More stories

  • in

    An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea)

    Morphology and phenotypic plasticity
    The morphological features of the investigated colepid strains differed from those described for C. hirtus, C. spetai and even for N. nolandi1 (Fig. 1). Characteristics that matched the descriptions were the ciliate cell length and width, the barrel-shaped cell (except for strain CIL-2017/7, which was pear-shaped and strain CCAP 1613/15 that had a cylindrical shape), a number of six armor tiers, the structure of the armor tiers (hirtus-type or nolandia-type, respectively), and one caudal cilium (Table S2). Variations (CV > 20%) were found (i) in the number of plate windows in the posterior/anterior main plates even within individual cells, and (ii) in the presence/absence of anterior and posterior spines (Tables 1 + S2, Fig. 1). This phenotypic plasticity of the ciliate could also be observed in freshly collected Coleps specimens and was therefore not an artifact resulting from cultivation conditions (Fig. 1A). Wickham and Gugenberger43 hypothesized that the formation of the spines was a response to grazing pressure on C. hirtus; however, this could not be confirmed by respective experiments. Nevertheless, spineless specimens of C. hirtus have obviously been found before44,45,46,47. Luckily, we were able to investigate two strains (CCAP 1613/1 and CCAP 1613/2) that had been kept in the CCAP culture collection since the 1950ies and the 1960ies and which did not bear any spines or symbionts and could be clearly assigned to C. hirtus (Fig. 1T–V). These observations suggest that without predation pressure, colepid ciliates probably do not need to synthesize spines avoiding ingestion by a predator.
    The presence/absence of green algal endosymbionts, one of the diagnostic features for the discrimination among C. hirtus subspecies and C. spetai, was also not a stable feature (Table S2). Under culture conditions, some strains lost their endosymbionts completely, other strains consisted of symbiotic and aposymbiotic individuals, and some strains showed only symbiont-bearing individuals (e.g., CCAP 1613/5 and CIL-2017/6). This indicates that the symbiosis is facultative and might be probably influenced by cultivation or environmental conditions (presumably, though not tested, food availability). Consequently, the morphological separation of C. hirtus into the two subspecies may no longer be valid. We clearly demonstrated that the morphological features used for species descriptions can vary and have severe consequences for colepid species identification. Moreover, even the strains belonging to the groups 1 and 2 discovered by the phylogenetic analyses (Fig. 2) cannot discriminate morphotypes because they can neither be assigned to a certain cell morphology nor to the possession of algal endosymbionts. This questions the traditional morphology-based taxonomy. The separation of Coleps hirtus hirtus, C. hirtus viridis and C. spetai, which Foissner et al.1 differentiated by the presence of zoochlorellae in the latter two species and the number of windows in the armor plates, could not be supported by our analyses. C. hirtus viridis was originally described by Ehrenberg48,49 as C. viridis and later transferred as synonym of C. hirtus by Kahl50 based on almost identical morphological features. However, Foissner22 described C. spetai for the green Coleps because of the morphological discrepancies to the Ehrenberg’s C. viridis (presence of only 11 windows per plate row and smaller cell size in C. viridis; see Table 1 for comparison). Our study has clearly demonstrated that most of the morphological features are variable and the limits for species separation were too narrow. Therefore, we propose the re-establishment of C. viridis for group 1 and C. hirtus for group 2, both with emended descriptions as follows. Considering our findings, the morphological descriptions of C. spetai, C. hirtus viridis and C. hirtus hirtus cannot be applied for (sub-) species separation any more. Consequently, we deal with a cryptic species complex, i.e., two genetically different groups that are fused in a highly variable morphotype including features of all three (sub-) species. To solve this taxonomic problem, two possible scenarios can be proposed: (1) We merge the three morphotypes under C. hirtus, the type species of Coleps. As a consequence, two new species needed to be proposed for both groups 1 and 2, which could be done following the suggestion of Sonneborn51 for the P. aurelia-complex. However, Sonneborn based his new descriptions on results of mating experiments, which are not applicable for Coleps here because conjugations have not been reported and the conditions for the induction of sexual reproduction are unknown. (2) To avoid confusion by introducing new species names, we propose keeping the already existing names, i.e., C. viridis for group 1 and C. hirtus for group 2 including the synonyms (see below).
    Clonal cultures of both genetically varying Coleps groups have been deposited in the CCAP culture collection. Future studies may therefore be able to investigate, for example, sibling among strains or predator-prey experiments revealing spine- or wing-formation.
    Coleps viridis Ehrenberg 1831 (printed 1832), Abh. Königl. Akad. Wiss. Berlin 1832: 101.
    Synonym: Coleps spetai Foissner 1984, Stapfia 12: 21-22, Fig. 7, SP: 1984/10 and 1984/11 (lectotype designated here deposited in LI, see Aescht 2008: Denisia 23: 179), Coleps hirtus sensu Kahl 1930, Tierwelt Deutschlands 18: 134.
    Diagnosis: Differed from other colepid ciliates by their SSU and ITS rDNA sequences (MT253680).
    Lectotype (designated here): Fig. II, Tab. XXXIII, 3 in Ehrenberg 1838, Infusionsthierchen als vollkommene Organismen, p. 314.
    Improved Description (specifications in brackets apply to our reference strain CCAP 1613/7): Coleps with conspicuous armor composed of six tiers with plate windows of the hirtus-type. With or without green algal endosymbionts. Cell size 44–63 × 21–35 μm (52–54 × 35–36 μm). Total number of windows in length rows 12–16 (14–16), number of windows of anterior primary plates 3–6 (4–6), number of windows of anterior secondary plates 2–3 (2), number of windows of posterior primary plates 4–5 (4–5), number of windows of posterior secondary plates 2–3 (2–3). One caudal cilium (1). With 0-2 anterior (0–1) and 0–5 posterior (1–4) spines, respectively.
    Reference material (designated here for HTS approaches): The reference strain CCAP 1613/7 permanently cryopreserved at CCAP in a metabolically inactive stage.
    Locality of reference strain: Plankton of Lake Mondsee, Upper Austria, Austria (47° 50′ N, 13° 23′ E).
    Coleps hirtus (O.F. Müller) Nitzsch ex Ersch & Gruber 1827, Allgemeine Encyclopädie der Wissenschaften und Künste 16: 69, NT (proposed by Foissner 1984, Stapfia 12: 22, fig. 8): 1984/12 and 1984/13 (LI, in Aescht 2008: Denisia 23: 159).
    Protonym: Cercaria hirta O.F. Müller 1786, Animalcula Infusoria: 128, tab. XIX, fig. 17, 18 (lectotype designated here).
    Diagnosis: Differed from other colepid ciliates by their SSU and ITS rDNA sequences (MT253687).
    Improved Description: Coleps with spiny armor composed of six tiers with plates of the hirtus-type. Without green algal endosymbionts. Cell size 42–52 × 23–28 μm. Total number of windows in length rows 12-13, number of windows of anterior primary plates 3-5, number of windows of anterior secondary plates 2, number of windows of posterior primary plates 4-5, number of windows of posterior secondary plates 2. One caudal cilium. Without anterior and 1-4 posterior spines, respectively.
    Reference strain (designated here for HTS approaches): The strain CCAP 1613/14 permanently cryopreserved at CCAP in a metabolically inactive stage.
    Locality of reference strain: Plankton of Lake Piburg, Tyrol, Austria (47° 11′ N, 10° 53′ E).
    Molecular phylogeny of the Colepidae (Prostomatea)
    The colepids belonging to the Prostomatea form a monophyletic lineage in the phylogenetic analyses of SSU rDNA sequences (Fig. 2). Mixotrophic as well as heterotrophic Coleps strains that resembled C. hirtus and C. spetai clustered in group 1 whereas group 2 included only two specimens which were identified as C. hirtus. These findings confirm the results of Barth et al.29 with one exception. The authors found a clear separation into mixotrophic and heterotrophic species, which were therefore assigned to a C. spetai-(with endosymbionts) and a C. hirtus-group (without endosymbionts), respectively. Despite the difficulties of identifying these species by morphology, both groups clearly differed in their SSU and ITS rDNA sequences (Fig. 3). The ITS-2/CBC approach introduced for green algae (details in Darienko et al.52) clearly demonstrated that both groups represented two separate ciliate species from a molecular point of view, which was also confirmed by analyses of the V9 region of the SSU, a region commonly used for metabarcoding (Figs. 4 and 5).
    Our study also confirmed the findings of Chen et al.7, Lu et al.9, and Moon et al.28, showing that the generic concept of colepid ciliates needs to be revised. None of the genera represented by more than one species is monophyletic. For example, the three species of Nolandia belonged to separate lineages. Nolandia nolandi was a sister to our studied strains, whereas both other species were closely related to taxa of Apocoleps, Pinacocoleps, and Tiarina (Fig. 2). The genus Levicoleps and Coleps amphacanthus formed a monophyletic clade representing another example that the generic conception is artificial and needs to be revised. However, to provide a new generic concept of colepid ciliates, it is necessary to study more of the described species by using an integrative approach including experimental approaches on, e.g., the formation of spines. For example, we clearly demonstrated that one key feature, which is the presence/absence of anterior/posterior spines, is highly variable and can therefore not be used to separate colepid genera as indicated by Foissner et al.12 (Fig. 1). There is a need for more experimental studies with colepids belonging to the Cyclidium viridis and C. hirtus morphotype. Therefore, we deposited all clones used in this study in the CCAP culture collection. One option would be to incorporate all species into one genus, i.e., Coleps in revised form.
    Endosymbiosis in Coleps
    Some strains of Coleps are known to bear green algal endosymbionts1. These green algae have Chlorella-like morphology (Fig. 6) and were identified as Micractinium conductrix (Fig. 7). So far, this alga was only known as endosymbiont of the ciliate Paramecium bursaria34. All green algal endosymbionts of Coleps harbored this Micractinium species. In contrast, Pröschold et al.34 found that one ciliate strain identified as C. hirtus viridis had Chlorella vulgaris as endosymbiont (the algae has been deposited in the Culture Collection of Algae and Protozoa under the number CCAP 211/111). Unfortunately, this ciliate strain is not available anymore53.
    Ecology and distribution
    For limnological studies, the preservation with Bouin’s solution and QPS is an appropriate method for quantifying and identifying ciliate species in environmental samples54. However, the quality in characterization of ciliates at the species level is sometimes limited as, in case of Coleps, the characteristic armored calcium carbonate plates are dissolved by the acidified fixation solution. Therefore, in our study, we could only distinguish between algal-bearing (mixotrophic) and non-algal-bearing (heterotrophic) Coleps. Despite that limitation, we could clearly see that the heterotrophic ones were only found in the deepest zones of both lakes (Fig. 8A). Not surprisingly, Coleps is often observed in nutrient- and ion-rich and also oxygen-depleted freshwater habitats or areas, e.g., sulfurous and crater lakes1,5,6,27,55,56 or even in the sludge of wastewater treatment plants57. Mixotrophic individuals of Coleps were mainly found in the upper layers of both lakes, whereas in Lake Mondsee we could also detect specimens down to 40 m depth (Fig. 8). In contrast to the mero- and monomictic Lake Zurich4,10,58,59, Lake Mondsee is holo- and dimictic60. During mixis events, algal-bearing Coleps specimens can be transferred passively from the upper layers into the deeper zones and vice versa. Although morphotype countings and HTS analyses reads matched quite well, we found discrepancies that have already been discussed before10,61 (Fig. S2).
    Biogeographic aspects (haplotype network)
    Our metabarcoding approach showed that C. viridis was found in both lakes as a common ciliate (Fig. S2). In contrast, C. hirtus could not be detected during the sampling period. To obtain more information about the distribution of both species, we used the BLASTn search algorithm62 (100 coverage, >97% identity) for the V4 and the V9 regions of the SSU and the ITS-2 sequences. No records using the V9 and the ITS-2 approaches could be discovered in GenBank, but 25 reference sequences using the V4 (Table S3). Together with the newly sequenced strains, we therefore constructed a V4 haplotype network (Fig. 10). Both groups are obviously widely distributed and subdivided into five (group 1) and four (group 2) haplotypes, respectively. All reference sequences were collected from freshwater habitats except for two marine records63 (EU446361 and EU446396; Mediterranean Sea) and showed no geographical preferences.
    Figure 10

    TCS haplotype network inferred from V4 sequences of Coleps viridis and C. hirtus. This network was inferred using the algorithm described by Clement et al.64,65. Sequence nodes corresponding to samples collected from different geographical regions and from different habitats.

