Limnological response from high-altitude wetlands to the water supply in the Andean Altiplano
1.Tapia, J., Audry, S., Townley, B. & Duprey, J. L. Geochemical background, baseline and origin of contaminants from sediments in the mining-impacted Altiplano and Eastern Cordillera of Oruro, Bolivia. Geochemistry 12, 3–20. https://doi.org/10.1144/1467-7873/10-RA-049 (2012).CAS
Article
Google Scholar
2.Sarricolea, E. P. & Romero, H. Variabilidad y cambios climáticos observados y esperados en el Altiplano del norte de Chile. Revista de Geografía Norte Grande. 62, 169–183 (2015).Article
Google Scholar
3.Garreaud, R., Vuille, M. & Clement, C. A. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 194(1–3), 5–22. https://doi.org/10.1016/S0031-0182(03)00269-4 (2003).Article
Google Scholar
4.Vuille, M. & Keiming, F. Interannual variability of summertime convective cloudiness and precipitation in the central andes derived from ISCCP-B3 data. J. Clim. 17(17), 3334–3348. https://doi.org/10.1175/15200442(2004)017%3c3334:IVOSCC%3e2.0.CO;2 (2004).ADS
Article
Google Scholar
5.Cerveny, R. Present climates of South America. In Climates of the Southern Continents: Present, Past and Future (ed. Hobbs, J. E.) 107–135 (Wiley, Chichester, 1998).
Google Scholar
6.Garreaud, R. & Aceituno, P. Interannual rainfall variability over the South American Altiplano. J. Clim. 14(12), 2779–2789. https://doi.org/10.1175/1520-0442(2001)014%3c2779:IRVOTS%3e2.0.CO;2 (2001).ADS
Article
Google Scholar
7.Coronel, J., Declerck, S. & Brendonck, L. High-altitude peatland temporary pools in Bolivia house a high cladoceran diversity. Wetlands 27(4), 1166–1174. https://doi.org/10.1672/0277-5212(2007)27[1166:HPTPIB]2.0.CO;2 (2007).Article
Google Scholar
8.Dorador, C., Vila, I., Witzel, K. P. & Imhoff, J. F. Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fundam. Appl. Limnol. 182(2), 135–159. https://doi.org/10.1127/1863-9135/2013/0393 (2013).CAS
Article
Google Scholar
9.Garcia, E. & Otto, M. Caracterización ecohidrológica de humedales alto andinos usando imágenes de satélite multitemporales en la cabecera de cuenca del río Santa, Ancash, Perú. Ecología Aplicada 14(2), 115–125 (2013).
Google Scholar
10.Buytaert, W., Camacho, F. C. & Tobón, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 20(1), 19–33. https://doi.org/10.1111/j.1466-8238.2010.00585.x (2011).Article
Google Scholar
11.Hribljan, J. A. et al. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires Peat 15(12), 1–14 (2015).
Google Scholar
12.Yager, K. et al. Dimensiones socioecológicas del cambio del paisaje pastoral andino: puente entre el conocimiento ecológico tradicional y el análisis de imágenes satelitales en Sajama Parque Nacional, Bolivia. Cambio ambiental regional 17, 27–37 (2019).
Google Scholar
13.Urrutia, R. & Vuille, M. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res. 114, D02108. https://doi.org/10.1029/2008JD011021 (2009).ADS
Article
Google Scholar
14.Buytaert, W. et al. Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrol. Earth. Syst. Sci. 14, 1247–1258. https://doi.org/10.5194/hess-14-1247-2010 (2010).ADS
Article
Google Scholar
15.Rabatel, A. et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7, 81–102. https://doi.org/10.5194/tc-7-81-2013 (2013).ADS
Article
Google Scholar
16.Prieto, G. et al. A mass sacrifice of children and camelids at the Huanchaquito-Las Llamas site, Moche Valley, Peru . PLoS ONE 14(3), e0211691. https://doi.org/10.1371/journal.pone.0211691 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
17.Babidge, S., Kalazich, F., Prieto, M. & Yager, K. That’s the problem with that lake; it changes sides’: mapping extraction and ecological exhaustion in the Atacama. J. Political Ecol. 26(1), 738–760. https://doi.org/10.2458/v26i1.23169 (2019).Article
Google Scholar
18.Prieto, M., Fragkou, M. & Calderón, M. Water policy and management in Chile. In The Wiley Encyclopedia of Water: Science, Technology, and Society (ed. Strickland, C.) 2589–2600 (Wiley, New York, 2020).
