More stories

  • in

    Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time

    Demographic dataTo address our hypotheses, we used matrix population models (MPMs) or integral projection models (IPMs) from the COMPADRE Plant Matrix Database (v. 5.0.156) and the PADRINO IPM Database57, which we amended with a systematic literature search. First, we selected density-independent models from COMPADRE and PADRINO which described the transition of a population from 1 year to the next. Among these, we selected studies with at least six annual transition matrices, to balance the needs of adequate yearly temporal replicates and sufficient sample size for a quantitative synthesis. This yielded data from 48 species and 144 populations.We then performed a systematic literature search for studies linking climate drivers to structured population models in the form of either MPMs or IPMs. We performed this search on ISI Web of Science for studies published between 1997 and 2017. We used a Boolean expression containing keywords related to plant form, structured demographic models, and environmental drivers (Supplementary Methods). We only considered studies linking macro-climatic drivers to natural populations (e.g., transplant experiments and studies focused on local climatic factors such as soil moisture, light due to treefall gaps, etc. were excluded). Finally, we used the same criteria used to filter studies in COMPARE and PARDINO, by selecting studies with at least six, density-independent, annual projection models. This search brought two additional species, belonging to three additional populations, which we entered in the COMPADRE database.One of the studies we excluded from the literature search because it contained density-dependent IPMs, also provided raw data with high temporal replication (14–32 years of sampling) for 12 species from 15 populations58. Therefore, we re-analyzed these freely available data to produce density-independent MPMs that were directly comparable to the other studies in our dataset (Supplementary Methods).The resulting dataset consisted of 46 studies, 62 species, 162 populations, and a total of 3761 MPMs and 52 IPMs (Supplementary Data 1). The analyzed plant populations were tracked for a mean of 16 (median of 12) annual transitions. To our knowledge, this is the largest open-access dataset of long-term structured population projection models. However, this dataset is taxonomically and geographically biased. Specifically, among our 62 species, this dataset contains 54 herbaceous perennials (11 of which graminoids), and eight woody species: five shrubs, two trees, and one woody succulent (Opuntia imbricata). Moreover, almost all of these studies were conducted in North America and Europe (Supplementary Fig. 1), in temperate biomes that are cold, dry, or both cold and dry (Supplementary Fig. 1, inset). Our geographic and taxonomic bias reflects the rarity of long-term plant demographic data in general. This dearth of long-term demographic data is particularly evident in the tropics. The ForestGEO network59 is an exception to this rule, but to date, no matrix population models or integral projection models using these data have been published.We used the MPMs and IPMs in this dataset to calculate the response variable of our analyses: the yearly asymptotic population growth rate (λ). This measure is one of the most widely used summary statistics in population ecology60, as it integrates the response of multiple interacting vital rates. Specifically, λ reflects the population growth rate that a population would attain if its vital rates remained constant through time61. This metric therefore distills the effect of underlying vital rates on population dynamics, free of other confounding factors (e.g., transient dynamics arising from population structure62). We calculated λ of each MPM or IPM with standard methods61,63. Because our MPMs and IPMs described the demography of a population transitioning from one year to the next, our λ values were comparable in time units. Finally, we identified and categorized any non-climatic driver associated with these MPMs and IPMs. Data associated with 21 of our 62 species explicitly quantified a non-climatic driver (e.g., grazing, neighbor competition), for a total of 60 of our 162 populations. Of the datasets associated with these species, 19 included discrete drivers, and only three included a continuous driver.Climatic dataTo test the effect of temporal climatic variation on demography, we gathered global climatic data. We downloaded 1 km2 gridded monthly values for maximum temperature, minimum temperature, and total precipitation between 1901 and 2016 from CHELSAcruts64, which combines the CRU TS 4.0165, and CHELSA66 datasets. Gridded climatic data are especially suited to estimate annual climatic means45. These datasets include values from 1901 to 2016, which are necessary to cover the temporal extent of all 162 plant populations considered in our analysis. For our temperature analyses, we calculated the mean monthly temperature as the mean of the minimum and maximum monthly temperatures. We used monthly values to calculate the time series of mean annual temperature and total annual precipitation at each site. We then used this dataset to calculate our annual anomalies for each census year, defined as the 12 months preceding a population census. Our annual anomalies are standardized z-scores. For example, if X is a vector of 40 yearly precipitation or temperature values, E() calculates the mean, and σ() calculates the standard deviation, we compute annual anomalies as A = [X − E(X)]/σ(X). Therefore, an anomaly of one refers to a year where precipitation or temperature was one standard deviation above the 40-year mean. In other words, anomalies represent how infrequent annual climatic conditions are at a site. Specifically, if we assume that A values are normally distributed, values exceeding one and two should occur every 6 and 44 years, respectively. We used 40-year means because the minimum number of years suggested to calculate climate averages is 3067.Z-scores are commonly used in global studies on vegetation responses to climate8,68, and they reflect the null hypothesis that species are adapted to the climatic variation at their respective sites. Across our populations, the standard deviations of annual precipitation and temperature anomalies change by 300% and 60%, respectively (Supplementary Fig. 2). Thus, a z-score of one refers to a precipitation anomaly of 50 or 160 mm and to a temperature anomaly of 0.5 or 0.8 °C. Our null hypothesis posits that species are adapted to these conditions, regardless of the absolute magnitude of the standard deviation in annual climatic anomalies. If this null hypothesis were true, each species would respond similarly to z-scores. Z-scores are more easily interpreted when calculated on normally distributed variables. We found our temperature and precipitation z-scores were highly skewed (skewness above 1) only in, respectively, 2 (for temperature) and three (for precipitation) of our 162 populations. We concluded that this degree of skewness should not bias our z-scores substantially.To test how the response of plant populations to climate changes based on biome we used two proxies of water and temperature limitation. For each study population, we computed a proxy for water limitation, water availability index (WAI), and temperature limitation using mean annual temperature. To compute these metrics, we downloaded data at 1 km2 resolution for mean annual potential evapotranspiration, mean annual precipitation, and mean annual temperature referred to the 1970–2000 period. We obtained potential evapotranspiration data from the CGIAR-CSI consortium (http://www.cgiar-csi.org/). This dataset calculates potential evapotranspiration using the Hargreaves method69. We obtained mean annual precipitation and mean annual temperature from Worldclim70. Here, we used WorldClim rather than CHELSA climatic data because the CGIAR-CSI potential evapotranspiration data were computed from the former. We calculated the WAI values at each of our sites by subtracting mean annual potential evapotranspiration from the mean annual precipitation. Such proxy is a coarse measure of plant water availability that ignores information such as soil characteristics and plant rooting depth. However, WAI is useful to compare water availability among disparate environments, so that it is often employed in global analyses68,71. As our proxy of temperature limitation, we use mean annual temperature. While growing degree days would be a more mechanistic measure of temperature limitation48, this requires daily weather data. However, we could not find a global, downscaled, daily gridded weather dataset to calculate this metric.The overall effect of climate on plant population growth rateTo test H1, we estimated the overall effect sizes of responses to anomalies in temperature, precipitation, and their interaction with a linear mixed-effect model.$${mathrm{log}}left( lambda right) = alpha + beta P + eta T + theta P{mathrm{x}}T + varepsilon$$
    (1)
    where log(λ) is the log of the asymptotic population growth rate of plant population P is precipitation, T is temperature. We included random population effects on the intercept and the slopes to account for the nonindependence of measurements within populations. We then compared the mean absolute effect size of precipitation, temperature, and their interaction. This final model did not include a quadratic term of temperature and precipitation because these additional terms led to convergence issues. This likely occurred because single data sets did not include enough years of data.Population-level effect of climate on plant population growth ratesTo test our remaining three hypotheses, we carried out meta-regressions where the response variable was the slope (henceforth “effect size”) of climatic anomalies on the population growth rate for each of our populations. Before carrying out our meta-regression, we first estimated the effect size of our two climatic anomalies on the population growth rate of each population separately. We initially fit population-level and meta-regression simultaneously, in a hierarchical Bayesian framework. However, these Bayesian models shrunk the uncertainty of the noisiest population–level relationships, resulting in unrealistically strong meta-regressions. We, therefore, chose to fit population models separately, resulting in more conservative results.For each population, we fit multiple regressions with an autoregressive error term, and we evaluated the potential for nonlinear effects in the datasets longer than 14 years. We fit multiple regressions because temperature and precipitation anomalies were negatively correlated, so that fitting separate models for temperature and precipitation would yield biased results72. We fit an autoregressive error term because density dependence and autocorrelated climate anomalies can produce autocorrelated plant population growth rates. The form of our baseline model was$${rm{log}}(lambda )_y = alpha + beta _pP_y + beta _tT_y + varepsilon _y$$
    (2)
    $$varepsilon _y = rho varepsilon _{y – 1} + eta _y$$
    (3)
    The model in Eq. 2 is a linear regression relating each log(λ) data point observed in year y, to the corresponding precipitation (P) and temperature (T) anomalies observed in year y, via the intercept α, the effect sizes, β, and an error term, εy, which depends on white noise, ηy, and on the correlation with the error term of the previous year, ρ. When multiple spatial replicates per each population were available each year, we estimated the ρ autocorrelation value separately for each replicate. This happened in the few cases when a study contained contiguous populations, with no ecologically meaningful (e.g., habitat) differences.We compared the baseline model in Eqs. 2 and 3 to models including a quadratic climatic effect and non-climatic covariates. We estimated quadratic climatic effects only for time series longer than 14 years. We choose this threshold because when using a model selection approach to select a quadratic or linear regression model, the recommended minimum sample size is between 8 and 25 data points73. We fit models including a quadratic effect of temperature, precipitation, or both (Supplementary Table 1).Finally, we also tested whether non-climatic covariates could bias the effects of climate on log(λ) estimated in our analysis. Such bias, either upwards or downwards, could result in the case non-climatic co-variates interacted with climate. For example, harvest can have multiplicative, rather than additive effects on the climate responses of forest understory herbs74. We tested for an interaction between a covariate and climate anomaly in 17 of the 21 studies that included a non-climatic covariate. In the remaining three studies, discrete covariates corresponded with the single populations. Because Eqs. 2 and 3 is fit on separate populations, it implicitly accounted for these covariates. For the 17 studies above, we fit a linear effect of the non-climatic covariate and its interaction with one of the two linear climatic anomalies. Thus, including the linear model in Eqs. 2 and 3, the nonlinear models, and the covariate interaction models, we tested up to six alternative models for each one of our populations (Supplementary Table 1). We selected the best model according to the Akaike Information Criterion corrected for small sample sizes (AICc75). We carried out these and subsequent analyses in R version 3.6.176.In the populations for which AICc selected one of the model alternatives to the baseline in Eqs. 2 and 3, we calculated the effect size of climate by adding the effect of the new terms to the linear climatic terms. For example, when a quadratic precipitation model was selected, we calculated the effect size of precipitation as β = βp + βp2. For models including an interaction between temperature and a non-climatic covariate, we evaluated the effect of the interaction at the mean value of the covariate. Therefore, we calculated the effect size as β = βt + βxE(Ci) for continuous covariates. For categorical variables, we calculated the effect size as βp + βx0.5: that is, we calculated the mean effect size between the two categories. We quantified the standard error of the resulting effect sizes by adding the standard errors of the two terms.The effect of biome on the response of plants to climateWe used a simulation procedure to run two meta-regressions to test for the correlation between the effect size of climate drivers on λ, and our measures of water or temperature limitation. These meta-regressions accounted for the uncertainty, measured as the standard error, in the effect sizes of climate drivers. We represented the effect of biome using a proxy of water (WAI) and temperature (mean annual temperature) limitation. For each of our 162 populations, the response data of this analysis were the effect sizes (βp or βt values) estimated by Eqs. 2 and 3 or their modifications in case a quadratic or non-climatic covariate model were selected. In these meta-regressions, the weight of each effect size was inversely proportional to its standard error. To test H2 and H3 on how water and temperature limitation should affect the response of populations to climate, we used linear meta-regressions. These two hypotheses tested both the sign and magnitude of the effect of climate. Therefore, we used the effect sizes as a response variable which could take negative or positive values. As predictors, we used population-specific WAI (H2, only for effect sizes quantifying the effect of precipitation), and mean annual temperature (H3, only for effect sizes quantifying the effect of temperature). The null hypothesis of these meta-regressions is that plant species are adapted to the climatic variation at their respective sites. Such an adaptation implies that a precipitation z-score of one should produce effects on log(λ) of similar magnitude and sign across different climates. This should happen across average climatic values that are connected to substantially different absolute climatic anomalies (Supplementary Fig. 2). On the other hand, our hypotheses posit that at low WAI and MAT values, species are more responsive to z-scores than expected under the null hypothesis.We performed these two meta-regressions by exploiting the standard error of each effect size. We simulated 1000 separate datasets where each effect size was independently drawn from a normal distribution whose mean was the estimated β value, and the standard deviation was the standard error of this β. These simulated datasets accounted for the uncertainty in the β values. We fit 1000 linear models, extracting for each its slope, βmeta. Each one of these slopes had in turn an uncertainty, quantified by its standard error, σmeta. For each βmeta, we then drew 1000 values from a normal distribution with mean βmeta and standard deviation σmeta. We used the resulting 1 × 106 values to estimate the confidence intervals of βmeta. This procedure assumes that the distribution of βmeta values is normally distributed. We performed one-tailed hypothesis tests, considering meta-regression slopes significant when over 95% of simulated values were below zero.The effect of generation time on the response of plants to climateTo test H4 on how the generation time of a species should mediate its responses to climate, we used a gamma meta-regression. We fitted gamma meta-regressions because our response variables were the absolute effect sizes of precipitation and temperature anomalies, |β|, which are bounded between 0 and infinity. To test H4, we therefore fit gamma meta-regressions with a log link, using |β| values as response variable and generation time (T) as predictor. We calculated T directly from the MPMs and IPMs (Supplementary Methods). We log-transformed T to improve model fit. We carried out these meta-regressions using the same simulation procedure described for testing H2 and H3. We also carried out one-tailed hypothesis tests, by verifying whether 95% of βmeta values were below zero.The effect of plant types on estimates of climate effectsWe verified whether certain plant types could bias our results by subdividing our species as graminoids, herbaceous perennials, ferns, woody species (shrubs and trees), and succulents. We ran ANOVA tests to verify whether the effect sizes of precipitation and temperature anomalies differed between plant types. We then tested for significant differences in pairwise contrasts between plants types by running Tukey’s honestly significant difference tests. We carried out these tests on the average effects of climate, without accounting for differences in parameter uncertainty. If Tukey’s test identified significant differences among plant types, we ran additional tests of H2–H4 excluding the plant type, or plant types, whose response to climate differed.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Plastic ingestion by freshwater turtles: a review and call to action