    Full size image

    Co-occurrence networks
    In the sub-networks of C. viridis in both lakes, we found several significant correlations that pointed to either potential prey items, e.g., diverse flagellated autotrophic or heterotrophic protists or co-occurring ciliates (Fig. 9). Also, the smaller ciliates such as Cinetochilum margaritaceum or Cyclidium glaucoma may as well be considered as food for the omnivorous C. viridis (for a compilation of the food spectrum; see Foissner et al.1). However, we identified the endosymbiont M. conductrix and its host C. viridis from both sub-networks of Lake Mondsee but not of Lake Zurich (Fig. 9). Despite this result, we want to point out that we may probably not find M. conductrix free-living in a water body because outside their ciliate host the algae were immediately attacked and killed by so-called Chlorella-viruses66. Therefore, the HTS-detection of M. conductrix was probably only together with a host ciliate. This might further explain why the green algae were detected in Lake Mondsee even in the aphotic 40 m zone where photosynthesis was impossible and individuals probably passively transferred into the deeper area by lake mixis.
    Outlook
    As demonstrated in our study, the combination of traditional morphological investigations, which includes the phenotypic plasticity of the cloned strains, and modern molecular analyses using both SSU and ITS sequencing as well as HTS approaches advise a taxonomic revision of the genus Coleps. This comprehensive and integrative approach is also applicable for other ciliate species and genera and will provide new insights into the ecology and evolution of this important group of protists.
    Experimental procedures
    Study sites, lake sampling and origin of the Coleps strains
    Our main study sites were Lake Mondsee (Austria) and Lake Zurich (Switzerland), two pre-alpine oligo-mesotrophic lakes that were sampled at the deepest point of each lake (Table S4). Water samples were taken monthly from June 2016 through May 2017 over the whole water column and additionally biweekly at two main depths, i.e., 5 m in both lakes, 40 m in Lake Mondsee, and 120 m in Lake Zurich, respectively. A 5-L-Ruttner water sampler was used for Lake Zurich and a 10-L-Schindler-Patalas sampler (both from Uwitec, Austria) for Lake Mondsee. Twelve Coleps strains were isolated from Lake Mondsee and one from Lake Zurich. Another six clones could be obtained either from already successfully cultivated own strains, fresh isolates or from culture collections. Detailed information about sampling sites, dates and strain numbers is given in Table S2.
    Seasonal and spatial distribution and abundance
    For quantification, subsamples (200-300 mL) were preserved with Bouin’s solution (5% f.c.) containing 15 parts of picric acid, 5 parts of formaldehyde (37%) and 1 part of glacial acetic acid54. The samples were filtered through 0.8 μm cellulose nitrate filters (Sartorius, Germany) equipped with counting grids. The ciliates were stained following the protocol of the quantitative protargol staining (QPS) method after Skibbe54 with slight modifications after Pfister et al.67. The permanent slides were analyzed by light microscopy up to 1600x magnification with a Zeiss Axio Imager.M1 and an Olympus BX51 microscope. For identification of Coleps and Nolandia cells, the identification key of Foissner et al.1 was used. Microphotographs were taken with a ProgRes C14 plus camera using the ProgRes Capture Pro imaging system (version 2.9.0.1, Jenoptik, Jena, Germany).
    Cloning, identification and cultivation of ciliates and endosymbionts
    Single cells of Coleps were isolated and washed using the Pasteur pipette method68. The isolated strains were cultivated in 400 μl modified Woods Hole medium69 (MWC; modified) and Volvic mineral water in a mixture of 5:1 and with the addition of 10 μl of an algal culture (Cryptomonas sp., strain SAG 26.80) as food in microtiter plates. These clonal cultures were transferred into larger volumes after successful enrichment. All cultures were maintained at 15–21 °C under a light: dark cycle of 12:12 h (photon flux rate up 50 mol m−2 s−1).
    For the isolation of their green algal endosymbionts, single ciliates were washed again and transferred into fresh MWC medium. After starvation and digestion of any food, after approx. 24 hrs, cells were washed again and the ciliates transferred onto agar plates containing Basal Medium with Beef Extract (ESFl; medium 1a in Schlösser70). Before placement of the ciliates onto agar plates, 50 μm of an antibiotic mix (mixture of 1% penicillin G, 0.25% streptomycin, and 0.25% chloramphenicol) were added to prevent bacterial growth. The agar plates were kept under the same conditions as described. After growth (6–8 weeks), the algal colonies were transferred onto agar slopes (1.5%) containing ESFl medium and kept under the described culture conditions.
    For light microscopic investigations of the algae, Olympus BX51 and BX60 microscopes (equipped with Nomarski DIC optics) were used. Microphotographs were taken with a ProgRes C14 plus camera using the ProgRes Capture Pro imaging system (version 2.9.0.1, Jenoptik, Jena, Germany).
    PCR, sequencing and phylogenetic methods
    Single-cell PCR was used to obtain the sequences of the Coleps strains. Before PCR amplification, single cells of Coleps were washed as described above. After starvation followed by additional washing steps, cells were transferred into 5 μm sterile water in PCR tubes and the prepared PCR mastermix containing the primers EAF3 and ITS055R71 was added. After this primary PCR amplification and subsequent PCR purification, a nested PCR was conducted using the primer combinations EAF3/N1400R and N920F/ITS055R71.
    The sequences of the Coleps strains were aligned according to their secondary structures of the SSU and ITS rDNA (see detailed folding protocol described in Darienko et al.52) and included into two data sets: (i) 34 SSU rDNA sequences (1,750 bp) of representatives of all members of the Prostomatea and (ii) 19 ITS rDNA sequences (538 bp) of the investigated strains. Genomic DNA of the green algae was extracted using the DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany). The SSU and ITS rDNA were amplified using the Taq PCR Mastermix Kit (Qiagen GmbH, Hilden, Germany) with the primers EAF3 and ITS055R. The SSU and ITS rDNA sequences of the isolated green algae (aligned according to the secondary structures) were included into a data set of 31 sequences (2,604 bp) of representatives of the Chlorellaceae (Trebouxiophyceae).
    GenBank accession numbers of all newly deposited sequences can be found in Table S2 and in Fig. 7, respectively. For the phylogenetic analyses, the datasets with unambiguously aligned base positions were used. To test which evolutionary model fit best for both data sets, we calculated the log-likelihood values of 56 models using Modeltest 3.772 and the best models according to the Akaike criterion by Modeltest were chosen for the analyses. The settings of the best models are given in the figure legends. The following methods were used for the phylogenetic analyses: distance, maximum parsimony, maximum likelihood, and Bayesian inference. Programs used included PAUP version 4.0b16473, and MrBayes version 3.2.374.
    The secondary structures were folded using the software mfold42, which uses the thermodynamic model (minimal energy) for RNA folding.
    Haplotype networks
    The haplotypes of the V4 region were identified among the groups of Coleps (see Fig. S1). The present haplotypes and the metadata (geographical origin and habitat) of each strain belonging to the different haplotypes are given in Table S3. To establish an overview on the distribution of the Coleps groups, the V4 haplotypes were used for a BLASTn search62 (100% coverage, >97% identity). To construct the haplotype networks, we used the TCS network tool64,65 implemented in PopART75.
    High-throughput sequencing of the V9 18S rDNA region and subsequent bioinformatic analyses
    On each sampling date, water samples for a high-throughput sequencing approach (HTS) were taken in depths of 5 m and 40 m at Lake Mondsee and 5 m and 120 m depths in Lake Zurich. DNA extraction, amplification of the V9 SSU rDNA, HTS and quality filtering of the obtained raw reads was conducted as described in Pitsch et al.10. After quality filtering, all remaining reads were subjected to a two-level clustering strategy76. In the first level, replicated reads were clustered in SWARM version 2.2.2 using d=177. In the second level, the representative sequences of all SWARM OTUs were subjected to pairwise sequence alignments in VSEARCH version 2.11.078 to construct sequence similarity networks at 97% sequence similarity. The network sequence clusters (NSCs) resulting from the second level of clustering were then taxonomically assigned by running BLASTn analyses against NCBI’s GenBank flat-file release version 230.0 and the Coleps SSU sequences obtained from single-cell sequencing. Network sequence clusters were assigned to Coleps, if the closest BLAST hit of the NSC representative sequence was a Coleps reference sequence. Furthermore, the NSC representative sequence had to share a fragment of at least 48 consecutive nucleotides and at least 90% sequence similarity to a reference sequence in order to be assigned to Coleps.
    Co-occurrence networks
    With the protist community data matrix resulting from HTS, we further conducted co-occurrence network analyses to assess biotic and abiotic interactions of Coleps. For each lake and depth, we ran network analyses with NetworkNullHPC (https://github.com/lentendu/NetworkNullHPC) following the null model strategy developed by Connor et al.79. This strategy was especially designed for dealing with HTS datasets and allows for inferring statistically significant correlations between NSCs while minimizing false positive correlation signals. We screened the resulting networks for Coleps nodes and extracted their subnetworks including all directly neighbouring co-occurrence partners as well as all edges between Coleps and its neighbours and the neighbours themselves. More

  • in

    Fungal decomposition of river organic matter accelerated by decreasing glacier cover

    1.Huss, M. et al. Towards mountains without permanent snow and ice. Earth’s Future 5, 418–435 (2017).Article 

    Google Scholar 
    2.Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).CAS 
    Article 

    Google Scholar 
    3.Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol. 2, 325–333 (2018).Article 

    Google Scholar 
    4.Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).Article 

    Google Scholar 
    5.Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).CAS 
    Article 

    Google Scholar 
    6.Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).Article 

    Google Scholar 
    7.Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).Article 
    CAS 

    Google Scholar 
    8.Zhou, L. et al. Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau. Water Res. 160, 18–28 (2019).CAS 
    Article 

    Google Scholar 
    9.Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    Article 

    Google Scholar 
    10.Timmis, K. et al. The urgent need for microbiology literacy in society. Environ. Microbiol. 21, 1513–1528 (2019).Article 

    Google Scholar 
    11.Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948 (2017).Article 

    Google Scholar 
    12.Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between lands, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).Article 

    Google Scholar 
    13.Raymond, P. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).CAS 
    Article 

    Google Scholar 
    14.Clark, D. R. et al. Streams of data from drops of water: 21st century molecular microbial ecology. WIREs Water 5, e1280 (2018).Article 

    Google Scholar 
    15.Zah, R. & Uehlinger, U. Particulate organic matter inputs to a glacial stream ecosystem in the Swiss Alps. Freshw. Biol. 46, 1597–1608 (2001).CAS 
    Article 

    Google Scholar 
    16.Singer, G. A. et al. Biogeochemically diverse organic matter in alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012).CAS 
    Article 

    Google Scholar 
    17.Uehlinger, U., Robinson, C. T., Hieber, M. & Zah, R. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657, 107–121 (2010).CAS 
    Article 

    Google Scholar 
    18.Robinson, C. T. & Gessner, M. O. Nutrient addition accelerates leaf breakdown in an alpine springbrook. Oecologia 122, 258–263 (2000).CAS 
    Article 

    Google Scholar 
    19.Robinson, C. T. & Jolidon, C. Leaf breakdown and the ecosystem functioning of alpine streams. J. North Am. Benthol. Soc. 24, 495–508 (2005).Article 

    Google Scholar 
    20.McKernan, C., Cooper, D. J. & Schweiger, E. W. Glacial loss and its effect on riparian vegetation of alpine streams. Freshw. Biol. 63, 518–529 (2018).Article 

    Google Scholar 
    21.Fellman, J. B. et al. Stream temperature response to variable glacier coverage in coastal watersheds of southeast Alaska. Hydrol. Process. 28, 2062–2073 (2014).Article 

    Google Scholar 
    22.Gessner, M. O. & Robinson, C. T. in Aquatic Ecology Series: Ecology of a Glacial Floodplain Vol. 1 (eds Ward, J. V. & Uehlinger, U.) 123–127 (Springer, 2003).23.Tiegs, S. D., Clapcott, J. E., Griffiths, N. A. & Boulton, A. J. A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecol. Indic. 32, 131–139 (2013).CAS 
    Article 

    Google Scholar 
    24.Tiegs, S. D. et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav0486 (2019).Article 
    CAS 

