Ecology
Subterms
More stories
225 Shares109 Views
in EcologyCoastal reclamation alters soil microbial communities following different land use patterns in the Eastern coastal zone of China
1.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565(7738), 222 (2019).ADS
CAS
PubMed
ArticleGoogle Scholar
2.Bu, N. S. et al. Reclamation of coastal salt marshes promoted carbon loss from previously-sequestered soil carbon pool. Ecol. Eng. 81, 335–339 (2015).ArticleGoogle Scholar
3.Cui, B. S., He, Q., Gu, B. H., Bai, J. H. & Liu, X. H. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36(Suppl 1), S1–S9 (2016).ArticleGoogle Scholar
4.Cao, Z. Q. et al. Heavy metal pollution and the risk from tidal flat reclamation in coastal areas of Jiangsu, China. Mar. Pollut. Bull. 158, 111427 (2020).CAS
PubMed
ArticleGoogle Scholar
5.Yin, A. J. et al. Salinity evolution of coastal soils following reclamation and intensive usage, Eastern China. Environ. Earth Sci. 75, 1281 (2016).Article
CASGoogle Scholar
6.Wang, W., Liu, H., Li, Y. Q. & Su, J. L. Development and management of land reclamation in China. Ocean Coast. Manage. 102, 415–425 (2014).ArticleGoogle Scholar
7.Laffoley, D. & Grimsditch, G. The Management of Natural Coastal Carbon Sinks (IUCN, 2009).
Google Scholar
8.Cheong, S. et al. Coastal adaptation with ecological engineering. Nat. Clim. Change 3, 787–791 (2013).ADS
ArticleGoogle Scholar
9.Yang, W. et al. Seawall construction alters soil carbon and nitrogen dynamics and soil microbial biomass in an invasive Spartina alterniflora salt marsh in eastern China. Appl. Soil Ecol. 110, 1–11 (2017).ADS
CAS
ArticleGoogle Scholar
10.Ding, L. J., Su, J. Q., Li, H., Zhu, Y. G. & Cao, Z. H. Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, China. Soil Biol. Biochem. 104, 59–67 (2017).CAS
ArticleGoogle Scholar
11.Zhang, H. et al. Changes in surface soil organic/inorganic carbon concentrations and their driving forces in reclaimed coastal tidal flats. Geoderma 352, 150–159 (2019).ADS
CAS
ArticleGoogle Scholar
12.Han, G. X. et al. Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta. Agr. Ecosyst. Environ. 196, 187–198 (2014).ArticleGoogle Scholar
13.Hargreaves, S. K. & Hofmockel, K. S. Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem. Biogeochemistry 117, 67–79 (2014).CAS
ArticleGoogle Scholar
14.Ramirez, K. S., Lauber, C. L., Knight, R., Bradford, M. A. & Fierer, N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91, 3463–3470 (2010).PubMed
Article
PubMed CentralGoogle Scholar
15.Rousk, J., Brookes, P. C. & Bååth, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42, 516–520 (2010).CAS
ArticleGoogle Scholar
16.Kamble, P. N., Gaikwad, V. B., Kuchekar, S. R. & Bååth, E. Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). Eur. J. Soil Biol. 65, 87–95 (2014).CAS
ArticleGoogle Scholar
17.Gao, Y. C. et al. Effects of salinization and crude oil contamination on soil bacterial community structure in the Yellow River Delta region, China. Appl. Soil Ecol. 86, 165–173 (2015).ArticleGoogle Scholar
18.Placella, S. A., Brodie, E. L. & Firestone, M. K. Rainfall – induced carbon oxide pulses results from sequential resuscitation of phylogenetically cluster microbial groups. Proc. Natl. Acad. Sci. 109, 10931–10936 (2012).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
19.Yuan, Y. et al. Responses of microbial community structure to land-use conversion and fertilization in southern China. Eur. J. Soil Biol. 70, 1–6 (2015).ADS
ArticleGoogle Scholar
20.Iost, S., Landgraf, D. & Makeschin, F. Chemical soil properties of reclaimed marsh soil from Zhejiang Province P.R. China. Geoderma 142, 245–250 (2007).ADS
CAS
ArticleGoogle Scholar
21.Yang, W. et al. Shift in soil organic carbon and nitrogen pools in different reclaimed lands following intensive coastal reclamation on the coasts of eastern China. Sci. Rep. 9, 5921 (2019).ADS
PubMed
PubMed Central
Article
CASGoogle Scholar
22.Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 153, 89–99 (2017).CAS
ArticleGoogle Scholar
23.Chen, G. X., Gao, D. Z., Wang, Z. P. & Zeng, C. S. Contents of carbon, nitrogen and phosphorus in sediments in aquaculture ponds for different reclamation years in Shanyutan wetlands and its pollution risk assessment. Wetland Sci. 15, 309–314 (2017).
Google Scholar
24.Whitting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B. 53, 521–528 (2001).ADSGoogle Scholar
25.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage. Res. 126, 60–71 (2013).ArticleGoogle Scholar
26.Xing, W. L., Cheng, X. R., Xiong, J., Yuan, H. J. & Yu, M. K. Variations in soil biological properties in poplar plantations along coastal reclamation stages. Appl. Soil Ecol. 154, 103649 (2020).ArticleGoogle Scholar
27.Grybos, M., Davranche, M., Gruau, G., Petitjean, P. & Pedrot, M. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154, 13–19 (2009).ADS
CAS
ArticleGoogle Scholar
28.Krishnamoorthy, R., Kim, K., Kim, C. & Sa, T. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol. Biochem. 72, 1–10 (2014).CAS
ArticleGoogle Scholar
29.Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl. Soil Ecol. 64, 7–14 (2013).ArticleGoogle Scholar
30.Peay, K. G., Baraloto, C. & Fine, P. V. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 7, 1852–1861 (2013).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
31.Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).ArticleGoogle Scholar
32.Yang, W. et al. Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408, 443–456 (2016).CAS
ArticleGoogle Scholar
33.Anderson, C. R. et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54, 309–320 (2011).CAS
ArticleGoogle Scholar
34.Mavi, M. S. & Marschner, P. Salinity affects the response of soil microbial activity and biomass to addition of carbon and nitrogen. Soil Res. 51, 68–75 (2013).CAS
ArticleGoogle Scholar
35.Xie, X. F. et al. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 120, 106925 (2021).CAS
ArticleGoogle Scholar
36.Mohammad, M. J., Malkawi, H. I. & Shibli, R. Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J. Plant Nutr. 26, 125–137 (2003).CAS
ArticleGoogle Scholar
37.Cui, X. C., Hu, J. L., Wang, J. J., Yang, J. S. & Lin, X. G. Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Appl. Soil Ecol. 98, 140–149 (2016).ArticleGoogle Scholar
38.Guo, X. & Gong, J. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24, 79–94 (2014).PubMed
ArticleGoogle Scholar
39.Yamato, M., Yagame, T., Yoshimura, Y. & Iwase, K. Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae). Mycorrhiza 22, 622–630 (2012).ArticleGoogle Scholar
40.Strickland, M. S. & Rousk, J. Considering fungal :bacterial dominance in soils: Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).CAS
ArticleGoogle Scholar
41.Collins, C. G., Stajich, J. E., Weber, S. E., Pombubpa, N. & Diez, J. M. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol. Ecol. 27, 2461–2476 (2018).PubMed
PubMed Central
ArticleGoogle Scholar
42.Yang, W. et al. Soil fungal communities vary with invasion by the exotic Spartina alternifolia Loisel. in coastal salt marshes of eastern China. Plant Soil 442, 215–232 (2019).CAS
ArticleGoogle Scholar
43.Yang, W. et al. Exotic Spartina alterniflora Loisel. invasion significantly shifts soil bacterial communities with the successional gradient of saltmarsh in eastern China. Plant Soil 449, 97–115 (2020).CAS
ArticleGoogle Scholar
44.Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).CAS
ArticleGoogle Scholar
45.Högberg, M. N., Baath, E., Nordgren, A., Arnebrant, K. & Högberg, P. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs: A hypothesis based on field observations in boreal forests. New Phytol. 160, 225–238 (2003).Article
CASGoogle Scholar
46.Joergensen, R. G. & Wichern, F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol. Biochem. 40, 2977–2991 (2008).CAS
ArticleGoogle Scholar
47.Xu, S. Q. et al. Comparison of microbial community composition and diversity in native coastal wetlands and wetlands that have undergone long-term agricultural reclamation. Wetlands 37, 99–108 (2017).CAS
ArticleGoogle Scholar
48.Vangestel, M., Merckx, R. & Vlassak, K. Microbial biomass responses to soil drying and rewetting-the fate of fast-growing and slow-growing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123 (1993).ArticleGoogle Scholar
49.Farrell, M. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 465, 288–297 (2013).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
50.Luo, S. S. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 329, 108–117 (2018).ADS
CAS
ArticleGoogle Scholar
51.Tripathi, B. M. et al. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb. Ecol. 64, 474–484 (2012).PubMed
Article
PubMed CentralGoogle Scholar
52.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
53.Huang, Y. M., Liu, D. & An, S. S. Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. Catena 125, 135–145 (2015).CAS
ArticleGoogle Scholar
54.Bossio, D. A., Fleck, J. A., Scow, K. M. & Fujii, R. Alteration of soil microbial communities and water quality in restored wetlands. Soil Biol. Biochem. 38, 1223–1233 (2006).CAS
ArticleGoogle Scholar
55.Chang, E. H., Chen, C. P., Tian, G. L. & Chiu, C. Y. Replacement of natural hardwood forest with planted bamboo and cedar in a humid subtropical mountain affects soil microbial community. Appl. Soil Ecol. 124, 146–154 (2018).ADS
ArticleGoogle Scholar
56.Cao, Y. S. et al. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China. Eur. J. Soil Biol. 46, 128–135 (2010).CAS
ArticleGoogle Scholar
57.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS
ArticleGoogle Scholar
58.Bossio, D. A. & Scow, K. M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial. Ecol. 35, 265–278 (1998).CAS
ArticleGoogle Scholar
59.Bååth, E. & Anderson, T. H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35, 955–963 (2003).Article
CASGoogle Scholar
60.Kourtev, P. S., Ehrenfeld, J. G. & Häggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166 (2002).ArticleGoogle Scholar More
213 Shares149 Views
in EcologyA suite of rare microbes interacts with a dominant, heritable, fungal endophyte to influence plant trait expression
1.Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x.Article
PubMedGoogle Scholar
2.Rodriguez R, White J Jr, Arnold A, Redman R. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182:314–30.ArticleGoogle Scholar
3.Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition Oikos. 1995;73:274–6.4.Harrison JG, Griffin EA. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: How far have we come and where do we go from here?. Environ Microbiol. 2020;22:2107–23. https://doi.org/10.1111/1462-2920.14968.Article
PubMedGoogle Scholar
5.Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat. 2002;160:S99–S127. https://doi.org/10.1086/342161.Article
PubMedGoogle Scholar
6.Rudgers JA, Afkhami ME, Rúa MA, Davitt AJ, Hammer S, Huguet VM. A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology. 2009;90:1531–9. https://doi.org/10.1890/08-0116.1.Article
PubMedGoogle Scholar
7.Clay K, Holah J. Fungal endophyte symbiosis and plant diversity in successional fields. Science. 1999;285:1742–4. https://doi.org/10.1126/science.285.5434.1742.Article
PubMedGoogle Scholar
8.Afkhami ME, Strauss SY. Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology. 2016;97:1159–69. https://doi.org/10.1890/15-1166.1.Article
PubMedGoogle Scholar
9.Rudgers JA, Clay K. An invasive plant–fungal mutualism reduces arthropod diversity. Ecol Lett. 2008;11:831–40. https://doi.org/10.1111/j.1461-0248.2008.01201.x.Article
PubMedGoogle Scholar
10.Gorischek AM, Afkhami ME, Seifert EK, Rudgers JA. Fungal symbionts as manipulators of plant reproductive biology. Am Nat. 2013;181:562–70. https://doi.org/10.1086/669606.Article
PubMedGoogle Scholar
11.Malloch D, Blackwell M. Dispersal of fungal diaspores. The fungal community: Its organization and role in the ecosystem. 2nd ed. New York, NY: Marcel Dekker, Inc; 1992. p. 147–71.
