1.Miedema, H., Janssen, S., Rokho, K. & Brown, L. Burden of disease from environmental noise: quantification of healthy life years lost in Europe (2011).2.Peris, E. Environmental noise in Europe: 2020. Eur. Environ. Agency 1, 104 (2020).
Google Scholar
3.Merchant, N. D. Underwater noise abatement: Economic factors and policy options. Environ. Sci. Policy 92, 116–123 (2019).Article
Google Scholar
4.Babisch, W. et al. Auditory and non-auditory effects of noise on health. NIH Lancet 23, 1–7 (2014).
Google Scholar
5.Recio, A., Linares, C., Banegas, J. R. & Díaz, J. Road traffic noise effects on cardiovascular, respiratory, and metabolic health: an integrative model of biological mechanisms. Environ. Res. 146, 359–370 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
6.Shannon, G. et al. A synthesis of two decades of research documenting the effects of noise on wildlife. Biol. Rev. 91, 982–1005 (2016).PubMed
Article
PubMed Central
Google Scholar
7.Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
8.Kight, C. R. & Swaddle, J. P. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol. Lett. 14, 1052–1061 (2011).PubMed
Article
PubMed Central
Google Scholar
9.Whitfield, A. K. & Becker, A. Impacts of recreational motorboats on fishes: a review. Mar. Pollut. Bull. 83, 24–31 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
10.Popper, A. N. N. & Hastings, M. C. C. The effects of anthropogenic sources of sound on fishes. J. Fish Biol. 75, 455–489 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
11.Bejder, L., Samuels, A., Whitehead, H., Finn, H. & Allen, S. Impact assessment research: use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Mar. Ecol. Prog. Ser. 395, 177–185 (2009).ADS
Article
Google Scholar
12.Wale, M. A., Simpson, S. D. & Radford, A. N. Size-dependent physiological responses of shore crabs to single and repeated playback of ship noise. Biol. Lett. 9, 20121194 (2013).PubMed
PubMed Central
Article
Google Scholar
13.Nedelec, S. L., Simpson, S. D., Morley, E. L., Nedelec, B. & Radford, A. N. Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua). Proc. R. Soc. B 282, 20151943 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
14.Johansson, K., Sigray, P., Backström, T. & Magnhagen, C. Stress response and habituation to motorboat noise in two coastal fish species in the Bothnian Sea. In The Effects of Noise on Aquatic Life II 273–279 (2016).15.Holmes, L. J., McWilliam, J., Ferrari, M. C. O. & McCormick, M. I. Juvenile damselfish are affected but desensitize to small motor boat noise. J. Exp. Mar. Bio. Ecol. 494, 63–68 (2017).Article
Google Scholar
16.Reid, S. G., Bernier, N. J. & Perry, S. F. The adrenergic stress response in fish: Control of catecholamine storage and release. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 120, 1–27 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Rajalakshmi, R., John, N. A. & John, J. Review on noise pollution and its associated health hazards. Sch. J. Appl. Med. Sci. 4, 500–503 (2016).
Google Scholar
18.Christie, K. W. & Eberl, D. F. Noise-induced hearing loss: new animal models. Curr. Opin. Otolaryngol. Head Neck Surg. 22, 374–383 (2014).PubMed
PubMed Central
Article
Google Scholar
19.Ortega, C. P. Effects of noise pollution on birds: A brief review of our knowledge. Source Ornithol. Monogr. Ornithol. Monogr. 74, 6–22 (2012).Article
Google Scholar
20.Simmons, A. M. & Narins, P. M. Effects of anthropogenic noise on amphibians and reptiles. In Springer Handbook of Auditory Research 179–208 (Springer, 2018).21.de Soto, N. A. et al. Anthropogenic noise causes body malformations and delays development in marine larvae. Sci. Rep. 3, 2831 (2013).PubMed
PubMed Central
Article
Google Scholar
22.Soto, N. A. de. Peer-reviewed studies on the effects of anthropogenic noise on marine invertebrates: from scallop larvae to giant squid. Eff. Noise Aquat. Life II 875, 273–279 (2016).23.Brouček, J. Effect of noise on performance, stress, and behaviour of animals. Slovak J. Anim. Sci 47, 111–123 (2014).