    Google Scholar 
    25.Ward, N. D. et al. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 6, 530–533 (2013).CAS 
    Article 

    Google Scholar 
    26.Colas, F. et al. Towards a simple global-standard bioassay for a key ecosystem process: organic-matter decomposition using cotton strips. Ecol. Indic. 106, 105466 (2019).CAS 
    Article 

    Google Scholar 
    27.Bayer, E. A., Shoham, Y. & Lamed, R. Cellulose-decomposing bacteria and their enzyme systems. Prokaryotes 2, 578–617 (2006).Article 

    Google Scholar 
    28.Lindahl, B. D. et al. Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. N. Phytol. Trust 199, 288–299 (2013).CAS 
    Article 

    Google Scholar 
    29.Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    30.Wang, M. et al. Psychrophilic fungi from the world’s roof. Persoonia 34, 100–112 (2015).CAS 
    Article 

    Google Scholar 
    31.Zang, T. et al. Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic). Microb. Ecol. 71, 543–554 (2016).Article 

    Google Scholar 
    32.Wilhelm, L., Singer, G. A., Fashing, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013).CAS 
    Article 

    Google Scholar 
    33.Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Change Biol. 25, 2576–2590 (2019).Article 

    Google Scholar 
    34.Jacobsen, D. & Dangles, O. Environmental harshness and global richness patterns in glacier-fed streams. Glob. Ecol. Biogeogr. 21, 647–656 (2012).Article 

    Google Scholar 
    35.Green, J. L., Bohannan, B. J. M. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1042 (2008).CAS 
    Article 

    Google Scholar 
    36.Robinson, C. T., Gessner, M. O., Callies, K. A., Jolidon, C. & Ward, J. V. Larch needle breakdown in contrasting streams of an alpine glacial floodplain. J. North Am. Benthol. Soc. 19, 250–262 (2000).Article 

    Google Scholar 
    37.Ferreira, V., Graça, M., Pedroso de Lima, J. L. M. & Gomes, R. Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Arch. fur Hydrobiol. 165, 493–513 (2006).CAS 
    Article 

    Google Scholar 
    38.Besemer, K., Singer, G., Hödl, I. & Battin, T. J. Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl. Environ. Microbiol. 75, 7189–7195 (2009).CAS 
    Article 

    Google Scholar 
    39.Battin, T. J., Kaplan, L. A., Newbold, J. D., Cheng, X. & Hansen, C. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 9, 5443–5452 (2003).Article 
    CAS 

    Google Scholar 
    40.Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. BioScience 67, 897–911 (2017).Article 

    Google Scholar 
    41.Cristiano, G., Cicolani, B., Miccoli, F. P. & Di Sabatino, A. A modification of the leaf-bags method to assess spring ecosystem functioning: benthic invertebrates and leaf-litter breakdown in Vera Spring (central Italy). PeerJ 7, e6250 (2019).Article 

    Google Scholar 
    42.Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct. Antarct. Alp. Res. 46, 829–840 (2014).Article 

    Google Scholar 
    43.Hood, E. & Berner, L. Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J. Geophys. Res. Biogeosci. 114, G03001 (2009).Article 
    CAS 

    Google Scholar 
    44.Boix Canadell, M., Escoffier, N., Ulseth, A. J., Lane, S. N. & Battin, T. J. Alpine glacier shrinkage drives shifts in dissolved organic carbon export from quasi-chemostasis to transport limitation. Geophys. Res. Lett. 46, 8872–8881 (2019).CAS 
    Article 

    Google Scholar 
    45.Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Change 2, 361–364 (2012).Article 

    Google Scholar 
    46.GLIMS Glacier Viewer (Global Land Ice Measurements from Space (GLIMS), 2018); http://www.glims.org/maps/glims47.Robinson, C. T., Gessner, M. O. & Ward, J. V. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshw. Biol. 40, 215–228 (1998).Article 

    Google Scholar 
    48.Goodman, K. J., Baker, M. & Wurtsbaugh, W. Mountain lakes increase organic matter decomposition rates in streams. J. North Am. Benthol. Soc. 29, 521–529 (2010).Article 

    Google Scholar 
    49.Pfankuch, D. J. Stream Reach Inventory and Channel Stability Evaluation (Northern Region, Montana, US Department Forest Service, 1975).50.Vizza, C., Zwart, J. A., Jones, S. E., Tiegs, S. D. & Lamberti, G. A. Landscape patterns shape wetland pond ecosystem function from glacial headwaters to ocean. Limnol. Oceanogr. 62, S207–S221 (2017).CAS 
    Article 

    Google Scholar 
    51.Tiegs, S. D. CELLDEX Protocol Part 1 https://www.researchgate.net/publication/281243407_CELLDEX_Protocol_Part_1 (2015).52.Tiegs, S. D. Protocol for Microbial DNA/RNA Sampling—CELLDEX Protocol https://www.researchgate.net/publication/281245895_Protocol_for_microbial_DNARNA_sampling_-_CELLDEX_Project (2015).53.Tiegs, S. D., Langhans, S. D., Tockner, K. & Gessner, M. O. Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. J. North Am. Benthol. Soc. 26, 70–77 (2007).Article 

    Google Scholar 
    54.Tiegs, S. D. CELLDEX Protocol Part 2 https://www.researchgate.net/publication/283645782_CELLDEX_Protocol_Part_2 (2015).55.Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).CAS 
    Article 

    Google Scholar 
    56.Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).CAS 
    Article 

    Google Scholar 
    57.Edwards, I. P., Upchurch, R. A. & Zak, D. R. Isolation of fungal Cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl. Environ. Microbiol. 74, 3481–3489 (2008).CAS 
    Article 

    Google Scholar 
    58.McKew, B. A. & Smith, C. J. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 45–64 (Springer, 2017).59.Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    Article 

    Google Scholar 
    60.Nilsson, R. H. et al. Variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4, 193–201 (2008).Article 

    Google Scholar 
    61.Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E. & Kristiansson, E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett. 296, 97–111 (2009).CAS 
    Article 

    Google Scholar 
    62.16S Metagenomic Sequencing Library Preparation (Illumina, 2013); https://ww.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf63.Kreader, C. A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62, 1102–1106 (1995).Article 

    Google Scholar 
    64.Dumbrell, A. J., Ferguson, R. M. W. & Clark, D. R. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 155–206 (Springer, 2017).65.Maček, I. et al. Impacts of long-term elevated atmospheric CO2 concentrations on communities of arbuscular mycorrhizal fungi. Mol. Ecol. 28, 3445–3458 (2019).Article 
    CAS 

    Google Scholar 
    66.Nilsson, R. H. et al. UNITE Community: Communication and Identification of DNA Based Fungal Species (UNITE, 2018); https://unite.ut.ee/search.php#fndtn-panel167.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).Article 
    CAS 

    Google Scholar 
    68.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 2–18 (2017).Article 

    Google Scholar 
    69.McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).Article 

    Google Scholar 
    70.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).Article 

    Google Scholar 
    71.Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).Article 

    Google Scholar 
    72.Wang, Y., Maumann, U., Wright, S. & Warton, D. mvabund: Statistical methods for analysing multivariate abundance data. R package https://cran.r-project.org/package=mvabund (2018). More

  • in

    Meta-analysis reveals that animal sexual signalling behaviour is honest and resource based

    1.Andersson, M. B. Sexual Selection (Princeton Univ. Press, 1994).2.Clark, C. J. The role of power versus energy in courtship: what is the ‘energetic cost’of a courtship display? Anim. Behav. 84, 269–277 (2012).Article 

    Google Scholar 
    3.Vehrencamp, S. L., Bradbury, J. W. & Gibson, R. M. The energetic cost of display in male sage grouse. Anim. Behav. 38, 885–896 (1989).Article 

    Google Scholar 
    4.Kotiaho, J. S. Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biol. Rev. 76, 365–376 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Mappes, J., Alatalo, R. V., Kotiaho, J. & Parri, S. Viability costs of condition-dependent sexual male display in a drumming wolf spider. Proc. R. Soc. Lond. B 263, 785–789 (1996).Article 

    Google Scholar 
    6.Zuk, M. & Kolluru, G. R. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 73, 415–438 (1998).Article 

    Google Scholar 
    7.Woods, W. A. Jr, Hendrickson, H., Mason, J. & Lewis, S. M. Energy and predation costs of firefly courtship signals. Am. Nat.170, 702–708 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA 78, 3721–3725 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Cotton, S., Fowler, K. & Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. R. Soc. Lond. B 271, 771–783 (2004).Article 

    Google Scholar 
    10.Tomkins, J. L., Radwan, J., Kotiaho, J. S. & Tregenza, T. Genic capture and resolving the lek paradox. Trends Ecol. Evol. 19, 323–328 (2004).PubMed 
    Article 

    Google Scholar 
    11.Grafen, A. Biological signals as handicaps. J. Theor. Biol. 144, 517–546 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Johnstone, R. A. Sexual selection, honest advertisement and the handicap principle: reviewing the evidence. Biol. Rev. 70, 1–65 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Seymour, R. M. & Sozou, P. D. Duration of courtship effort as a costly signal. J. Theor. Biol. 256, 1–13 (2009).PubMed 
    Article 

    Google Scholar 
    14.Byers, J., Hebets, E. & Podos, J. Female mate choice based upon male motor performance. Anim. Behav. 79, 771–778 (2010).Article 

    Google Scholar 
    15.Moran, N. P., Sánchez-Tójar, A., Schielzeth, H. & Reinhold, K. Poor nutritional condition promotes high-risk behaviours: a systematic review and meta-analysis. Biol. Rev. https://doi.org/10.1111/brv.12655 (2020).16.Cotton, S., Small, J. & Pomiankowski, A. Sexual selection and condition-dependent mate preferences. Curr. Biol. 16, R755–R765 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Kokko, H. Evolutionarily stable strategies of age-dependent sexual advertisement. Behav. Ecol. Sociobiol. 41, 99–107 (1997).Article 

    Google Scholar 
    18.Moore, F. R., Shuker, D. M. & Dougherty, L. Stress and sexual signaling: a systematic review and meta-analysis. Behav. Ecol. 27, 363–371 (2016).Article 

    Google Scholar 
    19.Dougherty, L. R. Meta-analysis shows the evidence for context-dependent mating behaviour is inconsistent or weak across animals. Ecol. Lett. https://doi.org/10.1111/ele.13679 (2021).20.Umbers, K. D., Symonds, M. R. & Kokko, H. The mathematics of female pheromone signaling: strategies for aging virgins. Am. Nat. 185, 417–432 (2015).PubMed 
    Article 

    Google Scholar 
    21.Simmons, L. W. Sexual signalling by females: do unmated females increase their signalling effort? Biol. Lett. https://doi.org/10.1098/rsbl.2015.0298 (2015).22.Reynolds, J. D. Should attractive individuals court more? Theory and a test. Am. Nat. 141, 914–927 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Jennions, M. D. & Backwell, P. R. Variation in courtship rate in the fiddler crab Uca annulipes: is it related to male attractiveness? Behav. Ecol. 9, 605–611 (1998).Article 

    Google Scholar 
    24.Candolin, U. The relationship between signal quality and physical condition: is sexual signalling honest in the three-spined stickleback? Anim. Behav. 58, 1261–1267 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).Article 

    Google Scholar 
    26.Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Buchanan, K. L., Spencer, K. A., Goldsmith, A. & Catchpole, C. Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). Proc. R. Soc. Lond. B 270, 1149–1156 (2003).CAS 
    Article 

    Google Scholar 
    28.Chemnitz, J., Jentschke, P. C., Ayasse, M. & Steiger, S. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. R. Soc. B 282, 20150832 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    29.Richardson, J. & Smiseth, P. T. Nutrition during sexual maturation and at the time of mating affects mating behaviour in both sexes of a burying beetle. Anim. Behav. 151, 77–85 (2019).Article 

    Google Scholar 
    30.Balsby, T. J. Song activity and variability in relation to male quality and female choice in whitethroats Sylvia communis. J. Avian Biol. 31, 56–62 (2000).Article 

    Google Scholar 
    31.Nickley, B., Saintignon, D. & Roberts, J. A. Influence of predator cues on terminal investment in courtship by male Schizocosa ocreata (Hentz, 1844) wolf spiders (Araneae: Lycosidae). J. Arachnol. 44, 176–181 (2016).Article 

    Google Scholar 
    32.Kehl, T. et al. Pheromone blend does not explain old male mating advantage in a butterfly. Ethology 120, 1137–1145 (2014).Article 

