More stories

  • in

    Diapause vs. reproductive programs: transcriptional phenotypes in a keystone copepod

    1.Record, N. R. et al. Copepod diapause and the biogeography of the marine lipidscape. J. Biogeogr. 45, 2238–2251 (2018).Article 

    Google Scholar 
    2.Conover, R. J. & Corner, E. D. S. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. Mar. Biol. Assoc. UK 48, 49–75 (1968).Article 

    Google Scholar 
    3.Kattner, G. et al. Perspectives on marine zooplankton lipids. Can. J. Fish. Aquat. Sci. 64, 1628–1639 (2007).CAS 
    Article 

    Google Scholar 
    4.Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Coyle, K. et al. Climate change in the southeastern Bering Sea: impacts on pollock stocks and implications for the oscillating control hypothesis. Fish. Oceanogr. 20, 139–156 (2011).Article 

    Google Scholar 
    6.Liu, H., Bi, H. & Peterson, W. T. Large-scale forcing of environmental conditions on subarctic copepods in the northern California Current system. Prog. Oceanogr. 134, 404–412 (2015).Article 

    Google Scholar 
    7.Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res. Oceans 122, 7267–7290 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Bi, H., Peterson, W. T., Lamb, J. & Casillas, E. Copepods and salmon: characterizing the spatial distribution of juvenile salmon along the Washington and Oregon coast, USA. Fish. Oceanogr. 20, 125–138 (2011).Article 

    Google Scholar 
    9.Kirby, R. R. & Beaugrand, G. Trophic amplification of climate warming. Proc. R. Soc. B 276, 4095–4103 (2009).PubMed 
    Article 

    Google Scholar 
    10.Hirche, H.-J. Temperature and plankton II. Effect on respiration and swimming activity in copepods from the Greenland Sea. Mar. Biol. 94, 347–356 (1987).Article 

    Google Scholar 
    11.Mahara, N., Pakhomov, E. A., Jackson, J. M. & Hunt, B. P. Seasonal zooplankton development in a temperate semi-enclosed basin: two years with different spring bloom timing. J. Plankton Res. 41, 309–328 (2019).CAS 
    Article 

    Google Scholar 
    12.Hooff, R. C. & Peterson, W. T. Copepod biodiversity as an indicator of changes in ocean and climate conditions of the northern California current ecosystem. Limnol. Oceanogr. 51, 2607–2620 (2006).Article 

    Google Scholar 
    13.Keister, J. E., Di Lorenzo, E., Morgan, C., Combes, V. & Peterson, W. Zooplankton species composition is linked to ocean transport in the Northern California Current. Glob. Change Biol. 17, 2498–2511 (2011).Article 

    Google Scholar 
    14.Johnson, C. L. et al. Characteristics of Calanus finmarchicus dormancy patterns in the Northwest Atlantic. ICES J. Mar. Sci. 65, 339–350 (2008).Article 

    Google Scholar 
    15.Ji, R. B., Edwards, M., Mackas, D. L., Runge, J. A. & Thomas, A. C. Marine plankton phenology and life history in a changing climate: current research and future directions. J. Plankton Res. 32, 1355–1368 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Weydmann, A., Walczowski, W., Carstensen, J. & Kwaśniewski, S. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Glob. Change Biol. 24, 172–183 (2018).Article 

    Google Scholar 
    17.Niehoff, B., Madsen, S., Hansen, B. & Nielsen, T. Reproductive cycles of three dominant Calanus species in Disko Bay, West Greenland. Mar. Biol. 140, 567–576 (2002).Article 

    Google Scholar 
    18.Meise, C. J. & O’Reilly, J. E. Spatial and seasonal patterns in abundance and age-composition of Calanus finmarchicus in the Gulf of Maine and on Georges Bank: 1977–1987. Deep-Sea Res. II 43, 1473–1501 (1996).Article 

    Google Scholar 
    19.Fiksen, Ø. The adaptive timing of diapause–a search for evolutionarily robust strategies in Calanus finmarchicus. ICES J. Mar. Sci. 57, 1825–1833 (2000).Article 

    Google Scholar 
    20.Miller, C. B., Crain, J. A. & Morgan, C. A. Oil storage variability in Calanus finmarchicus. ICES J. Mar. Sci. 57, 1786–1799 (2000).Article 

    Google Scholar 
    21.Miller, C. B., Cowles, T. J., Wiebe, P. H., Copley, N. J. & Grigg, H. Phenology in Calanus finmarchicus – Hypotheses about control mechanisms. Mar. Ecol. Prog. Ser. 72, 79–91 (1991).Article 

    Google Scholar 
    22.Speirs, D. C. et al. Ocean-scale modelling of the distribution, abundance, and seasonal dynamics of the copepod Calanus finmarchicus. Mar. Ecol. Prog. Ser. 313, 173–192 (2006).Article 

    Google Scholar 
    23.Tarrant, A. M. et al. Transcriptional profiling of metabolic transitions during development and diapause preparation in the copepod Calanus finmarchicus. Integr. Comp. Biol. 56, 1157–1169 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Baumgartner, M. F. & Tarrant, A. M. The physiology and ecology of diapause in marine copepods. Annu. Rev. Mar. Sci. 9, 387–411 (2017).Article 

    Google Scholar 
    25.Wilson, R. J., Banas, N. S., Heath, M. R. & Speirs, D. C. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus. Glob. Change Biol. 22, 3332–3340 (2016).Article 

    Google Scholar 
    26.Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA. 112, 12122–12126 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    27.Jónasdóttir, S. H., Wilson, R. J., Gislason, A. & Heath, M. R. Lipid content in overwintering Calanus finmarchicus across the Subpolar Eastern North Atlantic Ocean. Limnol. Oceanogr. 64, 2029–2043 (2019).Article 
    CAS 

    Google Scholar 
    28.Varpe, Ø. Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. J. Plankton Res. 34, 267–276 (2012).Article 

    Google Scholar 
    29.Denlinger, D. L., Yocum, G. D. & Rinehart, J. P. in Insect Endocrinology (ed Gilbert, L. I.) 430–463 (Academic Press, 2012).30.Hirche, H. J. Diapause in the marine copepod, Calanus finmarchicus – a review. Ophelia 44, 129–143 (1996).Article 

    Google Scholar 
    31.Häfker, N. S. et al. Calanus finmarchicus seasonal cycle and diapause in relation to gene expression, physiology, and endogenous clocks. Limnol. Oceanogr. 63, 2815–2838 (2018).Article 

    Google Scholar 
    32.Roncalli, V. et al. Physiological characterization of the emergence from diapause: a transcriptomics approach. Sci. Rep. 8, 12577 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Roncalli, V., Cieslak, M. C., Hopcroft, R. R. & Lenz, P. H. Capital breeding in a diapausing copepod: a transcriptomics analysis. Front. Mar. Sci. 7, 56 (2020).Article 

    Google Scholar 
    34.MacRae, T. H. Gene expression, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. 67, 2405–2424 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Poelchau, M. F., Reynolds, J. A., Elsik, C. G., Denlinger, D. L. & Armbruster, P. A. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc. R. Soc. B 280 (2013).36.Ragland, G. J. & Keep, E. Comparative transcriptomics support evolutionary convergence of diapause responses across Insecta. Physiol. Entomol. 42, 246–256 (2017).CAS 
    Article 

    Google Scholar 
    37.Koštál, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Tarrant, A. M. et al. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus. Front. Zool. 11, 1 (2014).Article 
    CAS 

    Google Scholar 
    39.Jensen, L. K. et al. A multi-generation Calanus finmarchicus culturing system for use in long-term oil exposure experiments. J. Exp. Mar. Biol. Ecol. 333, 71–78 (2006).CAS 
    Article 

    Google Scholar 
    40.Cieslak, M. C., Castelfranco, A. M., Roncalli, V., Lenz, P. H. & Hartline, D. K. t-Distributed Stochastic Neighbor Embedding (t-SNE): a tool for eco-physiological transcriptomic analysis. Mar. Genomics 51, 100723 (2020).PubMed 
    Article 

    Google Scholar 
    41.van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
    Google Scholar 
    42.Roncalli, V., Cieslak, M. C., Germano, M., Hopcroft, R. R. & Lenz, P. H. Regional heterogeneity impacts gene expression in the sub-arctic zooplankter Neocalanus flemingeri in the northern Gulf of Alaska. Commun. Biol. 2, 1–13 (2019).CAS 
    Article 

    Google Scholar 
    43.Johnson, K. M., Wong, J. M., Hoshijima, U., Sugano, C. S. & Hofmann, G. E. Seasonal transcriptomes of the Antarctic pteropod Limacina helicina antarctica. Mar. Env. Res. 143, 49–59 (2019).CAS 
    Article 

    Google Scholar 
    44.Denlinger, D. L. Regulation of diapause. Annu. Rev. Entomol. 47, 93–122 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Hahn, D. A. & Denlinger, D. L. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103–121 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Sim, C. & Denlinger, D. L. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiol. Genomics 39, 202–209 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Sim, C. & Denlinger, D. L. Insulin signaling and the regulation of insect diapause. Front. Physiol. 4, 189 (2013).49.Andrews, T. S. & Hemberg, M. Identifying cell populations with scRNASeq. Mol. Asp. Med. 59, 114–122 (2018).CAS 
    Article 

    Google Scholar 
    50.Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Arrese, E. L. & Soulages, J. L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Hahn, D. A. & Denlinger, D. L. Meeting the energetic demands of insect diapause: nutrient storage and utilization. J. Insect Physiol. 53, 760–773 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273–306 (2006).CAS 
    Article 

    Google Scholar 
    54.Kattner, G. & Hagen, W. Polar herbivorous copepods–different pathways in lipid biosynthesis. ICES J. Mar. Sci. 52, 329–335 (1995).Article 

    Google Scholar 
    55.Miller, C. B., Morgan, C. A., Prahl, F. G. & Sparrow, M. A. Storage lipids of the copepod Calanus finmarchicus from Georges Bank and the Gulf of Maine. Limnol. Oceanogr. 43, 488–497 (1998).CAS 
    Article 

    Google Scholar 
    56.Hirche, H. J. & Niehoff, B. Reproduction of the Arctic copepod Calanus hyperboreus in the Greenland Sea-field and laboratory observations. Pol. Biol. 16, 209–219 (1996).Article 

