More stories

  • in

    Substitution of inland fisheries with aquaculture and chicken undermines human nutrition in the Peruvian Amazon

    1.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    3.SOFIA 2020—State of Fisheries and Aquaculture in the World 2020 (FAO, 2020).4.Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Kawarazuka, N. & Béné, C. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr. 14, 1927–1938 (2011).Article 

    Google Scholar 
    6.Belton, B. & Thilsted, S. H. Fisheries in transition: food and nutrition security implications for the global South. Glob. Food Sec. 3, 59–66 (2014).Article 

    Google Scholar 
    7.Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).Article 

    Google Scholar 
    8.Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).CAS 
    Article 

    Google Scholar 
    9.Heilpern, S. Integrating Food Webs and Food Security to Understand the Impact of Biodiversity Loss on Ecosystem Functions and Services. PhD thesis, Columbia Univ. (2020).10.Ministerio de Desarrollo Agrario y Riego (Midagri); https://www.gob.pe/midagri11.Ministerio de la Producción (Produce); https://www.gob.pe/produce12.OECD-FAO Agricultural Outlook, 2019 edn (OECD/FAO, 2020).13.Peru—National Program for Innovation in Fisheries and Aquaculture Project (World Bank, 2017).14.DeFries, R. et al. Metrics for land-scarce agriculture. Science 349, 238–240 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Loreto: Resultados Definitivos de la Población Economicamnte Activa 2017 (Instituto Nacional de Estadistica e Informática, 2018).16.McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).CAS 
    Article 

    Google Scholar 
    17.Youn, S.-J. et al. Inland capture fishery contributions to global food security and threats to their future. Glob. Food Sec. 3, 142–148 (2014).Article 

    Google Scholar 
    18.Kawarazuka, N. & Béné, C. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr. 14, 1927–1938 (2011).Article 

    Google Scholar 
    19.Bogard, J. R. et al. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. J. Food Compos. Anal. 42, 120–133 (2015).CAS 
    Article 

    Google Scholar 
    20.Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    21.Popkin, B. M. Nutrition, agriculture and the global food system in low and middle income countries. Food Policy 47, 91–96 (2014).Article 

    Google Scholar 
    22.Bogard, J. R. et al. Higher fish but lower micronutrient intakes: temporal changes in fish consumption from capture fisheries and aquaculture in Bangladesh. PLoS ONE 12, e0175098 (2017).Article 

    Google Scholar 
    23.Golden, C. D., Fernald, L. C. H., Brashares, J. S., Rasolofoniaina, B. J. R. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proc. Natl Acad. Sci. USA 108, 19653–19656 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Davis, K. F. et al. Meeting future food demand with current agricultural resources. Global Environ. Change 39, 125–132 (2016).Article 

    Google Scholar 
    25.Parker, R. W. R. & Tyedmers, P. H. Fuel consumption of global fishing fleets: current understanding and knowledge gaps. Fish Fish. 16, 684–696 (2015).Article 

    Google Scholar 
    26.Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Avadí, A. et al. Comparative environmental performance of artisanal and commercial feed use in Peruvian freshwater aquaculture. Aquaculture 435, 52–66 (2015).Article 

    Google Scholar 
    28.Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Feed conversion efficiency in aquaculture: do we measure it correctly? Environ. Res. Lett. 13, 024017 (2018).ADS 
    Article 

    Google Scholar 
    29.Prudêncio da Silva, V., van der Werf, H. M. G., Soares, S. R. & Corson, M. S. Environmental impacts of French and Brazilian broiler chicken production scenarios: an LCA approach. J. Environ. Manage. 133, 222–231 (2014).Article 

    Google Scholar 
    30.Seto, K. & Fiorella, K. J. From sea to plate: the role of fish in a sustainable diet. Front. Mar. Sci. 4, 74 (2017).Article 

    Google Scholar 
    31.Lynch, A. J. et al. Inland fish and fisheries integral to achieving the Sustainable Development Goals. Nature Sustain. 3, 579–587 (2020).32.Nardoto, G. B. et al. Frozen chicken for wild fish: nutritional transition in the Brazilian Amazon region determined by carbon and nitrogen stable isotope ratios in fingernails. Am. J. Hum. Biol. 23, 642–650 (2011).Article 

    Google Scholar 
    33.Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond B Biol. Sci. 365, 2793–2807 (2010).Article 

    Google Scholar 
    35.Pinnegar, J. K., Hutton, T. P. & Placenti, V. What relative seafood prices can tell us about the status of stocks. Fish Fish. 7, 219–226 (2006).Article 

    Google Scholar 
    36.Wong, J. T. et al. Small-scale poultry and food security in resource-poor settings: a review. Global Food Sec. 15, 43–52 (2017).Article 

    Google Scholar 
    37.Tabela Brasileira de Composição de Alimentos—TACO (Núcleo de Estudos e Pesquisas em Alimentação—NEPA/UNICAMP, 2011).38.Cahu, C., Salen, P. & de Lorgeril, M. Farmed and wild fish in the prevention of cardiovascular diseases: assessing possible differences in lipid nutritional values. Nutr. Metab. Cardiovasc. Dis. 14, 34–41 (2004).CAS 
    Article 

    Google Scholar 
    39.Vitamin and Mineral Requirements in Human Nutrition (WHO/FAO, 2004).40.Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation (FAO, 2010).41.Heilpern, S. A., Weeks, B. C. & Naeem, S. Predicting ecosystem vulnerability to biodiversity loss from community composition. Ecology 99, 1099–1107 (2018).Article 

    Google Scholar 
    42.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos

    1.Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).ADS 
    Article 

    Google Scholar 
    2.Haward, M. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nat. Commun. 9, 9994 (2018).Article 

    Google Scholar 
    3.Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 364, 2027–2045 (2009).CAS 
    Article 

    Google Scholar 
    4.Fadare, O. O. & Okoffo, E. D. Covid-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 737, 140279 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    5.United Nations Environment Assembly of the United Nations Environmental Programme. Ad hoc Open-Ended Expert Group on Marine Litter and Microplastics. Fourth meeting. Report No. UNEP/AHEG/4/7. (United Nations, 2020).6.Watson, R. A. et al. Marine foods sourced from farther as their use of global ocean primary production increases. Nat. Commun. 6, 795 (2015).Article 

    Google Scholar 
    7.Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 1985–1998 (2009).CAS 
    Article 

    Google Scholar 
    8.Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 768 (2016).
    Google Scholar 
    9.Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1240 (2017).Article 

    Google Scholar 
    10.Walkinshaw, C., Lindeque, P. K., Thompson, R., Tolhurst, T. & Cole, M. Microplastics and seafood: Lower trophic organisms at highest risk of contamination. Ecotoxicol. Environ. Saf. 190, 110066 (2020).CAS 
    Article 

    Google Scholar 
    11.Lusher, A. In Marine Anthropogenic Litter (eds. Bergmann, M., Gutow, L. & Klages, M.) 245–307 (Springer International Publishing, 2015).12.Collard, F. et al. Morphology of the filtration apparatus of three planktivorous fishes and relation with ingested anthropogenic particles. Mar. Pollut. Bull. 116, 182–191 (2017).CAS 
    Article 

    Google Scholar 
    13.Espinoza, P. & Bertrand, A. Revisiting Peruvian anchovy (Engraulis ringens) trophodynamics provides a new vision of the Humboldt Current system. Prog. Oceanogr. 79, 215–227 (2008).ADS 
    Article 

    Google Scholar 
    14.Barboza, L. G. A., Vethaak, A. D., Lavorante, B. R. B. O., Lundeye, A.-K. & Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133, 336–348 (2018).CAS 
    Article 

    Google Scholar 
    15.Lindeque, P. K. et al. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ. Pollut. 265, 114721 (2020).CAS 
    Article 

    Google Scholar 
    16.Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 4528 (2014).Article 

    Google Scholar 
    17.Mercogliano, R. et al. Occurrence of microplastics in commercial seafood under the perspective of the human food chain. A review. J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.0c01209 (2020).Article 
    PubMed 

    Google Scholar 
    18.Wang, W., Gao, H., Jin, S., Li, R. & Na, G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf. 173, 110–117 (2019).CAS 
    Article 

    Google Scholar 
    19.Engler, R. E. The complex interaction between marine debris and toxic chemicals in the ocean. Environ. Sci. Technol. 46, 12302–12315 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Mathieu-Denoncourt, J., Wallace, S. J., de Solla, S. R. & Langlois, V. S. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen. Comp. Endocrinol. 219, 74–88 (2015).CAS 
    Article 

    Google Scholar 
    21.Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. 111, 10239–10244 (2014).ADS 
    Article 

    Google Scholar 
    22.Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.8b05512 (2019).Article 
    PubMed 

    Google Scholar 
    23.Bouwmeester, H., Hollman, P. C. H. & Peters, R. J. B. Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 49, 8932–8947 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Rochman, C. M. et al. Classify plastic waste as hazardous. Nature 494, 169–171 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Law, K. L. et al. Plastic accumulation in the North Atlantic subtropical gyre. Science 329, 1185–1188 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Ory, N. et al. Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean. Mar. Pollut. Bull. 127, 211–216 (2018).CAS 
    Article 

    Google Scholar 
    27.Law, K. L. et al. Distribution of surface plastic debris in the Eastern Pacific Ocean from an 11-year data set. Environ. Sci. Technol. https://doi.org/10.1021/es4053076 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Kooi, M., van Nes, E. H., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Lusher, A. Microplastics in the marine environment: Distribution, interactions and effects. link.springer.com 245–307 (2015). https://doi.org/10.1007/978-3-319-16510-3_10.30.van Sebille, E. et al. Basin-scale sources and pathways of microplastic that ends up in the Galápagos Archipelago. Ocean Sci. 15, 1341–1349 (2019).ADS 
    Article 

