More stories

  • in

    Dynamic bacterial community response to Akashiwo sanguinea (Dinophyceae) bloom in indoor marine microcosms

    1.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 
    Article 

    Google Scholar 
    2.Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Andersson, A. F., Riemann, L. & Bertilsson, S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 4, 171–181 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Chen, T., Liu, Y., Song, S. & Li, C. Characterization of the parasitic dinoflagellate Amoebophrya sp. infecting akashiwo sanguinea in coastal waters of China. J. Eukaryotic Microbiol. 65, 448–457 (2018).Article 

    Google Scholar 
    6.Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Yang, C. et al. Bacterial community dynamics during a bloom caused by Akashiwo sanguinea in the Xiamen sea area, China. Harmful algae 20, 132–141 (2012).Article 

    Google Scholar 
    8.Yang, C. et al. A comprehensive insight into functional profiles of free-living microbial community responses to a toxic Akashiwo sanguinea bloom. Sci. Rep. 6, 34645 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Kang, et al. Zooming on dynamics of marine microbial communities in the phycosphere of Akashiwo sanguinea (Dinophyta) blooms. Mol. Ecol. 30, 207–221 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kim, H. J. et al. Effects of temperature and nutrients on changes in genetic diversity of bacterioplankton communities in a semi-closed bay, South Korea. Mar. Pollut. Bull. 106, 139–148 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Flaviani, F. et al. A pelagic microbiome (viruses to protists) from a small cup of seawater. Viruses 9, 47 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Jung, S. W. et al. Can the algicidal material Ca-aminoclay be harmful when applied to a natural ecosystem? An assessment using microcosms. J. Hazard. Mater. 298, 178–187 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Jung, S. W., Noh, S. Y., Kang, D. & Lee, T.-K. Comparison of bacterioplankton communities between before and after inoculation with an algicidal material, Ca-aminoclay, to mitigate Cochlodinium polykrikoides blooms: assessment using microcosm experiments. J. Appl. Phycol. 29, 1343–1354 (2017).CAS 
    Article 

    Google Scholar 
    14.Jung, S. W., Kim, B. H., Katano, T., Kong, D. S. & Han, M. S. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii. J. Appl. Microbiol. 105, 186–195 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Jung, S. W. et al. Testing addition of Pseudomonas fluorescens HYK0210-SK09 to mitigate blooms of the diatom Stephanodiscus hantzschii in small- and large-scale mesocosms. J. Appl. Phycol. 22, 409–419 (2010).Article 

    Google Scholar 
    16.Anderson, D. M. Turning back the harmful red tide. Nature 388, 513–514 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Du, X., Peterson, W., McCulloch, A. & Liu, G. An unusual bloom of the dinoflagellate Akashiwo sanguinea off the central Oregon, USA, coast in autumn 2009. Harmful Algae 10, 784–793 (2011).Article 

    Google Scholar 
    18.Lee, C.-K., Lee, O.-H. & Lee, S.-G. Impacts of temperature, salinity and irradiance on the growth of ten harmful algal bloom-forming microalgae isolated in Korean coastal waters. The Sea (J Korean Soc Oceanogr) 10, 79–91 (2005).
    Google Scholar 
    19.Luo, Z. et al. Cryptic diversity within the harmful dinoflagellate Akashiwo sanguinea in coastal Chinese waters is related to differentiated ecological niches. Harmful Algae 66, 88–96 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Chen, T. et al. The effects of major environmental factors and nutrient limitation on growth and encystment of planktonic dinoflagellate Akashiwo sanguinea. Harmful Algae 46, 62–70 (2015).Article 

    Google Scholar 
    21.Matsubara, T. et al. Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea. J. Exp. Mar. Biol. Ecol. 342, 226–230 (2007).Article 

    Google Scholar 
    22.Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Riemann, L., Steward, G. F. & Azam, F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol. 66, 578–587 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Jones, K. L., Mikulski, C. M., Barnhorst, A. & Doucette, G. J. Comparative analysis of bacterioplankton assemblages from Karenia brevis bloom and nonbloom water on the west Florida shelf (Gulf of Mexico, USA) using 16S rRNA gene clone libraries. FEMS Microbiol. Ecol. 73, 468–485 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Theroux, S., Huang, Y. & Amaral-Zettler, L. Comparative molecular microbial ecology of the spring haptophyte bloom in a Greenland arctic oligosaline lake. Front. Microbiol. 3, 415 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Amin, S. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51, 139–144 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Tan, S. et al. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Cruz-López, R., Maske, H., Yarimizu, K. & Holland, N. A. The B-vitamin mutualism between the dinoflagellate Lingulodinium polyedrum and the bacterium Dinoroseobacter shibae. Front. Mar. Sci. 5, 274 (2018).Article 

    Google Scholar 
    31.Park, B. S., Joo, J.-H., Baek, K.-D. & Han, M.-S. A mutualistic interaction between the bacterium Pseudomonas asplenii and the harmful algal species Chattonella marina (Raphidophyceae). Harmful Algae 56, 29–36 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Needham, D. M., Sachdeva, R. & Fuhrman, J. A. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 11, 1614–1629 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Bloem, J., Starink, M., Bär-Gilissen, M.-J.B. & Cappenberg, T. E. Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures. Appl. Environ. Microbiol. 54, 3113–3121 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Gao, X., Olapade, O. A. & Leff, L. G. Comparison of benthic bacterial community composition in nine streams. Aquat. Microb. Ecol. 40, 51–60 (2005).Article 

    Google Scholar 
    35.González, J. M., Kiene, R. P. & Moran, M. A. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 65, 3810–3819 (1999).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Cui, Y. et al. The water depth-dependent co-occurrence patterns of marine bacteria in shallow and dynamic Southern Coast, Korea. Sci. Rep. 9, 9176 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Huang, X. et al. Profiles of quorum sensing (QS)-related sequences in phycospheric microorganisms during a marine dinoflagellate bloom, as determined by a metagenomic approach. Microbiol. Res. 217, 1–13 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Orsi, W. D. et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 9, 1747–1763 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Salter, I. et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 9, 347–360 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Berdjeb, L., Parada, A., Needham, D. M. & Fuhrman, J. A. Short-term dynamics and interactions of marine protist communities during the spring–summer transition. ISME J. 12, 1907–1917 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Chow, C.-E.T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the globalocean microbiome. Science 353, 1272–1277 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Rivett, D. W. & Bell, T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat. Microbiol. 3, 767–772 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Amblard, C., Rachiq, S. & Bourdier, G. Photolithotrophy, photoheterotrophy and chemoheterotrophy during spring phytoplankton development (Lake Pavin). Microb. Ecol. 24, 109–123 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chun, S.-J. et al. Characterization of distinct cyanoHABs-related modules in microbial recurrent association network. Front. Microbiol. 10, 1637 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.He, T., Xie, D., Ni, J., Li, Z. & Li, Z. Nitrous oxide produced directly from ammonium, nitrate and nitrite during nitrification and denitrification. J. Hazard. Mater. 388, 122114 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Leahy, J. G. & Colwell, R. R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54, 305–315 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora 1. Limnol. Oceanogr. 25, 943–948 (1980).ADS 
    Article 

    Google Scholar 
    49.Andrew, S. A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. (2010)50.Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Li, R. W. et al. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 14, 129–139 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Oksanen, J. et al. Package ‘vegan’. Community ecology package. https://github.com/vegandevs/vegan (2019).55.Paradis, E. et al. Package ‘ape’. Analyses of phylogenetics and evolution. http://ape-package.ird.fr/. (2019).56.Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics. https://github.com/tidyverse/ggplot2 (2020).57.Walker, I. R., Levesque, A. J., Cwynar, L. C. & Lotter, A. F. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolimnol. 18, 165–178 (1997).ADS 
    Article 

    Google Scholar 
    58.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    59.Ter Braak, C. J. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    60.Ter Braak, C.J.F. & Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination, version 4.5. Ithaca, NY, USA: Microcomputer Power. (2002).61.Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 5, S15 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Xia, L. C., Ai, D., Cram, J., Fuhrman, J. A. & Sun, F. Efficient statistical significance approximation for local similarity analysis of high-throughput time series data. Bioinformatics 29, 230–237 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds

    National breeding bird monitoring schemesFieldworkers record all, or a fixed, pre-defined set, of bird species heard or seen in the main breeding season in 28 European countries on an annual basis (Fig. 1). All observations are recorded following a scheme-specific standardized protocol based on established field methods for counting birds: point count transect, line transect, or territory or spot mapping10,33,34. Here, we provide a short description of the field methods used, as each scheme provides its fieldworkers with specific fieldwork instructions and training.

    1.

    Point counts: A fieldworker counts all detected birds at census points, often placed along a transect (typically >200 meters apart) during a fixed time period to sample birds in a defined study area. Each point is usually visited twice a year.

    2.

    Line transects: A fieldworker moves along a transect and records all detected birds along the predefined path to sample birds in a defined study area. Each transect is usually visited twice a year.

    3.

    Territory or spot mapping: A fieldworker records all birds showing territorial behaviour in a defined study area and marks their positions and their territorial behaviour on a map. The study area is visited multiple times a year (usually 5–12) to map breeding bird territories based on the individual species-specific behaviour recorded. The species counts reflect the number of present territories.

    National scheme coordinators provide all fieldworkers with instructions with the prescribed number and timing of survey visits, and information on how to record observations in terms of sampling effort, time of day, seasonality and weather conditions. This ensures the temporal and spatial consistency of data quality within individual national schemes35. The standardization of conditions during counting then enables unbiased comparison of results between years and individual study sites within each country.For the selection of sampling plots, national monitoring schemes use either random, stratified random, systematic selection, or allow a free choice by fieldworkers8,34. Sampling plots are selected randomly within the study boundaries using a random selection method or randomly within the stratum under the stratified random method. Under these methods, study plot selection is conducted by random generators (by computer programs) and stratum is predefined as a region with similar attributes; these might be proportions of habitat types, altitude bands, bird abundance, accessibility of survey sites, or fieldworker density, depending on the local circumstances. Systematic selection predefines a spatial grid for sampling plot selection while free choice enables fieldworkers to select their study areas without restrictions34. The use of a free choice, or stratified random selection of sampling plots may result in a biased sampling of specific habitat types (typically species-rich habitats) and regions (remote areas poorly covered), but post-hoc stratification and weighting procedures are generally used to correct for unequal sampling and reduce sampling bias as long as the number of plots per stratum is sufficient36. Moreover, national coordinators provide fieldworkers with recommendations or oversee the study plot selection to prevent oversampling of specific habitat types and regions. Detailed information on scheme-specific counting protocols, study plot selection and breeding period specification can be found for each national monitoring scheme8.National species indicesA species annual index reflects population size change relative to the population size in the reference year. On an annual basis, coordinators of the national monitoring schemes produce species indices for recorded species using a tailor-made implementation of loglinear regression models (TRIM models – Trends and Indices for Monitoring data) from time series of recorded species counts at the study plots37,38. Species counts from a study plot reflect mean (or maximum) of individuals recorded during visits at the study plot when using point counts or line transects. For some species, only the number of individuals recorded on the second visit is used because the period of the first visit coincides with the migratory period and consequently the mean number of recorded individuals might not reflect the number of breeding individuals. The method to estimate the species counts in a plot is constant within a national scheme.Missing data occur in the species counts at specific sites in individual years for various reasons, such as severe weather conditions during the counting period, abandonment of the study site, restricted access, or where counts are repeated in multi-year intervals. The TRIM model imputes missing data using species counts either from surveyed sites with similar environmental characteristics (stratified imputing) or all other sites with available data37,39. This process is based on the assumption that changes in populations at non-counted sites are similar to those at counted sites within the same stratum. To derive expected between-year changes in species population sizes, the program fits a log-linear regression model assuming Poisson distribution to time series from counted plots. Finally, we use this model to calculate missing species-specific counts for individual years37,39. The resulting time series of species counts with imputed missing values cover the whole period of counts in the national monitoring scheme. These imputed data are then used to estimate annual population sizes from all study plots and to derive population size indices for species11.European species indices and trendsThe individual national indices for a given species are combined to create the European species indices. Subsequently, long-term population size changes (trends) are calculated as the multiplicative linear slopes from species indices and represent an average between-year relative population size change over a predefined period.The European combination process is very similar to the production of national scheme species indices, but with three differences40. Firstly, the indices are calculated using national TRIM output data, consisting of imputed species counts, standard errors per year and covariance matrices. Secondly, species counts are weighted by the most recent species population size estimates (updated every three years) in a given country derived from national bird atlases, official data reports and national experts (http://datazone.birdlife.org/) to account for the country-specific population sizes and thus the unequal contribution of national indices on the European index. Thirdly, missing national time totals due to different start years of the schemes8 are imputed using species counts from a set of countries from the same geographical region6,11. For this purpose, we divided all national schemes into seven geographic regions – Central & East Europe, East Mediterranean, North Europe, South Europe, Southeast Europe, West Balkan and West Europe8. We then use a set of national indices from a given region to impute missing national indices. Therefore, the earliest periods of population size changes are based on data from a reduced number of study plots and schemes.The species trends are then imputed from species indices for four periods: 1980 onwards, 1990 onwards, 2000 onwards and using only the last ten years of data if the data are available. Despite higher uncertainty of the earliest estimates, we do provide the population index estimates for this period as no alternative and continuous measures of bird population size changes exist for this period.The uncertainty estimates of indices and trends are presented by the standard error11,37 allowing a calculation of 95% confidence limits (±1.96 × standard error). The magnitude of the trend estimates together with their 95% confidence intervals are then used for trend classification into six classes facilitating communication and interpretation of the outputs37 (Table 1).Table 1 Classification of the European bird species trends based on the magnitude and uncertainty of the estimates (using 95% confidence intervals).Full size tableFinally, European species indices and trends are presented only for a group of common and widespread bird species (hereafter ‘common bird species’) meeting two criteria:

    1.

    The estimated breeding population (http://datazone.birdlife.org/) is at least 50 000 pairs in PECBMS Europe (EU countries, Norway, Switzerland and the United Kingdom; Fig. 1). Additionally, Red-billed Chough (Pyrrhocorax pyrrhocorax) and Spotted Redshank (Tringa erythropus) with population sizes below 50 000 pairs are included, as large parts of their breeding populations are covered in the PECBMS Europe.

    2.