Google Scholar
24.Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, 1–8 (2014).Article
CAS
Google Scholar
25.Erbe, C., Dunlop, R. & Dolman, S. Effects of noise on marine mammals. In Effects of Anthropogenic Noise on Animals 277–309 (Springer, 2018).26.Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proc. R. Soc. B 283, 20160839 (2016).PubMed
Article
PubMed Central
Google Scholar
27.van der Sluijs, I. et al. Communication in troubled waters: responses of fish communication systems to changing environments. Evol. Ecol. 25, 623–640 (2011).Article
Google Scholar
28.Cox, B. S., Dux, A. M., Quist, M. C. & Guy, C. S. Use of a seismic air gun to reduce survival of nonnative lake trout embryos: a tool for conservation?. N. Am. J. Fish. Manag. 32, 292–298 (2012).Article
Google Scholar
29.Wysocki, L. E. et al. Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout Oncorhynchus mykiss. Aquaculture 272, 687–697 (2007).Article
Google Scholar
30.Debusschere, E. et al. Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving. Environ. Pollut. 208, 747–757 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
31.Filiciotto, F. et al. Impact of aquatic acoustic noise on oxidative status and some immune parameters in gilthead sea bream Sparus aurata (Linnaeus, 1758) juveniles. Aquac. Res. 48, 1895–1903 (2017).CAS
Article
Google Scholar
32.Smith, M. E., Kane, A. S. & Popper, A. N. Noise-induced stress response and hearing loss in goldfish (Carassius auratus). J. Exp. Biol. 207, 427–435 (2004).PubMed
Article
PubMed Central
Google Scholar
33.Vasconcelos, R. O., Amorim, M. C. P. & Ladich, F. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J. Exp. Biol. 210, 2104–2112 (2007).PubMed
Article
PubMed Central
Google Scholar
34.Hasan, M. R., Crane, A. L., Ferrari, M. C. O. & Chivers, D. P. A cross-modal effect of noise: the disappearance of the alarm reaction of a freshwater fish. Anim. Cogn. 21, 419–424 (2018).PubMed
Article
PubMed Central
Google Scholar
35.Herbert-Read, J. E., Kremer, L., Bruintjes, R., Radford, A. N. & Ioannou, C. C. Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals. Proc. R. Soc. B Biol. Sci. 284, 1–9 (2017).
Google Scholar
36.Francis, C. D. & Barber, J. R. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front. Ecol. Environ. 11, 305–313 (2013).Article
Google Scholar
37.Ladich, F. Acoustic communication and the evolution of hearing in fishes. Philos. Trans. R. Soc. B Biol. Sci. 355, 1285–1288 (2000).CAS
Article
Google Scholar
38.Radford, A. N., Kerridge, E. & Simpson, S. D. Acoustic communication in a noisy world: can fish compete with anthropogenic noise?. Behav. Ecol. 25, 1022–1030 (2014).Article
Google Scholar
39.Dooling, R. J. & Popper, A. N. The effects of highway noise on birds. Environ. Bioacoust. 27, 1–74 (2007).
Google Scholar
40.Blom, E. L. et al. Continuous but not intermittent noise has a negative impact on mating success in a marine fish with paternal care. Sci. Rep. 9, 1–9 (2019).CAS
Article
Google Scholar
41.Bureš, Z., Popelář, J. & Syka, J. Noise exposure during early development impairs the processing of sound intensity in adult rats. Hear. Res. 352, 1–11 (2017).PubMed
Article
PubMed Central
Google Scholar
42.Dorado-Correa, A. M., Zollinger, S. A., Heidinger, B. & Brumm, H. Timing matters: traffic noise accelerates telomere loss rate differently across developmental stages. Front. Zool. 15, 1–8 (2018).Article
CAS
Google Scholar
43.Mueller, C. A. Critical Windows in Animal Development: Interactions Between Environment, Phenotype, and Time (Springer, 2018).