Google Scholar
19.Fritz, S. C., Baker, P. A., Tapia, P., Spanbauer, T. & Westover, K. Evolution of the Lake Titicaca basin and its diatom flora over the last 370,000 years. Palaeogeogr. Palaeoclim. Palaeoecol. 317–318, 93–103 (2012).ADS
Article
Google Scholar
20.Cohen, S. C. Scientific drilling and biological evolution in ancient lakes: lessons learned and recommendations for the future. Hydrobiologia 682(1), 3–25. https://doi.org/10.1007/s10750-010-0546-7 (2012).CAS
Article
Google Scholar
21.Tapia, P. M., Fritz, S. C., Baker, P. A., Seltzer, G. A. & Dunbar, R. B. A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 194, 1–3. https://doi.org/10.1016/S0031-0182(03)00275-X (2003).Article
Google Scholar
22.Vining, B. R., Steinman, B. A., Abbott, M. B. & Woods, A. Paleoclimatic and archaeological evidence from Lake Suches for highland Andean refugia during the arid middle-Holocene. The Holocene 29(2), 328–344. https://doi.org/10.1177/0959683618810405 (2019).ADS
Article
Google Scholar
23.Fritz, S. C., Baker, P. A., Tapia, P. & Garland, J. Spatial and temporal variation in cores from Lake Titicaca, Bolivia/Peru during the last 13,000 years. Quat. Int. 158(1), 23–29. https://doi.org/10.1016/j.quaint.2006.05.014 (2006).Article
Google Scholar
24.Hernández, A. et al. Biogeochemical processes controlling oxygen and carbon isotopes of diatom silica in Late Glacial to Holocene lacustrine rhythmites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299(3–4), 413–425. https://doi.org/10.1016/j.palaeo.2010.11.020 (2012).Article
Google Scholar
25.Placzek, C. et al. Climate in the dry central Andes over Geologic, millennial, and interannual timescales. Ann. Mo. Bot. Gard. 96(3), 386–397. https://doi.org/10.3417/2008019 (2009).Article
Google Scholar
26.Cerda, M. et al. A new 20th century lake sedimentary record from the Atacama Desert/Chile reveals persistent PDO (Pacific Decadal Oscillation) impact. J. S. Am. Earth Sci. 95, 102302. https://doi.org/10.1016/j.jsames.2019.102302 (2019).Article
Google Scholar
27.Aránguiz-Acuña, A. et al. Aquatic community structure as sentinel of recent environmental changes unraveled from lake sedimentary records from the Atacama Desert, Chile . PLoS ONE 15(2), e0229453. https://doi.org/10.1371/journal.pone.0229453 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
28.Flores-Varas, A. et al. Ascotán and Carcote salt flats as sensors of humidity fluctuations and anthropic impacts in the transition zone of the Andean Altiplano. J. S. Am. Earth Sci. 105, 102934. https://doi.org/10.1016/j.jsames.2020.102934 (2021).CAS
Article
Google Scholar
29.Maher, B. A. & Taylor, R. M. Formation of ultrafine-grained magnetite in soils. Nature 336, 368–370 (1988).ADS
CAS
Article
Google Scholar
30.Dearing, J. A. et al. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 124, 228–240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x (1996).ADS
Article
Google Scholar
31.Evans, M. & Heller, F. Environmental magnetism: principles and applications of enviromagnetics. Int. Geophys. 86, 202 (2003).
Google Scholar
32.Pizarro, H. et al. The origin of the magnetic record in Eocene-Miocene coarse-grained sediments deposited in hyper-arid/arid conditions: examples from the Desert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 516, 322–335. https://doi.org/10.1016/j.palaeo.2018.12.009 (2019).Article
Google Scholar
33.Risacher, F., Alonso, H. & Salazar, C. Geoquímica de Aguas en Cuencas cerradas: I, II y III Regiones-Chile. Volumen III Estudio de Cuencas de la II Región. (Convenio de Cooperación DGA-UCN-IRD. S.I.T. Nº51, 1999).34.Tapia, R. et al. Glacial differences of Southern Ocean Intermediate Waters in the Central South Pacific. Quat. Sci. Rev. 208, 105–117. https://doi.org/10.1016/j.quascirev.2019.01.016 (2019).ADS
Article
Google Scholar
35.Horne, D. J. Life-cycles of podocopid Ostracoda – a review (with particular reference to marine and brackish-water species). In Applications of Ostracoda. Proceedings of the Eighth International Symposium on Ostracoda (ed. Maddocks, R.) 581–590 (University of Houston, Texas, 1983).