    The estimated breeding population in PECBMS countries providing data for a given species8 covers at least 50% of the whole PECBMS Europe breeding population (http://datazone.birdlife.org/).

    The resulting datasets of European population size indices and trends consist of relative population changes for 170 common bird species.UpdatesWe aim to maintain the PECBMS database with annual updates. The annual updates will be available through the PECBMS database deposited at the Zenodo repository8 to ensure long-term public availability of the data. More

  • in

    Vegetation and microbes interact to preserve carbon in many wooded peatlands

    Study sites and soil samplingOur major study sites were located in a shrub-dominated bog13 in the Pocosin Lakes National Wildlife Refuge, NC, USA and a Sphagnum-dominated bog47 in the Marcell Experimental Forest, MN, USA (Supplementary Tables 1 and 2). Three sites ( >1 km apart) around Pungo Lake including Pungo West, Pungo Southwest, and Pungo East were selected at the shrub bogs in North Carolina. Ilex glabra and Lyonia lucida cover about 85% and 10%, respectively at Pungo West. Ilex glabra and Lyonia lucida also dominate Pungo Southwest but distribute evenly, also there are many Woodwardia virginica ferns during the growing season. The water level at Pungo Southwest is always higher than at Pungo West. Both Pungo West and Pungo Southwest have prescribed light fire every 4–5 years. There has been no fire disturbance at the Pungo East site over last 30 years, where more dominant plant species exist, including Lyonia lucida, Ilex glabra, Zenobia pulverulenta, Gaylussacia frondosa, Vaccinium formosum.One hollow and one hummock were selected at the Sphagnum-dominated bogs in Minnesota. A lot of mature trees including Picea mariana, Pinus resinosa, Larix laricina with different bryophytes and shrubs grow at both the hollows and the hummocks. S. fallax dominates the bryophyte layer at the hollows, and S. angustifolium and S. magellanicum dominate at the hummocks. The understory has a layer of ericaceous shrubs including Rhododendron groenlandicum, Chamaedaphne calyculata, Vaccinium oxycoccos at the hummocks, however, only scattered shrubs present in the hollows. Other site information is described in Supplementary Tables 1 and 2. We took three soil cores at each sites (with a distance >4 m from each other), and each soil core was sliced to four subsamples (0–5, 5–10, 10–15, and 15–20 cm). Big roots were removed in lab. The hair roots of all plants were included in the soil samples.Additionally, we took three soil cores at depth 0–10 cm in the shrub-dominated area in Dajiuhu peatlands in Shennongjia, China (31°29′N, 109°59′E) in May 2017. The dominant shrub at Dajiuhu is Betula albosinensis and Spiraea salicifolia with a dense Sphagnum layer (detailed plant information is described in Supplementary Tables 1 and 2). The samples were transported to the laboratory in iceboxes. Half of the samples were frozen at −80 °C for DNA isolation; the other half was stored at 4 °C for chemical analysis.Soil chemistry analysisWe used the deionized water extraction of fresh soil for DOC and soluble phenolics measurements. DOC was measured as the difference between total C and inorganic C with a total C analyzer (Shimadzu 5000 A, Kyoto, Japan). Soluble phenolics were measured by following the Folin-Ciocalteu procedure50. Inorganic nitrogen (NH4+–N and NO3−–N + NO2−–N) extract with 2 M KCl was determined colorimetrically on a flow-injection analyzer (Lachat QuikChem 8000, Milwaukee, WI, USA). Total carbon and nitrogen in soil were analyzed with combustion CN soil analyzer equipped with a TCD detector (ThermoQuest Flash EA1112, Milan, Italy). A 1:10 soil/water solution was used to measure soil pH.DNA extraction, PCR, and sequencingGenomic DNA was extracted from 0.25 g (fresh weight) of each homogenized soil sample using the PowerSoil DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA, USA). DNA of each replicate was extracted 3 times and homogenized together as one DNA template. For Pocosin and Minnesota samples, a set of fungus-specific primers, ITS1F (3′-CTTGGTCATTTAGAGGAAGTAA-5′) and ITS4 (3′-TCCTCCGCTTATTGATATGC-5′), were used to amplify the internal transcribed spacer (ITS) region using barcoded ITS1F primers. For Dajiuhu samples, ITS1F and ITS2 (3′-GCTGCGTTCTTCATCGATGC-5′) were used. All PCR reactions were repeated in triplicate, together with the negative controls in which the template DNA was replaced with deionized H2O. The amplicon concentration of each sample was determined after purification using Qubit® 2.0 Fluorometer (Invitrogen, Grand Island, NY, USA), samples pooled at equimolar concentrations, purified using AMPure Bead cleanup. The amplicons from Pocosin, Minnesota and Dajiuhu samples were submitted to the core facility at Duke University (Durham, NC, USA) and Allwegene Tech Beijing (Beijing, China) for sequencing using Illumina MiSeq (Illumina, San Diego, CA, USA), respectively.Bioinformatics processingSequence data of Pocosins and Minnesota samples were obtained from both ITS1 and ITS2 gene regions. ITS sequences were quality filtered and processed using the standard QIIME pipeline, with each fungal taxon represented by an OTU at the 97% sequence similarity level. Singleton OTUs were omitted51, and OTUs classified taxonomically using a QIIME-based wrapper of BLAST against the UNITE database52,53 (see Supplementary Methods for further details). The quality and depth of coverage of both primers’ reads were not significantly different, thus libraries from ITS4 reads were used for further analysis of fungal communities. Taxonomic-based alpha diversity was calculated as the total number of phylotypes (richness) and Shannon’s diversity index (H′). A total of 150,967 ITS sequences from ITS2 region passed quality control criteria in the Pocosin and Minnesota sites. These sorted into 590 OTUs. Following the same procedure, a total of 115,936 ITS1 sequences from Dajiuhu samples were assigned into 307 OTUs. Following the processing procedure described by Wilson et al.47, relative abundance of beta-proteobacteria at the controlled site in the boreal Sphagnum site was recalculated from Wilson and others’ sequence data34 available from the National Center for Biotechnology Information at SRP071256. Relative abundance of fungi from a bog forest at the Calvert Island in Canada was recalculated from the raw amplicon reads in the European Nucleotide Archive, ITS (ERS1798771-ERS1799064).Lab incubationsThe decomposing capability of microbes in the Sphagnum- and shrub-dominated peatlandsWe tested the decomposing capability of microbes in the Sphagnum- and shrub-dominated peatlands by amending peat inocula from both sites in North Carolina and Minnesota to their peats and labile carbon-enriched mineral soil. Fresh Sphagnum- and shrub-formed peat inocula were prepared by mixing 0.5 kg of each type of fresh peat (10–20 cm) with 2 L of deionized water. After 1 h of stirring and 1-day settlement, the suspension liquid inoculum was filtered through a Buchner funnels (without filter, pore size 0.25–0.5 mm). We added 2 g of glucose to 50 g of nutrient-poor mineral soil (initially 0.05% total nitrogen, 0.64% total soil carbon) to produce a mineral soil medium with high labile carbon content. All incubation media (peat and mineral soil) and jars were sterilized by an autoclave before inoculation. About 30-g fresh Sphagnum-formed peat (2.5–2.8 g in dry weight) or shrub-formed peat (9.1–9.3 g in dry weight), or 50-g mineral soil with 2-g glucose was placed in Mason jars (triplicate, 8-cm diameter, 12-cm height, vacuum seal lid with a stainless-steel fitting with sampling septum), then 20 ml of its own or other’s inoculum was added to the peat media, and 5 ml of inoculum from each site was added to the mineral soil. Finally, all samples were aerobically incubated at a constant temperature of 25 °C. We initially used Parafilm M® Laboratory film, which is air permeable but water resistant, to seal the top for 3-day equilibration, afterward we collected gas samples by syringe from the headspace of each jar at the beginning and end of 1-h sealed incubation and used a GC (Varian 450, CA, USA) to analyze CO2 concentration. As microbial biomass itself is a factor regulating soil respiration rates, standardized CO2 emissions at the microbial biomass were calculated based on the elevated CO2 concentration, time, air volume in the jar, and the amount of added MBC from the inoculum. To prevent microbial acclimation to the assay chemistry18,31, we only incubated the soils for a short time. A chloroform fumigation-extraction method (0.5 M K2SO4 to extract biomass C)54 was used to determine soil MBC by the difference in measured carbon contents between fumigated and control replicates of each sample.Temperature sensitivityTo test temperature sensitivity of soil respiration, nine fresh peat samples (30 g) from each site were added to jars and sealed with Parafilm M® Laboratory film. Triplicate samples were incubated at 4, 25, and 44.5 °C. The highest temperature in this incubation does not match the in situ conditions in our sites, but it may happen shortly in tropical wooded peatlands in the future. After 3-day equilibration, we used the same method as above to measure gas emission and calculated soil respiration based on soil dry weight. We conducted regression analyses for soil from each site using R = αeβT, where R is soil respiration, coefficient α is the intercept of soil respiration when temperature is zero, coefficient β represents the temperature sensitivity of soil respiration, and T is soil temperature.The relative contributions of fungi and bacteria to peat decompositionWe subsampled 20 g each of our archived material from the Sphagnum-dominated bog in Minnesota and the shrub-dominated peatland in North Carolina, then subsamples were well mixed to make two composite bulk samples (one for Sphagnum-formed peat, one for shrub-formed peat) for the following incubations.A total of nine broad-spectrum antibiotics were tested either alone or in combination for their inhibition on bacteria or/and fungal respiration using a selective inhibition (SI) technique55 without glucose. The antibiotics include 5 fungicides (cycloheximide, benomyl, nystatin, natamycin, amphotericin B) and 4 bactericides (streptomycin, penicillin, oxytetracycline hydrochloride, neomycin). Both fungicide and bactericide were used alone or combined at concentrations of 0, 10, 20, 100, 500, and 1000 µg g−1 soil for the shrub-formed peat or 0, 35, 71, 357, 1785, and 3571 µg g−1 soil for the Sphagnum-formed peat. Each concentration of antibiotics (triplicate) was added to a 3-g fresh peat placed in a 50-ml tube. Mason jars (8-cm diameter, 12-cm height, vacuum seal lid with a stainless-steel fitting with sampling septum) are used to incubate the treated samples. CO2 accumulation rates over 24 h was measured and calculated as same as testing temperature sensitivity of soil respiration above. We found that all bactericides used in this study increased CO2 emission along with their concentrations. The results suggest that: (1) the contribution of bacteria to peat decomposition in general was simply very little, (2) the bacteria that were inhibited by bactericide contribute negligibly to peat decomposition, (3) the non-targeted bacteria were stimulated after the targeted-bacteria were inhibited, although the bactericides are broad-spectrum antibiotics, they did not inhibit the dominant bacteria at all in our sites, and /or (4) both bacteria and fungi in our sites may utilize these bactericides as a carbon source. As to the fungicide, only cycloheximide at a concentration of 357 µg g−1 soil slightly decrease CO2 emission in the Sphagnum-formed peat, but not the shrub-formed peat. Other fungicides did not suppress the CO2 emission regardless of their concentrations, or increased the CO2 emission along with increase in concentrations of fungicide, which suggest that these fungicides did not inhibit the dominant fungi in our sites. Therefore, we found no evidence that SI technique could detect the relative contribution of bacteria and fungi to peat decomposition in our sites. To further examine our fungal dominance hypothesis, we next used filtration by size to assess dominant decomposers.According to the literature (e.g., refs. 56,57,58), the average size of most bacteria is between 0.2 and 2.0 µm in diameter, with most of them less than 1.5 µm; while most fungi grow as hyphae in soil, which are cylindrical, thread-like structures 1.5–10 µm in diameter and up to several centimeters in length57,59,60. The sizes of most fungal spore are more than 2.0 µm in diameter61,62,63. Theoretically, porous filters could physically separate bacteria from fungi58. Domeignoz-Horta et al.64 used 0.8-μm filter to exclude fungi successfully64. In our test, filters with pore sizes of 0.22, 0.45, 1.2, and 1.5 μm were selected. The filtrates through 1.2- and 1.5-μm filters contain most of the bacteria, in which a small portion of larger bacteria and small fungi may pass through pores due to a lack of rigidity of their cells58.Sphagnum- and shrub-formed peat inocula were made by mixing 50 g of each type of fresh peat with 250 ml of sterilized deionized water. After 1 h of stirring and 1-day settlement, the suspension liquid inoculum was first filtered through a Buchner funnels (without filter, pore size 0.25–0.5 mm). The filtrate, we assumed, contain all bacteria and fungi while removing large decomposers like insects and worms. The 0.25–0.5 mm filtrate was used to make other inocula containing no-bacteria/fungi, nanobacteria and non-fungi, and most bacteria and non-fungi by filtering through 0.22- (nylon), 0.45- (nylon), 1.2- (glass fiber), and 1.5-μm (glass fiber) filters, separately. In total, 6 treatments including 5 inocula (filtrates through 0.22, 0.45, 1.2, 1.5, and 250–500-μm filters) and control (sterilized deionized water) were established. Either inoculum or sterilized deionized water was added to a 3-g sterilized Sphagnum- or shrub-formed peat (triplicate) and incubated at 25 °C. CO2 emission was measured within 24 h.Statistical analysisOne-way ANOVA with Duncan’s multiple-range test was used to compare the means of soil physicochemical parameters. Standard error of the mean was calculated for each mean. The significant level of the test was set at a probability of 0.05. The ANOSIM function in the vegan package in R was used to test statistical significance in fungal composition within and among sites in the shrub- and the Sphagnum-dominated peatlands (999 permutations), which shows that fungal communities were significantly different within sites at the shrub-dominated peatlands (Pungo East, Pungo West, and Pungo Southwest) and at the Sphagnum-dominated peatlands (hollows and hummocks) (Supplementary Fig. 5). Mantel test and redundancy analysis (RDA) were employed to explain the relative roles of soil physicochemical factors in fungal community composition using vegan package in R. The correlation of the redundancy axes with the explanatory matrix was determined with the general permutation test (anova.cca function; 999 permutations). Stepwise regression was further run to test what primarily control the slow-growing versus fast-growing fungi and soil acidity. More

  • in

    Temporal and spatial lags between wind, coastal upwelling, and blue whale occurrence

    1.Mann, K. H. & Lazier, J. R. N. Dynamics of marine ecosystems: Biological-physical interactions in the oceans. Blackwell Sci. Publ. https://doi.org/10.2307/2960585 (1996).Article 