    1.Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461. https://doi.org/10.1126/science.aba9475 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Senko, J. F. et al. Understanding individual and population-level effects of plastic pollution on marine megafauna. Endanger. Species Res. 43, 234–252 https://doi.org/10.3354/esr01064 (2020).Article 

    Google Scholar 
    3.Kühn, S. & van Franecker, J. A. Quantitative overview of marine debris ingested by marine megafauna. Mar. Pollut. Bull. 151, 110858. https://doi.org/10.1016/j.marpolbul.2019.110858 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Fred-Ahmadu, O. H. et al. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci. Total Environ. 706, 135978. https://doi.org/10.1016/j.scitotenv.2019.135978 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Nelms, S. E. et al. Plastic and marine turtles: A review and call for research. ICES J. Mar. Sci. 73, 165–181. https://doi.org/10.1093/icesjms/fsv165 (2016).Article 

    Google Scholar 
    6.Li, C., Busquets, R. & Campos, L. C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 707, 135578. https://doi.org/10.1016/j.scitotenv.2019.135578 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Collard, F., Gasperi, J., Gabrielsen, G. W. & Tassin, B. Plastic particle ingestion by wild freshwater fish: A critical review. Environ. Sci. Technol. 53, 12974–12988. https://doi.org/10.1021/acs.est.9b03083 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Wagner, M. et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 26, 1–9 https://doi.org/10.1186/s12302-014-0012-7 (2014).Article 

    Google Scholar 
    9.D’Souza, J. M., Windsor, F. M., Santillo, D. & Ormerod, S. J. Food web transfer of plastics to an apex riverine predator. Glob. Change Biol. 26, 3846–3857. https://doi.org/10.1111/gcb.15139 (2020).ADS 
    Article 

    Google Scholar 
    10.Craig, L. S. et al. Meeting the challenge of interacting threats in freshwater ecosystems: A call to scientists and managers. Elementa Sci. Anthropocene 5, 72. https://doi.org/10.1525/elementa.256 (2017).Article 

    Google Scholar 
    11.Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. https://doi.org/10.1017/S1464793105006950 (2006).Article 
    PubMed 

    Google Scholar 
    12.Gatti, R. C. Freshwater biodiversity: A review of local and global threats. Int. J. Environ. Stud. 73, 887–904. https://doi.org/10.1080/00207233.2016.1204133 (2016).Article 

    Google Scholar 
    13.He, F. et al. The global decline of freshwater megafauna. Glob. Change Biol. 25, 3883–3892 https://doi.org/10.1111/gcb.14753 (2019).ADS 
    Article 

    Google Scholar 
    14.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 https://doi.org/10.1641/0006-3568(2004)054[0321:TGDONM]2.0.CO;2 (2004).Article 

    Google Scholar 
    15.Richman, N. I. et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philos. Trans. R. Soc. B 370, 20140060. https://doi.org/10.1098/rstb.2014.0060 (2015).Article 

    Google Scholar 
    16.Rhodin, A. G. J. et al. Global conservation status of turtles and tortoises (order Testudines). Chel. Conserv. Biol. 17, 135–161. https://doi.org/10.2744/CCB-1348.1 (2018).Article 

    Google Scholar 
    17.Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, R721-735. https://doi.org/10.1016/j.cub.2020.04.088 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Schuyler, Q., Hardesty, B. D., Wilcox, C. & Townsend, K. Global analysis of anthropogenic debris ingestion by sea turtles. Conserv. Biol. 28, 129–139 https://doi.org/10.1111/cobi.12126 (2013).Article 

    Google Scholar 
    19.Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Change Biol. 25, 744–752. https://doi.org/10.1111/gcb.14519 (2018).ADS 
    Article 

    Google Scholar 
    20.Lynch, J. M. Quantities of marine debris ingested by sea turtles: Global meta-analysis highlights need for standardized data reporting methods and reveals relative risk. Environ. Sci. Technol. 52, 12026–12038. https://doi.org/10.1021/acs.est.8b02848 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Turtle Taxonomy Working Group et al. in Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs 7:1–292 (eds Anders G. J. Rhodin et al.) (2017).22.Dietz, R. & Ferri, D. Chelydra serpentina (Common Snapping Turtle). Deformity. Herpetol. Rev. 34, 56 (2003).
    Google Scholar 
    23.Silveira, E. C., Mascarenhas, C. S., Corrêa, F. & Müller, G. Diet of Trachemys dorbigni (Duméril & Bibron, 1835) (Testudines: Emydidae) in anthropic environments from southern Brazil. Pan-Am. J. Aquat. Sci. 14, 42–50 (2019).
    Google Scholar 
    24.Casale, P., Freggi, D., Paduano, V. & Oliverio, M. Biases and best approaches for assessing debris ingestion in sea turtles, with a case study in the Mediterranean. Mar. Pollut. Bull. 10, 238–249. https://doi.org/10.1016/j.marpolbul.2016.06.057 (2016).CAS 
    Article 

    Google Scholar 
    25.United States Fish & Wildlife Service. Endangered and threatened wildlife and plants; 90-day findings on 10 petitions. Fed. Reg. 80, 19259–19263 (2015).
    Google Scholar 
    26.López-Luna, M. A. et al. A distinctive new species of mud turtle from western México. Chel. Conserv. Biol. 17, 2–13. https://doi.org/10.2744/CCB-1292.1 (2018).Article 

    Google Scholar 
    27.Vargas-Ramírez, M. et al. Genomic analyses reveal two species of the matamata (Testudines: Chelidae: Chelus spp.) and clarify their phylogeography. Mol. Phylogenet. Evol. 148, 106823. https://doi.org/10.1016/j.ympev.2020.106823 (2020).Article 
    PubMed 

    Google Scholar 
    28.Loc-Barragán, J. A. et al. A new species of mud turtle of genus Kinosternon (Testudines: Kinosternidae) from the Pacific Coastal Plain of northwestern Mexico. Zootaxa 4885, 509–529. https://doi.org/10.11646/zootaxa.4885.4.3 (2020).Article 

    Google Scholar 
    29.Kraus, F. Alien Reptiles and Amphibians: A Scientific Compendium and Analysis. Invading Nature – Springer Series in Invasion Ecology, Volume 4 (Springer, 2009).30.Spinks, P. Q., Pauly, G. B., Crayon, J. J. & Shaffer, H. B. Survival of the Western Pond Turtle (Emys marmorata) in an urban California environment. Biol. Conserv. 113, 257–267. https://doi.org/10.1016/s0006-3207(02)00392-0 (2003).Article 

    Google Scholar 
    31.Lambert, M. R., Nielsen, S. N., Wright, A. N., Thomson, R. C. & Shaffer, H. B. Habitat features determine the basking distribution of introduced Red-eared Sliders and native Western Pond Turtles. Chel. Conserv. Biol. 12, 192–199 https://doi.org/10.2744/CCB-1010.1 (2013).Article 

    Google Scholar 
    32.Lambert, M. R. et al. Experimental removal of introduced slider turtles offers new insight into competition with a native, threatened turtle. PeerJ 7, e7444. https://doi.org/10.7717/peerj.7444 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Costa, Z. J. Responses to predators differ between native and invasive freshwater turtles: Environmental context and its implications for competition. Ethology 120, 1–8 https://doi.org/10.1111/eth.12235 (2014).Article 

    Google Scholar 
    34.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Macali, A. et al. Episodic records of jellyfish ingestion of plastic items reveal a novel pathway for trophic transference of marine litter. Sci. Rep. 8, 1–5. https://doi.org/10.1038/s41598-018-24427-7 (2018).CAS 
    Article 

    Google Scholar 
    36.Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843. https://doi.org/10.1038/s41598-019-44117-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Munno, K., De Frond, H., O’Donnell, B. & Rochman, C. M. Increasing the accessibility for characterizing microplastics: Introducing new application-based and spectral libraries of plastic particles (SLoPP and SLoPP-E). Anal. Chem. 92, 2443–2451 https://doi.org/10.1021/acs.analchem.9b03626 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Lafuente, B., Downs, R. T., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds T. Armbruster & R. M. Danisi) 1–30 (W. De Gruyter, 2015).39.Kuchling, G. & Lwin, U. T. Das Arterhaltungsprojekt für die Dreistreifen-Dachschildkröte (Kachuga trivittata) im Zoo von Mandalay. Marginata 3, 44–50 (2004).
    Google Scholar 
    40.Selman, W. & Lindeman, P. V. Spatial, seasonal, and sexual variation in the diet of Graptemys flavimaculata, a threatened turtle of the Pascagoula River system, Mississippi, USA. Copeia 106, 247–254. https://doi.org/10.1643/CH-17-644 (2018).Article 

    Google Scholar 
    41.Padgett, D. J., Carboni, J. J. & Schepis, D. J. The dietary composition of Chrysemys picta picta (Eastern Painted Turtles) with special reference to the seeds of aquatic macrophytes. Northeast. Nat. 17, 305–312. https://doi.org/10.1656/045.017.0212 (2010).Article 

    Google Scholar 
    42.Wang, J., Shi, H., Hu, S., Ma, K. & Li, C. Interspecific differences in diet between introduced Red-eared Sliders and native turtles in China. Asian Herpetol. Res. 4, 190–196. https://doi.org/10.3724/SP.J.1245.2013.00190 (2013).Article 

    Google Scholar 
    43.Prévot-Julliard, A.-C., Gousset, E., Archinard, C., Cadi, A. & Girondot, M. Pets and invasion risks: Is the slider turtle strictly carnivorous?. Amphibia-Reptilia 28, 139–143 https://doi.org/10.1163/156853807779799036 (2007).Article 

    Google Scholar 
    44.Bujes, C. S., Ely, I. & Verrastro, L. Trachemys dorbigni (Brazilian Slider). Diet. Herpetol. Rev. 38, 335 (2007).
    Google Scholar 
    45.Letter, A. W., Waldron, K. J., Pollock, D. A. & Mali, I. Dietary habits of Rio Grande Cooters (Pseudemys gorzugi) from two sites within the Black River, Eddy County, New Mexico, USA. J. Herp. 53, 204–208. https://doi.org/10.1670/18-057 (2019).Article 

    Google Scholar 
    46.Trauth, S. E. & Kelly, J. J. Macrochelys temminckii (Alligator Snapping Turtle) Hook, monofilament line, and sinker. Herpetol. Rev. 48, 836 (2017).
    Google Scholar 
    47.Steen, D. A., Hopkins, B. C., Van Dyke, J. U. & Hopkins, W. A. Prevalence of ingested fish hooks in freshwater turtles from five rivers in the southeastern United States. PLoS ONE 9, e91368. https://doi.org/10.1371/journal.pone.0091368 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Steen, D. A. & Robinson, O. J. Jr. Estimating freshwater turtle mortality rates and population declines following hook ingestion. Conserv. Biol. 31, 1333–1339. https://doi.org/10.1111/cobi.12926 (2017).Article 
    PubMed 

    Google Scholar 
    49.Walde, A. D. & Christensen, T. P. Terrapene carolina (Eastern Box Turtle). Threats. Herpetol. Rev. 38, 334–335 (2007).
    Google Scholar 
    50.Walde, A. D., Harless, M. L., Delaney, D. K. & Pater, L. L. Anthropogenic threat to the Desert Tortoise (Gopherus agassizii): Litter in the Mojave Desert. West. N. Am. Nat. 61, 147–149  https://doi.org/10.3398/1527-0904(2007)67[147:ATTTDT]2.0.CO;2 (2007).Article 

    Google Scholar 
    51.Outerbridge, M. E., O’Riordan, R., Quirke, T. & Davenport, J. Restricted diet in a vulnerable native turtle, Malaclemys terrapin (Schoepff), on the oceanic islands of Bermuda. Amphib. Rep. Cons. 11, 25–35 (e134) (2017).52.Platt, S. G., Hall, C., Liu, H. & Borg, C. K. Wet-season food habits and intersexual dietary overlap of Florida Box Turtles (Terrapene carolina bauri) on National Key Deer Wildlife Refuge, Florida. Southeast. Nat. 8, 335–346. https://doi.org/10.1656/058.008.0212 (2009).Article 

    Google Scholar 
    53.Elsey, R. M. Food habits of Macrochelys temminckii (Alligator Snapping Turtle) from Arkansas and Louisiana. Southeast. Nat. 5, 443–452. https://doi.org/10.1656/1528-7092(2006)5[443:FHOMTA]2.0.CO;2 (2006).Article 

    Google Scholar 
    54.Meathrel, C. E., Suter, P. J. & Reid, S. Habitat and dietary preferences of freshwater turtles in ephemeral billabongs on the Ovens River, north-east Victoria. Victorian Nat. 121, 4–14 (2004).
    Google Scholar 
    55.Sloan, K. N., Buhlmann, K. A. & Lovich, J. E. Stomach contents of commercially harvested adult Alligator Snapping Turtles, Macroclemys temmickii. Chel. Conserv. Biol. 2, 96–99 (1996).
    Google Scholar 
    56.Burge, B. What goes up must come down. Massive balloon releases are a potential threat to tortoises and other wildlife. Tortoise Tracks 10, 4 (1989).
    Google Scholar 
    57.Denton, M. J., Hart, K. M., Oelinik, A., Wood, R. & Baldwin, J. Malaclemys terrapin rhizophorarum (Mangrove Diamond-backed Terrapin). Diet. Herpetol. Rev. 46, 426–427 (2015).
    Google Scholar 
    58.Ernst, C. H. & Lovich, J. E. Turtles of the United States and Canada, 2nd edn. (The John Hopkins University Press, Baltimore, 2009).59.Denton, M. J., Hart, K. M., Demopoulos, A. W. J., Oleinik, A. & Baldwin, J. D. Diet of Diamondback Terrapins (Malaclemys terrapin) in subtropical mangrove habitats in South Florida. Chel. Conserv. Biol. 15, 54–61 https://doi.org/10.2744/CCB-1187.1 (2016).Article 

