pulsotypes (≥90% similarity in the PFGE pattern) from wastewater samples. Interestingly, 15 isolates (30%) from both WWTPs could not be typed by PFGE. In contrast, river environments showed higher clonal diversity, with up to 10 different pulsotypes characterized, despite the lower number of E. coli isolates recovered from these samples (Supplementary Fig. 1). Of the 70 E. coli isolates, 43 were selected for further analyses and sequencing by Illumina technology (25 from WWTPs and 18 from river environments), ensuring wide representation in relation to the origins, clonal relatedness, and antibiogram resistance profiles.Multi-locus sequence typing (MLST) results were highly correlated with PFGE profiles. Almost all E. coli isolates from wastewater samples (23 isolates, 92%) belonged to two predominant sequence types (STs) (Fig. 2). The most prevalent one, ST1196/ST632 (Warwick/Pasteur MLST scheme), encompassed the two main pulsotypes identified by PFGE. ST1196 is an increasingly prevalent ST related to OXA-48-carbapenemase production and associated with the mcr-1 colistin-resistance gene expansion in clinical settings9, hospital wastewater10 and companion animals11. Minimal inhibitory concentration (MIC) values of the isolates belonging to this ST showed resistance to numerous antibiotic classes, including clinically critical antibiotics such as 3rd generation cephalosporins and colistin6. The other predominant ST in WWTPs, ST224/ST479, comprised all the isolates which were non-typeable by PFGE. ST224 is a pandemic multi-drug resistant ST previously associated with NDM-, CTX-M- and KPC-carbapenemase production, found in both clinical human12 and animal13 samples, but also in natural environments14. ST224 E. coli isolates identified exhibited a common resistance profile, including resistance to 3rd generation cephalosporins. However, two isolates from river samples belonging to this same ST showed a different resistance pattern, revealing the influence of the niche in the bacterial resistance phenotype, even within the same ST. One of the E. coli isolates from El Prat WWTP was also identified as ST131, a clonal group present in multiple environments with a plethora of resistance mechanisms and virulence factors, representing a major public health concern15. River-related E. coli showed a higher number of E. coli STs compared to wastewater isolates, comprising up to 6 different E. coli STs (Fig. 2). All river E. coli STs presented similar MIC values for most of the tested antibiotics, which were lower than those exhibited by wastewater E. coli. ST607 (Warwick MLST scheme) was the most prevalent ST found in rivers. This ST has been scarcely reported, although it has been already detected in river sediments16. MICs of plazomicin for all isolates, both from wastewater and river environments, were ≥512 mg/L, demonstrating the high-level resistance to aminoglycosides conferred by 16S-RMTases, even to an aminoglycoside that has not yet been approved for clinical use in the EU (Fig. 2).Fig. 2: Sequenced E. coli data.The source of the isolates is specified by different colors in the genomic SNP-tree branches, as well as the related sequence type. Level of resistance to all tested antibiotics is shown in a gradient of colors: PLZ (plazomicin), GEN (gentamicin), AMP (ampicillin), FOT (cefotaxime), TAZ (ceftazidime), MERO (meropenem), CHL (chloramphenicol), TMP (trimethoprim), AZI (azithromycin), COL (colistin), CIP (ciprofloxacin), NAL (nalidixic acid), TET (tetracycline), TGC (tigecycline), and SMX (sulfamethoxazole). The presence and absence of antibiotic resistance genes and plasmid incompatibility groups are indicated by circle and triangle symbols, respectively. The presence and absence of specific 16S-RMTase genes are indicated by star symbols.Full size imageResistome analysis results were highly correlated with resistance phenotypic profiles. Thus, isolates from WWTPs harbored an heterogenous antibiotic resistance gene content depending on the E. coli ST, such as the strong association between the mcr-1 gene and isolates belonging to ST119617. This heterogenicity was even present between isolates belonging to ST1196, which exhibited different resistance levels to chloramphenicol and tetracycline depending on the presence of cmlA1/floR and tet(A), respectively. However, all wastewater isolates showed a common high-level resistance to β-lactam compounds, including third generation cephalosporins, which could be attributed to the presence of blaCTX-M-55 (ST1196) and blaCMY-2 (ST224) (Fig. 2). On the contrary, all isolates from river environments possessed a uniform antibiotic resistance gene content, despite comprising different STs (Fig. 2). Almost all of them (17 isolates, 94.4%) were susceptible to β-lactams, including the isolates belonging to ST224, contrasting with wastewater isolates, which have been under anthropogenic pressure, such as clinical treatments with a combination of aminoglycosides and β-lactams18, that led to this resistance associations. Likewise, plasmidome analysis revealed that the total plasmid content, based on the plasmid incompatibility groups, was heterogeneously distributed among isolates from WWTPs according to E. coli STs and closely correlated with the resistance gene content (an average of 6.36 different plasmid replicons per isolate). ST1196 isolates carried a higher plasmid content, exhibiting different plasmid profiles among them. The only plasmid incompatibility group carried by all wastewater isolates was IncFII type, specifically a pC15-1a-like plasmid (Fig. 2). Considering river E. coli STs, the total plasmid content was generally lower (an average of 3.72 different plasmid replicons per isolate) and more uniform compared to wastewater STs, similar to the pattern of the resistome (these differences are addressed in the E. coli pan-genome structure and genome, plasmid and antibiotic resistance gene diversities section). The most prevalent plasmid incompatibility group found among them was IncHI2A, present in all river isolates except ST224, which harbored a completely different plasmid content (Fig. 2).
    E. coli STs have a similar genomic complexity in wastewater and river water, but the diversity of plasmids and resistance genes is higher in wastewater STsThe pan-genome of all 43 E. coli isolates, with the independence of the origin, was constituted by a total of 13,819 different genes. The pan-genome was distributed in a common core-genome of 3109 genes (22.5%) and a variable accessory-genome of 10,710 genes (77.5%), covering a considerable E. coli diversity, considering that the estimation of the global E. coli core-genome comprises around 1500 genes19 (Supplementary Fig. 2). Attending to the pan-genome configuration depending on the water source, 3340 out of a total of 9099 genes (36.71%) were included in the core-genome of wastewater isolates, and the core-genome of river isolates was formed by 3410 out of 9927 genes (34.35%), showing that river isolates presented a larger total gene pool and a smaller relative core-genome comparing to WWTP isolates. The genes conforming the pan-genomes of wastewater and river water E. coli were statistically different, considering the genes that were present and absent in each niche from the total pan-genome (Jaccard, P-value = 0.001) (Fig. 3a), indicating that the different environments, and/or upstream environments from which they have seeded, led to the selection of specific genomic populations, even between members of E. coli ST224 originating from the two different environments (Jaccard, P-value = 0.049). The genomic diversity of the whole E. coli population from river water was significantly higher than the one found in wastewater (Jaccard, P-value = 3.599 × 10−8) (Supplementary Fig. 3a). However, considering the number of different STs constituting the genomic pool of each environment, the genetic diversity of an E. coli ST from wastewater was statistically similar to the diversity of an E. coli ST from freshwater (Jaccard, P-value = 0.3123) (Fig. 3b). This model, which took into account the number of STs from each source in the diversity analysis, was previously checked by random sampling analysis, obtaining similar results. Essentially, the diversity of the total E. coli population was dependent on the number of different STs that defined the population, but the diversity of a specific ST was independent of this factor and more suitable to estimate the variability of specific bacterial clones according to the origin. Likewise, the diversity of plasmid content, taking into account the different plasmid incompatibility groups identified, was distinctive for each water type (Jaccard, P-value = 0.001) (Fig. 3c). Thus, the ecological niche also influenced the presence of specific plasmid types. The level of complexity of the E. coli plasmid pool circulating in each aquatic environment was statistically similar (Jaccard, P-value = 0.2447) (Supplementary Figure 3b). However, the number of different plasmid types carried by each E. coli ST was significantly higher in WWTPs than in rivers (Jaccard, P-value = 1.037 × 10−14) (Fig. 3d). Both wastewater and river E. coli populations also showed a great divergence in the antibiotic resistance gene content (Jaccard, P-value = 0.001) (Fig. 3e), showing different resistance mechanisms to particular antimicrobial classes. Furthermore, this diversity was significantly higher in the total E. coli population from wastewater comparing to the E. coli population from river water (Jaccard, P-value = 5.093 × 10−14) (Supplementary Fig. 3c), even when the latter possessed a higher total genomic diversity. Thus, the sum of genetic resistance determinants carried by each E. coli ST from wastewater environments was much higher than for each E. coli ST from natural effluents (Jaccard, P-value  More