    Google Scholar 
    2.Ryther, J. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Cushing, D. H. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. Adv. Mar. Biol. 9, 255–334 (1990).Article 

    Google Scholar 
    4.Ekman, V. W. On the influence of the earth’s rotation on ocean-currents. (1905).5.Grémillet, D. et al. Spatial match-mismatch in the Benguela upwelling zone: Should we expect chlorophyll and sea-surface temperature to predict marine predator distributions?. J. Appl. Ecol. 45, 610–621 (2008).Article 
    CAS 

    Google Scholar 
    6.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).Article 

    Google Scholar 
    8.Maxwell, S. M. et al. Dynamic ocean management: Defining and conceptualizing real-time management of the ocean. Mar. Policy 58, 42–50 (2015).Article 

    Google Scholar 
    9.Becker, E. A. et al. Moving towards dynamic ocean management: How well do modeled ocean products predict species distributions?. Remote Sens. 8, 149 (2016).ADS 
    Article 

    Google Scholar 
    10.Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, 1–7 (2018).Article 

    Google Scholar 
    11.Abrahms, B. et al. Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Divers. Distrib. https://doi.org/10.1111/ddi.12940 (2019).Article 

    Google Scholar 
    12.Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).Article 

    Google Scholar 
    13.Redfern, J. V. et al. Techniques for cetacean-habitat modeling. Mar. Ecol. Prog. Ser. 310, 271–295 (2006).ADS 
    Article 

    Google Scholar 
    14.Becker, E. A. et al. Comparing California current cetacean-habitat models developed using in situ and remotely sensed sea surface temperature data. Mar. Ecol. Prog. Ser. 413, 163–183 (2010).ADS 
    Article 

    Google Scholar 
    15.Palacios, D. M. et al. Ecological correlates of blue whale movement behavior and its predictability in the California Current Ecosystem during the summer-fall feeding season. Mov. Ecol. 7, 1–21 (2019).Article 

    Google Scholar 
    16.Thompson, S. A. et al. Linking predators to seasonality of upwelling: Using food web indicators and path analysis to infer trophic connections. Prog. Oceanogr. 101, 106–120 (2012).ADS 
    Article 

    Google Scholar 
    17.Fiedler, P. C. et al. Blue whale habitat and prey in the California Channel Islands. Deep Res. Part II Top. Stud. Oceanogr. 45, 1781–1801 (1998).ADS 
    Article 

    Google Scholar 
    18.Buchan, S. J. & Quiñones, R. A. First insights into the oceanographic characteristics of a blue whale feeding ground in northern Patagonia, Chile. Mar. Ecol. Prog. Ser. 554, 183–199 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Gill, P. C. et al. Blue whale habitat selection and within-season distribution in a regional upwelling system off southern Australia. Mar. Ecol. Prog. Ser. 421, 243–263 (2011).ADS 
    Article 

    Google Scholar 
    20.de Vos, A., Pattiaratchi, C. B. & Wijeratne, E. M. S. Surface circulation and upwelling patterns around Sri Lanka. Biogeosciences Discuss. 10, 14953–14998 (2013).ADS 

    Google Scholar 
    21.Barlow, D. R., Bernard, K. S., Escobar-Flores, P., Palacios, D. M. & Torres, L. G. Links in the trophic chain: Modeling functional relationships between in situ oceanography, krill, and blue whale distribution under different oceanographic regimes. Mar. Ecol. Prog. Ser. 642, 207–225 (2020).ADS 
    Article 

    Google Scholar 
    22.Williams, T. M., Haun, J., Davis, R. W., Fuiman, L. A. & Kohin, S. A killer appetite: Metabolic consequences of carnivory in marine mammals. Comp. Biochem. Physiol. Part A 129, 785–796 (2001).CAS 
    Article 

    Google Scholar 
    23.Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: Efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Croll, D. A. et al. From wind to whales: Trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289, 117–130 (2005).ADS 
    Article 

    Google Scholar 
    25.Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469–e1500469 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Nickels, C. F., Sala, L. M. & Ohman, M. D. The morphology of euphausiid mandibles used to assess selective predation by blue whales in the southern sector of the California Current System. J. Crustac. Biol. 38, 563–573 (2018).Article 

    Google Scholar 
    27.Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl. Acad. Sci. USA 116, 5582–5587 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Visser, F., Hartman, K. L., Pierce, G. J., Valavanis, V. D. & Huisman, J. Timing of migratory baleen whales at the azores in relation to the north atlantic spring bloom. Mar. Ecol. Prog. Ser. 440, 267–279 (2011).ADS 
    Article 

    Google Scholar 
    29.Fossette, S. et al. Resource partitioning facilitates coexistence in sympatric cetaceans in the California Current. Ecol. Evol. 7, 9085–9097 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Szesciorka, A. R. et al. Timing is everything: Drivers of interannual variability in blue whale migration. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    31.Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A. & Largier, J. Wind strength and biological productivity in upwelling systems: An idealized study. Fish. Oceanogr. 12, 245–259 (2003).Article 

    Google Scholar 
    32.Botsford, L. W., Lawrence, C. A., Dever, E. P., Hastings, A. & Largier, J. Effects of variable winds on biological productivity on continental shelves in coastal upwelling systems. Deep Res. Part II Top. Stud. Oceanogr. 53, 3116–3140 (2006).ADS 
    Article 

    Google Scholar 
    33.Cury, P. & Roy, C. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci. 46, 670–680 (1989).Article 

    Google Scholar 
    34.Yokomizo, H., Botsford, L. W., Holland, M. D., Lawrence, C. A. & Hastings, A. Optimal wind patterns for biological production in shelf ecosystems driven by coastal upwelling. Theor. Ecol. 3, 53–63 (2010).Article 

    Google Scholar 
    35.Nieblas, A. E., Sloyan, B. M., Hobday, A. J., Coleman, R. & Richardson, A. J. Variability of biological production in low wind-forced regional upwelling systems: A case study off southeastern Australia. Limnol. Oceanogr. 54, 1548–1558 (2009).ADS 
    Article 

    Google Scholar 
    36.Stevens, C. L., O’Callaghan, J. M., Chiswell, S. M. & Hadfield, M. G. Physical oceanography of New Zealand/Aotearoa shelf seas: A review. N. Z. J. Mar. Freshw. Res. 1, 40. https://doi.org/10.1080/00288330.2019.1588746 (2019).Article 

    Google Scholar 
    37.Heath, R. R. & Gilmour, A. E. Flow and hydrological variability in the Kahurangi plume off north-west South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 21, 125–140 (1987).CAS 
    Article 

    Google Scholar 
    38.Shirtcliffe, T. G. L. et al. Dynamics of the Cape Farewell upwelling plume, New Zealand. N. Z. J. Mar. Freshw. Res. 24, 555–568 (1990).Article 

    Google Scholar 
    39.Chiswell, S. M., Zeldis, J. R., Hadfield, M. G. & Pinkerton, M. H. Wind-driven upwelling and surface chlorophyll blooms in Greater Cook Strait. N. Z. J. Mar. Freshw. Res. 51, 465–489 (2017).CAS 
    Article 

    Google Scholar 
    40.Bradford-Grieve, J. M., Murdoch, R. C. & Chapman, B. E. Composition of macrozooplankton assemblages associated with the formation and decay of pulses within an upwelling plume in greater cook strait, New Zealand. N. Z. J. Mar. Freshw. Res. 27, 1–22 (1993).Article 

    Google Scholar 
    41.Bradford, J. M. & Chapman, B. Nyctiphanes australis (euphausiacea) and an upwelling plume in Western Cook Strait, New Zealand. N. Z. J. Mar. Freshw. Res. 22, 237–247 (1988).CAS 
    Article 

    Google Scholar 
    42.Torres, L. G. Evidence for an unrecognised blue whale foraging ground in New Zealand. N. Z. J. Mar. Freshw. Res. 47, 235–248 (2013).Article 

    Google Scholar 
    43.Barlow, D. R. et al. Documentation of a New Zealand blue whale population based on multiple lines of evidence. Endanger. Species Res. 36, 27–40 (2018).Article 

    Google Scholar 
    44.Torres, L. G., Barlow, D. R., Chandler, T. E. & Burnett, J. D. Insight into the kinematics of blue whale surface foraging through drone observations and prey data. PeerJ 8, e8906 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Seers, B. & Shears, N. New Zealand’s Climate Data in R: An Introduction to clifro. (2015).46.Tsagris, M., Athineou, G., Sajib, A., Amson, E. & Waldstein, M. Directional: Directional Statistics. R package version 4.3. (2020).47.Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from ‘ERDDAP’ Web Services. (2019).48.Calupca, T. A., Fristrup, K. M. & Clark, C. W. A compact digital recording system for autonomous bioacoustic monitoring. J. Acoust. Soc. Am. 108, 2582 (2000).ADS 
    Article 

    Google Scholar 
    49.Oleson, E. M. et al. Behavioral context of call production by eastern North Pacific blue whales. Mar. Ecol. Prog. Ser. 330, 269–284 (2007).ADS 
    Article 

    Google Scholar 
    50.McDonald, M. A. An acoustic survey of baleen whales off Great Barrier Island, New Zealand. N. Z. J. Mar. Freshw. Res. 40, 519–529 (2006).Article 

    Google Scholar 
    51.Mellinger, D. K. & Clark, C. W. Recognizing transient low-frequency whale sounds by spectrogram correlation. J. Acoust. Soc. Am. 107, 3518–3529 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Center for Conservation Bioacoustics. Raven Pro: Interactive Sound Analysis Software. (2019).53.Mellinger, D. K., Roch, M. A., Nosal, E.-M. & Klinck, H. Signal processing. In Listening in the Ocean (eds Au, W. W. L. & Lammers, M. O.) 359–409 (Springer, Berlin, 2016).
    Google Scholar 
    54.Fregosi, S. et al. Comparison of fin whale 20 Hz call detections by deep-water mobile autonomous and stationary recorders. J. Acoust. Soc. Am. 147, 961–977 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Collins, M. D. A split-step Pade solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).ADS 
    Article 

    Google Scholar 
    56.Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2009).57.Wentworth, C. K. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).ADS 
    Article 

    Google Scholar 
    58.Bostock, H. et al. Distribution of surficial sediments in the ocean around New Zealand/Aotearoa. Part B: continental shelf. N. Z. J. Geol. Geophys. 62, 24–45 (2019).Article 

    Google Scholar 
    59.Samaran, F., Guinet, C., Adam, O., Motsch, J.-F. & Cansi, Y. Source level estimation of two blue whale subspecies in southwestern Indian Ocean. J. Acoust. Soc. Am. 127, 3800–3808 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    60.Holmes, E. E., Scheuerell, M. D. & Ward, E. J. Applied Time Series Analysis for Fisheries and Environmental Data (NOAA Fisheries, 2018).
    Google Scholar 
    61.Chiswell, S. M. & Sutton, P. J. H. Relationships between long-term ocean warming, marine heat waves and primary production in the New Zealand region. N. Z. J. Mar. Freshw. Res. https://doi.org/10.1080/00288330.2020.1713181 (2020).Article 

    Google Scholar 
    62.Santora, J. A., Reiss, C. S., Loeb, V. J. & Veit, R. R. Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation. Mar. Ecol. Prog. Ser. 405, 255–269 (2010).ADS 
    Article 

    Google Scholar 
    63.Goetz, K. T. et al. Satellite Tracking of Blue Whales in New Zealand Waters, 2018 Voyage Report. (2018).64.Double, M. C. et al. Cruise report of the 2013 Antarctic blue whale voyage of the Southern Ocean Research Partnership. Int. Whal. Comm. SC/65a/SH21 1–16 (2013).65.Chenillat, F., Rivière, P., Capet, X., Franks, P. J. S. & Blanke, B. California coastal upwelling onset variability: Cross-shore and bottom-up propagation in the planktonic ecosystem. PLoS ONE 8, e6281 (2013).Article 
    CAS 

    Google Scholar 
    66.Benoit-Bird, K. J., Waluk, C. M. & Ryan, J. P. Forage species swarm in response to coastal upwelling. Geophys. Res. Lett. 46, 1537–1546 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Behavioral state resource selection in invasive wild pigs in the Southeastern United States

    1.Wiens, J. A., Stenseth, N. C., Van Horne, B. & Ims, R. A. Ecological mechanisms and landscape ecology. Oikos 66, 369–380 (1993).Article 

    Google Scholar 
    2.Ellner, S. P. et al. Habitat structure and population persistence in an experimental community. Nature 412, 538–543 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Roever, C. L., Beyer, H. L., Chase, M. J. & van Aarde, R. J. The pitfalls of ignoring behaviour when quantifying habitat selection. Divers. Distrib. 20, 322–333 (2014).Article 

    Google Scholar 
    4.Moorcroft, P. R., Moorcroft, P. & Lewis, M. A. Mechanistic Home Range Analysis (Princeton University Press, 2006).
    Google Scholar 
    5.Boerger, L., Dalziel, B. D. & Fryxell, J. M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 (2008).Article 

    Google Scholar 
    6.Forester, J. D. et al. State-Space Models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecol. Monogr. 77, 285–299 (2007).Article 

    Google Scholar 
    7.Northrup, J. M., Anderson, C. R., Hooten, M. B. & Wittemyer, G. Movement reveals scale dependence in habitat selection of a large ungulate. Ecol. Appl. 26, 2746–2757 (2016).Article 

    Google Scholar 
    8.Northrup, J. M., Anderson, C. R. & Wittemyer, G. Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers. Distrib. 22, 547–557 (2016).Article 

    Google Scholar 
    9.Beyer, H. L. et al. The interpretation of habitat preference metrics under use—availability designs. Philos. Trans. R. Soc. B Biol. Sci. 365, 2245–2254 (2010).Article 

    Google Scholar 
    10.Patterson, T. A., Basson, M., Bravington, M. V. & Gunn, J. S. Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J. Anim. Ecol. 78, 1113–1123 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Franke, A., Caelli, T. & Hudson, R. J. Analysis of movements and behavior of caribou (Rangifer tarandus) using hidden Markov models. Ecol. Model. 173, 259–270 (2004).Article 