    Google Scholar 
    57.Niehoff, B. & Hirche, H.-J. Oogenesis and gonad maturation in the copepod Calanus finmarchicus and the prediction of egg production from preserved samples. Pol. Biol. 16, 601–612 (1996).Article 

    Google Scholar 
    58.Koštál, V., Štětina, T., Poupardin, R., Korbelová, J. & Bruce, A. W. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl Acad. Sci. USA. 114, 8532–8537 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    59.Aruda, A. M., Baumgartner, M. F., Reitzel, A. M. & Tarrant, A. M. Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. J. Insect Physiol. 57, 665–675 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Unal, E., Bucklin, A., Lenz, P. H. & Towle, D. W. Gene expression of the marine copepod Calanus finmarchicus: responses to small-scale environmental variation in the Gulf of Maine (NW Atlantic Ocean). J. Exp. Mar. Biol. Ecol. 446, 76–85 (2013).CAS 
    Article 

    Google Scholar 
    61.Ning, J., Wang, M. X., Li, C. L. & Sun, S. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX. PLoS ONE 8, e63741 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Zhang, Q., Lu, Y.-X. & Xu, W.-H. Proteomic and metabolomic profiles of larval hemolymph associated with diapause in the cotton bollworm, Helicoverpa armigera. BMC Genomics 14, 751 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008).64.Qiu, Z. & MacRae, T. H. ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem. J. 411, 605–611 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Lu, M.-X. et al. Diapause, signal and molecular characteristics of overwintering Chilo suppressalis (Insecta: Lepidoptera: Pyralidae). Sci. Rep. 3, 1–9 (2013).CAS 

    Google Scholar 
    66.Forreryd, A., Johansson, H., Albrekt, A.-S. & Lindstedt, M. Evaluation of high throughput gene expression platforms using a genomic biomarker signature for prediction of skin sensitization. BMC Genomics 15, 379 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Lenz, P. H. et al. De novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda)–the dominant zooplankter of the North Atlantic Ocean. PLoS ONE 9, e88589 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Roncalli, V., Cieslak, M. C. & Lenz, P. H. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense. Sci. Rep. 6, 25708 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Roncalli, V., Cieslak, M. C. & Lenz, P. H. Data from: Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense. Dryad, Dataset (2016).70.Choquet, M. et al. Genetics redraws pelagic biogeography of Calanus. Biol. Lett. 13, 20170588 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Choquet, M. et al. Can morphology reliably distinguish between the copepods Calanus finmarchicus and C. glacialis, or is DNA the only way? Limnol. Oceanogr.: Methods 16, 237–252 (2018).Article 

    Google Scholar 
    72.Skottene, E. et al. A crude awakening: effects of crude oil on lipid metabolism in calanoid copepods terminating diapause. Biol. Bull. 237, 90–110 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Melle, W. & Skjoldal, H. R. Reproduction and development of Calanus finmarchicus, C. glacialis and C. hyperboreus in the Barents Sea. Mar. Ecol. Prog. Ser. 169, 211–228 (1998).Article 

    Google Scholar 
    74.Weydmann, A. et al. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions. Sci. Rep. 7, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    75.Lenz, P. H., Lieberman, B., Cieslak, M. C., Roncalli, V. & Hartline, D. K. Transcriptomics and metatranscriptomics in zooplankton: wave of the future? J. Plankton Res. 43, 3–9 (2021).Article 

    Google Scholar 
    76.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/Gb-2009-10-3-R25 (2009).77.Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.van der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
    Google Scholar 
    79.Krijthe, J. H. Rtsne: t-Distributed Stochastic Neighbor Embedding using a Barnes-Hut implementation, version 0.13. (2015).80.Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. Second International Conference on Knowledge Discovery and Data Mining (KDD-96) 96, 226–231 (1996).81.Dunn, J. C. Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974).Article 

    Google Scholar 
    82.Hahsler, M. & Piekenbrock, M. Dbscan: density based clustering of applications with noise (DBSCAN) and related algorithms. R. package version 1, 1–3 (2018).
    Google Scholar 
    83.Desgraupes, B. ClusterCrit: Clustering Indices. R package version 1.2.8. (2018).84.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).Article 
    CAS 

    Google Scholar 
    86.Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. 4, 17 (2005).87.Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology. R. package version 2, 2010 (2010).
    Google Scholar 
    89.Galili, T., O’Callaghan, A., Sidi, J. & Sievert, C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34, 1600–1602 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Lenz, P. H. et al. Diapause vs. reproductive programs: transcriptional phenotypes in Calanus finmarchicus. Dryad, Dataset, https://doi.org/10.5061/dryad.12jm63xw7 (2021). More

  • in

    Accelerated Varroa destructor population growth in honey bee (Apis mellifera) colonies is associated with visitation from non-natal bees

    1.Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7(5), e37235 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Stern, R. et al. Sequential introduction of honeybee colonies increases cross-pollination, fruit-set and yield of ‘Spadona’pear (Pyrus communis L.). J. Hortic. Sci. Biotechnol. 79(4), 652–658 (2004).Article 

    Google Scholar 
    3.Sabbahi, R., DeOliveira, D. & Marceau, J. Influence of honey bee (Hymenoptera: Apidae) density on the production of canola (Crucifera: Brassicacae). J. Econ. Entomol. 98(2), 367–372 (2005).PubMed 
    Article 

    Google Scholar 
    4.Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76(1), 17–23 (2001).Article 

    Google Scholar 
    5.Walters, S. A. & Taylor, B. H. Effects of honey bee pollination on pumpkin fruit and seed yield. HortScience 41(2), 370–373 (2006).Article 

    Google Scholar 
    6.Aras, P., De Oliveira, D. & Savoie, L. Effect of a Honey Bee (Hymenoptera: Apidae) Gradient on the Pollination and Yield of Lowbush Blueberry. J. Econ. Entomol. 89(5), 1080–1083 (1996).Article 

    Google Scholar 
    7.Steinhauer, N., et al., Drivers of colony losses. Curr. Opin. Insect Sci. 2018.8.Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower then agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Kulhanek, K. et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 56, 328–340 (2017).Article 

    Google Scholar 
    10.Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49(1), 1–6 (2010).Article 

    Google Scholar 
    11.Kang, Y. et al. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector. Math. Biosci. 275, 71–92 (2016).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    12.Ruffinengo, S. et al. Integrated Pest Management to control Varroa destructor and its implications to Apis mellifera colonies. Zootec. Trop. 32(2), 149–168 (2015).
    Google Scholar 
    13.Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103(Suppl 1), S96-119 (2010).PubMed 
    Article 

    Google Scholar 
    14.Boecking, O. & Genersch, E. Varroosis–the ongoing crisis in bee keeping. J. Verbr. Lebensm. 3(2), 221–228 (2008).Article 

    Google Scholar 
    15.Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. 116(5), 1792–1801 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Yang, X. & Cox-Foster, D. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134(3), 405–412 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Francis, R. M., Nielsen, S. L. & Kryger, P. Varroa-virus interaction in collapsing honey bee colonies. PLoS ONE 8(3), e57540 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Traynor, K. S. et al. Multiyear survey targeting disease incidence in US honey bees. Apidologie 23, 113–121 (2016).
    Google Scholar 
    19.Bee Informed, P. Managment Survey Results. 2019 [cited 2018 October 1, 2018].20.Giacobino, A. et al. Risk factors associated with failures of Varroa treatments in honey bee colonies without broodless period. Apidologie 46, 573–582 (2015).Article 

    Google Scholar 
    21.Haber, A. I., Steinhauer, N. A. & van Engelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J. Econ. Entomol. 112, 1509–1525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Thoms, C. A. et al. Beekeeper stewardship, colony loss, and Varroa destructor management. Ambio 48, 1209–1218 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Wilkinson, D. & Smith, G. C. A model of the mite parasite, Varroa destructor, on honeybees (Apis mellifera) to investigate parameters important to mite population growth. Ecol. Model. 148(3), 263–275 (2002).Article 

    Google Scholar 
    24.Harris, J. W. et al. Variable population growth of Varroa destructor (Mesostigmata: Varroidae) in colonies of honey bees (Hymenoptera: Apidae) during a 10-year period. Environ. Entomol. 32(6), 1305–1312 (2003).Article 

    Google Scholar 
    25.DeGrandi-Hoffman, G. & Curry, R. A mathematical model of Varroa mite (Varroa destructor Anderson and Trueman) and honeybee (Apis mellifera L.) population dynamics. Int. J. Acarol. 30(3), 259–274 (2004).Article 

    Google Scholar 
    26.Pfeiffer, K. J. & Crailsheim, K. Drifting of honeybees. Insectes Soc. 45(2), 151–167 (1998).Article 

    Google Scholar 
    27.Goodwin, R. M. et al. Drift of Varroa destructor-infested worker honey bees to neighbouring colonies. J. Apic. Res. 45(3), 155–156 (2006).Article 

    Google Scholar 
    28.Nolan, M. P. & Delaplane, K. S. Distance between honey bee Apis mellifera colonies regulates populations of Varroa destructor at a landscape scale. Apidologie 48(1), 8–16 (2017).Article 

    Google Scholar 
    29.Seeley, T. D. & Smith, M. L. Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46(6), 716–727 (2015).Article 

    Google Scholar 
    30.Frey, E., Schnell, H. & Rosenkranz, P. Invasion of Varroa destructor mites into mite-free honey bee colonies under the controlled conditions of a military training area. J. Apic. Res. 50(2), 138–144 (2011).Article 

    Google Scholar 
    31.Frey, E. & Rosenkranz, P. Autumn invasion rates of Varroa destructor (Mesostigmata: Varroidae) into honey bee (Hymenoptera: Apidae) colonies and the resulting increase in mite populations. J. Econ. Entomol. 107(2), 508–515 (2014).PubMed 
    Article 

    Google Scholar 
    32.Kralj, J. & Fuchs, S. Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37(5), 577–587 (2006).Article 

    Google Scholar 
    33.Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14(6), e0218392 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Forfert, N. et al. Parasites and pathogens of the honeybee (Apis mellifera) and their influence on inter-colonial transmission. PLoS ONE 10(10), e0140337 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Steinhauer, N. & Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci. Total Environ. 753, 141629 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    36.DeGrandi-Hoffman, G. et al. Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites. Exp. Appl. Acarol. 69(1), 21–34 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Hagler, J. et al. A method for distinctly marking honey bees, Apis mellifera, originating from multiple apiary locations. J. Insect Sci. 11(1), 143 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    38.Delaplane, K. S., van der Steen, J. & Guzman-Novoa, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 52(1), 1–12 (2013).Article 

    Google Scholar 
    39.Winston, M. The Biology of the Honey Bee 281 (Harvard University Press, Cambridge, MA, 1987).
    Google Scholar 
    40.Nazzi, F. & Le Conte, Y. Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Ann. Rev. Entomol. 61, 417–432 (2016).CAS 
    Article 

    Google Scholar 
    41.Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl. Acad. Sci. 117(19), 10406–10413 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Rosenkranz, P. Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud, South America. Apidologie 30(2/3), 159–172 (1999).Article 

    Google Scholar 
    43.Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47(3), 467–482 (2016).Article 

    Google Scholar  More

  • in

    Mapping the deforestation footprint of nations reveals growing threat to tropical forests

    1.Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).
    Google Scholar 
    2.UN FAO Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? (FAO Interdepartmental Working Group, 2016).3.Douglas, I. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 185–197 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-809665-9.09206-54.Hassan, R., Scholes, R. & Ash, N. Ecosystems and Human Well-Being: Current State and Trends (Island Press, 2005).5.Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).
    Google Scholar 
    6.Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).
    Google Scholar 
    7.Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).
    Google Scholar 
    8.Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).CAS 

    Google Scholar 
    9.D’Almeida, C. et al. The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int. J. Climatol. 27, 633–647 (2007).
    Google Scholar 
    10.Laurance, W. F. et al. Ecosystem decay of amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).
    Google Scholar 
    11.Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).
    Google Scholar 
    12.Take action to stop Amazon burning. Nature 573, 163 (2019)13.Karstensen, J., Peters, G. P. & Andrew, R. M. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environ. Res. Lett. 8, 024005 (2013).
    Google Scholar 
    14.Godar, J., Tizado, E. J. & Pokorny, B. Who is responsible for deforestation in the Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil. For. Ecol. Manag. 267, 58–73 (2012).
    Google Scholar 
    15.Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.de Area Leão Pereira, E. J., de Santana Ribeiro, L. C., da Silva Freitas, L. F. & de Barros Pereira, H. B. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 92, 104491 (2020).
    Google Scholar 
    17.Escobar, H. Deforestation in the Brazilian Amazon is still rising sharply. Science 369, 613 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
    Google Scholar 
    19.Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
    Google Scholar 
    20.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).
    Google Scholar 
    21.Jha, S. & Bawa, K. S. Population growth, human development, and deforestation in biodiversity hotspots. Conserv. Biol. 20, 906–912 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).CAS 

    Google Scholar 
    23.Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).
    Google Scholar 
    25.Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).
    Google Scholar 
    26.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    28.Saikku, L., Soimakallio, S. & Pingoud, K. Attributing land-use change carbon emissions to exported biomass. Environ. Impact Assess. Rev. 37, 47–54 (2012).
    Google Scholar 
    29.Beckman, J., Sands, R. D., Riddle, A. A., Lee, T. & Walloga, J. M. International Trade and Deforestation: Potential Policy Effects via a Global Economic Model (USDA, 2017); https://ideas.repec.org/p/ags/uersrr/262185.html30.Cuypers, D. et al. The Impact of EU Consumption on Deforestation: Comprehensive Analysis of the Impact of EU consumption on Deforestation (European Commission, 2013).31.Zhang, Q. et al. Global timber harvest footprints of nations and virtual timber trade flows. J. Clean. Prod. 250, 119503 (2020).
    Google Scholar 
    32.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).
    Google Scholar 
    35.Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    36.Tropek, R. et al. Comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
    Google Scholar 
    38.Forest Fact Book 2017–2018 (Government of Canada Publications, 2017).39.Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Ericsson, K. & Werner, S. The introduction and expansion of biomass use in Swedish district heating systems. Biomass. Bioenergy 94, 57–65 (2016).
    Google Scholar 
    41.Kennedy, C. & Southwood, T. The number of species of insects associated with British trees: a re-analysis. J. Anim. Ecol. 53, 455–478 (1984).
    Google Scholar 
    42.Braun, A. C. H. et al. Assessing the impact of plantation forestry on plant biodiversity: a comparison of sites in Central Chile and Chilean Patagonia. Glob. Ecol. Conserv. 10, 159–172 (2017).
    Google Scholar 
    43.Kang, D., Wang, X., Li, S. & Li, J. Comparing the plant diversity between artificial forest and nature growth forest in a giant panda habitat. Sci. Rep. 7, 3561 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    45.Erwin, T. L. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36, 74–75 (1982).
    Google Scholar 
    46.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003).
    Google Scholar 
    48.Bradford, M. & Murphy, H. T. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS ONE 14, e0208377 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    49.Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).
    Google Scholar 
    51.Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Weinzettel, J., Vačkář, D. & Medková, H. Human footprint in biodiversity hotspots. Front. Ecol. Environ. 16, 447–452 (2018).
    Google Scholar 
    53.Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    54.Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).
    Google Scholar 
    55.Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 102055 (2020).
    Google Scholar 
    56.Garrett, R. D. et al. Criteria for effective zero-deforestation commitments. Glob. Environ. Change 54, 135–147 (2019).
    Google Scholar 
    57.Blackman, A., Goff, L. & Rivera Planter, M. Does eco-certification stem tropical deforestation? Forest stewardship council certification in mexico. J. Environ. Econ. Manag. 89, 306–333 (2018).
    Google Scholar 
    58.Protecting and Restoring Forests: A Story of Large Commitments yet Limited Progress. New York Declaration on Forests Five-Year Assessment Report (NYDF Assessment Partners, 2019).59.Meijer, K. S. A comparative analysis of the effectiveness of four supply chain initiatives to reduce deforestation. Trop. Conserv. Sci. 8, 583–597 (2015).
    Google Scholar 
    60.Carvalho, W. D. et al. Deforestation control in the brazilian amazon: a conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspect. Ecol. Conserv. 17, 122–130 (2019).
    Google Scholar 
    61.Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202–23208 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Nolte, C., le Polain de Waroux, Y., Munger, J., Reis, T. N. P. & Lambin, E. F. Conditions influencing the adoption of effective anti-deforestation policies in South America’s commodity frontiers. Glob. Environ. Change 43, 1–14 (2017).
    Google Scholar 
    63.Godar, J., Gardner, T. A., Tizado, E. J. & Pacheco, P. Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 111, 15591–15596 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Alix-Garcia, J. M., Sims, K. R. E. & Yañez-Pagans, P. Only one tree from each seed? Environmental effectiveness and poverty alleviation in Mexico’s payments for ecosystem services program. Am. Econ. J.: Econ. Policy 7, 1–40 (2015).
    Google Scholar 
    65.Alix-Garcia, J. M. et al. Payments for environmental services supported social capital while increasing land management. Proc. Natl Acad. Sci. USA 115, 7016–7021 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Börner, J. et al. The effectiveness of payments for environmental services. World Dev. 96, 359–374 (2017).
    Google Scholar 
    67.Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Annual Review 2017 (PEFC, 2017).69.Higgins, V. & Richards, C. Framing sustainability: alternative standards schemes for sustainable palm oil and South–South trade. J. Rural Stud. 65, 126–134 (2019).
    Google Scholar 
    70.Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).CAS 

    Google Scholar 
    71.World Countries (ArcGIS, 2020); https://www.arcgis.com/home/item.html?id=d974d9c6bc924ae0a2ffea0a46d71e3d72.Hansen, M. et al. Response to comment on ‘High-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption, and international trade. Environ. Sci. Technol. 46, 172–179 (2012).CAS 

    Google Scholar 
    74.Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 094017 (2016).
    Google Scholar 
    75.Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Yang, Y. et al. Mapping global carbon footprint in China. Nat. Commun. 11, 2237 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Sun, Z., Scherer, L., Tukker, A. & Behrens, P. Linking global crop and livestock consumption to local production hotspots. Glob. Food Sec. 25, 100323 (2020).
    Google Scholar 
    78.Global Forest Resource Assessment 2000 FAO Forestry Paper 140 (FAO, 2001).79.Sasaki, N. & Putz, F. E. Critical need for new definitions of ‘forest’ and ‘forest degradation’ in global climate change agreements. Conserv. Lett. 2, 226–232 (2009).
    Google Scholar 
    80.Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Lenzen, M. et al. The Global MRIO Lab – charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).
    Google Scholar 
    82.Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).
    Google Scholar 
    83.You, L., Wood, S., Wood-Sichra, U. & Wu, W. Generating global crop distribution maps: from census to grid. Agric. Syst. 127, 53–60 (2014).
    Google Scholar  More

  • in

    Evolutionary assembly of flowering plants into sky islands

    1.Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).Article 

    Google Scholar 
    2.Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).CAS 
    Article 

    Google Scholar 
    3.Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    4.Münkemüller, T., Boucher, F., Thuiller, W. & Lavergne, S. Common conceptual and methodological pitfalls in the analysis of phylogenetic niche conservatism. Funct. Ecol. 29, 627–639 (2015).Article 

    Google Scholar 
    5.Behrensmeyer, A. K. et al. (eds) Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (Univ. of Chicago Press, 1992).6.Graham, A. Late Cretaceous and Cenozoic History of North American Vegetation North of Mexico (Oxford Univ. Press, 1999).7.Latham, R. E. & Ricklefs, R. E. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schluter, D.) 294–314 (Univ. of Chicago Press, 1993).8.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).CAS 
    Article 

    Google Scholar 
    9.Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639–644 (2004).Article 

    Google Scholar 
    10.Ricklefs, R. E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 87, S3–S13 (2006).Article 

    Google Scholar 
    11.Qian, H. & Sandel, B. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Glob. Ecol. Biogeogr. 26, 1258–1269 (2017).Article 

    Google Scholar 
    12.Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514 (2000).Article 

    Google Scholar 
    13.Pulsipher, L. M. & Pulsipher, A. World Regional Geography: Global Patterns, Local Lives 6th edn (W.H. Freeman, 2014).14.Culmsee, H. & Leuschner, C. Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. J. Biogeogr. 40, 1997–2010 (2013).Article 

    Google Scholar 
    15.González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).Article 

    Google Scholar 
    16.Qian, H., Zhang, Y., Zhang, J. & Wang, X. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Glob. Ecol. Biogeogr. 22, 1183–1191 (2013).Article 

    Google Scholar 
    17.Qian, H., Field, R., Zhang, J., Zhang, J. & Chen, S. Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. J. Biogeogr. 43, 603–615 (2016).Article 

    Google Scholar 
    18.Qian, H. & Ricklefs, R. E. Out of the tropical lowlands: latitude versus elevation. Trends Ecol. Evol. 31, 738–741 (2016).Article 

    Google Scholar 
    19.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).Article 

    Google Scholar 
    20.Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography https://doi.org/10.1111/ecog.04434 (2019).21.Mazel, F. et al. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography 39, 913–920 (2016).CAS 
    Article 

    Google Scholar 
    22.Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).Article 

    Google Scholar 
    23.Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems 2nd edn (Springer, 2003).24.Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).Article 

    Google Scholar 
    25.Gallien, L., Zurell, D. & Zimmermann, N. E. Frequency and intensity of facilitation reveal opposing patterns along a stress gradient. Ecol. Evol. 8, 2171–2181 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    26.Choler, P., Michalet, R. & Callaway, R. M. Facilitation and competition on gradients in alpine plant communities. Ecology 82, 3295–3308 (2001).Article 

    Google Scholar 
    27.Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).CAS 
    Article 

    Google Scholar 
    28.Steinbauer et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).Article 

    Google Scholar 
    29.Takhtajan, A. L. Flowering Plants: Origin and Dispersal (Oliver & Boyd, 1969).30.Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 

    Google Scholar 
    31.Heald, W. Sky Island (D. Van Nostrand Co., Inc., 1967).32.Marx, H. E. et al. Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J. Biogeogr. 44, 2618–2630 (2017).Article 

    Google Scholar 
    33.Humboldt, A. V. & Bonpland, A. Essai sur la Géographie des Plantes: Accompagné d’un Tableau Physique des Régions Équinoxiales (Arno Press, 1977).34.Qian, H., White, P. S., Klinka, K. & Chourmouzis, C. Phytogeographical and community similarities of alpine tundras of Changbaishan Summit, China, and Indian Peaks, USA. J. Veg. Sci. 10, 869–882 (1999).Article 

    Google Scholar 
    35.Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73–78 (2011).Article 

    Google Scholar 
    36.Chapin, F. S. III & Körner, C. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. III & Körner, C.) 313–320 (Springer, 1995).37.Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).Article 

    Google Scholar 
    38.Webb, C., Ackerly, D. & Kembel, S. Phylocom: Software for the analysis of phylogenetic community structure and character evolution, with Phylomatic. R package version 4.2 (2011).39.Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. https://doi.org/10.1016/j.pld.2020.11.005 (2021).40.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    41.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article 

    Google Scholar 
    42.Tsirogiannis, C., Sandel, B. & Cheliotis, D. Efficient computation of popular phylogenetic tree measures. Lect. Notes Comput. Sci. 7534, 30–43 (2012).Article 

    Google Scholar 
    43.Tsirogiannis, C., Sandel, B. & Kalvisa, A. New algorithms for computing phylogenetic biodiversity. Lect. Notes Comput. Sci. 8701, 187–203 (2014).Article 

    Google Scholar 
    44.Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).Article 

    Google Scholar  More

  • in

    Further behavioural parameters support reciprocity and milk theft as explanations for giraffe allonursing

    1.Rippeyoung, P. L. F. & Noonan, M. C. The economic costs of breastfeeding for women. Breastfeed Med. 6(5), 325–327 (2011).PubMed 
    Article 

    Google Scholar 
    2.Gloneková, M., Vymyslická, P. J., Žáčková, M. & Brandlová, K. Giraffe nursing behaviour reflects environmental conditions. Behaviour 154, 115–129 (2017).Article 

    Google Scholar 
    3.Hejcmanová, P. et al. Suckling behaviour of eland antelopes (Taurotragus spp.) under semi-captive and farm conditions. J. Ethol. 29, 161–168 (2011).Article 

    Google Scholar 
    4.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).
    Google Scholar 
    5.Gittleman, J. L. & Thompson, S. D. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875 (1988).Article 

    Google Scholar 
    6.Arnold, L. C., Habe, M., Troxler, J., Nowack, J. & Vetter, S. G. Rapid establishment of teat order and allonursing in wild boar (Sus scrofa). Ethology 125, 940–948 (2019).Article 

    Google Scholar 
    7.Pluháček, J., Olléová, M., Bartošová, J. & Bartoš, L. Effect of ecological adaptation on suckling behaviour in three zebra species. Behaviour 149(13–14), 1395–1411 (2012).
    Google Scholar 
    8.Pluháček, J., Olléová, M., Bartoš, L. & Bartošová, J. Time spent suckling is affected by different social organization in three zebra species. J. Zool. 292, 10–17 (2014).Article 

    Google Scholar 
    9.Packer, C., Lewis, S. & Pusey, A. A comparative analysis of non-offspring nursing. Anim. Behav. 43, 265–281 (1992).Article 

    Google Scholar 
    10.Gloneková, M., Brandlová, K. & Pluháček, J. Higher maternal care and tolerance in more experienced giraffe mothers. Acta Ethol. 23, 1–7 (2020).Article 

    Google Scholar 
    11.MacLeod, K., Nielsen, J. F. & Clutton-Brock, T. H. Factors predicting the frequency, likelihood and duration of allonursing in the cooperatively breeding meerkat. Anim. Behav. 86, 1059–1067 (2013).Article 

    Google Scholar 
    12König, B. Cooperative care of young in mammals. Naturwissenschaften 84, 489–497 (1997).
    Google Scholar 
    13.Roulin, A. Why do lactating females nurse alien offspring? A review of hypotheses and empirical evidence. Anim. Behav. 63, 201–208 (2002).Article 

    Google Scholar 
    14.Bartoš, L., Vaňková, D., Hyánek, J. & Šiler, J. Impact of allosucking on growth of farmed red deer calves (Cervus elaphus). Anim. Sci. 72, 493–500 (2001).Article 

    Google Scholar 
    15.Bartoš, L., Vaňková, D., Šiler, J. & Illmann, G. Adoption, allonursing and allosucking in farmed red deer (Cervus elaphus). Anim. Sci. 72, 483–492 (2001).Article 

    Google Scholar 
    16.Engelhardt, S. C., Weladji, R. B., Holand, Ø. & Nieminen, M. Allosuckling in reindeer (Rangifer tarandus): A test of the improved nutrition and compensation hypotheses. Mammal. Biol. Z Säugetierkd 81(2), 146–152 (2016).Article 

    Google Scholar 
    17.Víchová, J. & Bartoš, L. Allosuckling in cattle: Gain or compensation?. Appl. Anim. Behav. Sci. 94, 223–235 (2005).Article 

    Google Scholar 
    18.Engelhardt, S. C. et al. Allosuckling in reindeer (Rangifer tarandus): Milk-theft, mismothering or kin selection?. Behav. Process. 107, 133–141 (2014).Article 

    Google Scholar 
    19.Gloneková, M., Brandlová, K. & Pluháček, J. Stealing milk by young and reciprocal mothers: High incidence of allonursing in giraffes, Giraffa camelopardalis. Anim. Behav. 113, 113–123 (2016).Article 

    Google Scholar 
    20.Pluháček, J., Bartošová, J. & Bartoš, L. Suckling behavior in captive plains zebra (Equus burchellii): Sex differences in foal behavior. J. Anim. Sci. 88(1), 131–136 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    21.Gloneková, M., Brandlová, K. & Pluháček, J. Giraffe males have longer suckling bouts than females. J. Mammal. 101(2), 558–653 (2020).Article 

    Google Scholar 
    22.Pluháček, J., Bartošová, J. & Bartoš, L. Further evidence for sex differences in suckling behaviour of captive plains zebra foals. Acta Ethol. 14, 91–95 (2011).Article 

    Google Scholar 
    23.Drábková, J. et al. Sucking and allosucking duration in farmed red deer (Cervus elaphus). Appl. Anim. Behav. Sci. 113(1), 215–223 (2008).Article 

    Google Scholar 
    24.Mendl, M. & Paul, E. S. Observation of nursing and sucking behaviour as an indicator of milk transfer and parental investment. Anim. Behav. 37, 513–515 (1989).Article 

    Google Scholar 
    25.Therrien, J. F., Cote, S. D., Festa-Bianchet, M. & Ouellet, J. P. Maternal care in white-tailed deer: Trade-off between maintenance and reproduction under food restriction. Anim. Behav. 75, 235–243 (2007).Article 

    Google Scholar 
    26.Plesner Jensen, S., Siefert, L., Okori, J. & Clutton-Brock, T. Age-related participation in allosuckling by nursing warthogs (Phacochoerus africanus). J. Zool. 248, 443–449 (1999).Article 

    Google Scholar 
    27Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).Article 

    Google Scholar 
    28.Engelhardt, S. C., Weladji, R. B., Holand, Ø., Røed, K. H. & Nieminen, M. Evidence of reciprocal allonursing in reindeer, Rangifer tarandus. Ethology 121(3), 245–259 (2015).Article 

    Google Scholar 
    29.Jones, J. D. & Treanor, J. J. Allonursing and cooperative birthing behavior in Yellowstone bison, Bison bison. Can. Field-Nat. 122(2), 171–172 (2008).Article 

    Google Scholar 
    30.Pusey, A. E. & Packer, C. Non-offspring nursing in social carnivores—Minimizing the costs. Behav. Ecol. 5, 362–374 (1994).Article 

    Google Scholar 
    31Murphey, R. M., Paranhos da Costa, M. J. R., Gomes da Silva, R. & de Souza, R. Allonursing in river buffalo, Bubalis bubalis: Nepotism, incompetence, or thivery?. Anim. Behav. 49, 1611–1616 (1995).Article 

    Google Scholar 
    32.Olléová, M., Pluháček, J. & King, S. R. B. Effect of social system on allosuckling and adoption in zebras. J. Zool. 288(2), 127–134 (2012).Article 

    Google Scholar 
    33.Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).Article 

    Google Scholar 
    35.Baldovino, M. C. & Di Bitetti, M. S. Allonursing in tufted capuchin monkeys (Cebus nigritus): Milk or pacifier?. Folia Primatol. 79, 79–92 (2007).Article 

    Google Scholar 
    36.Boness, D. J., Craig, M. P., Honigman, L. & Austin, S. Fostering behavior and the effect of female density in Hawaiian monk seals, Monachus schauinslandi. J. Mammal. 79, 1060–1069 (1998).Article 

    Google Scholar 
    37.Cassinello, J. Allosuckling behaviour in Ammotragus. Z. Saugetierkd 64(6), 363–370 (1999).
    Google Scholar 
    38.Nuñez, C. M., Adelman, J. S. & Rubenstein, D. I. A free-ranging, feral mare Equus caballus affords similar maternal care to her genetic and adopted offspring. Am. Nat. 182, 674–681 (2013).PubMed 
    Article 

    Google Scholar 
    39.Brandlová, K., Bartoš, L. & Haberová, T. Camel calves as opportunistic milk thefts? The first description of allosuckling in domestic bactrian camel (Camelus bactrianus). PLoS ONE 8(1), e53052 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Zapata, B., Gaete, G., Correa, L., González, B. & Ebensperger, L. A case of allosuckling in wild guanacos (Lama guanicoe). J. Ethol. 27, 295–297 (2009).Article 

    Google Scholar 
    41.Bond, M. L. & Lee, D. E. Simultaneous multiple-calf allonursing by a wild Masai giraffe. Afr. J. Ecol. 58(1), 126–128 (2020).Article 

    Google Scholar 
    42.Pratt, D. M. & Anderson, V. H. Giraffe cowecalf relationships and social development of the calf in the Serengeti. Z. Tierpsychol. 51(3), 233–251 (1979).Article 

    Google Scholar 
    43.Saito, M. & Idani, G. Suckling and allosuckling behavior in wild giraffe (Giraffa camelopardalis tippelskirchi). Mammal. Biol. 93, 1–4 (2018).Article 

    Google Scholar 
    44.Zoelzer, F., Engel, C., Paul, W. D. & Anna Lena, B. A comparative study of nightly allonursing behaviour in four zoo-housed groups of giraffes (Giraffa camelopardalis). J. Zoo Aquar. Res. 8(3), 175–180 (2020).
    Google Scholar 
    45.Schino, G. & Aureli, F. The relative roles of kinship and reciprocity in explaining primate altruism. Ecol. Lett. 13, 45–50 (2010).PubMed 
    Article 

    Google Scholar 
    46.Bercovitch, F. B., Bashaw, M. J. & del Castillo, S. M. Sociosexual behavior, male mating tactics, and the reproductive cycle of giraffe Giraffa camelopardalis. Horm. Behav. 50(2), 314–321 (2006).PubMed 
    Article 

    Google Scholar 
    47.Bercovitch, F. B. & Berry, P. S. M. Herd composition, kinship and fission—fusion social dynamics among wild giraffe. Afr. J. Ecol. 51(2), 206–216 (2013).Article 

    Google Scholar 
    48.Carter, K. D., Seddon, J. M., Frere, C. H., Carter, J. K. & Goldizen, A. W. Fission-fusion dynamics in wild giraffes may be driven by kinship, spatial overlap and individual social preferences. Anim. Behav. 85, 385–394 (2013).Article 

    Google Scholar 
    49.D’haen, M., Fennessy, J., Stabach, J. & Brandlová, K. Population structure and spatial ecology of Kordofan giraffe in Garamba National Park, Democratic Republic of Congo. Ecol. Evol. 9(19), 11395–11405 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Horová, E., Brandlová, K. & Gloneková, M. The first description of dominance hierarchy in captive giraffe: Not loose and egalitarian, but clear and linear. PLoS ONE 10(5), e0124570 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Jůnková Vymyslická, P., Brandlová, K., Hozdecká, K., Žáčková, M. & Hejcmanová, P. Feeding rank in the Derby eland: Lessons for management. Afr. Zool. 50(4), 313–320 (2015).Article 

    Google Scholar 
    52.Broussard, D. R., Risch, T. S., Dobson, F. S. & Murie, J. O. Senescence and age-related reproduction of female Columbian ground squirrels. J. Anim. Ecol. 72, 212–219 (2003).Article 

    Google Scholar 
    53.Cameron, E. Z., Linklater, W. L., Stafford, K. J. & Minot, E. O. Aging and improving reproductive success in horses: declining residual reproductive value or just older and wiser?. Behav. Ecol. Sociobiol. 47(4), 243–249 (2000).Article 

    Google Scholar 
    54.Cameron, E. Z., Linklater, W. L., Stafford, K. J. & Minot, E. O. A case of cooperative nursing and offspring care by mother and daughter feral horses. J. Zool. 249, 486–489 (1999).Article 

    Google Scholar 
    55.Ekvall, K. Effects of social organization, age and aggressive behaviour on allosuckling in wild fallow deer. Anim. Behav. 56, 695–703 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Birgersson, B. & Ekvall, K. Suckling time and fawn growth in fallow deer (Dama dama). Zoology 232, 641–650 (1994).
    Google Scholar 
    57.Fennessy, J. et al. Multi-locus analyses reveal four giraffe species instead of one. Curr. Biol. 26(18), 2543–2549 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Estes, R. The Behavior Guide to African Mammals (University of California Press, 1991).
    Google Scholar 
    59.Altmann, J. Observational study of behaviour: Sampling methods. Behaviour 49, 227–267 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Špinka, M. & Illmann, G. Suckling behaviour of young dairy calves with their own and alien mothers. Appl. Anim. Behav. Sci. 33(2), 165–173 (1992).Article 

    Google Scholar 
    61.Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 56, 330–338 (1922).Article 

    Google Scholar  More

  • in

    Emerging strains of watermelon mosaic virus in Southeastern France: model-based estimation of the dates and places of introduction

    DataPathosystemWMV is widespread in cucurbit crops, mostly in temperate and Mediterranean climatic regions of the world16. WMV has a wide host range including some legumes, orchids and many weeds that can be alternative hosts16. Like other potyviruses, it is non-persistently transmitted by at least 30 aphid species16. In temperate regions, WMV causes summer epidemics on cucurbit crops, and it can overwinter in several common non-cucurbit weeds when no crops are present16,34. WMV has been common in France for more than 40 years, causing mosaics on leaves and fruits in melon, but mostly mild symptoms on zucchini squash. Since 2000, new symptoms were observed in southeastern France on zucchini squash: leaf deformations and mosaics, as well as fruit discoloration and deformations that made them unmarketable. This new agronomic problem was correlated to the introduction of new molecular groups of WMV strains. At least four new groups have emerged since 2000 and they have rapidly replaced the native “classical” strains, causing important problems for the producers35. These new groups, hereafter “emerging strains” (ES) are significantly more related molecularly to worldwide strains than to any other isolates from the French populations36. As emphasised in35, this supports that the new group of emerging strains has arisen through introductions, mostly from Southeastern Asia, rather than through local differentiation.In this study, we focus on the pathosystem corresponding to a classical strain (CS) and four emerging strains (ESk, (k = 1, ldots ,4)) of WMV and their cucurbit hosts.Study area and samplingThe study area, located in Southeastern France, is included in a rectangle of about 25,000 km2 and is bounded on the South by the Mediterranean Sea. Between 2004 and 2008, the presence of WMV had been monitored in collaboration with farmers, farm advisers and seed companies. Each year, cultivated host plants were collected in different fields and at different dates between May 1st and September 30th. In total, more than two thousand plant samples were collected over the entire study area. All plant samples were analyzed in the INRAE Plant Pathology Unit to confirm the presence of WMV and determine the molecular type of the virus strain causing the infection (see35 for detail on field and laboratory protocols). All infected host plants were cucurbits, mostly melon and different squashes (e.g., zucchini, pumpkins).Observations In the absence of individual geographic coordinates, all infected host plants were attributed to the centroid of the municipality (French administrative unit, median size about 10 km2) where they have been collected. Then for one date, one observation corresponded to a municipality in which at least one infected host plant was sampled. Table 1 summarizes for each year, the number of observations (i.e. number of municipalities), the number of infected plants sampled and the proportion of each WMV strain (CS, and ES1 to ES4) found in the infected host plants. Errors in assignment of virus samples to the CS or ES strains was negligible because of the large genetic distance separating them: 5 to 10% nucleotide divergence both in the fragment used in the study and in complete genomes35, also precluding the possibility of local jumps between groups by accumulation of mutations.Table 1 Number of observations and corresponding proportions of classical and emerging strains.Full size tableLandscapeTo approximate the density of WMV host plants over the study area, we used 2006 land use data (i.e. BD Ocsol 2006 PACA and LR) produced by the CRIGE PACA (http://www.crige-paca.org/) and the Association SIG-LR (http://www.siglr.org/lassociation/la-structure.html). Based on satellite images, land use is determined at a spatial resolution of 1/50,000 using an improved three-level hierarchical typology derived from the European Corine Land Cover nomenclature. Here we used the third hierarchical level of the BD Ocsol typology (i.e. 42 land use classes) to classify the entire study area in three habitats: (1) WMV-susceptible crops, (2) habitats unfavorable to WMV host plants (e.g. forests, industrial and commercial units…) and, (3) non-terrestrial habitat (i.e. water). The proportion of WMV-susceptible crops was then computed within all cells of a raster covering the entire study area, with a spatial resolution of (1.4 times 1.4) km2. These proportions were used to approximate host plant density (zleft( {varvec{x}} right)), which was normalized, so that (zleft( {varvec{x}} right) = 0) corresponds to an absence of host plants and (zleft( {varvec{x}} right) = 1) to the maximum density of host plants (Fig. 1).Figure 1Approximated density (zleft( x right)) of the host plants in the study area. The density was normalized, so that (zleft( x right) = zleft( {x_{1} ,x_{2} } right) = 0) corresponds to an absence of cucurbit plants and (zleft( x right) = 1) to the maximum density. The axes (x_{1}) and (x_{2}) correspond to Lambert93 coordinates (in km). The white regions are non-terrestrial habitats (water). Land use data were not available in the gray regions; the host plant density was then computed by interpolation.Full size imageMechanistic-statistical modelThe general modeling strategy is based on a mechanistic-statistical approach12,22,33. This type of approach combines a mechanistic model describing the dynamics under investigation with a probabilistic model conditional on the dynamics, describing how the measurements have been collected. This method that has already proved its theoretical effectiveness in determining dispersal parameters using simulated genetic data12 aims at bridging the gap between the data and the model for the determination of virus dynamics.Here, the mechanistic part of the model describes the spatio-temporal dynamics of the virus strains, given the model parameters (demographic parameters, introduction dates/sites). This allows us to compute the expected proportions of the five types of virus strains (CS and ES1 to ES4) at each date and site of observation. The probabilistic part of the mechanistic-statistical model describes the conditional distribution of the observed proportions of the virus strains, given the expected proportions. Using this approach, it is then possible to derive a numerically tractable formula for the likelihood function associated with the model parameters.Population dynamicsThe model is segmented into two stages: (1) the intra-annual stage describes the dispersal and growth of the five virus strains during the summer epidemics on cucurbit crops, and the competition between them, during a period ranging from May 1st (noted (t = 0)) to September 30 (noted (t = t_{f}), (t_{f} = 153) days); (2) the inter-annual stage describes the winter decay of the different strains when no crops are present and the virus overwinters in weeds. We denote by (c^{n} left( {t,{varvec{x}}} right)) and (e_{k}^{n} left( {t,{varvec{x}}} right)) the densities of classical strain (CS) and emerging strains (ESk, (k = 1, ldots ,4)), at position ({varvec{x}}) and at time (t) of year (n.)Dynamics of the classical strain before the first introduction eventsBefore the introduction of the first emerging strain, the intra-annual dynamics of the population CS is described by a standard diffusion model with logistic growth: (partial_{t} c^{n} = D{Delta }c^{n} + rc^{n} left( {zleft( {varvec{x}} right) – c^{n} } right)). Here, ({Delta }) is the Laplace 2D diffusion operator (sum of the second derivatives with respect to coordinate). This operator describes uncorrelated random walk movements of the viruses, with the coefficient (D) measuring the mobility of the viruses (e.g.,26,37). The term (r zleft( {varvec{x}} right)) is the intrinsic growth rate (i.e., growth rate in the absence of competition) of the population, which depends on the density of host plants (zleft( {varvec{x}} right)) and on a coefficient (r) (intrinsic growth rate at maximum host density). Under these assumptions, the carrying capacity at a position ({varvec{x}}) is equal to (zleft( {varvec{x}} right)), which means that the population densities are expressed in units of the maximum host population density. The model is initialized by setting (c^{1980} left( {0,{varvec{x}}} right) = (1 – m_{c} ) zleft( {varvec{x}} right)), where (m_{c}) is the winter decay rate of the CS (see the description of the inter-annual stage below). In other terms, we assume that the CS density is at the carrying capacity in 1979, i.e., 5 years after its first detection and 20 years before the first detections of ESs38.Introduction eventsThe ESs are introduced during years noted (n_{k} ge 1981), at the beginning of the intra-annual stage (other dates of introduction within the intra-annual stage would lead—at most—to a one-year lag in the dynamics). Their densities are (0) before introduction: (e_{k}^{n} = 0) for (n < n_{k}). Once introduced, the initial density of any ES is assumed to be 1/10th of the carrying capacity at the introduction point (other values have been tested without much effect, see Supplementary Fig. S1), with a decreasing density as the distance from this point increases:$$e_{k}^{{n_{k} }} left( {0,x} right) = frac{{zleft( {varvec{x}} right)}}{10}exp left( { - frac{|{{varvec{x}} - {varvec{X}}_{{varvec{k}}}|^{2} }}{{2sigma^{2} }}} right),$$where ({varvec{X}}_{{varvec{k}}}) is the location of introduction of the strain (k.) In our computations, we took (sigma = 5) km for the standard deviation.Intra-annual dynamics after the first introduction eventIntra-annual dynamics were described by a neutral competition model with diffusion (properties of this model have been analyzed in [54]):$$left{ {begin{array}{*{20}c} {partial_{t} c^{n} left( {t,x} right) = DDelta c^{n} + rc^{n} left( {zleft( {varvec{x}} right) - c^{n} - mathop sum limits_{i = 1}^{4} e_{i}^{n} left( {t,{varvec{x}}} right)} right)} \ {partial_{t} e_{k}^{n} left( {t,x} right) = DDelta e_{k}^{n} + re_{k}^{n} left( {zleft( {varvec{x}} right) - c^{n} - mathop sum limits_{i = 1}^{4} e_{i}^{n} left( {t,{varvec{x}}} right)} right)} \ end{array} } right.,$$for (t = 0 ldots t_{f}) and for all introduced emerging strains, i.e. all (k) such that (n ge n_{k} .) We assume reflecting boundary conditions, meaning that the population flows vanish at the boundary of the study area, due to truly reflecting boundaries (e.g., sea coast in the southern part of the site) or symmetric inward and outward fluxes26. In addition, in order to limit the number of unknown parameters, and in the absence of precise knowledge on the differences between the strains, we assume here that the diffusion, competition and growth coefficients are common to all the strains during the intra-annual stage (see the discussion for more details on this assumption).Inter-annual dynamicsThe population densities at time (t = 0) of year (n) are connected with those of year (n - 1,) at time (t = t_{f} ,) through the following formulas:$$left{ {begin{array}{*{20}c} {c^{n} left( {0,{varvec{x}}} right) = left( {1 - m_{c} } right)c^{n - 1} left( {t_{f} ,{varvec{x}}} right) hbox{ for } n ge 1981} \ {e_{k}^{n} left( {0,{varvec{x}}} right) = left( {1 - m_{e} } right)e_{k}^{n - 1} left( {t_{f} ,{varvec{x}}} right) hbox{ for }n ge n_{k} + 1} \ end{array} } right.$$with (m_{c}) and (m_{e}) the winter decay rates of the CS and ESs strains (note that (m_{e}) is common to all of the ESs). Estimation of CS and ES decay rates provides an assessment of the competitive advantage of one type of strain vs the other.Numerical computationsThe intra-annual dynamics were solved using Comsol Multiphysics time-dependent solver, which is based on a finite element method (FEM). The triangular mesh which was used for our computations is available as Supplementary Fig. S2.Probabilistic model for the observation processDuring the years (n = 2004, ldots ,2008), (I_{n}) observations were made (see Section Observations above and Table 1). They consist in counting data, that we denote by (C_{i}) and (E_{k,i}) for (k = 1, ldots ,4) and (i = 1, ldots ,I_{n}), corresponding to the number of samples infected by the CS and ESs strains, respectively, at each date of observation and location (left( {t_{i} ,{varvec{x}}_{i} } right)). Note that these dates and locations depend on the year of observation (n). More generally, the above quantities should be noted (C_{i}^{n} , E_{k,i}^{n} , t_{i}^{n} , {varvec{x}}_{i}^{n} ;) for simplicity, the index (n) is omitted in the sequel, unless necessary.We denote by (V_{i} = C_{i} + mathop sum nolimits_{k = 1}^{4} E_{k,i}) the total number of infected samples observed at (left( {t_{i} ,{varvec{x}}_{i} } right)). The conditional distribution of the vector (left( {C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} } right)), given (V_{i}) can be described by a multinomial distribution ({mathcal{M}}left( {V_{i} ,{varvec{p}}_{i} } right)) with ({varvec{p}}_{i} = left( {p_{i}^{c} ,p_{i}^{{e_{1} }} ,p_{i}^{{e_{2} }} ,p_{i}^{{e_{3} }} ,p_{i}^{{e_{4} }} } right)) the vector of the respective proportions of each strain in the population at (left( {t_{i} ,{varvec{x}}_{i} } right)). We chose to work conditionally to (V_{i}) because the sample sizes are not related to the density of WMV.Statistical inferenceUnknown parametersWe denote by ({{varvec{Theta}}}) the vector of unknown parameters: the diffusion coefficient (D,) the intrinsic growth rate at maximum host density (r), the winter decay rates ((m_{c} , m_{e} )) and the locations ((x_{k} in {mathbb{R}}^{2})) and years ((n_{k})) of introduction, for (k = 1, ldots ,4.) Thus ({{varvec{Theta}}} in {mathbb{R}}^{16} .)Computation of a likelihoodGiven the set of parameters ({{varvec{Theta}}}), the densities (c^{n} left( {t,{varvec{x}}|{{varvec{Theta}}}} right)) and (e_{k}^{n} left( {t,{varvec{x}}|{{varvec{Theta}}}} right)) can be computed explicitly with the mechanistic model for population dynamics. Thus, at a given year (n), at (left( {t_{i} ,x_{i} } right)), the parameter ({varvec{p}}_{i}) of the multinomial distribution ({mathcal{M}}left( {V_{i} ,{varvec{p}}_{i} } right)) writes:$$p_{i}^{c} left( {{varvec{Theta}}} right) = frac{{c^{n} left( {t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}}} right)}}{{c^{n} left( {t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}}} right) + mathop sum nolimits_{i = 1}^{4} e_{i}^{n} left( {t_{i} ,{varvec{x}}_{i} {|}{{varvec{Theta}}}} right)}}, p_{i}^{{e_{k} }} left( {{varvec{Theta}}} right) = frac{{e_{k}^{n} left( {t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}}} right)}}{{c^{n} left( {t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}}} right) + mathop sum nolimits_{i = 1}^{4} e_{i}^{n} (t_{i} ,{varvec{x}}_{i} |{{varvec{Theta}}})}}.$$The probability (P(C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} |{{varvec{Theta}}},{text{V}}_{{text{i}}} )) of the observed outcome (C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i}) is then$$Pleft( {C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} {|}{{varvec{Theta}}},{text{V}}_{{text{i}}} } right) = frac{{left( {V_{i} } right)!}}{{C_{i} ! mathop prod nolimits_{k = 1}^{4} E_{k,i} !}}left( {p_{i}^{c} left( {{varvec{Theta}}} right)} right)^{{C_{i} }} mathop prod limits_{k = 1}^{4} (p_{i}^{{e_{k} }} left( {{varvec{Theta}}} right))^{{E_{k,i} }} .$$Assuming that the observations during each year and at each date/location are independent from each other conditionally on the virus strain proportions, we get the following formula for the likelihood:$${mathcal{L}}left( {{varvec{Theta}}} right) = mathop prod limits_{n = 2004}^{2008} mathop prod limits_{{i = 1, ldots , I_{n} }} Pleft( {C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} {|}{{varvec{Theta}}},{text{V}}_{{text{i}}} } right).$$A priori constraints on the parameters By definition and for biological reasons, the parameter vector ({{varvec{Theta}}}) satisfies some constraints. First, (D in left( {10^{ - 4} ,10} right){text{ km}}^{2} /{text{day}}), (r in left( {0.1,1} right) {text{day}}^{ - 1} ,) and (m_{c} , m_{e} in left{ {0,0.1,0.2, ldots ,0.9} right},) (see Supplementary Note S7 for a biological interpretation of these values). Second, we assumed that the locations of introductions ({varvec{X}}_{{varvec{k}}}) belong to the study area. To facilitate the estimation procedure, the points ({varvec{X}}_{{varvec{k}}}) were searched in a regular grid with 20 points (see Supplementary Fig. S3), and the dates of introduction (n_{k}) were searched in (left{ {1985,1990,1995,2000} right}.)Inference procedureDue to the important computation time (4 min in average for one simulation of the model on an Intel(R) Core(R) CPU i7-4790 @ 3.60 GHz), we were not able to compute an a posteriori distribution of the parameters in a Bayesian framework. Rather, we used a simulated annealing algorithm to compute the maximum likelihood estimate (MLE), i.e., the parameter ({{varvec{Theta}}}^{*}) which leads to the highest log-likelihood. This is an iterative algorithm, which constructs a sequence (({{varvec{Theta}}}_{j} )_{j ge 1}) converging in probability towards a MLE. It is based on an acceptance-rejection procedure, where the acceptance rate depends on the current iteration (j) through a "cooling rate" ((alpha )). Empirically, a good trade-off between quality of optimization and time required for computation (number of iterations) is obtained with exponential cooling rates of the type (T_{0} alpha^{j}) with (0 < alpha < 1) and some constant (T_{0} gg 1) (this cooling schedule was first proposed in= 39 = 39). Too rapid cooling ((alpha ll 1)) results in a system frozen into a state far from the optimal one, whereas too slow cooling ((alpha approx 1)) leads to important computation times due to very slow convergence. Here, we ran (6) parallel sequences with cooling rates (alpha in left{ {0.995,0.999,0.9995} right}). For this type of algorithm, there are no general rules for the choice of the stopping criterion [HenJac03], which should be heuristically adapted to the considered optimization problem. Here, our stopping criterion was that ({{varvec{Theta}}}_{j}) remained unchanged during 500 iterations. The computations took about 100 days (CPU time).Confidence intervals and goodness-of-fitTo assess the model’s goodness-of-fit, 95% confidence regions were computed for the observations (left( {C_{i} ,E_{1,i} ,E_{2,i} ,E_{3,i} ,E_{4,i} } right)) at each date/location (left( {t_{i} ,{varvec{x}}_{i} } right),) and for each year of observation. The confidence regions were computed by assessing the probability of each possible outcome of the observation process, at each date/location, based on the computed proportions ({varvec{p}}_{i} = left( {p_{i}^{c} ,p_{i}^{{e_{1} }} ,p_{i}^{{e_{2} }} ,p_{i}^{{e_{3} }} ,p_{i}^{{e_{4} }} } right)), corresponding to the output of the mechanistic model using the MLE ({{varvec{Theta}}}^{user2{*}}) and given the total number of infected samples (V_{i}). Then, we checked if the observations belonged to the 95% most probable outcomes. More

  • in

    Functional groups in microbial ecology: updated definitions of piezophiles as suggested by hydrostatic pressure dependence on temperature

    1.Capece MC, Clark E, Saleh JK, Halford D, Heinl N, Hoskins S, et al. Polyextremophiles and the constraints for terrestrial habitability. In: Seckbach J, Oren A, Stan-Lotter H, editors. Polyextremophiles. Life under muliple forms of stress. Dordrecht, Neaderlands: Springer; 2013. p. 3–60.2.Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS. The limits for life under multiple extremes. Trends Microbiol. 2013;21:204–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol. 2010;161:799–809.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta. 2002;1595:367–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW. Biotechnology under high pressure: applications and implications. Trends Biotechnol. 2009;27:434–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Jannasch HW, Taylor CD. Deep-sea microbiology. Ann Rev Microbiol. 1984;38:487–514.CAS 
    Article 

    Google Scholar 
    8.Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol. 2010;18:413–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Yayanos AA. Microbiology to 10,500 meters in the deep sea. Ann Rev Microbiol. 1995;49:777–805.CAS 
    Article 

    Google Scholar 
    10.Eloe EA, Lauro FM, Vogel RF, Bartlett DH. The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol. 2008;74:6298–305.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Horikoshi K, Bull AT Prologue: Definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K, editor. Extremophiles handbook. Tokyo, Japan: Springer; 2011. p. 3–18.12.Holt RD. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA. 2009;106:19659–65.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Talley LD, Pickard GL, Emery WJ, Swift JH. Typical distributions of water characteristics. In: Descriptive physical oceanography, 6th ed. London, UK: Elsevier; 2011. p. 67–110.14.Jebbar M, Franzetti B, Girard E, Oger P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles. 2015;19:721–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Berhardt G, Jaenicke R, Ludemann H-D, Konig H, Stetter KO. High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl Environ Microbiol. 1998;54:1258–61.Article 

    Google Scholar 
    16.Scoma A, Garrido-Amador P, Nielsen SD, Roy H, Kjeldsen KU. The polyextremophilic bacterium Clostridium paradoxum attains piezophilic traits by modulating its energy metabolism and cell membrane composition. Appl Environ Microbiol. 2019;85:e00802–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Wiegel J. Temperature spans for growth: hypothesis and discussion. FEMS Microbiol Rev. 1990;75:155–70.Article 

    Google Scholar 
    18.Morita RY. Psychrophilic bacteria. Bacteriol Rev. 1975;39:144–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Zeikus JG. Thermophilic Bacteria—Ecology. Physiol Technol Enz Microb Technol. 1979;1:243–52.CAS 
    Article 

    Google Scholar 
    20.Yayanos AA. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA. 1986;83:9542–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Jannasch HW, Wirsen CO. Variability of pressure adaptation in deep sea bacteria. Arch Microbiol. 1984;139:281–8.Article 

    Google Scholar 
    22.Yayanos AA, Chastain R. The influence of nutrition on the physiology of piezophilic bacteria. In: Bell CR, Brylinsky M, Johnson-Green P, Eds. Proceedings of the 8th International Symposium on Microbial Ecology. Halifax, NS, Canada: Atlantic Canada Society for Microbial Ecology; 6; 1999.23.Matsumura P, Keller DM, Marquis RE. Restricted pH ranges and reduced yields for bacterial growth under pressure. Microb Ecol. 1974;1:176–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Oren A. Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev. 1999;63:334–48.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yayanos AA, Dietz AS, Van, Boxtel R. Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol. 1982;44:1356–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE. The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol. 1984;130:1911–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH. The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol. 2007;73:838–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Marteinsson VT, Birrien J-L-, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, et al. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol. 1999;49:351–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Alain K. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Sys Evol Microbiol. 2002;52:1331–9.CAS 

    Google Scholar 
    30.Canganella F, Gonzalez JM, Yanagibayashi M, Kato C, Horikoshi K. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol. 1997;168:1–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Canganella F, Gambacorta A, Kato C, Horikoshi K. Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res. 2000;154:297–306.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. Prokaryotic responses to hydrostatic pressure in the ocean-a review. Environ Microbiol. 2013;15:1262–74.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nogi Y, Masui N, Kato C. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles. 1998;2:1–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Arakawa S, Nogi Y, Sato T, Yoshida Y, Usami R, Kato C. Diversity of piezophilic microorganisms in the closed ocean Japan Sea. Biosci Biotechnol Biochem. 2006;70:749–52.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Xu Y, Nogi Y, Kato C, Liang Z, Ruger H-J, De Kegel D, et al. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol. 2003;53:533–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Sekiguchi T, Sato T, Enoki M, Kanehiro H, Kato C. Procedure for isolation of the plastic degrading piezophilic bacteria from deep-sea environments. J Jap Soc Extremophil. 2010a;9:25–30.Article 

    Google Scholar 
    37.Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep. Res Dev. 2010b;11:33–41.
    Google Scholar 
    38.Nogi Y, Kato C, Horikoshi K. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol. 2002;52:1527–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Yayanos AA, Dietz AS, van Boxtel R. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science. 1979;205:808–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol. 2004;54:1627–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kato C, Sato T, Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Cons. 1995;4:1–9.Article 

    Google Scholar 
    42.Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marinemicroorganisms. Tibtech. 1996;14:6–12.CAS 
    Article 

    Google Scholar 
    43.Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles. 1999;3:71–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT. Isolation of an Obligately Barophilic Bacterium and Description of a New Genus, Colwellia gen. nov. Systematic and Applied Microbiology. 1988;10:152–60.Article 

    Google Scholar 
    45.Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Cao J, Lai Q, Liu P, Wei Y, Wang L, Liu R, et al. Salinimonas sediminis sp. nov., a piezophilic bacterium isolated from a deep-sea sediment sample from the New Britain Trench. Int J Syst Evol Microbiol. 2018;68:3766–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Liu P, Ding W, Lai Q, Liu R, Wei Y, Wang L, et al. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. MicrobiologyOpen. 2019;00:e966.
    Google Scholar 
    48.Quéméneur M, Erauso G, Frouin E, Zeghal E, Vandecasteele C, Ollivier B, et al. Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front Microbiol. 2019;10:1497.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Xiao X, Wang P, Zeng X, Bartlett DH, Wang F. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol. 2007;57:60–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Alazard D, Dukan S, Urios A, Verhe F, Bouabida N, Morel F, et al. Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol. 2003;53:173–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K, Bull AT, et al. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 2006;56:1233–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol. 2009;11(8):1983–97.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Erauso G, Reysenbach A-L, Godfroy A, Meunier J-R, Crump B, Partensky F, et al. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol. 1993;160:338–49.CAS 
    Article 

    Google Scholar 
    54.Li Y, Mandelco L, Wiegel J. Isolation and Characterization of a Moderately Thermophilic Anaerobic Alkaliphile. Clostridium paradoxum sp. nov. Int J Sys Bacteriol. 1993;43:450–60.Article 

    Google Scholar 
    55.Zhao W, Zeng X, Xiao X. Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Sys Evol Microbiol. 2015;65:30–5.CAS 
    Article 

    Google Scholar 
    56.Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A. 2008;105:10949–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.González JM, Kato C, Horikoshi K. Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol. 1995;164:159–64.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS. Methanococcusjannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol. 1983;136:254–61.CAS 
    Article 

    Google Scholar  More

  • in

    Biogeography of ammonia oxidizers in New England and Gulf of Mexico salt marshes and the potential importance of comammox

    1.Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10, 2931–2941 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Bernhard, A. E. & Bollmann, A. Estuarine nitrifiers: new players, patterns and processes. Estuar. Coast. Shelf Sci. 88, 1–11 (2010).CAS 
    Article 

    Google Scholar 
    3.Martiny, J. B. H., Eisen, J., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial beta-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).4.Nelson, M. B., Martiny, A. C. & Martiny, J. B. H. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Marton, J. M., Roberts, B. J., Bernhard, A. E. & Giblin, A. E. Spatial and temporal variability of nitrification potential and ammonia-oxidizer abundances in Louisiana salt marshes. Estuaries Coast. 38, 1824–1837 (2015).CAS 
    Article 

    Google Scholar 
    7.Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461, 976–981 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Dimitri Kits, K. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Hink, L., Nicol, G. W. & Prosser, J. I. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environ. Microbiol. 19, 4829–4837 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Bernhard, A. E., Donn, T., Giblin, A. E. & Stahl, D. A. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ. Microbiol. 7, 1289–1297 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Moin, N. S., Nelson, K. A., Bush, A. & Bernhard, A. E. Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments. Appl. Environ. Microbiol. 75, 7461–7468 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Bernhard, A. E. et al. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl. Environ. Microbiol. 76, 1285–1289 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Francis, C. A., O’Mullan, G. D. & Ward, B. B. Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1, 129–140 (2003).CAS 
    Article 

    Google Scholar 
    14.Ward, B. B. et al. Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray. Environ. Microbiol. 9, 2522–2538 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Mills, H. J. et al. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Appl. Environ. Microbiol. 74, 4440–4453 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Newell, S. E. et al. A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico. Environ. Microbiol. Rep. 6, 106–112 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Bernhard, A. E., Sheffer, R., Giblin, A. E., Marton, J. M. & Roberts, B. J. Population dynamics and community composition of ammonia oxidizers in salt marshes after the Deepwater Horizon oil spill. Front. Microbiol. 7, 854 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    18.Bernhard, A. E., Chelsky, A., Giblin, A. E. & Roberts, B. J. Influence of local and regional drivers on spatial and temporal variation of ammonia-oxidizing communities in Gulf of Mexico salt marshes. Environ. Microbiol. Rep. 11, 825–834 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Nelson, K. A., Moin, N. S. & Bernhard, A. E. Archaeal diversity and the prevalence of Crenarchaeota in salt marsh sediments. Appl. Environ. Microbiol. 75, 4211–4215 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Peng, X. et al. Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh. Front. Microbiol. 3, 445 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    21.Bernhard, A. E., Marshall, D. & Yiannos, L. Increased variability of microbial communities in restored salt marshes nearly 30 years after tidal flow restoration. Estuaries Coast. 35, 1049–1059 (2012).CAS 
    Article 

    Google Scholar 
    22.Marton, J. M. & Roberts, B. J. Spatial variability of phosphorus sorption dynamics in Louisiana salt marshes. J. Geophys. Res. Biogeosci. 119, 451–465 (2014).CAS 
    Article 

    Google Scholar 
    23.Hill, T. D. & Roberts, B. J. Effects of seasonality and environmental gradients on Spartina alterniflora allometry and primary production. Ecol. Evol. 7, 9676–9688 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Bernhard, A. E., Tucker, J., Giblin, A. E. & Stahl, D. A. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ. Microbiol. 9, 1439–1447 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Schutte, C. A., Marton, J. M., Bernhard, A. E., Giblin, A. E. & Roberts, B. J. No evidence for long-term impacts of oil spill contamination on salt marsh soil nitrogen cycling processes. Estuaries Coast. 43, 865–879 (2020).Article 

    Google Scholar 
    26.Bernhard, A. E., Dwyer, C., Idrizi, A., Bender, G. & Zwick, R. Long-term impacts of disturbance on nitrogen-cycling bacteria in a New England salt marsh. Front. Microbiol. 6 https://doi.org/10.3389/fmicb.2015.00046 (2015).27.Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8 https://doi.org/10.3389/fmicb.2017.01508 (2017).28.Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl Acad. Sci. USA 102, 14683–14688 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Park, S.-J., Park, B.-J. & Rhee, S.-K. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12, 605–615 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).34.Turner, R. E., Rabalais, N. N. & Justic, D. Predicting summer hypoxia in the northern Gulf of Mexico: riverine N, P, and Si loading. Mar. Pollut. Bull. 52, 139–148 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Tian, H. et al. Long-term trajectory of nitrogen loading and delivery from Mississippi river basin to the Gulf of Mexico. Glob. Biogeochem. Cycles 34, 6475 (2020).Article 
    CAS 

    Google Scholar 
    36.Dang, H. et al. Diversity, abundance, and spatial distribution of sedimet ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl. Environ. Microbiol. 76, 4691–4702 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sims, A., Zhang, Y., Gajaraj, S., Brown, P. B. & Hu, Z. Toward the development of microbial indicators for wetland assessment. Water Res. 47, 1711–1725 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Zhang, Q. -F. et al. Impacts of Spartina alterniflora invasion on abundance and composition of ammonia oxidizers in estuarine sediment. J. Soils Sediment. 11, 1020–1031 (2011).Article 

    Google Scholar 
    39.Jin, T. et al. Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary, China. Appl. Microbiol. Biotechnol. 90, 1137–1145 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Meinhardt, K. A. et al. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria. Environ. Microbiol. Rep. 7, 354–363 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Marshall, A. et al. Primer selection influences abundance estimates of ammonia oxidizing archaea in coastal marine sediments. Mar. Environ. Res. 140, 90–95 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Koops, H. P. & Pommerening-Roser, A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1–9 (2001).CAS 
    Article 

    Google Scholar 
    43.Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. 103, 626–631 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Hitchcock, J. N., Mitrovic, S. M., Kobayashi, T. & Westhorpe, D. P. Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuaries Coast. 33, 78–91 (2010).CAS 
    Article 

    Google Scholar 
    48.Guo, X. -P. et al. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China. Mar. Pollut. Bull. 126, 141–149 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Howarth, R. W. Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol. 19, 89–110 (1988).Article 

    Google Scholar 
    50.Murrell, M. C. et al. Evidence that phosphorus limits phytoplankton growth in a Gulf of Mexico estuary: Pensacola Bay, Florida, USA. Bull. Mar. Sci. 70, 155–167 (2002).
    Google Scholar 
    51.Johnson, M. W., Heck, K. L. Jr & Fourqurean, J. W. Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico: evidence of phosphorus and nitrogen limitation. Aquat. Bot. 85, 103–111 (2006).CAS 
    Article 

    Google Scholar 
    52.Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P. B. & Sloth, N. P. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22, 21–30 (1999).CAS 
    Article 

    Google Scholar 
    53.Peng, X. et al. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments. J. Geophys. Res. Biogeosci. 121, 2082–2095 (2016).CAS 
    Article 

    Google Scholar 
    54.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    55.Taylor, A. E., Giguere, A. T., Zoebelein, C. M., Myrold, D. D. & Bottomley, P. J. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J. 11, 896–908 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Ouyang, Y., Norton, J. M. & Stark, J. M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biol. Biochem. 113, 161–172 (2017).CAS 
    Article 

    Google Scholar 
    57.Mukhtar, H., Lin, Y. -P., Lin, C. -M. & Lin, Y. -R. Relative abundance of ammonia oxidizing archaea and bacteria influences soil nitrification responses to temperature. Microorganisms 7, 526 (2019).
    Google Scholar 
    58.Fierer, N., Carney, K. M., Horner-Devine, M. C. & Megonigal, J. P. The biogeography of ammonia-oxidizing bacterial communities in soil. Microb. Ecol. 58, 435–445 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Park, H.-D., Lee, S.-Y. & Hwang, S. Redundancy analysis demonstration of the relevance of temperature to ammonia-oxidizing bacterial community compositions in a full-scale nitrifying bioreactor treating saline wastewater. J. Microbiol. Biotechnol. 19, 346–350 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Avrahami, S., Liesack, W. & Conrad, R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5, 691–705 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Avrahami, S. & Conrad, R. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl. Environ. Microbiol. 69, 6152–6164 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Seitzinger, S. P., Gardner, W. S. & Spratt, A. K. The effect of salinity on ammonium sorption in aquatic sediments—implications for benthic nutrient recycling. Estuaries 14, 167–174 (1991).CAS 
    Article 

    Google Scholar 
    63.Dollhopf, S. L. et al. Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Appl. Environ. Microbiol. 71, 240–246 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Beman, J. M., Bertics, V. J., Braunschweiler, T. & Wilson, J. M. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing archaea and bacteria in marine sediment depth profiles from Catalina Island, California. Front. Microbiol. 3, 263 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Nicol, G. W., Leininger, S., Schleper, C. & Prosser, J. I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10, 2966–2978 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Lehtovirta, L. E., Prosser, J. I. & Nicol, G. W. Soil pH regulates the abundance and diversity of group 1.1c Crenarchaeota. FEMS Microbiol. Ecol. 70, 367–376 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Bello, M. O., Thion, C., Gubry-Rangin, C. & Prosser, J. I. Differential sensitivity of ammonia oxidising archaea and bacteria to matric and osmotic potential. Soil Biol. Biochem. 129, 184–190 (2019).CAS 
    Article 

    Google Scholar 
    68.Fuchslueger, L. et al. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosciences. 11, 6003–6015 (2014).Article 

    Google Scholar 
    69.Thion, C. & Prosser, J. I. Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol. Ecol. 90, 380–389 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.How, S. W., Chua, A. S. M., Ngoh, G. C., Nittami, T. & Curtis, T. P. Enhanced nitrogen removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater: low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for denitrification. Sci. Total Environ. 693, 133526 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Gonzalez-Martinez, A., Rodriguez-Sanchez, A., van Loosdrecht, M. C. M., Gonzalez-Lopez, J. & Vahala, R. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environ. Sci. Pollut. Res. 23, 25501–25511 (2016).CAS 
    Article 

    Google Scholar 
    73.Wang, D. -Q., Zhou, C. -H., Nie, M., Gu, J. -D. & Quan, Z. -X. Abundance and niche specificity of different types of complete ammonia oxidizers (comammox) in salt marshes covered by different plants. Sci. Total Environ. 768, 144933 (2021).
    Google Scholar 
    74.Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl. Environ. Microbiol. 84, e01390 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Yu, C. et al. Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Appl. Microbiol. Biotechnol. 102, 9363–9377 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Zhao, Z. et al. Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set. Sci. Total Environ. 691, 146–155 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More