  • in

    Respiratory adaptation to climate in modern humans and Upper Palaeolithic individuals from Sungir and Mladeč

    1.Hiernaux, J. & Froment, A. The correlations between anthropobiological and climatic variables in sub-Saharan Africa: revised estimates. Hum. Biol. 48, 757–767 (1976).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Roseman, C. C. & Weaver, T. D. Multivariate apportionment of global human craniometric diversity. Am. J. Phys. Anthropol. 125, 257–263 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Harvati, K. & Weaver, T. D. Human cranial anatomy and the differential preservation of population history and climate signatures. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 1225–1233 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Hubbe, M., Hanihara, T. & Harvati, K. Climate signatures in the morphological differentiation of worldwide modern human populations. Anat. Rec. 292, 1720–1733 (2009).Article 

    Google Scholar 
    5.Betti, L., Balloux, F., Hanihara, T. & Manica, A. The relative role of drift and selection in shaping the human skull. Am. J. Phys. Anthropol. 141, 76–82 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    6.Noback, M. L., Harvati, K. & Spoor, F. Climate-related variation of the human nasal cavity. Am. J. Phys. Anthropol. 145, 599–614 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Evteev, A. A., Movsesian, A. A. & Grosheva, A. N. The association between mid-facial morphology and climate in northeast Europe differs from that in north Asia: implications for understanding the morphology of Late Pleistocene Homo sapiens. J. Hum. Evol. 107, 36–48 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Maddux, S. D., Butaric, L. N., Yokley, T. R. & Franciscus, R. G. Ecogeographic variation across morphofunctional units of the human nose. Am. J. Phys. Anthropol. 162, 103–119 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Menéndez, L. P. Moderate climate signature in cranial anatomy of late holocene human populations from Southern South America. Am. J. Phys. Anthropol. 165, 309–326 (2018).Article 

    Google Scholar 
    10.van Andel, T. H. & Davies, W. Neanderthals and modern humans in the European landscape during the last glaciation: archaeological results of the Stage 3 Project. 265 (McDonald Institute for Archaeological Research Monographs, 2003).11.Smith, H. F. Which cranial regions reflect molecular distances reliably in humans? Evidence from three-dimensional morphology. Am. J. Hum. Biol. 21, 36–47 (2009).PubMed 
    Article 

    Google Scholar 
    12.Reyes-Centeno, H., Ghirotto, S. & Harvati, K. Genomic validation of the differential preservation of population history in modern human cranial anatomy. Am. J. Phys. Anthropol. 162, 170–179 (2017).PubMed 
    Article 

    Google Scholar 
    13.Stansfield Bulygina, E., Rasskasova, A., Berezina, N. & Soficaru, A. D. Resolving relationships between several Neolithic and Mesolithic populations in Northern Eurasia using geometric morphometrics. Am. J. Phys. Anthropol. 164, 163–183 (2017).PubMed 
    Article 

    Google Scholar 
    14.von Cramon-Taubadel, N. The relative efficacy of functional and developmental cranial modules for reconstructing global human population history. Am. J. Phys. Anthropol. 146, 83–93 (2011).Article 

    Google Scholar 
    15.Evteev, A., Cardini, A. L., Morozova, I. & O’Higgins, P. Extreme climate, rather than population history, explains mid-facial morphology of Northern Asians. Am. J. Phys. Anthropol. 153, 449–462 (2014).PubMed 
    Article 

    Google Scholar 
    16.Butaric, L. N. & Maddux, S. D. Morphological Covariation between the Maxillary Sinus and Midfacial Skeleton among Sub-Saharan and Circumpolar Modern Humans. Am. J. Phys. Anthropol. 160, 483–497 (2016).PubMed 
    Article 

    Google Scholar 
    17.Maddux, S. D. & Butaric, L. N. Zygomaticomaxillary morphology and maxillary sinus form and function: how spatial constraints influence pneumatization patterns among modern humans. Anat. Rec. 300, 209–225 (2017).Article 

    Google Scholar 
    18.Holton, N., Yokley, T. & Butaric, L. The morphological interaction between the nasal cavity and maxillary sinuses in living humans. Anat. Rec. 296, 414–426 (2013).Article 

    Google Scholar 
    19.Ito, T., Kawamoto, Y., Hamada, Y. & Nishimura, T. D. Maxillary sinus variation in hybrid macaques: implications for the genetic basis of craniofacial pneumatization. Biol. J. Linn. Soc. Lond. 115, 333–347 (2015).Article 

    Google Scholar 
    20.Fukase, H., Ito, T. & Ishida, H. Geographic variation in nasal cavity form among three human groups from the Japanese Archipelago: ecogeographic and functional implications. Am. J. Hum. Biol. 28, 343–351 (2016).PubMed 
    Article 

    Google Scholar 
    21.Mitteroecker, P., Grunstra, N. D. S., Stansfield, E., Waltenberger, L. & Fischer, B. Bulletins et mémoires de la Société d’anthropologie de Paris (under review).22.de Azevedo, S. et al. Nasal airflow simulations suggest convergent adaptation in Neanderthals and modern humans. Proc. Natl. Acad. Sci. U. S. A. 114, 12442–12447 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Wroe, S. et al. Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting. Proc. R. Soc. B Biol. Sci. 285, 20180085 (2018).Article 

    Google Scholar 
    24.Bader, O. N. Sungir: Upper Palaeolithic Site (Nauka, 1978).
    Google Scholar 
    25.Nalawade-Chavan, S., McCullagh, J. & Hedges, R. New hydroxyproline radiocarbon dates from Sungir, Russia, confirm early Mid Upper Palaeolithic burials in Eurasia. PLoS ONE 9, e76896 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Trinkaus, E., Buzhilova, A. P., Mednikova, M. B. & Dobrovolʹskaia, M. V. The People of Sunghir: Burials, Bodies, and Behavior in the Earlier Upper Paleolithic (Oxford University Press, 2014).
    Google Scholar 
    27.Wild, E. M. et al. Direct dating of Early Upper Palaeolithic human remains from Mladeč. Nature 435, 332–335 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Teschler-Nicola, M. Taphonomic Aspects of the Human Remains from the Mladeč Cave. In Early Modern Humans at the Moravian Gate: The Mladeč Caves and Their Remains (ed. Teschler-Nicola, M.) 75–98 (Springer, 2006).
    Google Scholar 
    29.Wolpoff, M. H., Frayer, D. W. & Jelínek, J. Aurignacian Female Crania and Teeth from the Mladeč Caves, Moravia, Czech Republic. In Early Modern Humans at the Moravian Gate: The Mladeč Caves and Their Remains (ed. Teschler-Nicola, M.) 273–340 (Springer, 2006).
    Google Scholar 
    30.Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Trinkaus, E. & Svoboda, J. The Paleobiology of the Pavlovian People. In Early Human Evolution in Central Europe: The People of Dolní Věstonice and Pavlov (eds Trinkaus, E. & Svoboda, J.) 459–466 (Oxford University Press, 2006).
    Google Scholar 
    32.Svoboda, J. Environment and Upper Palaeolithic adaptations in Moravia. in Man and Environment in the
    Palaeolithic. Actes du symposium de Neuwied (2-7 mai 1993) (ed. Ullrich, H.) vol. 62 291–295 (ERAUL Liège,
    1995).33.Svoboda, J. A. The structure of the cave, stratigraphy, and depositional context. in Early Modern Humans at the Moravian Gate (ed. Teschler-Nicola, M.) 27–40 (Springer, 2006).34. Kovanda, J. Molluscs from the section with the skeleton of Upper Palaeolithic man at Dolní Vestonice. Journ. Sci. Cent. Nat. Coord. Etud. Rech. Nutr. Aliment. 54, 89–96 (1991).35.Gugalinskaya, L. D. & Alifanov, V. M. The Sungir settlement: patterns of formation. In Homo Sungirensis (eds Alexeeva, T. I. et al.) 43–48 (Nauchny Mir, 2000).
    Google Scholar 
    36.Lavrushin, Y. A., Sulerzhiski, L. D. & Spiridonova, E. A. Age of the Sunghir archaeological site and environmental conditions at the time of the prehistoric man. Homo sungirensis. Upper Palaeolithic man (eds.Alexeeva, T.I.; Bader, N.O.; Munchaev, R.M.; Buzhilova, A.P.; Kozlovskaya, M.V.; Mednikova, M.B.) 35–42 (2000).37.Velichko, A. A. & Morozova, T. D. Basic features of late pleistocene soil formation in the east european plain and their paleogeographic interpretation. Eurasian Soil Sci. 43, 1535–1546 (2010).ADS 
    Article 

    Google Scholar 
    38.Dagvadorj, D. & Mijiddorj, R. Climate change issues in Mongolia. Hydrometeorological Issues in Mongolia. in Papers in Hydrometeorology, Special Issue, (eds. Dagvadorj, D. and Natsagdorj, L.) Hydrometeorological
    Research Institute, 79–88. (Ulaanbaatar, 1996).39.Boldanov, T. A. & Mukhin, G. D. Ecological adaptation of agricultural land use under climate change in the Republic of Buryatia. Arid. Ecosyst. 9, 7–14 (2019).Article 

    Google Scholar 
    40.Batima, P., Natsagdorj, L., Gombluudev, P. & Erdenetsetseg, B. Observed climate change in Mongolia. in Assessments of Impacts and Adaptations of Climate Change 1–29 (START, the Third World Academy of Sciences, and the UN Environment Programme, 2005).41.Bunak, V. V. The fossil man from the Sunghir settlement and his place among other Late Paleolithic fossils. In Physical Anthropology of European Populations (ed. Schwidetzky, I.) 245–256 (Mouton Publishers, 1980).
    Google Scholar 
    42.Mednikova, M. B. Adaptive biological trends in the European upper palaeolithic: the case of the Sunghir remains. J. Physiol. Anthropol. Appl. Human Sci. 24, 425–431 (2005).PubMed 
    Article 

    Google Scholar 
    43.Bader, O. & Bader, N. Ecological and evolutionary aspects of the investigation. In Homo sungirensis. Upper Palaeolithic man (eds, Alexeeva, T.I.; Bader, N.O.; Munchaev, R.M.; Buzhilova, A.P.; Kozlovskaya, M.V.; Mednikova, M.B.) 35–42
    (Nauka, 2000).44.Evteev, A. A. & Grosheva, A. N. Nasal cavity and maxillary sinuses form variation among modern humans of Asian descent. Am. J. Phys. Anthropol. 169, 513–525 (2019).PubMed 
    Article 

    Google Scholar 
    45.Cole, P. Modification of inspired air. In The Nose: Upper Airway Physiology and the Atmospheric Environment (eds Proctor, D. F. & Anderson, I. B.) 351–375 (Elsevier Biomedical Press, 1982).
    Google Scholar 
    46.Elad, D., Wolf, M. & Keck, T. Air-conditioning in the human nasal cavity. Respir. Physiol. Neurobiol. 163, 121–127 (2008).PubMed 
    Article 

    Google Scholar 
    47.Franciscus, R. G. Later Pleistocene Nasofacial Variation in Western Eurasia and Africa and Modern Human Origins (The University of New Mexico, 1995).
    Google Scholar 
    48.Buck, L. Craniofacial Morphology, Adaptation, and Paranasal Pneumatisation in Pleistocene Hominins (University of Roehampton, 2014).
    Google Scholar 
    49.Butaric, L. N. Differential scaling patterns in maxillary sinus volume and nasal cavity breadth among modern humans. Anat. Rec. 298, 1710–1721 (2015).Article 

    Google Scholar 
    50.Naftali, S., Rosenfeld, M., Wolf, M. & Elad, D. The air-conditioning capacity of the human nose. Ann. Biomed. Eng. 33, 545–553 (2005).PubMed 
    Article 

    Google Scholar 
    51.Oxnard, C. E. Project MUSE—The Order of Man. https://muse.jhu.edu/book/12405 (1983).52.Debets, G. F. Late Palaeolithic male skeleton from the Sungir burial site. In Homo Sungirensis (eds Alexeeva, T. I. et al.) 147–149 (Nauchny Mir, 2000).
    Google Scholar 
    53.Hall, R. L. Energetics of nose and mouth breathing, body size, body composition, and nose volume in young adult males and females. Am. J. Hum. Biol. 17, 321–330 (2005).PubMed 
    Article 

    Google Scholar 
    54.Bastir, M., Godoy, P. & Rosas, A. Common features of sexual dimorphism in the cranial airways of different human populations. Am. J. Phys. Anthropol. 146, 414–422 (2011).PubMed 
    Article 

    Google Scholar 
    55.Holton, N. E., Yokley, T. R., Froehle, A. W. & Southard, T. E. Ontogenetic scaling of the human nose in a longitudinal sample: implications for genus Homo facial evolution. Am. J. Phys. Anthropol. 153, 52–60 (2014).PubMed 
    Article 

    Google Scholar 
    56.Steegmann, A. T. Jr., Cerny, F. J. & Holliday, T. W. Neandertal cold adaptation: physiological and energetic factors. Am. J. Hum. Biol. 14, 566–583 (2002).PubMed 
    Article 

    Google Scholar 
    57.Froehle, A. W., Yokley, T. R. & Churchill, S. E. Energetics and
    the origin of modern humans. in The origins of modern humans: biology reconsidered (eds. Smith, F. and Ahern, J.) 285–320 (Wiley, 2013).58.Khrisanfova, E. N. Sungir 1 in ecological and evolutionary aspects. In Homo Sungirensis (eds Alexeeva, T. I. et al.) 345–350 (Nauchny Mir, 2000).
    Google Scholar 
    59.Formicola, V. & Holt, B. Tall guys and fat ladies: Grimaldi’s Upper Paleolithic burials and figurines in an historical perspective. J. Anthropol. Sci. 93, 71–88 (2015).PubMed 

    Google Scholar 
    60.Weinstein, K. J. Thoracic morphology in Near Eastern Neandertals and early modern humans compared with recent modern humans from high and low altitudes. J. Hum. Evol. 54, 287–295 (2008).PubMed 
    Article 

    Google Scholar 
    61.Markova, A. K., Simakova, A. N., Puzachenko, A. Y. & Kitaev, L. M. Environments of the Russian Plain during the Middle Valdai Briansk Interstade (33,000–24,000 yr B.P.) indicated by fossil mammals and plants. Quat. Res. 57, 391–400 (2002).Article 

    Google Scholar 
    62.Rusakov, A. et al. Landscape evolution in the periglacial zone of Eastern Europe since MIS5: Proxies from paleosols and sediments of the Cheremoshnik key site (Upper Volga, Russia). Quat. Int. 365, 26–41 (2015).Article 

    Google Scholar 
    63.Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).ADS 
    Article 

    Google Scholar 
    64.Haesaerts, P. et al. Charcoal and wood remains for radiocarbon dating Upper Pleistocene loess sequences in Eastern Europe and Central Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 106–127 (2010).Article 

    Google Scholar 
    65.Antoine, P. et al. High-resolution record of the environmental response to climatic variations during the Last Interglacial-Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Věstonice (Czech Republic). Quat. Sci. Rev. 67, 17–38 (2013).ADS 
    Article 

    Google Scholar 
    66.Moine, O., Antoine, P., Deschodt, L. & Sellier-Segard, N. Enregistrements malacologiques à haute résolution dans les lœss et les gleys de toundra du pléniglaciaire weichselien supérieur: premiers exemples du nord de la France. Quaternaire. Revue de l’Association française pour l’étude du Quaternaire 22, 307–325 (2011).
    Google Scholar 
    67.Moine, O., Rousseau, D.-D. & Antoine, P. The impact of Dansgaard-Oeschger cycles on the loessic environment and malacofauna of Nussloch (Germany) during the Upper Weichselian. Quat. Res. 70, 91–104 (2008).Article 