Google Scholar
44.Gordon, T. A. C. et al. Acoustic enrichment can enhance fish community development on degraded coral reef habitat. Nat. Commun. 10, 1–7 (2019).CAS
Article
Google Scholar
45.Radford, A. N., Lebre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Change Biol. 22, 3349–3360 (2016).ADS
Article
Google Scholar
46.Banner, A. & Hyatt, M. Effects of noise on eggs and larvae of two estuarine fishes. Trans. Am. Fish. Soc. 102, 142–144 (1973).Article
Google Scholar
47.Fakan, E. P. & McCormick, M. I. Boat noise affects the early life history of two damselfishes. Mar. Pollut. Bull. 141, 493–500 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Jain-Schlaepfer, S., Fakan, E., Rummer, J. L., Simpson, S. D. & McCormick, M. I. Impact of motorboats on fish embryos depends on engine type. Conserv. Physiol. 6, 1–9 (2018).
Google Scholar
49.Brittijn, S. A. et al. Zebrafish development and regeneration: new tools for biomedical research. Int. J. Dev. Biol. 53, 835–850 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
50.Magyary, I. Recent advances and future trends in zebrafish bioassays for aquatic ecotoxicology. Ecocycles 4, 12–18 (2018).Article
Google Scholar
51.Sarmah, S. & Marrs, J. A. Zebrafish as a vertebrate model system to evaluate effects of environmental toxicants on cardiac development and function. Int. J. Mol. Sci. 17, 1–16 (2016).ADS
Article
CAS
Google Scholar
52.Varshney, G. K., Pei, W. & Burgess, S. M. Using zebrafish to study human deafness and hearing regeneration. Monogr. Hum. Genet. 20, 110–131 (2016).Article
Google Scholar
53.Uribe, P. M. et al. Larval zebrafish lateral line as a model for acoustic trauma. Eneuro 5, 0206–0218 (2018).Article
Google Scholar
54.Bhandiwad, A. A., Raible, D. W., Rubel, E. W. & Sisneros, J. A. Noise-Induced hypersensitization of the acoustic startle response in larval zebrafish. JARO 19, 741–752 (2018).PubMed
Article
PubMed Central
Google Scholar
55.Lara, R. A. & Vasconcelos, R. O. Characterization of the natural soundscape of zebrafish and comparison with the captive noise conditions. Zebrafish 8, 1–13 (2018).CAS
Google Scholar
56.Lalonde, R. The neurobiological basis of spontaneous alternation. Neurosci. Biobehav. Rev. 26, 91–104 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
57.Bogli, S. Y. & Huang, M. Y. Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).PubMed
Article
PubMed Central
Google Scholar
58.Bruintjes, R. & Radford, A. N. Chronic playback of boat noise does not impact hatching success or post-hatching larval growth and survival in a cichlid fish. PeerJ 2, e594 (2014).PubMed
PubMed Central
Article
Google Scholar
59.Davidson, J., Bebak, J. & Mazik, P. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout Oncorhynchus mykiss. Aquaculture 288, 337–343 (2009).Article
Google Scholar
60.Neo, Y. Y. et al. Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biol. Conserv. 178, 65–73 (2014).Article
Google Scholar
61.Craig, M. P., Gilday, S. D. & Hove, J. R. Dose-dependent effects of chemical immobilization on the heart rate of embryonic zebrafish. Lab Anim. (NY) 35, 40–47 (2006).Article
Google Scholar
62.Barrionuevo, W. R. & Burggren, W. W. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. Am. Physiol. Soc. 276, 505–513 (2013).
Google Scholar
63.De Luca, E. et al. ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Sci. Rep. 4, 1–13 (2014).
Google Scholar
64.Simpson, S. D., Yan, H. Y., Wittenrich, M. L. & Meekan, M. G. Response of embryonic coral reef fishes (Pomacentridae: Amphiprion spp.) to noise. Mar. Ecol. Prog. Ser. 287, 201–208 (2005).ADS
Article
Google Scholar
65.Anderson, W. G. et al. Remote monitoring of heart rate as a measure of recovery in angled Atlantic salmon, Salmo salar (L.). Hydrobiologia 371–372, 233–240 (1998).Article
Google Scholar
66.Armstrong, J. D. Heart rate as an indicator of activity, metabolic rate, food intake and digestion in pike Esox lucius. J. Fish Biol. 29, 207–221 (1986).Article
Google Scholar
67.Svendsen, E. et al. Heart rate and swimming activity as stress indicators for Atlantic salmon (Salmo salar). Aquaculture 531, 735804 (2020).Article
CAS
Google Scholar
68.Burleson, M. L. & Silva, P. E. Cross tolerance to environmental stressors: effects of hypoxic acclimation on cardiovascular responses of channel catfish (Ictalurus punctatus) to a thermal challenge. Bone 23, 1–7 (2008).
Google Scholar
69.Brown, C., Gardner, C. & Braithwaite, V. A. Differential stress responses in fish from areas of high- and low-predation pressure. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 175, 305–312 (2005).Article
Google Scholar
70.McEwen, B. S. & Stellar, E. Stress and individual. Arch Intern. Med. 153, 2093–2101 (1993).CAS
PubMed
Article
PubMed Central
Google Scholar
71.Mccormick, M. I. Behaviorally induced maternal stress in a fish influences progeny quality by a hormonal mechanism. Ecology 79, 1873–1883 (1998).Article
Google Scholar
72.Yabu, T., Ishibashi, Y. & Yamashita, M. Stress-induced apoptosis in larval embryos of Japanese flounder. Fish. Sci. 69, 1218–1223 (2003).CAS
Article
Google Scholar
73.Werner, I., Linares-Casenave, J., Van Eenennaam, J. P. & Doroshov, S. I. The effect of temperature stress on development and heat-shock protein expression in larval green sturgeon (Acipenser mirostris). Environ. Biol. Fishes 79, 191–200 (2007).Article
Google Scholar
74.Shi, Z. et al. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus. Aquaculture 275, 306–310 (2008).CAS
Article
Google Scholar
75.Wilson, K. S. et al. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio). J. Physiol. 591, 6209–6220 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Tudorache, C., Ter Braake, A., Tromp, M., Slabbekoorn, H. & Schaaf, M. J. M. Behavioral and physiological indicators of stress coping styles in larval zebrafish. Stress 3890, 121–128 (2015).Article
CAS
Google Scholar
77.Alsop, D. & Vijayan, M. M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, 711–719 (2008).Article
CAS
Google Scholar
78.Bai, Y., Liu, H., Huang, B., Wagle, M. & Guo, S. Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish. BMC Neurosci. 17, 1–12 (2016).CAS
Article
Google Scholar
79.Barton, B. A. & Zitzow, R. E. Physiological responses of juvenile walleyes to handling stress with recovery in saline water. Progress. Fish-Cult. 57, 267–276 (1995).Article
Google Scholar
80.Yao, Q., DeSmidt, A. A., Tekin, M., Liu, X. & Lu, Z. Hearing assessment in zebrafish during the first week postfertilization. Zebrafish 13, 79–86 (2016).PubMed
PubMed Central
Article
Google Scholar
81.Colwill, R. M. & Creton, R. Imaging escape and avoidance behavior in zebrafish larvae. Rev. Neurosci. 22, 63–73 (2011).PubMed
PubMed Central
Article
Google Scholar
82.Voellmy, I. K. et al. Acoustic noise reduces foraging success in two sympatric fish species via different mechanisms. Anim. Behav. 89, 191–198 (2014).Article
Google Scholar
83.Belzung, C. & Griebel, G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
84.Sireeni, J. et al. Profound effects of glucocorticoid resistance on anxiety-related behavior in zebrafish adults but not in larvae. Gen. Comp. Endocrinol. 292, 130–138 (2020).Article
CAS
Google Scholar
85.Basnet, R. M., Zizioli, D., Taweedet, S., Finazzi, D. & Memo, M. Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines 7, 1–16 (2019).Article
CAS
Google Scholar
86.Peng, X. et al. Anxiety-related behavioral responses of pentylenetetrazole-treated zebrafish larvae to light-dark transitions. Pharmacol. Biochem. Behav. 145, 55–65 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
87.Stewart, A. et al. Neurophenotyping of adult zebrafish using the light/dark box paradigm. NeuroMethods 51, 157–167 (2011).CAS
Article
Google Scholar
88.Bögli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).PubMed
Article
PubMed Central
Google Scholar
89.Mueller, T., Dong, Z., Berberoglu, M. A. & Guo, S. The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res. 1381, 95–105 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
90.Fotowat, H., Lee, C., Jun, J. J. & Maler, L. Neural activity in a hippocampus-like region of the teleost pallium are associated with navigation and active sensing. bioRxiv 8, 1–25 (2018).91.Broglio, C. et al. Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res. Bull. 66, 277–281 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
92.Cheng, L., Wang, S. H., Chen, Q. C. & Liao, X. M. Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiol. Behav. 104, 981–988 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
93.Jauregui-huerta, F., Garcia-estrada, J. & Gonzalez-perez, O. Early exposure to noise followed by predator stress in adulthood impairs the rat’s
re-learning flexibility in Radial Arm Water Maze. Neuro Endocrinol. Lett. 31, 1–12 (2010).