    Google Scholar 
    31.Jensen, J. L., Schjønning, P., Watts, C. W., Christensen, B. T. & Munkholm, L. J. Soil texture analysis revisited: Removal of organic matter matters more than ever. PLoS ONE 12, e0178039 (2017).Article 

    Google Scholar 
    32.Fischer, A. H., Jacobson, K. A., Rose, J. & Zellers, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008, (2008).33.Minitab 17 Statistical Software (2010). [Computer software]. State College, PA: Minitab, Inc. www.minitab.com.34.ESRI. ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).
    Google Scholar 
    35.Alfaro-Núñez, A. & Bermúdez, R. The scientific problem of plastic pollution: An ocean of reports with little standardization of procedures. Bionatura 3, 639–640 (2018).36.Thompson, R. C. et al. Lost at sea: Where is all the plastic?. Science 304, 838–838 (2004).CAS 
    Article 

    Google Scholar 
    37.Galgani, F., Souplet, A. & Cadiou, Y. Accumulation of debris on the deep sea floor off the French Mediterranean coast. Mar. Ecol. Prog. Ser. 142, 225–234 (1996).ADS 
    Article 

    Google Scholar 
    38.Long, M. et al. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environ. Pollut. 228, 454–463 (2017).CAS 
    Article 

    Google Scholar 
    39.Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Eriksen, M. et al. Plastic pollution in the South Pacific subtropical gyre. Mar. Pollut. Bull. 68, 71–76 (2013).CAS 
    Article 

    Google Scholar 
    41.Avio, C. G. et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 198, 211–222 (2015).CAS 
    Article 

    Google Scholar 
    42.de Miranda, D. A. & de Carvalho-Souza, G. F. Are we eating plastic-ingesting fish?. Mar. Pollut. Bull. 103, 109–114 (2016).CAS 
    Article 

    Google Scholar 
    43.Neves, D., Sobral, P., Ferreira, J. L. & Pereira, T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar. Pollut. Bull. 101, 119–126 (2015).CAS 
    Article 

    Google Scholar 
    44.Kaposi, K. L., Mos, B., Kelaher, B. P. & Dworjanyn, S. A. Ingestion of microplastic has limited impact on a marine larva. Environ. Sci. Technol. https://doi.org/10.1021/es404295e (2013).Article 

    Google Scholar 
    45.Cole, M. & Galloway, T. S. Ingestion of nanoplastics and microplastics by pacific oyster larvae. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b04099 (2015).Article 
    PubMed 

    Google Scholar 
    46.von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335 (2012).ADS 
    Article 

    Google Scholar  More

  • in

    ENSO modulates wildfire activity in China

    The Wildfire Atlas of China (WFAC)The WFAC is based on the Forest Fire Prevention and Monitoring Information Center (FFPMIC) data product that combines satellite imagery and field observations and includes the location, date, and time of 135,246 fire occurrences in China (see “Methods”; Fig. 1a, Supplementary Data 1, and Supplementary Movie 1). We aggregated individual fire occurrences into their nearest gridpoints in a 2° × 2° network (number of fire occurrences per gridpoint at hourly resolution for 2005–2018) following a bilinear method to facilitate the analysis of diurnal patterns. In addition, we deleted 36 out of 219 gridpoints that had less than five fire occurrences in total (2005–2018). To study the influence of holidays and climate on fire occurrence, we then aggregated the hourly fire occurrences for each of the 183 remaining gridpoints into daily, monthly, and annual fire occurrence numbers. To develop a country-wide fire chronology from the monthly WFAC, we standardized annual fire occurrence time series for each gridpoint (to an average of zero and standardized deviation of 1) and then averaged all standardized gridpoint time series. In the same way, we developed regional WFAC fire chronologies for the ten fire regions (details below).Fig. 1: Spatiotemporal fire occurrences of the Wildfire Atlas of China (WFAC).a Total WFAC fire occurrences (2005–2018) in the 2 × 2° gridded network, the b time series of the annual percentage (percentage of all fires (sum of gridpoint-level standardized fire occurrences) in a given year) of the WFAC fire chronology, the c location of the Southwestern China (SWC) fire region, d the annual percentage of fires of the SWC fire chronology, the e location of Southeastern China (SEC), the Lower reaches of the Yangtze River (LYR), and Southern China (SOC), and f the annual percentage of fires of the LYR, SEC, and SOC fire chronologies. The other shaded fire regions are shown in the Supplementary Fig. 1.Full size imageSpatiotemporal wildfire characteristicsWe classified the gridded monthly WFAC network into ten distinct fire regions using rotated principal component analysis (RPCA, see “Methods” and Supplemental material for details) that resemble previous spatial classifications of climate33 and wildfire in China24,25,26,27. The WFAC fire chronologies for the whole country (Fig. 1a–b) and all subregions (Fig. 1c–f, Supplementary Fig. 1) show generally decreasing trends toward the present after reaching a peak in 2007, in contrast with the increasing fire occurrence numbers in many of the world’s tropics and high latitudes7,9,10,14. The ten fire regions combined include 90.9% (122,952 fires) of the total number of WFAC fires and show strong interannual variability. For example, the southwestern China (SWC) fire chronology showed four times more fires in 2010 compared to the following year 2011 (Fig. 1d).The vast majority (84%) of WFAC wildfires occurred in subtropical China (~20–30°N, 100–120°E) and this is also reflected in the results of the RPCA analysis: 90% of the fires in the ten regions (and thus more than 80% of all fires in China) occur in only four subtropical regions: SEC, SWC, SOC, and the lower reaches of Yangtze River (Fig. 1c–f). The predominance of wildfire in southern, subtropical China differs from the dominant fire patterns found in both southern and northern China in previous studies that were based on fire size rather than fire occurrence26,27. This combination of results suggests that fires in northern China can be of larger size to those in the south, but they occur less frequently26,27. The predominance of fire occurrences in subtropical China can be explained by three main factors related to fuel availability, climate, and ignition sources34,35. First, subtropical China is the most densely forested region in China and the world’s subtropics and is characterized by high fuel availability (Fig. 1a). For example, the top ten provinces with the highest forest cover ratios in China are in the subtropics (Supplementary Fig. 2). Second, subtropical China experiences seasonal drought stress in the non-monsoon season (approximately from October to April), during which the available fuels dry out and are flammable. Third, subtropical China is densely populated and rich in human-induced ignition sources. This subtropical fire-dominated pattern in China differs from spatial fire patterns in most other regions with a low ratio of subtropical fires32,35.Intra-annual and diurnal wildfire cyclesSeventy-one percent of fire occurrences in the four subtropical regions of China (68% of all ten subregions) occur in the winter season, from January to April (Fig. 2a, b). The fire season starts earliest, from January to March, in SEC (Fig. 2 and Supplementary Fig. 3), where the rainy season starts earliest in China, and fire occurrences decrease after March (Supplementary Fig. 4). In SWC, where the rainy season starts later, in May, the fire season also starts later and spans primarily from February to April. The fire season is delayed even more in northern China, from March to May, when the snow has largely melted, but the summer monsoon has not yet reached the north. For China as a whole, fire activity is lowest in summer (June to August), when the summer monsoon prevails and creates wet conditions. This monsoon related low number of fire occurrences in summer is in contrast to the peak summer fire season in boreal forests, which is driven by warm summer temperatures6,8,20, and the dry fall fire season in Mediterranean forests, such as in California11,15,36. Only in the northernmost region of China, which is one of the coldest areas and at the limits of the summer monsoon, does the peak fire season occur in summer and fall (Fig. 2).Fig. 2: Intra-annual and diurnal fire occurrences of the Wildfire Atlas of China (WFAC).a The peak fire season for each gridpoint containing more than 50% (mean of 73%) of the fire occurrences, b the monthly ratio (percentage of total fire occurrences in a given month) of the WFAC fire chronology, c the peak fire hours for each gridpoint containing more than 50% (mean of 77.4%) of the fire occurrences, and d the two-hourly ratio (percentage of total fire occurrences in a given 2-h time period) of the WFAC fire chronology.Full size imageMost wildfires occur during the daytime (Fig. 2c, d and Supplementary Fig. 5) when most human-induced ignition activities take place (e.g., agricultural burning). Vegetation and fuels are also relatively dry during the daytime due to moisture loss from transpiration. Sixty seven percent of the fires occur from 14:00 to 18:00, with fire occurrences peaking roughly 2 h earlier in northern China (12:00–17:00) compared to SOC (14:00–19:00) (Fig. 2c). In dry northern China, relative humidity tends to be low enough and vegetation tends to be dry enough to catch fire earlier in the daytime than in SOC, where relative humidity often is not low enough until later in the afternoon. Earlier peak fire activity in northern China, however, may also be related to lifestyle differences in northern versus SOC. For example, due to the colder climate in the north, people generally go to sleep earlier and tend to wake up earlier, resulting in earlier ignition activities relative to the south. In warmer SOC, people tend to nap in the early afternoon, which may limit ignition and thus fire activities from 12:00 to 14:00. A clear jump in fire occurrence after 10:00 suggests that vegetation flammability increases soon after this time of day, which supports the “10 o’clock” fire prevention policy that requires all fires to be put out by 10:00 in the morning after discovery37. Fire activity increases most sharply after 14:00, especially in SOC, and we suggest paying special attention to this time of day for fire prevention.In Europe and North America, fire occurrences are typically low during the weekend due to religious services and thus reduced outdoor activities38. This is not the case, however, in China. On the contrary, weekend fire occurrences are high in the Muslim region of northwestern China, where Friday, rather than Saturday and Sunday, is the religious service day38 (Supplementary Fig. 6). There is also no clear increase in fire activity in northwestern China on traditional Chinese holidays. For China as a whole, however, fires occur 5.7, 5.8, and 7.3 times more frequently on traditional Chinese holidays (Chinese New Year’s Eve (~February), Chinese New Year’s Day (~February), and Ching Ming Holiday (~April)) than the daily mean fires of the respective holiday months (Fig. 3). The fire numbers are particularly high in north central China on Chinese New Year’s Eve and in SOC on Chinese New Year’s Day, which may be related to a regional difference in the day that firework is typically lighted to scare away bad fortune. Fire activity on Ching Ming Holiday is especially high in eastern China (Fig. 3), reflecting a particularly longstanding tradition to burn paper money for dead relatives in that region. In contrast, the Torch Festival (~July) for the Yi and other minorities in SWC occurs in the low-fire monsoon season and has little impact on regional fire occurrence (Supplementary Fig. 7).Fig. 3: Fire occurrence ratios between the holidays and the 2005–2018 average.The ratio between the fire occurrences on holidays of a the New Year Day (January 1st), b Chinese New Year Eve (a day before the Chinese New Year, based on the lunar calendar, often in February), c Chinese New Year Day, and d Ching Ming Festival (based on the lunisolar calendar, in April) and the mean daily fire occurrences (2005–2018) in the month of the respective holiday.Full size imageFire–climate relationshipsWe analyzed the influence of climate on fire occurrence across the WFAC for the primary fire season (January to April), the monsoon season (May to September), the post-monsoon season (October to December), and the whole year. Fire–climate relationships are stronger for the first-differenced data than the original data (Fig. 4 and Supplementary Fig. 8), suggesting stronger fire–climate relationships on interannual than longer timescales. This may be because longer-term fire trends are related to fire suppression26. We found strong positive correlations between fire occurrence and fire season temperature in western and northern China (Fig. 4a and Supplementary Fig. 9). In these regions with limited fire season precipitation, high temperatures enhance evaporation, dry the fuel, and thus lead to more fire activity26.Fig. 4: Relationships between monthly fire occurrences and climate.Pointwise correlations between the first-differenced Wildfire Atlas of China (WFAC) fire occurrences (2005–2018) during the fire season (January to April) and average a temperature, b diurnal temperature range (DTR), c precipitation, and d Palmer Drought Severity Index (PDSI) for the same season.Full size imageIn SEC, on the other hand, fire occurrences are negatively correlated with fire season temperature (Fig. 4a) and precipitation (Fig. 4c), but strongly positively correlated with diurnal temperature ranges (DTR) (Fig. 4b). Fire occurrences further increase with warmer maximum temperatures in the fire season (Supplementary Fig. 9a), but decrease with warmer minimum temperature (Supplementary Fig. 9b) and increased cloud cover (Supplementary Fig. 9c). DTR and cloud cover are significantly anti-correlated in the fire season in SEC (Supplementary Fig. 10). Positive fire-DTR and maximum temperature and negative fire-cloud cover relationships indicate more fire occurrences on sunny days. High fire occurrence on sunny days may be due to intense solar irradiation that can enhance evapotranspiration and moisture loss39. Precipitation is relatively abundant from January to April in SEC and a lack of precipitation, rather than warm temperature, plays a more limiting role on fire activity relative to mean temperature in this region.The influence on fire occurrence of low precipitation and high DTRs in SEC and of warming in western and northern China point to drought-prone fire regimes, which is confirmed by generally negative correlations with the fire season Palmer Drought Severity Index (PDSI; Fig. 4d) and the Standard Precipitation-Evapotranspiration Index (SPEI; Supplementary Fig. 9d). Fire–climate relationships in China thus reflect fire–climate relationships in other drought-prone fire activities across the globe1,2,11. Fire–climate relationships are generally similar between the fire season and the entire year (Fig. 4 and Supplementary Fig. 11), largely due to the majority of yearly fire occurrences in the fire season.Fire–climate relationships are generally weak in the monsoon season (May to September) (Supplementary Figs. 12–15), particularly in SWC with a humid monsoon climate. Monsoon-season fire–climate relationships are stronger in SEC and northern China, where the monsoon season is relatively dry compared to SWC (Supplementary Figs. 12–15). Fire–climate relationships increase in strength in the post-monsoon season (Supplementary Figs. 16–19), when fire occurrences increase with warmer temperatures in the cold regions of central and northern China. In SEC, post-monsoon season fire occurrences, like fire season occurrences, are strongly influenced by DTR and cloud fraction.In addition to strong regional fire–climate relationships, we found a dipole pattern between wildfire occurrences in SEC and SWC, mainly modulated by the ENSO system (Fig. 5). The dipole pattern is indicated by the first singular value decomposition (SVD) mode between the first-differenced, fire season WFAC and global sea surface temperature (SST) fields, which accounts for 53.4% of their total covariance (Fig. 5). Results were similar for the entire year and for non-detrended time series (Supplementary Figs. 20 and 21). Positive ENSO (El Niño) phases, characterized by abnormally high SSTs in the eastern equatorial Pacific Ocean (Fig. 5b), resulted in an increase in wildfire activity in SWC, but a decrease in SEC and northern China (Fig. 5a). The reverse spatial wildfire pattern occurs during negative ENSO (La Niña) years. This ENSO-modulated fire dipole pattern is confirmed by a strong negative correlation (r = −0.97, p  More