Google Scholar
36.Cohen, A. C. & Morin, J. G. Patterns of reproduction in ostracodes; a review. J. Crust. Biol. 10(2), 184–211. https://doi.org/10.2307/1548480 (1990).Article
Google Scholar
37.Mesquita-Joanes, F., Smith, A. J. & Viehberg, F. A. The ecology of ostracoda across levels of biological organization from individual to ecosystem. J. Quat. Sci. 17, 15–35. https://doi.org/10.1016/B978-0-444-53636-5.00002-0 (2012).Article
Google Scholar
38.McLay, C. L. The population biology of Cyprinotus carolinensis and Herpetocypris reptans (Crustacea, Ostracoda). Can. J. Zool. 56(5), 1170–1179. https://doi.org/10.1139/z78-161 (1978).ADS
Article
Google Scholar
39.Hamouda, S. A., Sames, B., Mohammed, A. & Bensalah, M. First record of non-marine ostracods from the Paleogene “hamadian deposits” of Méridja area, west of Bechar (southwestern Algeria). Annales de Paléontologie 104(1), 27–44. https://doi.org/10.1016/j.annpal.2017.12.001 (2018).Article
Google Scholar
40.Bergue, C. T., Maranhao, M. D. S. A. S. & Fauht, G. Paleolimnological inferences based on Oligocene ostracods (Crustacea: Ostracoda) from Tremembé Formation. Southeast Brazil. An. Acad. Bras. Cienc. 87(3), 1531–1544. https://doi.org/10.1590/0001-3765201520140366 (2015).Article
PubMed
Google Scholar
41.Sylvestre, F., Servant-Vildary, S. & Roux, M. Diatom-based ionic concentration and salinity models from the south Bolivian Altiplano (15–23°S). J. Paleolimnol. 25, 279–295 (2001).ADS
Article
Google Scholar
42.Nunnery, J. A., Fritz, S. C., Baker, P. A. & Selenbien, W. Lake-level variability in Salar de Coipasa, Bolivia during the past ∼40,000 yr. Quat. Res. https://doi.org/10.1017/qua.2018.108 (2018).Article
Google Scholar
43.Herrera, C. et al. Investigaciones hidrogeológicas en la laguna Tuyajto perteneciente a la Reserva Nacional de los Flamencos (Atacama, Chile). Bol. Geol. Min. 130(4), 789–806. https://doi.org/10.21701/bolgeomin.130.4.011 (2019).Article
Google Scholar
44.Houston, J. Variability of precipitation in the Atacama Desert: its causes and hydrological impact. Q. J. R. Meteorol. Soc. 26(15), 2181–2198. https://doi.org/10.1002/joc.1359 (2006).Article
Google Scholar
45.Herrera, C. et al. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. Sci. Total Environ. 541, 303–318. https://doi.org/10.1016/j.scitotenv.2015.09.060 (2016).ADS
CAS
Article
PubMed
Google Scholar
46.Munk, L. A., Boutt, D. F., Hynek, S. A. & Moran, B. J. Hydrogeochemical fluxes and processes contributing to the formation of lithium-enriched brines in a hyper-arid continental basin. Chem. Geol. 493, 37–57. https://doi.org/10.1016/j.chemgeo.2018.05.013 (2018).ADS
CAS
Article
Google Scholar
47.Godfrey, L. & Álvarez-Amado, F. Volcanic and Saline Lithium Inputs to the Salar de Atacama. Minerals 10(2), 201. https://doi.org/10.3390/min10020201 (2020).CAS
Article
Google Scholar
48.Marazuela, M. A., Ayora, C., Vázquez-Suñé, E., Olivella, S. & García-Gil, A. Hydrogeological constraints for the genesis of the extreme lithium enrichment in the Salar de Atacama (NE Chile): A thermohaline flow modelling approach. Sci. Total Environ. 739, 139959. https://doi.org/10.1016/j.scitotenv.2020.139959 (2020).ADS
CAS
Article
PubMed
Google Scholar
49.Bobst, A. L. et al. A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeogr. Palaeoclimatol. Palaeoecol. 173(1–2), 21–42. https://doi.org/10.1016/S0031-0182(01)00308-X (2001).Article
Google Scholar
50.Baspineiro, C. F., Franco, J. & Flexer, V. Potential water recovery during lithium mining from high salinity brines. Sci. Total Environ. 720, 137523. https://doi.org/10.1016/j.scitotenv.2020.137523 (2020).ADS
CAS
Article
PubMed
Google Scholar