    Google Scholar 
    60.Chen, T.-H. & Lue, K.-Y. Changes in the population structure and diet of the Chinese Stripe-necked Turtle (Mauremys sinensis) inhabiting a disturbed river in northern Taiwan. Zool. Stud. 48, 95–105 (2009).
    Google Scholar 
    61.Kotenko, T. I. The European Pond Turtle (Emys orbicularis) in the Steppe Zone of the Ukraine. Stapfia 69, 87–106 (2000).
    Google Scholar 
    62.MacDonald, L. A. & Mushinsky, H. R. Foraging ecology of the Gopher Tortoise, Gopherus polyphemus, in a sandhill habitat. Herpetologica 44, 345–353 (1988).
    Google Scholar 
    63.Georges, A., Norris, R. H. & Wensing, L. Diet of the freshwater turtle Chelonida longicollis (Testudines: Chelidae) from the coastal dune lakes of the Jervis Bay Territory. Austral. Wild. Res. 13, 301–308 (1986).Article 

    Google Scholar 
    64.Georges, A. Diet of the Australian freshwater turtle Emydura krefftii (Chelonia: Chelidae), in an unproductive lentic environment. Copeia 1982, 331–336 (1982).Article 

    Google Scholar 
    65.Balazs, G. in Proceedings of the workshop on the fate and impact of marine debris. U.S. National Oceanic and Atmospheric Administration (NOAA) Technical memorandum 54. (eds R. S. Shomura & H. O. Yoshido) (National Marine Fisheries Service, Honolulu).66.Mrosovsky, N., Ryan, G. D. & James, M. C. Leatherback turtles: The menace of plastic. Mar. Pollut. Bull. 58, 287–289. https://doi.org/10.1016/j.marpolbul.2008.10.018 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Stringell, T. B. et al. Taxonomic distinctness in the diet of two sympatric marine turtle species. Mar. Ecol. 37, 1036–1049. https://doi.org/10.1111/maec.12349 (2016).ADS 
    Article 

    Google Scholar 
    68.Tomás, J., Guitart, R., Mateo, R. & Raga, J. A. Marine debris ingestion in Loggerhead Sea Turtles, Caretta caretta, from the western Mediterranean. Mar. Pollut. Bull. 44, 211–216 https://doi.org/10.1016/s0025-326x(01)00236-3 (2002).Article 
    PubMed 

    Google Scholar 
    69.Hays, D. W., McAllister, K. R., Richardson, S. A. & Stinson, D. W. Washington State Recovery Plan for the Western Pond Turtle, Washington Department of Fish and Wildlife 1–66 (Olympia, 1999).
    Google Scholar 
    70.Rosenberg, D. et al. Conservation Assessment of the Western Pond Turtle in Oregon 1–80 (2009).71.Thomson, R. C., Wright, A. N. & Shaffer, H. B. California Amphibian and Reptile Species of Special Concern (University of California Press, California, 2016).
    Google Scholar 
    72.Spinks, P. Q., Thomson, R. C. & Shaffer, H. B. The advantages of going large: Genome-wide SNPs clarify the complex population history and systematics of the threatened Western Pond Turtle. Mol. Ecol. 23, 2228–2241 https://doi.org/10.1111/mec.12736 (2014).73.Thomson, R. C., Spinks, P. Q. & Shaffer, H. B. Distribution and abundance of invasive Red-eared Sliders (Trachemys scripta elegans) in California’s Sacramento River Basin and possible impacts on native Western Pond Turtles (Emys marmorata). Chel. Conserv. Biol. 9, 297–302 https://doi.org/10.2744/CCB-0820.1 (2010).Article 

    Google Scholar 
    74.Silbernagel, C., Clifford, D. L., Bettaso, J., Worth, J. & Foley, J. Prevalence of selected pathogens in Western Pond Turtles and sympatric introduced Red-eared Sliders in California, USA. Dis. Aquat. Org. 107, 37–47. https://doi.org/10.3354/dao02663 (2013).CAS 
    Article 

    Google Scholar 
    75.Andrade, M. C. et al. First account of plastic pollution impacting freshwater fishes in the Amazon: Ingestion of plastic debris by piranhas and other serrasalmids with diverse feeding habits. Environ. Pollut. 244, 766–773. https://doi.org/10.1016/j.envpol.2018.10.088 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Goss, H., Jaskiel, J. & Rotjan, R. Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Mar. Pollut. Bull. 135, 1085–1089. https://doi.org/10.1016/j.marpolbul.2018.08.024 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Duncan, E. M. et al. Diet-related selectivity of macroplastic ingestion in Green Turtles (Chelonia mydas) in the eastern Mediterranean. Sci. Rep. 9, 1–8. https://doi.org/10.1038/s41598-019-48086-4 (2019).CAS 
    Article 

    Google Scholar 
    78.Santos, R. G., Andrades, R., Fardim, L. M. & Martins, A. S. Marine debris ingestion and Thayer’s law—The importance of plastic color. Environ. Pollut. 214, 585–588. https://doi.org/10.1016/j.envpol.2016.04.024 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.García-Díaz, P. et al. Challenges in confirming eradication success of invasive Red-eared Sliders. Biol. Invasions 19, 2739–2750. https://doi.org/10.1007/s10530-017-1480-7 (2017).Article 

    Google Scholar 
    80.Shultz, A. J. et al. Natural history collections are critical resources for contemporary and future studies of urban evolution. Evol. Appl. 14, 233–247 https://doi.org/10.1111/eva.13045 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Using RNA-seq to characterize pollen–stigma interactions for pollination studies

    1.Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072. https://doi.org/10.1111/j.1461-0248.2011.01669.x (2011).Article 
    PubMed 

    Google Scholar 
    2.Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303–313. https://doi.org/10.1098/rspb.2006.3721 (2007).Article 
    PubMed 

    Google Scholar 
    3.Kearns, C. A. & Inouye, A. D. W. Techniques for Pollination Biologists (University Press Colorado, 1993).
    Google Scholar 
    4.Rader, R. et al. Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop. J. Appl. Ecol. 46, 1080–1087. https://doi.org/10.1111/j.1365-2664.2009.01700.x (2009).Article 

    Google Scholar 
    5.Ne’eman, G., Jurgens, A., Newstrom-Lloyd, L., Potts, S. G. & Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. Camb. Philos. Soc. 85, 435–451. https://doi.org/10.1111/j.1469-185X.2009.00108.x (2010).Article 
    PubMed 

    Google Scholar 
    6.King, C., Ballantyne, G., Willmer, P. G. & Freckleton, R. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 4, 811–818. https://doi.org/10.1111/2041-210x.12074 (2013).Article 

    Google Scholar 
    7.Wang, H. et al. Evaluation of pollinator effectiveness based on pollen deposition and seed production in a gynodieocious alpine plant, Cyananthus delavayi. Ecol. Evol. 7, 8156–8160. https://doi.org/10.1002/ece3.3391 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Ashman, T. L., Alonso, C., Parra-Tabla, V. & Arceo-Gomez, G. Pollen on stigmas as proxies of pollinator competition and facilitation: Complexities, caveats, and future directions. Ann. Bot. https://doi.org/10.1093/aob/mcaa012 (2020).Article 
    PubMed 

    Google Scholar 
    9.Wodehouse, R. P. Pollen grains in the identification and classification of plants 1. The Ambrosiaceae. Bull. Torrey Bot. Club 55, 20 (1928).
    Google Scholar 
    10.Currie, J., Noiton, D., Lawes, S. & Bailey, D. Preliminary results of differentiating apple sports by pollen ultrastructure. Euphytica 98, 155–161. https://doi.org/10.1023/a:1003174529263 (1997).Article 

    Google Scholar 
    11.Bock, J. H. & Norris, D. O. Additional Approaches in Forensic Plant Science. 129–147. https://doi.org/10.1016/b978-0-12-801475-2.00010-5 (2016).12.Depciuch, J., Kasprzyk, I., Drzymala, E. & Parlinska-Wojtan, M. Identification of birch pollen species using FTIR spectroscopy. Aerobiologia (Bologna) 34, 525–538. https://doi.org/10.1007/s10453-018-9528-4 (2018).Article 

    Google Scholar 
    13.Galimberti, A. et al. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One 9, e109363. https://doi.org/10.1371/journal.pone.0109363 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Keller, A. et al. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol. (Stuttg.) 17, 558–566. https://doi.org/10.1111/plb.12251 (2015).CAS 
    Article 

    Google Scholar 
    15.Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20. https://doi.org/10.1186/s12898-015-0051-y (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Bell, K. L. et al. Pollen DNA barcoding: Current applications and future prospects. Genome 59, 629–640. https://doi.org/10.1139/gen-2015-0200 (2016).Article 
    PubMed 

    Google Scholar 
    17.Galliot, J.-N. et al. Investigating a flower-insect forager network in a mountain grassland community using pollen DNA barcoding. J. Insect. Conserv. 21, 827–837. https://doi.org/10.1007/s10841-017-0022-z (2017).Article 

    Google Scholar 
    18.Bell, K. L. et al. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol. Ecol. 28, 431–455. https://doi.org/10.1111/mec.14840 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Broderick, R. et al. RNA-sequencing reveals early, dynamic transcriptome changes in the corollas of pollinated petunias. BMC Plant Biol. 14, 10 (2014).Article 

    Google Scholar 
    20.Gómez, E. M., Buti, M., Sargent, D. J., Dicenta, F. & Ortega, E. Transcriptomic analysis of pollen–pistil interactions in almond (Prunus dulcis) identifies candidate genes for components of gametophytic self-incompatibility. Tree Genet Genomes https://doi.org/10.1007/s11295-019-1360-7 (2019).Article 

    Google Scholar 
    21.Zhang, C. C. et al. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genom. 17, 359. https://doi.org/10.1186/s12864-016-2703-5 (2016).CAS 
    Article 

    Google Scholar 
    22.Zhang, T. et al. Time-course transcriptome analysis of compatible and incompatible pollen-stigma interactions in Brassica napus L.. Front Plant Sci. 8, 682. https://doi.org/10.3389/fpls.2017.00682 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Li, K., Wang, Y. & Qu, H. RNA-Seq analysis of compatible and incompatible styles of Pyrus species at the beginning of pollination. Plant Mol. Biol. 102, 287–306. https://doi.org/10.1007/s11103-019-00948-1 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Rutley, N. & Twell, D. A decade of pollen transcriptomics. Plant Reprod. 28, 73–89. https://doi.org/10.1007/s00497-015-0261-7 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Conze, L. L., Berlin, S., Le Bail, A. & Kost, B. Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. BMC Genom. 18, 581. https://doi.org/10.1186/s12864-017-3972-3 (2017).CAS 
    Article 

    Google Scholar 
    26.He, Y. et al. Transcriptome analysis of self- and cross-pollinated pistils revealing candidate unigenes of self-incompatibility in Camellia oleifera. J. Hortic. Sci. Biotechnol. 95, 19–31. https://doi.org/10.1080/14620316.2019.1632749 (2019).CAS 
    Article 

    Google Scholar 
    27.Pérez-de-Castro, M. et al. Application of genomic tools in plant breeding. Curr. Genom. 13, 179–195 (2012).Article 

    Google Scholar 
    28.Leydon, A. R. et al. The molecular dialog between flowering plant reproductive partners defined by SNP-informed RNA-sequencing. Plant Cell 29, 984–1006. https://doi.org/10.1105/tpc.16.00816 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Shi, D. et al. Transcriptome and phytohormone analysis reveals a comprehensive phytohormone and pathogen defence response in pear self-/cross-pollination. Plant Cell Rep. 36, 1785–1799. https://doi.org/10.1007/s00299-017-2194-0 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Kron, P. & Husband, B. C. The effects of pollen diversity on plant reproduction: Insights from apple. Sex. Plant Reprod. 19, 125–131. https://doi.org/10.1007/s00497-006-0028-2 (2006).CAS 
    Article 

    Google Scholar 
    31.Matsumoto, S., Soejima, J. & Maejima, T. Influence of repeated pollination on seed number and fruit shape of ‘Fuji’ apples. Sci. Hortic. 137, 131–137. https://doi.org/10.1016/j.scienta.2012.01.033 (2012).Article 

    Google Scholar 
    32.Garratt, M. P. et al. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 184, 34–40. https://doi.org/10.1016/j.agee.2013.10.032 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Stavert, J. R., Bailey, C., Kirkland, L. & Rader, R. Pollen tube growth from multiple pollinator visits more accurately quantifies pollinator performance and plant reproduction. Sci. Rep. 10, 16958. https://doi.org/10.1038/s41598-020-73637-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Rader, R., Howlett, B. G., Cunningham, S. A., Westcott, D. A. & Edwards, W. Spatial and temporal variation in pollinator effectiveness: Do unmanaged insects provide consistent pollination services to mass flowering crops?. J. Appl. Ecol. 49, 126–134. https://doi.org/10.1111/j.1365-2664.2011.02066.x (2012).Article 

    Google Scholar 
    35.Sorin, Y. B., Mitchell, R. J., Trapnell, D. W. & Karron, J. D. Effects of pollination and postpollination processes on selfing rate in Mimulus ringens. Am. J. Bot. 103, 1524–1528. https://doi.org/10.3732/ajb.1600145 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.DeLong, C. N., Yoder, K. S., Combs, L., Veilleux, R. E. & Peck, G. M. Apple pollen tube growth rates are regulated by parentage and environment. J. Am. Soc. Hortic. Sci. 141, 548–554. https://doi.org/10.21273/jashs03824-16 (2016).Article 

    Google Scholar 
    37.Zhao, P., Wang, M. & Zhao, L. Dissecting stylar responses to self-pollination in wild tomato self-compatible and self-incompatible species using comparative proteomics. Plant Physiol. Biochem. 106, 177–186. https://doi.org/10.1016/j.plaphy.2016.05.001 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Rao, P. et al. Dynamic transcriptomic analysis of the early response of female flowers of Populus alba x P. glandulosa to pollination. Sci. Rep. 7, 6048. https://doi.org/10.1038/s41598-017-06255-3 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Tu, D. et al. Developmental, chemical and transcriptional characteristics of artificially pollinated and hormone-induced parthenocarpic fruits of Siraitia grosvenorii. RSC Adv. 7, 12419–12428. https://doi.org/10.1039/c6ra28341a (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Hiscock, S. J. & Allen, A. M. Diverse cell signalling pathways regulate pollen–stigma interactions: The search for consensus. New Phytol. 179, 286–317. https://doi.org/10.1111/j.1469-8137.2008.02457.x (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Xu, X. H., Wang, F., Chen, H., Sun, W. & Zhang, X. S. Transcript profile analyses of maize silks reveal effective activation of genes involved in microtubule-based movement, ubiquitin-dependent protein degradation, and transport in the pollination process. PLoS One 8, e53545. https://doi.org/10.1371/journal.pone.0053545 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Habu, T. & Tao, R. Transcriptome analysis of self- and cross-pollinated pistils of Japanese Apricot (Prunus mume Sieb. et Zucc.). J. Jpn. Soc. Hortic. Sci. 83, 95–107. https://doi.org/10.2503/jjshs1.CH-086 (2014).CAS 
    Article 