    Google Scholar 
    12.Michelot, T., Langrock, R., Patterson, T. moveHMM: An R package for the analysis of animal movement data. 20 (2016).13.Leos-Barajas, V. et al. Multi-scale modeling of animal movement and general behavior data using hidden markov models with hierarchical structures. JABES 22, 232–248 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    14.Schick, R. S. et al. Understanding movement data and movement processes: Current and emerging directions. Ecol. Lett. 11, 1338–1350 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Zucchini, W., MacDonald, I. L., Langrock, R., MacDonald, I. L. & Langrock, R. Hidden Markov Models for Time Series: An Introduction Using R 2nd edn. (Chapman and Hall/CRC, 2016).
    Google Scholar 
    16.Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & Vercauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).Article 

    Google Scholar 
    17.VerCauteren, K.C., Mayer, J.J., Beasley, J.C., Ditchkoff, S.S., Roloff, G.J., Strickland, B.K. Introduction, invasive wild pigs in North America: Ecology, impacts, and management. 1–5 (2020).18.Barrios-Garcia, M. & Ballari, S. Impact of wild boar (sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    19.Gray, S. M., Roloff, G. J., Montgomery, R. A., Beasley, J. C. & Pepin, K. M. Wild Pig Spatial Ecology and Behavior, Invasive Wild Pigs in North America: Ecology, Impacts, and Management 33–56 (CRC Press, 2020).
    Google Scholar 
    20.Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Fortin, D. et al. Wolves influence elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86, 1320–1330 (2005).Article 

    Google Scholar 
    22.Forester, J. D., Im, H. K. & Rathouz, P. J. Accounting for animal movement in estimation of resource selection functions: Sampling and data analysis. Ecology 90, 3554–3565 (2009).PubMed 
    Article 

    Google Scholar 
    23.Wilber, M. Q. et al. Predicting functional responses in agro-ecosystems from animal movement data to improve management of invasive pests. Ecol. Appl. 30, e02015 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Hanson, R. P. & Karstad, L. Feral swine in the southeastern United States. J. Wildl. Manag. 23, 64 (1959).Article 

    Google Scholar 
    25.Oliveira-Santos, L. G. R., Forester, J. D., Piovezan, U., Tomas, W. M. & Fernandez, F. A. S. Incorporating animal spatial memory in step selection functions. J. Anim. Ecol. 85, 516–524 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Mayer, J.J. Wild pig behavior, wild pigs: Biology, damage, control techniques and management. 408 (2009).27.Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).Article 

    Google Scholar 
    28.Comer, C.E., Mayer, J.J. Wild pigs: Biology, damage, control techniques and management. 408 (2009).29.Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of european wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).Article 

    Google Scholar 
    30.Gaston, W., Armstrong, J., Arjo, W., Stribling, H.L. Home range and habitat use of feral hogs (Sus scrofa) on Lowndes County WMA, Alabama. In National Conference on Feral Hogs (2008).31.Mayer, J.J., Beasley, J.C., Boughton, R., Ditchkoff, S.S. Wild Pigs in the southeast, Invasive Wild Pigs in North America: Ecology, Impacts, and Management (2020).32.Beasley, J. C., Grazia, T. E., Johns, P. E. & Mayer, J. J. Habitats associated with vehicle collisions with wild pigs. wilr 40, 654–660 (2014).
    Google Scholar 
    33.Keiter, D. A. et al. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Sci. Rep. 7, 9446 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.White, D.L. & Gaines, K.F. The savannah river site: Site description, land use and management history. 8–17 (2000).35.Ellis, C. K. et al. Comparison of the efficacy of four drug combinations for immobilization of wild pigs. Eur. J. Wildl. Res. 65, 78 (2019).Article 

    Google Scholar 
    36.Mayer, J.J., Smyser, T.J., Piaggio, A.J., & Zervanos, S.M. Wild pig taxonomy, morphology, genetics, and physiology, Invasive Wild Pigs in North America: Ecology, Impacts, and Management. 7–32 (2020).37.Pohle, J., Langrock, R., van Beest, F. M. & Schmidt, N. M. Selecting the number of states in hidden markov models: Pragmatic solutions illustrated using animal movement. JABES 22, 270–293 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    38.Kay, S.L., Fischer, J.W., Monaghan, A.J., Beasley, J.C., Boughton, R., Campbell, T.A., et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5 (2017).39.Keuling, O., Stier, N. & Roth, M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L.. Eur. J. Wildl. Res. 54, 403–412 (2009).Article 

    Google Scholar 
    40.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Second (Springer, 2002).
    Google Scholar 
    41.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2019).42.Jin, S. et al. Overall methodology design for the United States national land cover database 2016 products. Remote Sens. 11, 2–32 (2019).
    Google Scholar 
    43.Conner, L. M., Smith, M. D. & Burger, L. W. A comparison of distance-based and classification-base analyses of habitat use. Ecology 84, 526–531 (2003).Article 

    Google Scholar 
    44.Benson, J. F. Improving rigour and efficiency of use-availability habitat selection analyses with systematic estimation of availability. Methods Ecol. Evol. 4, 244–251 (2013).Article 

    Google Scholar 
    45.Calenge, C. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).Article 

    Google Scholar 
    46.Johnson, C. J., Nielsen, S. E., Merrill, E. H., McDonald, T. L. & Boyce, M. S. Resource selection functions based on use-availability data: Theoretical motivation and evaluation methods. J. Wildl. Manag. 70, 347–357 (2006).Article 

    Google Scholar 
    47.Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection Functions from Logistic Regression, Resource Selection by Animals: Statistical Analysis and Design for Field Studies 83–110 (Kluwer Academic Publishers, 2002).
    Google Scholar 
    48.Kohl, M. T., Krausman, P. R., Kunkel, K. & Williams, D. M. Bison versus cattle: Are they ecologically synonymous?. Rangeland Ecol. Manag. 66, 721–731 (2013).Article 

    Google Scholar 
    49.Bates, D., Mächler, M., Bolker, B., & Walker, S. Fitting linear mixed-effects models using lme4. arrXiv:14065823 [stat] (2014).50.Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    51.Zipkin, E. F., Grant, E. H. C. & Fagan, W. F. Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecol. Appl. 22, 1962–1972 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Latif, Q. S., Saab, V. A., Dudley, J. G., Markus, A. & Mellen-McLean, K. Development and evaluation of habitat suitability models for nesting white-headed woodpecker (Dryobates albolarvatus) in burned forest. PLoS ONE 15, e0233043 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).Article 

    Google Scholar 
    54.Gillies, C. S. et al. Application of random effects to the study of resource selection by animals. J. Anim. Ecol. 75, 887–898 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Karelus, D. L. et al. Incorporating movement patterns to discern habitat selection: Black bears as a case study. wilr 46, 76–88 (2019).
    Google Scholar 
    56.Franke, A., Caelli, T., Kuzyk, G. & Hudson, R. J. Prediction of wolf (Canis lupus) kill-sites using hidden Markov models. Ecol. Model. 197, 237–246 (2006).Article 

    Google Scholar 
    57.van de Kerk, M. et al. Hidden semi-Markov models reveal multiphasic movement of the endangered Florida panther. J. Anim. Ecol. 84, 576–585 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Blasetti, A., Boitani, L., Riviello, M. C. & Visalberghi, E. Activity budgets and use of enclosed space by wild boars (Sus scrofa) in captivity. Zoo Biol. 7, 69–79 (1988).Article 

    Google Scholar 
    59.Campbell, T. A. & Long, D. B. Activity patterns of wild boars (Sus scrofa) in southern Texas. Southwestern Nat. 55, 564–567 (2010).Article 

    Google Scholar 
    60.Ilse LM and Hellgren EC, Resource Partitioning in Sympatric Populations of Collared Peccaries and Feral Hogs in Southern Texas, Journal of Mammalogy 76:784–799.61.Snow, N. P., Miller, R. S., Beasley, J. C. & Pepin, K. M. Wild Pig Population Dynamics, Invasive Wild Pigs in North America: Ecology, Impacts, and Management 57–82 (CRC Press, 2020).
    Google Scholar 
    62.Matiuti, M., Bogdan, A.T., Crainiceanu, E., Matiuti, C. Research regarding the hybrids resulted from the domestic pig and the wild boar. Sci. Pap. 4 (2010).63.Ditmer, M. A. et al. Moose at their bioclimatic edge alter their behavior based on weather, landscape, and predators. Curr. Zool. 64, 419–432 (2018).PubMed 
    Article 

    Google Scholar 
    64.Dexter, N. The influence of pasture distribution and temperature on habitat selection by feral pigs in a semi-arid environment. Wildl. Res. 25, 547–559 (1998).Article 

    Google Scholar 
    65.Abrahms, B. et al. Lessons from integrating behaviour and resource selection: activity-specific responses of African wild dogs to roads. Anim. Conserv. 19, 247–255 (2016).Article 

    Google Scholar 
    66.Ditchkoff, S. S. & Mayer, J. J. Wild Pig Food Habits, Wild Pigs: Biology, Damage, Control Techniques and Management 105–143 (Savannah River Nuclear Solutions LLC, 2009).
    Google Scholar 
    67.Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Rev. 44, 124–134 (2014).Article 

    Google Scholar 
    68.Lewis, J. S., VerCauteren, K. C., Denkhaus, R. M. & Mayer, J. J. Wild Pig Populations Along the Urban Gradient, Invasive Wild Pigs in North America: Ecology, Impacts, and Management 439–464 (CRC Press, 2020).
    Google Scholar 
    69.Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal 94, 109–119 (2013).Article 

    Google Scholar 
    70.Castillo-Contreras, R. et al. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 615, 282–288 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Cons. 133, 88–94 (2006).Article 

    Google Scholar 
    72.Thurfjell, H. et al. Habitat use and spatial patterns of wild boar Sus scrofa (L.): agricultural fields and edges. Eur. J. Wildl. Res. 55, 517–523 (2009).Article 

    Google Scholar 
    73.Senior, A. M., Grueber, C. E., Machovsky-Capuska, G., Simpson, S. J. & Raubenheimer, D. Macronutritional consequences of food generalism in an invasive mammal, the wild boar. Mammal. Biol. 81, 523–526 (2016).Article 

    Google Scholar 
    74.Lyons, P. C., Okuda, K., Hamilton, M. T., Hinton, T. G. & Beasley, J. C. Rewilding of Fukushima’s human evacuation zone. Front. Ecol. Environ. 18, 127–134 (2020).Article 

    Google Scholar 
    75.Graves, H. B. Behavior and ecology of wild and feral swine (Sus Scrofa). J. Anim. Sci. 58, 482–492 (1984).Article 

    Google Scholar 
    76.Dardaillon, M. Seasonal variations in habitat selection and spatial distribution of wild boar (Sus Scrofa) in the Camargue, Southern France. Behav. Proc. 13, 251–268 (1986).CAS 
    Article 

    Google Scholar 
    77.Meriggi, A. & Sacchi, O. Habitat requirements of wild boars in the northern Apennines (N Italy): A multi-level approach. Ital. J. Zool. 68, 47–55 (2001).Article 

    Google Scholar 
    78.Pepin, K. M., Snow, N. P. & VerCauteren, K. C. Optimal bait density for delivery of acute toxicants to vertebrate pests. J. Pest. Sci. 93, 723–735 (2020).Article 

    Google Scholar  More

  • in

    Tribolium beetles as a model system in evolution and ecology

    Adamski Z, Bufo SA, Chowański S, Falabella P, Lubawy J, Marciniak P et al. (2019) Beetles as model organisms in physiological, biomedical and environmental studies—a review. Front Physiol 10:319PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmad F, Daglish GJ, Ridley AW, Burrill PR, Walter GH (2013) Short-range resource location by Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) demonstrates a strong preference for fungi associated with cotton seed. J Stored Prod Res 52:21–27Article 

    Google Scholar 
    Ahmad F, Ridley AW, Daglish GJ, Burrill PR, Walter GH (2013) Response of Tribolium castaneum and Rhyzopertha dominica to various resources, near and far from grain storage. J Appl Entomol 137:773–781Article 

    Google Scholar 
    Alabi T, Michaud JP, Arnaud L, Haubruge E (2008) A comparative study of cannibalism and predation in seven species of flour beetle. Ecol Entomol 33:716–726
    Google Scholar 
    Allee WC (1931) Animal aggregations: a study in general sociology. University of Chicago Press, Chicago
    Google Scholar 
    Andres A (1931) Catalogue of the Egyptian Tenebrionidae. Bull de la Société R Entomologique d’Egypte 15:74–125
    Google Scholar 
    Ankeny RA, Leonelli S (2011) What’s so special about model organisms? Stud Hist Philos Sci B Stud Hist Philos Mod Phys 42:313–323
    Google Scholar 
    Arnaud L, Haubruge E, Gage MJG (2005) The malathion-specific resistance gene confers a sperm competition advantage in Tribolium castaneum. Funct Ecol 19:1032–1039Article 

    Google Scholar 
    Arnaud L, Lognay G, Gaspar C, Haubruge E et al. (2000) Chemical communication in Tribolium castaneum (Coleoptera, Tenebrionidae): knowledge and perspectives. Bulletin OILB/SROP 23:195–209Arnaud L, Lognay G, Verscheure M, Leenaers L, Gaspar C, Haubruge E (2002) Is dimethyldecanal a common aggregation pheromone of Tribolium flour beetles? J Chem Ecol 28:523–532CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Arnold PA, Cassey P, White CR (2016) Maturity matters for movement and metabolic rate: trait dynamics across the early adult life of red flour beetles. Anim Behav 111:181–188Article 

    Google Scholar 
    Arnold PA, Cassey P, White CR (2017) Functional traits in red flour beetles: the dispersal phenotype is associated with leg length but not body size nor metabolic rate. Funct Ecol 31:653–661Article 

    Google Scholar 
    Assie LK, Brostaux Y, Haubruge E (2008) Density-dependent reproductive success in Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 44:285–289Article 

    Google Scholar 
    Attia FA, Tregenza T (2004) Divergence revealed by population crosses in the red flour beetle Tribolium castaneum. Evol Ecol Res 6:927–935
    Google Scholar 
    Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK et al. (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16Article 

    Google Scholar 
    Barr MM (2003) Super models. Physiol Genom 13:15–24CAS 
    Article 

    Google Scholar 
    Bell AE, Burris MJ (1973) Simultaneous selection for two correlated traits in Tribolium. Genet Res 21:29–46Article 