Google Scholar
12.Devarajan P, Suryanarayanan T. Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Divers. 2006;23:111–9.
Google Scholar
13.Lodge DJ, Fisher P, Sutton B. Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia. 1996;88:733–8.14.Paine RT. A note on trophic complexity and community stability. Am Nat. 1969;103:91–93. https://doi.org/10.1086/282586.ArticleGoogle Scholar
15.Jenkins SH, Busher PE. Castor canadensis, Mammalian Species. 1979. https://doi.org/10.2307/3503787.16.Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–25. https://doi.org/10.1038/nrmicro2873.Article
PubMed
PubMed CentralGoogle Scholar
17.Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: How the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62. https://doi.org/10.1038/ismej.2016.174.Article
PubMed
PubMed CentralGoogle Scholar
18.Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58. https://doi.org/10.1186/s40168-018-0445-0.Article
PubMed
PubMed CentralGoogle Scholar
19.Rockman MV. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution. 2012;66:1–17. https://doi.org/10.1111/j.1558-5646.2011.01486.x.Article
PubMedGoogle Scholar
20.Beckers GJ, Conrath U. Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol. 2007;10:425–31. https://doi.org/10.1016/j.pbi.2007.06.002.Article
PubMedGoogle Scholar
21.Hartmann A, Rothballer M, Hense BA, Schröder P. Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci. 2014;5. https://doi.org/10.3389/fpls.2014.00131.22.Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E. Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst. 2011;42:23–46. https://doi.org/10.1146/annurev-ecolsys-102710-145039.ArticleGoogle Scholar
23.Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320. https://doi.org/10.1128/MMBR.00050-14.Article
PubMed
PubMed CentralGoogle Scholar
24.Doty SL. Growth-promoting endophytic fungi of forest trees. In: Pirttilä AM, Frank AC, editors. Endophytes of forest trees: biology and applications. Dordrecht: Springer Netherlands; 2011;151–6.
Google Scholar
25.Arnold AE, Herre EA. Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia. 2003;95:388–98. http://www.mycologia.org.unr.idm.oclc.org/content/95/3/388. Accessed 12 Dec 2016.ArticleGoogle Scholar
26.Busby PE, Peay KG, Newcombe G. Common foliar fungi of Populus trichocarpa modify melampsora rust disease severity. New Phytol. 2016;209:1681–92. https://doi.org/10.1111/nph.13742.Article
PubMedGoogle Scholar
27.Christian N, Herre EA, Mejia LC, Clay K. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc R Soc B. 2017;284:20170641. https://doi.org/10.1098/rspb.2017.0641.Article
PubMedGoogle Scholar
28.Cheplick GP, Cho R. Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytol. 2003;158:183–91. https://doi.org/10.1046/j.1469-8137.2003.00723.x.ArticleGoogle Scholar
29.Zahn G, Amend AS. Foliar fungi alter reproductive timing and allocation in arabidopsis under normal and water-stressed conditions. 2019. https://www.biorxiv.org/content/10.1101/519678v1.30.Christian N, Herre EA, Clay K. Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytol. 2019;222:1573–83. https://doi.org/10.1111/nph.15693.Article
PubMedGoogle Scholar
31.Rosado BHP, Almeida LC, Alves LF, Lambais MR, Oliveira RS. The importance of phyllosphere on plant functional ecology: a phyllo trait manifesto. New Phytol. 2018;219:1145–9. https://doi.org/10.1111/nph.15235.Article
PubMedGoogle Scholar
32.Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, et al. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol. 2014;5:479.33.Dupont PY, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, et al. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol. 2015;208:1227–40. https://doi.org/10.1111/nph.13614.Article
PubMed
PubMed CentralGoogle Scholar
34.Dinkins RD, Nagabhyru P, Graham MA, Boykin D, Schardl CL. Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytol. 2017;213:324–37. https://doi.org/10.1111/nph.14103.Article
PubMedGoogle Scholar
35.Welsh S, North American species of astragalus Linnaeus (Leguminosae): a taxonomic revision. Provo, Utah: Brigham Young University; 2007.36.Knaus BJ. Morphometric architecture of the most taxon-rich species in the U.S. Flora: Astragalus lentiginosus (Fabaceae). Am J Bot. 2010;97;1816–26. https://doi.org/10.3732/ajb.0900145.37.Baucom DL, Romero M, Belfon R, Creamer R. Two new species of undifilum, fungal endophytes of astragalus (locoweeds) in the United States. Botany. 2012;90:866–75. https://doi.org/10.1139/b2012-056.ArticleGoogle Scholar
38.Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. Alternaria redefined. Stud Mycol. 2013;75:171–212. https://doi.org/10.3114/sim0015.Article
PubMed
PubMed CentralGoogle Scholar
39.Cook D, Gardner DR, Martinez A, Robles CA, Pfister JA. Screening for swainsonine among South American astragalus species. Toxicon. 2017;139:54–7. https://doi.org/10.1016/j.toxicon.2017.09.014.Article
PubMedGoogle Scholar
40.Molyneux RJ, James LF. Loco intoxication: indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus). Science. 1982;216:190–1. https://doi.org/10.1126/science.6801763.Article
PubMedGoogle Scholar
41.Cook D, Gardner DR, Ralphs MH, Pfister JA, Welch KD, Green BT. Swainsoninine concentrations and endophyte amounts of Undifilum oxytropis in different plant parts of Oxytropis sericea. J Chem Ecol. 2009;35:1272–8. https://doi.org/10.1007/s10886-009-9710-9.Article
PubMedGoogle Scholar
42.Harrison JG, Parchman TL, Cook D, Gardner DR, Forister ML. A heritable symbiont and host-associated factors shape fungal endophyte communities across spatial scales. J Ecol. 2018;106:2274–86. https://doi.org/10.1111/1365-2745.12967.ArticleGoogle Scholar
43.Grum DS, Cook D, Baucom D, Mott IW, Gardner DR, Creamer R, et al. Production of the alkaloid swainsonine by a fungal endophyte in the host Swainsona canescens. J Nat Prod. 2013;76:1984–8. https://doi.org/10.1021/np400274n.44.Cook D, Gardner DR, Pfister JA. Swainsonine-containing plants and their relationship to endophytic fungi. J Agric Food Chem. 2014;62:7326–34. https://doi.org/10.1021/jf501674r.Article
PubMedGoogle Scholar
45.Panaccione DG, Beaulieu WT, Cook D. Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol. 2014;28:299–314. https://doi.org/10.1111/1365-2435.12076.ArticleGoogle Scholar
46.Thompson DC, Knight JL, Sterling TM, Murray LW. Preference for specific varieties of woolly locoweed by a specialist weevil, Cleonidius trivittatus (Say). Southwest Entomol. 1995;20:325–325.
