Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic
1.Gurarie, E., Andrews, R. D. & Laidre, K. L. A novel method for identifying behavioural changes in animal movement data. Ecol. Lett. 12, 395–408 (2009).PubMed
Article
Google Scholar
2.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS
PubMed
Article
Google Scholar
3.Dulau, V. et al. Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again!. Mov. Ecol. 5, 11 (2017).PubMed
PubMed Central
Article
Google Scholar
4.Glaudas, X. & Alexander, G. J. Food supplementation affects the foraging ecology of a low-energy, ambush-foraging snake. Behav. Ecol. Sociobiol. 71, 5 (2017).Article
Google Scholar
5.Moorter, B. V., Rolandsen, C. M., Basille, M. & Gaillard, J.-M. Movement is the glue connecting home ranges and habitat selection. J. Anim. Ecol. 85, 21–31 (2016).PubMed
Article
Google Scholar
6.Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).PubMed
Article
Google Scholar
7.Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).PubMed
Article
Google Scholar
8.Schneider, A. et al. A new urban landscape in East-Southeast Asia, 2000–2010. Environ. Res. Lett. 10, 034002 (2015).ADS
Article
Google Scholar
9.Böhm, M. et al. Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size—extinction risk correlates in squamate reptiles. Glob. Ecol. Biogeogr. 25, 391–405 (2016).Article
Google Scholar
10.Ditchkoff, S. S., Saalfeld, S. T. & Gibson, C. J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 9, 5–12 (2006).Article
Google Scholar
11.Shamoon, H., Maor, R., Saltz, D. & Dayan, T. Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biol. Conserv. 226, 32–41 (2018).Article
Google Scholar
12.Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: the ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Large Snakes Mosaic Rural Landsc. Ecol. Carpet Pythons Morelia Spilota Serpentes Pythonidae Coast. East. Aust. 76, 113–122 (1996).13.Charles, K. E. & Linklater, W. L. Dietary breadth as a predictor of potential native avian–human conflict in urban landscapes. Wildl. Res. 40, 482 (2013).Article
Google Scholar
14.Soulsbury, C. D. & White, P. C. L. Human–wildlife interactions in urban areas: a review of conflicts, benefits and opportunities. Wildl. Res. 42, 541 (2015).Article
Google Scholar
15.Gibbon, J. W. et al. The global decline of reptiles Déjà Vu Amphibians. BioScience 50, 653 (2000).Article
Google Scholar
16.Todd, B., Willson, J. & Gibbons, J. The Global Status of Reptiles and Causes of Their Decline. in Ecotoxicology of Amphibians and Reptiles, Second Edition (eds. Sparling, D., Linder, G., Bishop, C. & Krest, S.) 47–67 (CRC Press, 2010). https://doi.org/10.1201/EBK1420064162-c3.17.Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article
Google Scholar
18.Barker, D. G. & Barker, T. M. The distribution of the burmese python, python molurus bivittatus. Bull. Chic. Herpetol. Soc. 43, 33–38 (2008).
Google Scholar
19.Rahman, S. C., Jenkins, C. L., Trageser, S. J. & Rashid, S. M. A. Radio-telemetry study of Burmese python (Python molurus bivittatus) and elongated tortoise (Indotestudo elongata) in Lawachara National Park, Bangladesh: a prelimiary observation. Khan MAR Ali MS Feeroz MM Naser MN Ed. Festschr. 50th Anniversary IUCN Red List Threat. Species 54–62 (2014).20.Bhupathy, S., Ramesh, C. & Bahuguna, A. Feeding habits of Indian rock pythons in Keoladeo National Park, Bharatpur India. Herpetol. J. 24, 59–64 (2014).
Google Scholar
21.Shine, R., Harlow, P. S., Keogh, J. S. & Boeadi. The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Funct. Ecol. 12, 248–258 (1998).22.Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109, 2418–2422 (2012).ADS
CAS
PubMed
Article
Google Scholar
23.Dove, C. J., Snow, R. W., Rochford, M. R. & Mazzotti, F. J. Birds Consumed by the Invasive Burmese Python (Python molurus bivittatus) in Everglades National Park, Florida, USA. Wilson J. Ornithol. 123, 126–131 (2011).Article
Google Scholar
24.Stuart, B. et al. Python bivittatus (errata version published in 2019). https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T193451A151341916.en. (2019).25.Goodyear, N. C. Python molurus bivittatus (Burmese python) Movements. Herpetol. Rev. 25, 71–72 (1994).