  • in

    Anopheles ecology, genetics and malaria transmission in northern Cambodia

    Mosquito abundance, biting rate and morphological identificationsA total of 3920 Anopheles sp. females, 1167 and 2753 during the dry and rainy seasons respectively, were captured on a total of 60 collection days. Overall 81% (3187/3920) of the samples were collected in the cow odor-baited double net traps (CBNTs) and while this relative abundance was rather consistent between different collection sites for the CBNTs, 67% (490/733) of the Anopheles from the human odor-baited double net traps (HBNTs) were collected in the forest sites (Table S1).The biting rate (# of females/trap/day) for the HBNTs was consistently higher in the forest sites compared to all other locations during both the rainy and the dry seasons (Table 1). However, for the CBNTs, while the biting rate was the highest in the forest sites during the dry season, the tendency changed during the rainy season with a higher biting rate in the villages and the forests near the villages compared to the forest sites (Table 1).Table 1 Biting and infectious rates of Anopheles mosquitoes collected by HBNTs and CBNTs across sites and seasons.Full size tableA total of 3131 females were morphologically identified as 14 different Anopheles species or complexes of morphologically indistinguishable sibling species. Based on these morphological identifications, species thought to be primary vectors comprised only 10.2% of the collected mosquitoes: Anopheles dirus s.l. (8.1%, n = 319), A. minimus s.l. (0.4%, n = 15) and A. maculatus s.l. (1.7%, n = 67). The most abundant species (represented by more than a hundred individuals in our collection) constituted 75.8% of the collected Anopheles mosquitoes and were represented by 6 species complexes: A. barbirostris (21.2%, n = 831), A. philippinensis (14.6%, n = 571), A. hyrcanus (13.6%, n = 535), A. kochi (10.5%, n = 412), A. dirus (8.1%), A. aconitus (7.7%, n = 303).Molecular determination of mosquito speciesA total of 844 females were molecularly characterized for species in the random subset and represent 26 distinct Anopheles species as determined by ITS2 and CO1 (Table S2). The most abundant species (representing ≥ 5% of the samples; n ≥ 42) comprise 77.8% of the molecularly typed individuals and represent 8 species from 6 different species complexes. These most abundant species included A. dirus (13.2%, n = 112) from the Dirus complex. From the Barbirostris complex; A. dissidens (13.2%, n = 112), and A. campestris-wejchoochotei (8.1%, n = 69). From the Hyrcanus Group, A. peditaeniatus (12.8%, n = 108), and A. nitidus (5.7%, n = 48). The Annularis, Funestus, and Kochi Groups were each represented by a single species A. nivipes (9.2%, n = 78), A. aconitus (6.7%, n = 57), and A. kochi (8.7%, n = 74), respectively. The 18 less abundant species, represent by fewer than 42 samples and in many cases just a handful of samples included A. philippinensis (n = 17) and A. annularis (n = 1) from the Annularis Group, A. jamesii (n = 16), A. pseudojamesi (n = 1), and A. splendidus (n = 1) from the Jamesii Group and A. saeungae (n = 29) and A. barbirostris (n = 2) from the Barbirostris Group. From the Hyrcanus Group A. crawfordi (n = 40), A. argyropus (n = 1), An. nigerrimus (n = 28), and A. sinensis (n = 3) were sampled. Anopheles maculatus (n = 22), A. sawadwongporni (n = 4), and A. rampae (n = 2) from the Maculatus Group. Anopheles tessellatus from the Tessellatus Group and A. interruptus from the Asiaticus Group were each sampled once. A. vagus (n = 12) and A. karwari (n = 3) were also present. There were 2 mosquitoes that had 99.9% identical ITS2 and 99.4% identical CO1 sequences but matched no species in the NCBI database. In addition to the random subset, 79 Plasmodium sp. infected samples were molecularly characterized for species which resulted in a total of 29 Anopheles species as determined by ITS2 and CO1.Day biting rateOverall 20.2 ± 1.2% of the Anopheles females were captured during the daytime (between 06:00 and 18:00). Indeed, while the majority of Anopheles mosquitoes bite at night, an important proportion was active during the day (Fig. 2). Excluding species with extremely low sample sizes and unidentified samples, day biting behaviour was observed for all the Anopheles species and varied from 13 to 68% (Table S3).Figure 2Average number of Anopheles females collected per trap per hour in the different collection sites in the HBNTs and the CBNTs.Full size imageThe day biting rate in the HBNTs was not different across collection sites (19.6 ± 2.9%; χ2 = 3.6, df = 3, p = 0.3; Fig. 3a) but was higher during the dry season (25.9 ± 4.6%) compared to the rainy season (13.8 ± 3.5%; χ2 = 19.08, df = 1, p  More

