1.Collatz, G. J., Berry, J. A. & Clark, J. S. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114, 441–454 (1998).ADS
PubMed
Article
PubMed Central
Google Scholar
2.von Fischer, J. C., Tieszen, L. L. & Schimel, D. S. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Glob. Chang. Biol. 14, 1141–1155 (2008).ADS
Article
Google Scholar
3.Sage, R. F., Wedin, D. A. & Li, M. The biogeography of C4 photosynthesis: patterns and controlling factors. in C4 plant biology (eds Rowan F. Sage & Russel K. Monson) 313–373 (Academic Press, 1999).4.Kellogg, E. A. Evolutionary history of the grasses. Plant Physiol. 125, 1198–1205 (2001).CAS
PubMed
PubMed Central
Article
Google Scholar
5.Sage, R. F. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and hall of fame. J Exp. Bot. 68, 11–28 (2016).
Google Scholar
6.Sage, R. F., Sage, T. L. & Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Ann. Rev. Plant. Biol. 63, 19–47 (2012).CAS
Article
Google Scholar
7.Sayed, O. H. Crassulacean Acid Metabolism 1975–2000, a Check List. Photosynthetica 39, 339–352 (2001).CAS
Article
Google Scholar
8.Andrews, J. T. & Lorimer, G. H. Rubisco: structure, mechanisms, and prospects for improvement. in The Biochemistry of Plants: A Comprehensive Treatise Vol. 10 (eds MD Haleh & NK Boardman) 132–207 (Academic Press, 1987).9.Ogren, W. L. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant. Physiol. 35, 415–442 (1984).CAS
Article
Google Scholar
10.Walker, B. J., VanLoocke, A., Bernacchi, C. J. & Ort, D. R. The costs of photorespiration to food production now and in the future. Annu. Rev. Plant. Biol. 67, 107–129 (2016).CAS
PubMed
Article
Google Scholar
11.Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).CAS
PubMed
Article
Google Scholar
12.Winter, K. Ecophysiology of constitutive and facultative CAM photosynthesis. J Exp. Bot. 70, 6495–6508 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Edwards, E. J. & Still, C. J. Climate, phylogeny and the ecological distribution of C4 grasses. Ecol. Lett. 11, 266–276 (2008).PubMed
Article
PubMed Central
Google Scholar
14.Hasegawa, S. et al. Elevated CO2 concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus woodland. J Ecol. 106, 1483–1494 (2018).CAS
Article
Google Scholar
15.Wittmer, M. H. O. M., Auerswald, K., Bai, Y., Schaufele, R. & Schnyder, H. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Glob. Chang. Biol. 16, 605–616 (2010).ADS
Article
Google Scholar
16.Winslow, J. C., Hunt, E. R. Jr & Piper, S. C. The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research. Ecol. Model. 163, 153–173 (2003).CAS
Article
Google Scholar
17.Haveles, A. W., Fox, D. L. & Fox-Dobbs, K. Carbon isoscapes of rodent diets in the Great Plains USA deviate from regional gradients in C4 grass abundance due to a preference for C3 plant resources. Palaeogeogr. Palaeoclimatol. Palaeoecol. 527, 53–66 (2019).Article
Google Scholar
18.Haddad, N. M. et al. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039 (2009).PubMed
Article
PubMed Central
Google Scholar
19.Warne, R. W., Pershall, A. D. & Wolf, B. O. Linking precipitation and C3–C4 plant production to resource dynamics in higher‐trophic‐level consumers. Ecology 91, 1628–1638 (2010).PubMed
Article
PubMed Central
Google Scholar
20.Griffith, D. M. et al. Biogeographically distinct controls on C3 and C4 grass distributions: merging community and physiological ecology. Glob. Ecol. Biogeogr. 24, 304–313 (2015).Article
Google Scholar
21.Still, C. J., Cotton, J. M. & Griffith, D. M. Assessing earth system model predictions of C4 grass cover in North America: From the glacial era to the end of this century. Glob. Ecol. Biogeogr. 28, 145–157 (2019).Article
Google Scholar
22.Griffith, D. M., Cotton, J. M., Powell, R. L., Sheldon, N. D. & Still, C. J. Multi-century stasis in C3 and C4 grass distributions across the contiguous United States since the industrial revolution. J Biogeogr. 44, 2564–2574 (2017).Article
Google Scholar
23.Hattersley, P. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57, 113–128 (1983).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
24.Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS
PubMed
Article
PubMed Central
Google Scholar
25.Sage, R. F., Sage, T. L., Pearcy, R. W. & Borsch, T. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. Am J Bot 94, 1992–2003 (2007).PubMed
Article
Google Scholar
26.Murphy, B. P. & Bowman, D. M. Seasonal water availability predicts the relative abundance of C3 and C4 grasses in Australia. Glob. Ecol. Biogeogr. 16, 160–169 (2007).Article
Google Scholar
27.White, A. et al. AUSPLOTS rangelands survey protocols manual. (The University of Adelaide Press, 2012).28.Sparrow, B. D. et al. A vegetation and soil survey method for surveillance monitoring of rangeland environments. Front. Ecol. Evol. 8 (2020).29.Orians, G. H. & Milewski, A. V. Ecology of Australia: the effects of nutrient‐poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).PubMed