    Google Scholar 
    68.Butaric, L. N., Stansfield, E., Vasilyev, A. Y. & Vasilyev, S. CT-Based Descriptions of the paranasal complex of Sungir-1, an Upper Paleolithic European. PaleoAnthropology 389, 399 (2019).
    Google Scholar 
    69.Stalling, D. et al. Amira: a highly interactive system for visual data analysis. Vis. Handb. 38, 749–767 (2005).
    Google Scholar 
    70.Prossinger, H. et al. Electronic removal of encrustations inside the Steinheim cranium reveals paranasal sinus features and deformations, and provides a revised endocranial volume estimate. Anat. Rec. Part B New Anat. Off. Publ. Am. Assoc. Anat. 273, 132–142 (2003).
    Google Scholar 
    71.Prossinger, H. & Teschler-Nicola, M. Electronic segmentation methods reveal the preservation status and otherwise unobservable features of the Mladeč 1 Cranium. In Early Modern Humans at the Moravian Gate: The Mladeč Caves and their Remains (ed. Teschler-Nicola, M.) 341–356 (Springer, 2006).
    Google Scholar 
    72.Weber, G. W. & Bookstein, F. L. Virtual Anthropology: A Guide to a New Interdisciplinary Field (Springer, 2011).
    Google Scholar 
    73.Fedorov, A. et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323–1341 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W. & Bookstein, F. L. Principles for the virtual reconstruction of hominin crania. J. Hum. Evol. 57, 48–62 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Betti, L., Balloux, F., Amos, W., Hanihara, T. & Manica, A. Distance from Africa, not climate, explains within-population phenotypic diversity in humans. Proc. Biol. Sci. 276, 809–814 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    76.Roseman, C. C. Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proc. Natl. Acad. Sci. U. S. A. 101, 12824–12829 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Ramachandran, S. et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. U. S. A. 102, 15942–15947 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).79.Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph. (2021).80.Schlager, S. Soft-Tissue Reconstruction of the Human Nose: Population Differences and Sexual Dimorphism, Anthropologie (Universität Freiburg, 2013).
    Google Scholar 
    81.Le Maître, A. & Mitteroecker, P. Multivariate comparison of variance in R. Methods Ecol. Evol. 10, 1380–1392 (2019).Article 

    Google Scholar 
    82.Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).
    Google Scholar 
    83.Grunstra, N. D. S., Mitteroecker, P. & Foley, R. A. A multivariate ecogeographic analysis of macaque craniodental variation. Am. J. Phys. Anthropol. 166, 386–400 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Izenman, A. J. Reduced-rank regression for the multivariate linear model. J. Multivar. Anal. 5, 248–264 (1975).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    85.Aldrin, M. Multivariate prediction using softly shrunk reduced-rank regression. Am. Stat. 54, 29–34 (2000).
    Google Scholar 
    86.Mitteroecker, P., Cheverud, J. M. & Pavlicev, M. Multivariate analysis of genotype–phenotype association. Genetics 202, 1345–1363 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007). More

  • in

    Mature Andean forests as globally important carbon sinks and future carbon refuges

    Study areaThis study was conducted using tree census data collected from 119 forest inventory plots (73 tropical, 46 subtropical) situated across a latitudinal range of 7.1°N (Colombia) to 27.8°S (Argentina), a longitudinal range of 79.5° to −63.8° W, and an elevation range of 500–3511 m asl (Fig. 1). The mean annual temperature (MAT) of plots ranged from 7.3 to 23.8 °C (mean = 16.7 ± 4.1 °C; mean ± SD) and mean annual precipitation (MAP) of the plots ranged from 608 to 4313 mm y−1 (mean = 1405.0 ± 623.9 mm y−1) (External Databases 1). The number of plots sampled in each country was: Argentina = 46, Bolivia = 26, Peru = 16, Ecuador = 21, and Colombia = 10 (Fig. 1). The 119 forest plots ranged in size from 0.32 to 1.28 ha and represent a cumulative sample area of 104.4 ha (horizontal areas corrected for slope) that containe more than 63,000 trees with a diameter at breast height (DBH, 1.3 m) ≥10 cm (External Database 1). Ninety-four of the plots (79.0%) were ≥1 ha in size. Neither secondary forests nor plantations were included. However, only seven of the plots (five in Argentina and two in Bolivia) were located in forests >100 km2 in extent41, which suggests that at least the edges and borders of some plots could have experienced some degree of disturbance or degradation. All plots were censused at least twice between 1991 and 2017 (census intervals ranged between 2 and 9 years).In each plot, we tagged, mapped, measured, and collected vouchers of all trees and palms (DBH ≥ 10 cm). DBH was measured 50 cm above buttresses or aerial roots when present (where the stem was cylindrical). During the second or subsequent set of censuses, DBH growth, recruitment, and mortality were recorded. In cases where the recorded DBH growth of the second census was less than −0.1 cm y−1 or greater than 7.5 cm y−1, the DBH of the second census was augmented/reduced in order to match these minimum/maximum values42. To homogenize and validate species names of palms and trees recorded in each country and plot, we submitted the combined list from all plots to the Taxonomic Name Resolution Service (TNRS; http://tnrs.iplantcollaborative.org/) version 3.0. Any species with an unassigned TNRS accepted name or with a taxonomic status of ‘no opinion’, ‘illegitimate’, or ‘invalid’ was manually reviewed. Families and genera were changed in accordance with the new species names. If a full species name was not provided or could not be found, the genus and/or family name from the original file was retained.Aboveground carbon stocksThe aboveground biomass (AGB) of each tree was estimated using the allometric equation proposed by Chave et al43., defined as: AGB = 0.0673 × (WD × DBH2 × H)0.976 where AGB (kg) is the estimated aboveground biomass, DBH (cm) is the diameter of the tree at breast height, H (m) is the estimated total height, and WD (g cm−3) is the stem wood density. To estimate WD, we assigned the WD values available in the literature44 to each species found in each plot. In cases where we could not assign a WD value at the species level, we used the average value at the genus- or family level. For unidentified individuals, we used the average WD value of all other species in the plot. Tree height (H) was estimated (see below) based on the heights measured on a subset of the individual stems in each plot using digital hypsometers or clinometers. The estimated AGB of each tree was then converted to units of aboveground carbon (AGC) by applying a conversion factor of 1 kg AGB = 0.456 kg C45. The AGC per ha was then determined by converting kg to Mg, summing the values for all trees in a plot, and extrapolating or interpolating to a sample area of 1 ha.Estimates of AGB and AGC are highly dependent on tree height. Unfortunately, tree height was difficult or impossible to measure on all stems due to physical and logistical constraints. Therefore, we estimated the height of each stem based on allometric relationships between DBH and tree height that we developed for each plot based on height and DBH measurements taken on a subset of individuals. Although the AGB/AGC estimates are only for trees with DBH ≥ 10, we used trees with DBH ≥ 5 cm to construct the H:DBH models when possible in order to be as comparable as possible with the existing pantropical H:DBH models46. In total, 44,442 trees had their heights measured in the field and were employed to construct the H:DBH models. The percentage of trees with direct field measurements of H (DBH ≥ 5 cm) in each country was: Argentina = 19%, Bolivia = 98%, Peru = 96%, Ecuador = 97%, and Colombia = 46%. In Argentina, 32 of 46 plots did not have any field measurements of H, while all plots in all other countries had field measurements of H for at least a subset of trees.We tested and compared the expected effects of using H:DBH models constructed using the local (plot), country, or pantropical (regional) level data. To select the best model to estimate H from DBH at the plot and country level, we used the function modelHD available in the BIOMASS package for R47. We chose the best allometric model from four candidate models (two log-log polynomial models, the three-parameter Weibull model, and a two-parameter Michaelis-Menten model (Supplementary Table 7)) by selecting the model with the lowest RSE and bias (Supplementary Table 8). At the regional level, we used a pantropical model46. The use of country and pantropical H:DBH allometries underestimates tree heights in the lowlands and overestimates tree heights in highlands, thereby homogenizing AGB estimates along elevational gradients10,48 (Supplementary Figs. 11, 12, 13). Using plot level allometries eliminates this problem. However, in the 32 plots in Argentina where we had no information about tree height, we used the country-level H:DBH model developed with the data available in the remaining 14 plots to estimate the height of each tree, which could have homogenized the AGC estimates along the Argentinian elevational gradient (Supplementary Figs. 11, 12, 13).Aboveground carbon dynamicsThe AGC dynamics of each plot was estimated from the annualized values of AGC mortality, AGC productivity (AGC change due to recruitment + growth), and AGC net change3. The calculations of the separate AGC dynamic components was performed as follows: (i) AGC mortality (Mg ha−1 y−1) = the sum of the AGC of all individuals that died between censuses divided by the time between measurements. (ii) AGC recruitment (Mg C ha−1 y−1) = the sum of the AGC of individuals that recruited into DBH ≥ 10 cm between censuses divided by the time between measurements. However, for each tree recruited (DBH ≥ 10 cm), we subtracted the corresponding AGC associated with a tree of 9.99 cm (i.e. just below the detection limit) in order to avoid overestimations of the overall increase in AGC due to recruitment49. (iii) AGC growth (Mg ha−1 y−1) = the sum of the increase in AGC of all individuals with DBH ≥ 10 cm that survived between censuses divided by the time between censuses. (iv) AGC net change (Mg ha−1 y−1) = the difference between AGC stock in the last census (AGCfinal) and AGC stock in the first census (AGC1) divided by the elapsed time (t; in years) between measurements [(AGC net change = AGCfinal − AGC1)/t]. We recognize that these methods exclude C stored in soils or in belowground tissues9,48; however, quantifying just aboveground C stocks and fluxes provides valuable information about the overall status of these forests as net C sinks or sources.ClimateClimate variables at each plot location were extracted from the CHELSA28 bioclimatic rasters at a resolution of 30-arcsec (~1 km2 at the equator). The climate variables extracted were: Mean Annual Temperature (MAT), Mean Diurnal Range (MDR), Isothermality (Isoth), Temperature Seasonality (TS), Maximum Temperature of Warmest Month (MaxTWarmM), Minimum Temperature of Coldest Month (MinTCM), Temperature Annual Range (TAR), Mean Temperature of Wettest Quarter (MeanTWarmQ), Mean Temperature of Driest Quarter (MeanTDQ), Mean Temperature of Warmest Quarter (MeanTWetQ), Mean Temperature of Coldest Quarter (MeanTCQ), Mean Annual Precipitation (MAP), Precipitation of Wettest Month (PWetM), Precipitation of Driest Month (PDM), Precipitation Seasonality (PS), Precipitation of Wettest Quarter (PWetQ), Precipitation of Driest Quarter (PDQ), Precipitation of Warmest Quarter (PWarmQ), Precipitation of Coldest Quarter (PCQ). We separated all variables associated with temperature (°C) from those associated with precipitation (mm y−1) and applied a Principal Component Analysis (PCA) to the 11 variables associated with temperature (PCAtemp) and a separate PCA to the eight variables associated with precipitation (PCAprec). The first two principal components of both PCAtemp and PCAprec (four PCA axes in total) were selected for use in subsequent analyses. Plot elevations were estimated based on their coordinates and the SRTM 1 ArcSec Global V3 (https://lta.cr.usgs.gov) 30 m resolution digital elevation model (DEM).PCAtemp1 (Supplementary Fig. 1a) explained 53.0% of the total variance of the temperature variables and had high loading from Isothermality and Maximum Temperature of Warmest Month, which was primarily associated with changes in elevation (r = −0.97, p  More