  • in

    Diel niche variation in mammals associated with expanded trait space

    1.Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Refinetti, R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 39, 173–192 (2008).Article 

    Google Scholar 
    5.DeCoursey, P. J. Diversity of function of SCN pacemakers in behavior and ecology of three species of sciurid rodents. Biol. Rhythm Res. 35, 13–33 (2004).Article 

    Google Scholar 
    6.Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. In search of a temporal niche: environmental factors. In Neurobiology of Circadian Timing, Vol. 199 (eds. Kalsbeek, A., Merrow, M., Roenneberg, T. & Foster, R. G.) 281–304 (Elsevier, 2012).7.Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, or exploring the lizard niche hypervolume. Am. Nat. 190, 601–616 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).Article 

    Google Scholar 
    10.Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    14.Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).Article 

    Google Scholar 
    17.Ankel-Simons, F. & Rasmussen, D. T. Diurnality, nocturnality, and the evolution of primate visual systems. Am. J. Phys. Anthropol. 137, 100–117 (2008).Article 

    Google Scholar 
    18.Russo, D., Maglio, G., Rainho, A., Meyer, C. F. J. & Palmeirim, J. M. Out of the dark: diurnal activity in the bat Hipposideros ruber on São Tomé island (West Africa). Mamm. Biol. 76, 701–708 (2011).Article 

    Google Scholar 
    19.Halle, S. Ecological relevance of daily activity patterns. In Activity Patterns in Small Mammals: An Ecological Approach (eds. Halle, S. & Stenseth, N. C.) 67–90 (Springer, 2000).20.Mammola, S. Assessing similarity of n-dimensional hypervolumes: which metric to use? J. Biogeogr. 46, 2012–2023 (2019).Article 

    Google Scholar 
    21.Langerhans, R. B. & DeWitt, T. J. Shared and unique features of evolutionary diversification. Am. Nat. 164, 335–349 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. USA 104, 17707–17712 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Bielby, J. et al. The fast-slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111, 13727–13732 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bonebrake, T. C., Rezende, E. L. & Bozinovic, F. Climate change and thermoregulatory consequences of activity time in mammals. Am. Nat. 196, 45–56 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Roll, U., Dayan, T. & Kronfeld-Schor, N. On the role of phylogeny in determining activity patterns of rodents. Evol. Ecol. 20, 479–490 (2006).Article 

    Google Scholar 
    28.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Anderson, S. R. & Wiens, J. J. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71, 1944–1959 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Pei, Y., Valcu, M. & Kempenaers, B. Interference competition pressure predicts the number of avian predators that shifted their timing of activity. Proc. R. Soc. B 285, 20180744 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Donati, G. & Borgognini-Tarli, S. M. From darkness to daylight: cathemeral activity in primates. J. Anthropol. Sci. 84, 7–32 (2006).
    Google Scholar 
    33.Veilleux, C. C. & Cummings, M. E. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. J. Exp. Biol. 215, 4085 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.le Roux, A., Cherry, M. I., Gygax, L. & Manser, M. B. Vigilance behaviour and fitness consequences: comparing a solitary foraging and an obligate group-foraging mammal. Behav. Ecol. Sociobiol. 63, 1097–1107 (2009).Article 

    Google Scholar 
    35.Voigt, C. C. & Lewanzik, D. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc. R. Soc. B 278, 2311–2317 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Rydell, J. & Speakman, J. R. Evolution of nocturnality in bats: potential competitors and predators during their early history. Biol. J. Linn. Soc. 54, 183–191 (1995).Article 

    Google Scholar 
    37.Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    38.Gaston, K. J. Nighttime ecology: the “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Muul, I. & Lim, B. L. Comparative morphology, food habits, and ecology of some Malaysian arboreal rodents. In The Ecology of Arboreal Folivores (ed. Montgomery, G. G.) 361–368 (Smithsonian Institution, 1978).40.Hall, M. I., Kamilar, J. M. & Kirk, E. C. Eye shape and the nocturnal bottleneck of mammals. Proc. R. Soc. B 279, 4962–4968 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Heesy, C. P. & Hall, M. I. The nocturnal bottleneck and the evolution of mammalian vision. Brain. Behav. Evol. 75, 195–203 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).Article 

    Google Scholar 
    43.Frey, S., Volpe, J. P., Heim, N. A., Paczkowski, J. & Fisher, J. T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 129, 1128–1140 (2020).Article 

    Google Scholar 
    44.Benítez-López, A. Animals feel safer from humans in the dark. Science 360, 1185–1186 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Rabaiotti, D. & Woodroffe, R. Coping with climate change: limited behavioral responses to hot weather in a tropical carnivore. Oecologia 189, 587–599 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Gaston, K. J., Visser, M. E. & Hölker, F. The biological impacts of artificial light at night: the research challenge. Philos. Trans. R. Soc. B 370, 20140133 (2015).Article 

    Google Scholar 
    47.McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).ADS 
    Article 

    Google Scholar 
    48.Cox, D. T. C., Maclean, I. M. D., Gardner, A. S. & Gaston, K. J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26, 7099–7111 (2020).ADS 
    Article 

    Google Scholar 
    49.Campbell, G. S. & Norman, J. M. Animals and their environment. In An Introduction to Environmental Biophysics (eds. Campbell, G. S. & Norman, J. M.) 185–207 (Springer, 1998).50.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Shores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M. & Wirsing, A. J. Mesopredators change temporal activity in response to a recolonizing apex predator. Behav. Ecol. 30, 1324–1335 (2019).Article 

    Google Scholar 
    52.Carter, N., Jasny, M., Gurung, B. & Liu, J. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Glob. Ecol. Conserv. 3, 149–162 (2015).Article 

    Google Scholar 
    53.Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Ecological distinctiveness of birds and mammals at the global scale. Glob. Ecol. Conserv. 22, e00970 (2020).Article 

    Google Scholar 
    54.Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B 269, 1721–1727 (2002).Article 

    Google Scholar 
    55.Thuiller, W. et al. Conserving the functional and phylogenetic trees of life of European tetrapods. Philos. Trans. R. Soc. B 370, 20140005 (2015).Article 

    Google Scholar 
    56.Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Holker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Mittermeier, R., Rylands, A., Lacher, T. & Wilson, D. Handbook of the Mammals of the World, Vol. 1–4 & 6–9 (Lynx Edicions, 2001).59.R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).60.Pineda-Munoz, S. & Alroy, J. Dietary characterization of terrestrial mammals. Proc. R. Soc. B 281, 20141173 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article 

    Google Scholar 
    63.Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    64.Taugourdeau, S., Villerd, J., Plantureux, S., Huguenin-Elie, O. & Amiaud, B. Filling the gap in functional trait databases: use of ecological hypotheses to replace missing data. Ecol. Evol. 4, 944–958 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Filho, J. A. F. D., Rangel, T. F., Santos, T. & Bini, L. M. Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution 66, 1079–1090 (2012).Article 

    Google Scholar 
    66.Duong, T. & Hazelton, M. Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametr. Stat. 15, 17–30 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    67.Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    68.Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar  More

  • in

    Behavioural movement strategies in cyclic models

    In this work, we performed stochastic simulations of a cyclic nonhierarchical system composed of 5 species. To this purpose, we implemented a standard numerical algorithm largely used to study spatial biological systems11,13,41. We considered a generalisation of the rock-paper-scissors game for 5 species, whose rules are illustrated in Fig. 1a. The arrows indicate a cyclic dominance among the species. Accordingly, individuals of species i beat individuals of species (i+1), with (i=1,2,3,4,5).The dynamics of individuals’ spatial organisation occurs in a square lattice with periodic boundary conditions, following the rules: selection, reproduction, and mobility. We assumed the May-Leonard implementation so that the total number of individuals is not conserved43. Each grid point contains at most one individual, which means that the maximum number of individuals is ({mathcal {N}}), the total number of grid points.Initially, the number of individuals is the same for all species, i.e., (I_i,=,{mathcal {N}}/5), with (i=1,2,3,4,5) (there are no empty spaces in the initial state). We prepared the initial conditions by distributing each individual at a random grid point. At each timestep, one interaction occurs, changing the spatial configuration of individuals. The possible interactions are:

    Selection: (i j rightarrow i otimes ,), with (j = i+1), where (otimes) means an empty space; every time one selection interaction occurs, the grid point occupied by the individual of species (i+1) vanishes.

    Reproduction: (i otimes rightarrow i i,); when one reproduction is realised an individual of species i fills the empty space.

    Mobility: (i odot rightarrow odot i,), where (odot) means either an individual of any species or an empty site; an individual of species i switches positions with another individual of any species or with an empty space.

    In our stochastic simulations, selection, reproduction, and mobilities interactions occur with the following probabilities: s, r and m, respectively. We assumed that individuals of all species have the same probabilities of selecting, reproducing and moving. The interactions were implemented by assuming the von Neumann neighbourhood, i.e., individuals may interact with one of their four nearest neighbours. The simulation algorithm follows three steps: i) sorting an active individual; ii) raffling one interaction to be executed; iii) drawing one of the four nearest neighbours to suffer the sorted interaction (the only exception is the directional mobility, where the neighbour is chosen according to the movement tactic). If the interaction is executed, one timestep is counted. Otherwise, the three steps are redone. Our time unit is called generation, defined as the necessary time to ({mathcal {N}}) timesteps to occur.In our model, individuals of one out of the species can move into the direction with more individuals of a target species. The choice is based on the strategy assumed by species. We assumed three sorts of directional movement tactics:

    Attack tactic: an individual of species i moves into the direction with more individuals of species (i+1);

    Anticipation tactic: an individual of species i goes towards the direction with a larger number of individuals of species (i+2);

    Safeguard tactic: an individual of species i walk into the direction with a larger concentration of individuals of species (i-2).