Article
Google Scholar
30.Sparrow, B. et al. Our capacity to tell an Australian ecological story. in Biodiversity and Environmental Change: Monitoring, Challenges and Direction 51–84 (CSIRO Publishing Collingwood, Victoria, 2014).31.Thackway, R. & Cresswell, I. An Interim Biogeographic Regionalisation for Australia: a framework for establishing the national system of reserves, Version 4.0. (Australian Nature Conservation Agency, Canberra, 1995).32.Tokmakoff, A., Sparrow, B., Turner, D. & Lowe, A. AusPlots Rangelands field data collection and publication: Infrastructure for ecological monitoring. Future Gener. Comp. Sy. 56, 537–549 (2016).Article
Google Scholar
33.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).34.Guerin, G. et al. ausplotsR: TERN AusPlots analysis package. https://cran.r-project.org/web/packages/ausplotsR/index.html (2020).35.Munroe, S. et al. ausplotsR: An R package for rapid extraction and analysis of vegetation and soil data collected by Australia’s Terrestrial Ecosystem Research Network. Preprint at https://ecoevorxiv.org/25phx/ (2020).36.Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441–446 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Watson, L., & Dallwitz, M. J. The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval. http://www1.biologie.uni-hamburg.de/b-online/delta/angio/index.htm (1992).38.Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. PNAS 107, 19691–19695 (2010).ADS
CAS
PubMed
Article
Google Scholar
39.O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).Article
Google Scholar
40.Winter, K., Holtum, J. A. M. & Smith, J. A. C. Crassulacean acid metabolism: a continuous or discrete trait? New Phytol. 208, 73–78 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Winter, K. & Holtum, J. A. How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiol. 129, 1843–1851 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
42.Cernusak, L. A. et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200, 950–965 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Winter, K. & Holtum, J. A. M. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp. Bot. 65, 3425–3441 (2014).PubMed
Article
PubMed Central
Google Scholar
44.Bloom, A. J. & Troughton, J. H. High productivity and photosynthetic flexibility in a CAM plant. Oecologia 38, 35–43 (1979).ADS
PubMed
Article
PubMed Central
Google Scholar
45.Hancock, L. P., Holtum, J. A. M. & Edwards, E. J. The evolution of CAM photosynthesis in Australian Calandrinia reveals lability in C3+ CAM phenotypes and a possible constraint to the evolution of strong CAM. Integr. Comp. Biol. 59, 517–534 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
46.Guralnick, L. J., Cline, A., Smith, M. & Sage, R. F. Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae. J Exp. Bot. 59, 1735–1742 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Munroe, S. et al. The Photosynthetic Pathways of Plant Species surveyed in TERN Ecosystem Surveillance Plots. Terrestrial Ecosystem Research Network (TERN) https://doi.org/10.25901/k61f-yz90 (2020).48.Sage, R. F. The evolution of C4 photosynthesis. New Phytol. 161, 341–370 (2004).CAS
Article
Google Scholar
49.Keeley, J. E. & Rundel, P. W. Evolution of CAM and C4 carbon-concentrating mechanisms. Int. J Plant Sci. 164, S55–S77 (2003).CAS
Article
Google Scholar
50.Wang, R. & Ma, L. Climate-driven C4 plant distributions in China: divergence in C4 taxa. Sci. Rep. 6, 27977 (2016).ADS
PubMed
PubMed Central
Article
Google Scholar
51.Stowe, L. G. & Teeri, J. A. The geographic distribution of C4 species of the Dicotyledonae in relation to climate. Am. Nat. 112, 609–623 (1978).Article
Google Scholar
52.Pyankov, V. I., Gunin, P. D., Tsoog, S. & Black, C. C. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. 123, 15-31 (2000).53.Guralnick, L. J., Edwards, G., Ku, M. S., Hockema, B. & Franceschi, V. Photosynthetic and anatomical characteristics in the C4–crassulacean acid metabolism-cycling plant Portulaca grandiflora. Funct. Plant Biol. 29, 763–773 (2002).CAS
PubMed
Article
Google Scholar
54.Winter, K., Sage, R. F., Edwards, E. J., Virgo, A. & Holtum, J. A. M. Facultative crassulacean acid metabolism in a C3–C4 intermediate. J Exp. Bot. 70, 6571–6579 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Coplen, T. B. et al. New guidelines for δ13C measurements. Anal. Chem. 78, 2439–2441 (2006).CAS
PubMed
Article
Google Scholar
56.Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).CAS
PubMed
Article
Google Scholar
57.Ke, L., Lin, Z. & Guoxing, Z. Study of normalization method of isotopic compositions to isotope reference scales. J Chem. Pharmaceut. Res 6, 1 (2014).