    Google Scholar 
    43.Sun, Y. & Xiao, H. Identification of alternative splicing events by RNA sequencing in early growth tomato fruits. BMC Genom. 16, 948. https://doi.org/10.1186/s12864-015-2128-6 (2015).CAS 
    Article 

    Google Scholar 
    44.Zhao, Y., Li, D. & Liu, T. Pollination-induced transcriptome and phylogenetic analysis in Cymbidium tortisepalum (Orchidaceae). Russ. J. Plant Physiol. 66, 618–627. https://doi.org/10.1134/s1021443719040174 (2019).CAS 
    Article 

    Google Scholar 
    45.Nishida, S. et al. Pollen–pistil interactions in reproductive interference: Comparisons of heterospecific pollen tube growth from alien species between two native Taraxacum species. Funct. Ecol. 28, 450–457. https://doi.org/10.1111/1365-2435.12165 (2014).Article 

    Google Scholar 
    46.Briggs, H. M. et al. Heterospecific pollen deposition in Delphinium barbeyi: Linking stigmatic pollen loads to reproductive output in the field. Ann. Bot. 117, 341–347. https://doi.org/10.1093/aob/mcv175 (2016).Article 
    PubMed 

    Google Scholar 
    47.Richardson, R. T. et al. Quantitative multi-locus metabarcoding and waggle dance interpretation reveal honey bee spring foraging patterns in Midwest agroecosystems. Mol. Ecol. 28, 686–697. https://doi.org/10.1111/mec.14975 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Peel, N. et al. Semi-quantitative characterisation of mixed pollen samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods Ecol. Evol. 10, 1690–1701. https://doi.org/10.1111/2041-210x.13265 (2019).Article 

    Google Scholar 
    49.Baksay, S. et al. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. 10, 4202. https://doi.org/10.1038/s41598-020-61198-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Washburn, J. D. et al. Genome-guided phylo-transcriptomic methods and the nuclear phylogentic tree of the paniceae grasses. Sci. Rep. 7, 13528. https://doi.org/10.1038/s41598-017-13236-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Piñeiro Fernández, L. et al. A Phylogenomic analysis of the floral transcriptomes of sexually deceptive and rewarding European Orchids, Ophrys and Gymnadenia. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01553 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Pawelkowicz, M. et al. Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. Plant Reprod. 32, 193–216. https://doi.org/10.1007/s00497-019-00362-z (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Li, X. et al. Comparative transcriptomic analysis provides insight into the domestication and improvement of pear (P. pyrifolia) fruit. Plant Physiol. 180, 435–452. https://doi.org/10.1104/pp.18.01322 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Sassa, H., Kakui, H. & Minamikawa, M. Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. Sex Plant Reprod. 23, 39–43. https://doi.org/10.1007/s00497-009-0111-6 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Ramírez, F. & Davenport, T. L. Apple pollination: A review. Sci. Hortic. 162, 188–203. https://doi.org/10.1016/j.scienta.2013.08.007 (2013).Article 

    Google Scholar 
    56.Gu, C., Wang, L., Korban, S. S. & Han, Y. Identification and characterization of S-RNasegenes andS-genotypes in Prunus and Malus species. Can. J. Plant Sci. 95, 213–225. https://doi.org/10.4141/cjps-2014-254 (2015).CAS 
    Article 

    Google Scholar 
    57.Sassa, H. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. Breed. Sci. 66, 116–121. https://doi.org/10.1270/jsbbs.66.116 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Andrews, S. (Babraham, UK, 2010).60.Daccord, N. et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49, 1099–1106. https://doi.org/10.1038/ng.3886 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. https://doi.org/10.1038/nmeth.3317 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667. https://doi.org/10.1038/nprot.2016.095 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Williams, C. R., Baccarella, A., Parrish, J. Z. & Kim, C. C. Trimming of sequence reads alters RNA-Seq gene expression estimates. BMC Bioinform. 17, 103. https://doi.org/10.1186/s12859-016-0956-2 (2016).CAS 
    Article 

    Google Scholar 
    64.Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13. https://doi.org/10.1186/s13059-016-0881-8 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295. https://doi.org/10.1038/nbt.3122 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257. https://doi.org/10.1038/ncomms11257 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Ballgown: Flexible, Isoform-Level Differential Expression Analysis v. 2.20.0. (Bioconductor, 2020).68.Tello, D. et al. NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics 35, 4716–4723. https://doi.org/10.1093/bioinformatics/btz275 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267. https://doi.org/10.1093/molbev/msj030 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    70.Milne, I. et al. Flapjack–graphical genotype visualization. Bioinformatics 26, 3133–3134. https://doi.org/10.1093/bioinformatics/btq580 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Duitama, J. et al. An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Nucleic Acids Res. 42, e44. https://doi.org/10.1093/nar/gkt1381 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    WOODIV, a database of occurrences, functional traits, and phylogenetic data for all Euro-Mediterranean trees

    The geographic area covered by the WOODIV database is the Euro-Mediterranean region, as defined by Médail et al.1. The northern Mediterranean region was selected following the definition of terrestrial ecoregions of the world by Olson et al.13. The study area covers all or part of the following countries and islands: Albania, Croatia, Cyprus, France, Greece, Italy, Malta, Montenegro, Portugal, Slovenia, Southern Macedonia, and Spain, including the Balearic archipelago, Corsica, Sardinia, Sicily, and Crete.We focused on the 245 tree taxa (210 species and 35 subspecies) identified in the Euro-Mediterranean checklist from Médail et al.1. These taxa belong to 33 families and 64 genera and include 46 endemics (as defined by Médail et al.1, i.e. range-restricted taxa in and outside of the study area).Observed occurrence dataWe collected tree occurrence data (at the species or subspecies level) from 23 sources: national databases and floras, regional databases, and publications (Table 1). Some records still unpublished were specifically provided at the grid level for this project by experts for southern Macedonia, Malta, Montenegro, and Sicily (four sources, Table 1).Table 1 Sources of the occurrence records, giving the name of the dataset (Source name; ined. if unpublished), the Type of data (records with geographic coordinates (records), records at the grid level (gridded records), or atlas-type (atlas) data), and the Countries/Islands covered by the source.Full size tableWhen considering the subspecies level, the WOODIV database lacks the occurrences of 11 sub-species among the 35 listed by Médail et al.1. When aggregated at the species level (to match the taxonomic resolution of the functional and phylogenetic data which are available at the species level only), the WOODIV database lacks only the occurrences of 3 of the 210 species from the Médail et al.1 checklist (n = 207; Table 2; Supplementary Table 2): Pyrus elaeagrifolia Pall., which occurs in Albania and Macedonia (and in northeastern Greece but outside the Mediterranean biome), P. syriaca Boiss. and Tamarix passerinoides Desv., which occur in Cyprus and in Sardinia, respectively.Table 2 Summary of the availability of data in the WOODIV database: total number of species among the 210 species from the Médail et al.1 checklist with (1) observed occurrences; (2) functional traits data, including the detail of the number of species with available data for 4 traits: adult plant height (Height), seed mass (SeedMass), specific leaf area (SLA) and wood density (SSD) (see “Functional data” section); and, (3) genetic data including the detail of the number of species with available data for 3 DNA-regions: matK, rbcL and psbA-trnH (see “Genetic data” section).Full size tableAlso, due to the taxonomic heterogeneity of the different data sources, we recommend aggregating the occurrences of certain tree taxa at the species’ group level (see sections Data Records and Usage Notes): i.e. to aggregate Pinus uncinata DC. and P. mugo Turra into P. mugo aggr., Juniperus deltoides R.P.Adams and J. oxycedrus L. into J. oxycedrus aggr. and Alnus lusitanica Vít, Douda & Mandák., A. rohlenae Vít, Douda & Mandák, and A. glutinosa (L.) Gaertn. into A. glutinosa aggr. The WOODIV database thus contains reliable occurrences of 200 species and three aggregated species (n = 203; Table 2; Supplementary Table 2).The raw dataset obtained from gathering occurrences from all sources included a total of 1,248,701 occurrence records distributed across the participating countries.The raw occurrence data were aggregated at a resolution of 10 × 10 km in line with an INSPIRE14 compliant 10 × 10 km grid (SCR 4258). This gridding procedure provided a way to standardize data from different sources. We selected this spatial grain because it was the finest resolution available for some countries of the study area (e.g. Slovenia, Croatia, Greece). Sources of occurrence data with a resolution coarser than 10 × 10 km (e.g. Atlas Florae Europaeae15) were not considered. The considered area includes 10,042 grid cells with at least one occurrence record (Fig. 1a). The occurrence dataset provided by the WOODIV database, i.e. aggregated records for species considered as native in the given grid cell using the 10 × 10 km grid (removal of duplicate species within a grid cell) includes 140,279 occurrences.Fig. 1Geographic scope of the WOODIV database, spatial distribution, and validation of trees occurrences. (a) Number of species within a 10 × 10 km grid cell based on modelled occurrence data for the 171 modelled species, with the addition of the occurrence data of the 21 small-range species; and, within grid cells of Atlas Flora Europaeae (AFE; 50x50km) (b) Number of species with presences recorded in AFE but not in the WOODIV dataset on the 104 species present both in the AFE and WOODIV data; and, (c) Number of species with presences recorded in the WOODIV dataset but not in AFE on the 104 species present both in the AFE and WOODIV data.Full size imageModelled occurrence dataThe WOODIV database provides modelled occurrences of the species from the Médail et al.1 checklist. From the 10 × 10 km gridded observed occurrence data, we modelled the distribution of each species across the Euro-Mediterranean area using Species Distribution Models (SDM). SDM statistically relate species occurrence records to environmental variables to predict the potential distribution of species16.Due to the extent of the study area, we only related species occurrence to climate gradients17. Bioclimatic variables were extracted from the CHELSA database V1.218 available at a resolution of 30 arc‐sec (http://chelsa‐climate.org/) and then averaged to a 10 × 10 km resolution. The selection of the environmental predictors for niche modeling is a source of uncertainty in model predictions that can be reduced with sound statistical methods and ecological knowledge of the target species19. We also focused on proximal predictors that directly influence species distribution and selected a low number of predictive variables to reduce the issues of model overfitting and multicollinearity20. We selected four bioclimatic variables that previous studies had reported to be relevant predictors of the distribution of plant species, especially in environments such as those that characterize the Mediterranean Basin21,22,23,24: “Minimum temperature of the coldest month” (Bio06, in °C) quantifies potentially lethal frost events and more generally, stress due to low temperatures; “Total annual precipitation” (Bio12, in mm) approximates average water availability; “Precipitation of the driest month” (Bio14, in mm) describes the extremes associated with drought events and stress due to low water availability, and “Temperature seasonality” (Bio04, no dimension) describes the variability of temperature during the year. All selected predictors showed VIF (variance inflation factor25) values below 5, indicating that a given predictor was not correlated with any linear combinations of the other predictors (VIF Bio04 = 1.68, VIF Bio06 = 2.06, VIF Bio12 = 1.53, and VIF Bio14 = 2.07).We related species occurrence to these four bioclimatic variables using the Random Forest algorithm26. As only presence data are archived in the WOODIV database, we randomly sampled a number of pseudo-absences equal to the number of observed occurrences27. This random selection of pseudo-absences was repeated 10 times for each species. When comparing the floras, occurrence data in the Italian Peninsula, Sardinia and/or Sicily were highly unrepresentative of the distribution of some species (n = 84; see Supplementary Table 3). To overcome this potential bias in the models, we did not include these regions in the model calibration step (Supplementary Table 3). The model was projected in these areas after having tested the similarity in the variables between the projection dataset (Italy, Sicily, and Sardinia) and the fitting dataset (the rest of the study area). Indeed, when model predictions are projected into regions not analyzed in the fitting data, it is necessary to measure the similarity between the new environments and those in the training sample28, as models are not so reliable when predicting outside their domain29. Similarity analyses computed using ExDet30 indicated that all covariables in the projected area are within the univariate range of the fitting area and that there is no change in correlation between covariables (NT1 and NT2 = 0).Each of these 10 datasets (per species) was then randomly split into two datasets to evaluate model performance on pseudo-independent data31: 70% of the data was used to calibrate models and the 30% remaining data was used to evaluate model performance using the True Skill Statistic (TSS32) and the Area Under the Curve (AUC) of the receiver-operating characteristic (ROC) plot33 metrics. This split-sample step was repeated 10 times resulting in 100 models per species.For each of the 171 modelled species, a mean model (from the 100 replicates) was then used to predict potential species distribution. Predicted probabilities of occurrence were finally converted into presence/absence using the threshold maximizing the TSS. We fitted all models under the R environment R Core team34 and the package biomod235,36.The WOODIV database provides modelled occurrences of each of the 171 species for each 10 × 10 km grid cell (Fig. 1a). Thirty-two species with less than 10 occurrence records were not modelled (Supplementary Table 3). Among these 32 species, 21 are small-ranged species whose distribution is limited to a few grid cells (Supplementary Table 3). The observed occurrence records for these 21 species can be considered as representative of their distribution and we therefore recommend using the non-modelled records for these species for analyses. The occurrences of the remaining 11 species should be considered unrepresentative of their distribution.Functional dataFour functional traits were considered in this project: adult plant height (Height), seed mass (SeedMass), specific leaf area (SLA), and wood density (StemSpecDens). These traits have been proposed to reflect a global spectrum of plant strategies37,38: height is a commonly measured proxy for individual size and reflects several aspects including resource acquisition, competitive ability, or dispersal capacity. SeedMass represents the trade-off between fecundity, seed survival, and dispersal. SLA (the ratio between leaf area and dry mass) is correlated to photosynthetic capacity and leaf life span and is an indirect measure of the return on investments in carbon gain compared to water loss. StemSpecDens is a key component of woody plant growth linked to the mechanical support of the stem and its growth rate.We compiled the values for these traits at the species level for the trees from the Médail et al.1 checklist, referring mostly to 2 databases: TRY9 and BROT 2.039. Supplementary values were obtained from more specific databases (Global Wood Density Database40, Kew Seed Information Database41) or from the scientific literature and atlas42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61. In total, 92% of the entries were extracted from TRY, 7% from BROT 2.0 and the remaining were retrieved from the other sources. The original ID of records from the TRY and BROT databases is provided in order to make it possible to refer to the complete observation if a user needs to have some contextual information.The WOODIV database lacks all traits data for only 6 of the 210 species from the checklist (Table 2, Supplementary Table 2): Alnus lusitanica Vít, Douda & Mandák, Alnus rohlenae Vít, Douda & Mandák, Malus dasyphylla Borkh., Quercus infectoria Olivier, Tamarix arborea Ehrenb. ex Bunge and, Tamarix passerinoides Del. ex Desf.Adult plant height and seed mass data were available for more than 75% of the 210 species (Table 2; Fig. 2a), whereas wood density and specific leaf area were available for only around 50%. The WOODIV database includes all four trait values for 41% of the 210 species (Fig. 2b; Supplementary Table 2), three trait values for 56% more species.Fig. 2Prevalence of traits and genetic data among the 210 species from Médail et al.1 checkist: (a) For each of the four considered functional traits (adult plant height (Height), seed mass (SeedMass), wood density (SSD) and specific leaf area (SLA)), percentage of the 210 species with existing data; (b) Percentage of the 210 species for which none to four functional traits data are available; (c) For each of the three considered DNA regions (matK, rbcL and psbA-trnH), percentage of the 210 species with existing data (in grey species with only one available sequence for the considered region, in black species with consensus sequence for that region); and, (d) Percentage of the 210 species for which none to three DNA regions data are available.Full size imageThe database provides an R script that can be used to estimate missing trait values using the taxonomic classification if needed.Genetic dataThree different DNA regions from the plastid genome corresponding to the most commonly used DNA barcode regions62,63,64 were considered in this project: the ribulose-bisphosphate/carboxylase Large-subunit gene (rbcL), the maturase-K gene (matK), and the psbA-trnH intergenic spacer (trnH).In a first step, we collected all sequences from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) for the three DNA regions available for the species from the Médail et al.1 checklist at the species level: rbcL: n = 650 sequences for 146 species, matK: n = 644 sequences for 127 species, trnH: n = 493 sequences for 129 species). To fill the gaps, we obtained DNA from fresh samples collected in the field or gathered from herbarium specimens (Supplementary Table 4). DNA extraction and sequencing were performed at INRA-URFM, Avignon (France) and the National Research Council (IBBR-CNR), Florence (Italy) (rbcL: n = 233 for 125 species, matK: n = 162 for 91 species, trnH: n = 200 for 120 species). Methods used for DNA isolation and Sanger sequencing are described by Albassatneh et al.65. When more than one sequence was available for a given DNA region/species, a sequence alignment was performed to check data quality and a taxon-consensus sequence was generated. Consensus sequences were built using the IUPAC-IUB ambiguity66 code for a total of 119 (rbcL), 109 (matK), and 110 species (trnH), respectively (Fig. 2c). All newly created sequences were uploaded to GenBank.The WOODIV database lacks the DNA-region sequences data of only 6 of the 210 species from the Médail et al.1 checklist (Table 2, Fig. 2d): Alnus lusitanica Vít, Douda & Mandák, Cytisus aeolicus Guss., Celtis planchoniana K.I. Chr., Salix appendiculata Vill., Tamarix hampeana Boiss. & Heldr. and, Tamarix minoa J.L. Villar, Turland, Juan, Gaskin, M.A. Alonso & M.B. Crespo.PhylogenyThe WOODIV database provides a phylogram including the 204 species for which at least one piece of DNA-region sequence data was available (Supplementary Table 2) and phylograms including the 210 species from the Medail et al.1 list (Supplementary Fig. 1).Uneven taxon sampling focused on a single biogeographic area such as ours, can bias phylogenetic inferences67. Our goal here is to provide DNA sequence data that can be readily re-used to estimate, e.g. comparable phylogenetic diversity indices, not phylogenetic inferences per se. To illustrate our DNA-sequences data and to facilitate their use for future analyses (to calculate phylogenetic diversity for example), we constructed a molecular phylogeny encompassing the 204 Euro-Mediterranean tree species. Each gene was independently aligned using the MAFFT program68 and parsed using the program Gblocks69 to exclude the segments characterized by several variable positions or gaps from final alignments. An appropriate substitution model of sequence evolution was selected for each of the three plastid DNA regions using the Akaike Information Criterion (AIC) as implemented in the JModeltest 2 program70. The optimal substitution model identified was the same for all three sequences: GTR + I + G. We obtained a concatenated matrix with 1615 aligned bases. We used the Maximum Likelihood analysis71 as implemented in the RAxML V8 program72. The DNA sequence matrix of 1615 sites was analyzed using three partitions with the GTRGAMMAI model (GTR + Gamma substitution model + proportion of invariant sites). We searched for the optimal tree, running at least 20 independent maximum likelihood analyses; full analyses also consisted of 100 bootstrap replicates72.For users who would like to work on the complete pool of 210 tree species, we also built a 210 species phylogram including all Euro-Mediterranean trees. The six missing species for which no DNA-region sequence was available were added to the phylogenetic tree using the Simulation with Uncertainty for Phylogenetic Investigating (SUNPLIN) method73, with 100 replicates. The geometric median tree was computed from the set of 100 replicates with the medTree function from the R package treespace74. Both the median tree and the set of 100 replicates are provided in the WOODIV database, together with the molecular tree with 204 species. More

  • in

    Impact of noise on development, physiological stress and behavioural patterns in larval zebrafish

    1.Miedema, H., Janssen, S., Rokho, K. & Brown, L. Burden of disease from environmental noise: quantification of healthy life years lost in Europe (2011).2.Peris, E. Environmental noise in Europe: 2020. Eur. Environ. Agency 1, 104 (2020).
    Google Scholar 
    3.Merchant, N. D. Underwater noise abatement: Economic factors and policy options. Environ. Sci. Policy 92, 116–123 (2019).Article 

    Google Scholar 
    4.Babisch, W. et al. Auditory and non-auditory effects of noise on health. NIH Lancet 23, 1–7 (2014).
    Google Scholar 
    5.Recio, A., Linares, C., Banegas, J. R. & Díaz, J. Road traffic noise effects on cardiovascular, respiratory, and metabolic health: an integrative model of biological mechanisms. Environ. Res. 146, 359–370 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91, 982–1005 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kight, C. R. & Swaddle, J. P. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol. Lett. 14, 1052–1061 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Whitfield, A. K. & Becker, A. Impacts of recreational motorboats on fishes: a review. Mar. Pollut. Bull. 83, 24–31 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Popper, A. N. N. & Hastings, M. C. C. The effects of anthropogenic sources of sound on fishes. J. Fish Biol. 75, 455–489 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Bejder, L., Samuels, A., Whitehead, H., Finn, H. & Allen, S. Impact assessment research: use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Mar. Ecol. Prog. Ser. 395, 177–185 (2009).ADS 
    Article 

    Google Scholar 
    12.Wale, M. A., Simpson, S. D. & Radford, A. N. Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise. Biol. Lett. 9, 20121194 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Nedelec, S. L., Simpson, S. D., Morley, E. L., Nedelec, B. & Radford, A. N. Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua). Proc. R. Soc. B 282, 20151943 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Johansson, K., Sigray, P., Backström, T. & Magnhagen, C. Stress response and habituation to motorboat noise in two coastal fish species in the Bothnian Sea. In The Effects of Noise on Aquatic Life II 273–279 (2016).15.Holmes, L. J., McWilliam, J., Ferrari, M. C. O. & McCormick, M. I. Juvenile damselfish are affected but desensitize to small motor boat noise. J. Exp. Mar. Bio. Ecol. 494, 63–68 (2017).Article 

    Google Scholar 
    16.Reid, S. G., Bernier, N. J. & Perry, S. F. The adrenergic stress response in fish: Control of catecholamine storage and release. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 120, 1–27 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Rajalakshmi, R., John, N. A. & John, J. Review on noise pollution and its associated health hazards. Sch. J. Appl. Med. Sci. 4, 500–503 (2016).
    Google Scholar 
    18.Christie, K. W. & Eberl, D. F. Noise-induced hearing loss: new animal models. Curr. Opin. Otolaryngol. Head Neck Surg. 22, 374–383 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ortega, C. P. Effects of noise pollution on birds: A brief review of our knowledge. Source Ornithol. Monogr. Ornithol. Monogr. 74, 6–22 (2012).Article 

    Google Scholar 
    20.Simmons, A. M. & Narins, P. M. Effects of anthropogenic noise on amphibians and reptiles. In Springer Handbook of Auditory Research 179–208 (Springer, 2018).21.de Soto, N. A. et al. Anthropogenic noise causes body malformations and delays development in marine larvae. Sci. Rep. 3, 2831 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Soto, N. A. de. Peer-reviewed studies on the effects of anthropogenic noise on marine invertebrates: from scallop larvae to giant squid. Eff. Noise Aquat. Life II 875, 273–279 (2016).23.Brouček, J. Effect of noise on performance, stress, and behaviour of animals. Slovak J. Anim. Sci 47, 111–123 (2014).
    Google Scholar 
    24.Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, 1–8 (2014).Article 
    CAS 

    Google Scholar 
    25.Erbe, C., Dunlop, R. & Dolman, S. Effects of noise on marine mammals. In Effects of Anthropogenic Noise on Animals 277–309 (Springer, 2018).26.Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proc. R. Soc. B 283, 20160839 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.van der Sluijs, I. et al. Communication in troubled waters: responses of fish communication systems to changing environments. Evol. Ecol. 25, 623–640 (2011).Article 

    Google Scholar 
    28.Cox, B. S., Dux, A. M., Quist, M. C. & Guy, C. S. Use of a seismic air gun to reduce survival of nonnative lake trout embryos: a tool for conservation?. N. Am. J. Fish. Manag. 32, 292–298 (2012).Article 

    Google Scholar 
    29.Wysocki, L. E. et al. Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout Oncorhynchus mykiss. Aquaculture 272, 687–697 (2007).Article 

    Google Scholar 
    30.Debusschere, E. et al. Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving. Environ. Pollut. 208, 747–757 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Filiciotto, F. et al. Impact of aquatic acoustic noise on oxidative status and some immune parameters in gilthead sea bream Sparus aurata (Linnaeus, 1758) juveniles. Aquac. Res. 48, 1895–1903 (2017).CAS 
    Article 

    Google Scholar 
    32.Smith, M. E., Kane, A. S. & Popper, A. N. Noise-induced stress response and hearing loss in goldfish (Carassius auratus). J. Exp. Biol. 207, 427–435 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vasconcelos, R. O., Amorim, M. C. P. & Ladich, F. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J. Exp. Biol. 210, 2104–2112 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Hasan, M. R., Crane, A. L., Ferrari, M. C. O. & Chivers, D. P. A cross-modal effect of noise: the disappearance of the alarm reaction of a freshwater fish. Anim. Cogn. 21, 419–424 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Herbert-Read, J. E., Kremer, L., Bruintjes, R., Radford, A. N. & Ioannou, C. C. Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals. Proc. R. Soc. B Biol. Sci. 284, 1–9 (2017).
    Google Scholar 
    36.Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).Article 

    Google Scholar 
    37.Ladich, F. Acoustic communication and the evolution of hearing in fishes. Philos. Trans. R. Soc. B Biol. Sci. 355, 1285–1288 (2000).CAS 
    Article 

    Google Scholar 
    38.Radford, A. N., Kerridge, E. & Simpson, S. D. Acoustic communication in a noisy world: can fish compete with anthropogenic noise?. Behav. Ecol. 25, 1022–1030 (2014).Article 

    Google Scholar 
    39.Dooling, R. J. & Popper, A. N. The effects of highway noise on birds. Environ. Bioacoust. 27, 1–74 (2007).
    Google Scholar 
    40.Blom, E. L. et al. Continuous but not intermittent noise has a negative impact on mating success in a marine fish with paternal care. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    41.Bureš, Z., Popelář, J. & Syka, J. Noise exposure during early development impairs the processing of sound intensity in adult rats. Hear. Res. 352, 1–11 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Dorado-Correa, A. M., Zollinger, S. A., Heidinger, B. & Brumm, H. Timing matters: traffic noise accelerates telomere loss rate differently across developmental stages. Front. Zool. 15, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    43.Mueller, C. A. Critical Windows in Animal Development: Interactions Between Environment, Phenotype, and Time (Springer, 2018).
    Google Scholar 
    44.Gordon, T. A. C. et al. Acoustic enrichment can enhance fish community development on degraded coral reef habitat. Nat. Commun. 10, 1–7 (2019).CAS 
    Article 

    Google Scholar 
    45.Radford, A. N., Lebre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Change Biol. 22, 3349–3360 (2016).ADS 
    Article 

    Google Scholar 
    46.Banner, A. & Hyatt, M. Effects of noise on eggs and larvae of two estuarine fishes. Trans. Am. Fish. Soc. 102, 142–144 (1973).Article 

    Google Scholar 
    47.Fakan, E. P. & McCormick, M. I. Boat noise affects the early life history of two damselfishes. Mar. Pollut. Bull. 141, 493–500 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Jain-Schlaepfer, S., Fakan, E., Rummer, J. L., Simpson, S. D. & McCormick, M. I. Impact of motorboats on fish embryos depends on engine type. Conserv. Physiol. 6, 1–9 (2018).
    Google Scholar 
    49.Brittijn, S. A. et al. Zebrafish development and regeneration: new tools for biomedical research. Int. J. Dev. Biol. 53, 835–850 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Magyary, I. Recent advances and future trends in zebrafish bioassays for aquatic ecotoxicology. Ecocycles 4, 12–18 (2018).Article 

    Google Scholar 
    51.Sarmah, S. & Marrs, J. A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int. J. Mol. Sci. 17, 1–16 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Varshney, G. K., Pei, W. & Burgess, S. M. Using zebrafish to study human deafness and hearing regeneration. Monogr. Hum. Genet. 20, 110–131 (2016).Article 

    Google Scholar 
    53.Uribe, P. M. et al. Larval zebrafish lateral line as a model for acoustic trauma. Eneuro 5, 0206–0218 (2018).Article 

    Google Scholar 
    54.Bhandiwad, A. A., Raible, D. W., Rubel, E. W. & Sisneros, J. A. Noise-Induced hypersensitization of the acoustic startle response in larval zebrafish. JARO 19, 741–752 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lara, R. A. & Vasconcelos, R. O. Characterization of the natural soundscape of zebrafish and comparison with the captive noise conditions. Zebrafish 8, 1–13 (2018).CAS 

    Google Scholar 
    56.Lalonde, R. The neurobiological basis of spontaneous alternation. Neurosci. Biobehav. Rev. 26, 91–104 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Bogli, S. Y. & Huang, M. Y. Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Bruintjes, R. & Radford, A. N. Chronic playback of boat noise does not impact hatching success or post-hatching larval growth and survival in a cichlid fish. PeerJ 2, e594 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Davidson, J., Bebak, J. & Mazik, P. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout Oncorhynchus mykiss. Aquaculture 288, 337–343 (2009).Article 

    Google Scholar 
    60.Neo, Y. Y. et al. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 178, 65–73 (2014).Article 

    Google Scholar 
    61.Craig, M. P., Gilday, S. D. & Hove, J. R. Dose-dependent effects of chemical immobilization on the heart rate of embryonic zebrafish. Lab Anim. (NY) 35, 40–47 (2006).Article 

    Google Scholar 
    62.Barrionuevo, W. R. & Burggren, W. W. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. Am. Physiol. Soc. 276, 505–513 (2013).
    Google Scholar 
    63.De Luca, E. et al. ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Sci. Rep. 4, 1–13 (2014).
    Google Scholar 
    64.Simpson, S. D., Yan, H. Y., Wittenrich, M. L. & Meekan, M. G. Response of embryonic coral reef fishes (Pomacentridae: Amphiprion spp.) to noise. Mar. Ecol. Prog. Ser. 287, 201–208 (2005).ADS 
    Article 

    Google Scholar 
    65.Anderson, W. G. et al. Remote monitoring of heart rate as a measure of recovery in angled Atlantic salmon, Salmo salar (L.). Hydrobiologia 371–372, 233–240 (1998).Article 

    Google Scholar 
    66.Armstrong, J. D. Heart rate as an indicator of activity, metabolic rate, food intake and digestion in pike Esox lucius. J. Fish Biol. 29, 207–221 (1986).Article 

    Google Scholar 
    67.Svendsen, E. et al. Heart rate and swimming activity as stress indicators for Atlantic salmon (Salmo salar). Aquaculture 531, 735804 (2020).Article 
    CAS 

    Google Scholar 
    68.Burleson, M. L. & Silva, P. E. Cross tolerance to environmental stressors: effects of hypoxic acclimation on cardiovascular responses of channel catfish (Ictalurus punctatus) to a thermal challenge. Bone 23, 1–7 (2008).
    Google Scholar 
    69.Brown, C., Gardner, C. & Braithwaite, V. A. Differential stress responses in fish from areas of high- and low-predation pressure. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 175, 305–312 (2005).Article 

    Google Scholar 
    70.McEwen, B. S. & Stellar, E. Stress and individual. Arch Intern. Med. 153, 2093–2101 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Mccormick, M. I. Behaviorally induced maternal stress in a fish influences progeny quality by a hormonal mechanism. Ecology 79, 1873–1883 (1998).Article 

    Google Scholar 
    72.Yabu, T., Ishibashi, Y. & Yamashita, M. Stress-induced apoptosis in larval embryos of Japanese flounder. Fish. Sci. 69, 1218–1223 (2003).CAS 
    Article 

    Google Scholar 
    73.Werner, I., Linares-Casenave, J., Van Eenennaam, J. P. & Doroshov, S. I. The effect of temperature stress on development and heat-shock protein expression in larval green sturgeon (Acipenser mirostris). Environ. Biol. Fishes 79, 191–200 (2007).Article 

    Google Scholar 
    74.Shi, Z. et al. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus. Aquaculture 275, 306–310 (2008).CAS 
    Article 

    Google Scholar 
    75.Wilson, K. S. et al. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio). J. Physiol. 591, 6209–6220 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Tudorache, C., Ter Braake, A., Tromp, M., Slabbekoorn, H. & Schaaf, M. J. M. Behavioral and physiological indicators of stress coping styles in larval zebrafish. Stress 3890, 121–128 (2015).Article 
    CAS 

    Google Scholar 
    77.Alsop, D. & Vijayan, M. M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, 711–719 (2008).Article 
    CAS 

    Google Scholar 
    78.Bai, Y., Liu, H., Huang, B., Wagle, M. & Guo, S. Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish. BMC Neurosci. 17, 1–12 (2016).CAS 
    Article 

    Google Scholar 
    79.Barton, B. A. & Zitzow, R. E. Physiological responses of juvenile walleyes to handling stress with recovery in saline water. Progress. Fish-Cult. 57, 267–276 (1995).Article 

    Google Scholar 
    80.Yao, Q., DeSmidt, A. A., Tekin, M., Liu, X. & Lu, Z. Hearing assessment in zebrafish during the first week postfertilization. Zebrafish 13, 79–86 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Colwill, R. M. & Creton, R. Imaging escape and avoidance behavior in zebrafish larvae. Rev. Neurosci. 22, 63–73 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Voellmy, I. K. et al. Acoustic noise reduces foraging success in two sympatric fish species via different mechanisms. Anim. Behav. 89, 191–198 (2014).Article 

    Google Scholar 
    83.Belzung, C. & Griebel, G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Sireeni, J. et al. Profound effects of glucocorticoid resistance on anxiety-related behavior in zebrafish adults but not in larvae. Gen. Comp. Endocrinol. 292, 130–138 (2020).Article 
    CAS 

    Google Scholar 
    85.Basnet, R. M., Zizioli, D., Taweedet, S., Finazzi, D. & Memo, M. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 7, 1–16 (2019).Article 
    CAS 

    Google Scholar 
    86.Peng, X. et al. Anxiety-related behavioral responses of pentylenetetrazole-treated zebrafish larvae to light-dark transitions. Pharmacol. Biochem. Behav. 145, 55–65 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Stewart, A. et al. Neurophenotyping of adult zebrafish using the light/dark box paradigm. NeuroMethods 51, 157–167 (2011).CAS 
    Article 

    Google Scholar 
    88.Bögli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Mueller, T., Dong, Z., Berberoglu, M. A. & Guo, S. The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res. 1381, 95–105 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Fotowat, H., Lee, C., Jun, J. J. & Maler, L. Neural activity in a hippocampus-like region of the teleost pallium are associated with navigation and active sensing. bioRxiv 8, 1–25 (2018).91.Broglio, C. et al. Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res. Bull. 66, 277–281 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Cheng, L., Wang, S. H., Chen, Q. C. & Liao, X. M. Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiol. Behav. 104, 981–988 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Jauregui-huerta, F., Garcia-estrada, J. & Gonzalez-perez, O. Early exposure to noise followed by predator stress in adulthood impairs the rat’s
    re-learning flexibility in Radial Arm Water Maze. Neuro Endocrinol. Lett. 31, 1–12 (2010).
    Google Scholar 
    94.Rodriguez, M. & Afonso, D. Ontogeny of T-maze behavioral lateralization in rats. Physiol. Behav. 54, 91–94 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Nichols, T. A., Anderson, T. W. & Ana, Š. Intermittent noise induces physiological stress in a coastal marine fish. PLoS ONE 10, 1–13 (2015).CAS 

    Google Scholar 
    96.Neo, Y. Y. et al. Sound exposure changes European seabass behaviour in a large outdoor floating pen: effects of temporal structure and a ramp-up procedure. Environ. Pollut. 214, 26–34 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Celi, M. et al. Vessel noise pollution as a human threat to fish: assessment of the stress response in gilthead sea bream (Sparus aurata, Linnaeus 1758). Fish Physiol. Biochem. 42, 631–641 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Erbe, C. Underwater noise of small personal watercraft (jet skis). J. Acoust. Soc. Am. 133, EL326–EL330 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Department of the Environment and Water Resources. Comparative Assessment of the Environmental Performance of Small Engines Marine Outboards and Personal Watercraft. Environmental Science and Technology (2007).100.Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) 5th edn. (University of Oregon Press, Eugene, 2000).
    Google Scholar 
    101.Lu, Z. & Desmidt, A. A. Early development of hearing in zebrafish. JARO 14, 509–521 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Strykowski, J. L. & Schech, J. M. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 54, 81–84 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    103.Amoser, S., Wysocki, L. E. & Ladich, F. Noise emission during the first powerboat race in an Alpine lake and potential impact on fish communities. J. Acoust. Soc. Am. 116, 3789–3797 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Codarin, A., Wysocki, L. E., Ladich, F. & Picciulin, M. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Mar. Pollut. Bull. 58, 1880–1887 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Shafiei Sabet, S., Neo, Y. Y. & Slabbekoorn, H. The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim. Behav. 107, 49–60 (2015).Article 

    Google Scholar 
    106.Nedelec, S. L. et al. Particle motion: the missing link in underwater acoustic ecology. Methods Ecol. Evol. 7, 836–842 (2016).Article 

    Google Scholar 
    107.Chan, P. K., Lin, C. C. & Cheng, S. H. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos. BMC Biotechnol. 9, 1–10 (2009).Article 

    Google Scholar 
    108.Teixidó, E. et al. Automated morphological feature assessment for zebrafish embryo developmental toxicity screens. Toxicol. Sci. 167, 438–449 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    109.Lau, B. Y. B., Mathur, P., Gould, G. G. & Guo, S. Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 108, 2581–2586 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Bögli, S. Y., Huang, M.Y.-Y., Bogli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Frederickson, C. J. & Frederickson, M. H. Developmental changes in open-field behavior in the kitten. Dev. Psychobiol. 12, 623–628 (1979).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Vecera, S. P., Rothbart, M. K. & Posner, M. I. Development of spontaneous alternation in infancy. J. Cogn. Neurosci. 3, 351–354 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    113.Bogli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Du Sert, N. P. et al. The arrive guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, 1–12 (2020).
    Google Scholar  More

  • in

    Characterization of the bacterial microbiome of Rhipicephalus (Boophilus) microplus collected from Pecari tajacu “Sajino” Madre de Dios, Peru

    1.Bonnet, S. I., Binetruy, F., Hernández-Jarguín, A. M. & Duron, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell. Infect. Microbiol. 7, 236. https://doi.org/10.3389/fcimb.2017.00236 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Burgdorfer, W., Hayes, S. & Mavros, A. Non-pathogenic rickettsiae in Dermacentor andersoni: A limiting factor for the distribution of Rickettsia rickettsii. In Rickettsia and Rickettsial Disease (eds Burgdorfer, A. A. & Anacker, R. L.) 585–594 (Academic, 1981).
    Google Scholar 
    3.Chauvin, A., Moreau, E., Bonnet, S., Plantard, O. & Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 40, 37. https://doi.org/10.1051/vetres/2009020 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Ravi, A. et al. Metagenomic profiling of ticks: Identification of novel rickettsial genomes and detection of tick-borne canine parvovirus. PLoS Negl. Trop. Dis. 13(1), 1–19 (2019).CAS 
    Article 

    Google Scholar 
    5.Greay, T. L. et al. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites Vectors 11(1), 1–14 (2018).Article 

    Google Scholar 
    6.Rar, V. et al. Detection and genetic characterization of a wide range of infectious agents in Ixodes pavlovskyi ticks in Western Siberia, Russia. Parasites Vectors 10(1), 1–24 (2017).Article 

    Google Scholar 
    7.Filippova, N. A. Ixodid Ticks of the Subfamily Ixodinae (Publishing House Nauka, 1977).
    Google Scholar 
    8.Bouquet, J. et al. Metagenomic-based surveillance of pacific coast tick dermacentor occidentalis identifies two novel bunyaviruses and an emerging human Ricksettsial pathogen. Sci. Rep. 7(1), 1–10. https://doi.org/10.1038/s41598-017-12047-6 (2017).CAS 
    Article 

    Google Scholar 
    9.Andreotti, R. et al. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 11(6), 1–11 (2011).
    Google Scholar 
    10.Nakao, R. et al. A novel approach, based on BLSOMs (batch learning self-organizing maps), to the microbiome analysis of ticks. ISME J. 7(5), 1003–1015. https://doi.org/10.1038/ismej.2012.171 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Xia, H. et al. Metagenomic profile of the viral communities in Rhipicephalus spp. ticks from Yunnan, China. PLoS ONE 10(3), 1–16. https://doi.org/10.1371/journal.pone.0121609 (2015).CAS 
    Article 

    Google Scholar 
    12.Barros-Battesti, D., Arzua, M. & Bechara, H. Carrapato de Importância Medico-Veterinaria da Região Neotropical: Um Guia Ilustrado para Identificação de Espécies (Ticks of Medical-Veterinary Importance in the Neotropical Region: An Illustrated Guide for Species Identification). 10ma edição 223 (Butantan Publicação, 2006).
    Google Scholar 
    13.QIAGEN. Gentra, Puregene (QIAGEN GROUP), 2007–2010 (accessed 9 June 2017); https://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/gentra-puregene-tissue-kit/#orderinginformation.14.Sperling, J. L. et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick Borne Dis. 8, 453–461 (2017).Article 

    Google Scholar 
    15.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108(Supplement 1), 4516–4522 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200 (2011).CAS 
    Article 

    Google Scholar 
    17.Glassing, A. et al. Changes in 16S RNA gene microbial community profiling by concentration of prokaryotic DNA. J. Microbiol. Methods 119, 239242 (2015).Article 

    Google Scholar 
    18.Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10(1), 57–59 (2013).CAS 
    Article 

    Google Scholar 
    19.Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. BioRxiv. https://doi.org/10.1101/299537 (2018).Article 

    Google Scholar 
    20.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), 1–11 (2013).Article 

    Google Scholar 
    21.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72(7), 5069–5072 (2006).CAS 
    Article 

    Google Scholar 
    22.Obregón, D., Bard, E., Abrial, D., Estrada-Peña, A. & Cabezas-Cruz, A. Sex-specific linkages between taxonomic and functional profiles of tick gut microbiomes. Front. Cell. Infect. Microbiol. 9, 298. https://doi.org/10.3389/fcimb.2019.00298 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Qiu, Y., Nakao, R., Ohnuma, A., Kawamori, F. & Sugimoto, C. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS ONE 9(8), e103961 (2014).ADS 
    Article 

    Google Scholar 
    24.Van Treuren, W. et al. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl. Environ. Microbiol. 81, 6200–6209 (2015).Article 

    Google Scholar 
    25.Carpi, G. et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE 6(10), e25604 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Zhang, X.-C., Yang, Z.-N., Lu, B., Ma, X.-F. & Zhang, C.-X. The composition and transmission of microbiome in hard tick, Ixodes persulcatus, during blood meal. Ticks Tick Borne Dis. 5, 864–870 (2014).Article 

    Google Scholar 
    27.Menchaca, A. C. et al. Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-adult transition using semiconductor sequencing. PLoS ONE 8, 1–10 (2013).Article 

    Google Scholar 
    28.Clayton, K. A., Gall, C. A., Mason, K. L., Scoles, G. A. & Brayton, K. A. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni. Parasites Vectors 8, 1–5 (2018).CAS 

    Google Scholar 
    29.Crump, J. A., Sjölund-Karlsson, M., Gordon, M. A. & Parry, C. M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 1, 901–937. https://doi.org/10.1128/CMR.00002-15 (2015).Article 

    Google Scholar 
    30.Jesser, K. J. & Noble, R. T. Vibrio ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 84, 1–21. https://doi.org/10.1128/AEM.00333-18 (2018).Article 

    Google Scholar 
    31.Payne, S. M., Mey, A. R. & Wyckoff, E. E. Vibrio iron transport: Evolutionary adaptation to life in multiple environments. Microbiol. Mol. Biol. Rev. 80, 69–90. https://doi.org/10.1128/MMBR.00046-15 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Boyd, E. F. et al. Post genomic analysis of the evolutionary history and innovations of the family Vibrionaceae. Microbiol. Spectr. 3(5), 1–43. https://doi.org/10.1128/microbiolspec.VE-0009-2014 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Maj, A. et al. Plasmids of carotenoid-producing Paracoccus spp. (Alphaproteobacteria)—Structure, diversity and evolution. PLoS ONE 8(11), 1–27. https://doi.org/10.1371/journal.pone.0080258 (2013).CAS 
    Article 

    Google Scholar 
    34.Patro, L. P. P. & Rathinavelan, T. Targeting the sugary armor of Klebsiella species. Front. Cell. Infect. Microbiol. 9, 1–23. https://doi.org/10.3389/fcimb.2019.00367 (2019).CAS 
    Article 

    Google Scholar 
    35.Folkesson, A. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 10, 841–851. https://doi.org/10.1038/nrmicro2907 (2019).CAS 
    Article 

    Google Scholar 
    36.Wong, J. S. J. et al. Corynebacterium accolens-associated pelvic osteomyelitis. J. Clin. Microbiol. 48(2), 654–655 (2010).Article 

    Google Scholar 
    37.Gay, N. R., Fleming, E. & Oh, J. Draft genome sequence of Cloacibacterium normanense NRS-1 isolated from municipal wastewater. Genome Announc. 4(6), 1–2. https://doi.org/10.1128/genomeA.01397-16 (2016).Article 

    Google Scholar 
    38.Kurilshikov, A. et al. Comparative metagenomic profiling of symbiotic bacterial communities associated with ixodes persulcatus, ixodes pavlovskyi and dermacentor reticulatus ticks. PLoS ONE 10(7), 1–13 (2015).CAS 
    Article 

    Google Scholar 
    39.Martínez, M. A. Retrato microbiológico. J. Microbiol. Immunol. Infect. 44(1), 289–295 (2011).
    Google Scholar 
    40.Moreno-Forero, S. K. & Van-Der-Meer, J. R. Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand. ISME J. 9(1), 150–165 (2015).CAS 
    Article 

    Google Scholar 
    41.Giron, S. Diversidad bacteriana de la garrapata Rhipicephalus (Boophilus) microplus en el ganado bovino del estado de Tamaulipas (Bacterial diversity of Rhipicephalus (Boophilus) microplus tick in cattle of the state of Tamaulipas). (2015). [Thesis]. Thesis to obtain the title of Master of Science in Genomic Biotechnology viable (accessed 14 October 2019); https://tesis.ipn.mx/handle/123456789/24552.42.Jimemez, M., Gasper, M., Carmona, M. & Terio, K. Suidae and Tayassuidae. Pathol. Wildl. Zoo Anim. 1, 207–228 (2018).
    Google Scholar 
    43.Sutherland-Smith, M. Suidae and Tayassuidae (Wild Pigs, Peccaries). Fowler’s Zoo Wild Anim. Med. 1(8), 568–584 (2015).Article 

    Google Scholar 
    44.Bermúdez, S., Meyer, N., Moreno, R. & Artavia, A. NOTAS SOBRE Pecari tajacu (L., Y Tayassu peccari (LINK, 1795) (ARTIODACTYLA: TAYASSUIDAE) COMO HOSPEDEROS DE GARRAPATAS DURAS (ACARI: IXODIDAE) EN PANAMÁ. Tecnociencia 20(1), 61–70 (2008).
    Google Scholar 
    45.Rodríguez-Vivas, R. I., Quiñones, A. F. & Fragoso, S. H. Epidemiología y control de la garrapata Boophilus en México (Epidemiology and control of Boophilus tick in Mexico). In Enfermedades de Importancia Económica en Producción Animal (Diseases of Economic Importance in Animal Production) (ed. Rodríguez-Vivas, R. I.) 571–592 (McGraw-Hill-UADY, 2005).
    Google Scholar 
    46.Duron, O. et al. Evolutionary changes in symbiont community structure in ticks. Mol. Ecol. 26, 2905–2921. https://doi.org/10.1111/mec.14094 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Zhong, J., Jasinskas, A. & Barbour, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2, 1–7. https://doi.org/10.1371/journal.pone.0000405 (2017).CAS 
    Article 

    Google Scholar 
    48.Gottlieb, Y., Lalzar, I. & Klasson, L. Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol. Evol. 7, 1779–1796. https://doi.org/10.1093/gbe/evv108 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Gerhart, J. G., Moses, A. S. & Raghavan, R. A. Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep. 6, 1–6. https://doi.org/10.1038/srep33670 (2016).CAS 
    Article 

    Google Scholar 
    50.Sjodin, A. et al. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics 13, 1–13. https://doi.org/10.1186/1471-2164-13-268 (2012).Article 

    Google Scholar 
    51.Machado-Ferreira, E. et al. Coxiella symbionts are widespread into hard ticks. Parasitol. Res. 115(12), 4691–4699. https://doi.org/10.1007/s00436-016-5230-z (2016).Article 
    PubMed 

    Google Scholar 
    52.Duron, O. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol. Lett. 362(17), 1–8. https://doi.org/10.1093/femsle/fnv132 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene

    1.Walker, M. et al. Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries. Episodes [online]. https://doi.org/10.18814/epiiugs/2018/018016 (2018).2.Liu, T., Lu, Y. & Zheng, H. Loess and the Environment. (China Ocean Press, 1985).3.An, Z. et al. Asynchronous Holocene optimum of the East Asian monsoon. Quat. Sci. Rev. 19, 743–762 (2000).ADS 
    Article 

    Google Scholar 
    4.Dai, A. G. & Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Clim. Chang. 144, 519–533 (2017).ADS 
    Article 

    Google Scholar 
    5.Zastrow, M. China’s tree-planting could falter in a warming world. Nature 573, 474–475 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–172 (2016).ADS 
    Article 

    Google Scholar 
    7.Jin, G. & Liu, T. Mid-Holocene climate change in North China, and the effect on cultural development. Chin. Sci. Bull. 47, 408–413 (2002).Article 

    Google Scholar 
    8.Wang, Y. et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854–857 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Dong, J. et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China. Holocene 20, 257–264 (2010).ADS 
    Article 

    Google Scholar 
    11.Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from Be-10 in loess. Science 360, 877–881 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Goldsmith, Y. et al. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales. Proc. Natl Acad. Sci. U. S. A. 114, 1817–1821 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Chen, F. et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 5, 11186 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Li, Q. et al. Reconstructed moisture evolution of the deserts in northern China since the Last Glacial Maximum and its implications for the East Asian Summer Monsoon. Glob. Planet. Change 121, 101–112 (2014).ADS 
    Article 

    Google Scholar 
    15.Xu, Z. et al. Critical transitions in Chinese dunes during the past 12,000 years. Sci. Adv. 6, eaay8020 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Lu, H. et al. Late Quaternary aeolian activity in the Mu Us and Otindag dune fields (north China) and lagged response to insolation forcing. Geophys. Res. Lett. 32, L21716 (2005).ADS 
    Article 

    Google Scholar 
    17.Peterse, F. et al. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet. Sci. Lett. 301, 256–264 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Yang, X. et al. Early-Holocene monsoon instability and climatic optimum recorded by Chinese stalagmites. Holocene 29, 1059–1067 (2019).ADS 
    Article 

    Google Scholar 
    19.Wei, Y. et al. Holocene and deglaciation hydroclimate changes in northern China as inferred from stalagmite growth frequency. Glob. Planet. Change 195, 103360 (2020).Article 

    Google Scholar 
    20.Wang, B. et al. How to measure the strength of the East Asian Summer Monsoon. J. Clim. 21, 4449–4463 (2008).ADS 
    Article 

    Google Scholar 
    21.Liu, J. et al. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite delta O-18 records. Earth-Sci. Rev. 148, 194–208 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Kutzbach, J. E. & Street-Perrott, F. A. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317, 130–134 (1985).ADS 
    Article 

    Google Scholar 
    23.Liu, Z. et al. Chinese cave records and the East Asia Summer Monsoon. Quat. Sci. Rev. 83, 115–128 (2014).ADS 
    Article 

    Google Scholar 
    24.Wen, X., Liu, Z., Wang, S., Cheng, J. & Zhu, J. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nat. Commun. 7, 11999 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming. Science 325, 310–314 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.LeGrande, A. N. & Schmidt, G. A. Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Clim. Past 5, 441–455 (2009).Article 

    Google Scholar 
    27.Zhang, H. et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I. Science 362, 580–583 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015).ADS 
    Article 

    Google Scholar 
    29.Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).ADS 
    Article 

    Google Scholar 
    30.Joos, F. & Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl Acad. Sci. U.S.A. 105, 1425–1430 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.He, C. et al. The hydroclimate footprint accompanying pan-Asian monsoon water isotope evolution during the last deglaciation. Sci. Adv. 7, eabe2611 (2021).PubMed 
    Article 

    Google Scholar 
    32.Wu, D. et al. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quat. Sci. Rev. 193, 54–67 (2018).ADS 
    Article 

    Google Scholar 
    33.Xiao, X., Yao, A., Hillman, A., Shen, J. & Haberle, S. G. Vegetation, climate and human impact since 20 ka in central Yunnan Province based on high-resolution pollen and charcoal records from Dianchi, southwestern China. Quat. Sci. Rev. 236, 106297 (2020).Article 

    Google Scholar 
    34.Ding, Q. & Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 18, 3483–3505 (2005).ADS 
    Article 

    Google Scholar 
    35.Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M. & Oleson, K. W. A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob. Chang. Biol. 9, 1543–1566 (2003).ADS 
    Article 

    Google Scholar 
    37.Yamazaki, T., Yabuki, H., Ishii, Y., Ohta, T. & Ohata, T. Water and energy exchanges at forests and a grassland in Eastern Siberia evaluated using a one-dimensional land surface model. J. Hydrometeor. 5, 504–515 (2004).ADS 
    Article 

    Google Scholar 
    38.Overpeck, J., Anderson, D., Trumbore, S. & Prell, W. The southwest Indian Monsoon over the last 18 000 years. Clim. Dyn. 12, 213–225 (1996).Article 

    Google Scholar 
    39.Ruddiman, W. F. What is the timing of orbital-scale monsoon changes? Quat. Sci. Rev. 25, 657–658 (2006).ADS 
    Article 

    Google Scholar 
    40.Clemens, S. C. & Prell, W. L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 201, 35–51 (2003).ADS 
    Article 

    Google Scholar 
    41.Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997).ADS 
    Article 

    Google Scholar 
    42.Xu, Q. et al. Vegetation succession and East Asian Summer Monsoon Changes since the last deglaciation inferred from high-resolution pollen record in Gonghai Lake, Shanxi Province, China. Holocene 27, 835–846 (2017).ADS 
    Article 

    Google Scholar 
    43.Xiao, J. et al. Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quat. Sci. Rev. 23, 1669–1679 (2004).ADS 
    Article 

    Google Scholar 
    44.Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512–518 (2010).Article 

    Google Scholar 
    45.Zheng, Z. et al. East Asian pollen database: modern pollen distribution and its quantitative relationship with vegetation and climate. J. Biogeogr. 41, 1819–1832 (2014).Article 

    Google Scholar 
    46.Song, C. et al. Simulation of China Biome reconstruction based on pollen data from surface sediment samples. Acta Botanica. Sin. 43, 201–209 (2001).
    Google Scholar 
    47.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    48.Overpeck, J. T., Webb, T. & Prentice, I. C. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 23, 87–108 (1985).Article 

    Google Scholar 
    49.Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 49–69 (1990).Article 

    Google Scholar 
    50.Peyron, O. et al. Climatic reconstruction in Europe for 18,000 YR B.P. from pollen data. Quat. Res. 49, 183–196 (1998).Article 

    Google Scholar 
    51.Davis, A. S., Brewer, S., Stevenson, A. C. & Guiot, J. The temperature of Europe during the Holocene reconstructed from pollen data. Quat. Sci. Rev. 22, 1701–1716 (2003).ADS 
    Article 

    Google Scholar 
    52.Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Juggins, S. Rioja: analysis of quaternary science data. https://cran.r-project.org/package=rioja (2017).54.Prentice, C. et al. Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19, 117–134 (1992).Article 

    Google Scholar 
    55.Williams, W. & Shuman, B. Obtaining accurate and precise environmental reconstructions from the modern analog technique and North American surface pollen dataset. Quat. Sci. Rev. 27, 669–687 (2008).ADS 
    Article 

    Google Scholar 
    56.Simpson, G. L. “Analogue methods in palaeolimnology” in Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques, (eds Birks, H. J. B., Lotter, A. F., Juggins, S. & Smol, J. P.) 495–522 (Springer, 2012).57.Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C. & ter Braak, C. J. F. Diatoms and pH reconstruction. Philos. Trans. R. Soc. B 327, 263–278 (1990).ADS 

    Google Scholar 
    58.ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 485–502 (1993).Article 

    Google Scholar 
    59.Collins, W. D. et al. The Community Climate System Model version 3 (CCSM3). J. Clim. 19, 2122–2143 (2006).ADS 
    Article 

    Google Scholar 
    60.Berger, A. Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).ADS 
    Article 

    Google Scholar 
    61.Peltier, W. R. Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    62.He, F. Simulating transient climate evolution of the last deglaciation with CCSM3. PhD thesis, University of Wisconsin-Madison (2011).63.Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.He, F. et al. Northern hemisphere forcing of southern hemisphere climate during the last deglaciation. Nature 494, 81–85 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Liu, Z. et al. Younger Dryas cooling and the Greenland climate response to CO2. Proc. Natl Acad. Sci. U.S.A. 109, 11101–11104 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Liu, Z. et al. Evolution and forcing mechanisms of El Nino over the past 21,000 years. Nature 515, 550–553 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. U.S.A. 111, E3501–E3505 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223–1227 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    A new fossil piddock (Bivalvia: Pholadidae) may indicate estuarine to freshwater environments near Cretaceous amber-producing forests in Myanmar

    Altogether nine polished pieces of the lower Cenomanian Kachin amber from northern Myanmar (Figs. 1A–D, 2A–E) were examined in this study (depository: Russian Museum of Biodiversity Hotspots, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia). A brief description of each amber piece is given below.Figure 1Lower Cenomanian Kachin amber samples with specimens and borings of †Palaeolignopholas kachinensis gen. & sp. nov. from northern Myanmar used in this study. (A) RMBH biv1115 (frontal view with the holotype). (B) RMBH biv1101 (lateral view with two paratypes and a shell fragment). (C) RMBH biv1116 (frontal view with the fossilized paratype). (D) RMBH biv1100 (frontal view with borings). The red frames indicate position of the type specimens (holotype and some paratypes). The red arrows indicate bivalve borings. Scale bars = 5 mm. (Photos: Ilya V. Vikhrev).Full size imageFigure 2Lower Cenomanian Kachin amber samples with borings of †Palaeolignopholas kachinensis gen. & sp. nov. from northern Myanmar used in this study. (A) RMBH biv1102 (frontal view). (B) RMBH biv1103 (frontal view). (C) RMBH biv1114 (frontal view). (D) RMBH biv1118 (frontal view). (E) RMBH biv1117 (frontal view). The red arrows indicate bivalve borings. Scale bars = 5 mm. (Photos: Ilya V. Vikhrev).Full size imageRMBH biv1115: Size 8.5 × 5.8 × 8.1 mm (Fig. 1A). Inclusions: articulated shell of †Palaeolignopholas kachinensis gen. & sp. nov., “floating” in the resin (the holotype).RMBH biv1101: Size 15.6 × 6.4 × 11.5 mm (Fig. 1B). Inclusions: two complete articulated shells (paratypes) and a shell fragment of †Palaeolignopholas kachinensis gen. & sp. nov., “floating” in the resin.RMBH biv1116: Size 22.5 × 8.3 × 16.5 mm (Fig. 1C). Inclusions: fossilized shell of †Palaeolignopholas kachinensis gen. & sp. nov. (paratype), borings of this species (filled with fine gray sand), unidentified fly specimens (Insecta: Diptera), and unidentified organic fragments (probably, plant debris).RMBH biv1100: Size 17.5 × 4.9 × 12.0 mm (Fig. 1D). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and an unidentified caddisfly specimen (Insecta: Trichoptera).RMBH biv1102: Size 15.6 × 5.1 × 12.7 mm (Fig. 2A). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and unidentified organic fragments (probably, plant debris).RMBH biv1103: Size 19.6 × 4.7 × 14.3 mm (Fig. 2B). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), an unidentified beetle specimen (Insecta: Coleoptera), and unidentified organic fragments (probably, plant debris).RMBH biv1114: Size 33.1 × 7.8 × 21.7 mm (Fig. 2C). Inclusions: multiple borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and unidentified plant remains.RMBH biv1118: Size 25.1 × 8.4 × 14.3 mm (Fig. 2D). Inclusions: separate borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), a plant fragment with a cluster of borings around, and an unidentified insect specimen.RMBH biv1117: Size 15.5 × 3.9 × 10.7 mm (Fig. 2E). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and an unidentified insect specimen.Additionally, six amber samples containing adult and sub-adult specimens of †Palaeolignopholas kachinensis gen. & sp. nov. were examined using photographs in published works as follows: BMNH 20205 (Department of Palaeontology, Natural History Museum, London, UK)15, NIGP 169623 and NIGP 169624 (Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China)20, RS.P1450 (Ru D. A. Smith collection, Kuala Lumpur, Malaysia)19, and AMNH (Division of Invertebrates, American Museum of Natural History, New York, NY, United States of America)16.Based on morphological analyses of the fossil piddock shells, it was found to be a genus and species new to science, which is described here.Systematic paleontologyPhylum Mollusca Linnaeus, 1758Class Bivalvia Linnaeus, 1758Family Pholadidae Lamarck, 1809Subfamily Martesiinae Grant & Gale, 1931†Palaeolignopholas gen. novLSID: http://zoobank.org/urn:lsid:zoobank.org:act:1D686DCE-A5E9-41DA-9504-2EC58C93D988Type species: †Palaeolignopholas kachinensis gen. & sp. nov.Etymology. This name is derived from the prefix ‘Palaeo-’ (ancient), and ‘-lignopholas’, the name of a recent genus of estuarine and freshwater piddocks boring into wood, mudstone rocks, brickwork, laterites, etc.11,13. Masculine in gender.Diagnosis. The new monotypic genus is conchologically similar to several other piddock genera such as Lignopholas, Martesia, and Diplothyra Tryon 1862 but can be distinguished from these taxa by the following combination of characters: mesoplax relatively small, triangular, divided longitudinally, posterior slope without concentric sculpture, sculptured valve with concave parallel ridges (Martesia-like “rasping teeth”) curved anteriorly, periostracal lamellae dense, fine, hair-like. The fossil genus †Opertochasma Stephenson, 1952 shares a divided mesoplax but it clearly differs from both †Palaeolignopholas gen. nov. and Lignopholas by having two radial grooves on the shell surface21.Distribution. Kachin State, northern Myanmar; Upper Cretaceous (lower Cenomanian)15,19,22.Comments. Both †Palaeolignopholas gen. nov. and Lignopholas appear to be closely related to each other because they share a longitudinally divided mesoplax and periostracal lamellae, which are considered diagnostic features distinguishing this clade from Martesia + Diplothyra. Based on available conchological characters, we assume that †Palaeolignopholas gen. nov. might be placed on the ancestral stem lineage of the Lignopholas clade, although a possibility of homeomorphy could not entirely be excluded.†Palaeolignopholas kachinensis gen. & sp. nov = Plant Antheridia or Fungal Sporangia indet. sensu Grimaldi et al. (2002): 9, fig. 2a,b (bivalve specimens), fig. 3 (borings), fig. 5 (shell reconstruction of an immature specimen), figs. 6 and 7 (SEMs of borings surface showing rasped ornament at different magnifications)16. = Palaeoclavaria burmitis Poinar & Brown (2003): 765, figs. 1–4 (borings) [this fungal taxon was introduced using a trace fossil (boring) as the holotype]17; Poinar (2016): 2, figs. 10, 15, 16 (borings)18. = Martesiinae indet. sensu Smith & Ross (2018): 4, figs. 1a–c, 2a,b, 3a–d (borings), 4a,b, 5a–e (bivalve specimens)19. = Pholadidae indet. sensu Mao et al. (2018): 99, figs. 8a–f (borings), 8g,h (bivalve specimens)20. = Martesia sp. 2 sensu Mayoral et al. (2020): 10, figs. 4a (borings), 7b, 8a–l (bivalve specimens)15. = Pholadidae indet. sensu Balashov (2020): 623.Figures 1, 2, 3, 4, 5, 6 and 7.Figure 3Holotype and a paratype of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar. (A) Holotype: ventro-lateral view of articulated shell. (B) Paratype: anterio-lateral view of fossilized shell. VN ventral margin; DR dorsal margin; AN anterior margin; PS posterior margin; d disc; rs rasping surface of the valve; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae. Scale bars = 500 µm. (Photos: Ilya V. Vikhrev).Full size imageFigure 4Paratypes of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar. (A) Paratype: dorsal view of articulated shell. Scale bar = 500 µm. (B) Paratype: dorsal view of articulated shell. The detached and deflected umbonal paired fragment of the valves is framed by red square. The blue contour indicates the lifetime position of this fragment. The blue arrows show the shell breakages. Scale bar = 200 µm. (C) Umbonal paired fragment of the holotype valves (inner view). The blue arrows show the shell breakage. Scale bar = 200 µm.  VN ventral margin; DR dorsal margin; AN anterior margin; PS posterior margin; ms longitudinally divided mesoplax (inner view); pr prora; d disc; rs rasping surface of the valve; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae; sb shell breakage. (Photos: Ilya V. Vikhrev).Full size imageFigure 5Rasping surface of †Palaeolignopholas kachinensis gen. & sp. nov. shell. (A) Holotype shell. The red frame marks position of the enlarged area. (B) Undulated micro-sculpture of the rasping surface. Scale bar = 100 µm. (Photos: Ilya V. Vikhrev).Full size imageFigure 6Schematic reconstruction of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar based on the type series and other fossil material15,16,19,20. (A) Lateral view of adult specimen. (B) Dorsal view of adult specimen. (C) Ventral view of adult specimen (based on a paratype BMNH 2020515). (D) Anterio-ventral view of immature specimen. (E) Dorsal view of immature specimen. (F) Mesoplax of adult specimen. (G) Mesoplax of immature specimen. d disc; mt metaplax; ms mesoplax; hp hypoplax; ca callum; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae. Scale bars = 1 mm (A–C). (Line graphics: Yulia E. Chapurina).Full size imageFigure 7Clavate borings of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar. (A) Cluster of borings. It marks drilling of immature piddocks into soft resin from the unidentified plant (wood?) fragment. (B–D) Clavate borings of adult piddocks. Scale bars = 1 mm. Abbreviation: bg a characteristic bioglyph indicating the shell rotation inside hardening resin. (Photos: Ilya V. Vikhrev).Full size imageLSID: http://zoobank.org/urn:lsid:zoobank.org:act:F6659EBF-B0A4-4B21-A99B-2C56BDB7EC9B.Common name. Kachin Amber Piddock.Holotype. RMBH biv1115, the adult shell with length 3.07 mm and width 1.13 mm “floating” in the resin (Figs. 1A, 3A, 5A,B), local collector leg., Russian Museum of Biodiversity Hotspots, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia.Paratypes. RMBH biv1116, the fossilized adult shell with length 4.05 mm and width 1.83 mm (Figs. 1C, 3B); RMBH biv1101, the immature specimen with articulated shell (width 1.86 mm) sharing a detached and deflected umbonal paired fragment of the valves due to the shell breakage (Figs. 1B, 4B,C); RMBH biv1101, the other immature specimen with shell length 2.68 mm and shell width 2.52 mm in this amber piece (Figs. 1B, 4A); BMNH 20205, adult specimen [illustrated in Mayoral et al. (2020): fig. 7B15], Department of Palaeontology, Natural History Museum, London, UK; NIGP 169623, adult specimen [illustrated in Mao et al. (2018): 100, fig. 8G20], and NIGP 169624, two adult specimens [illustrated in Mao et al. (2018): 100, fig. 8H20], Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China; RS.P1450, two sub-adult specimens [illustrated in Smith & Ross (2018): 5, fig. 4A,B19], Ru D. A. Smith collection, Kuala Lumpur, Malaysia.Type locality and strata. The Noije Bum Hill mines, Hukawng Valley, near Tanai (26.3593°N, 96.7200°E), Kachin State, northern Myanmar; Upper Cretaceous (lower Cenomanian; absolute age of youngest zircons in enclosing marine sediment: 98.79 ± 0.62 Ma)19,22.Etymology. The name of this species reflects its type locality, which is situated in the Kachin State of Myanmar.Diagnosis. As for the genus.Description. Shell small (up to 9.3 mm in length15,19,20), conical, with a rounded anterior margin, tapering posteriorly (Figs. 3A,B, 4A–C, 6A–E); its shape is similar to those in the recent Lignopholas, Martesia, and Diplothyra. Valve sculptured, with concave parallel ridges (Martesia-like “rasping teeth”) curved anteriorly (Fig. 5A,B). The ridges share a characteristic wave-like micro-sculpture (Fig. 5B). Sulcus deep (Figs. 3A, 4C, 6A–C). Mesoplax longitudinally divided, relatively small, triangular, tapering or lobed anteriorly (Fig. 3A, 6B,F), in immature specimens sometimes with lateral lobes (Figs. 4C, 6E,G). Metaplax and hypoplax long, narrow, not longitudinally divided but sometimes slightly bifurcated posteriorly (Fig. 6A–C). Periostracum densely covered by fine, hair-like lamellae (Figs. 4B,C and 6D). Umbonal reflection with large flattened ridge. Pedal gape presents in immature (Figs. 4A,B, 6D) and some adult specimens (Fig. 3A) but it is covered by callum in older specimens (Figs. 3B, 6C). Morphological details of the new species were also presented in a series of micro-CT images published Mayoral et al. (see Fig. 8 in that paper15) and in the reconstruction of Grimaldy et al. (see Fig. 5 in that work16).Figure 8Recent freshwater piddock Lignopholas fluminalis (Blanford, 1867) in the middle reaches of the Kaladan River, Rakhine State, Myanmar13. (A) Habitat of the freshwater piddock: river pool with siltstone rocks at the bottom, a possible modern analogue of the Mesozoic riverine ecosystem with †Palaeolignopholas. (B) Siltstone rock fragment with living freshwater piddocks inside their clavate borings. (C) Ethanol-preserved piddock (dorsal view). (D) Living piddock with fully developed callum (ventral view). (E) Living piddock with pedal gape (ventral view). Abbreviations: d disc; mt metaplax; ms mesoplax; ca callum; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae. Scale bar = 2 mm. (Photos: Olga V. Aksenova).Full size imageBorings and corresponding ichnotaxon. The borings produced by †Palaeolignopholas kachinensis gen. & sp. nov. represent club-shaped (clavate) structures (Figs. 1C,D, 2A–E, 7A–D), sometimes with a characteristic bioglyph revealing the shell rotation in hardening resin (Fig. 7C). These borings were illustrated in detail15,16,17,19,20, and were considered belonging to Teredolites clavatus Leymerie, 184215. Initially, the trace fossils produced by the Kachin amber piddock were described as sporocarps of Palaeoclavaria burmitis Poinar & Brown, 2003, a non-gilled hymenomycete taxon17. The holotype of this taxon represents a club-shaped piddock crypt labelled as follows: “Amber from the Hukawng Valley in Burma; specimen (in piece B with accession number B-P-1) deposited in the Poinar amber collection maintained at Oregon State University (holotype)17”. Hence, Palaeoclavaria Poinar & Brown, 2003 and P. burmitis Poinar & Brown, 2003 must be considered ichnogenus and ichnospecies, respectively. New ichnotaxonomic synonymies are formally proposed here as follows: Teredolites Leymerie, 1842 (= Palaeoclavaria Poinar & Brown, 2003 syn. nov.), and Teredolites clavatus Leymerie, 1842 (= Palaeoclavaria burmitis Poinar & Brown, 2003 syn. nov.). More