Google Scholar
47.Parker JE. Effects of insect herbivory by the four-lined locoweed weevil, Cleonidius trivittatus (say) (Coleoptera: Curculionidae), on the alkaloid swainsonine in locoweeds Astragalus mollissimus and Oxytropis sericea. Ph.D. thesis. Las Cruces, New Mexico: New Mexico State University; 2008.48.Creamer R, Baucom D. Fungal endophytes of locoweeds: a commensal relationship? J Plant Physiol Pathol. 2013;1. https://doi.org/10.4172/2329-955X.1000104.49.Lu H, Quan H, Zhou Q, Ren Z, Xue R, Zhao B, et al. Endogenous fungi isolated from three locoweed species from rangeland in western China. Afr J Microbiol Res. 2017;11:155–70. https://doi.org/10.5897/AJMR2016.8392.ArticleGoogle Scholar
50.Schulthess FM, Faeth SH. Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia. 1998;90:569–78. https://doi.org/10.1080/00275514.1998.12026945.ArticleGoogle Scholar
51.Cook D, Gardner DR, Pfister JA, Stonecipher CA, Robins JG, Morgan JA. Effects of elevated CO2 on the swainsonine chemotypes of Astragalus lentiginosus and Astragalus mollissimus. J Chem Ecol. 2017;43:307–16. https://doi.org/10.1007/s10886-017-0820-5.Article
PubMedGoogle Scholar
52.Oldrup E, McLain-Romero J, Padilla A, Moya A, Gardner D, Creamer R. Localization of endophytic undifilum fungi in locoweed seed and influence of environmental parameters on a locoweed in vitro culture system. Botany. 2010;88:512–21. https://doi.org/10.1139/B10-026.ArticleGoogle Scholar
53.Gardner DR, Molyneux RJ, Ralphs MH. Analysis of swainsonine: extraction methods, detection, and measurement in populations of locoweeds (oxytropis spp.). J Agric Food Chem. 2001;49:4573–80.ArticleGoogle Scholar
54.Högberg P. 15N natural abundance in soil–plant systems. New Phytol. 1997;137:179–203. https://www.cambridge.org/core/journals/new-phytologist/article/tansley-review-no-95-15n-natural-abundance-in-soilplant-systems/304069FD5C8283EDB78D0AA594465E71. Accessed 2 Jul 2017.ArticleGoogle Scholar
55.Wang Y, Qian P-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE. 2009;4:e7401. https://doi.org/10.1371/journal.pone.0007401.Article
PubMed
PubMed CentralGoogle Scholar
56.White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Glefand DH, Sninsky JJ, White TJ, editors, PCR protocols: a guide to methods and applications. London: Academic Press; 1990.57.Harrison JG, Calder WJ, Shuman B, Buerkle CA, The quest for absolute abundance: the use of internal standards for DNA-based community ecology. Mol Ecol Resour. 2020, https://doi.org/10.1111/1755-0998.13247.58.Tourlousse DM, Yoshiike S, Ohashi A, Matsukura S, Noda N, Sekiguchi Y. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 2017;45:e23–e23. https://doi.org/10.1093/nar/gkw984.Article
PubMedGoogle Scholar
59.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.ArticleGoogle Scholar
60.Rognes T, Flouri T, Nichols B, Quince C, Mahé F, “VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016. https://doi.org/10.7717/peerj.2584.61.Edgar RC, UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. 2016. https://www.biorxiv.org/content/10.1101/081257v1.full.62.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017:2639. https://doi.org/10.1038/ismej.2017.119.63.Edgar R, “SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. 2016. https://www.biorxiv.org/content/10.1101/074161v1.64.Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018, https://doi.org/10.1093/nar/gky1022.65.Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal database project: data and tools for high throughput rRNA analysis Nucleic Acids Res. 2014. 42, https://doi.org/10.1093/nar/gkt1244.66.Machida RJ, Leray M, Ho S-L, Knowlton N. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci Data. 2017;4:17007 https://doi.org/10.1038/sdata.2017.27.ArticleGoogle Scholar
67.Fordyce JA, Gompert Z, Forister ML, Nice CC. A hierarchical Bayesian approach to ecological count data: A flexible tool for ecologists. PLoS ONE. 2011;6;e26785. https://doi.org/10.1371/journal.pone.0026785.68.Harrison JG, Calder WJ, Shastry V, Buerkle CA. Dirichlet-multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data. Mol Ecol Resour. 2020;20:481–97. https://doi.org/10.1111/1755-0998.13128.Article
PubMedGoogle Scholar
69.R Core Team, R: a language and environment for statistical computing. Vienna: R Core Team; 2019.70.Harrison J, Shastry V, Calder WJ, Buerkle CA, “CNVRG: Dirichlet-multinomial modelling of relative abundance data.” Sep. 2020. https://CRAN.R-project.org/package=CNVRG. Accessed 28 Oct 2020.71.S. D. Team, Stan modeling language users guide and reference manual. 2020. https://mc-stan.org/users/documentation/72.S. D. Team, “RStan: The R interface to Stan. R package.” 2020. http://mc-stan.org/.73.Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7:457–72. http://www.jstor.org/stable/2246093. Accessed 16 Jun 2018.
Google Scholar
74.Gloor GB, Macklaim JM, Vu M, Fernandes AD. Compositional uncertainty should not be ignored in high-throughput sequencing data analysis. Austrian J Stat. 2016;45:73–87. http://ajs.data-analysis.at/index.php/ajs/article/view/vol45-4-5. Accessed 4 Dec 2017.ArticleGoogle Scholar
75.Jost L. Entropy and diversity. Oikos. 2006;113:363–75.ArticleGoogle Scholar
76.Marion ZH, Fordyce JA, Fitzpatrick BM. A hierarchical Bayesian model to incorporate uncertainty into methods for diversity partitioning. Ecology. 2018;99:947–56. https://doi.org/10.1002/ecy.2174.Article
PubMedGoogle Scholar
77.Harrison JG, Gompert Z, Fordyce JA, Buerkle CA, Grinstead R, Jahner JP. et al. The many dimensions of diet breadth: phytochemical, genetic, behavioral, and physiological perspectives on the interaction between a native herbivore and an exotic host. PLoS ONE. 2016;11:e0147971. https://doi.org/10.1371/journal.pone.0147971.Article
PubMed
PubMed CentralGoogle Scholar
78.Plummer M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling,”. Proc 3rd Int workshop Distrib Stat Comput. 2003;124:1–8. 10.2003.
Google Scholar
79.Plummer M. Rjags: Bayesian graphical models using MCMC. R package version 3-15. 2015. Https://CRAN.R-project.org/package=rjags.80.Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.ArticleGoogle Scholar
81.Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
Google Scholar
82.Grum DS, Cook D, Gardner DR, Roper JM, Pfister JA, Ralphs MH. Influence of seed endophyte amounts on swainsonine concentrations in astragalus and oxytropis locoweeds. J Agric Food Chem. 2012;60:8083–9. https://doi.org/10.1021/jf3024062.Article
PubMedGoogle Scholar
83.Marion ZH, Fordyce JA, Fitzpatrick BM. Extending the concept of diversity partitioning to characterize phenotypic complexity. Am Nat. 2015;186:348–61.ArticleGoogle Scholar
84.Arnold AE, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?”. Ecology. 2007;88:541–49. https://doi.org/10.1890/05-1459.Article
PubMedGoogle Scholar
85.Strong DR, Lawton JH, Southwood SR. Insects on plants. Community patterns and mechanisms. Oxford, UK: Blackwell Scientific Publicatons; 1984.
Google Scholar
86.Carmona D, Lajeunesse MJ, Johnson MTJ. Plant traits that predict resistance to herbivores. Funct Ecol. 2011;25:358–67. https://doi.org/10.1111/j.1365-2435.2010.01794.x.ArticleGoogle Scholar
87.Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5. https://doi.org/10.3389/fmicb.2014.00219.88.Trosvik P, de Muinck EJ. Ecology of bacteria in the human gastrointestinal tract—identification of keystone and foundation taxa. Microbiome. 2015;3:44 https://doi.org/10.1186/s40168-015-0107-4.Article
PubMed
PubMed CentralGoogle Scholar
89.Banerjee S, Schlaeppi K, van der Heijden MGA, Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567. https://doi.org/10.1038/s41579-018-0024-1.90.Braun K, Romero J, Liddell C, Creamer R. Production of swainsonine by fungal endophytes of locoweed. Mycological Res. 2003;107:980–8. https://doi.org/10.1017/S095375620300813X.ArticleGoogle Scholar
91.Noor AI, Nava A, Cooke P, Cook D, Creamer R. Evidence for nonpathogenic relationships of alternaria section undifilum endophytes within three host locoweed plant species. Botany. 2018;96:187–200. https://doi.org/10.1139/cjb-2017-0117.ArticleGoogle Scholar
92.Kulpa SM, Leger EA. Strong natural selection during plant restoration favors an unexpected suite of plant traits. Evolut Appl. 2013;6:510–23. https://doi.org/10.1111/eva.12038.ArticleGoogle Scholar
93.Leger EA, Baughman OW. What seeds to plant in the Great Basin? Comparing traits prioritized in native plant cultivars and releases with those that promote survival in the field. Nat Areas J. 2015;35:54–68. https://doi.org/10.3375/043.035.0108.ArticleGoogle Scholar
94.Klypina N, Pinch M, Schutte BJ, Maruthavanan J, Sterling TM, Water-deficit stress tolerance differs between two locoweed genera (astragalus and oxytropis) with fungal endophytes. Weed Sci. 2017:1–13. https://doi.org/10.1017/wsc.2017.21.95.Stamp N. Out of the quagmire of plant defense hypotheses. Q Rev Biol. 2003;78:23–55. https://doi.org/10.1086/367580.Article
PubMedGoogle Scholar
96.Eades CJ, Hintz WE. Characterization of the α-mannosidase gene family in filamentous fungi: N-glycan remodelling for the development of eukaryotic expression systems. Biotechnol Bioprocess Eng. 2000;5:227. https://doi.org/10.1007/BF02942178.ArticleGoogle Scholar
97.Schmid J, Day R, Zhang N, Dupont PY, Cox MP, Schardl CL, et al. Host tissue environment directs activities of an epichloë endophyte, while it induces systemic hormone and defense responses in its native perennial ryegrass host. Mol Plant Microbe Interact. 2016;30:138–49. https://doi.org/10.1094/MPMI-10-16-0215-R.98.Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact. 2011;25:139–50. https://doi.org/10.1094/MPMI-06-11-0179.ArticleGoogle Scholar
99.Kannadan S, Rudgers JA. Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol. 2008;22:706–13. https://doi.org/10.1111/j.1365-2435.2008.01395.x.ArticleGoogle Scholar
100.Barillas JRV, Paschke MW, Ralphs MH, Child RD. White locoweed toxicity is facilitated by a fungal endophyte and nitrogen-fixing bacteria. Ecology. 2007;88:1850–6. https://doi.org/10.1890/06-0728.1.ArticleGoogle Scholar
101.Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, et al. High plant diversity is needed to maintain ecosystem services. Nature. 2011;477:199–202. https://doi.org/10.1038/nature10282. More225 Shares99 Views
in EcologyFirst insights into the impacts of benthic cyanobacterial mats on fish herbivory functions on a nearshore coral reef