    Google Scholar 
    33.Houslay, T. M., Houslay, K. F., Rapkin, J., Hunt, J. & Bussiere, L. F. Mating opportunities and energetic constraints drive variation in age-dependent sexual signalling. Funct. Ecol. 31, 728–741 (2017).Article 

    Google Scholar 
    34.Smith, M. J. & Roberts, J. D. Call structure may affect male mating success in the quacking frog Crinia georgiana (Anura: Myobatrachidae). Behav. Ecol. Sociobiol. 53, 221–226 (2003).Article 

    Google Scholar 
    35.Lehtonen, T. K. Signal value of male courtship effort in a fish with paternal care. Anim. Behav. 83, 1153–1161 (2012).Article 

    Google Scholar 
    36.Bertram, S. M., Harrison, S. J., Thomson, I. R. & Fitzsimmons, L. P. Adaptive plasticity in wild field cricket’s acoustic signaling. PLoS ONE 8, e69247 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rundus, A. S., Biemuller, R., DeLong, K., Fitzgerald, T. & Nyandwi, S. Age-related plasticity in male mate choice decisions by Schizocosa retrorsa wolf spiders. Anim. Behav. 107, 233–238 (2015).Article 

    Google Scholar 
    38.Koricheva, J., Gurevitch, J. & Mengeresen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).39.Harts, A. M., Booksmythe, I. & Jennions, M. D. Mate guarding and frequent copulation in birds: a meta‐analysis of their relationship to paternity and male phenotype. Evolution 70, 2789–2808 (2016).PubMed 
    Article 

    Google Scholar 
    40.Partridge, C., Boettcher, A. & Jones, A. G. The role of courtship behavior and size in mate preference in the sex-role-reversed gulf pipefish, Syngnathus scovelli. Ethology 119, 692–701 (2013).Article 

    Google Scholar 
    41.Anderson, A. P. & Jones, A. G. Choosy Gulf pipefish males ignore age but prefer active females with deeply keeled bodies. Anim. Behav. 155, 37–44 (2019).Article 

    Google Scholar 
    42.Sundin, J., Rosenqvist, G. & Berglund, A. Hypoxia delays mating in the broad-nosed pipefish. Mar. Biol. Res. 11, 747–754 (2015).Article 

    Google Scholar 
    43.McLennan, D. A. & Shires, V. L. Correlation between the level of infection with Bunodera inconstans and Neoechinorhynchus rutili and behavioral intensity in female brook sticklebacks. J. Parasitol. 81, 675–682 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Simmons, L. W. Courtship role reversal in bush-crickets—another role for parasites. Behav. Ecol. 5, 259–266 (1994).Article 

    Google Scholar 
    45.Schatral, A. Diet influences male–female interactions in the bush-cricket Requena verticalis (Orthoptera, Tettigoniidae). J. Insect Behav. 6, 379–388 (1993).Article 

    Google Scholar 
    46.Serrano, J. M. & Penna, M. Sexual monomorphism in the advertisement calls of a neotropical frog. Biol. J. Linn. Soc. 123, 388–401 (2018).Article 

    Google Scholar 
    47.Yamane, T. & Yasuda, T. The effects of mating status and time since mating on female sex pheromone levels in the rice leaf bug, Trigonotylus caelestialium. Naturwissenschaften 101, 153–156 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Klein, S. L. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol. Behav. 79, 441–449 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Poulin, R. in Advances in the Study of Behavior Vol. 41 (eds Mitani, J. et al.) 151–186 (Elsevier, 2010).51.Clancey, E. & Byers, J. A. The definition and measurement of individual condition in evolutionary studies. Ethology 120, 845–854 (2014).Article 

    Google Scholar 
    52.Wilgers, D. J. & Hebets, E. A. in Animal Signaling and Function: An Integrative Approach (eds Irschick, D. J. et al.) 229–252 (John Wiley & Sons, 2015).53.Řežucha, R. & Reichard, M. Strategic exploitation of fluctuating asymmetry in male Endler’s guppy courtship displays is modulated by social environment. J. Evol. Biol. 28, 356–367 (2015).PubMed 
    Article 

    Google Scholar 
    54.Oliveira, R. F., Taborsky, M. & Brockmann, H. J. Alternative Reproductive Tactics: An Integrative Approach (Cambridge Univ. Press, 2008).55.Gray, D. A. Female house crickets, Acheta domesticus, prefer the chirps of large males. Anim. Behav. 54, 1553–1562 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Lubanga, U., Peters, R. & Steinbauer, M. Substrate-borne vibrations of male psyllids vary with body size and age but females are indifferent. Anim. Behav. 120, 173–182 (2016).Article 

    Google Scholar 
    57.Ah‐King, M. & Gowaty, P. A. A conceptual review of mate choice: stochastic demography, within‐sex phenotypic plasticity, and individual flexibility. Ecol. Evol. 6, 4607–4642 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Adamo, S. A., Kovalko, I., Easy, R. H. & Stoltz, D. A viral aphrodisiac in the cricket Gryllus texensis. J. Exp. Biol. 217, 1970–1976 (2014).PubMed 
    Article 

    Google Scholar 
    60.Aguilar, T. M., Maia, R., Santos, E. S. A. & Macedo, R. H. Parasite levels in blue-black grassquits correlate with male displays but not female mate preference. Behav. Ecol. 19, 292–301 (2008).Article 

    Google Scholar 
    61.Ahtiainen, J. J., Alataio, R. V., Mappes, J. & Vertainen, L. Fluctuating asymmetry and sexual performance in the drumming wolf spider Hygrolycosa rubrofasciata. Ann. Zool. Fenn. 40, 281–292 (2003).
    Google Scholar 
    62.Ahtiainen, J. J., Alatalo, R. V., Kortet, R. & Rantala, M. J. Immune function, dominance and mating success in drumming male wolf spiders Hygrolycosa rubrofasciata. Behav. Ecol. Sociobiol. 60, 826–832 (2006).Article 

    Google Scholar 
    63.Alonso, J. C., Magana, M., Martin, C. A. & Palacin, C. Sexual traits as quality indicators in lekking male great bustards. Ethology 116, 1084–1098 (2010).Article 

    Google Scholar 
    64.Alonso, J. C., Magana, M., Palacin, C. & Martin, C. A. Correlates of male mating success in great bustard leks: the effects of age, weight, and display effort. Behav. Ecol. Sociobiol. 64, 1589–1600 (2010).Article 

    Google Scholar 
    65.Amorim, M. C. P. & Almada, V. C. The outcome of male–male encounters affects subsequent sound production during courtship in the cichlid fish Oreochromis mossambicus. Anim. Behav. 69, 595–601 (2005).Article 

    Google Scholar 
    66.Amorim, M. C. P. & Neves, A. S. M. Acoustic signalling during courtship in the painted goby, Pomatoschistus pictus. J. Mar. Biol. Assoc. UK 87, 1017–1023 (2007).Article 

    Google Scholar 
    67.Amorim, M. C. P. et al. Painted gobies sing their quality out loud: acoustic rather than visual signals advertise male quality and contribute to mating success. Funct. Ecol. 27, 289–298 (2013).Article 

    Google Scholar 
    68.Amorim, M. C. P. et al. Lusitanian toadfish song reflects male quality. J. Exp. Biol. 213, 2997–3004 (2010).PubMed 
    Article 

    Google Scholar 
    69.Amundsen, T. & Forsgren, E. Male preference for colourful females affected by male size in a marine fish. Behav. Ecol. Sociobiol. 54, 55–64 (2003).Article 

    Google Scholar 
    70.An, D. & Waldman, B. Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus. Biol. Lett. https://doi.org/10.1098/rsbl.2016.0018 (2016).71.Andersson, S. Costs of sexual advertising in the lekking Jackson’s Widowbird. Condor 96, 1–10 (1994).Article 

    Google Scholar 
    72.Andrade, M. C. B. & Mason, A. C. Male condition, female choice, and extreme variation in repeated mating in a scaly cricket, Ornebius aperta (Orthoptera: Gryllidae: Mogoplistinae). J. Insect Behav. 13, 483–497 (2000).Article 

    Google Scholar 
    73.Anichini, M., Frommolt, K. H. & Lehmann, G. U. C. To compete or not to compete: bushcricket song plasticity reveals male body condition and rival distance. Anim. Behav. 142, 59–68 (2018).Article 

    Google Scholar 
    74.Arak, A. Female mate selection in the natterjack toad: active choice or passive atraction? Behav. Ecol. Sociobiol. 22, 317–327 (1988).
    Google Scholar 
    75.Arvidsson, B. L. & Neergaard, R. Mate choice in the willow warbler—a field experiment. Behav. Ecol. Sociobiol. 29, 225–229 (1991).Article 

    Google Scholar 
    76.Atagan, Y. & Forstmeier, W. Protein supplementation decreases courtship rate in the zebra finch. Anim. Behav. 83, 69–74 (2012).Article 

    Google Scholar 
    77.Backwell, P. R. Y., Jennions, M. D., Christy, J. H. & Schober, U. Pillar building in the fiddler-crab Uca beebei—evidence for a condition dependent ornament. Behav. Ecol. Sociobiol. 36, 185–192 (1995).Article 

    Google Scholar 
    78.Bakker, T. C. M. & Milinski, M. Sequential female choice and the previous male effect in sticklebacks. Behav. Ecol. Sociobiol. 29, 205–210 (1991).Article 

    Google Scholar 
    79.Becker, L. J. S., Aspbury, A. S. & Gabor, C. R. Body size dependent male sexual behavior in a natural population of sailfin mollies (Poecilia latipinna). Am. Midl. Nat. 167, 366–372 (2012).Article 

    Google Scholar 
    80.Bee, M. A. et al. Assessing acoustic signal variability and the potential for sexual selection and social recognition in boreal chorus frogs (Pseudacris maculata). Ethology 116, 564–576 (2010).Article 

    Google Scholar 
    81.Beeler, A. E., Rauter, C. M. & Moore, A. J. Pheromonally mediated mate attraction by males of the burying beetle Nicrophorus orbicollis: alternative calling tactics conditional on both intrinsic and extrinsic factors. Behav. Ecol. 10, 578–584 (1999).Article 

    Google Scholar 
    82.Bertram, S. M. & Bowen, M. Field cricket species differences in the temporal patterns of long-distance mate attraction signals. Ethology 112, 850–857 (2006).Article 

    Google Scholar 
    83.Bertram, S. M., Whattam, E. M., Visanuvimol, L., Bennett, R. & Lauzon, C. Phosphorus availability influences cricket mate attraction displays. Anim. Behav. 77, 525–530 (2009).Article 

    Google Scholar 
    84.Birkhead, T. R., Fletcher, F. & Pellatt, E. J. Sexual selection in the zebra finch Taeniopygia guttata: condition, sex traits and immune capacity. Behav. Ecol. Sociobiol. 44, 179–191 (1998).Article 

    Google Scholar 
    85.Biro, P. A., Fanson, K. V. & Santostefano, F. Stress-induced peak (but not resting) metabolism correlates with mating display intensity in male guppies. Ecol. Evol. 6, 6537–6545 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Bolund, E., Martin, K., Kempenaers, B. & Forstmeier, W. Inbreeding depression of sexually selected traits and attractiveness in the zebra finch. Anim. Behav. 79, 947–955 (2010).Article 

    Google Scholar 
    87.Bolund, E., Schielzeth, H. & Forstmeier, W. No heightened condition dependence of zebra finch ornaments—a quantitative genetic approach. J. Evol. Biol. 23, 586–597 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Bosholn, M., Fecchio, A., Silveira, P., Braga, E. M. & Anciaes, M. Effects of avian malaria on male behaviour and female visitation in lekking blue-crowned manakins. J. Avian Biol. 47, 457–465 (2016).Article 

    Google Scholar 
    89.Brandt, L. S. E., Ludwar, B. C. & Greenfield, M. D. Co-occurrence of preference functions and acceptance thresholds in female choice: mate discrimination in the lesser wax moth. Ethology 111, 609–625 (2005).Article 

    Google Scholar 
    90.Briggs, V. S. Call trait variation in Morelett’s tree frog, Agalychnis moreletii, of Belize. Herpetologica 66, 241–249 (2010).Article 