51.Marazuela, M. A., Vázquez-Suñé, E., Ayora, C. & García-Gil, A. Towards more sustainable brine extraction in salt flats: Learning from the Salar de Atacama. Sci. Total Environ. 703, 135605. https://doi.org/10.1016/j.scitotenv.2019.135605 (2020).ADS
CAS
Article
PubMed
Google Scholar
52.Babidge, S. Sustaining ignorance: the uncertainties of groundwater and its extraction in the Salar de Atacama, northern Chile. J. R. Anthropol. Inst. 25(1), 83–102. https://doi.org/10.1111/1467-9655.12965 (2018).Article
Google Scholar
53.Sonter, L. J., Dade, M. C., Watson, J. E. M. & Valenta, R. K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11, 4174. https://doi.org/10.1038/s41467-020-17928-5 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
54.Stahl, A. T., Fremier, A. K. & Cosens, B. A. Mapping legal authority for terrestrial conservation corridors along streams. Conserv. Biol. 34(4), 943–955. https://doi.org/10.1111/cobi.13484 (2020).Article
PubMed
PubMed Central
Google Scholar
55.García, M., Prieto, M. & Kalazich, F. The protection of the mountain ecosystems of the Southern Central Andes: tensions between Aymara herding practices and conservation policies. Eco. Mont. 13(1), 22–30 (2021).
Google Scholar
56.Vila, T. Geología de los depósitos salinos andinos, provincia de Antofagasta, Chile. Revista de Geología de Chile 2, 41–55 (1975).
Google Scholar
57.CIREN. Catastro Agrícola, estudio de metodología para la realización y actualización de catastro agrícola regional en base a la utilización de tecnología geoespacial 1–35 (CCIRA, Atacama, 2013).
Google Scholar
58.Villagrán, C., Kalin-Arroyo, M. T. & Marticorena, C. Efectos de la destización en la distribución de la flora andina de Chile. Rev. Chil. Hist. Nat. 56, 137–157 (1983).
Google Scholar
59.CONAF. Actualización Plan de Manejo Participativo Reserva Nacional Los Flamencos, Region de Antofagasta (2008).60.Núñez, L., Grosjean, M. & Cartajena, I. Ocupaciones humanas y paleoambientes en la Puna de Atacama (Universidad Católica del Norte-Taraxacum, Antofagasta, 2005).
Google Scholar
61.Los Ostracodos, M. P. VI. 4f. In El lago Titicaca, síntesis del conocimiento limnológico actual (eds Dejoux, C. & Iltis, A.) 345–352 (Orstom, New Caledonia, 1991).
Google Scholar
62.Karanovic, I. Recent Freshwater Ostracods of the World, Crustacea, Ostracoda, Podocopida (Springer , Berlin, 2012).
Google Scholar
63.Palacios-Fest, M. R., Cusminsky, G. C. & McGlue, M. M. Late Quaternary lacustrine ostracods (Ostracoda, Crustacea) and charophytes (Charophyta, Charales) from the Puna Plateau, Argentina. Micropaleontology 35, 66–78 (2016).
Google Scholar
64.Brandão, S. N., Angel, M. V., Karanovic, I., Perrier, V. & Meidla, T. World Ostracoda Database. http://www.marinespecies.org/ostracoda/aphia.php?p=taxdetails&id=1091 on 2020–01–15 (2018).65.Fatela, F. & Taborda, R. Confidence limits of species proportions in microfossil assemblages. Mar. Micropaleontol. 45(2), 169–174. https://doi.org/10.1016/S0377-8398(02)00021-X (2002).ADS
Article
Google Scholar
66.Díaz, C. P. & Maidana, N. I. Diatomeas de los Salares Atacama y Punta Negra, II Región-Chile (Centro de Ecología Aplicada , La Reina, 2005).
Google Scholar
67.Diatoms of North America. The source for diatom identification and ecology. https://diatoms.org (2019).68.Hammer, Ø. & Harper, D. Paleontological Data Analysis (Blackwell Publishing , Hoboken, 2006).
Google Scholar
69.Oksanen, J. et al. vegan: Community Ecology Package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. Version 2.5–1. URL https://CRAN.R-project.org/package=vegan (2019).70.McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1), 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).Article
Google Scholar More