1.Ford, A. K. et al. Reefs under siege: the rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. 5, 18 (2018).Article
Google Scholar
2.Brocke, H. J. et al. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs. PLoS ONE 10, e0125445 (2015).PubMed
PubMed Central
Article
CASGoogle Scholar
3.Charpy, L., Casareto, B. E., Langlade, M. J. & Suzuki, Y. Cyanobacteria in coral reef ecosystems: a review. J. Mar. Biol. 2012, e259571 (2012).ArticleGoogle Scholar
4.Mangubhai, S. & Obura, D. O. Silent killer: black reefs in the Phoenix Islands Protected Area. Pac. Conserv. Biol. 25, 213 (2019).ArticleGoogle Scholar
5.de Bakker, D. M. et al. 40 years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats. Coral Reefs 36, 355–367 (2017).ADS
ArticleGoogle Scholar
6.Albert, S., Dunbabin, M., Skinner, M., Moore, B. & Grinham, A. Benthic shift in a Solomon Islands’ lagoon: corals to cyanobacteria. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012 1–5 (2012).7.Puyana, M., Acosta, A., Bernal-Sotelo, K., Velásquez-Rodríguez, T. & Ramos, F. Spatial scale of cyanobacterial blooms in Old Providence Island Colombian Caribbean. Universitas Scientiarum 20, 83–105 (2015).ArticleGoogle Scholar
8.Ford, A. K. et al. High sedimentary oxygen consumption indicates that sewage input from small islands drives benthic community shifts on overfished reefs. Environ. Conserv. 44, 405–411 (2017).ArticleGoogle Scholar
9.Chapra, S. C. et al. Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment. Environ. Sci. Technol. 51, 8933–8943 (2017).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
10.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).CAS
PubMed
Article
PubMed CentralGoogle Scholar
11.Gobler, C. J. Climate change and harmful algal blooms: insights and perspective. Harmful Algae 91, 101731 (2020).PubMed
PubMed Central
ArticleGoogle Scholar
12.Wood, S. A. et al. Toxic benthic freshwater cyanobacterial proliferations: challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshw. Biol. 65, 1824–1842 (2020).ArticleGoogle Scholar
13.Brown, K. T., Bender-Champ, D., Bryant, D. E. P., Dove, S. & Hoegh-Guldberg, O. Human activities influence benthic community structure and the composition of the coral-algal interactions in the central Maldives. J. Exp. Mar. Biol. Ecol. 497, 33–40 (2017).ArticleGoogle Scholar
14.Titlyanov, E. A., Yakovleva, I. M. & Titlyanova, T. V. Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J. Exp. Mar. Biol. Ecol. 342, 282–291 (2007).ArticleGoogle Scholar
15.Carmichael, W. W. Cyanobacteria secondary metabolites—the cyanotoxins. J. Appl. Bacteriol. 72, 445–459 (1992).CAS
PubMed
Article
PubMed CentralGoogle Scholar
16.Ritson-Williams, R., Paul, V. J. & Bonito, V. Marine benthic cyanobacteria overgrow coral reef organisms. Coral Reefs 24, 629–629 (2005).ADS
ArticleGoogle Scholar
17.Kuffner, I. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).ADS
ArticleGoogle Scholar
18.Kuffner, I. B. & Paul, V. J. Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23, 455–458 (2004).ArticleGoogle Scholar
19.Ritson-Williams, R., Arnold, S. N. & Paul, V. J. The impact of macroalgae and cyanobacteria on larval survival and settlement of the scleractinian corals Acropora palmata, A cervicornis and Pseudodiploria strigosa. Mar. Biol. 167, 31 (2020).ArticleGoogle Scholar
20.McClanahan, T. R. et al. Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS ONE 7, e42884 (2012).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
21.Cardini, U., Bednarz, V. N., Foster, R. A. & Wild, C. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol. Evol. 4, 1706–1727 (2014).PubMed
PubMed Central
ArticleGoogle Scholar
22.Brocke, H. J. et al. Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curaçao. Coral Reefs 37, 861–874 (2018).ADS
ArticleGoogle Scholar
23.Brocke, H. J. et al. High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Sci. Rep. 5, 8852 (2015).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
24.Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 1–7 (2016).Article
CASGoogle Scholar
25.Box, S. J. & Mumby, P. J. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149 (2007).ADS
ArticleGoogle Scholar
26.Webster, F. J., Babcock, R. C., Keulen, M. V. & Loneragan, N. R. Macroalgae inhibits larval settlement and increases recruit mortality at Ningaloo Reef, Western Australia. PLoS ONE 10, e0124162 (2015).PubMed
PubMed Central
Article
CASGoogle Scholar
27.Barott, K. et al. Natural history of coral−algae competition across a gradient of human activity in the Line Islands. Mar. Ecol. Prog. Ser. 460, 1–12 (2012).ADS
ArticleGoogle Scholar
28.Bonaldo, R. M. & Hay, M. E. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience. PLoS ONE 9, e85786 (2014).ADS
PubMed
PubMed Central
Article
CASGoogle Scholar
29.Rasher, D. B., Hoey, A. S. & Hay, M. E. Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94, 1347–1358 (2013).PubMed
PubMed Central
ArticleGoogle Scholar
30.Capper, A., Cruz-Rivera, E., Paul, V. J. & Tibbetts, I. R. Chemical deterrence of a marine cyanobacterium against sympatric and non-sympatric consumers. Hydrobiologia 553, 319 (2006).CAS
ArticleGoogle Scholar
31.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. https://doi.org/10.1111/bij.12914 (2016).ArticleGoogle Scholar
32.Cissell, E. C., Manning, J. C. & McCoy, S. J. Consumption of benthic cyanobacterial mats on a Caribbean coral reef. Sci. Rep. 9, 12693 (2019).ADS
PubMed
PubMed Central
Article
CASGoogle Scholar
33.Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. Biol. Sci. 281, 20131835 (2014).CAS
PubMed
PubMed CentralGoogle Scholar
34.Goatley, C., Bonaldo, R., Fox, R. & Bellwood, D. Sediments and herbivory as sensitive indicators of coral reef degradation. Ecol. Soc. 21, 29 (2016).35.Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).ArticleGoogle Scholar
36.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762 (2014).ADS
CAS
PubMed
ArticleGoogle Scholar
37.Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).ArticleGoogle Scholar
38.Duperron, S. et al. New benthic cyanobacteria from Guadeloupe mangroves as producers of antimicrobials. Mar. Drugs https://doi.org/10.3390/md18010016 (2020).ArticleGoogle Scholar
39.Bonaldo, R. M., Pires, M. M., Junior, P. R. G., Hoey, A. S. & Hay, M. E. Small marine protected areas in Fiji provide refuge for reef fish assemblages, feeding groups, and corals. PLoS ONE 12, e0170638 (2017).PubMed
PubMed Central
Article
CASGoogle Scholar
40.Ford, A. K. et al. Evaluation of coral reef management effectiveness using conventional versus resilience-based metrics. Ecol. Ind. 85, 308–317 (2018).ArticleGoogle Scholar
41.Robinson, J. P. W. et al. Environmental conditions and herbivore biomass determine coral reef benthic community composition: implications for quantitative baselines. Coral Reefs 37, 1157–1168 (2018).ADS
PubMed
PubMed Central
ArticleGoogle Scholar
42.Capper, A. et al. Palatability and chemical defences of benthic cyanobacteria to a suite of herbivores. J. Exp. Mar. Biol. Ecol. 474, 100–108 (2016).CAS
ArticleGoogle Scholar
43.Cruz-Rivera, E. & Paul, V. J. Chemical deterrence of a cyanobacterial metabolite against generalized and specialized grazers. J. Chem. Ecol. 33, 213–217 (2007).CAS
PubMed
Article
PubMed CentralGoogle Scholar
44.Bejarano, S. et al. The shape of success in a turbulent world: wave exposure filtering of coral reef herbivory. Funct. Ecol. 31, 1312–1324 (2017).ArticleGoogle Scholar
45.Lefcheck, J. S. et al. Tropical fish diversity enhances coral reef functioning across multiple scales. Sci. Adv. 5, eaav6420 (2019).ADS
PubMed
PubMed Central
ArticleGoogle Scholar
46.Nagle, D. G. & Paul, V. J. Chemical defense of a marine cyanobacterial bloom. J. Exp. Mar. Biol. Ecol. 225, 29–38 (1998).CAS
ArticleGoogle Scholar
47.Wilson, S. K., Graham, N. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob. Change Biol. 12, 2220–2234 (2006).ADS
ArticleGoogle Scholar
48.Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanogr. Mar. Biol. Ann. Rev. 46, 251–296 (2006).
Google Scholar
49.Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).ArticleGoogle Scholar
50.Potts, D. C. Suppression of coral populations by filamentous algae within damselfish territories. J. Exp. Mar. Biol. Ecol. 28, 207–216 (1977).ArticleGoogle Scholar
51.Mumby, P. J. et al. Empirical relationships among resilience indicators on Micronesian reefs. Coral Reefs https://doi.org/10.1007/s00338-012-0966-0 (2012).ArticleGoogle Scholar
52.Birrell, C. L., McCook, L. J. & Willis, B. L. Effects of algal turfs and sediment on coral settlement. Mar. Pollut. Bull. 51, 408–414 (2005).CAS
PubMed
Article
PubMed CentralGoogle Scholar
53.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
54.de la Morinière, E. C. et al. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. 246, 279–289 (2003).ADS
ArticleGoogle Scholar
55.Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51, 346–353 (2016).Article
CASGoogle Scholar
56.Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).ADS
PubMed
PubMed Central
ArticleGoogle Scholar
57.Palinska, K. A. & Surosz, W. Taxonomy of cyanobacteria: a contribution to consensus approach. Hydrobiologia 740, 1–11 (2014).ArticleGoogle Scholar
58.Li, X. et al. Factors related to aggravated Cylindrospermopsis (cyanobacteria) bloom following sediment dredging in an eutrophic shallow lake. Environ. Sci. Ecotechnol. 2, 100014 (2020).ArticleGoogle Scholar
59.Taton, A., Grubisic, S., Brambilla, E., De Wit, R. & Wilmotte, A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69, 5157–5169 (2003).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
60.Knight, R. et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422 (2018).CAS
PubMed
Article
PubMed CentralGoogle Scholar
61.Kim, M., Oh, H.-S., Park, S.-C. & Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346–351 (2014).CAS
PubMed
Article
PubMed CentralGoogle Scholar
62.Hoffmann, L. & Demoulin, V. Marine Cyanophyceae of Papua New Guinea. III. The genera Borzia and Oscillatoria. Bot. Mar. 36, 451–459 (1993).ArticleGoogle Scholar
63.Engene, N. et al. Moorea producens gen. nov., sp. Nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 62, 1171–1178 (2012).PubMed
PubMed Central
ArticleGoogle Scholar
64.Engene, N. et al. Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanoprokaryota). J. Phycol. 49, 1095–1106 (2013).PubMed
Article
PubMed CentralGoogle Scholar
65.Komarek, J., Kaštovský, J., Mares, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).
Google Scholar
66.Wilmotte, A., Laughinghouse, H. D. I., Capelli, C., Rippka, R. & Salmaso, N. Taxonomic Identification of Cyanobacteria by a Polyphasic Approach. Molecular Tools for the Detection and Quantification of Toxigenic Cyanobacteria (Wiley, 2017).
Google Scholar
67.Salmaso, N. et al. Diversity and cyclical seasonal transitions in the bacterial community in a large and deep perialpine lake. Microb. Ecol. 76, 125–143 (2018).CAS
PubMed
Article
PubMed CentralGoogle Scholar
68.Zubia, M. et al. Benthic cyanobacteria on coral reefs of Moorea Island (French Polynesia): diversity response to habitat quality. Hydrobiologia 843, 61–78 (2019).ArticleGoogle Scholar
69.Bernard, C. et al. Appendix 2: Cyanobacteria Associated with the Production of Cyanotoxins. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis 501–525 (Wiley, 2017). https://doi.org/10.1002/9781119068761.app2.
Google Scholar
70.Moritz, C. et al. Status and Trends of Coral Reefs in the Pacific (Global Coral Reef Monitoring Network, 2018).
Google Scholar
71.Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B Biol. Sci. 283, 20151985 (2016).Article
CASGoogle Scholar
72.Kelly, L. W. et al. Black reefs: iron-induced phase shifts on coral reefs. ISME J. 6, 638–649 (2012).CAS
PubMed
ArticleGoogle Scholar
73.Bohnsack, J. A. & Bannerot, S. P. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Technical Report NMFS 41, 21 (1986).74.Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. www.fishbase.orghttps://www.fishbase.org/.75.Heenan, A., Hoey, A. S., Williams, G. J. & Williams, I. D. Natural bounds on herbivorous coral reef fishes. Proc. R. Soc. B Biol. Sci. 283, 20161716 (2016).ArticleGoogle Scholar
76.R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).77.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).ArticleGoogle Scholar
78.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.3.3.0. (2020). http://florianhartig.github.io/DHARMa/79.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google Scholar
80.Komárek, J. & Anagnostidis, K. Cyanoprokaryota 2.Teil: Oscillatoriales (Elsevier, 2005).
Google Scholar
81.Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. BMC Bioinform. 12, 38 (2011).ArticleGoogle Scholar
82.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
83.Ramos, V., Morais, J. & Vasconcelos, V. M. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Sci. Data 4, 170054 (2017).PubMed
PubMed Central
ArticleGoogle Scholar
84.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar
85.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS
PubMed
PubMed Central
Article
CASGoogle Scholar
86.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47, W256–W259 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar More
313 Shares149 Views
in EcologyIn situ recordings of large gelatinous spheres from NE Atlantic, and the first genetic confirmation of egg mass of Illex coindetii (Vérany, 1839) (Cephalopoda, Mollusca)
Confirmation of species, using DNA analysisBecause the DNA of our sphere samples matches that of adult squid identified as I. coindetii from Norwegian waters we infer that the spheres are from I. coindetii. Much has been written about taxonomic difficulties in Illex. The COI tree comprises four clades of Illex, one of which clearly pertains to Illex argentinus (Castellanos, 1960). There are three other described species: Illex coindetii, Illex illecebrosus (Lesueur, 1821), and I. oxygonius Roper, Lu & Mangold, 1969. We labelled our clades A, B, and C, to indicate their correspondence with the findings of Carlini et al.32, and assume that each pertains to one of the described species of Illex. Carlini was unable to match species to clades, but Clade A not only contains the adults identified in this project as I. coindetii, but also contains specimens from the Mediterranean (DQ373941). Since I. coindetii is the only species of Illex known from the Mediterranean, this is further confirmation of the identity of Clade A, and thus our spheres, as Illex coindetii.Using citizen science from roughly 200 divers secured observations of 90 spheres, including rare tissue samples of four of them, thus enabling a molecular approach towards the first confirmation of egg masses in situ as those of the broadtail shortfin squid, Illex coindetii. Illex coindetii was named in honour of Dr. Coindet from Geneva in 185137. It took 180 years from the description of the adult to identification of its egg mass in the wild. To our knowledge no whole egg mass of Illex spp. has previously been reported from the wild, except by Adolf Naef, who reported on live ommastrephid embryos and paralarvae from Naples, Italy2. The embryos were pulled out of a floating spawn or floating egg mass, or as he describes «Fig. 1 und 2 sind aus einem flottierenden Laich gezogene Larven von Ommatostrephiden». These illustrations were later identified as Illex coindetii by Boletzky et al.26, studying egg development of I. coindetii in the laboratory, claiming «The general characteristics of the embryonic developement observed by us match the figures given by Naef (1923 : plts 9–12) of an unidentified egg mass of a member of the Ommastrephidae (Naef 1921)». However, no drawing of the «laich» was provided.Challenges collecting in situ materialHuge gelatinous spheres from squid are difficult to study in situ. They are rarely reported, and hard to sample. We have collected 90 sphere observations from ~ 35 years back (~ 1985 to 2019), from an area stretching from the Mediterranean Sea north to the Norwegian Sea, which gives a good illustration on sphere findings of ~ 2.6 sphere observations per year. In addition, the spheres most likely have a short-life span. Life span of spheres spawned and reared in aquaria (between 40 and 120 cm in diameter) of Todarodes pacificus (Steenstrup, 1880) is 5–7 days, with the smallest disintegrating first38.Sphere shape and sizeGelatinous egg masses of cephalopods vary in size and form among species. Some egg masses are spherical, but there are also examples of oblong structures39,40,41. Sphere size may be up to 4 m in diameter1,5,42. Ringvold and Taite (op. cit.) collected information on a total of 27 spheres recorded in European waters varying from 0.3 to 2 m in diameter, as also for the additional spheres from this study. The four spheres in our study, confirmed to belong to I. coindetii, measured between 0.5 and 1 m in diameter.Egg mass of another ommastrephid squid, Todarodes sagittatus, has yet to be found in situ. The species is known to be larger than Illex species, and egg mass is also most probably larger. The largest spheres recorded in our study measured up to 2 m in diameter, but none of these were sampled for molecular analysis, nor were pictures taken. It is uncertain whether they could belong to other species e.g., Todaropsis eblanae (Ball, 1841), Todarodes sagittatus or Ommastrephes sp..Dark streak through coreAlmost 60% of the spheres had a dark streak through the center. This feature might be ink, one important characteristic of cephalopods, produced by most cephalopod orders. The ink sac with its ink glands produces black ink containing melanin43. During fertilization, sperm are released—as well as possibly some ink. Spheres with or without ink may be a result of spheres beeing at different maturity stages1, where spheres with ink are freshly spawned. After a while, when embryos starts developing, the whole sphere, including the streak, will start to disintegrate.Some of us speculate that one function of the streak through the center might serve as visual mimics e.g. of a large fish in order to scare off predators. Other possible functions discussed are also if the streak/structure can be caused by a sphere strengthening structure which is denser or having a higher optical density than the sourrounding structure. A disadvantage with the streak is that it might reveal the whole transparent sphere in the water, visible to e.g. scuba divers.Function of the gelatinous matrixObservations in captivity3,44 showed that species within the genus Illex produce gelatinous egg masses while swimming in open water. Gel functions as a buoyancy mechanism that prevents eggs from sinking, and complete density equilibration requires many days under most conditions44. Such a buoyancy mechanism keeps pelagically spawned eggs of Illex in areas where temperatures are most optimal for embryonic development. Optimal environmental conditions will likely have a positive effect on survival of both hatchlings and paralarvae. Despite consistency in where spawning areas are found, interannual variability has been recorded in the main recruitment areas, which could be related to e.g. mesoscale eddies and/or affecting post-hatching dispersal45.Huge spheres are formed of mucus produced by the nidamental glands, situated inside the mantle cavity of the female46,47. When fully developed, hatchlings emit an enzyme which starts to dissolve the mucus. Eggs and embryos from our four spheres were covered in sticky gelatinous mass, except for a few specimens (from Arendal, collected 7 August, and Søgne) laying in the petri dish outside the sticky gel, in the surrounding sea water following the tissue sample, and might have been old enough to start producing such enzymes.When at hatching, Illex coindetii eggs are about 2 mm long26,48, in line with other ommastrephids12. The longest of our embryos (from Arendal, collected 7 August) measured ~ 2 mm, a developed embryo with long proboscis, mantle about ½ of total body length, as well as chromatophores, large eyes and funnel visible (Fig. 3). It could possibly be a hatchling.Abiotic factors and locationsThe success and duration of embryonic development is related to water temperature. All observations available to date indicate that successful embryonic development for I. coindetii takes ca. 10–14 days at 15 °C; this temperature corresponds to the median temperature value reported for Mediterranean Sea midwater48. Boletzky et al.26 reports on a temperature minimum above 10 °C. Spheres in the Mediterranean were observed in temperatures ranging between 14 and 24 °C. Watermass temperature for one sphere with recently fertilized eggs (Ålesund sample, embryos stage ~ 3) from Norway was 8 °C. It was also observed north of the existing known distribution range for I. coindetii, in the Norwegian Sea, at 43 m depth. Most spheres from Norway were observed from July and August, in water mass 10–14 °C, with maximum temperature at 18 °C.It is unknown whether some of the observed spheres had drifted to water layers unsuitable for the development of the eggs, and, eventually, would have died due to unfavourable abiotic conditions (e.g. transport outside the optimal temperature- or depth range for that particular species), but most likely they were in an area where they would survive. Higher occurrence of sphere sightings from 2017 to 2019, could be a combination of higher abundance of these squid in the area as well as increased knowledge regarding our Citizen Science Sphere Project, and thereby increased reports of observations.Illex coindetii may be considered as an intermittent spawner with a spawning season extending throughout the year, reaching a peak in July–August18.Our sphere observations from all areas were made from March to October: The earliest sphere which can be documented (to month) in the North Sea to date was observed 27 May (2001), and the last sphere was reported on 20 October (2019), coinciding with a study on adult Illex condetii from the North Sea where the spawning season has been suggested to be between spring and autumn49. However, our data show a peak of sphere observations from July to September (all areas combined), from July to August in Norway and from August to September in the Mediterranean Sea. The two recordings from Galicia in Spain, and Seiano in Italy, were the earliest recordings of the year, observed 24 March (in 2017 and 2019, respectively). For all areas combined, no observations during wintertime (November to February) have been recorded.Embryonic development and consistencies of spheresWe collected tissue mass of four different spheres of I. coindetii, and embryos in each sphere were at different developmental stages, ~ 3 to 30, according to Sakai et al.36 based on I. argentinus. The sphere walls of the four spheres were also of different consistencies (Table 2); from Ålesund sphere with recently fertilized eggs and firm, transparent sphere wall to Søgne and Arendal spheres (the latter collected 7 August) with developed embryos and disintegrating sphere walls. The remains of the Arendal sphere was hanging as a long «scarf» in the water. Experienced divers, who previously had seen a few spherical spheres, recognized this disintegrating sphere.Function of spheresOmmastrephidae fecundity is extremely high, and a single sphere may contain thousands to several hundred thousands of eggs41,50,51,52. The function of the spheres is protection and transport of the offspring by sea currents for paralarval dispersal. Inside these gelatinous structures, the eggs and newly hatched paralarvae are protected from predation by e.g. fish, parasite infection and infestation by crustaceans and protozoans during a first relative short period of their lives5,51. Bottom trawlers operate in spawning areas of squids, exposing them to a risk of egg loss, as also for our fisherman at Askøy, Norway, who caught a sphere in his trawl1,5.Scientific cruises and fisheryThe Institute for Marine Research in Norway started identification of cephalopods on their regular scientific cruises in 2013, but no Illex coindetii was recorded that year. However, data show increasing catches from 2014 to 2019 (unpublished). No spheres are reported from Norway in 2013, but between 1995 to 2010, and from 2015 to 2019, observations were made. Most observations are between 2017 and 2019, indicating more frequent squid visits/spawnings. This coincides with more frequent sphere observations from 2017 to 2019.The broadtail shortfin squid, Illex coindetii, is probably the most widespread species found on both sides of the Atlantic and throughout the Mediterranean Sea12. In the NE Atlantic, it has been reported from Oslofjorden, Norway (59°N);53 and the Firth of Forth, east Scotland54, southwards along the European and African coasts to Namibia, including Hollam’s Bird Island (24°S) and Cape Frio (18°S)55. For example, I. coindetii is periodically very abundant in coastal waters of the eastern North Atlantic off Scotland, Ireland and Spain, where it supports opportunistic fisheries. However, the oceanographic and biological factors that drive this phenomenon, are still unknown12.Illex coindetii is widely distributed throughout the Mediterranean Sea11, where it is caught commercially mostly by Italian trawlers, usually as a by-catch, but also by recreational fishing, by means of squid jigging. Annual Italian landings during the last five years have varied between two and three thousand tonnes, but with historical landings reaching numbers of more than eight thousand tonnes during the 1980s and 1990s (FAO 2019)15.In the North Sea, studies show that inshore squids (Alloteuthis subulata (Lamarck, 1798) and Loligo forbesii Steenstrup, 1856) are more abundant than short-finned squid (Illex coindetii, Todaropsis eblanae and Todarodes sagittatus), and I. coindetii is among the rarest ommastrephid species caught49,56. However, two recent studies (1) on summer spawning stock of Illex coindetii in the North Sea57 and (2) I. coindetii recorded from the brackish Baltic Sea58 suggest more frequent visits to this area. Reports on Illex coindetii from Norwegian waters are scarce, but it has been reported from Oslofjorden53, and recently as by-catch from Stavanger area, and by divers from Oslofjorden and Bergen. More
100 Shares109 Views
in EcologyHighest risk abandoned, lost and discarded fishing gear
Most problematic fishing methods based on ALDFG relative risksThis study presents the first quantitative assessment of gear-specific relative risks from ALDFG. Findings accounted for the: (a) derelict gear leakage rate; (b) fishing gear quantity indicators of catch and area of fishing grounds; and (c) adverse consequences from ALDFG. Maximum global conservation gains can be achieved through focusing ALDFG mitigation efforts on the fishing gears with the highest overall relative risk. Set and fixed gillnets and trammel nets, drift gillnets, gears using drifting and anchored FADs (tuna purse seines and pole-and-lines), and bottom trawls were the five most problematic gears on a global scale. This was followed by traps (fyke nets, pots, barriers, fences, weirs, corrals and pound nets).The overall RR score indicates a fishing gear’s relative degree of total adverse effects from ALDFG, accounting for the quantity of ALDFG produced by that gear (estimated from the ALDFG leakage rate and indices of fishing gear quantity of catch and area of fishing grounds), and the adverse consequences that result from ALDFG from that gear type relative to other gears. Globally, gillnets have the highest risks from ALDFG, while hand dredges and harpoons were least problematic.The focus of local management interventions to address problematic derelict fishing gear will be dictated by the specific context. Locally, adopting ALDFG controls following a sequential mitigation hierarchy and implementing effective monitoring, surveillance and enforcement systems are needed to curb derelict gear from these most problematic fisheries. This includes accounting for which fishing gears are predominant and the existing fisheries management framework. For example, a site may have pot and tuna purse seine anchored FAD fisheries. The purse seine fishery has a higher relative risk globally. However, a fisheries management system may have effective ALDFG preventive methods in place for this fishery, such as a high rate of detection and recovery of anchored FADs when they break from moorings, and minimization methods, such as prescribing the use of only non-entangling and biodegradable FAD designs to minimize adverse effects from derelict FADs35, 36. But there may be minimal measures in place to monitor and manage ALDFG from pots. In this hypothetical example, it would be a higher priority locally to improve ALDFG management for the pot fishery.Priority data quality improvementsThere are several priorities for data quality improvement to increase the certainty of future assessments. Given substantial deficits both in estimates of gear-specific quantity/effort and ALDFG rates, it is not yet possible to produce a robust contemporary estimate to replace the ca. five decades-old crude estimate of the magnitude of the annual quantity of leaked ALDFG4, 30. More robust estimates of ALDFG rates are needed for all gear types. Gear-specific estimates have low certainty due to small numbers of studies and sample sizes. Many compiled records estimate only one ALDFG component, typically only loss rates, and therefore may substantially underestimate total ALDFG rates. Most records are dated and may not accurately characterize contemporary rates. There is geographical sampling bias with estimates being primarily derived from the northern hemisphere. Furthermore, many estimates were derived from expert surveys (Supplementary Material Table S1), which have a higher risk of error and bias than approaches higher on the evidence hierarchy37. Substantially more primary studies with robust designs are needed.An expanded meta-analysis on gear-specific ALDFG rates is an additional priority, once sufficient sample sizes of robust studies accumulate. The statistical modeling approach used by Richardson et al.34 could be readily improved by using (1) a random-effects instead of a fixed effects structure to account for study-specific heterogeneity, and (2) a more appropriate model likelihood, such as zero-inflated Beta likelihood, to account for the zero values in the dataset38. Due to larger sample sizes and the number of independent studies, meta-analyses can produce estimates with increased accuracy, with increased statistical power to detect real effects. By synthesizing estimates from an assortment of independent, small and context-specific studies, pooled estimates from random-effects meta-analyses are generalizable and therefore relevant over diverse settings39. The strength of conclusions of hypotheses based on a single study can vary. This is because a single study can be context-specific, where true results may be affected by conditions specific to that single study, such as the species involved and environmental conditions, that cause the results from the single study to not be applicable under different conditions. A single study may also fail to find a meaningful result due to small sample sizes and low power. However, robust synthesis research, including meta-analysis, is more precise and powerful once a sufficient number of similar studies have accumulated, and therefore investing in more primary ALDFG studies is a high priority.For some gear types and fisheries, estimated ALDFG rates may overestimate adverse effects when gear that is abandoned, lost or even discarded does not become derelict because another fishing vessel continues to use the gear. For example, gear that is lost by theft remains in use. Macfadyen et al.4 explained that theft was likely a minor contribution to ALDFG, occurring, for instance, in inshore fishing grounds where static commercial fishing gear and recreational marine activities conflict. However, fishing gear theft may be prevalent in some developing country fisheries (e.g., Cambodian crab traps40). And, there is one gear type where theft has become a globally prevalent, routine and largely accepted practice: Tuna purse seine vessels routinely exchange satellite buoys attached to drifting FADs that they encounter at sea. The stolen FAD, lost by the previous vessel that had been tracking its position, remains in-use and not derelict, although it may eventually become derelict41, 42. Furthermore, because ALDFG leakage rates may be highest in illegal and unregulated fisheries4, if only legal fisheries are sampled, then this may produce underestimates. Thus, accounting for theft and illegal and unregulated fishing would increase the certainty of estimates of ALDFG leakage rates for some fishing gear types.The 20% ALDFG global production rate value used for anchored FADs by pole-and-line fisheries was likely an underestimate. We relied on a single value from the contemporary Maldives pole-and-line fishery’s government-owned and -managed network of anchored FADs. This fishery underwent a substantial reduction in anchored FAD loss rate, from 82 to 20%, by improving designs and a government incentive program that pays fishers to retrieve FADs when they break from their moorings35, 43. For comparison, describing Indonesia’s pole-and-line fishery’s anchored FADs, Widodo et al.44 stated: “Inaccuracy of number and position of FADs in the fishing ground are the outstanding issue facing by fisheries manager…This was largely the result of the current lack of effective systems of FAD registration and monitoring, and also because of the desire of fishing companies and vessel skippers to keep FADs position information confidential. [sic]”.Proctor et al.45, who estimated that between 5000 and 10,000 anchored FADs are used in Indonesian tuna fisheries, also reported a lack of accurate estimates of the numbers and locations of anchored FADs due to ineffective implementation of the government registration system and to high loss rates, including from storms, strong currents, vandalism, vessel collisions and wear and degradation of the FADs. Using the estimated rates of (1) Shainee and Leira43 that 82% of anchored FADs were lost per year prior to the Maldivian government’s incentives program, which might accurately characterize the Indonesian and other anchored FAD networks used by pole-and-line fisheries, and (2) the 20% loss rate value from Adam et al.35, the posterior mean = 0.506 (95% HDI: 0.15–0.84). Thus, 51% might have been a more appropriate estimate for a global ALDFG production rate for pole-and-line anchored FADs. The Maldivian and Indonesian pole-and-line fisheries, which combined supply over half of global pole-and-line catch, rely heavily on anchored FADs, as do several other smaller pole-and-line fisheries (e.g., Solomon Islands, segments of the Japanese pole-and-line fleet)35, 45,46,47,48.Units for ALDFG rates are highly variable. Records using different rates cannot be pooled for synthesis research29, 34. For example, some records reported rates of the percent of number of panels (sheets) or fleets (strings) of gillnets that were lost, while others reported the percent of the length or area of gillnets that were lost29. Similarly, for longline gear, some studies reported the percent of the length of the mainline, while others reported the percent of the number of branchlines/snoods that were lost34. Employment of agreed harmonized units for ALDFG rates are needed.Future assessments could use a ratio of ALDFG risk-to-seafood production to assess gear-specific relative risks locally and globally, similar to assessments of vulnerable fisheries bycatch by using bycatch-to-target catch ratios49. This would enable the assessment of risk from ALDFG to be balanced against meeting objectives of food security and nutritional health.Relationship between alternative indices with the quantity of fishing gearWe used gear-specific annual catch and area of fishing grounds as indicators of the relative global amount of each gear that is used annually as two terms in the model to assess gear-specific relative risks from ALDFG. However, the assumption of a linear relationship between these indices and gear quantity is questionable for similar reasons that have been raised with the relationship between various indices of effort (number of fishing hours, number of vessels, engine power, vessel length, gross tonnage, gear size, hold capacity, as well as kWh) and catch. For example, the ratio of catch from one set by an anchoveta purse seiner to the volume or weight of the gear is likely substantially different than for pots or driftnets. Not only is the relationship between catch and amount of gear variable by gear type and target species, there is also high variability within gear types—by fishery and within fisheries—due to the broad range of factors that significantly explain fishing efficiency per unit of nominal effort50, 51. Similarly, the relationship between catch weight and number of fishing operations varies substantially across gear types. For example, an industrial tropical tuna purse seine vessel might have a total catch of about 37 t per set on a drifting FAD27 while a tuna pole-and-line vessel catches about 1 t per fishing day52.Similarly, the relationship between the area of fishing grounds and amount of gear may vary substantially between gear types. A small number of vessels using a relatively small magnitude of active, mobile gear may have a much larger area of fishing grounds than a large number of vessels and shore-based fishers using a large amount of passive and static gears. For example, about 686 large-scale tuna purse seine vessels fish across the tropics53, while gillnets, which may be the most globally prevalent gear type, are used predominantly within 20 nm (37 km) of shore, most intensively in southeast Asia and the northwest Pacific54.Fishing effort has also been estimated using engine power as well as by using energy expended, such as in kilowatt-hours (kWh), the product of the fishing time and engine power of a fishing vessel, including non-motorized vessels55,56,57. We did not use these metrics for effort because the correlation between rate of production of ALDFG and vessel engine power or kWh, including of non-motorized vessels (1.70 million of the estimated global 4.56 million fishing vessels21), has not been explored. In general, vessel power and power per unit of fishing period largely distinguishes between mobile and passive gears, where the former (e.g., trawls, dredges), use substantially more vessel power per weight of catch than passive gears (traps, gillnets). Also, estimates using these fishing effort metrics used a small number of aggregated gear categories and extrapolated estimates primarily from sampled developed world fisheries (however, see56). These effort indices would also prevent inclusion of shore-based fishing methods.There have been recent gear specific estimates of effort, in units of time spent fishing and the estimated energy expended (fishing power * fishing time), using Automated Identification Systems (AIS) data, which are available for industrial fishing vessels, primarily using longlines, trawls and pelagic purse seines6, 58. AIS data provide coverage of the majority of large fishing vessels ≥ 24 m in overall length58. However, this accounts for only about 2% of the number of global fishing vessels (of an estimated 4.56 million global fishing vessels, about 67,800 are ≥ 24 m in length21).ALDFG monitoring, management and performance assessmentsA sequential mitigation hierarchy of avoidance, minimization, remediation and offsets can be applied to manage ALDFG29, 59. Referring to the three components of relative risk assessed by this study, avoidance and minimization of risks from ALDFG is achieved by reducing the ALDFG leakage rate, fishing effort, and/or adverse consequences from derelict gear. Remedial methods reduce adverse effects, such as reducing ghost fishing by reducing the duration that ALDFG remains in the marine environment1, 29, 60. In general, preventative methods are more cost effective than remedial methods—it is less expensive to prevent gear abandonment, loss and discarding than it is, for example, to detect and then disable or remove derelict gear61. Methods to prevent ALDFG include, for instance, spatially and temporally separating passive and mobile fishing gears, having bottom trawlers avoid features that could snag the net such as by using high-resolution seabed maps, tracking the real-time position of unattended fishing gears using various electronic technologies, and using gear marking to identify the owner and increase the visibility of passive gears. Furthermore, because some remedial methods, such as using less durable materials for fishing gear components, can reduce economic viability and practicality, preventative methods and remediation through quick recovery of ALDFG may be more effective as well as elicit broader stakeholder support29, 62.To assess the performance of global ALDFG management interventions against this study’s quantitative benchmark, substantial deficits in monitoring and surveillance of fisheries’ waste management practices must first be addressed1. Of 68 fisheries that catch marine resources managed by regional fisheries management organizations, 47 lack any observer coverage, half do not collect monitoring data on ALDFG, and surveillance and enforcement systems are rudimentary or nonexistent in many fisheries1, 63.Findings from this quantitative, global assessment of ALDFG risks guide the allocation of resources to achieve the largest improvements from preventing and remediating derelict gear from the world’s 4.6 million fishing vessels. With improved data quality and governance frameworks for fishing vessel waste management, including ALDFG, we can expect reductions in ecological and socioeconomic risks from derelict gear. More
150 Shares169 Views
in EcologyThe dynamics of cable bacteria colonization in surface sediments: a 2D view
pH distributions within sediment microcosms showed distinct spatial and temporal patterns. For the January 2019 experiment series, the strong pH maximum bands developed in the oxic surface sediment after 20 ~ 22 days of incubation. Development was not spatially uniform. Sediment surface pH maxima started to develop from isolated points covering horizontal lengths of 0.6–1 cm at the times of imaging (Fig. 1). Within a week, the pH maximum bands expanded laterally, covering the entire 6 cm long monitoring panel, and were sustained until the end of the experiment (106 days, data not shown). The pH maximum bands were about 2 mm in vertical extent with average pH ~ 8.5. Even after the electrogenic colonization was laterally complete (day 27), the activity intensities of cable bacteria, or the impacts of their activity as reflected by the magnitudes of pH elevations and associated reactions, were still spatially heterogeneous (Fig. 1C). pH values in the underlying anoxic sediment decreased from 7.0 to 6.5 gradually as surface pH maxima formed. However, in the experiment with the sediment collected in August 2019, sediment surface pH maxima started appearing on day 39 and expanded much more slowly, with only a 2.4 cm-long lateral coverage after a week of growth in one of the duplicate microcosms and no development at all in the other (Fig. 2A,B). At the same time, where pH maxima were present, a pH minimum band developed in the anodic zone ( > 2 mm depth) just below sediment surface pH maxima and expanded over time (Fig. 2A).Figure 12D pH distribution dynamics of duplicate microcosms starting from day 20 (January 2019 sediment). (A,B) For duplicate microcosms, sediment surface pH maximum bands started from isolated hotspots and quickly spread across the whole surface area with spreading speed ~ 1.2 cm/day. Anoxic sediment pH decreased from day 20–26. (C) The horizontal pH variations within the surficial pH maximum band on day 27 (microcosm B; vertical width ~ 1 mm). The pH ± standard deviations within the band are indicated by the blue dots.Full size imageFigure 22D pH and H2S distribution dynamics within microcosms during colonization. (A) 2D pH distribution dynamics starting from day 39 (August 2019 sediment) and corresponding 1D pH profiles. The sediment surface pH maximum band started from isolated hotspots and spread across sediment surface with an average rate of 0.3 cm/day, which is much slower compared with January 2019 sediment (1.2 cm/day). The pH in the cable bacteria anodic zone is lower (blue line, A2) compared with un-colonized sediment side (black line, A1) in the pH profile panel insert. (B) The duplicate microcosm (August 2019 sediment) did not show sediment surface pH maxima during the same time window. (C) 2D pH distribution dynamics starting from day 46 (October 2020 sediment). Both surface pH maxima and deep minima expand during electrogenic colonization. The pH minima (white arrows) are evident first on day 46 and 64. (D) Sediment 2D H2S distribution on day 71 (October 2020 sediment) with upper boundary showing the sediment water interface. The H2S distributions are consistent with pH patterns, but the sediment H2S concentrations are generally lower compared with other experiment series (Fig. 4).Full size imageThe October 2020 results (Fig. 2C) further resolved the cathodic and anodic zone development patterns. During colonization, the anoxic zone pH minima were evident earlier (day 46 and 64) and were distinctly wider than the sediment surface pH maxima (day 46–71). These differences in cathode and anode detection sensitivity might be caused by more rapid diffusion at the sediment–water boundary (free solution) and rapid neutralization by seawater CO2. They may also be related to the mode of colonization as discussed below. In addition to pH heterogeneity, the electrogenic activity also resulted in complex topographies of H2S distributions (Fig. 2D). In the locations where pH hotspots were found, the depths of detectable H2S are deeper compared with anywhere else, consistent with ongoing electrogenic sulfide oxidation metabolic activity. These data suggest that cable bacteria dynamics can be distinctly different in otherwise similar sediment (e.g. similar concentrations of dissolved H2S at depth), with variable development controlled by unknown factors.High resolution cable bacteria abundance data are not available in this study because of the design of the experiment. However, the vertical cable bacteria abundance dynamics, which were retrieved from random locations in the January 2019 microcosms during incubation from day 20 to 43, show that cable bacteria cell abundance in the oxic zone of the sediment did not vary significantly during the primary colonization period. In contrast, one of the microcosm series (Fig. 3B) showed a distinct trend of subsurface, anodic region (0.5–1.5 cm depth) enrichment of filament cells, and importantly, both microcosm series had similar terminal distributions when electrogenic activity had expanded across the entire surface (day 43) (Fig. 3). The first time sample in series A (day 20) (Fig. 3A) is similar in abundance distribution as at day 43. It is possible that the first sample taken in series A was located in an electrogenic colonization patch, that is, locally comparable to what would become the pattern across the entire surface at day 43. These abundance data together with the high resolution pH patterns allow inference of the colonization strategy of cable bacteria, as outlined subsequently.Figure 3Cable bacteria cell abundance dynamics in the duplicate January 2019 sediment microcosms. (A) and (B) represent duplication microcosms. From day 20 to 43, cable bacteria can be detected throughout the top 5 cm sediment with heterogeneous abundance patterns. There were depth intervals (e.g. B 2.5–3 cm) with cable bacteria cell abundance below the detection limit of the enumeration method. The sediment surface ( More
100 Shares149 Views
in EcologyGlobal phylogeography of a pantropical mangrove genus Rhizophora
1.Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves. (Earthscan, 2010).2.Duke, N. et al. A world without mangroves?. Science 317, 41–42 (2007).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
3.Friess, D. et al. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Env. Resour. 44, 89–115 (2019).ArticleGoogle Scholar
4.Wee, et al. The integration and application of genomic information in mangrove conservation. Conserv. Biol. 33, 206–209 (2019).PubMed
Article
PubMed CentralGoogle Scholar
5.Duke, N., Lo, E. & Sun, M. Global distribution and genetic discontinuities of mangroves—emerging patterns in the evolution of Rhizophora. Trees-Struct. Funct. 16, 65–79 (2002).ArticleGoogle Scholar
6.Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecol. Biogeogr. 8, 95–115 (1999).
Google Scholar
7.Plaziat, J.-C., Cavagnetto, C., Koeniguer, J.-C. & Baltzer, F. History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl. Ecol. Manag. 9, 161–180 (2001).ArticleGoogle Scholar
8.Duke, N., Ball, M. & Ellison, J. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecol. Biogeogr. Lett. 7, 27–47 (1998).ArticleGoogle Scholar
9.Duke, N. Genetic diversity, distributional barriers and rafting continents—more thoughts on the evolution of mangroves. Hydrobiologia 295, 167–181 (1995).ArticleGoogle Scholar
10.Tomlinson, P. B. The botany of mangroves. (Cambridge University press, 1986).11.Schwarzbach, A. E. & Ricklefs, R. E. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. Am. J. Bot. 87, 547–564 (2000).CAS
PubMed
ArticleGoogle Scholar
12.Lo, E. Y. Y. Testing hybridization hypotheses and evaluating the evolutionary potential of hybrids in mangrove plant species. J. Evol. Biol. 23, 2249–2261 (2010).CAS
PubMed
ArticleGoogle Scholar
13.Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L. & Kajita, T. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. Am. J. Bot. 100, 1191–1201 (2013).CAS
PubMed
ArticleGoogle Scholar
14.Lo, E., Duke, N. & Sun, M. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. BMC Evol. Biol. 14, 83 (2014).PubMed
PubMed Central
ArticleGoogle Scholar
15.Chen, Y. et al. Applications of multiple nuclear genes to the molecular phylogeny, population genetics and hybrid identification in the mangrove genus Rhizophora. PLoS ONE 10, e0145058 (2015).PubMed
PubMed Central
Article
CASGoogle Scholar
16.Xu, S. H. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4, 721–734 (2017).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
17.Tyagi, A. P. Cytogenetics and reproductive biology of mangroves in Rhizophoraceae. Aust. J. Bot. 50, 601–605 (2002).ArticleGoogle Scholar
18.Tyagi, A. P. Chromosomal Pairing and Pollen Viability in Rhizophora mangle and Rhizophora stylosa Hybrids. S. Pac. J. Nat. Sci. 20, 1–3 (2002).ArticleGoogle Scholar
19.Tyagi, A. P. & Singh, E. V. V. Pollen fertility and intraspecific and interspecific compatibility in mangroves of Fiji. Sex. Plant Reprod. 11, 60–63 (1998).ArticleGoogle Scholar
20.Steininger, F. F. & Rögl, F. Paleogeography and palinspastic reconstruction of the Neogene of the Mediterranean and Paratethys. Geol. Soc. Spec. Publ. 17, 659–668 (1984).ADS
ArticleGoogle Scholar
21.Harzhauser, M. et al. Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zoo. Anz. 246, 241–256 (2007).ArticleGoogle Scholar
22.Vrielynck, B., Odin, G. & Dercourt, J. Miocene palaeogeography of the Tethys Ocean; potential global correlations in the Mediterranean. Miocene stratigraphy: an integrated approach. Elsevier Science, (1997).23.Harzhauser, M., Piller, W. E. & Steininger, F. F. Circum-Mediterranean Oligo-Miocene biogeographic evolution—the gastropods’ point of view. Palaeogeogr. Palaeoclimatol. Palaeoecol. 183, 103–133 (2002).ArticleGoogle Scholar
24.Dercourt, J. et al. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics 123, 241–315 (1986).ADS
ArticleGoogle Scholar
25.Marko, P. B. Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol. Biol. Evol. 19, 2005–2021 (2002).CAS
PubMed
ArticleGoogle Scholar
26.Saenger, P. Mangrove vegetation: an evolutionary perspective. Mar. Freshw. Res. 49, 277–286 (1998).CAS
ArticleGoogle Scholar
27.Muller, J. & Caratini, C. Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. Pollen Spores 19, 361–390 (1977).
Google Scholar
28.Muller, J. Fossil pollen records of extant angiosperms. Bot. Rev. 47, 1–142 (1981).ArticleGoogle Scholar
29.Germeraad, J. H., Hopping, C. A. & Muller, J. Palynology of tertiary sediments from tropical areas. Rev. Palaeobot. Palyno. 6, 189–348 (1968).ArticleGoogle Scholar
30.Zachos, J., Pagani, H., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS
CAS
ArticleGoogle Scholar
31.Pole, M. S. & Macphail, M. K. Eocene Nypa from Regatta Point, Tasmania. Rev. Palaeobot. Palyno. 92, 55–67 (1996).ArticleGoogle Scholar
32.Hornibrook, N. D. B. New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota. Pacific Neogene: environment, evolution, and events, 83–106 University of Tokyo Press, (1992).33.Hou, Z. & Li, S. Tethyan changes shaped aquatic diversification. Biol. Rev. 93, 874–896 (2018).PubMed
Article
PubMed CentralGoogle Scholar
34.Wee, A. K. S. et al. Genetic differentiation and phylogeography of partially sympatric species complex Rhizophora mucronata Lam. and R. stylosa Griff. using SSR markers. BMC Evol. Biol. 15, 57 (2015).PubMed
PubMed Central
ArticleGoogle Scholar
35.Ng, W. L. et al. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conserv. Genet. 16, 137–150 (2015).ArticleGoogle Scholar
36.Doyle, J. & Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 9, 11–15 (1987).
Google Scholar
37.Strand, A. E., Leebens-Mack, J. & Milligan, B. G. Nuclear DNA-based markers for plant evolutionary biology. Mol. Ecol. 6, 113–118 (1997).CAS
PubMed
ArticleGoogle Scholar
38.Cronn, R. C., Small, R. L. & Wendel, J. F. Duplicated genes evolve independently after polyploid formation in cotton. Proc. Natl. Acad. Sci. USA 96, 14406–14411 (1999).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
39.Hayashi, K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. Genome Res. 1, 34–38 (1991).CAS
ArticleGoogle Scholar
40.Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003).CAS
ArticleGoogle Scholar
41.Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, Massachusetts, (2002).42.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
43.Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).ArticleGoogle Scholar
44.Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, I37-48 (1999).ArticleGoogle Scholar
45.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).PubMed
PubMed Central
Article
CASGoogle Scholar
46.Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27, 570–580 (2009).PubMed
PubMed Central
Article
CASGoogle Scholar
47.Graham, A. Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. Ann. Mo. Bot. Gard. 93, 325–334 (2006).ArticleGoogle Scholar
48.Rambaut, A. Fig Tree v1.4. (2012). Available at http://tree.bio.ed.ac.uk/software/figtree/49.Matzke, N. J. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).ArticleGoogle Scholar
50.Blair, C. & He, X. J. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).PubMed
Article
CASGoogle Scholar
51.Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in a mangrove species, Rhizophora stylosa (Rhizophoraceae). Conserv. Genet. Resour. 1, 175–178 (2009).ArticleGoogle Scholar
52.Takayama, K., Tamura, M., Tateishi, Y. & Kajita, T. Isolation and characterization of microsatellite loci in the red mangrove Rhizophora mangle (Rhizophoraceae) and its related species. Conserv. Genet. 9, 1323–1325 (2008).CAS
ArticleGoogle Scholar
53.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
PubMed
PubMed CentralGoogle Scholar
54.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes. 7, 574–578 (2007).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
55.Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).PubMed
PubMed Central
ArticleGoogle Scholar
56.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
ArticleGoogle Scholar More