    Google Scholar 
    91.Buchanan, K. L., Catchpole, C. K., Lewis, J. W. & Lodge, A. Song as an indicator of parasitism in the sedge warbler. Anim. Behav. 57, 307–314 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Buchinger, T. J. et al. Increased pheromone signaling by small male sea lamprey has distinct effects on female mate search and courtship. Behav. Ecol. Sociobiol. 71, 155 (2017).93.Callander, S., Jennions, M. D. & Backwell, P. R. Y. The effect of claw size and wave rate on female choice in a fiddler crab. J. Ethol. 30, 151–155 (2012).Article 

    Google Scholar 
    94.Candolin, U. & Salesto, T. Does competition allow male mate choosiness in threespine sticklebacks? Am. Nat. 173, 273–277 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Castellano, S., Rosso, A., Doglio, S. & Giacoma, C. Body size and calling variation in the green toad (Bufo viridis). J. Zool. 248, 83–90 (1999).Article 

    Google Scholar 
    96.Chiswell, R., Girard, M., Fricke, C. & Kasumovic, M. M. Prior mating success can affect allocation towards future sexual signaling in crickets. PeerJ 2, e657 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Churchill, E. R., Dytham, C. & Thom, M. D. F. Differing effects of age and starvation on reproductive performance in Drosophila melanogaster. Sci. Rep. 9, 2167 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Clark, D. C., DeBano, S. J. & Moore, A. J. The influence of environmental quality on sexual selection in Nauphoeta cinerea (Dictyoptera: Blaberidae). Behav. Ecol. 8, 46–53 (1997).Article 

    Google Scholar 
    99.Clark, D. C. & Moore, A. J. Social communication in the Madagascar hissing cockroach—features of male courtship hisses and a comparison of courtship and agonistic hisses. Behaviour 132, 401–417 (1995).Article 

    Google Scholar 
    100.Clayton, D. H. Mate choice in experimentally parasitized rock doves: lousy males lose. Am. Zool. 30, 251–262 (1990).Article 

    Google Scholar 
    101.Cobb, M., Connolly, K. & Burnet, B. The relationship between locomotor activity and courtship in the melanogaster species sub-group of Drosophila. Anim. Behav. 35, 705–713 (1987).Article 

    Google Scholar 
    102.Cordes, N. et al. Larval food composition affects courtship song and sperm expenditure in a lekking moth. Ecol. Entomol. 40, 34–41 (2015).Article 

    Google Scholar 
    103.Cornuau, J. H., Schmeller, D. S., Courtois, E. A., Jolly, T. & Loyau, A. It takes two to tango: relative influence of male and female identity and morphology on complex courtship display in a newt species. Ethology 121, 218–226 (2015).Article 

    Google Scholar 
    104.Costa, F. J. V. & Macedo, R. H. Coccidian oocyst parasitism in the blue-black grassquit: influence on secondary sex ornaments and body condition. Anim. Behav. 70, 1401–1409 (2005).Article 

    Google Scholar 
    105.Crocker-Buta, S. P. & Leary, C. J. Hormonal and social correlates of courtship signal quality and behaviour in male green treefrogs. Anim. Behav. 146, 13–22 (2018).Article 

    Google Scholar 
    106.da Rocha, S. M. C., Lima, A. P. & Kaefer, I. L. Territory size as a main driver of male-mating success in an Amazonian nurse frog (Allobates paleovarzensis, Dendrobatoidea). Acta Ethol. 21, 51–57 (2018).Article 

    Google Scholar 
    107.David, M., Auclair, Y., Dall, S. R. X. & Cezilly, F. Pairing context determines condition-dependence of song rate in a monogamous passerine bird. Proc. R. Soc. B 280, 20122177 (2013).PubMed 
    Article 

    Google Scholar 
    108.Deb, R., Bhattacharya, M. & Balakrishnan, R. Females of a tree cricket prefer larger males but not the lower frequency male calls that indicate large body size. Anim. Behav. 84, 137–149 (2012).Article 

    Google Scholar 
    109.Devigili, A., Kelley, J. L., Pilastro, A. & Evans, J. P. Expression of pre- and postcopulatory traits under different dietary conditions in guppies. Behav. Ecol. 24, 740–749 (2013).Article 

    Google Scholar 
    110.Drayton, J. M., Hunt, J., Brooks, R. & Jennions, M. D. Sounds different: inbreeding depression in sexually selected traits in the cricket Teleogryllus commodus. J. Evol. Biol. 20, 1138–1147 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Drayton, J. M., Milner, R. N. C., Hunt, J. & Jennions, M. D. Inbreeding and advertisement calling in the cricket Teleogryllus commodus: laboratory and field experiments. Evolution 64, 3069–3083 (2010).PubMed 

    Google Scholar 
    112.Droney, D. C. Environmental influences on male courtship and implications for female choice in a lekking Hawaiian Drosophila. Anim. Behav. 51, 821–830 (1996).Article 

    Google Scholar 
    113.Droney, D. C. The influence of the nutritional content of the adult male diet on testis mass, body condition and courtship vigour in a Hawaiian Drosophila. Funct. Ecol. 12, 920–928 (1998).Article 

    Google Scholar 
    114.Duffield, K. R. et al. Age-dependent variation in the terminal investment threshold in male crickets. Evolution 72, 578–589 (2018).Article 

    Google Scholar 
    115.Eastwood, L. & Burnet, B. Courtship latency in male Drosophila melanogaster. Behav. Genet. 7, 359–372 (1977).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Engqvist, L. & Sauer, K. P. Influence of nutrition on courtship and mating in the scorpionfly Panorpa cognata (Mecoptera, insecta). Ethology 109, 911–928 (2003).Article 

    Google Scholar 
    117.Forrest, T. G. et al. Mate choice in ground crickets (Gryllidae, Nemoiinae). Fla. Entomol. 74, 74–80 (1991).Article 

    Google Scholar 
    118.Galeotti, P. et al. Courtship displays and mounting calls are honest, condition-dependent signals that influence mounting success in Hermann’s tortoises. Can. J. Zool. 83, 1306–1313 (2005).Article 

    Google Scholar 
    119.Gibson, J. S. & Uetz, G. W. Effect of rearing environment and food availability on seismic signalling in male wolf spiders (Araneae: Lycosidae). Anim. Behav. 84, 85–92 (2012).Article 

    Google Scholar 
    120.Gibson, R. M. Relationships between blood parasites, mating success and phenotypic cues in male sage grouse Centrocercus urophasianus. Am. Zool. 30, 271–278 (1990).Article 

    Google Scholar 
    121.Gilbert, R., Karp, R. D. & Uetz, G. W. Effects of juvenile infection on adult immunity and secondary sexual characters in a wolf spider. Behav. Ecol. 27, 946–954 (2016).Article 

    Google Scholar 
    122.Gilbert, R. & Uetz, G. W. Courtship and male ornaments as honest indicators of immune function. Anim. Behav. 117, 97–103 (2016).Article 

    Google Scholar 
    123.Given, M. Interrelationships among calling effort, growth rate, and chorus tenure in Bufo fowleri. Copeia 2002, 979–987 (2002).Article 

    Google Scholar 
    124.Greenspan, S. E., Roznik, E. A., Schwarzkopf, L., Alford, R. A. & Pike, D. A. Robust calling performance in frogs infected by a deadly fungal pathogen. Ecol. Evol. 6, 5964–5972 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Gumulka, M. & Rozenboim, I. Effect of the age of ganders on reproductive behavior and fertility in a competitive mating structure. Ann. Anim. Sci. 17, 733–746 (2017).Article 

    Google Scholar 
    126.Hankison, S. J. & Ptacek, M. B. Within and between species variation in male mating behaviors in the Mexican sailfin mollies Poecilia velifera and P. petenensis. Ethology 113, 802–812 (2007).Article 

    Google Scholar 
    127.Harrison, S. J., Thomson, I. R., Grant, C. M. & Bertram, S. M. Calling, courtship, and condition in the fall field cricket, Gryllus pennsylvanicus. PLoS ONE 8, e60356 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Hausfater, G., Gerhardt, H. C. & Klump, G. M. Parasites and mate choice in gray treefrogs, Hyla versicolor. Am. Zool. 30, 299–311 (1990).Article 

    Google Scholar 
    129.Hay, D. E. & McPhail, J. D. Courtship behaviour of male threespine sticklebacks (Gasterosteus aculeatus) from old and new hybrid zones. Behaviour 137, 1047–1063 (2000).Article 

    Google Scholar 
    130.Head, M. L., Fox, R. J. & Barber, I. Environmental change mediates mate choice for an extended phenotype, but not for mate quality. Evolution 71, 135–144 (2017).PubMed 
    Article 

    Google Scholar 
    131.Hegde, S. N. & Krishna, M. S. Size-assortative mating in Drosophila malerkotliana. Anim. Behav. 54, 419–426 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    132.Hegyi, G. et al. Nutritional correlates and mate acquisition role of multiple sexual traits in male collared flycatchers. Naturwissenschaften 97, 567–576 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    133.Henderson, L. J., Brazeal, K. R. & Hahn, T. P. Plumage coloration and social context influence male investment in song. Biol. Lett. 14, 20180300 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Hermann, C. M., Brudermann, V., Zimmermann, H., Vollmann, J. & Sefc, K. M. Female preferences for male traits and territory characteristics in the cichlid fish Tropheus moorii. Hydrobiologia 748, 61–74 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Hoefler, C. D., Carlascio, A. L., Persons, M. H. & Rypstra, A. L. Male courtship repeatability and potential indirect genetic benefits in a wolf spider. Anim. Behav. 78, 183–188 (2009).Article 

    Google Scholar 
    136.Hoefler, C. D., Moore, J. A., Reynolds, K. T. & Rypstra, A. L. The effect of experience on male courtship and mating behaviors in a cellar spider. Am. Midl. Nat. 163, 255–268 (2010).Article 

    Google Scholar 
    137.Hoefler, C. D., Persons, M. H. & Rypstra, A. L. Evolutionarily costly courtship displays in a wolf spider: a test of viability indicator theory. Behav. Ecol. 19, 974–979 (2008).Article 

    Google Scholar 
    138.Hoileitner, M., Nechtelberger, H. & Hoi, H. Song rate as a signal for nest-site quality in blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 37, 399–405 (1995).Article 

    Google Scholar 
    139.Holzer, B., Jacot, A. & Brinkhof, M. W. G. Condition-dependent signaling affects male sexual attractiveness in field crickets, Gryllus campestris. Behav. Ecol. 14, 353–359 (2003).Article 

    Google Scholar 
    140.Honarmand, M., Riebel, K. & Naguib, M. Nutrition and peer group composition in early adolescence: impacts on male song and female preference in zebra finches. Anim. Behav. 107, 147–158 (2015).Article 

    Google Scholar 
    141.Houde, A. E. & Torio, A. J. Effect of parasitic infection on male color pattern and female choice in guppies. Behav. Ecol. 3, 346–351 (1992).Article 

    Google Scholar 
    142.Howard, R. D. & Young, J. R. Individual variation in male vocal traits and female mating preferences in Bufo americanus. Anim. Behav. 55, 1165–1179 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    143.Hughes, A. L. Male size, mating success, and mating strategy in the mosquitofish Gambusia affinis (Poeciliidae). Behav. Ecol. Sociobiol. 17, 271–278 (1985).Article 

    Google Scholar 
    144.Humfeld, S. C. Condition-dependent signaling and adoption of mating tactics in an amphibian with energetic displays. Behav. Ecol. 24, 859–870 (2013).Article 

    Google Scholar 
    145.Jacot, A., Scheuber, H. & Brinkhof, M. W. G. Costs of an induced immune response on sexual display and longevity in field crickets. Evolution 58, 2280–2286 (2004).PubMed 
    Article 

    Google Scholar 
    146.Jacot, A., Scheuber, H., Holzer, B., Otti, O. & Brinkhof, M. W. G. Diel variation in a dynamic sexual display and its association with female mate-searching behaviour. Proc. R. Soc. B 275, 579–585 (2008).PubMed 
    Article 

    Google Scholar 
    147.Jennions, M. D. Tibial coloration, fluctuating asymmetry and female choice behaviour in the damselfly Platycypha caligata. Anim. Behav. 55, 1517–1528 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    148.Jha, N. A. & Kumar, V. Protein-rich food does not affect singing behaviour and song quality in adult zebra finches, Taeniopygia guttata. Curr. Sci. 111, 1693–1696 (2016).Article 

    Google Scholar 
    149.Jiguet, F. & Bretagnolle, V. Sexy males and choosy females on exploded leks: correlates of male attractiveness in the Little Bustard. Behav. Process. 103, 246–255 (2014).Article 

    Google Scholar 
    150.Jones, K. M., Monaghan, P. & Nager, R. G. Male mate choice and female fecundity in zebra finches. Anim. Behav. 62, 1021–1026 (2001).Article 

    Google Scholar 
    151.Joshi, A. M., Narayan, E. J. & Gramapurohit, N. P. Interrelationship among steroid hormones, energetics and vocalisation in the Bombay night frog (Nyctibatrachus humayuni). Gen. Comp. Endocrinol. 246, 142–149 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    152.Joyce, A. L., Bernal, J. S., Vinson, S. B. & Lomeli-Flores, R. Influence of adult size on mate choice in the solitary and gregarious parasitoids, Cotesia marginiventris and Cotesia flavipes. J. Insect Behav. 22, 12–28 (2009).Article 

    Google Scholar 
    153.Junca, F. A. et al. Advertisement call of species of the genus Frostius Cannatella 1986 (Anura: Bufonidae). Acta Herpetol. 7, 189–201 (2012).
    Google Scholar 
    154.Kaefer, I. L. & Lima, A. P. Sexual signals of the Amazonian frog Allobates paleovarzensis: geographic variation and stereotypy of acoustic traits. Behaviour 149, 15–33 (2012).Article 

    Google Scholar 
    155.Kahn, A. T., Dolstra, T., Jennions, M. D. & Backwell, P. R. Y. Strategic male courtship effort varies in concert with adaptive shifts in female mating preferences. Behav. Ecol. 24, 906–913 (2013).Article 

    Google Scholar 
    156.Karl, I., Heuskin, S. & Fischer, K. Dissecting the mechanisms underlying old male mating advantage in a butterfly. Behav. Ecol. Sociobiol. 67, 837–849 (2013).Article 

    Google Scholar 
    157.Kaspi, R., Taylor, P. W. & Yuval, B. Diet and size influence sexual advertisement and copulatory success of males in Mediterranean fruit fly leks. Ecol. Entomol. 25, 279–284 (2000).Article 

    Google Scholar 
    158.Kennedy, C. E. J., Endler, J. A., Poynton, S. L. & McMinn, H. Parasite load predicts mate choice in guppies. Behav. Ecol. Sociobiol. 21, 291–295 (1987).Article 

    Google Scholar 
    159.Ketola, T., Kortet, R. & Kotiaho, J. S. Endurance in exercise is associated with courtship call rate in decorated crickets, Gryllodes sigillatus. Evol. Ecol. Res. 11, 1131–1139 (2009).
    Google Scholar 
    160.Ketola, T. & Kotiaho, J. S. Inbreeding, energy use and sexual signaling. Evol. Ecol. 24, 761–772 (2010).Article 

    Google Scholar 
    161.Kim, T. W. & Choe, J. C. The effect of food availability on the semilunar courtship rhythm in the fiddler crab Uca lactea (de Haan) (Brachyura: Ocypodidae). Behav. Ecol. Sociobiol. 54, 210–217 (2003).Article 

    Google Scholar 
    162.Kim, T. W., Sakamoto, K., Henmi, Y. & Choe, J. C. To court or not to court: reproductive decisions by male fiddler crabs in response to fluctuating food availability. Behav. Ecol. Sociobiol. 62, 1139–1147 (2008).Article 

    Google Scholar 
    163.King, B. H., Saporito, K. B., Ellison, J. H. & Bratzke, R. M. Unattractiveness of mated females to males in the parasitoid wasp Spalangia endius. Behav. Ecol. Sociobiol. 57, 350–356 (2005).Article 

    Google Scholar 
    164.Kitsunezuka, K., Okutani-Akamatsu, Y., Watanabe, T. & Oku, K. Effects of male age on the mating behavior of both sexes in the sorghum plant bug, Stenotus rubrovittatus (Hemiptera: Miridae). Appl. Entomol. Zool. 48, 73–77 (2013).Article 

    Google Scholar 
    165.Knapp, R. A. Influence of energy reserves on the expression of a secondary sexual trait in male bicolor damselfish, Stegastes partitus. Bull. Mar. Sci. 57, 672–681 (1995).
    Google Scholar 
    166.Kodric-Brown, A. Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav. Ecol. Sociobiol. 25, 393–401 (1989).Article 

    Google Scholar 
    167.Kolluru, G. R., Bertram, S. M., China, E. H., Dunmeyer, C. V. & Graves, J. S. Mating behavior and its morphological correlates in two color morphs of Girardinus metallicus (Pisces: Poeciliidae), a species previously thought not to exhibit courtship display. Behav. Process. 106, 44–52 (2014).Article 

    Google Scholar 
    168.Kotiaho, J. S. Testing the assumptions of conditional handicap theory: costs and condition dependence of a sexually selected trait. Behav. Ecol. Sociobiol. 48, 188–194 (2000).Article 

    Google Scholar 
    169.Kotiaho, J. S. Sexual selection and condition dependence of courtship display in three species of horned dung beetles. Behav. Ecol. 13, 791–799 (2002).Article 

    Google Scholar 
    170.Kotiaho, J. S., Alatalo, R. V., Mappes, J. & Parri, S. Sexual signalling and viability in a wolf spider (Hygrolycosa rubrofasciata): measurements under laboratory and field conditions. Behav. Ecol. Sociobiol. 46, 123–128 (1999).Article 

    Google Scholar 
    171.Kotiaho, J. S., Simmons, L. W. & Tomkins, J. L. Towards a resolution of the lek paradox. Nature 410, 684–686 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    172.Krishna, M. S. & Hegde, S. N. Influence of body size in mating success in three sympatric species of Drosophila. Ital. J. Zool. 70, 47–52 (2003).Article 

    Google Scholar 
    173.Kuczynski, M. C., Bello-DeOcampo, D. & Getty, T. No evidence of terminal investment in the gray treefrog (Hyla versicolor): older males do not signal at greater effort. Copeia 103, 530–535 (2015).Article 

    Google Scholar 
    174.Kuczynski, M. C., Storks, L., Gering, E. & Getty, T. Male treefrogs in low condition resume signaling faster following simulated predator attack. Behav. Ecol. Sociobiol. 70, 347–355 (2016).Article 

    Google Scholar 
    175.Kuriwada, T. Horn length is not correlated with calling efforts in the horn-headed cricket Loxoblemmus doenitzi (Orthoptera: Gryllidae). Entomol. Sci. 19, 228–232 (2016).Article 

    Google Scholar 
    176.Kuriwada, T. & Kasuya, E. Age-dependent changes in calling effort in the bell cricket Meloimorpha japonica. J. Ethol. 29, 99–105 (2011).Article 

    Google Scholar 
    177.Leary, C. J., Lippincott, J., Harris, S. & Hawkins, D. L. A test of the energetics-hormone vocalization model in the green treefrog. Gen. Comp. Endocrinol. 213, 32–39 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    178.Lehtonen, T. K., Svensson, P. A. & Wong, B. B. M. The influence of recent social experience and physical environment on courtship and male aggression. BMC Evol. Biol. 16, 18 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    179.Lehtonen, T. K., Svensson, P. A. & Wong, B. B. M. Aggressive desert goby males also court more, independent of the physiological demands of salinity. Sci. Rep. 8, 9352 (2018).180.Lode, T. & Le Jacques, D. Influence of advertisement calls on reproductive success in the male midwife toad Alytes obstetricans. Behaviour 140, 885–898 (2003).Article 

    Google Scholar 
    181.Lomborg, J. P. & Toft, S. Nutritional enrichment increases courtship intensity and improves mating success in male spiders. Behav. Ecol. 20, 700–708 (2009).Article 

    Google Scholar 
    182.Lopez, P. T. & Narins, P. M. Mate choice in the neotropical frog, Eleutherodactylus coqui. Anim. Behav. 41, 757–772 (1991).Article 

    Google Scholar 
    183.Lynn, S. E., Stamplis, T. B., Barrington, W. T., Weida, N. & Hudak, C. A. Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch. Horm. Behav. 58, 214–222 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    184.Magellan, K., Pettersson, L. B. & Magurran, A. E. Quantifying male attractiveness and mating behaviour through phenotypic size manipulation in the Trinidadian guppy, Poecilia reticulata. Behav. Ecol. Sociobiol. 58, 366–374 (2005).Article 

    Google Scholar 
    185.Magoolagan, L., Mawby, P. J., Whitehead, F. A. & Sharp, S. P. The effect of early life conditions on song traits in male dippers (Cinclus cinclus). PLoS ONE 13, e0205101 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    186.Manica, L. T., Maia, R., Dias, A., Podos, J. & Macedoc, R. H. Vocal output predicts territory quality in a neotropical songbird. Behav. Process. 109, 21–26 (2014).Article 

    Google Scholar 
    187.Mariette, M., Kelley, J. L., Brooks, R. & Evans, J. P. The effects of inbreeding on male courtship behaviour and coloration in guppies. Ethology 112, 807–814 (2006).Article 

    Google Scholar 
    188.Mateos, C. & Carranza, J. Effects of male dominance and courtship display on female choice in the ring-necked pheasant. Behav. Ecol. Sociobiol. 45, 235–244 (1999).Article 

    Google Scholar 
    189.Matsuo, T. Effect of social condition on behavioral development during early adult phase in Drosophila prolongata. J. Ethol. 36, 15–22 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    190.McAuley, E. M. & Bertram, S. M. Field crickets compensate for unattractive static long-distance call components by increasing dynamic signalling effort. PLoS ONE 11, e0167311 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    191.McCullough, E. L. & Simmons, L. W. Selection on male physical performance during male–male competition and female choice. Behav. Ecol. 27, 1288–1295 (2016).Article 

    Google Scholar 
    192.McLean, M. J., Bishop, P. J., Hero, J. M. & Nakagawa, S. Assessing the information content of calls of Litoria chloris: quality signalling versus individual recognition. Aust. J. Zool. 60, 120–126 (2012).Article 

    Google Scholar 
    193.McNeil, G. V., Friesen, C. N., Gray, S. M., Aldredge, A. & Chapman, L. J. Male colour variation in a eurytopic African cichlid: the role of diet and hypoxia. Biol. J. Linn. Soc. 118, 551–568 (2016).Article 

    Google Scholar 
    194.Memmott, R. & Briffa, M. Exaggerated displays do not improve mounting success in male seaweed flies Fucellia tergina (Diptera: Anthomyiidae). Behav. Process. 120, 73–79 (2015).Article 

    Google Scholar 
    195.Milazzo, M. et al. Ocean acidification affects fish spawning but not paternity at CO2 seeps. Proc. R. Soc. B 283, 20161021 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    196.Morales, M. B., Alonso, J. C., Martin, C., Martin, E. & Alonso, J. Male sexual display and attractiveness in the great bustard Otis tarda: the role of body condition. J. Ethol. 21, 51–56 (2003).Article 

    Google Scholar 
    197.Morris, M. R. Female choice of large males in the treefrog Hyla ebraccata. J. Zool. 223, 371–378 (1991).Article 

    Google Scholar 
    198.Morris, M. R., Rios-Cardenas, O. & Darrah, A. Male mating tactics in the northern mountain swordtail fish (Xiphophorus nezahualcoyotl): coaxing and coercing females to mate. Ethology 114, 977–988 (2008).Article 

    Google Scholar 
    199.Muramatsu, D. The function of the four types of waving display in Uca lactea: effects of audience, sand structure, and body size. Ethology 117, 408–415 (2011).Article 

    Google Scholar 
    200.Murphy, C. G. Nightly timing of chorusing by male barking treefrogs (Hyla gratiosa): the influence of female arrival and energy. Copeia 1999, 333–347 (1999).Article 

    Google Scholar 
    201.Naguib, M., Heim, C. & Gil, D. Early developmental conditions and male attractiveness in zebra finches. Ethology 114, 255–261 (2008).Article 

    Google Scholar 
    202.O’Hanlon, J. C., Wignall, A. E. & Herberstein, M. E. Short and fast vs long and slow: age changes courtship in male orb-web spiders (Argiope keyserlingi). Sci. Nat. 105, 3 (2018).Article 
    CAS 