    Google Scholar 
    Bolker J (2012) Model organisms: there’s more to life than rats and flies. Nature 491:31–33CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev Camb Philos Soc 80:205–225PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Boyer JF (1976) The effects of prior environments on Tribolium castaneum. J Anim Ecol 45:865–874Article 

    Google Scholar 
    Brown SJ, Denell RE, Beeman RW (2003) Beetling around the genome. Genet Res 82:155–161CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Brown SJ, Shippy TD, Miller S, Bolognesi R, Beeman RW, Lorenzen MD et al. (2009) The red flour beetle, Tribolium castaneum (Coleoptera): a model for studies of development and pest biology Cold Spring Harb Protoc 2009:db.emo126Article 
    CAS 

    Google Scholar 
    Calabrese EJ (2013) Low doses of radiation can enhance insect lifespans. Biogerontology 14:365–381CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Campbell JF, Hagstrum DW (2002) Patch exploitation by Tribolium castaneum: movement patterns, distribution, and oviposition. J Stored Prod Res 38:55–68Article 

    Google Scholar 
    Campbell JF, Runnion C (2003) Patch exploitation by female red flour beetles, Tribolium castaneum. J Insect Sci 3:20CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapman RN (1918) The confused flour beetle (Tribolum confusum, Duval)Chapman RN (1928) The quantitative analysis of environmental factors. Ecology 9:111–122Article 

    Google Scholar 
    Chittenden FH (1896) Some insects injurious to stored grain. U.S. Department of Agriculture, WashingtonCostantino RF, Desharnais RA (1991) Population dynamics and the tribolium model: genetics and demography. Springer Science & Business Media, New YorkCostantino RF, Desharnais RA, Cushing JM, Dennis B, Henson SM, King AA (2005) Nonlinear stochastic population dynamics: the flour beetle Tribolium as an effective tool of discovery. Adv Ecol Res 37:101–141Article 

    Google Scholar 
    Coyne JA, Barton NH, Turelli M (2000) Is Wright’s shifting balance process important in evolution? Evolution 54:306–317CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Costantino RF, Cushing JM, Dennis B, Desharnais RA (1995) Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375:227–230Costantino RF, Desharnais RA, Cushing JM, Dennis B (1997) Chaotic Dynamics in an Insect Population. Science 275:389–391Craig DM, Mertz DB (1994) Inbreeding effects on competition in Tribolium. Res Popul Ecol 36:251–254Article 

    Google Scholar 
    Cushing JM, Costantino RF, Dennis B, Desharnais R, Henson SM (2002) Chaos in Ecology: Experimental Nonlinear Dynamics. Academic Press, San Diego CADaglish GJ, Ridley AW, Reid R, Walter GH (2017) Testing the consistency of spatio-temporal patterns of flight activity in the stored grain beetles Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). J Stored Prod Res 72:68–74Article 

    Google Scholar 
    Davey WP (1917) The effect of X-rays on the length of life of Tribolium confusum. J Exp Zool 22:573–592Article 

    Google Scholar 
    Dawson PS (1977) Life history strategy and evolutionary history of Tribolium flour beetles. Evolution 31:226–229PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Demont M, Grazer VM, Michalczyk Ł, Millard AL (2014) Experimental removal of sexual selection reveals adaptations to polyandry in both sexes. Evol Biol 41:62–70Demuth JP, Wade MJ (2007) Population differentiation in the beetle Tribolium castaneum. II. Haldane’s rule and incipient speciation. Evolution 61:694–699PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Denell R (2008) Establishment of Tribolium as a genetic model system and its early contributions to evo-devo. Genetics 180:1779–1786PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Desharnais RA, Costantino RF, Cushing JM, Henson SM, Dennis B (2001) Chaos and population control of insect outbreaks. Ecol Lett 4:229–235Desharnais RA, Reuman DC, Costantino RF, Cohen JE (2018) Temporal scale of environmental correlations affects ecological synchrony. Ecol Lett 21:1800–1811Dönitz J, Schmitt-Engel C, Grossmann D, Gerischer L, Tech M, Schoppmeier M et al. (2015) iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum. Nucleic Acids Res 43:D720–5PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Droge-Young EM, Belote JM, Perez GS, Pitnick S (2016) Resolving mechanisms of short-term competitive fertilization success in the red flour beetle. J Insect Physiol 93-94:1–10CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Drury DW, Jideonwo VN, Ehmke RC, Wade MJ (2011) An unusual barrier to gene flow: perpetually immature larvae from inter-population crosses in the flour beetle, Tribolium castaneum. J Evol Biol 24:2678–2686CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Drury DW, Siniard AL, Wade MJ (2009) Genetic differentiation among wild populations of Tribolium castaneum estimated using microsatellite markers. J Hered 100:732–741CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Drury DW, Whitesell ME, Wade MJ (2016) The effects of temperature, relative humidity, light, and resource quality on flight initiation in the red flour beetle, Tribolium castaneum. Entomol Exp Appl 158:269–274PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ducoff HS (1986) Radiation and longevity enhancement in Tribolium. In: Collatz K-G, Sohal RS (eds) Insect aging: strategies and mechanisms. Springer Berlin Heidelberg, Berlin, Heidelberg, p 73–89
    Google Scholar 
    Dunbrack RL, Coffin C, Howe R (1995) The cost of males and the paradox of sex – experimental investigation of the short-term competitive advantages of evoltion in sexual populations. Proc R Soc B-Biol Sci 262:45–49Article 

    Google Scholar 
    Eggert H, Diddens-de Buhr MF, Kurtz J (2015) A temperature shock can lead to trans-generational immune priming in the red flour beetle Tribolium castaneum. Ecol Evol 5:1318–1326PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    El-Aziz SEA (2011) Control strategies of stored product pests. J Entomol 8:101–122Article 

    Google Scholar 
    El-Desouky TA, Elbadawy SS, Hussain HBH, Hassan NA (2018) Impact of insect densities Tribolium castaneum on the benzoquinone secretions and aflatoxins levels in wheat flour during storage periods. Open Biotechnol J 12:104–111CAS 
    Article 

    Google Scholar 
    Ellen ED, Peeters K, Verhoeven M, Gols R, Harvey JA, Wade MJ et al. (2016) Direct and indirect genetic effects in life-history traits of flour beetles (Tribolium castaneum): Indirect genetic effects in Tribolium. Evolution 70:207–217PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Endriss SB, Vahsen ML, Bitume EV, Grey Monroe J, Turner KG, Norton AP et al. (2019) The importance of growing up: juvenile environment influences dispersal of individuals and their neighbours. Ecol Lett 22:45–55PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Fedina TY, Lewis SM (2008) An integrative view of sexual selection in Tribolium flour beetles. Biol Rev Camb Philos Soc 83:151–171PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Flinn PW, Campbell JF (2012) Effects of flour conditioning on cannibalism of T. castaneum eggs and pupae. Environ Entomol 41:1501–1504PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Franklin AD, Siewerdt F (2011) Post-bottleneck inbreeding accumulation reduces fitness and adaptive potential in populations of Tribolium castaneum under environmental stress. Genomics and Quantitative. Genetics 2:19–30
    Google Scholar 
    Godwin JL, Lumley AJ, Michalczyk L, Martin OY, Gage MJG (2020) Mating patterns influence vulnerability to the extinction vortex. Global Change Biology 26:4226–4239Godwin JL, Spurgin LG, Michalczyk Ł, Martin OY, Lumley AJ, Chapman T et al. (2018) Lineages evolved under stronger sexual selection show superior ability to invade conspecific competitor populations. Evol Lett 2:511–523PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Godwin JL, Vasudeva R, Michalczyk Ł, Martin OY, Lumley AJ, Chapman T et al. (2017) Experimental evolution reveals that sperm competition intensity selects for longer, more costly sperm. Evol Lett 1:102–113PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gokhale CS, Traulsen A, Joop G (2017) Social dilemma in the external immune system of the red flour beetle? It is a matter of time. Ecol Evol 7:6758–6765PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Good NE (1936) The flour beetles of the genus Tribolium. ageconsearch.umn.eduGrazer VM, Demont M, Michalczyk Ł, MJG Gage, Martin OY (2014) Environmental quality alters female costs and benefits of evolving under enforced monogamy. BMC Evol Biol 14:21PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurdasani K, Rafter MA, Daglish GJ, Walter GH (2018) Characterising the variables associated with Tribolium castaneum adults that initiate flight in laboratory tests – generating predictions for the field. J Stored Prod Res 79:123–131Article 

    Google Scholar 
    Gurdasani K, Rafter MA, Daglish GJ, Walter GH (2019) The dispersal flight of Tribolium castaneum—a field test of laboratory generated predictions. J Stored Prod Res 83:25–33Article 

    Google Scholar 
    Hagstrum DW, Smittle BJ (1980) Age- and sex-specific tunneling rates of adult Tribolium castaneum. Ann Entomol Soc Am 73:11–13Article 

    Google Scholar 
    Halle S, Nowizki A, Scharf I (2015) The consequences of parental age for development, body mass and resistance to stress in the red flour beetle. Biol J Linn Soc Lond 115:305–314Article 

    Google Scholar 
    Halliday WD, Blouin-Demers G (2017) A test of the thermal coadaptation hypothesis with ultimate measures of fitness in flour beetles. J Therm Biol 69:206–212PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Halliday WD, Blouin-Demers G (2018) Can temperature modify the strength of density-dependent habitat selection in ectotherms? A test with red flour beetles. J Zool 304:159–168Article 

    Google Scholar 
    Halliday WD, Bourque C, Blouin-Demers G (2019) Food quality influences density-dependent fitness, but not always density-dependent habitat selection, in red flour beetles (Coleoptera: Tenebrionidae). Can Entomol 151:728–737Article 

    Google Scholar 
    Halliday WD, Slevan-Tremblay I, Blouin-Demers G (2019) Do female red flour beetles assess both current and future competition during oviposition? J Insect Behav 32:181–187Article 

    Google Scholar 
    Hartmann S, Frigg R (2005) Scientific models. In: Sarkar Sahotra (ed.) The philosophy of science: an encyclopedia, Vol. 2, Routledge, LondonHaubruge E, Arnaud L (2001) Fitness consequences of malathion-specific resistance in red flour beetle (Coleoptera: Tenebrionidae) and selection for resistance in the absence of malathion. J Econ Entomol 94:552–557CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Henson SM, Costantino RF, Cushing JM, Desharnais RA, Dennis B, King AA (2001) Lattice effects observed in chaotic dynamics of experimental populations. Science 294:602–605Herndon N, Shelton J, Gerischer L, Ioannidis P, Ninova M, Dönitz J et al. (2020) Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genom 21:47CAS 
    Article 

    Google Scholar 
    Holman L, Jacomb F (2017) The effects of stress and sex on selection, genetic covariance, and the evolutionary response. J Evol Biol 30:1898–1909CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoste R (1968) The Use of Tribolium beetles for class practical work in genetics. J Biol Educ 2:365–372Article 

    Google Scholar 
    Hufbauer RA, Szűcs M, Kasyon E, Youngberg C, Koontz MJ, Richards C et al. (2015) Three types of rescue can avert extinction in a changing environment. Proc Natl Acad Sci USA 112:10557–10562CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Irwin KK, Carter PA (2014) Artificial selection on larval growth curves in Tribolium: correlated responses and constraints. J Evol Biol 27:2069–2079CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Izadi H, Mohammadzadeh M, Mehrabian M (2019) Cold tolerance of the Tribolium castaneum (Coleoptera: Tenebrionidae), under different thermal regimes: impact of cold acclimation. J Econ Entomol 112:1983–1988CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Jacomb F, Marsh J, Holman L (2016) Sexual selection expedites the evolution of pesticide resistance. Evolution 70:2746–2751PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Janus MC (1989) Phenotypic diversity of Tribolium confusum pupae in heterogeneous environments. Entomol Exp Appl 50:281–286Article 

    Google Scholar 
    Jasieński M, Korzeniak U, Łomnicki A (1988) Ecology of kin and nonkin larval interactions in Tribolium beetles. Behav Ecol Sociobiol 22:277–284Article 

    Google Scholar 
    Katz AJ, Enfield FD (1977) Response to selection for increased pupa weight in Tribolium castaneum as related to population structure*. Genet Res 30:237–246Article 

    Google Scholar 
    Kennedy BK (2008) The genetics of ageing: insight from genome-wide approaches in invertebrate model organisms. J Intern Med 263:142–152CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kerstes NAG, Martin OY (2014) Insect host-parasite coevolution in the light of experimental evolution. Insect Sci 21:401–414PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Khan I, Prakash A, Agashe D (2016) Divergent immune priming responses across flour beetle life stages and populations. Ecol Evol 6:7847–7855PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khan I, Prakash A, Issar S, Umarani M, Sasidharan R, Masagalli JN et al. (2018) Female density-dependent chemical warfare underlies fitness effects of group sex ratio in flour beetles. Am Nat 191:306–317Article 

    Google Scholar 
    Kim HS, Murphy T, Xia J, Caragea D, Park Y, Beeman RW et al. (2010) BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Res 38:D437–42CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    King AA, Costantino RF, Cushing JM, Henson SM, Desharnais RA, Dennis B (2004) Anatomy of a chaotic attractor: Subtle model-predicted patterns revealed in population data. P Natl Acad Sci USA 101:408–413King CE, Dawson PS (1972) Population biology and the Tribolium model. Evol Biol 1972:5
    Google Scholar 
    Koontz MJ, Oldfather MF, Melbourne BA, Hufbauer RA (2018) Parsing propagule pressure: Number, not size, of introductions drives colonization success in a novel environment. Ecol Evol 8:8043–8054PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lavie B, Ritte U (1980) Correlated effects of the response to conditioned medium in the flour beetle, Tribolium castaneum. Res Popul Ecol 21:228–232Article 

    Google Scholar 
    Leslie PH (1962) A stochastic model for two competing species of Tribolium and its application to some experimental data. Biometrika 49:1–25Article 

    Google Scholar 
    Lewis SM, Tigreros N, Fedina T, Ming QL (2012) Genetic and nutritional effects on male traits and reproductive performance in Tribolium flour beetles. J Evol Biol 25:438–451CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lewontin RC, Hubby JL (1966) A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54:595–609CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    López-Fanjul C, Jódar B (1977) The genetic properties of egg laying of virgin females of Tribolium castaneum. Heredity 39:251–258Article 

    Google Scholar 
    Lumley AJ, Michalczyk Ł, Kitson JJN, Spurgin LG, Morrison CA, Godwin JL et al. (2015) Sexual selection protects against extinction. Nature 522:470–473CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Martin CM, Kruse KC, Switzer PV (2015) Social experience affects same-sex pairing behavior in male red flour beetles (Tribolium castaneum Herbst). J Insect Behav 28:268–279Article 

    Google Scholar 
    Matsumura K, Archer CR, Hosken DJ, Miyatake T (2019) Artificial selection on walking distance suggests a mobility-sperm competitiveness trade-off. Behav EcolMatsumura K, Miyatake T (2015) Differences in attack avoidance and mating success between strains artificially selected for dispersal distance in Tribolium castaneum. PLoS ONE 10:e0127042PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Matsumura K, Miyatake T (2019) Lines selected for different durations of tonic immobility have different leg lengths in the red flour beetle Tribolium castaneum. Behaviour 157:17–31Article 

    Google Scholar 
    Mayes PA, Englert DC (1984) Interstrain differences for larval dispersal and egg cannibalism in the flour beetle, Tribolium castaneum. Can J Genet Cytol 26:420–424Article 

    Google Scholar 
    McCauley DE, Wade MJ (1981) The populational effects of inbreeding in Tribolium. Heredity 46:59–67Article 

    Google Scholar 
    McCulloch GA, Mohankumar S, Subramanian S, Rajan TS, Rahul C, Surendran R et al. (2019) Contrasting patterns of phylogeographic structuring in two key beetle pests of stored grain in India and Australia. J Pest Sci 92:1249–1259Article 

    Google Scholar 
    McNemee R, Marshall J (2018) Temperature stressed males are less attractive to female red flour beetles. In: Proceeding of 3rd Entomology Undergraduate Research Poster Symposium. Kansas State University, Department of Entomology, Manhattan, KSMelbourne BA, Hastings A (2009) Highly variable spread rates in replicated biological invasions: fundamental limits to predictability. Science 325:1536–1539CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mertz DB (1972) The Tribolium model and the mathematics of population growth. Annu Rev Ecol Syst 3:51–78Article 

    Google Scholar 
    Mertz DB (1975) Senescent decline in flour beetle strains selected for early adult fitness. Physiol Zool 48:1–23Article 

    Google Scholar 
    Mertz DB, Cawthon DA, Park T (1976) An experimental analysis of competitive indeterminacy in Tribolium. Proc Natl Acad Sci USA 73:1368–1372CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mertz DB, Robertson JR (1970) Some developmental consequences of handling, egg-eating, and population density for flour beetle larvae. Ecology 51:989–998Article 

    Google Scholar 
    Michalczyk Ł, Millard AL, Martin OY, Lumley AJ, Emerson BC, Chapman T et al. (2011) Inbreeding promotes female promiscuity. Science 333:1739–1742CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ming Q-L, Lewis SM (2010) Pheromone production by male Tribolium castaneum (Coleoptera: Tenebrionidae) is influenced by diet quality. J Econ Entomol 103:1915–1919PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Miyatake T, Katayama K, Takeda Y, Nakashima A, Sugita A, Mizumoto M (2004) Is death-feigning adaptive? Heritable variation in fitness difference of death-feigning behaviour. Proc R Soc B-Biol Sci 271:2293–2296Müller B, Grossniklaus U (2010) Model organisms–a historical perspective. J Proteom 73:2054–2063Article 
    CAS 

    Google Scholar 
    Naylor AF (1965) Dispersal responses of female flour beetles, Tribolium confusum, to presence of larvae. Ecology 46:341–343Article 

    Google Scholar 
    Orozco F, Bell AE (1974) A genetic study of egg laying of Tribolium in optimal and stress environments. Can J Genet Cytol 16:49–60CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pai A, Bernasconi G (2008) Polyandry and female control: the red flour beetle Tribolium castaneum as a case study. J Exp Zool B Mol Dev Evol 310:148–159PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pai A, Yan G (2002) Female mate choice in relation to heterozygosity in Tribolium castaneum: female mate choice and heterozygosity. J Evol Biol 15:1076–1082Article 

    Google Scholar 
    Park T (1932) Studies in population physiology: the relation of numbers to initial population growth in the flour beetle Tribolium confusum Duval. Ecology 13:172–181Article 

    Google Scholar 
    Park T (1934) Observations on the general biology of the flour beetle, Tribolium confusum. Q Rev Biol 9:36–54Article 

    Google Scholar 
    Park T (1962) Beetles, competition, and populations. Science 138:1369–1375CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Park T, Leslie PH, Mertz DB (1964) Genetic strains and competition in populations of Tribolium. Physiol Zool 37:97–162Article 

    Google Scholar 
    Park T, Lloyd M (1955) Natural selection and the outcome of competition. Am Nat 89:235–240Article 

    Google Scholar 
    Park T, Mertz DB, Grodzinski W, Prus T (1965) Cannibalistic predation in populations of flour beetles. Physiol Zool 38:289–321Article 

    Google Scholar 
    Park T, Miller EV, Lutherman CZ (1939) Studies in population physiology. IX. The effect of imago population density on the duration of the larval and pupal stages of Tribolium confusum Duval. Ecology 20:365–373Article 

    Google Scholar 
    Perkin LC, Oppert B (2019) Gene expression in Tribolium castaneum life stages: Identifying a species-specific target for pest control applications. PeerJ 7:e6946PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pray LA (1997) The effect of inbreeding on population-level genetic correlations in the red flour beetle Tribolium castaneum. Evolution 51:614–619PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pray LA, Goodnight CJ (1995) Genetic variation in inbreeding depression in the red flour beetle Tribolium castaneum. Evolution 49:176–188PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pray LA, Goodnight CJ, Stevens L, Schwartz JM, Yan G (1996) The effect of population size on effective population size: an empirical study in the red flour beetle Tribolium castaneum. Genet Res 68:151–155Article 

    Google Scholar 
    Pray LA, Schwartz JM, Goodnight CJ, Stevens L (1994) Environmental dependency of inbreeding depression: implications for conservation biology. Conserv Biol 8:562–568Article 

    Google Scholar 
    Prendeville HR, Stevens L (2002) Microbe inhibition by Tribolium flour beetles varies with beetle species, strain, sex, and microbe group. J Chem Ecol 28:1183–1190CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Prokop ZM, Hlebowicz K, Gaczorek TS, Antol WM, Martin OY, Gage MJG et al. (2019) No evidence for short-term purging benefits of sexual selection in inbred red flour beetle populations. J Zool 307:178–185Article 

    Google Scholar 
    Prus T (1963) Search for methods to investigate mobility in Tribolium. Ecology 44:801–803Article 

    Google Scholar 
    Rafter MA, Muralitharan V, Chandrasekaran S, Mohankumar S, Daglish GJ, Loganathan M et al. (2019) Behaviour in the presence of resource excess—flight of Tribolium castaneum around heavily-infested grain storage facilities. J Pest Sci 92:1227–1238Article 

    Google Scholar 
    Rajan TS, Muralitharan V, Daglish GJ, Mohankumar S, Rafter MA, Chandrasekaran S et al. (2018) Flight of three major insect pests of stored grain in the monsoonal tropics of India, by latitude, season and habitat. J Stored Prod Res 76:43–50Article 

    Google Scholar 
    Reuman DC, Costantino RF, Desharnais RA, Cohen JE (2008) Colour of environmental noise affects the nonlinear dynamics of cycling, stage-structured populations. Ecol Lett 11:820–830PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Rich SS, Bell AE, Wilson SP (1979) Genetic drift in small populations of Tribolium. Evolution 33:579–584CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ritte U, Agur Z (1977) Variability for dispersal behavior in a wild population of Tribolium castaneum. Tribolium Inf Bull 20:122–131Robinson T, Johnson NA, Wade MJ (1994) Postcopulatory, prezygotic isolation: intraspecific and interspecific sperm precedence in Tribolium spp., flour beetles. Heredity 73(Pt 2):155–159PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Sales K, Trent T, Gardner J, Lumley AJ, Vasudeva R (2018) Experimental evolution with an insect model reveals that male homosexual behaviour occurs due to inaccurate mate choice. Anim BehavSales K, Vasudeva R, Dickinson ME, Godwin JL, Lumley AJ, Michalczyk Ł et al. (2018) Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat Commun 9:4771PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sbilordo SH, Gräzer VM (2011) Impacts of starvation on male reproductive success in Tribolium castaneum. Evol Ecol Res 13:347–359Schamber EM, Muir WM (2001) Wright’s shifting balance theory of evolution in artificial breeding programmes: empirical testing using the model organism Tribolium castaneum. J Anim Breed Genet-Z Fur Tierz Und Zuchtungsbiologie 118:181–188Article 

    Google Scholar 
    Scharf I, Galkin N, Halle S (2015) Disentangling the consequences of growth temperature and adult acclimation temperature on starvation and thermal tolerance in the red flour beetle. Evol Biol 42:54–62Article 

    Google Scholar 
    Schlager G (1960) Sperm Precedence in the Fertilization of Eggs in Tribolium castaneum. Ann Entomol Soc Am 53:557–560Article 

    Google Scholar 
    Schlötterer C, Kofler R, Versace E, Tobler R, Franssen SU (2015) Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity 114:431–440PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Shen J-F, Cheng C, Ming Q-L (2016) Study on reproductive isolation between Tribolium castaneum and T. confusum. J Environ Entomol 3:508–513Shostak AW, Van Buuren KG, Cook R (2015) Response of flour beetles to multiple stressors of parasitic (Hymenolepis diminuta), environmental (Diatomaceous Earth), and host (Reproduction) origin. J Parasitol 101:405–417PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Sinha RN (1966) Development and mortality of Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae) on seed-borne fungi. Ann Entomol Soc Am 59:192–201Article 

    Google Scholar 
    Sokal RR, Sonleitner FJ (1968) The ecology of selection in hybrid populations of Tribolium castaneum. Ecol Monogr 38:345–379Article 

    Google Scholar 
    Sokoloff A (1977) The biology of Tribolium with special emphasis on genetic aspects. Volume 3. Clarendon Press, OxfordSokoloff A, Franklin IR, Overton LF, Ho FK (1966) Comparative studies with Tribolium (Coleoptera, Tenebrionidae)—I: Productivity of T. castaneum (Herbst) and T. confusum Duv. on several commercially-available diets. J Stored Prod Res 1:295–311Article 

    Google Scholar 
    Soliman MH (1972) Correlated response to natural selection in laboratory populations of Tribolium castaneum. Can J Genet Cytol 15:971–978CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Soliman MH (1987) Ageing and parental age effects in Tribolium (review). Arch Gerontol Geriatr 6:43–60CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Soliman MH, Lints FA (1975) Longevity, growth rate and related traits among strains of Tribolium castaneum. Gerontologia 21:102–116CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Sommer RJ (2009) The future of evo-devo: model systems and evolutionary theory. Nat Rev Genet 10:416–422CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Sonleitner FJ, Gutherie J (1991) Factors affecting oviposition rate in the flour beetle Tribolium castaneum and the origin of the population regulation mechanism. Res Popul Ecol 33:1–11Article 

    Google Scholar 
    South A, Sirot LK, Lewis SM (2011) Identification of predicted seminal fluid proteins in Tribolium castaneum. Insect Mol Biol 20:447–456CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the allee effect? Oikos 87:185–190Stevens L (1989) The genetics and evolution of cannibalism in flour beetles (genus Tribolium). Evolution 43:169–179PubMed 
    PubMed Central 

    Google Scholar 
    Stevenson BJ, Cai L, Faucher C, Michie M, Berna A, Ren Y et al. (2017) Walking responses of Tribolium castaneum (Coleoptera: Tenebrionidae) to Its aggregation pheromone and odors of wheat infestations. J Econ Entomol 110:1351–1358CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stewart GS, Morris MR, Genis AB, Szűcs M, Melbourne BA, Tavener SJ et al. (2017) The power of evolutionary rescue is constrained by genetic load. Evol Appl 10:731–741PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stork NE, McBroom J, Gely C, Hamilton AJ (2015) New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc Natl Acad Sci USA 112:7519–7523CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Surtees G (1963) Laboratory studies on dispersion behaviour of adult beetles in grain. III.—Tribolium castaneum (Hbst.) (Coleoptera, Tenebrionidae) and Cryptolestes ferrugineus (Steph.) (Coleoptera, Cucujidae). Bull Entomol Res 54:297–306Article 

    Google Scholar 
    Suzuki T (1980) 4,8-Dimethyldecanal: the aggregation pheromone of the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). Agric Biol Chem 44:2519–2520CAS 

    Google Scholar 
    Szűcs M, Melbourne BA, Tuff T, Hufbauer RA (2014) The roles of demography and genetics in the early stages of colonization. Proc R Soc B-Biol Sci 281:20141073Szűcs M, Melbourne BA, Tuff T, Weiss-Lehman C, Hufbauer RA (2017) Genetic and demographic founder effects have long-term fitness consequences for colonising populations. Ecol Lett 20:436–444PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Szűcs M, Vahsen ML, Melbourne BA, Hoover C, Weiss-Lehman C, Hufbauer RA (2017) Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc Natl Acad Sci USA 114:13501–13506PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Tigreros N, Lewis SM (2011) Direct and correlated responses to artificial selection on sexual size dimorphism in the flour beetle, Tribolium castaneum. J Evol Biol 24:835–842CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Tribolium Genome Sequencing Consortium, Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R et al. (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955Article 
    CAS 

    Google Scholar 
    Vahsen ML, Shea K, Hovis CL, Teller BJ, Hufbauer RA (2018) Prior adaptation, diversity, and introduction frequency mediate the positive relationship between propagule pressure and the initial success of founding populations. Biol Invasions 20:2451–2459Article 

    Google Scholar 
    Van Allen BG, Bhavsar P (2014) Natal habitat effects drive density-dependent scaling of dispersal decisions. Oikos 123:699–704Article 