Google Scholar
58.Harwood, T. et al. 9s climatology for continental Australia 1976–2005: Summary variables with elevation and radiative adjustment, version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/5afa9f7d1a552 (2016).59.Viscarra Rossel, R. et al. Soil and Landscape Grid National Soil Attribute Maps – pH – CaCl2 (3” resolution), version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/546F17EC6AB6E (2014).60.Besnard, G. et al. Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Mol. Biol. Evol. 26, 1909–1919 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Bohley, K. et al. Phylogeny of Sesuvioideae (Aizoaceae)–Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspect. Plant Ecol. Evol. Syst. 17, 116–130 (2015).Article
Google Scholar
62.Bruhl, J. J. & Wilson, K. L. Towards a comprehensive survey of C3 and C4 photosynthetic pathways in Cyperaceae. Aliso 23, 99–148 (2007).Article
Google Scholar
63.Caddy-Retalic, S. Quantifying responses of ecological communities to bioclimatic gradients PhD thesis, University of Adelaide, School of Biological Sciences (2017).64.Carolin, R., Jacobs, S. & Vesk, M. The chlorenchyma of some members of the Salicornieae (Chenopodiaceae). Aust. J. Bot. 30, 387–392 (1982).Article
Google Scholar
65.Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. World Grass Species: Synonymy. http://www.kew.org/data/grasses-syn.html (2002).66.D’andrea, R. M., Andreo, C. S. & Lara, M. V. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid‐like metabolism induction and reversal upon re‐watering. Physiol. Plant. 152, 414–430 (2014).PubMed
Article
CAS
PubMed Central
Google Scholar
67.Ehleringer, J. R. & Monson, R. K. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Evol. Syst. 24, 411–439 (1993).Article
Google Scholar
68.Feodorova, T. A., Voznesenskaya, E. V., Edwards, G. E. & Roalson, E. H. Biogeographic patterns of diversification and the origins of C4 in Cleome (Cleomaceae). Syst. Bot. 35, 811–826 (2010).Article
Google Scholar
69.Guillaume, K., Huard, M., Gignoux, J., Mariotti, A. & Abbadie, L. Does the timing of litter inputs determine natural abundance of 13C in soil organic matter? Insights from an African tiger bush ecosystem. Oecologia 127, 295–304 (2001).ADS
CAS
PubMed
Article
Google Scholar
70.Herppich, W. B. & Herppich, M. Ecophysiological investigations on plants of the genus Plectranthus (Fam. Lamiaceae) native to Yemen and southern Africa. Flora 191, 401–408 (1996).Article
Google Scholar
71.Holtum, J. A. et al. Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? Curr. Opin. Plant Biol. 31, 109–117 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
72.Holtum, J. A., Hancock, L. P., Edwards, E. J. & Winter, K. Facultative CAM photosynthesis (crassulacean acid metabolism) in four species of Calandrinia, ephemeral succulents of arid Australia. Photosynth. Res. 134, 17–25 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
73.Horn, J. W. et al. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68, 3485–3504 (2014).CAS
Article
Google Scholar
74.Kadereit, G., Borsch, T., Weising, K. & Freitag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164, 959–986 (2003).CAS
Article
Google Scholar
75.Koch, K. E. & Kennedy, R. A. Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L under natural environmental conditions. Plant. Physiol. 69, 757–761 (1982).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Madhusudana Rao, I., Swamy, P. M. & Das, V. S. R. Some characteristics of crassulacean acid metabolism in five nonsucculent scrub species under natural semiarid conditions. Zeitschrift für Pflanzenphysiologie 94, 201–210 (1979).Article
Google Scholar
77.Metcalfe, C. R. Anatomy of the monocotyledons. 1. Gramineae. (Clarendon Press, 1960).78.Pate, J. S., Unkovich, M. J., Erskine, P. D. & Stewart, G. R. Australian mulga ecosystems –13C and 15N natural abundances of biota components and their ecophysiological significance. Plant Cell Environ. 21, 1231–1242 (1998).CAS
Article
Google Scholar
79.Schmidt, S. & Stewart, G. δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569–577 (2003).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
80.Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
81.Thiede, J. & Eggli, U. Crassulaceae. in Flowering Plants· Eudicots 83–118 (Springer, 2007).82.Ting, I. P. Photosynthesis of arid and subtropical succulent plants. Aliso 12, 387–406 (1989).Article
Google Scholar
83.Watson, L., & Dallwitz, M. J. The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. https://www.delta-intkey.com/grass/intro.htm (1992).84.Winter, K., Garcia, M., Virgo, A. & Holtum, J. A. Operating at the very low end of the crassulacean acid metabolism spectrum: Sesuvium portulacastrum (Aizoaceae). J. Exp. Bot. 70, 6561–6570 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar More