New Permian radiolarians from east Asia and the quantitative reconstruction of their evolutionary and ecological significances
1.Aitchison, J. C., Suzuki, N., Caridroit, M., Danelian, T. & Noble, P. Paleozoic radiolarian biostratigraphy. Geodiversitas 393, 503–531 (2017).Article
Google Scholar
2.Wang, Y. J., Luo, H. & Yang, Q. Late Paleozoic radiolarians in the Qinfang area, southeast Guangxi. University of Science and Technology of China, Anhui, 127 p. (2012) (In Chinese with English abstract).3.Nakagawa, T. & Wakita, K. Morphological insights from extremely well-preserved Parafollicucullus (Radiolaria, Order Albaillellaria) from a probable Roadian (Guadalupian, middle Permian) manganese nodule in the Nishiki Group of the Akiyoshi Belt, Southwest Japan. Paleontol. Res. 24, 161–177 (2020).Article
Google Scholar
4.Saesaengseerung, D., Agematsu, S., Sashida, K. & Sardsud, A. Discovery of Lower Permian radiolarian and conodont faunas from the bedded chert of the Chanthaburi area along the Sra Kaeo suture zone, eastern Thailand. Paleontol. Res. 13, 119–138 (2009).Article
Google Scholar
5.Nestell, G. P. & Nestell, M. K. Roadian (earliest Guadalupian, Middle Permian) radiolarians from the Guadalupe Mountains, West Texas, USA Part I: Albaillellaria and Entactinaria. Micropaleontology 66, 1–50 (2020).
Google Scholar
6.Xiao, Y. F., Suzuki, N. & He, W. H. Low-latitudinal standard radiolarian biostratigraphy for multiple purposes with Unitary Association, Graphic Correlation, and Bayesian inference methods. Earth Sci. Rev. 179, 168–206 (2018).ADS
CAS
Article
Google Scholar
7.Kobayashi, F. Middle Permian biogeography based on fusulinacean faunas. pp. 73–76 in C. A. Ross, J. R. P. Ross & P. L. Brenckle (eds) Late Paleozoic Foraminifera; Their Biogeography, Evolution, and Paleoecology; and the Mid-Carboniferous Boundary. Cushman Foundation for Foraminiferal Research, Special Publication, 36 (1997).8.Ormiston, A. R. & Babcock, L. Follicucullus, new radiolarian genus from the Guadalupian (Permian) Lamar Limestone of the Delaware Basin. J. Paleontol. 53, 323–334 (1979).
Google Scholar
9.Caridroit, M. et al. An illustrated catalogue and revised classification of Paleozoic radiolarian genera. Geodiversitas 39, 363–417 (2017).Article
Google Scholar
10.Noble, P. J. et al. Taxonomy of Paleozoic radiolarian genera. Geodiversitas 39, 419–502 (2017).Article
Google Scholar
11.Ito, T. Taxonomic re-evaluation of the Permian radiolarian genus Longtanella Sheng and Wang (Follicucullidae, Albaillellaria). Rev. Micropaléontol. 66, 100406 (2020).Article
Google Scholar
12.Xiao, Y. F. et al. Verifiability of genus-level classification under quantification and parsimony theories: a case study of follicucullid radiolarians. Paleobiology 46, 337–355 (2020).Article
Google Scholar
13.Zheng, Y. F., Xiao, W. J. & Zhao, G. C. Introduction to tectonics of China. Gondwana Res. 23, 1189–1206 (2013).ADS
Article
Google Scholar
14.Ke, X. et al. Radiolarian and detrital zircon in the Upper Carboniferous to Permian Bancheng Formation, Qinfang Basin, and the geological significance. J. Earth Sci. 29, 594–606 (2018).CAS
Google Scholar
15.Editorial Committee of Stratigraphical Lexicon of China. Stratigraphical Lexicon of China: Permian. 149 (Geological Publishing House, Beijing, 2000) (in Chinese).16.Bureau of Geology and Mineral Ressources of Guangxi Autonomous Region. Stratigraphy (Lithostratigraphy) of Guangxi Zhuang Autonomous Region. 310 (CUG Press, Wuhan, 1997) (in Chinese).17.Wang, Y. J., Luo, D., Kuang, G. D. & Li, J. X. Late Devonian-Late Permian strata of cherty facies at Xiaodong and Bancheng counties of the Qinzhou area, SE Guangxi. Acta Micropalaeontol. Sin. 15, 351–366 (1998) (in Chinese with English Abstract).CAS
Google Scholar
18.Zhang, N., Henderson, C. M., Xia, W. C., Wang, G. Q. & Shang, H. J. Conodonts and radiolarians through the Cisuralian-Guadalupian boundary from the Pingxiang and Dachongling sections, Guangxi region, South China. Alcheringa 34, 135–160 (2010).CAS
Article
Google Scholar
19.Ito, T., Zhang, L., Feng, Q. L. & Matsuoka, A. Guadalupian (Middle Permian) Radiolarian and sponge spicule faunas from the Bancheng Formation of the Qinzhou Allochthon, South China. J. Earth Sci. 24, 145–156 (2013).Article
Google Scholar
20.He, W. H. et al. Sedimentary and tectonic evolution of Nanhuan–Permian in South China. Earth Sci. J. China Univ. Geosci. 39, 929–953 (2014) (in Chinese with English abstract).
Google Scholar
21.Li, Y. P., Chen, S. Y. & Peng, B. X. A Diwa surpassing the platform stage—Geotectnic evolutionary characteristics of Qinzhou District, Guangxi. J. Cent. South Univ. 25, 282–287 (1994) (in Chinese with English abstract).
Google Scholar
22.Xu, D. M. et al. Research history and current situation of Qinzhou–Hangzhou metallogenic belt, South China. Geol. Miner. Resour. South China 28, 277–289 (2012) (in Chinese with English abstract).
Google Scholar
23.Wang, Z. C., Wu, H. L. & Kuang, G. D. Geochemistry and origin of Late Paleozoic cherts in Guangxi and their explanation of tectonic environments. Acta Petrol. Sin. 11, 449–455 (1995) (in Chinese with English Abstract).
Google Scholar
24.Hu, L. S. et al. Geochemical characteristics and its geological significance of the Late Paleozoic siliceous rocks in Qinfang Trough, southeastern Guangxi. J. Palaeogeogr. 16, 77–87 (2014) (in Chinese with English Abstract).CAS
Google Scholar
25.Silva, I. P. & Boersma, A. Atlantic Eocene planktonic foraminiferal historical biogeography and paleohydrographic indices. Palaeogeogr. Palaeoclimatol. Palaeoecol. 67, 315–356 (1988).Article
Google Scholar
26.Zhang, Y. C. & Wang, Y. 2018. Permian fusuline biostratigraphy. pp. 253–288 in S. G. Lucas & S. Z. Shen (eds) The Permian Timescale. Geological Society, London, Special Publications, 450.27.Mei, S. L. & Henderson, C. M. Evolution of Permian conodont provincialism and its significance in global correlation and paleoclimate implication. Palaeogeogr. Palaeoclimatol. Palaeoecol. 170, 237–260 (2001).Article
Google Scholar
28.Leonova, T. B. Permian ammonoids: Biostratigraphic, biogeographical, and ecological analysis. Paleontol. J. 45, 1206–1312 (2011).Article
Google Scholar
29.Romano, C. et al. Permian-Triassic Osteichthyes (bony fishes): Diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2014).PubMed
Article
Google Scholar
30.Afanasieva, M. S., Amon, E. O. & Chuvashov, B. I. Radiolarians in Carboniferous stratigraphy and paleogeography in Eastern Europe (PreCaspian and Southern Cis-Urals). Lithosphere 4, 22–62 (2002) (in Russian with English abstract).
Google Scholar
31.Murchey, B. L. Age and depositional setting of siliceous sediments in the upper Paleozoic Havallah sequence near Battle Mountain, Nevada: Implications for the paleogeography and structural evolution of the western margin of North America. Geol. Soc. Am. Spec. Pap. 225, 137–155 (1990).
Google Scholar
32.Noble, P. J. & Jin, Y. X. Radiolarians from the Lamar Limestone, Guadalupe Mountains, West Texas. Micropaleontology 56, 117–147 (2010).
Google Scholar
33.Kuwahara, K. & Yao, A. Diversity of late Permian radiolarian assemblages. News Osaka Micropaleontol. 11, 33–46 (1998) (in Japanese with English abstract).
Google Scholar
34.Feng, Q. L. et al. Radiolarian evolution during the latest Permian in South China. Global Planet. Change 55, 177–192 (2007).ADS
Article
Google Scholar
35.Lucas, S. G. The Permian and Triassic Chronostratigraphic Scales—Framework for Ordering Events. In Permo-Triassic salt provinces of Europe, North Africa and the Atlantic Margins (eds Soto, J. I. et al.) 43–55 (Elsevier, 2017).
Google Scholar
36.Kobayashi, F. Tethyan uppermost Permian (Dzhulfian and Dorashamian) foraminiferal faunas and their paleobiogeographic and tectonic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 150, 279–307 (1999).Article
Google Scholar
37.Ueno, K. The Permian antitropical fusulinoidean genus Monodiexodina: Distribution, taxonomy, paleobiogeography and paleoecology. J. Asian Earth Sci. 26, 380–404 (2006).ADS
Article
Google Scholar
38.Niu, Z. J. & Wu, J. Fusulinid Fauna of Permian Volcanic–Depositional Succession (Setting) in Southern Qinghai, Norwest China. China University of Geoscience Publishing House, Wuhan, 199 (2016). (in Chinese with English summary)39.Zhou, J. P., Zhang, L. X., Wang, Y. J. & Yang, Q. Permian biogeographic provinces of fusulinids in China. J. Stratigr. 24, 378–393 (2000) (in Chinese with English abstract).
Google Scholar
40.Sheng, J. Z., Zhang, L. X. & Wang, J. H. Fusulinids 240 (Science Press, 1988) (in Chinese).
Google Scholar
41.Loeblich, A. R. & Tappan, H. Implications of wall composition and structure in agglutinated foraminifers. J. Paleontol. 63, 769–777 (1989).Article
Google Scholar
42.Sheng, J. Z. & Wang, Y. J. Permian fusulinids from Xizang with reference to their geographical provincialism. Acta Palaeontol. Sin. 20, 546–551 (1981) (in Chinese with English abstract).
Google Scholar
43.Davydov, V. I. & Arefifard, S. Middle Permian (Guadalupian) fusulinid taxonomy and biostratigraphy of the mid-latitude Dalan Basin, Zargos, Iran and their applications in paleoclimate dynamics and paleogeography. GeoArabia 18, 17–62 (2013).
Google Scholar
44.Ishii, K. Provinciality of some fusulinacean faunas of Japan. In Pre-Cretaceous Terranes of Japan (eds Ichikawa, K. et al.) 297–305 (Osaka City University, 1990).
Google Scholar
45.Kobayashi, F. & Ujimaru, A. Chinese fusulinaceans kept in the museum of nature and human activities, Hyogo, Japan. Nat. Hum. Act. 5, 5–25 (2000).
Google Scholar
46.Ishiga, H., Kito, T. & Imoto, N. Middle Permian radiolarian assemblages in the Tamba District and an adjacent area, southwest Japan. Earth Sci. (Chikyu Kagaku) 36, 272–281 (1982).
Google Scholar
47.Wang, Y. J., Cheng, Y. N. & Yang, Q. Biostratigraphy and systematics of Permian radiolarians in China. Palaeoworld 4, 172–202 (1994).
Google Scholar
48.Holdsworth, B. K. & Jones, D. L. Preliminary radiolarian zonation for late Devonian through Permian time. Geology 8, 281–285 (1980).ADS
Article
Google Scholar
49.Nishimura, K. & Ishiga, H. Radiolarian biostratigraphy of the Maizuru Group in Yanahara area, Southwest Japan. Mem. Fac. Sci. Shimane Univ. 21, 169–188 (1987).
Google Scholar
50.Kojima, S. et al. Pre-cretaceous accretionary complex. In The Geology of Japan (eds Moreno, T. et al.) 61–100 (Geological Society, 2016).
Google Scholar
51.Wallis, S. R. et al. The basement geology of Japan from A to Z. Island Arc 29, e12339 (2020).
Google Scholar
52.Kametaka, M., Nakae, S. & Kamada, K. Early Permian radiolarians from siliceous mudstone in the Rikuchu–Seki District, North Kitakami Terrane. Bull. Geol. Surv. Jpn. 56, 237–243 (2005) (in Japanese with English abstract).Article
Google Scholar
53.Suzuki, N. et al. Geology of the Kuzumaki-Kamaishi Subbelt of the North Kitakami Belt (a Jurassic accretionary complex), Northeast Japan: Case study of the Kawai-Yamada area, eastern Iwate Prefecture. Bull. Tohoku Univ. Mus. 6, 103–174 (2007).
Google Scholar
54.Ito, T., Kitagawa, Y. & Matsuoka, A. Middle and Late Permian radiolarians from chert blocks within conglomerates of the Kamiaso Unit of the Mino Terrane in Gifu Prefecture, central Japan. J. Geol. Soc. Jpn 122, 249–259 (2016) (in Japanese with English abstract).Article
Google Scholar
55.Niko, S., Yamakita, S., Otoh, S., Yanai, S. & Hamada, T. Permian radiolarians from the Mizuyagadani Formation in Fukuji area, Hida Marginal Belt and their significance. J. Geol. Soc. Jpn 93, 431–433 (1987) (in Japanese).Article
Google Scholar
56.Isozaki, Y. & Tamura, H. Late Carboniferous and Early Permian radiolarians from the Nagato Tectonic Zone and their implication to geologic structure of the Inner Zone, Southwest Japan. Mem. Geol. Soc. Jpn. 33, 167–176 (1989) (in Japanese with English abstract).
Google Scholar
57.Ujiié, H. & Oba, T. Geology and Permo-Jurassic Radiolaria of the Iheya Zone, innermost belt of the Okinawa Islands region, middle Ryukyu island arc, Japan. Part 1: Geology and Permian radiolaria. Bull. Coll. Sci. Univ. Ryukyus 51, 35–55 (1991).
Google Scholar
58.Hori, N. Permian radiolarians from chert of the Chichibu Belt in the Toyohashi district, Aichi Prefecture, Southwest Japan. Bull. Geol. Surv. Jpn 55, 287–301 (2004) (in Japanese with English abstract).Article
Google Scholar
59.Hada, S., Salo, E., Takeshima, H. & Kawakami, A. Age of the covering strata in the Kurosegawa Terrane: Dismembered continental fragment in southwest Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 96, 59–69 (1992).Article
Google Scholar
60.Kashiwagi, K. & Isaji, S. Paleozoic and Mesozoic radiolarians from chert pebbles and cobbles of the Lower Cretaceous Choshi Group, Japan. Nat. Hist. Res. (Nat. Hist. Mus. Inst. Chiba) 13, 35–46 (2015).
Google Scholar
61.Feng, Q. L. & Ye, M. Radiolarian stratigraphy of Devonian through Middle Triassic in Southwestern Yunnan. In Devonian to Triassic Tethys in Western Yunnan China (ed. Fang, N. Q.) 15–22 ( China University of Geosciences Press, 1996).
Google Scholar
62.Yao, A. & Kuwahara, K. Paleozoic and Mesozoic radiolarians from the Changning-Menglian Terrane, Western Yunnan, China. In Biotic and Geological Development of the Paleo-Tethys in China (eds Yao, A. et al.) 17–42 (Peking University Press, 1999).
Google Scholar
63.Toriyama, R. The fusulinacean zones of Japan. Mem. Fac. Sci. Kyushu Univ. Ser. D Geol. 18, 35–260 (1967).
Google Scholar
64.Morikawa, R. & Isomi, H. A new genus Biwaella, Schwagerina-like Schubertella. Sci. Rep. Saitama Univ. Ser. B 3, 301–305 (1960).
Google Scholar
65.Toriyama, R. Summary of the fusuline faunas in Thailand and Malaysia. In Geology and Palaeontology of Southeast Asia Vol. 25 (eds Kobayashi, T. et al.) 137–146 (University of Tokyo Press, 1984).
Google Scholar
66.Wang, S. Y., Wang, H. M. & Zhang, H. The Longlinian (Early Permian) fusulinid communities and sedimentary environments in the Liuzhi-Panxian region, Guizhou. Sediment. Geol. Tethyan Geol. 25, 37–41 (2005) (in Chinese with English abstract).
Google Scholar
67.Xiao, C. T., Gong, K. & Liang, W. J. Research on paleoecology of middle Permian–middle Triassic in the western Sichuan Basin. Adv. Earth Sci. 29, 819–827 (2014) (in Chinese with English abstract).
Google Scholar
68.Geng, Q. R., Peng, Z. M. & Zhang, Z. New advances in the study of Carboniferous-Permian paleontology in Guoganjianianshan-Rongma area of Qiangtang region, Tibetan Plateau. Geol. Bull. China 31, 510–520 (2012) (in Chinese with English abstract).
Google Scholar
69.Jasin, B. Significance of Monodiexodina (Fusulininacea) in geology of Peninsular Malaysia. Bull. Geol. Soc. Malays. 29, 171–181 (1991).Article
Google Scholar
70.Hassan, M. H. A., Al Zamruddin, N. N. S., Sim, Y. B. & Samad, A. S. S. A. Sedimentology of the Permian Monodiexodina-bearing bed of the uppermost Kubang Pasu Formation, northwest Peninsular Malaysia: Interpretation as storm-generated, transgressive lag deposits. Bull. Geol. Soc. Malays. 64, 51–58 (2017).Article
Google Scholar
71.Ueno, K. A peculiar fusulinacean fauna from the Yasuba Conglomerate, Kochi Prefecture, Shikoku. Trans. Proc. Palaeontol. Soc. Jpn. New Ser. 164, 1004–1008 (1991).
Google Scholar
72.Yamashita, N. Yabeina-Lepidolina fauna, found in the Sakawa Basin, Shikoku, and its significance. J. Geol. Soc. Jpn 64, 92–94 (1958) (in Japanese).Article
Google Scholar
73.Ding, P. Z., Jin, T. A. & Sun, X. F. The marine Permian strata and its faunal assemblages in Xikou area of Zhen’an County, south Shaanxi, east Qinling Range. Bull. Xi’an Inst. Geol. Miner. Resour. Chin. Acad. Geol. Sci. 25, 1–65 (1989) (in Chinese).
Google Scholar
74.Danner, W. R., Nestell, M. K. & Nestell, G. P. Geology and paleontology of the Carboniferous and Permian of the exotic terranes of southwestern British Columbia. pp. 1–124 in The Committee for the XIV International Congress on the Carboniferous–Permian (ed.) Precongress Field Trip No. 9. XIV International Congress on the Carboniferous–Permian, August 12–16, 1999. Alberta (1999).75.Win, Z. Fusuline biostratigraphy and paleontology of the Akasaka Limestone, Gifu Prefecture, Japan. Bull. Kitakyushu Mus. Nat. Hist. 18, 1–76 (1999).
Google Scholar
76.Van der Meer, D. G., Torsvik, T. H., Spakman, W., Van Hinsbergen, D. J. J. & Amaru, M. L. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nat. Geosci. 5, 215–219 (2012).ADS
Article
CAS
Google Scholar
77.Ross, C. A. Development of fusulinid (Foraminiferida) faunal realms. J. Paleontol. 41, 1341–1354 (1967).
Google Scholar
78.Davydov, V. I., Belasky, P. & Karavayeva, N. I. Permian fusulinids from the Koryak Terrane, northeastern Russia, and their paleobiogeographic affinity. J. Foramin. Res. 26, 213–243 (1996).Article
Google Scholar
79.Kobayashi, F., Ross, C. A. & Ross, J. R. Age and generic assignment of Yabeina columbiana (Guadalupian Fusulinacea) in southern British Columbia. J. Paleontol. 81, 238–253 (2007).Article
Google Scholar
80.Roscher, M., Stordal, F. & Svensen, H. The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 186–200 (2011).Article
Google Scholar
81.Campi, M. J. The Permian—A time of major evolutions and revolutions in the history of life. In Earth and Life (ed. Talent, J. A.) 705–718 (Springer, 2012).
Google Scholar
82.Tomczak, M. & Godfrey, J.S. Regional Oceanography: An Introduction. (2005) https://www.mt-oceanography.info/regoc/pdfversion.html . 24-Oct-2020.83.Talley, L. D., Pickard, G. L., Emery, W. J. & Swift, J. H. Descriptive Physical Oceanography: An Introduction 6th edn, 560 (Elsevier, 2011).
Google Scholar
84.Shi, G. R. & Archbold, N. W. Permian marine biogeography of SE Asia. In Biogeography and Geological Evolution of SE Asia (eds Hall, R. & Holloway, J. D.) 57–72 (Backhuys Publishers, 1998).
Google Scholar
85.Noble, P. J. et al. Paleohydrographic influences on Permian radiolarians in the Lamar Limestone, Guadalupe Mountains, West Texas, elucidated by organic biomarker and stable isotope geochemistry. Palaios 26, 180–186 (2011).ADS
Article
Google Scholar
86.Siedler, G., Griffies, S. M., Gould, J. & Church, J. A. Ocean Circulation and Climate—A 21st Century Perspective 2nd edn, 868 (Elsevier, 2013).
Google Scholar
87.Suzuki, N. & Not, F. Biology and ecology of radiolaria. In Marine Protists: Diversity and Dynamics (eds Ohtsuka, S. et al.) 179–222 (Springer, 2015).
Google Scholar
88.Xiao, Y. F., Suzuki, N. & He, W. H. Water depths of the latest Permian (Changhsingian) radiolarians estimated from correspondence analysis. Earth Sci. Rev. 173, 141–158 (2017).ADS
Article
Google Scholar
89.Haig, D. W. et al. Late Artinskian-Early Kungurian (Early Permian) warming and maximum marine flooding in the East Gondwana interior rift, Timor and Western Australia, and comparisons across East Gondwana. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 88–121 (2017).Article
Google Scholar
90.Zhang, L., Feng, Q. L. & He, W. H. Permian radiolarian biostratigraphy. In The Permian Timescale (eds Lucas, S. G. & Shen, S. Z.) 143–163 (Geological Society, 2018).
Google Scholar
91.Catalano, R., Di Stefano, P. & Kozur, H. Lower Permian Albaillellacea (Radiolaria) from Sicily and their stratigraphic and paleogeographic significance. Rend. dell’Accad. delle Sci. fsiche Mat. Ser. IV 56, 1–24 (1989).
Google Scholar
92.Moix, P. et al. Geology and correlation of the Mersin Mélanges, Southern Turkey. Turk. J. Earth Sci. 20, 57–98 (2011).
Google Scholar
93.Spiller, F. C. P. Radiolarian biostratigraphy of Peninsular Malaysia and implications for regional palaeotectonics and palaeogeography. Palaeontogr. Abteilung A Palaeozool. Stratigr. 266, 1–91 (2002).
Google Scholar
94.Metcalfe, I., Spiller, F. C. P., Liu, B. P., Wu, H. R. & Sashida, K. The Palaeo-Tethys in Mainland East and Southeast Asia: contributions from radiolarian studies, in: I. Metcalfe (ed.) Gondwana Dispersion and Asian Accretion. IGCP321 Final Results Volume 259–281 (A.A. Balkema, Rotterdam, 1999).95.Rudenko, V.S. & Panasenko, E.S. Biostratigraphy of Permian deposits of Sikhote-Alin based on radiolarians. in A. Baud, I. Popova, J. M. Dickins, S. Lucas, Y. Zakharov (eds) Late Paleozoic and Early Mesozoic Circum-Paciric Events: Biostratigraphy, Tectonic and Ore Deposits of Primoryie (Far East Russia). IGCP Project 272. Mémoires de Géologie (Lausanne), 30, 73–84 (1997).96.Takemura, A. et al. Preliminary report on the lithostratigraphy of the Arrow Rocks, and geologic age of the northern part of the Waipapa Terrane, New Zealand. News Osaka Micropaleontol. Spec. 11, 47–57 (1998).
Google Scholar
97.Cordey, F. Radiolaires des complexes d’accrétion de la Cordillère Canadienne(Colombie-Britannique). Geol. Surv. Can. Bull. 509, 209 (1998) (in French with English summary).
Google Scholar
98.Nestell, G. P. & Nestell, M. K. Late Capitanian (latest Guadalupian, Middle Permian) radiolarians from the Apache Mountains, West Texas. Micropaleontology 56, 7–68 (2010).
Google Scholar
99.Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 66, 1–33 (2013).ADS
Article
Google Scholar More