    In the standard model, individuals of all species move randomly.We considered that only individuals of species 1 perform the directional movement tactics, as illustrated in Fig. 1b. The solid, dashed, and dashed-dotted lines represent the Attack, Anticipation, and Safeguard tactics, respectively. The concentric circumference arcs show that individuals of species 2, 3, 4, and 5 always move randomly. For implementing a directional movement, the algorithm follows the steps: i) it is assumed a disc of radius R (the perception radius), in the active individual’s neighbourhood; ii) it is defined four circular sectors in the directions of the four nearest neighbours; iii) according to the movement tactic, the target species is defined: species 2, 3, and 4, for Attack, Anticipation, and Safeguard tactics, respectively; iv) it is counted the number of individuals of the target species within each circular sector. Individuals on the borders are assumed to be part of both circular sectors; v) the circular sector that contains more individuals of the target species is chosen. In the event of a tie, a draw between the tied directions is made; vi) the active individual switches positions with the immediate neighbour in the chosen direction. The swap is also executed in case of the neighbour grid point is empty.To observe the spatial patterns, we first performed a single simulation for the standard model, Attack, Anticipation, and Safeguard tactics. The realisations run in square lattices with (500^2) grid points, for a timespan of 5000 generations. We captured 500 snapshots of the lattice (in intervals of 10 generations), that were used to make the videos of the dynamics of the spatial patterns showed in https://youtu.be/Ndvk6Rg57m4 (standard), https://youtu.be/JGhkDAHSo74 (Attack), https://youtu.be/ZZp9QlOfv2Q (Anticipation), and https://youtu.be/eFxWdLhIOuQ (Safeguard). The final snapshots were depicted in Fig. 2a–d. Individuals of species 1, 2, 3, 4, and 5 are identified with the colours ruby, blue, pink, green, and yellow, respectively; while white dots represent empty spaces. The simulations were performed assuming selection, reproduction, and mobility probabilities: (s = r = m = 1/3). The perception radius was assumed to be (R=3).The population dynamics were studied by means of the spatial density (rho _i), defined as the fraction of the grid occupied by individuals of species i at time t, i.e., (rho _i = I_i/{mathcal {N}}), where (i=0) stands for empty spaces and (i=1,…,5) represent the species 1, 2, 3, 4, and 5. The temporal changes in spatial densities of the simulations showed in Fig. 2 were depicted in Fig. 3, where the grey, ruby, blue, pink, green, and yellow lines represent the densities of empty spaces and species 1, 2, 3, 4, and 5, respectively. We also computed how the selection risk of individuals of species i changes in time. To this purpose, the algorithm counts the total number of individuals of species i at the beginning of each generation. It is then counted the number of times that individuals of species i are killed during the generation. The ratio between the number of selected individuals and the initial amount is defined as the selection risk of species i, (zeta _i). The results were averaged for every 50 generations. Figure 4 shows (zeta _i,(%)) as a function of the time for the simulations presented in Fig. 2. The ruby, blue, pink, green, and yellow lines show the selection risks of individuals of species 1, 2, 3, 4, and 5, respectively.To quantify the spatial organisation of the species, we studied the spatial autocorrelation function. This quantity measures how individuals of a same species are spatially correlated, indicating spatial domain sizes. Following the procedure carried out in literature41,42,44,45,46, we first calculated the Fourier transform of the spectral density as (C({{vec{r^{prime}}}}) = {mathcal{F}}^{{ – 1}} { S({{vec{k}}})} /C(0)), where the spectral density (S({{vec{k}}})) is given by (S({{vec{k}}}) = sumlimits_{{k_{x} ,k_{y} }} {mkern 1mu} varphi ({{vec{kappa }}})), with (varphi ({{vec{kappa }}}) = {mathcal{F}}{mkern 1mu} { phi ({{vec{r}}}) – langle phi rangle }). The function (phi ({{vec{r}}})) represents the species in the position ({{vec{r}}}) in the lattice (we assumed 0, 1, 2, 3, 4, and 5, for empty sites, and individuals of species 1, 2, 3, 4, and 5, respectively). We then computed the spatial autocorrelation function as$$C(vec{r^{prime}}) = sumlimits_{{|{{vec{r^{prime}}}}| = x + y}} {frac{{C({{vec{r^{prime}}}})}}{{min (2N – (x + y + 1),(x + y + 1))}}}.$$Subsequently, we found the scale of the spatial domains of species i, defined for (C(l_i)=0.15), where (l_i) is the characteristic length for species i.We calculated the autocorrelation function by running 100 simulations using lattices with (500^2) grid points, assuming (s = r = m = 1/3) and (R=3). Each simulation started from different random initial conditions. We then captured each species spatial configuration after 5000 generations to calculate the autocorrelation functions. Finally, we averaged the autocorrelation function in terms of the radial coordinate r and calculated the characteristic length for each species. We also calculated the standard deviation for the autocorrelation functions and the characteristic lengths. Figure 4 shows the comparison of the results for Attack, Anticipation, and Safeguard strategies with the standard model. The ruby, blue, pink, green, and yellow circles indicate the mean values for species 1, 2, 3, 4, and 5, respectively. In the case of standard model, the mean values are represented by grey circles, which are the same for all species. The error bars show that standard deviation. The horizontal black line represents (C(l_i), =, 0.15).To further explore the numerical results, we studied how the perception radius R influences species spatial densities and selection risks. We calculated the mean value of the spatial species densities, (langle , rho _i,rangle) and the mean value of selection risks, (langle , zeta _i,rangle) from a set of 100 simulations in lattices with (500^2) grid points, starting from different initial conditions for (R=1,2,3,4,5). We used (s,=r,=,m,=1/3) and a timespan of (t=5000) generations. The mean values and standard deviation were calculated using the second half of the simulations, thus eliminating the density fluctuations inherent in the pattern formation process. The results were shown in Fig. 6, where the circles represent the mean values and error bars indicate the standard deviation. The colours are the same as in Figs. 3 and 4. Furthermore, to verify the precision of the statistical results, we calculated the variation coefficient – the ratio between the standard deviation and the mean value. Supplementary Tables S1 and S2 show statistical outcomes for species densities and selections risks, respectively.We studied a more realistic scenario where not all individuals of species 1 can perform the directional movement tactics. For this reason, we defined the conditioning factor (alpha), with (0,le ,alpha ,le ,1), representing the proportion of individuals of species 1 that moves directionally. For (alpha =0) all individuals move randomly while for (alpha =1) all individuals move directionally. This means that every time an individual of species 1 is sorted to move, there is a probability (alpha) of the algorithm implementing the directional movement tactic, instead of randomly choosing one of its four immediate neighbours to switch positions. To understand the effects of the conditioning factor, we observed how the density of species 1 changes for the entire range of (alpha), with intervals of (Delta alpha = 0.1). The simulations were implemented for (R=3) and (s,=r,=,m,=1/3). It was computed the mean value of the spatial density of species 1, (langle , rho _1,rangle), and its standard deviation from a set of 100 different random initial conditions. The results were depicted in Fig. 7, where the green, red, and blue dashed lines show (langle , rho _1,rangle) as a function of (alpha). The error bars indicate the standard deviation.Finally, we aimed to investigate how the directional movement tactics jeopardise species coexistence for a wide mobility probability range. Because of this, we run 2000 simulations in lattices with (100^2) grid points for (0.05, More

  • in

    High turbidity levels alter coral reef fish movement in a foraging task

    1.Scholik, A. R. & Yan, H. Y. Effects of boat engine noise on the auditory sensitivity of the fathead minnow, Pimephales promelas. . Environ. Biol. Fish. 63, 203–209. https://doi.org/10.1023/A:1014266531390 (2002).Article 

    Google Scholar 
    2.Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544. https://doi.org/10.1038/ncomms10544 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends. Ecol. Evol. 25, 419–427. https://doi.org/10.1016/j.tree.2010.04.005 (2010).Article 
    PubMed 

    Google Scholar 
    4.Halfwerk, W. & Slabbekoorn, H. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biol. Lett. 11, 20141051. https://doi.org/10.1098/rsbl.2014.1051 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Baker, C. F. & Montgomery, J. C. Sensory deficits induced by cadmium in banded kokopu, Galaxias fasciatus, juveniles. Environ. Biol. Fish. 62, 455–464. https://doi.org/10.1023/A:1012290912326 (2001).Article 

    Google Scholar 
    6.O’Connor, J. J. et al. Sediment pollution impacts sensory ability and performance of settling coral-reef fish. Oecologia 180, 11–21. https://doi.org/10.1007/s00442-015-3367-6 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    7.Tierney, K. B., Sampson, J. L., Ross, P. S., Sekela, M. A. & Kennedy, C. J. Salmon olfaction is impaired by an environmentally realistic pesticide mixture. Environ. Sci. Tech. 42, 4996–5001. https://doi.org/10.1021/es800240u (2008).CAS 
    Article 

    Google Scholar 
    8.Ward Ashley, J. W., Duff Alison, J., Horsfall Jennifer, S. & Currie, S. Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proc. R Soc. B Biol. Sci. 275, 101–105. https://doi.org/10.1098/rspb.2007.1283 (2008).CAS 
    Article 

    Google Scholar 
    9.Besson, M. et al. Exposure to agricultural pesticide impairs visual lateralization in a larval coral reef fish. Sci. Rep. 7, 9165. https://doi.org/10.1038/s41598-017-09381-0 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Vasconcelos, R. O., Amorim, M. C. P. & Ladich, F. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J. Exp. Biol. 210, 2104–2112. https://doi.org/10.1242/jeb.004317 (2007).Article 
    PubMed 