  • in

    Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity

    1.Conde, D. A., Flesness, N., Colchero, F., Jones, O. R. & Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Ballou, J. D. et al. Demographic and genetic management of captive populations. in Wild Mammals in Captivity: Principles and Techniques for Zoo Management (eds. Kleiman, D. G., Thompson, K. V. & Kirk Baer, C.) 219–252 (The University of Chicago Press, 2010).3.Ralls, K. & Ballou, J. D. Captive breeding and reintroduction. in Encyclopedia of Biodiversity (ed. Levin, S. A.) 662–667 (Elsevier Academic Press, 2013). https://doi.org/10.1016/B978-0-12-384719-5.00268-9.4.IUCN. Guidelines on the Use of Ex Situ Management for Species Conservation (2nd ed.). www.iucn.org/about/work/programmes/species/publications/iucn_guidelines_and__policy__statements/ (2014).5.Lacy, R. C. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).Article 

    Google Scholar 
    6.Lockyear, K. M., MacDonald, S. E., Waddell, W. T. & Goodrowe, K. L. Investigation of captive red wolf ejaculate characteristics in relation to age and inbreeding. Theriogenology 86, 1369–1375 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Frankham, R. Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 17, 325–333 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    9.Robert, A., Couvet, D. & Sarrazin, F. Integration of demography and genetics in population restorations. Écoscience 14, 463–471 (2007).Article 

    Google Scholar 
    10.Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).Article 

    Google Scholar 
    11.McPhee, M. E. & McPhee, N. F. Relaxed selection and environmental change decrease reintroduction success in simulated populations: altered selection in captive populations. Anim. Conserv. 15, 274–282 (2012).Article 

    Google Scholar 
    12.Ford, M. J. Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv. Biol. 16, 815–825 (2002).Article 

    Google Scholar 
    13.Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).Article 

    Google Scholar 
    14.Robert, A. Captive breeding genetics and reintroduction success. Biol. Conserv. 142, 2915–2922 (2009).Article 

    Google Scholar 
    15.Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. 109, 238–242 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).Article 

    Google Scholar 
    18.Gordon, S. P., Hendry, A. P. & Reznick, D. N. Predator-induced contemporary evolution, phenotypic plasticity, and the evolution of reaction norms in guppies. Copeia 105, 514–522 (2017).Article 

    Google Scholar 
    19.Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. Trends Ecol. Evol. 10, 374–378 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Smith, J. M. Review lectures on senescence—I. The causes of ageing. Proc. R. Soc. Lond. B Biol. Sci. 157, 115–127 (1962).ADS 
    Article 

    Google Scholar 
    21.Partridge, L. & Barton, N. H. Optimally, mutation and the evolution of ageing. Nature 362, 305–311 (1993).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Langen, K., Bakker, T. C. M., Baldauf, S. A., Shrestha, J. & Thünken, T. Effects of ageing and inbreeding on the reproductive traits in a cichlid fish I: the male perspective. Biol. J. Linn. Soc. 120, 752–761 (2017).Article 

    Google Scholar 
    24.Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301 (1977).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Benton, C. H. et al. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J. Anim. Ecol. 87, 1500–1511 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.de Boer, R. A., Eens, M. & Müller, W. Sex-specific effects of inbreeding on reproductive senescence. Proc. R. Soc. B Biol. Sci. 285, 20180231 (2018).Article 

    Google Scholar 
    27.Promislow, D. E. L. & Tatar, M. Mutation and senescence: where genetics and demography meet. Genetica 102, 299–314 (1998).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl. Acad. Sci. 93, 6140–6145 (1996).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Snoke, M. S. & Promislow, D. E. L. Quantitative genetic tests of recent senescence theory: age-specific mortality and male fertility in Drosophila melanogaster. Heredity 91, 546–556 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Robert, A., Toupance, B., Tremblay, M. & Heyer, E. Impact of inbreeding on fertility in a pre-industrial population. Eur. J. Hum. Genet. 17, 673–681 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Lesobre, L. et al. Conservation genetics of Houbara Bustard (Chlamydotis undulata undulata): population structure and its implications for the reinforcement of wild populations. Conserv. Genet. 11, 1489–1497 (2010).Article 

    Google Scholar 
    32.Rabier, R., Robert, A., Lacroix, F. & Lesobre, L. Genetic assessment of a conservation breeding program of the houbara bustard (Chlamydotis undulata undulata) in Morocco, based on pedigree and molecular analyses. Zoo Biol. 39, 365–447 (2020).Article 

    Google Scholar 
    33.Hardouin, L. A., Legagneux, P., Hingrat, Y. & Robert, A. Sex-specific dispersal responses to inbreeding and kinship. Anim. Behav. https://doi.org/10.1016/j.anbehav.2015.04.002 (2015).Article 