    Google Scholar 
    203.Ohata, M., Wada, K. & Koga, T. Waving display by male Scopimera globosa (Brachyura: Ocypodoidea) as courtship behavior. J. Crustac. Biol. 25, 637–639 (2005).Article 

    Google Scholar 
    204.Olsson, K. H., Kvarnemo, C. & Svensson, O. Relative costs of courtship behaviours in nest-building sand gobies. Anim. Behav. 77, 541–546 (2009).Article 

    Google Scholar 
    205.Ortiz-Santaliestra, M. E., Marco, A., Fernández-Benéitez, M. J. & Lizana, M. Alteration of courtship behavior because of water acidification and minor effect of ammonium nitrate in the Iberian newt (Lissotriton boscai). Environ. Toxicol. Chem. 28, 1500–1505 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    206.Papadopoulos, N. T., Katsoyannos, B. I., Kouloussis, N. A., Economopoulos, A. P. & Carrey, J. R. Effect of adult age, food, and time of day on sexual calling incidence of wild and mass-reared Ceratitis capitata males. Entomol. Exp. Appl. 89, 175–182 (1998).Article 

    Google Scholar 
    207.Pariser, E. C., Mariette, M. M. & Griffith, S. C. Artificial ornaments manipulate intrinsic male quality in wild-caught zebra finches (Taeniopygia guttata). Behav. Ecol. 21, 264–269 (2010).Article 

    Google Scholar 
    208.Partridge, L., Ewing, A. & Chandler, A. Male size and mating success in Drosophila melanogaster: the roles of male and female behaviour. Anim. Behav. 35, 555–562 (1987).Article 

    Google Scholar 
    209.Passmore, N. I., Bishop, P. J. & Caithness, N. Calling behavior influences mating success in male painted reed frogs, Hyperolius marmoratus. Ethology 92, 227–241 (1992).Article 

    Google Scholar 
    210.Pedroso, S. S., Barber, I., Svensson, O., Fonseca, P. J. & Amorim, M. C. P. Courtship sounds advertise species identity and male quality in sympatric Pomatoschistus spp. gobies. PLoS ONE 8, e64620 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    211.Pelabon, C. et al. Do microsporidian parasites affect courtship in two-spotted gobies? Mar. Biol. 148, 189–196 (2005).Article 

    Google Scholar 
    212.Pellitteri-Rosa, D., Sacchi, R., Galeotti, P., Marchesi, M. & Fasola, M. Courtship displays are condition-dependent signals that reliably reflect male quality in Greek tortoises, Testudo graeca. Chelonian Conserv. Biol. 10, 10–17 (2011).Article 

    Google Scholar 
    213.Perezlachaud, G. & Campan, M. Influence of previous sexual experience and postemergence rearing conditions on the mating-behavior of Chryseida bennetti. Entomol. Exp. Appl. 76, 163–170 (1995).Article 

    Google Scholar 
    214.Poole, K. G. & Murphy, C. G. Preferences of female barking treefrogs, Hyla gratiosa, for larger males: univariate and composite tests. Anim. Behav. 73, 513–524 (2007).Article 

    Google Scholar 
    215.Prathibha, M., Krishna, M. S. & Jayaramu, S. C. Male age influence on male reproductive success in Drosophila ananassae (Diptera: Drosophilidae). Ital. J. Zool. 78, 168–173 (2011).Article 

    Google Scholar 
    216.Pruett-jones, S. G., Pruett-jones, M. A. & Jones, H. I. Parasites and sexual selection in birds of paradise. Am. Zool. 30, 287–298 (1990).Article 

    Google Scholar 
    217.Pryke, S. R. & Andersson, S. Experimental evidence for female choice and energetic costs of male tail elongation in red-collared widowbirds. Biol. J. Linn. Soc. 86, 35–43 (2005).Article 

    Google Scholar 
    218.Ptacek, M. B. & Travis, J. Inter-population variation in male mating behaviours in the sailfin mollie, Poecilia latipinna. Anim. Behav. 52, 59–71 (1996).Article 

    Google Scholar 
    219.Ptacek, M. B. & Travis, J. Mate choice in the sailfin molly, Poecilia latipinna. Evolution 51, 1217–1231 (1997).PubMed 
    Article 

    Google Scholar 
    220.Rahman, M. M., Kelley, J. L. & Evans, J. P. Condition-dependent expression of pre- and postcopulatory sexual traits in guppies. Ecol. Evol. 3, 2197–2213 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    221.Rahman, M. M., Turchini, G. M., Gasparini, C., Norambuena, F. & Evans, J. P. The expression of pre- and postcopulatory sexually selected traits reflects levels of dietary stress in guppies. PLoS ONE 9, e105856 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    222.Reifer, M. L., Harrison, S. J. & Bertram, S. M. How dietary protein and carbohydrate influence field cricket development, size and mate attraction signalling. Anim. Behav. 139, 137–146 (2018).Article 

    Google Scholar 
    223.Rezaei, A., Krishna, M. S. & Santhosh, H. T. Male age affects female mate preference, quantity of accessory gland proteins, and sperm traits and female fitness in D. melanogaster. Zool. Sci. 32, 16–24 (2015).Article 

    Google Scholar 
    224.Ritchie, M. G., Sunter, D. & Hockham, L. R. Behavioral components of sex role reversal in the tettigoniid bushcricket Ephippiger ephippiger. J. Insect Behav. 11, 481–491 (1998).Article 

    Google Scholar 
    225.Ritschard, M. & Brumm, H. Zebra finch song reflects current food availability. Evol. Ecol. 26, 801–812 (2012).Article 

    Google Scholar 
    226.Rodd, F. H. & Sokolowski, M. B. Complex origins of variation in the sexual-behavior of male Trinidadian guppies, Poecilia reticulata—interactions between social-environment, heredity, body-size and age. Anim. Behav. 49, 1139–1159 (1995).Article 

    Google Scholar 
    227.Rosenthal, M. F. & Hebets, E. A. Temporal patterns of nutrition dependence in secondary sexual traits and their varying impacts on male mating success. Anim. Behav. 103, 75–82 (2015).Article 

    Google Scholar 
    228.Sadowski, J. A., Grace, J. L. & Moore, A. J. Complex courtship behavior in the striped ground cricket, Allonemobius socius (Orthoptera: Gryllidae): does social environment affect male and female behavior? J. Insect Behav. 15, 69–84 (2002).Article 

    Google Scholar 
    229.Scheuber, H., Jacot, A. & Brinkhof, M. W. G. Condition dependence of a multicomponent sexual signal in the field cricket Gryllus campestris. Anim. Behav. 65, 721–727 (2003).Article 

    Google Scholar 
    230.Shakeel, M., He, X. Z., Martin, N. A., Hanan, A. & Wang, Q. Mating behaviour of the European leafminer Scaptomyza flava (Diptera: Drosophilidae). NZ Plant Prot. 63, 108–112 (2010).
    Google Scholar 
    231.Shelly, T. E., Edu, J. & Pahio, E. Female medflies mate selectively with young males but gain no apparent fitness benefits. J. Insect Behav. 24, 55–66 (2011).Article 

    Google Scholar 
    232.Shelly, T. E. & Kennelly, S. S. Starvation and the mating success of wild male Mediterranean fruit flies (Diptera: Tephritidae). J. Insect Behav. 16, 171–179 (2003).Article 

    Google Scholar 
    233.Shuker, D. et al. Mating behavior, sexual selection, and copulatory courtship in a promiscuous beetle. J. Insect Behav. 15, 617–631 (2002).Article 

    Google Scholar 
    234.Sikkel, P. C. Effects of nest quality on male courtship and female spawning-site choice in an algal-nesting damselfish. Bull. Mar. Sci. 57, 682–689 (1995).
    Google Scholar 
    235.Sisodia, S. & Singh, B. N. Size dependent sexual selection in Drosophila ananassae. Genetica 121, 207–217 (2004).PubMed 
    Article 

    Google Scholar 
    236.Smit, J. A. H., Loning, H., Ryan, M. J. & Halfwerk, W. Environmental constraints on size-dependent signaling affects mating and rival interactions. Behav. Ecol. 30, 724–732 (2019).Article 

    Google Scholar 
    237.Snekser, J. L., Leese, J., Ganim, A. & Itzkowitz, M. Caribbean damselfish with varying territory quality: correlated behaviors but not a syndrome. Behav. Ecol. 20, 124–130 (2009).Article 

    Google Scholar 
    238.Spencer, K. A., Buchanan, K. L., Goldsmith, A. R. & Catchpole, C. K. Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm. Behav. 44, 132–139 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    239.Spencer, K. A. et al. Developmental stress affects the attractiveness of male song and female choice in the zebra finch (Taeniopygia guttata). Behav. Ecol. Sociobiol. 58, 423–428 (2005).Article 

    Google Scholar 
    240.Sundin, J., Vossen, L. E., Nilsson-Sköld, H. & Jutfelt, F. No effect of elevated carbon dioxide on reproductive behaviors in the three-spined stickleback. Behav. Ecol. 28, 1482–1491 (2017).Article 

    Google Scholar 
    241.Suzaki, Y., Katsuki, M., Miyatake, T. & Okada, Y. Relationships among male sexually selected traits in the bean bug, Riptortus pedestris (Heteroptera: Alydidae). Entomol. Sci. 18, 278–282 (2015).Article 

    Google Scholar 
    242.Takeshita, F., Murai, M., Matsumasa, M. & Henmi, Y. Multimodal signaling in fiddler crab: waving to attract mates is condition-dependent but other sexual signals are not. Behav. Ecol. Sociobiol. 72, 140 (2018).243.Tarano, Z. Variation in male advertisement calls in the neotropical frog Physalaemus enesefae. Copeia 2001, 1064–1072 (2001).Article 

    Google Scholar 
    244.Taylor, M. I., Turner, G. F., Robinson, R. L. & Stauffer, J. R. Sexual selection, parasites and bower height skew in a bower-building cichlid fish. Anim. Behav. 56, 379–384 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    245.Tejedo, M. Large male mating advantage in natterjack toads, Bufo calamita: sexual selection or energetic constraints? Anim. Behav. 44, 557–569 (1992).Article 

    Google Scholar 
    246.Tolle, A. E. & Wagner, W. E. Costly signals in a field cricket can indicate high- or low-quality direct benefits depending upon the environment. Evolution 65, 283–294 (2011).PubMed 
    Article 

    Google Scholar 
    247.Toth, C. A., Santure, A. W., Holwell, G. I., Pattemore, D. E. & Parsons, S. Courtship behaviour and display-site sharing appears conditional on body size in a lekking bat. Anim. Behav. 136, 13–19 (2018).Article 

    Google Scholar 
    248.Turiegano, E., Monedero, I., Pita, M., Torroja, L. & Canal, I. Effect of Drosophila melanogaster female size on male mating success. J. Insect Behav. 26, 89–100 (2013).Article 

    Google Scholar 
    249.Van Hout, A. J. M., Pinxten, R., Geens, A. & Eens, M. Non-breeding song rate reflects nutritional condition rather than body condition. PLoS ONE 7, e36547 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    250.Villarreal, A. E., Godin, J. G. J. & Bertram, S. M. Influence of the operational sex ratio on mutual mate choice in the Jamaican field cricket (Gryllus assimilis): testing the predictions of the switch point theorem. Ethology 124, 816–828 (2018).Article 

    Google Scholar 
    251.Wacker, S., de Jong, K., Forsgren, E. & Amundsen, T. Large males fight and court more across a range of social environments: an experiment on the two spotted goby Gobiusculus flavescens. J. Fish. Biol. 81, 21–34 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    252.Wagner, W. E. & Hoback, W. W. Nutritional effects on male calling behaviour in the variable field cricket. Anim. Behav. 57, 89–95 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    253.Walling, C. A., Stamper, C. E., Salisbury, C. L. & Moore, A. J. Experience does not alter alternative mating tactics in the burying beetle Nicrophorus vespilloides. Behav. Ecol. 20, 153–159 (2009).Article 

    Google Scholar 
    254.Watson, N. L. & Simmons, L. W. Mate choice in the dung beetle Onthophagus sagittarius: are female horns ornaments? Behav. Ecol. 21, 424–430 (2010).Article 

    Google Scholar 
    255.Whattam, E. M. & Bertram, S. M. Effects of juvenile and adult condition on long-distance call components in the Jamaican field cricket, Gryllus assimilis. Anim. Behav. 81, 135–144 (2011).Article 