    Google Scholar 
    11.Bruintjes, R. et al. Rapid recovery following short-term acoustic disturbance in two fish species. R. Soc. Open Sci. 3, 150686. https://doi.org/10.1098/rsos.150686 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Radford, A. N., Lèbre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Chang. Biol. 22, 3349–3360. https://doi.org/10.1111/gcb.13352 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences. Mar. Pollut. Bull. 64, 1519–1528. https://doi.org/10.1016/j.marpolbul.2012.05.032 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Simpson, S. D. et al. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol. Lett. https://doi.org/10.1098/rsbl.2011.0293 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.van der Sluijs, I. et al. Communication in troubled waters: responses of fish communication systems to changing environments. Evol. Ecol. 25, 623–640. https://doi.org/10.1007/s10682-010-9450-x (2011).Article 

    Google Scholar 
    16.Wysocki, L. E., Dittami, J. P. & Ladich, F. Ship noise and cortisol secretion in European freshwater fishes. Biol. Conserv. 128, 501–508. https://doi.org/10.1016/j.biocon.2005.10.020 (2006).Article 

    Google Scholar 
    17.Montgomery, J. C., Jeffs, A., Simpson, S. D., Meekan, M. & Tindle, C. Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Adv. Mar. Biol. 51, 143–196. https://doi.org/10.1016/S0065-2881(06)51003-X (2006).Article 
    PubMed 

    Google Scholar 
    18.Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at risk revisited. 130, 1 (2011).
    Google Scholar 
    19.Collin, S. P. & Hart, N. S. Vision and photoentrainment in fishes: The effects of natural and anthropogenic perturbation. Integr. Zool. 10, 15–28. https://doi.org/10.1111/1749-4877.12093 (2015).Article 
    PubMed 

    Google Scholar 
    20.Brodie, J. E. et al. Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses. Mar Pollut Bull 65, 81–100. https://doi.org/10.1016/j.marpolbul.2011.12.012 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Marshall, N. J. in Animal Signals. Signalling and signal design in animal communication (eds Y. Espmark, Y. Amundsen, & G. Rosenqvist) 83–120 (Tapir Academic Press, 2000).22.Marshall, J. Vision and lack of vision in the ocean. Curr. Biol. 27, R494–R502. https://doi.org/10.1016/j.cub.2017.03.012 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Dev. Biol. 106, 31–42. https://doi.org/10.1016/j.semcdb.2020.06.007 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Collier, C., Waycott, M. & Ospina, A. G. Responses of four Indo-West Pacific seagrass species to shading. Mar. Pollut. Bull. 65, 342–354. https://doi.org/10.1016/j.marpolbul.2011.06.017 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.De’ath, G. & Fabricius, K. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol. Appl. 20, 840–850. https://doi.org/10.1890/08-2023.1 (2010).Article 
    PubMed 

    Google Scholar 
    26.Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Morgan, K. M., Perry, C. T., Johnson, J. A. & Smithers, S. G. Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Front. Mar. Sci. 4, 1–13. https://doi.org/10.3389/fmars.2017.00224 (2017).Article 

    Google Scholar 
    28.Schartau, J. M., Sjögreen, B., Gagnon, Y. L. & Kröger, R. H. H. Optical plasticity in the crystalline lenses of the cichlid fish Aequidens pulcher. Curr. Biol. 19, 122–126. https://doi.org/10.1016/j.cub.2008.11.062 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Kröger, R. H. H., Braun, S. C. & Wagner, H.-J. Rearing in different photic and chromatic environments modifies spectral responses of cone horizontal cells in adult fish retina. Vis. Neuro Sci. 18, 857–864. https://doi.org/10.1017/S0952523801186025 (2001).Article 

    Google Scholar 
    30.Kröger, R. H. H., Knoblauch, B. & Wagner, H.-J. Rearing in different photic and spectral environments changes the optomotor response to chromatic stimuli in the cichlid fish Aequidens pulcher. J. Exp. Biol. 206, 1643–1648. https://doi.org/10.1242/jeb.00337 (2003).Article 
    PubMed 

    Google Scholar 
    31.Borner, K. K. et al. Turbidity affects social dynamics in Trinidadian guppies. Behav. Ecol. Sociobiol. 69, 645–651. https://doi.org/10.1007/s00265-015-1875-3 (2015).Article 

    Google Scholar 
    32.Kimbell, H. S. & Morrell, L. J. Turbidity influences individual and group level responses to predation in guppies Poecilia reticulata. . Anim. Behav. 103, 179–185. https://doi.org/10.1016/j.anbehav.2015.02.027 (2015).Article 

    Google Scholar 
    33.Johansen, J. L. & Jones, G. P. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes. Ecol. Appl. 23, 1504–1517. https://doi.org/10.1890/12-0704.1 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Chamberlain, A. C. & Ioannou, C. C. Turbidity increases risk perception but constrains collective behaviour during foraging by fish shoals. Anim. Behav. 156, 129–138. https://doi.org/10.1016/j.anbehav.2019.08.012 (2019).Article 

    Google Scholar 
    35.Gregory, R. S. Effect of turbidity on the predator avoidance behaviour of juvenile Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 50, 241–246. https://doi.org/10.1139/f93-027 (1993).Article 

    Google Scholar 
    36.Hess, S. et al. Enhanced fast-start performance and anti-predator behaviour in a coral reef fish in response to suspended sediment exposure. Coral Reefs 38, 103–108. https://doi.org/10.1007/s00338-018-01757-6 (2019).ADS 
    Article 

    Google Scholar 
    37.Miner, J. G. & Stein, R. A. Detection of predators and habitat choice by small Bluegills: Effects of turbidity and alternative prey. T Am. Fish. Soc. 125, 97–103. https://doi.org/10.1577/1548-8659(1996)125%3c0097:DOPAHC%3e2.3.CO;2 (1996).Article 

    Google Scholar 
    38.Utne-Palm, A. C. Visual feeding of fish in a turbid environment: Physical and behavioural aspects. Mar. Freshw. Behav. Phys. 35, 111–128. https://doi.org/10.1080/10236240290025644 (2002).Article 

    Google Scholar 
    39.Fiksen, Ø., Aksnes, D., Flyum, H. & M. & Giske, J. ,. The influence of turbidity on growth and survival of fish larvae: A numerical analysis. Hydrobiologia 484, 49–59. https://doi.org/10.1023/A:1021396719733 (2002).Article 

    Google Scholar 
    40.Gregory, R. S. & Levings, C. D. The effects of turbidity and vegetation on the risk of juvenile salmonids, Oncorhynchus spp, to predation by adult cutthroat trout, O. clarkii. Environ Biol Fish 47, 279–288. https://doi.org/10.1007/BF00000500 (1996).Article 

    Google Scholar 
    41.Wenger, A. S., McCormick, M. I., McLeod, I. M. & Jones, G. P. Suspended sediment alters predator–prey interactions between two coral reef fishes. Coral Reefs 32, 369–374. https://doi.org/10.1007/s00338-012-0991-z (2013).ADS 
    Article 

    Google Scholar 
    42.Asaeda, T., Kyung Park, B. & Manatunge, J. Characteristics of reaction field and the reactive distance of a planktivore, Pseudorasbora parva (Cyprinidae), in various environmental conditions. Hydrobiologia 489, 29–43. https://doi.org/10.1023/A:1023298823106 (2002).Article 

    Google Scholar 
    43.Barrett, J. C., Grossman, G. D. & Rosenfeld, J. Turbidity-induced changes in reactive distance of rainbow trout. Trans. Am. Fish. Soc. 121, 437–443. https://doi.org/10.1577/1548-8659(1992)121%3c0437:TICIRD%3e2.3.CO;2 (1992).Article 

    Google Scholar 
    44.Sweka, J. A. & Hartman, K. J. Reduction of reactive distance and foraging success in smallmouth bass, Micropterus dolomieu, exposed to elevated turbidity levels. Environ. Biol. Fish. 67, 341–347. https://doi.org/10.1023/A:1025835031366 (2003).Article 

    Google Scholar 
    45.Suriyampola, P. S., Cacéres, J. & Martins, E. P. Effects of short-term turbidity on sensory preference and behaviour of adult fish. Anim. Behav. 146, 105–111. https://doi.org/10.1016/j.anbehav.2018.10.014 (2018).Article 

    Google Scholar 
    46.De Robertis, A., Ryer, C. H., Veloza, A. & Brodeur, R. D. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Can. J. Fish. Aquat. Sci. 60, 1517–1526. https://doi.org/10.1139/f03-123 (2003).Article 

    Google Scholar 
    47.Huenemann, T. W., Dibble, E. D. & Fleming, J. P. Influence of turbidity on the foraging of largemouth bass. Trans. Am. Fish. Soc. 141, 107–111. https://doi.org/10.1080/00028487.2011.651554 (2012).Article 

    Google Scholar 
    48.Sekhar, M. A., Singh, R., Bhat, A. & Jain, M. Feeding in murky waters: acclimatization and landmarks improve foraging efficiency of zebrafish (Danio rerio) in turbid waters. Biol. Lett. 15, 20190289. https://doi.org/10.1098/rsbl.2019.0289 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Wenger, A. S., Johansen, J. L. & Jones, G. P. Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. J. Exp. Mar. Biol. Ecol. 428, 43–48. https://doi.org/10.1016/j.jembe.2012.06.004 (2012).Article 

    Google Scholar 
    50.Wenger, A. S. et al. Suspended sediment prolongs larval development in a coral reef fish. J. Exp. Biol. 217, 1122–1128. https://doi.org/10.1242/jeb.094409 (2014).Article 
    PubMed 

    Google Scholar 
    51.Ehlman, S. M., Sandkam, B. A., Breden, F. & Sih, A. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity. J. Comput. Physiol. 201, 1125–1135. https://doi.org/10.1007/s00359-015-1041-4 (2015).Article 

    Google Scholar 
    52.Hazelton, P. D. & Grossman, G. D. Turbidity, velocity and interspecific interactions affect foraging behaviour of rosyside dace (Clinostomus funduloides) and yellowfin shiners (Notropis lutippinis). Ecol. Freshw. Fish 18, 427–436. https://doi.org/10.1111/j.1600-0633.2009.00359.x (2009).Article 

    Google Scholar 
    53.Hecht, T. & van der Lingen, C. D. Turbidity-induced changes in feeding strategies of fish in estuaries. S. Afr. J. Zool. 27, 95–107. https://doi.org/10.1080/02541858.1992.11448269 (1992).Article 

    Google Scholar 
    54.Sweka, J. A. & Hartman, K. J. Effects of turbidity on prey consumption and growth in brook trout and implications for bioenergetics modeling. Can. J. Fish. Aquat. Sci. 58, 386–393. https://doi.org/10.1139/f00-260 (2001).Article 

    Google Scholar 
    55.Burt de Perera, T. & Macías Garcia, C. Amarillo fish (Girardinichthys multiradiatus) use visual landmarks to orient in space. Ethology 109, 341–350. https://doi.org/10.1046/j.1439-0310.2003.00876.x (2003).Article 

    Google Scholar 
    56.Warburton, K. The use of local landmarks by foraging goldfish. Anim. Behav. 40, 500–505. https://doi.org/10.1016/s0003-3472(05)80530-5 (1990).Article 

    Google Scholar 
    57.Burt de Perera, T. & Guilford, T. C. Rapid learning of shelter position in an intertidal fish, the shanny Lipophrys pholis L. J. Fish. Biol. 72, 1386–1392. https://doi.org/10.1111/j.1095-8649.2008.01804.x (2008).Article 

    Google Scholar 
    58.Hughes, R. N. & Blight, C. M. Two intertidal fish species use visual association learning to track the status of food patches in a radial maze. Anim. Behav. 59, 613–621. https://doi.org/10.1006/anbe.1999.1351 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Huntingford, F. A. & Wright, P. J. How sticklebacks learn to avoid dangerous feeding patches. Behav. Process. 19, 181–189. https://doi.org/10.1016/0376-6357(89)90040-5 (1989).CAS 
    Article 

    Google Scholar 
    60.Reese, E. Orientation behavior of butterflyfishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps. Environ. Biol. Fish. 25, 79–86. https://doi.org/10.1007/bf00002202 (1989).Article 

    Google Scholar 
    61.Silveira, M. M., Oliveira, J. J. & Luchiari, A. C. Dusky damselfish Stegastes fuscus relational learning: evidences from associative and spatial tasks. J. Fish. Biol. 86, 1109–1120. https://doi.org/10.1111/jfb.12618 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Cyrus, D. P. & Blaber, S. J. M. Turbidity and salinity in a tropical northern Australian estuary and their influence on fish distribution. Estuar. Coast Shelf. S 35, 545–563. https://doi.org/10.1016/S0272-7714(05)80038-1 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Macdonald, R. K., Ridd, P. V., Whinney, J. C., Larcombe, P. & Neil, D. T. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef. Mar. Pollut. Bull. 74, 82–94. https://doi.org/10.1016/j.marpolbul.2013.07.026 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Wenger, A. S. et al. A critical analysis of the direct effects of dredging on fish. Fish Fish 18, 967–985. https://doi.org/10.1111/faf.12218 (2017).Article 

    Google Scholar 
    65.Wenger, A. S. & McCormick, M. I. Determining trigger values of suspended sediment for behavioral changes in a coral reef fish. Mar. Pollut. Bull. 70, 73–80. https://doi.org/10.1016/j.marpolbul.2013.02.014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Gardner, M. B. Mechanisms of size selectivity by planktivorous fish: a test of hypotheses. Ecology 62, 571–578. https://doi.org/10.2307/1937723 (1981).Article 

    Google Scholar 
    67.Shoup, D. E. & Wahl, D. H. The effects of turbidity on prey selection by piscivorous largemouth bass. Trans. Am. Fish. Soc. 138, 1018–1027. https://doi.org/10.1577/T09-015.1 (2009).Article 

    Google Scholar 
    68.Cheung, A., Zhang, S., Stricker, C. & Srinivasan, M. V. Animal navigation: the difficulty of moving in a straight line. Biol. Cybern. 97, 47–61. https://doi.org/10.1007/s00422-007-0158-0 (2007).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    69.McLean, D. J. & Skowron Volpani, M. A. trajr: An R package for characterisation of animal trajectories. Ethology 124, 40–448. https://doi.org/10.1111/eth.12739 (2018).Article 

    Google Scholar 
    70.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    71.jtools: Analysis and presentation of social scientific data v. R package version 2.0.1 (2019).72.Gradall, K. S. & Swenson, W. A. Responses of brook trout and creek chubs to turbidity. Trans. Am. Fish. Soc. 111, 392–395. https://doi.org/10.1577/1548-8659(1982)111%3c392:ROBTAC%3e2.0.CO;2 (1982).Article 

    Google Scholar 
    73.Berg, L. & Northcote, T. G. Changes in territorial, gill-flaring, and feeding behavior in juvenile Coho salmon (Oncorhynchus kisutch) following short-term pulses of suspended sediment. Can. J. Fish. Aquat. Sci. 42, 1410–1417. https://doi.org/10.1139/f85-176 (1985).Article 

    Google Scholar 
    74.Paris, C. B. et al. Reef odor: A wake up call for navigation in reef fish larvae. PLoS ONE 8, e72808. https://doi.org/10.1371/journal.pone.0072808 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Siebeck, U. E., Parker, A. N., Sprenger, D., Mathger, L. M. & Wallis, G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. 20, 407–410. https://doi.org/10.1016/j.cub.2009.12.047 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Cheney, K. L., Grutter, A. S., Blomberg, S. P. & Marshall, N. J. Blue and yellow signal cleaning behavior in Coral Reef Fishes. Curr. Biol. 19, 1283–1287. https://doi.org/10.1016/j.cub.2009.06.028 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Brown, C. & Braithwaite, V. A. Size matters: a test of boldness in eight populations of the poeciliid Brachyraphis episcopi. Anim. Behav. 68, 1325–1329. https://doi.org/10.1016/j.anbehav.2004.04.004 (2004).Article 

    Google Scholar 
    78.Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Annu. Rev. Mar. Sci. 9, 445–468. https://doi.org/10.1146/annurev-marine-010816-060551 (2017).ADS 
    Article 

    Google Scholar  More

  • in

    Mosquitoes of the Maculipennis complex in Northern Italy

    1.Kettle, D.S. Medical and Veterinary Entomology 2nd edn (CAB International, 1995).2.Falleroni, D. Fauna anofelica italiana e suo “habitat” (paludi, risaie, canali). Metodi di lotta contro la malaria. Riv. Malariol. 5, 553–559 (1926).
    Google Scholar 
    3.Severini, F., Toma, L., Di Luca, M. & Le, R. R. Zanzare Italiane: generalità e identificazione degli adulti (Diptera, Culicidae). Fragmenta Entomologica. 41(2), 213–372. https://doi.org/10.4081/FE.2009.92 (2009).Article 

    Google Scholar 
    4.Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145(5), 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Manguin, S. et al. Biodiversity of Malaria in the World (John Libbey Eurotext, 2008).6.Linton, Y. M., Smith, L. & Harbach, E. Observations on the taxonomic status of Anopheles subalpinus Hackett & Lewis and An. melanoon Hacket. Eur. Mosq. Bull. 13, 1–7 (2002).
    Google Scholar 
    7.Boccolini, D., Di Luca, M., Marinucci, M. & Romi, R. Further molecular and morphological support for the formal synonymy of Anopheles subalpinus Hackett & Lewis with An. melanoon Hackett. Eur. Mosq. Bull. 16, 1–5 (2003).
    Google Scholar 
    8.Andreeva, I. V., Sibataev, A. K., Rusakova, A. M. & Stegniĭ, V. N. Morpho-cytogenetic characteristic of the mosquito Anopheles artemievi (Diptera: Culicidae), a malaria vector from the complex maculipennis. Parazitologiia. 41(5), 348–363 (2007).PubMed 

    Google Scholar 
    9.Artemov, G. N. et al. A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi. Parasites Vectors 11(1), 211. https://doi.org/10.1186/s13071-018-2657-3 (2018).MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Naumenko, A. N. et al. Chromosome and genome divergence between the cryptic Eurasian malaria vector-species Anopheles messeae and Anopheles daciae. Genes (Basel) 11(2), 165. https://doi.org/10.3390/genes11020165 (2020).CAS 
    Article 

    Google Scholar 
    11.Nicolescu, G., Linton, Y. M., Vladimirescu, A., Howard, T. M. & Harbach, R. E. Mosquitoes of the Anopheles maculipennis group (Diptera: Culicidae) in Romania, with the discovery and formal recognition of a new species based on molecular and morphological evidence. Bull. Entomol. Res. 94(6), 525–535. https://doi.org/10.1079/ber2004330 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Gordeev, M. I., Zvantsov, A. B., Goriacheva, I. I., Shaĭkevich, E. V. & Ezhov, M. N. Description of the new species Anopheles artemievi sp.n. (Diptera, Culicidae). Med. Parazitol. (Mosk). 2, 4–5 (2005).
    Google Scholar 
    13.Djadid, N. D. et al. Molecular identification of Palearctic members of Anopheles maculipennis in northern Iran. Malar. J. 6, 6. https://doi.org/10.1186/1475-2875-6-6 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Bietolini, S., Candura, F. & Coluzzi, M. Spatial and long term temporal distribution of the Anopheles maculipennis complex species in Italy. Parassitologia 48(4), 581–608 (2006).CAS 
    PubMed 