Google Scholar
94.Rodriguez, M. & Afonso, D. Ontogeny of T-maze behavioral lateralization in rats. Physiol. Behav. 54, 91–94 (1993).CAS
PubMed
Article
PubMed Central
Google Scholar
95.Nichols, T. A., Anderson, T. W. & Ana, Š. Intermittent noise induces physiological stress in a coastal marine fish. PLoS ONE 10, 1–13 (2015).CAS
Google Scholar
96.Neo, Y. Y. et al. Sound exposure changes European seabass behaviour in a large outdoor floating pen: effects of temporal structure and a ramp-up procedure. Environ. Pollut. 214, 26–34 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
97.Celi, M. et al. Vessel noise pollution as a human threat to fish: assessment of the stress response in gilthead sea bream (Sparus aurata, Linnaeus 1758). Fish Physiol. Biochem. 42, 631–641 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
98.Erbe, C. Underwater noise of small personal watercraft (jet skis). J. Acoust. Soc. Am. 133, EL326–EL330 (2013).ADS
PubMed
Article
PubMed Central
Google Scholar
99.Department of the Environment and Water Resources. Comparative Assessment of the Environmental Performance of Small Engines Marine Outboards and Personal Watercraft. Environmental Science and Technology (2007).100.Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) 5th edn. (University of Oregon Press, Eugene, 2000).
Google Scholar
101.Lu, Z. & Desmidt, A. A. Early development of hearing in zebrafish. JARO 14, 509–521 (2013).PubMed
Article
PubMed Central
Google Scholar
102.Strykowski, J. L. & Schech, J. M. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 54, 81–84 (2015).PubMed
PubMed Central
Google Scholar
103.Amoser, S., Wysocki, L. E. & Ladich, F. Noise emission during the first powerboat race in an Alpine lake and potential impact on fish communities. J. Acoust. Soc. Am. 116, 3789–3797 (2004).ADS
PubMed
Article
PubMed Central
Google Scholar
104.Codarin, A., Wysocki, L. E., Ladich, F. & Picciulin, M. Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Mar. Pollut. Bull. 58, 1880–1887 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
105.Shafiei Sabet, S., Neo, Y. Y. & Slabbekoorn, H. The effect of temporal variation in sound exposure on swimming and foraging behaviour of captive zebrafish. Anim. Behav. 107, 49–60 (2015).Article
Google Scholar
106.Nedelec, S. L. et al. Particle motion: the missing link in underwater acoustic ecology. Methods Ecol. Evol. 7, 836–842 (2016).Article
Google Scholar
107.Chan, P. K., Lin, C. C. & Cheng, S. H. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio) embryos. BMC Biotechnol. 9, 1–10 (2009).Article
Google Scholar
108.Teixidó, E. et al. Automated morphological feature assessment for zebrafish embryo developmental toxicity screens. Toxicol. Sci. 167, 438–449 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
109.Lau, B. Y. B., Mathur, P., Gould, G. G. & Guo, S. Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 108, 2581–2586 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
110.Bögli, S. Y., Huang, M.Y.-Y., Bogli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).PubMed
Article
PubMed Central
Google Scholar
111.Frederickson, C. J. & Frederickson, M. H. Developmental changes in open-field behavior in the kitten. Dev. Psychobiol. 12, 623–628 (1979).CAS
PubMed
Article
PubMed Central
Google Scholar
112.Vecera, S. P., Rothbart, M. K. & Posner, M. I. Development of spontaneous alternation in infancy. J. Cogn. Neurosci. 3, 351–354 (1991).CAS
PubMed
Article
PubMed Central
Google Scholar
113.Bogli, S. Y. & Huang, M.Y.-Y. Spontaneous alternation behavior in larval zebrafish. J. Exp. Biol. 220, 171–173 (2017).PubMed
Article
PubMed Central
Google Scholar
114.Du Sert, N. P. et al. The arrive guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, 1–12 (2020).
Google Scholar More