Google Scholar
26.You, C.-W. et al. Return of the pythons: first formal records, with a special note on recovery of the Burmese python in the demilitarized Kinmen islands. Zool. Stud. 52, 8 (2013).Article
Google Scholar
27.Miranda, E. B. P., Ribeiro, R. P. & Strüssmann, C. The ecology of human-anaconda conflict: a study using internet videos. Trop. Conserv. Sci. 9, 43–77 (2016).Article
Google Scholar
28.Nóbrega Alves, R. R. et al. A zoological catalogue of hunted reptiles in the semiarid region of Brazil. J. Ethnobiol. Ethnomed. 8, 27 (2012).PubMed
PubMed Central
Article
Google Scholar
29.Orzechowski, S. C. M., Frederick, P. C., Dorazio, R. M. & Hunter, M. E. Environmental DNA sampling reveals high occupancy rates of invasive Burmese pythons at wading bird breeding aggregations in the central Everglades. PLoS ONE 14, e0213943 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Marshall, B. M. et al. No room to roam: King Cobras reduce movement in agriculture. Mov. Ecol. 8, 33 (2020).PubMed
PubMed Central
Article
Google Scholar
31.Reed, R. N. & Rodda, G. H. Giant constrictors: biological and management profiles and an establishment risk assessment for nine large species of pythons, anacondas, and the boa constrictor: U.S. Geological Survey Open-File Report. (2009).32.Reinert, H. K. & Cundall, D. An Improved Surgical Implantation Method for Radio-Tracking Snakes. Copeia 1982, 702–705 (1982).Article
Google Scholar
33.R Core Team. R: a language and environment for statistical computing.34.R Studio Team. RStudio: integrated development environment for R.35.Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
36.Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian Bridge Movement Models. Mov. Ecol. 8, 43 (2020).PubMed
PubMed Central
Article
Google Scholar
37.Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).PubMed
Article
Google Scholar
38.Kranstauber, B., Smolla, M. & Scharf, A. K. move: Visualizing and Analyzing Animal Track Data. (2020).39.Calenge, C. The package adehabitat for the R software: tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 1035 (2006).Article
Google Scholar
40.Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). (2020).41.Bracis, C., Bildstein, K. L. & Mueller, T. Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography https://doi.org/10.1111/ecog.03618 (2018).Article
Google Scholar
42.Berger-Tal, O. & Bar-David, S. Recursive movement patterns: review and synthesis across species. Ecosphere 6, art149 (2015).43.Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630 (2016).Article
Google Scholar
44.Signer, J., Fieberg, J. & Avgar, T. Animal movement tools ( amt ): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed
PubMed Central
Article
Google Scholar
45.Marshall, B. M. et al. Data set and code supporting Marshall et al. 2020. No room to roam: King Cobras reduce movement in agriculture. (Version 1.1) . (2020).46.Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).PubMed
PubMed Central
Article
Google Scholar
47.Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).PubMed
Article
Google Scholar
48.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).49.Hart, K. M. et al. Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA. Anim. Biotelemetry 3, 8 (2015).Article
Google Scholar
50.Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS
CAS
PubMed
Article
Google Scholar
51.Rettie, W. J. & Messier, F. Range use and movement rates of woodland caribou in Saskatchewan. Can. J. Zool. 79, 1933–1940 (2001).Article
Google Scholar
52.Doherty, T. S., Fist, C. N. & Driscoll, D. A. Animal movement varies with resource availability, landscape configuration and body size: a conceptual model and empirical example. Landsc. Ecol. 34, 603–614 (2019).Article
Google Scholar
53.Young, L. I., Dickman, C. R., Addison, J. & Pavey, C. R. Spatial ecology and shelter resources of a threatened desert rodent (Pseudomys australis) in refuge habitat. J. Mammal. 98, 1604–1614 (2017).Article
Google Scholar
54.Ross, C. T. & Winterhalder, B. Sit-and-wait versus active-search hunting: A behavioral ecological model of optimal search mode. J. Theor. Biol. 387, 76–87 (2015).MathSciNet
PubMed
MATH
Article
Google Scholar
55.Krysko, K., Nifong, J., Mazzotti, F., Snow, R. & Enge, K. Reproduction of the Burmese python (Python molurus bivittatus) in southern Florida. Appl. Herpetol. 5, 93–95 (2008).Article
Google Scholar
56.Smith, B. J. et al. Betrayal: radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).Article
Google Scholar
57.Hunter, M. E. et al. Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons. PLoS ONE 10, e0121655 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
58.Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).ADS
Article
Google Scholar
59.Fujioka, M., Don Lee, S. & Kurechi, M. Bird use of Rice Fields in Korea and Japan. Waterbirds 33, 8 (2010).Article
Google Scholar
60.Marshall, B. M. et al. Space fit for a king: spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphib.-Reptil. 40, 163–178 (2019).Article
Google Scholar
61.Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs. Biol. Conserv. 157, 309–316 (2013).Article
Google Scholar
62.Crane, M. et al. A report of a Malayan Krait Snake Bungarus Candidus Mortality as By-Catch in a Local Fish Trap from Nakhon Ratchasima Thailand. Trop. Conserv. Sci. 9, 313–320 (2016).Article
Google Scholar
63.Marshall, B. M. et al. Hits close to home: repeated persecution of King Cobras ( Ophiophagus hannah ) in Northeastern Thailand. Trop. Conserv. Sci. 11, 194008291881840 (2018).Article
Google Scholar
64.Webster, M. M. & Rutz, C. How strange are your study animals?. Nature 582, 337–340 (2020).ADS
CAS
PubMed
Article
Google Scholar
65.Mutascio, H. E., Pittman, S. E., Zollner, P. A. & D’Acunto, L. E. Modeling relative habitat suitability of southern Florida for invasive Burmese pythons (Python molurus bivittatus). Landsc. Ecol. 33, 257–274 (2018).Article
Google Scholar
66.Steen, D. A. Snakes in the grass: secretive natural histories defy both conventional and progressive statistics. Herpetol. Conserv. Biol. 5, 183 (2010).
Google Scholar More