    Google Scholar 
    Van Allen BG, Rudolf VHW (2013) Ghosts of habitats past: environmental carry-over effects drive population dynamics in novel habitat. Am Nat 181:596–608PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Van Allen BG, Rudolf VHW (2015) Habitat-mediated carry-over effects lead to context-dependent outcomes of species interactions. J Anim Ecol 84:1646–1656PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Vasudeva R, Sutter A, Sales K, Dickinson ME, Lumley AJ, Gage MJ (2019) Adaptive thermal plasticity enhances sperm and egg performance in a model insect. Elife 8:e49452Verheggen F, Ryne C, Olsson POC, Arnaud L, Lognay G, Högberg HE et al. (2007) Electrophysiological and behavioral activity of secondary metabolites in the confused flour beetle, Tribolium confusum. J Chem Ecol 33:525–539CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Via S (1999) Cannibalism facilitates the use of a novel environment in the flour beetle, Tribolium castaneum. Heredity 82(Pt 3):267–275PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wade MJ (1980a) Effective population size: the effects of sex, genotype, and density on the mean and variance of offspring numbers in the flour beetle, Tribolium castaneum. Genet Res 36:1–10Article 

    Google Scholar 
    Wade MJ (1980b) An experimental study of kin selection. Evolution 34:844–855PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wade MJ, Beeman RW (1994) The population dynamics of maternal-effect selfish genes. Genetics 138:1309–1314CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wade MJ, Chang NW, Mcnaughton M (1995) Incipient speciation in the flour beetle, Tribolium confusum – premating isolation between natural populations. Heredity 75:453–459PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wade MJ, Goodnight CJ (1998) Perspective: the theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52:1537–1553PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wade MJ, Johnson NA (1994) Reproductive isolation between two species of flour beetles, Tribolium castaneum and T. freemani: variation within and among geographical populations of T. castaneum. Heredity 72(Pt 2):155–162PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wade MJ, Johnson NA, Jones R, Siguel V, McNaughton M (1997) Genetic variation segregating in natural populations of Tribolium castaneum affecting traits observed in hybrids with T. freemani. Genetics 147:1235–1247CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wade MJ, Shuster SM, Stevens L (1996) Inbreeding: its effect on response to selection for pupal weight and the heritable variance in fitness in the flour beetle, Tribolium castaneum. Evolution 50:723–733PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weiss-Lehman C, Tittes S, Kane NC, Hufbauer RA, Melbourne BA (2019) Stochastic processes drive rapid genomic divergence during experimental range expansions. Proc R Soc B-Biol Sci 286:20190231Wexler Y, Scharf I (2017) Distinct effects of two separately applied stressors on behavior in the red flour beetle. Behav Process 145:86–92Article 

    Google Scholar 
    Wexler Y, Subach A, Pruitt JN, Scharf I (2016) Behavioral repeatability of flour beetles before and after metamorphosis and throughout aging. Behav Ecol Sociobiol 70:745–753Article 

    Google Scholar 
    Wexler Y, Wertheimer K-O, Subach A, Pruitt JN, Scharf I (2017) Mating alters the link between movement activity and pattern in the red flour beetle: the effects of mating on behaviour. Physiol Entomol 42:299–306Article 

    Google Scholar 
    Williams GC (1975) Sex and evolution. Princeton University Press, Princeton NJWinther RG, Giordano R, Edge MD, Nielsen R (2015) The mind, the lab, and the field: three kinds of populations in scientific practice. Stud Hist Philos Biol Biomed Sci 52:12–21PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wong N, Lee C-Y (2011) Relationship between population growth of the red flour beetle Tribolium castaneum and protein and carbohydrate content in flour and starch. J Econ Entomol 104:2087–2094CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection in evolution. naWright S, Dobzhansky T (1946) Genetics of natural populations; experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics 31:125–156CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yamada Y (1974) Tribolium as a biological model in quantitative genetics. 1st World Congress on Genetics Applied to Livestock Production, Proc 1:439–450Yamauchi H, Harada M, Miyanoshita A (2018) Polymorphism observed in mitochondrial genes of red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae) of different origin in laboratory cultures. Biosci Biotechnol Biochem 82:229–231CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Yan G, Stevens L, Goodnight CJ, Schall JJ (1998) Effects of a tapeworm parasite on the competition of Tribolium beetles. Ecology 79:1093–1103Article 

    Google Scholar 
    Yezerski A, Gilmor TP, Stevens L (2004) Genetic analysis of benzoquinone production in Tribolium confusum. J Chem Ecol 30:1035–1044CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Young AM (1970) Predation and abundance in populations of flour beetles. Ecology 51:602–619Article 

    Google Scholar 
    Ziegler JR (1972) Maintenance and regulation of unconfined populations of Tribolium, the flour beetle. University of Chicago, ChicagoZiegler JR (1976) Evolution of the migration response: emigration by Tribolium and the influence of age. Evolution 30:579–592PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ziegler JR (1977) Dispersal and reproduction in Tribolium: the influence of food level. J Insect Physiol 23:955–960Article 

    Google Scholar 
    Ziegler JR (1978) Dispersal and reproduction in Tribolium: the influence of initial density. Environ Entomol 7:149–156Article 

    Google Scholar 
    Zirkle DF, Dawson PS, Lavie B (1988) An experimental analysis of the genetic relationships among life-history traits and emigration behavior in Tribolium castaneum. Oikos 53:391–397Article 

    Google Scholar 
    Zromska-Rudzka H (1966) Abundance and emigrations of Tribolium in a laboratory model. Ekol Polska, Seria A 14: 491–518 More

  • in

    Exposure to low doses of pesticides induces an immune response and the production of nitric oxide in honeybees

    1.Genersch, E. Honey bee pathology: Current threats to honey bees and beekeeping. Appl. Microbiol. Biotechnol. 87, 87–97. https://doi.org/10.1007/s00253-010-2573-8 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 108, 662–667. https://doi.org/10.1073/pnas.1014743108 (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    3.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    5.Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).CAS 
    Article 

    Google Scholar 
    6.Vilcinskas, A. Pathogens associated with invasive or introduced insects threaten the health and diversity of native species. Curr. Opin. Insect. Sci. 33, 43–48. https://doi.org/10.1016/j.cois.2019.03.004 (2019).Article 
    PubMed 

    Google Scholar 
    7.Sandrock, C. et al. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS ONE 9, e103592. https://doi.org/10.1371/journal.pone.0103592 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Genersch, E. et al. The German bee monitoring project: A long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352. https://doi.org/10.1051/apido/2010014 (2010).CAS 
    Article 

    Google Scholar 
    9.Meixner, M. D. & Le Conte, Y. A current perspective on honey bee health. Apidologie 47, 273–275. https://doi.org/10.1007/s13592-016-0449-3 (2016).Article 

    Google Scholar 
    10.Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Retschnig, G. et al. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment. Environ. Microbiol. 17, 4322–4331. https://doi.org/10.1111/1462-2920.12825 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Rolke, D., Fuchs, S., Grünewald, B., Gao, Z. & Blenau, W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: Effects on honey bees (Apis mellifera). Ecotoxicology 25, 1648–1665. https://doi.org/10.1007/s10646-016-1725-8 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395. https://doi.org/10.1126/science.aaa1190 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Siede, R. et al. Performance of honey bee colonies under a long-lasting dietary exposure to sublethal concentrations of the neonicotinoid insecticide thiacloprid. Pest. Manag. Sci. 73, 1334–1344. https://doi.org/10.1002/ps.4547 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Odemer, R., Nilles, L., Linder, N. & Rosenkranz, P. Sublethal effects of clothianidin and Nosema spp. on the longevity and foraging activity of free flying honey bees. Ecotoxicology 27, 527–538. https://doi.org/10.1007/s10646-018-1925-5 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Han, P., Niu, C. Y., Lei, C. L., Cui, J. J. & Desneux, N. Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19, 1612–1619. https://doi.org/10.1007/s10646-010-0546-4 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Henry, M. et al. A common pesticide decreases foraging success and survival in honey bees. Science 336, 348–350. https://doi.org/10.1126/science.1215039 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Decourtye, A. et al. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic. Biochem. Physiol. 78, 83–92. https://doi.org/10.1016/j.pestbp.2003.10.001 (2004).CAS 
    Article 

    Google Scholar 
    19.Bartling, M. T., Vilcinskas, A. & Lee, K. Z. Sub-lethal doses of clothianidin inhibit the conditioning and biosensory abilities of the western honeybee Apis mellifera. Insects https://doi.org/10.3390/insects10100340 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Yang, E. C., Chang, H. C., Wu, W. Y. & Chen, Y. W. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS ONE 7, e49472. https://doi.org/10.1371/journal.pone.0049472 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12, 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Aufauvre, J. et al. Parasite-insecticide interactions: A case study of Nosema ceranae and fipronil synergy on honeybee. Sci. Rep. 2, 326. https://doi.org/10.1038/srep00326 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Pettis, J. S., vanEngelsdorp, D., Johnson, J. & Dively, G. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99, 153–158. https://doi.org/10.1007/s00114-011-0881-1 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. & Paxton, R. J. Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17, 969–983. https://doi.org/10.1111/1462-2920.12426 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. USA 110, 18466–18471. https://doi.org/10.1073/pnas.1314923110 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Brochu, K. K. et al. Pollen defenses negatively impact foraging and fitness in a generalist bee (Bombus impatiens: Apidae). Sci. Rep. 10, 3112. https://doi.org/10.1038/s41598-020-58274-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: How systematic depletion of key symbionts erodes immunity. Trends Microbiol. https://doi.org/10.1016/j.tim.2020.06.006 (2020).Article 
    PubMed 

    Google Scholar 
    28.Barribeau, S. M. et al. A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol. 16, 83. https://doi.org/10.1186/s13059-015-0628-y (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.López-Uribe, M. M., Sconiers, W. B., Frank, S. D., Dunn, R. R. & Tarpy, D. R. Reduced cellular immune response in social insect lineages. Biol. Lett. 12, 20150984. https://doi.org/10.1098/rsbl.2015.0984 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Berenbaum, M. R. & Johnson, R. M. Xenobiotic detoxification pathways in honey bees. Curr. Opin. Insect Sci. 10, 51–58. https://doi.org/10.1016/j.cois.2015.03.005 (2015).Article 
    PubMed 

    Google Scholar 
    31.Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743. https://doi.org/10.1146/annurev.immunol.25.022106.141615 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Müller, U., Vogel, P., Alber, G. & Schaub, G. A. The innate immune system of mammals and insects. Contrib. Microbiol. 15, 21–44. https://doi.org/10.1159/000135684 (2008).Article 
    PubMed 

    Google Scholar 
    33.Wilmes, M., Cammue, B. P., Sahl, H. G. & Thevissen, K. Antibiotic activities of host defense peptides: More to it than lipid bilayer perturbation. Nat. Prod. Rep. 28, 1350–1358. https://doi.org/10.1039/c1np00022e (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Wu, Q., Patocka, J. & Kuca, K. Insect antimicrobial peptides: A mini review. Toxins https://doi.org/10.3390/toxins10110461 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Rahnamaeian, M. et al. Insect antimicrobial peptides show potentiating functional interactions against gram-negative bacteria. Proc. Biol. Sci. 282, 20150293. https://doi.org/10.1098/rspb.2015.0293 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Rivero, A. Nitric oxide: An antiparasitic molecule of invertebrates. Trends Parasitol. 22, 219–225. https://doi.org/10.1016/j.pt.2006.02.014 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Wink, D. A. & Mitchell, J. B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 25, 434–456. https://doi.org/10.1016/s0891-5849(98)00092-6 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Gebicka, L. & Didik, J. Catalytic scavenging of peroxynitrite by catalase. J. Inorg. Biochem. 103, 1375–1379. https://doi.org/10.1016/j.jinorgbio.2009.07.011 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Brunelli, L., Yermilov, V. & Beckman, J. S. Modulation of catalase peroxidatic and catalatic activity by nitric oxide. Free Radic. Biol. Med. 30, 709–714. https://doi.org/10.1016/s0891-5849(00)00512-8 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Brunelli, L., Crow, J. P. & Beckman, J. S. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch. Biochem. Biophys. 316, 327–334. https://doi.org/10.1006/abbi.1995.1044 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Wells, P. G. et al. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab. Dispos. 32, 281–290. https://doi.org/10.1124/dmd.32.3.281 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Schmid, M. R., Brockmann, A., Pirk, C. W., Stanley, D. W. & Tautz, J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 54, 439–444. https://doi.org/10.1016/j.jinsphys.2007.11.002 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Wilson-Rich, N., Dres, S. T. & Starks, P. T. The ontogeny of immunity: Development of innate immune strength in the honey bee (Apis mellifera). J. Insect Physiol. 54, 1392–1399. https://doi.org/10.1016/j.jinsphys.2008.07.016 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Bull, J. C. et al. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLoS Pathog 8, e1003083. https://doi.org/10.1371/journal.ppat.1003083 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Suazo, A., Torto, B., Teal, P. E. A. & Tumlinson, J. H. Response of the small hive beetle (Aethina tumida) to honey bee (Apis mellifera) and beehive-produced volatiles. Apidologie 34, 525–533. https://doi.org/10.1051/apido:2003043 (2003).Article 

    Google Scholar 
    46.Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).CAS 
    Article 

    Google Scholar 
    47.Schott, M. et al. Honeybee colonies compensate for pesticide-induced effects on royal jelly composition and brood survival with increased brood production. Sci. Rep. 11, 62. https://doi.org/10.1038/s41598-020-79660-w (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Crossthwaite, A. J. et al. The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. J. Pestic. Sci. 42, 67–83. https://doi.org/10.1584/jpestics.D17-019 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Liu, Y. J. et al. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J. Hazard Mater. 389, 121818. https://doi.org/10.1016/j.jhazmat.2019.121818 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Vidau, C. et al. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS ONE 6, e21550. https://doi.org/10.1371/journal.pone.0021550 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Dickel, F., Munch, D., Amdam, G. V., Mappes, J. & Freitak, D. Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS ONE 13, e0191256. https://doi.org/10.1371/journal.pone.0191256 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Mattson, M. P. Hormesis defined. Ageing Res. Rev. 7, 1–7. https://doi.org/10.1016/j.arr.2007.08.007 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Pilling, E. D. & Jepson, P. C. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39, 293–297. https://doi.org/10.1002/ps.2780390407 (1993).CAS 
    Article 

    Google Scholar 
    54.Neagu, A. et al. Expression signature of some immunity genes triggered in Apis mellifera carpatica model by Pseudomonas entomophila experimental infection. Roum. Arch. Microbiol. Immunol. 18, 18–24 (2016).
    Google Scholar 
    55.Bogdan, C., Rollinghoff, M. & Diefenbach, A. The role of nitric oxide in innate immunity. Immunol. Rev. 173, 17–26. https://doi.org/10.1034/j.1600-065x.2000.917307.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.DeGrandi-Hoffman, G. & Chen, Y. Nutrition, immunity and viral infections in honey bees. Curr. Opin. Insect Sci. 10, 170–176. https://doi.org/10.1016/j.cois.2015.05.007 (2015).Article 
    PubMed 

    Google Scholar 
    57.Zhao, J. Interplay among nitric oxide and reactive oxygen species: A complex network determining cell survival or death. Plant Signal Behav. 2, 544–547. https://doi.org/10.4161/psb.2.6.4802 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Sadekuzzaman, M., Stanley, D. & Kim, Y. Nitric Oxide mediates insect cellular immunity via Phospholipase A2 activation. J. Innate Immun. 10, 70–81. https://doi.org/10.1159/000481524 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Nappi, A. J., Vass, E., Frey, F. & Carton, Y. Nitric oxide involvement in Drosophila immunity. Nitric Oxide 4, 423–430. https://doi.org/10.1006/niox.2000.0294 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Kim, S. H. & Lee, W. J. Role of DUOX in gut inflammation: Lessons from Drosophila model of gut-microbiota interactions. Front. Cell. Infect. Microbiol. 3, 116. https://doi.org/10.3389/fcimb.2013.00116 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850. https://doi.org/10.1126/science.1117311 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Chmiel, J. A., Daisley, B. A., Burton, J. P. & Reid, G. Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. mBio https://doi.org/10.1128/mBio.01395-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Ozcan, A. & Ogun, M. Biochemistry of reactive oxygen and nitrogen species. Basic Princ. Clin. Signif. Oxid. Stress https://doi.org/10.5772/61193 (2015).Article 

    Google Scholar 
    64.Sadekuzzaman, M. & Kim, Y. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling. PLoS ONE 13, e0193282. https://doi.org/10.1371/journal.pone.0193282 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Foley, E. & O’Farrell, P. H. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev. 17, 115–125. https://doi.org/10.1101/gad.1018503 (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Hsieh, H. J., Liu, C. A., Huang, B., Tseng, A. H. & Wang, D. L. Shear-induced endothelial mechanotransduction: The interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 21, 3. https://doi.org/10.1186/1423-0127-21-3 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Lee, K. A. et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797–811. https://doi.org/10.1016/j.cell.2013.04.009 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Negri, P. et al. Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie 44, 575–585. https://doi.org/10.1007/s13592-013-0207-8 (2013).CAS 
    Article 

    Google Scholar 
    69.Negri, P. et al. Apis mellifera hemocytes generate increased amounts of nitric oxide in response to wounding/encapsulation. Apidologie 45, 610–617. https://doi.org/10.1007/s13592-014-0279-0 (2014).CAS 
    Article 

    Google Scholar 
    70.Mehta, S. K. & Gowder, S. J. T. Members of antioxidant machinery and their functions. IntechOpen. https://doi.org/10.5772/61884 (2015).Article 

    Google Scholar 
    71.Werck-Reichhart, D. & Feyereisen, R. Cytochromes P450: A success story. Genome. Biol. https://doi.org/10.1186/gb-2000-1-6-reviews3003 (2000).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Anzenbacher, P. & Anzenbacherova, E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol. Life Sci. 58, 737–747. https://doi.org/10.1007/pl00000897 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Manjon, C. et al. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr. Biol. 28, 1137–1143. https://doi.org/10.1016/j.cub.2018.02.045 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Thimmegowda, G. G. et al. A field-based quantitative analysis of sublethal effects of air pollution on pollinators. Proc. Natl. Acad. Sci. U S A 117, 20653–20661. https://doi.org/10.1073/pnas.2009074117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Zheng, L. et al. Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa. Front. Plant Sci. 6, 678. https://doi.org/10.3389/fpls.2015.00678 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Jiang, J., Shi, Y., Yu, R., Chen, L. & Zhao, X. Biological response of zebrafish after short-term exposure to azoxystrobin. Chemosphere 202, 56–64. https://doi.org/10.1016/j.chemosphere.2018.03.055 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Rodrigues, N. R. et al. Short-term sleep deprivation with exposure to nocturnal light alters mitochondrial bioenergetics in Drosophila. Free Radic. Biol. Med. 120, 395–406. https://doi.org/10.1016/j.freeradbiomed.2018.04.549 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Brandt, A. et al. Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L. Sci. Rep. 10, 4670. https://doi.org/10.1038/s41598-020-61445-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Brandt, A. et al. Immunosuppression in honeybee queens by the neonicotinoids thiacloprid and clothianidin. Sci. Rep. 7, 4673. https://doi.org/10.1038/s41598-017-04734-1 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Buchler, R. The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect Physiol. 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Schlüns, H. & Crozier, R. H. Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Mol. Biol. 16, 753–759. https://doi.org/10.1111/j.1365-2583.2007.00768.x (2007).Article 
    PubMed 

    Google Scholar 
    82.Carreck, N. L. & Ratnieks, F. L. W. The dose makes the poison: Have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies?. J. Apic. Res. 53, 607–614. https://doi.org/10.3896/ibra.1.53.5.08 (2015).Article 

    Google Scholar 
    83.Schott, M. et al. Temporal dynamics of whole body residues of the neonicotinoid insecticide imidacloprid in live or dead honeybees. Sci. Rep. 7, 6288. https://doi.org/10.1038/s41598-017-06259-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Cullen, M. G., Thompson, L. J., Carolan, J. C., Stout, J. C. & Stanley, D. A. Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE 14, e0225743. https://doi.org/10.1371/journal.pone.0225743 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Han, J. et al. Marine copepod cytochrome P450 genes and their applications for molecular ecotoxicological studies in response to oil pollution. Mar. Pollut. Bull. 124, 953–961. https://doi.org/10.1016/j.marpolbul.2016.09.048 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    86.Regoli, F. et al. Oxidative stress in ecotoxicology: From the analysis of individual antioxidants to a more integrated approach. Mar. Environ. Res. 54, 419–423. https://doi.org/10.1016/s0141-1136(02)00146-0 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    87.Sheehan, G., Farrell, G. & Kavanagh, K. Immune priming: The secret weapon of the insect world. Virulence 11, 238–246. https://doi.org/10.1080/21505594.2020.1731137 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Therneau, T. A Package for Survival Analysis in R. R package version 3.2–7. (2020). More

  • in

    Seasonal patterns of bison diet across climate gradients in North America

    General patterns of dietary quality and compositionAveraged across the months, site-level [CP] ranged from 62.6 to 147.3 mg g−1 and averaged 96.7 ± 3.3 mg g−1. [DOM] ranged from 571.3 to 643.6 mg g−1 and averaged 605.8 ± 2.4 mg g−1 while [DOM]: [CP] ranged from 4.4 to 10.3 with an average of 6.9 ± 0.2.Examining seasonal patterns averaged across all sites, [CP] averaged 82.5 ± 5.4 mg g−1 in April, peaked at 113.2 ± 3.3 mg g−1 in June, and declined to 80.6 ± 4.5 mg g−1 in September (Supplementary Table S1, Fig. 2). Similarly, [DOM] averaged 583.0 ± 6.1 mg g−1 in April, peaked at 630.2 ± 3.4 mg g−1 in June, and declined to 585.1 ± 4.2 mg g−1 by September (Supplementary Table S1, Fig. 2). [DOM]: [CP] averaged 8.1 ± 0.5 in April, declined to 5.8 ± 0.2 in June, and increased to 8.1 ± 0.4 by September (Supplementary Table S1, Fig. 2).Figure 22019 monthly dietary quality metrics averaged (± S.E.) across all sites. Shown are (a) crude protein concentrations ([CP]), (b) digestible organic matter concentrations ([DOM]), and (c) the ratio between [DOM] and [CP].Full size imageExamining dietary functional group composition across sites, on average 38.2 ± 2.6% of dietary protein intake came from grasses, ranging from 12.7 to 82.2% across sites. Examining patterns for the two grass functional groups, 26.5 ± 2.9% (1.3–82.0%) of protein intake was derived from cool-season (C3) graminoids and 11.7 ± 1.6% (0–36.7%) came from warm-season (C4) grasses. Of the Eudicots, protein intake from legumes averaged 37.8 ± 2.8% (1.3–70.2%), from non-leguminous forbs averaged 21.5 ± 2.0% (0.2–68.0%), and 2.5 ± 0.8% (0–31.6%) from woody species.Examining monthly patterns across sites, C3 grass protein intake was highest in May (40.8 ± 5.0%) and lowest in September (15.8 ± 2.8%) while C4 grass protein intake peaked in September (16.2 ± 2.9%) and was lowest in July (10.2 ± 2.4%) (Supplementary Table S2, Fig. 3). Legume protein intake was highest in August at 55.8 ± 5.3% and was lowest in May (20.0 ± 4.0%) (Supplementary Table S2, Fig. 3). Forb protein intake peaked in June at 27.6 ± 3.5% and was lowest in August (14.2 ± 2.8%) (Supplementary Table S2, Fig. 3).Figure 3Average contributions of different functional groups to 2019 dietary protein intake for bison across sites for each month from April to September. Data based on the 200 most abundant Exact Sequence Variants (ESVs), which were assigned a consensus taxonomy and then a function classification. Cool-season graminoids includes C3 grasses, sedges, and Equisetum. Warm-season grass was derived exclusively from grasses. Legumes only included species from Fabaceae.Full size imageClimate and dietary qualityExamining patterns of [CP] across sites, [CP] was highest in cool, wet climates (Fig. 4, Supplementary Table S3). For example, bison in June at a site with 1200 mm of rain and 6 °C MAT would have [CP] of 186.3 mg g−1. Bison in June at a site with 400 mm of rain and 18 °C MAT would have [CP] of just 67.8 mg g−1. There was also a statistical interaction between the identity of the month and MAT on [CP] (Fig. 4, Supplementary Table S3). In April, [CP] tended to increase with increasing MAT (2.51 ± 1.46 mg g−1 °C−1), as warm-climate sites tended to have higher [CP] than cold-climate sites (Fig. 4, Supplementary Table S3). By May, colder sites tended to have higher [CP] (− 2.01 ± 1.81 mg g−1 °C−1), which became stronger by June (− 5.34 ± 1.83 mg g−1 °C−1) and lasted through September (Fig. 4, Supplementary Table S3). Examining patterns of functional group composition on top of climate relationships, [CP] was lower when greater amounts of warm-season grasses were in the diet, independent of climate and season (Supplementary Table S4).Figure 4Maps of dietary crude protein and digestible organic matter concentrations for non-forested areas. Maps are modeled based on Supplementary Table S3. Units are mg g−1. Maps generated utilizing the raster package for reclassifying and masking pixels in R 3.5.2.Full size imageLike [CP], [DOM] was also highest in cool, wet climates (Fig. 4, Supplementary Table S3). For example, bison at a site with 1200 mm of rain and 6 °C MAT in June would have [CP] of 670.4 mg g−1 as opposed to bison at a site with 400 mm of rain and 18 °C MAT in June, which would have [CP] of just 580.4 mg g−1. In April, bison in warm-climate sites tended to consume a diet that was higher in [DOM] than bison in colder-climate sites (2.04 ± 1.73 mg g−1 °C−1) (Fig. 4, Supplementary Table S3). By May, [DOM] was invariant across MAT gradients (− 0.08 ± 1.98 mg g−1 °C−1) and by June, cold-climate sites had higher [DOM] (5.51 ± 2.00 mg g−1 °C−1) (Fig. 4, Supplementary Table S3).Examining patterns of DOM:CP reveals the seasonal and spatial patterns of protein limitation. In general, bison in cool, wet climates had the lowest [DOM]: [CP] (Supplementary Table S3). Yet, the statistical interaction between MAT and month shows that in April, bison in cold climates were more protein limited than in warm climates (− 0.16 ± 0.11 °C−1) (Supplementary Table S3). By May, [DOM]: [CP] tended to become higher in warm climates, with the gradient becoming strongest by August (0.61 ± 0.15 °C−1) (Supplementary Table S3).Climate and dietary compositionExamining cross-site relationships between the relative amounts of different functional groups in diet and the predictors of climate and season, the proportion of cool-season grass in the diet was highest in cool sites (decreasing at a rate of 3.8 ± 0.5% °C−1), with no significant influence of MAP (P = 0.16) (Fig. 5, Supplementary Table S5). The proportion of cool-season grass in the diet varied among months, but there was no difference among months in the relationship with MAT (P = 0.54). In contrast, the proportion of warm-season grass in diet was greatest in hot, dry regions (Fig. 5, Supplementary Table S5). For example, bison at a site with 400 mm of rain and 18 °C MAT would have 42.9% of their dietary protein from warm-season grasses as opposed to a site with 1200 mm of rain and 6 °C MAT, where warm-season grasses would provide 0% of their dietary protein.Figure 5Maps of functional group composition of bison diet (excluding woody plants, which had low abundance and little pattern with climate) for non-forested areas. As there were no interactions between either MAT or MAP and the identity of the month, only maps for June are shown here. See Fig. 2 for how functional group composition of the diet changes over the six six months. Maps generated utilizing the raster package for reclassifying and masking pixels in R 3.5.2.Full size imageAmong Eudicots, there was no seasonal variation in the percentage of forbs in the diet, but the percentage of dietary protein from forbs was highest in hot, dry regions (Fig. 5, Supplementary Table S5). For example, bison at a site with 400 mm of rain and 18 °C MAT in June would have 54.2% of their dietary protein from forbs as opposed to a site with 1200 mm of rain and 6 °C MAT in June, where it would be just 9.6%. Legumes had strong seasonal variation in its dietary contribution, but little variation with climate, increasing at a rate of 2.0 ± 0.8% per 100 mm MAP (P = 0.02) (Fig. 5, Supplementary Table S5).Comparison with 2018 dataComparing [CP] between years, June [CP] was higher on average in 2019 than 2018 (113.2 ± 3.3 vs. 93.6 ± 3.2 mg g−1; P  0.3 for both MAT and MAP) (Table 3). There were also no significant relationships with climate for forb or woody contribution to diet between years (Table 3). Despite many of the similarities between years, comparing dietary functional group composition in September between years, legumes contributed 20% more protein and warm-season grasses 14% less in 2019 than 2018.Table 3 Model results for comparing functional group abundance in bison diet for June and September between 2018 and 2019.Full size table More