1.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS
PubMed
Article
Google Scholar
2.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS
PubMed
Article
Google Scholar
3.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).CAS
PubMed
Article
Google Scholar
4.Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864 (2018).Article
Google Scholar
5.Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958 (2017).PubMed
Article
CAS
Google Scholar
6.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).CAS
PubMed
Article
Google Scholar
7.McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).PubMed
Article
Google Scholar
8.Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459 (2018).CAS
PubMed
Article
Google Scholar
9.Condit, R., Hubbell, S. P. & Foster, R. B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65, 419–439 (1995).Article
Google Scholar
10.McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS
PubMed
Article
Google Scholar
11.Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).CAS
PubMed
Article
Google Scholar
12.Forrester, D. I. Does individual-tree biomass growth increase continuously with tree size? For. Ecol. Manag. 481, 118717 (2021).Article
Google Scholar
13.Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).Article
Google Scholar
14.Condit, R., Pérez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. 4, 17 (2017).Article
Google Scholar
15.McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).Article
Google Scholar
16.Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).Article
Google Scholar
17.Parlato, B., Gora, E. M. & Yanoviak, S. P. Lightning damage facilitates beetle colonization of tropical trees. Ann. Entomol. Soc. Am. 113, 447–451 (2020).
Google Scholar
18.Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).Article
Google Scholar
19.Gale, N. & Hall, P. Factors determining the modes of tree death in three Bornean rain forests. J. Veg. Sci. 12, 337–348 (2001).Article
Google Scholar
20.Fontes, C. G., Chambers, J. Q. & Higuchi, N. Revealing the causes and temporal distribution of tree mortality in Central Amazonia. For. Ecol. Manag. 424, 177–183 (2018).Article
Google Scholar
21.de Toledo, J. J., Magnusson, W. E. & Castilho, C. V. Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia. J. Veg. Sci. 24, 651–663 (2013).Article
Google Scholar
22.Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).PubMed
Article
Google Scholar
23.Yanoviak, S. P. et al. Lightning is a major cause of large tropical tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).PubMed
Article
Google Scholar
24.Rifai, S. W. et al. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecol. Appl. 26, 2225–2237 (2016).PubMed
Article
Google Scholar
25.McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).Article
Google Scholar
26.Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).Article
Google Scholar
27.Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).CAS
PubMed
Article
Google Scholar
28.Roberts, J., Osvaldo, M. R. C. & De Aguiar, L. F. Stomatal and boundary-layer conductances in an Amazonian terra firme rain forest. J. Appl. Ecol. 27, 336–353 (1990).Article
Google Scholar
29.Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).CAS
PubMed
Article
Google Scholar
30.McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).31.Mencuccini, M. et al. Size-mediated ageing reduces vigour in trees. Ecol. Lett. 8, 1183–1190 (2005).CAS
PubMed
Article
Google Scholar
32.McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).PubMed
Article
Google Scholar
33.Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).PubMed
Article
Google Scholar
34.Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).PubMed
Article
Google Scholar
35.da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).PubMed
Article
Google Scholar
36.Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).CAS
PubMed
Article
Google Scholar
37.Bartholomew, D. C. et al. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant Cell Environ. 43, 2380–2393 (2020).CAS
PubMed
Article
Google Scholar
38.Fauset, S. et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).PubMed
Article
Google Scholar
39.Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).PubMed
Article
Google Scholar
40.van der Meer, P. J. & Bongers, F. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. J. Ecol. 84, 19–29 (1996).Article
Google Scholar
41.Parker, G. G. in Forest canopies (eds Lowman, M. D. & Nadkarni, N. M.) 73–106 (Academic Press, 1995).42.Terborgh, J., Huanca Nuñez, N., Feeley, K. & Beck, H. Gaps present a trade-off between dispersal and establishment that nourishes species diversity. Ecology 101, e02996 (2020).PubMed
Article
Google Scholar
43.Ribeiro, G. H. P. M. et al. Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species. For. Ecol. Manag. 380, 1–10 (2016).Article
Google Scholar
44.Peterson, C. J. et al. Critical wind speeds suggest wind could be an important disturbance agent in Amazonian forests. Forestry 92, 444–459 (2019).Article
Google Scholar
45.Uriarte, M., Thompson, J. & Zimmerman, J. K. Hurricane María tripled stem breaks and doubled tree mortality relative to other major storms. Nat. Commun. 10, 1362 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
46.Silvério, D. V. et al. Fire, fragmentation, and windstorms: a recipe for tropical forest degradation. J. Ecol. 107, 656–667 (2019).Article
Google Scholar
47.van Wilgen, B. W., Biggs, H. C., Mare, N. & O’Regan, S. P. A fire history of the savanna ecosystems in the Kruger National Park, South Africa, between 1941 and 1996. S. Afr. J. Sci. 96, 167–178 (2000).
Google Scholar
48.Tutin, C. E. G., White, L. J. T. & Mackanga-Missandzou, A. Lightning strike burns large forest tree in the Lope Reserve, Gabon. Glob. Ecol. Biogeog. Lett. 5, 36–41 (1996).Article
Google Scholar
49.Magnusson, W. E., Lima, A. P. & de Lima, O. Group lightning mortality of trees in a Neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).Article
Google Scholar
50.Anderson, J. A. R. Observations on climatic damage in peat swamp forest in Sarawak. Commonw. Forestry Rev. 43, 145–158 (1964).
Google Scholar
51.Gora, E. M., Burchfield, J. C., Muller-Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning-caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).Article
Google Scholar
52.Gora, E. M. et al. A mechanistic and empirically-supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).Article
Google Scholar
53.Alencar, A., Nepstad, D. & Diaz, M. C. V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact. 10, 1–17 (2009).Article
Google Scholar
54.Brando, P. M. et al. Droughts, wildfires, and forest carbon cycling: A pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).CAS
Article
Google Scholar
55.Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).CAS
PubMed
Article
Google Scholar
56.Kauffman, J. B. & Uhl, C. in Fire in the Tropical Biota. Ecological Studies (Analysis and Synthesis) Vol. 84 (ed. Goldammer, J. G.) (Springer, 1990).57.Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).Article
CAS
Google Scholar
58.Nepstad, D. C. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999).CAS
Article
Google Scholar
59.Ray, D., Nepstad, D. & Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664–1678 (2005).Article
Google Scholar
60.Brando, P. M. et al. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob. Change Biol. 18, 630–641 (2012).Article
Google Scholar
61.Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).Article
Google Scholar
62.Liebhold, A. M., MacDonald, W. L., Bergdahl, D. & Mastro, V. C. Invasion by Exotic Forest Pests: A Threat to Forest Ecosystems Forest Science Monographs 30 (Society of American Foresters, 1995).63.McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).64.Gilbert, G. S. & Hubbell, S. P. Plant diseases and the conservation of tropical forests. BioScience 46, 98–106 (1996).Article
Google Scholar
65.Liu, X. et al. Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos 129, 457–465 (2020).Article
Google Scholar
66.Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124 (2019).CAS
PubMed
Article
Google Scholar
67.Bell, T., Freckleton, R. P. & Lewis, O. T. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9, 569–574 (2006).PubMed
Article
Google Scholar
68.Peters, H. A. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol. Lett. 6, 757–765 (2003).Article
Google Scholar
69.Gilbert, G. S., Foster, R. B. & Hubbell, S. P. Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98, 100–108 (1994).CAS
PubMed
Article
Google Scholar
70.Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).Article
Google Scholar
71.Suresh, H. S., Dattaraja, H. S. & Sukumar, R. Relationship between annual rainfall and tree mortality in a tropical dry forest: results of a 19-year study at Mudumalai, southern India. For. Ecol. Manag. 259, 762–769 (2010).Article
Google Scholar
72.Forrister, D. L., Endara, M.-J., Younkin, G. C., Coley, P. D. & Kursar, T. A. Herbivores as drivers of negative density dependence in tropical forest saplings. Science 363, 1213 (2019).CAS
PubMed
Article
Google Scholar
73.Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).Article
Google Scholar
74.Wing, L. D. & Buss, I. O. Elephants and forests. Wildl. Monogr. 19, 3–92 (1970).75.Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2019).CAS
Article
Google Scholar
76.Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).PubMed
Article
Google Scholar
77.Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 7, 1075–1084 (2018).Article
Google Scholar
78.Montgomery, R. A. & Chazdon, R. L. Forest structure, canopy architecture, and light transmittance in old-growth and secondgrowth tropical rain forests. Ecology 82, 2707–2718 (2001).Article
Google Scholar
79.Kobe, R. K. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80, 226–233 (1997).Article
Google Scholar
80.Waring, B. G. & Powers, J. S. Overlooking what is underground: root:shoot ratios and coarse root allometric equations for tropical forests. For. Ecol. Manag. 385, 10–15 (2017).Article
Google Scholar
81.Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS
PubMed
Article
Google Scholar
82.Casper, B. B. & Jackson, R. B. Plant competition underground. Annu. Rev. Ecol. Syst. 28, 545–570 (1997).Article
Google Scholar
83.Coomes, D. A., Duncan, R. P., Allen, R. B. & Truscott, J. Disturbances prevent stem size–density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980–989 (2003).Article
Google Scholar
84.Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).Article
Google Scholar
85.Rozendaal, D. M. A. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).PubMed
PubMed Central
Article
Google Scholar
86.Rodríguez-Ronderos, M. E., Bohrer, G., Sanchez-Azofeifa, A., Powers, J. S. & Schnitzer, S. A. Contribution of lianas to plant area index and canopy structure in a Panamanian forest. Ecology 97, 3271–3277 (2016).PubMed
Article
Google Scholar
87.Schnitzer, S. A., Kuzee, M. E. & Bongers, F. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J. Ecol. 93, 1115–1125 (2005).Article
Google Scholar
88.Putz, F. E. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65, 1713–1724 (1984).Article
Google Scholar
89.van der Heijden, G. M. F., Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl Acad. Sci. USA 112, 13267–13271 (2015).PubMed
Article
CAS
Google Scholar
90.Visser, M. D. et al. Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. J. Ecol. 106, 781–794 (2018).CAS
Article
Google Scholar
91.Schnitzer, S. A. & Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 17, 223–230 (2002).Article
Google Scholar
92.García León, M. M., Martínez Izquierdo, L., Mello, F. N. A., Powers, J. S. & Schnitzer, S. A. Lianas reduce community-level canopy tree reproduction in a Panamanian forest. J. Ecol. 106, 737–745 (2018).Article
CAS
Google Scholar
93.Reis, S. M. et al. Causes and consequences of liana infestation in Southern Amazonia. J. Ecol. 108, 2184–2197 (2020).Article
Google Scholar
94.Sheil, D., Salim, A., Chave, J., Vanclay, J. & Hawthorne, W. D. Illumination–size relationships of 109 coexisting tropical forest tree species. J. Ecol. 94, 494–507 (2006).Article
Google Scholar
95.Myers, J. A. & Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95, 383–395 (2007).CAS
Article
Google Scholar
96.Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).CAS
PubMed
Article
Google Scholar
97.Enquist, B. J., West, G. B., Charnov, E. L. & Brown, J. H. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907–911 (1999).CAS
Article
Google Scholar
98.Hubau, W. et al. The persistence of carbon in the African forest understory. Nat. Plants 5, 133–140 (2019).CAS
PubMed
Article
Google Scholar
99.Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 391, 135–136 (1998).CAS
Article
Google Scholar
100.Poorter, L. & Kitajima, K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88, 1000–1011 (2007).PubMed
Article
Google Scholar
101.Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).CAS
PubMed
Article
Google Scholar
102.Arellano, G., Medina, N. G., Tan, S., Mohamad, M. & Davies, S. J. Crown damage and the mortality of tropical trees. New Phytol. 221, 169–179 (2018).PubMed
Article
Google Scholar
103.Zhang, Y.-J. et al. Size‐dependent mortality in a Neotropical savanna tree: the role of height‐related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ. 32, 1456–1466 (2009).CAS
PubMed
Article
Google Scholar
104.Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).CAS
Article
Google Scholar
105.Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).CAS
PubMed
Article
Google Scholar
106.Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).Article
Google Scholar
107.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2014).108.Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 12, 104004 (2017).Article
Google Scholar
109.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).CAS
PubMed
Article
Google Scholar
110.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS
PubMed
Article
Google Scholar
111.Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article
Google Scholar
112.Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS
PubMed
Article
Google Scholar
113.Banin, L. et al. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 21, 1179–1190 (2012).Article
Google Scholar
114.Brando, P. et al. Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest. Oecologia 150, 181–189 (2006).PubMed
Article
Google Scholar
115.Lugo, A. E. & Scatena, F. N. Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica 28, 585–599 (1996).Article
Google Scholar
116.Feeley, K. J., Bravo-Avila., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Change 10, 965–970 (2020).CAS
Article
Google Scholar
117.Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth–lifespan trade-offs. Nat. Commun. 11, 4241 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
118.Bugmann, H. et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10, e02616 (2019).Article
Google Scholar
119.Arellano, G., Zuleta, D. & Davies, S. J. Tree death and damage: A standardized protocol for frequent surveys in tropical forests. J. Veg. Sci. 32, e12981 (2021).Article
Google Scholar
120.Chan, K.-J., Phillips, O. L., Monteagudo, A., Torres-Lezama, A. & Vásquez Martínez, R. How do trees die? Mode of death in northern Amazonia. J. Veg. Sci. 20, 260–268 (2009).Article
Google Scholar More