    Google Scholar 
    15.Romi, R. et al. Status of malaria vectors in Italy. J. Med. Entomol. 34(3), 263–271. https://doi.org/10.1093/jmedent/34.3.263 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Zamburlini, R. & Cargnus, E. Residual mosquitoes in the northern Adriatic seacoast 50 years after the disappearance of malaria. Parassitologia 40, 431–437 (1998).CAS 
    PubMed 

    Google Scholar 
    17.Gratz, N. G. Vector- and Rodent-Borne Diseases in Europe and North America: Distribution, Public Health Burden, and Control (Cambridge University Press, 2006).18.Zahar, A. R. The WHO European region and the two Eastern Mediterranean Region. Applied field studies. In Vector Bionomics in the Epidemiology and Control of Malaria. Part II. WHO/VBC/90.1 (World Health Organization, 1990).19.NPHO Annual Epidemiological Surveillance Report Malaria in Greece, 2019. https://eody.gov.gr/wp-content/uploads/2019/01/MALARIA_ANNUAL_REPORT_2019_ENG.pdf (2019).20.Romi, R. et al. Assessment of the risk of malaria re-introduction in the Maremma plain (Central Italy) using a multi-factorial approach. Malar. J. 11, 98. https://doi.org/10.1186/1475-2875-11-98 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Baldari, M. et al. Malaria in Maremma, Italy. Lancet 351(9111), 1246–1247. https://doi.org/10.1016/S0140-6736(97)10312-9 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Romi, R., Boccolini, D., Menegon, M. & Rezza, G. Probable autochthonous introduced malaria cases in Italy in 2009–2011 and the risk of local vector-borne transmission. Euro Surveill. 17(48), 20325 (2012).PubMed 

    Google Scholar 
    23.Boccolini, D. et al. Non-imported malaria in Italy: paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. BMC Public Health 20(1), 857. https://doi.org/10.1186/s12889-020-08748-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.European Centre for Disease Prevention and Control. Multiple reports of locally-acquired malaria infections in the EU—20 September 2017. (ECDC, 2017).25.Lilja, T., Eklöf, D., Jaenson, T. G. T., Lindström, A. & Terenius, O. Single nucleotide polymorphism analysis of the ITS2 region of two sympatric malaria mosquito species in Sweden: Anopheles daciae and Anopheles messeae. Med. Vet. Entomol. 34(3), 364–368. https://doi.org/10.1111/mve.12436 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Di Luca, M., Boccolini, D., Marinucci, M. & Romi, R. Intrapopulation polymorphism in Anopheles messeae (An. maculipennis complex) inferred by molecular analysis. J. Med. Entomol. 41(4), 582–586. https://doi.org/10.1603/0022-2585-41.4.582 (2004).Article 
    PubMed 

    Google Scholar 
    27.Scharlemann, J. P. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3(1), e1408. https://doi.org/10.1371/journal.pone.0001408 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article 

    Google Scholar 
    29.Batovska, J., Cogan, N. O., Lynch, S. E. & Blacket, M. J. Using Next-Generation Sequencing for DNA Barcoding: Capturing Allelic Variation in ITS2. G3 (Bethesda) 7(1), 19–29. https://doi.org/10.1534/g3.116.036145 (2017).CAS 
    Article 

    Google Scholar 
    30.Novikov, Iu. M. & Kabanova, V. M. Adaptive association of inversions in a natural population of the malaria mosquito Anopheles messeae Fall. Genetika 15(6), 1033–1045 (1979).PubMed 

    Google Scholar 
    31.Vaulin, O. V. & Novikov, Y. M. Polymorphism and interspecific variability of cytochrome oxidase subunit I (COI) gene nucleotide sequence in sibling species of A and B Anopheles messeae and An. beklemishevi (Diptera: Culicidae). Russ. J. Genet. Appl. Res. 2(6), 421–429. https://doi.org/10.1134/S2079059712060159 (2012).Article 

    Google Scholar 
    32.Bezzhonova, O. V. & Goryacheva, I. I. Intragenomic heterogeneity of rDNA internal transcribed spacer 2 in Anopheles messeae (Diptera: Culicidae). J. Med. Entomol. 45(3), 337–341. https://doi.org/10.1603/0022-2585(2008)45[337:ihorit]2.0.co;2 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Novikov, Y. M. & Shevchenko, A. I. Inversion polymorphism and the divergence of two cryptic forms of Anopheles messeae (Diptera, Culicidae) at the level of genomic DNA repeats. Russ. J. Genet. 37, 754–763 (2001).CAS 
    Article 

    Google Scholar 
    34.Kitzmiller, J. B., Frizzi, G. & Baker, R. Evolution and speciation within the Maculipennis complex of the genus Anopheles. In Genetics of Insect Vectors of Disease ed. (ed. Wright, J.W. & Pal, R.) (Elsevier Publishing, 1967).35.De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56(6), 879–886. https://doi.org/10.1080/10635150701701083 (2007).Article 
    PubMed 

    Google Scholar 
    36.Alquezar, D. E., Hemmerter, S., Cooper, R. D. & Beebe, N. W. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evol. Biol. 10, 392. https://doi.org/10.1186/1471-2148-10-392 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Mallet, J., Besansky, N. & Hahn, M. W. How reticulated are species?. BioEssays 38(2), 140–149. https://doi.org/10.1002/bies.201500149 (2016).Article 
    PubMed 

    Google Scholar 
    38.Fouet, C., Kamdem, C., Gamez, S. & White, B. J. Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group. Evol Appl. 10(9), 897–906. https://doi.org/10.1111/eva.12492 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 10(10), 1102–1120. https://doi.org/10.1111/eva.12517 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Cohuet, A., Harris, C., Robert, V. & Fontenille, D. Evolutionary forces on Anopheles: What makes a malaria vector?. Trends Parasitol. 26(3), 130–136. https://doi.org/10.1016/j.pt.2009.12.001 (2010).Article 
    PubMed 

    Google Scholar 
    41.Jetten, T. H., Takken, W. Anophelism Without Malaria in Europe: A Review of the Ecology and Distribution of the Genus Anopheles in Europe. (Wageningen Agricultural University, 1994).42.Becker, N. et al. Mosquitoes and Their Control 2nd edn (Springer Science & Business Media, 2010).43.Mosca, A., Balbo L., Grieco C. & Roberto P. Rice-field mosquito control in Northern Italy. In Proc. of 14th E-SOVE Int. Conf. 98 (2010).44.Daskova, N. G. & Rasnicyn, S. P. Review of data on susceptibility of mosquitoes in the USSR to imported strains of malaria parasites. Bull. World Health Organ. 60(6), 893–897 (1982).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.de Zulueta, J., Ramsdale, C. D. & Coluzzi, M. Receptivity to malaria in Europe. Bull. World Health Organ. 52(1), 109–111 (1975).PubMed 
    PubMed Central 

    Google Scholar 
    46.Ramsdale, C. D. & Coluzzi, M. Studies on the infectivity of tropical African strains of Plasmodium falciparum to some southern European vectors of malaria. Parassitologia 17(1–3), 39–48 (1975).CAS 
    PubMed 

    Google Scholar 
    47.Teodorescu, C., Ungureanu, E., Mihai, M. & Tudose, M. Contributions to the study of the receptivity of the vector A. labranchiae atroparvus to two strains of P. vivax. Revista Medico-Chirurgicala din Iasi 52(1), 73–75 (1978).
    Google Scholar 
    48.Sousa, C. A. G. Malaria Vectorial Capacity and Competence of Anopheles atroparvus Van Thiel, 1927 (Diptera, Culicidae): Implications for the Potential Re-emergence of Malaria in Portugal (Thesis, Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, 2008).49.Toty, C. et al. Malaria risk in Corsica, former hot spot of malaria in France. Malar. J. 9, 231. https://doi.org/10.1186/1475-2875-9-231 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Calzolari, M. et al. West Nile virus surveillance in 2013 via mosquito screening in Northern Italy and the influence of weather on virus circulation. PLoS ONE 10(10), e0140915. https://doi.org/10.1371/journal.pone.0140915 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Marinucci, M., Romi, R., Mancini, P., Di Luca, M. & Severini, C. Phylogenetic relationships of seven palearctic members of the maculipennis complex inferred from ITS2 sequence analysis. Insect. Mol. Biol. 8(4), 469–480. https://doi.org/10.1046/j.1365-2583.1999.00140.x (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Jalali, S., Ojha, R. & Venkatesan, T. DNA barcoding for identification of agriculturally important insects. In New Horizons in Insect Science: Towards Sustainable Pest Management (ed. Chakravarthy, A. K.) (Springer, 2015).53.Lühken, R. et al. Distribution of individual members of the mosquito Anopheles maculipennis complex in Germany identified by newly developed real-time PCR assays. Med. Vet. Entomol. 30, 144–154. https://doi.org/10.1111/mve.12161 (2016).Article 
    PubMed 

    Google Scholar 
    54.Katoh, K., Rozewicki, J. & Yamada, K. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704. https://doi.org/10.1080/10635150390235520 (2003).Article 
    PubMed 

    Google Scholar 
    56.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9(8), 772. https://doi.org/10.1038/nmeth.2109 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47(W1), W256–W259. https://doi.org/10.1093/nar/gkz239 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    59.Elith, S. J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).Article 

    Google Scholar 
    60.Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).Article 

    Google Scholar 
    61.Phillips, S., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar  More