    Google Scholar 
    34.Cornec, C., Robert, A., Rybak, F. & Hingrat, Y. Male vocalizations convey information on kinship and inbreeding in a lekking bird. Ecol. Evol. 9, 4421–4430 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Vuarin, P. et al. No evidence for prezygotic postcopulatory avoidance of kin despite high inbreeding depression. Mol. Ecol. 27, 5252–5262 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bacon, L., Hingrat, Y. & Robert, A. Evidence of reproductive senescence of released individuals in a reinforced bird population. Biol. Conserv. 215, 288–295 (2017).Article 

    Google Scholar 
    37.Chantepie, S. et al. Quantitative genetics of the aging of reproductive traits in the houbara bustard. PLoS ONE 10, e0133140 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Preston, B. T., Saint Jalme, M., Hingrat, Y., Lacroix, F. & Sorci, G. Sexually extravagant males age more rapidly. Ecol. Lett. 14, 1017–1024 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Preston, B. T., Saint Jalme, M., Hingrat, Y., Lacroix, F. & Sorci, G. The sperm of aging male bustards retards their offspring’s development. Nat. Commun. 6, 1–9 (2015).Article 
    CAS 

    Google Scholar 
    40.Vuarin, P. et al. Post-copulatory sexual selection allows females to alleviate the fitness costs incurred when mating with senescing males. Proc. R. Soc. B Biol. Sci. 286, 20191675 (2019).Article 

    Google Scholar 
    41.Chargé, R. et al. Quantitative genetics of sexual display, ejaculate quality and size in a lekking species. J. Anim. Ecol. 82, 399–407 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Chargé, R. et al. Does recognized genetic management in supportive breeding prevent genetic changes in life-history traits?. Evol. Appl. 7, 521–532 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Gaucher, P. et al. Taxonomy of the Houbara Bustard Chlamydotis undulata subspecies considered on the basis of sexual display and genetic divergence. Ibis 138, 273–282 (1996).Article 

    Google Scholar 
    44.Hingrat, Y., Saint Jalme, M., Chalah, T., Orhant, N. & Lacroix, F. Environmental and social constraints on breeding site selection. Does the exploded-lek and hotspot model apply to the Houbara bustard Chlamydotis undulata undulata?. J. Avian Biol. 39, 393–404 (2008).Article 

    Google Scholar 
    45.Duursma, D. E., Gallagher, R. V., Price, J. J. & Griffith, S. C. Variation in avian egg shape and nest structure is explained by climatic conditions. Sci. Rep. 8, 1–10 (2018).
    Google Scholar 
    46.Cucco, M., Grenna, M. & Malacarne, G. Female condition, egg shape and hatchability: a study on the grey partridge. J. Zool. 287, 186–194 (2012).Article 

    Google Scholar 
    47.Adamou, A.-E. et al. Egg size and shape variation in Rufous Bush Chats Cercotrichas galactotes breeding in date palm plantations: hatching success increases with egg elongation. Avian Biol. Res. 11, 100–107 (2018).Article 

    Google Scholar 
    48.Goriup, P. D. The world status of the Houbara Bustard Chlamydotis undulata. Bird Conserv. Int. 7, 373–397 (1997).Article 

    Google Scholar 
    49.BirdLife International. Chlamydotis undulata. The IUCN Red List of Threatened Species 2016: e.T22728245A90341807. (2016) https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22728245A90341807.en.50.Lacroix, F., Seabury, J., Al Bowardi, M. & Renaud, J. The Emirates Center for Wildlife Propagation: developing a comprehensive strategy to secure a self-sustaining population of houbara bustard (Chlamydotis undulata undulata) in Eastern Morocco. Houbara News 5, (2003).
    51.Conway, W. Wild and zoo animal interactive management and habitat conservation. Biodivers. Conserv. 4, 573–594 (1995).Article 

    Google Scholar 
    52.Saint Jalme, M., Gaucher, P. & Paillat, P. Artificial insemination in Houbara bustards (Chlamydotis undulata): influence of the number of spermatozoa and insemination frequency on fertility and ability to hatch. Reproduction 100, 93–103 (1994).CAS 
    Article 

    Google Scholar 
    53.Allendorf, F. W. Delay of adaptation to captive breeding by equalizing family size. Conserv. Biol. 7, 416–419 (1993).Article 

    Google Scholar 
    54.Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 18, e3000410 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Vuarin, P. et al. Sperm competition accentuates selection on ejaculate attributes. Biol. Lett. 15, 20180889 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Chalah, T., Seigneurin, F., Blesbois, E. & Brillard, J. P. In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology 39, 185–191 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Hoyt, D. F. Practical methods of estimating volume and fresh weight of bird eggs. Auk 96, 73–77 (1979).
    Google Scholar 
    58.Wellmann, R. optiSel: Optimum Contribution Selection and Population Genetics. R package version 2.0.2. https://CRAN.R-project.org/package=optiSel (2018).59.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2019).60.Princée, F. P. G. Exploring Studbooks for Wildlife Management and Conservation (Springer, Berlin, 2016).
    Google Scholar 
    61.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal. 9, 378–400 (2017).Article 

    Google Scholar 
    62.Ludecke, D., Makowski, D. & Waggoner, P. performance: Assessment of Regression Models Performance. R package version 0.3.0. https://CRAN.R-project.org/package=performance (2019).63.Ludecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772. https://doi.org/10.21105/joss.00772 (2018).ADS 
    Article 

    Google Scholar 
    64.Wickham, H. ggplot2: elegant graphics for data analysis (Springer, Berlin, 2009).
    Google Scholar 
    65.Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008 (1997).Article 

    Google Scholar 
    66.Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proc. R. Soc. B Biol. Sci. 276, 2769–2777 (2009).CAS 
    Article 

    Google Scholar 
    67.Angelier, F., Shaffer, S. A., Weimerskirch, H. & Chastel, O. Effect of age, breeding experience and senescence on corticosterone and prolactin levels in a long-lived seabird: the wandering albatross. Gen. Comp. Endocrinol. 149, 1–9 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Angelier, F., Weimerskirch, H., Dano, S. & Chastel, O. Age, experience and reproductive performance in a long-lived bird: a hormonal perspective. Behav. Ecol. Sociobiol. 61, 611–621 (2007).Article 

    Google Scholar 
    69.Ottinger, M. A. et al. The Japanese quail: a model for studying reproductive aging of hypothalamic systems. Exp. Gerontol. 39, 1679–1693 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Lecomte, V. J. et al. Patterns of aging in the long-lived wandering albatross. Proc. Natl. Acad. Sci. 107, 6370–6375 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Opatová, P. et al. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol. Evol. 6, 295–304 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Croquet, C. et al. Linear and curvilinear effects of inbreeding on production traits for Walloon Holstein cows. J. Dairy Sci. 90, 465–471 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Leroy, G. Inbreeding depression in livestock species: review and meta-analysis. Anim. Genet. 45, 618–628 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations: genetic management. Conserv. Lett. 11, e12412 (2018).Article 

    Google Scholar 
    75.Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl. Acad. Sci. 113, 3585–3590 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Frankham, R. & Ralls, K. Inbreeding leads to extinction. Nature 392, 441–442 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    77.Armbruster, P. & Reed, D. H. Inbreeding depression in benign and stressful environments. Heredity 95, 235–242 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Robert, A. Negative environmental perturbations may improve species persistence. Proc. R. Soc. B Biol. Sci. 273, 2501–2506 (2006).Article 

    Google Scholar 
    79.Crnokrak, P. & Roff, D. A. Inbreeding depression in the wild. Heredity 83, 260–270 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Araki, H., Berejikian, B. A., Ford, M. J. & Blouin, M. S. Fitness of hatchery-reared salmonids in the wild. Evol. Appl. 1, 342–355 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Lynch, M. & O’Hely, M. Captive breeding and genetic fitness of natural populations. Conserv. Genet. 2, 363–378 (2001).Article 

    Google Scholar 
    82.Robert, A., Sarrazin, F., Couvet, D. & Legendre, S. Releasing adults versus young in reintroductions: interactions between demography and genetics. Conserv. Biol. 18, 1078–1087 (2004).Article 

    Google Scholar 
    83.Roche, E. A., Cuthbert, F. J. & Arnold, T. W. Relative fitness of wild and captive-reared piping plovers: does egg salvage contribute to recovery of the endangered Great Lakes population?. Biol. Conserv. 141, 3079–3088 (2008).Article 

    Google Scholar 
    84.Ford, N. B. & Seigel, R. A. Phenotypic plasticity in reproductive traits: evidence from a viviparous snake. Ecology 70, 1768–1774 (1989).Article 

    Google Scholar 
    85.Bacon, L. Etude des paramètres de reproduction et de la dynamique d’une population renforcée d’outardes Houbara nord-africaines (Chlamydotis undulata undulata) au Maroc. (Museum National d’Histoire Naturelle, 2017).86.Robert, A. et al. Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment. Anim. Conserv. 18, 397–406 (2015).Article 

    Google Scholar 
    87.Bacon, L., Robert, A. & Hingrat, Y. Long lasting breeding performance differences between wild-born and released females in a reinforced North African Houbara bustard (Chlamydotis undulata undulata) population: a matter of release strategy. Biodivers. Conserv. 28, 553–570 (2019).Article 

    Google Scholar 
    88.Vuarin, P. et al. Paternal age negatively affects sperm production of the progeny. Ecol. Lett. https://doi.org/10.1111/ele.13696 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Keller, L. F., Reid, J. M. & Arcese, P. Testing evolutionary models of senescence in a natural population: age and inbreeding effects on fitness components in song sparrows. Proc. R. Soc. B Biol. Sci. 275, 597–604 (2008).CAS 
    Article 

    Google Scholar 
    90.Reynolds, R. M. et al. Age specificity of inbreeding load in Drosophila melanogaster and implications for the evolution of late-life mortality plateaus. Genetics 177, 587–595 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Tan, C. K. W., Pizzari, T. & Wigby, S. Parental age, gametic age, and inbreeding interact to modulate offspring viability in Drosophila melanogaster. Evolution 67, 3043–3051 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    92.Deubel, W., Bassukas, I. D., Schlereth, W., Lorenz, R. & Hempel, K. Age dependent selection against HPRT deficient T lymphocytes in the HPRT± heterozygous mouse. Mutat. Res. Mol. Mech. Mutagen. 351, 67–77 (1996).CAS 
    Article 

    Google Scholar 
    93.Réale, D. & Festa-Bianchet, M. Predator-induced natural selection on temperament in bighorn ewes. Anim. Behav. 65, 463–470 (2003).Article 

    Google Scholar 
    94.Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against Inbred Soay Sheep in a free-living, island population. Evolution 53, 1259 (1999).PubMed 
    PubMed Central 

    Google Scholar 
    95.Wang, J., Hill, W. G., Charlesworth, D. & Charlesworth, B. Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet. Res. 74, 165–178 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    A prevalent and culturable microbiota links ecological balance to clinical stability of the human lung after transplantation

    Combined culture-dependent and culture-independent approach identifies the prevalent and viable bacterial community members of the human lung post-transplantTo characterize the bacterial community composition of the lung microbiota post-transplant, we performed 16S rRNA gene amplicon sequencing of 234 longitudinal BALF samples from 64 lung transplant recipients collected over a 49-month period (Fig. 1a, Supplementary Table 1). A total of 7164 operational taxonomic units (OTUs) were identified, excluding OTUs contributing to reads in 11 negative control samples32 (see “Methods”, Supplementary Fig. 1a, Supplementary Data 1 and 2). In accordance with previous studies on BALF samples from healthy non-transplant individuals4,5,6,26, we found that Bacteroidetes and Firmicutes followed by Proteobacteria and Actinobacteria are the most abundant phyla in the post-transplant lung (Fig. 1b). Prevalence analysis across all BALF samples showed that the community composition is highly variable with only 22 OTUs shared by ≥50% of the samples (Supplementary Fig. 1b, Supplementary Data 3). However, these 22 OTUs constituted 42% of the total number of rarefied reads, indicating that they are predominant members of the post-transplant lung microbiota (Fig. 1c, Supplementary Fig. 1c, Supplementary Table 2, Supplementary Data 3). They belonged to the genera Prevotella 7, Streptococcus, Veillonella, Neisseria, Alloprevotella, Pseudomonas, Gemella, Granulicatella, Campylobacter, Porphyromonas and Rothia, the majority of which are also prevailing community members in the healthy human lung3,5,7,26, suggesting a considerable overlap in the overall composition of the lung microbiota between the healthy and the transplanted lung.Fig. 1: Combining BALF amplicon sequencing and bacterial culturing to deduce the microbial ecology of deep lung microbiota.a Schematic of the sampling of Bronchoalveolar lavage fluid (BALF) from lung transplant recipients over time (months post-transplant). b Relative abundances (%) of most abundant phyla across BALF samples. Box plots show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). c Prevalence (% samples) vs contribution to total reads across samples for most abundant phyla. Dot color shows different genera and size show total rarefied reads. Gray dashed horizontal line shows prevalence ≥50%. d Scatter plot shows correlation between number of observed OTUs and bacterial counts per BALF sample obtained by quantifying 16S rRNA gene copies with qPCR. Linear regression is shown by the blue line with gray shaded area showing 95% confidence interval (n = 234, two-sided, F(1, 232) = 91.04, P = 2.2 × 10−16), Coefficient of correlation; R2 = 0.28. e Bar chart shows lung taxa (genera; OTU IDs) that contributed ≥75% of total bacterial biomass across samples (n = 234). Venn diagram inset shows overlap (yellow) between the most prevalent (≥50% incidence, light blue) and the most abundant (≥75% total count, red) taxa in the transplanted lung. Bar colors also show the same.Full size imageDifferences in bacterial loads between samples can skew community analyses when based on relative abundance profiling alone. Therefore, we used qPCR to determine the total copies of the 16S rRNA gene as an estimate for bacterial counts, and normalized the abundances of each OTU across the 234 samples (absolute abundance). We found that the bacterial counts vastly differed between samples, ranging between 101 and 106 gene copies per ml of BALF (Supplementary Fig. 1d). The number of observed OTUs increased with decreasing counts (Fig. 1d) suggesting that a large fraction of the OTUs were detected in samples of low bacterial biomass and hence represent either transient or extremely low-abundant community members, or sequencing artefacts and contaminations. In turn, 19 of the 7164 OTUs constituted >75% of the total bacterial biomass detected across the 234 BALF samples (Fig. 1e). This included 11 of the 22 most prevalent OTUs (see above) plus eight OTUs that were detected in only a few samples but at very high abundance (Staphylococcus; OTU_2, Corynebacterium 1; OTU_16 and OTU_24, Anaerococcus; OTU_49 and OTU_234, Haemophilus; OTU_78, Streptococcus; OTU_6768, Peptoniphilus; OTU_63, Supplementary Table 2). It is important to differentiate these opportunistic colonizers from other community members with low incidence, as they reached very high bacterial counts in some samples with potential implications for lung health.To demonstrate the viability of prevalent lung microbiota members and to establish a reference catalogue of bacterial isolates from the human lung for experimental studies, we complemented the amplicon sequencing with a bacterial culturing approach (Supplementary Fig. 2). We cultivated 21 random BALF samples from 18 individuals, on 15 different semi-solid media (both general and selective) in combination with 3 oxygen concentrations; aerobic, 5% CO2, and anaerobic (See “Methods” and Supplementary Table 3), representing 26 different conditions. We cultured fresh BALF immediately upon extraction (within 2 h), as we observed loss in bacterial diversity upon cultivating frozen samples. This resulted in a total of 300 bacterial isolates, representing 5 phyla, 7 classes, 13 orders, and 17 families from which we built an open-access biobank called the Lung Microbiota culture Collection (LuMiCol, Supplementary Data 4, https://github.com/sudu87/Microbial-ecology-of-the-transplanted-human-lung).To examine the extent of overlap between bacteria in LuMiCol and the diversity obtained by amplicon sequencing, we included 16S rRNA gene sequences from 215 isolates that passed our quality filter into the community analysis, which allowed for the retrieval of OTU-isolate matching pairs32 (Methods). We found that 213 isolates matched to 47 OTUs (Fig. 2a, c, Supplementary Data 5), including 17 of the most prevalent and abundant bacteria (Fig. 1e, Supplementary Table 2). As expected, bacteria with high abundance in the amplicon sequencing-based community analysis were isolated more frequently, with Firmicutes revealing the highest isolate diversity (Fig. 2a–c, Supplementary Data 4, 5) and being recovered under the most diverse culturing conditions.Fig. 2: A lung microbiota culture collection (LuMiCol) reveals extended diversity and phenotypic characteristics of the lower airway bacterial community.a Phylogenetic tree of the 47 OTU-isolate matching pairs inferred with FastTree. Branch bootstrap support values (size of dark gray circles) ≥80% are displayed. b Growth characteristics of each OTU-isolate matching pair in three different oxygen conditions (Anaerobic – light brown, 5% CO2-yellow, aerobic-light blue, n = 3). Column with pie charts shows growth on semi-solid agar. Heatmap shows median change in Optical Density (OD) at 600 nm growth in three different liquid media (THY, RPMI, RPMI without glucose) over 3 days. c Cumulative counts of each OTU-isolate matching pair across all BALF samples (gray). d Number of isolates in Lumicol (black) per OTU-isolate matching pair. Taxa are labeled as genus; OTU ID, with an indication of whether they are prevalent (gray rectangle) or opportunistic (magenta rectangle) in the lower airway community. The names of the closest hit in databases: eHOMD and SILVA are used as species descriptor.Full size imageIn summary, our results from the combined culture-dependent and culture-independent approach show that the lung microbiota post-transplant is highly variable in terms of both bacterial load and community composition with many transient and low-abundant bacterial taxa. However, a few community members display relatively high prevalence and/or abundance suggesting that they represent important colonizers of the human lung.LuMiCol informs on the diversity and metabolic preferences of culturable human lung bacteriaWe characterized the culturable community members of the lower respiratory tract contained in LuMiCol by testing a wide range of growth conditions and phenotypic properties (see “Methods”). The majority of the cultured isolates could taxonomically be assigned at the species level based on genotyping of the 16S rRNA gene V1-V5 region. However, the limited taxonomic resolution offered by this method does not allow to discriminate between closely related strains, which can include both pathogenic and non-pathogenic bacteria. Hence for Streptococcus, we additionally tested for type of hemolysis (alpha, beta, or gamma) and resistance to optochin, which differentiates the pathogenic pneumococcus and the non-pathogenic viridans groups (Fig. 2a, Supplementary Fig. 2b, c). This demonstrated that the 16 Streptococcus OTU-isolate pairs belong to the viridans group of streptococci (VS)33. Interestingly, these isolates exhibited the highest genotypic and phenotypic diversity throughout our collection and belonged to five OTUs among the 22 most prevalent community members, with Streptococcus mitis (OTU_11) present in 93.6% of all samples.BALF from healthy individuals contains amino acids, citrate, urate, fatty acids, and antioxidants such as glutathione but no detectable glucose34, which is associated with increased bacterial load and infection35,36,37. To get insights into basic bacterial metabolism, we assessed the growth of all 47 isolates matching an OTU under different oxygen concentrations. We used undefined rich media (Todd-Hewitt Yeast extract) and defined low-complexity liquid media (RPMI 1640), including a glucose-free version to mimic the deep lung environment (see “Methods”). Despite the presence of oxygen in the human lung, the majority of the isolates were either obligate or facultative anaerobes (Fig. 2a), including some of the most prevalent members (Prevotella melaninogenica (OTU_3), Streptococcus mitis (OTU_11), Veillonella atypica (OTU_6) and Granulicatella adiacens (OTU_17). A similar trend was also observed in liquid media under anaerobic conditions, with the exception of the genera Prevotella, Veillonella and Granulicatella. Most streptococci from the human lung grew best in complex liquid media containing glucose under anaerobic conditions, including the most prevalent species in our cohort, S. mitis (OTU_11) (Fig. 2b). However, noticeable exceptions were S. vestibularis (OTU_34), S. oralis (OTU_3427 and OTU_1567), and S. gordonii (OTU_10031), which grew equally well in the presence of oxygen and in low-complexity liquid medium (Fig. 2b). Most Actinobacteria grew best on rich medium in the presence of 5% CO2, with an exception of Actinomyces odontolyticus (OTU_39), which required anaerobic conditions. Some Actinobacteria grew equally well in anaerobic conditions as in the presence of 5% CO2, i.e., Corynebacterium durum (OTU_501), Actinobacteria sp. oral taxon (OTU_328 and OTU_228).The two most predominant opportunistic pathogens in our lung cohort, P. aeruginosa (OTU_1) and S. aureus (OTU_2), grew best in rich liquid medium in the presence of oxygen (Fig. 2c), although these also grew to lower degree under anaerobic conditions. These results indicate that changes in the physicochemical conditions in the lung may favor the growth of these two opportunistic pathogens. In summary, our observations from the bacterial culture collection provide first insights into the phenotypic properties of human lung bacteria and will serve as a basis for future experimental work.Identification of four compositionally distinct pneumotypes post-transplant using machine learning based on ecological metricsTo detect and characterize differences in bacterial community composition between BALF samples from transplant patients, we clustered the samples using an unsupervised machine learning algorithm based on pairwise Bray–Curtis dissimilarity32 (beta diversity, See “Methods”, Supplementary Data 6). This segregated the samples into four partitions around medoids (PAMs) at both phylum and OTU level (Fig. 3a, b, Supplementary Fig. 3a, b). We refer to these clusters as “pneumotypes” PAM1, PAM2, PAM3, and PAM4 (Supplementary Table 4). PAM1 formed the largest cluster consisting of the majority of samples (n = 115) followed by PAM3 (n = 76), PAM2 (n = 19), and PAM4 (n = 24) (Supplementary Data 7). Examination of various diversity measures (Species occurrence, OTU diversity, OTU richness, Fig. 3c–e), distribution of the dominant community members (Fig. 3f), and bacterial counts (16S rRNA gene copies, Fig. 3g) revealed distinctive characteristics between the four pneumotypes.Fig. 3: Bacterial communities of the lung post-transplant fall into four ‘pneumotypes’ with distinct community characteristics.a, b Principal component analysis shows Partition around medoids (PAMs) at phylum and OTU level respectively generated by k-medoid-based unsupervised machine learning using Bray–Curtis dissimilarity (occurrence and abundance). Pneumotypes are color coded: Balanced (red, n = 115), Staphylococcus (green, n = 19), Microbiota-depleted (MD, blue, n = 76), and Pseudomonas (orange, n = 24). c–g Violin plots show distributions of pairwise species occurrence (Sorenson’s index, PERMANOVA, two-sided, F(3, 229) = 8.49, P = 9.9 × 10−5), OTU diversity (Kruskal–Wallis test, χ2 = 89.2, df = 3, two-sided, P = 2.2 × 10−16), OTU richness (ANOVA, F(3, 229) = 43.9, two-sided, P = 2.2 × 10−16), proportion of most dominant OTUs (Kruskal–Wallis test, χ2 = 94.45, df = 3, two-sided, P = 2.2 × 10−16), and total bacterial counts (ANOVA, F(3, 229) = 43.9, two-sided, P = 2.2 × 10−16), respectively, across the four pneumotypes. h, i Enrichment analysis of prevalence (green dotted line ≥50%) and absolute abundance across all samples of the 30 most dominant taxa (i.e., OTUs) in PneumotypeBalanced and PneumotypeMD respectively, when each was compared to the other three combined pneumotypes (gray boxes). Differential abundances after enrichment analysis was calculated between each PAM and the other three PAMs combined, using ART-ANOVA. j Heatmap shows relative percentage of taxa (right colored panel) cultured from paired samples of Bronchial aspiration (BA) and Bronchoalveolar lavage fluid (BALF) from each pneumotype (left colored panel). Oropharyngeal flora mainly corresponds to PneumotypeBalanced (i.e., Streptococcus, Prevotella, Veillonella). All box plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). Multiple comparison of beta diversity indices was done by pairwise PERMANOVA (adonis) with False Discovery rate (FDR). Post hoc analyses (95% Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test (Kruskal test) with False Discovery Rate (FDR) or least-squares means (ART-ANOVA) with False Discovery Rate (FDR). * P  More