    Google Scholar 
    256.Wilgers, D. J. & Hebets, E. A. Complex courtship displays facilitate male reproductive success and plasticity in signaling across variable environments. Curr. Zool. 57, 175–186 (2011).Article 

    Google Scholar 
    257.Wilgers, D. J. & Hebets, E. A. Age-related female mating decisions are condition dependent in wolf spiders. Behav. Ecol. Sociobiol. 66, 29–38 (2012).Article 

    Google Scholar 
    258.Wilson, A. D. M. et al. Behavioral correlations across activity, mating, exploration, aggression, and antipredator contexts in the European house cricket, Acheta domesticus. Behav. Ecol. Sociobiol. 64, 703–715 (2010).Article 

    Google Scholar 
    259.Win, A. T., Kojima, W. & Ishikawa, Y. Age-related male reproductive investment in courtship display and nuptial gifts in a moth, Ostrinia scapulalis. Ethology 119, 325–334 (2013).Article 

    Google Scholar 
    260.Woodhead, A. P. Male age: effect on mating behaviour and success in the cockroach Diploptera punctata. Anim. Behav. 34, 1874–1879 (1986).Article 

    Google Scholar 
    261.Yamada, K. & Soma, M. Diet and birdsong: short-term nutritional enrichment improves songs of adult Bengalese finch males. J. Avian Biol. 47, 865–870 (2016).Article 

    Google Scholar 
    262.Yuval, B., Kaspi, R., Shloush, S. & Warburg, M. S. Nutritional reserves regulate male participation in Mediterranean fruit fly leks. Ecol. Entomol. 23, 211–215 (1998).Article 

    Google Scholar 
    263.Zuk, M. et al. The role of male ornaments and courtship behavior in female mate choice of red jungle fowl. Am. Nat. 136, 459–473 (1990).Article 

    Google Scholar 
    264.Chargé, R., Saint Jalme, M., Lacroix, F., Cadet, A. & Sorci, G. Male health status, signalled by courtship display, reveals ejaculate quality and hatching success in a lekking species. J. Anim. Ecol. 79, 843–850 (2010).PubMed 

    Google Scholar 
    265.Lipsey, M. & Wilson, D. Practical Meta-analysis (Sage Publications, 2001).266.Hedges, L. V. & Olkin, I. Statistical Methods for Meta-analysis (Academic Press, 1985).267.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    268.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).269.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    270.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    271.Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B 326, 119–157 (1989).CAS 
    Article 

    Google Scholar 
    272.Tacutu, R. et al. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    273.Carey, J. & Judge, D. Longevity Records: Life Spans of Mammals, Birds, Amphibians, Reptiles, and Fish (Odense Univ. Press, 2000).274.Höglund, J. & Alatalo, R. V. Leks (Princeton Univ. Press, 2005).275.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    276.Noble, D. W., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta‐analyses. Mol. Ecol. 26, 2410–2425 (2017).PubMed 
    Article 

    Google Scholar 
    277.Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. Introduction to Meta-analysis (John Wiley, 2009).278.Higgins, J., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).Article 

    Google Scholar 
    279.Nakagawa, S. & Santos, E. S. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    280.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).PubMed 
    Article 

    Google Scholar 
    281.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    282.Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    283.Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634 (1997).CAS 
    Article 

    Google Scholar  More

  • in

    Erosion reduces soil microbial diversity, network complexity and multifunctionality

    1.
    FAO, ITPS. Status of the World’s Soil Resources – Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015. Rome, Italy. https://www.fao.org/3/a-i5199e.pdf.
    2.
    UN (United Nations). Sustainable Development Goals [online]. 2015. https://www.un.org/sustainabledevelopment/sustainabledevelopment-goals/.

    3.
    FAO. 2019. Soil erosion: the greatest challenge for sustainable soil management. Rome: Food and Agriculture Organization of the United Nations; 2019. p. 104.
    Google Scholar 

    4.
    Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, et al. Environmental and economic costs of soil erosion and conservation benefits. Science. 1995;267:1117–23.
    CAS  PubMed  Article  Google Scholar 

    5.
    Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun. 2017;8:1–13.
    CAS  Article  Google Scholar 

    6.
    UN (United Nations). World Soil Day [online]. 2019. https://www.un.org/en/observances/world-soil-day.

    7.
    Van Oost K, Bakker MM. Soil productivity and erosion. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones H, Ritz K, et al. (eds.). Soil ecology and ecosystem services. Oxford, UK: Oxford University Press; 2012. 301–14.

    8.
    Gregorich EG, Greer KJ, Anderson DW, Liang BC. Carbon distribution and losses: erosion and deposition effects. Soil Res. 1998;47:291–302.
    Google Scholar 

    9.
    Lal R, Pimentel D. Soil erosion: a carbon sink or source? Science. 2008;319:1040–2.
    CAS  PubMed  Article  Google Scholar 

    10.
    Mendonça R, Müller RA, Clow D, Verpoorter C, Raymond P, Tranvik LJ, et al. Organic carbon burial in global lakes and reservoirs. Nat Commun. 2017;8:1694.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Quinton JN, Govers G, Van Oost K, Bardgett RD. The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci. 2010;3:311–4.
    CAS  Article  Google Scholar 

    12.
    Smith RW, Bianchi TS, Allison M, Savage C, Galy V. High rates of organic carbon burial in fjord sediments globally. Nat Geosci. 2015;8:450–U46.
    CAS  Article  Google Scholar 

    13.
    Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, et al. The impact of agricultural soil erosion on the global carbon cycle. Science. 2007;318:626–9.
    PubMed  Article  CAS  Google Scholar 

    14.
    Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, et al. Plant species richness and ecosystem multifunctionality in global drylands. Science. 2012;335:214–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Fanin N, Gundale MJ, Farrell M, Ciobanu M, Baldock JA, Nilsson MC, et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat Ecol Evol. 2018;2:269–78.
    PubMed  Article  Google Scholar 

    17.
    Garland G, Banerjee S, Edlinger A, Oliveira EM, Herzog C, Wittwer R, et al. A closer look at the functions behind ecosystem multifunctionality: a review. J Ecol. 2020, https://doi.org/10.1111/1365-2745.13511.

    18.
    Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.
    CAS  PubMed  Article  Google Scholar 

    19.
    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
    CAS  PubMed  Article  Google Scholar 

    20.
    Wall H, Nielsen UN, Six J. Soil biodiversity and human health. Nature. 2015;528:69–76.
    CAS  PubMed  Article  Google Scholar 

    21.
    Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.
    Article  Google Scholar 

    22.
    Crowther TW, Van Den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.
    CAS  PubMed  Article  Google Scholar 

    23.
    de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Zhou J, Deng Y, Luo F, He Z, Yang Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio. 2011;2:e00122–11.
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Bragazza L, Parisod J, Buttler A, Bardgett RD. Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nat Clim Change. 2013;3:273–7.
    CAS  Article  Google Scholar 

    26.
    Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci USA. 2015;112:7033–8.
    CAS  PubMed  Article  Google Scholar 

    27.
    Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA. 2015;112:15684–9.
    CAS  PubMed  Article  Google Scholar 

    28.
    Guo X, Feng J, Shi Z, Zhou X, Yuan M, Tao X, et al. Climate warming leads to divergent succession of grassland microbial communities. Nat Clim Change. 2018;8:813–8.
    Article  Google Scholar 

    29.
    Li Z, Tian D, Wang B, Wang J, Wang S, Chen H, et al. Microbes drive global soil nitrogen mineralization and availability. Glob Change Biol. 2019;25:1078–88.
    Article  Google Scholar 

    30.
    Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Change. 2013;3:909–12.
    CAS  Article  Google Scholar 

    31.
    Chen Q, Dong J, Zhu D, Hu H, Delgado-Baquerizo M, Ma Y, et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol Biochem. 2020;141:107686.
    CAS  Article  Google Scholar 

    32.
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.
    PubMed  Article  Google Scholar 

    33.
    Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, Van Der Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10:4841.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Van der Heijden MGA, Bardgett RD, Van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310.
    Article  Google Scholar 

    35.
    Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.
    Article  CAS  Google Scholar 

    36.
    Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology. 2018;99:690–9.
    PubMed  Article  Google Scholar 

    38.
    Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193–9.
    CAS  PubMed  Article  Google Scholar 

    39.
    Banerjee S, Schlaeppi K, Van Der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
    CAS  PubMed  Article  Google Scholar 

    40.
    Herren CM, McMahon KD. Keystone taxa predict compositional change in microbial communities. Environ Microbiol. 2018;20:2207–17.
    PubMed  Article  Google Scholar 

    41.
    Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Change Biol. 2018;24:2818–27.
    Article  Google Scholar 

    42.
    Mabuhay JA, Nakagoshi N, Isagi Y. Influence of erosion on soil microbial biomass, abundance and community diversity. Land Degrad Dev. 2004;15:183–95.
    Article  Google Scholar 

    43.
    Li Z, Xiao H, Tang Z, Huang J, Nie X, Huang B, et al. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. Eur J Soil Biol. 2015;71:37–44.
    CAS  Article  Google Scholar 

    44.
    Hou S, Xin M, Wang LL, Jiang H, Li N, Wang Z. The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China. Acta Ecologica Sin. 2014;34:295–301.
    Article  Google Scholar 

    45.
    Zhang Y, Wu Y, Liu B, Zheng Q, Yin J. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China. Soil Res. 2007;96:28–41.
    Google Scholar 

    46.
    Li H, Zhu H, Qiu L, Wei X, Liu B, Shao M. Response of soil OC, N and P to land-use change and erosion in the black soil region of the Northeast China. Agr Ecosyst Environ. 2020;302:107081.
    CAS  Article  Google Scholar 

    47.
    Zheng F. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere 2006;16:420–7.
    Article  Google Scholar 

    48.
    Page A, Miller R, Keeney D. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Madison, Wisconsin, American Society of Agronomy, Inc., Soil Science Society of America, Inc, 1982.

    49.
    Brookes P, Landman A, Pruden G, Jenkinson D. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17:837–42.
    CAS  Article  Google Scholar 

    50.
    Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun. 2015;6:6936.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol. 2012;100:317–30.
    CAS  Article  Google Scholar 

    52.
    Wang Z, Zhang Q, Staley C, Gao H, Ishii S, Wei X, et al. Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability. Biol Fertil Soils. 2019;55:121–34.
    CAS  Article  Google Scholar 

    53.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Mueller RC, Paula FS, Mirza BS, Rodrigues JLM, Nuesslein K, Bohannan BJM. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. ISME J. 2014;8:1548–50.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Al-Ghalith GA, Hillmann B, Ang K, Shields-Cutler R, Knights D. SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems. 2018;3:e00202–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Al-Ghalith GA, Montassier E, Ward HN, Knights D. NINJA-OPS: fast accurate marker gene alignment using concatenated ribosomes. PLoS Comput Biol. 2016;12:e1004658.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.
    CAS  PubMed  Article  Google Scholar 

    59.
    Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:326–49.
    Article  Google Scholar 

    60.
    Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.
    Article  Google Scholar 

    61.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R package version 2.3-1. 2015, http://CRAN.R-project.org/package=vegan.

    62.
    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.
    Article  CAS  Google Scholar 

    63.
    Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J. Application of random matrix theory to biological networks. Phys Lett A. 2006;357:420–3.
    CAS  Article  Google Scholar 

    64.
    Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.
    Article  Google Scholar 

    65.
    Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. Complex Syst. 2006;1695:1–9.
    Google Scholar 

    66.
    Ma B, Wang HZ, Dsouza M, Lou J, He Y, Dai ZM, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891–901.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:219.
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM Conf. 2009;8:361–2.
    Google Scholar 

    69.
    Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Qiu L, Zhu H, Liu J, Yao Y, Wang X, Rong G, et al. Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment. Agr Ecosyst Environ. 2021;307:107232.
    CAS  Article  Google Scholar 

    71.
    Crits-Christoph A, Robinson CK, Barnum T, Fricke WF, Davila AF, Jedynak B, et al. Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome. 2013;1:28.
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Tiemann LK, Billings SA. Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol Biochem. 2011;43:1837–47.
    CAS  Article  Google Scholar 

    73.
    Banerjee S, Misra A, Sar A, Pal S, Chaudhury S, Dam B. Poor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profiles. Appl Soil Ecol. 2020;152:103544.
    Article  Google Scholar 

    74.
    Abu-Hamdeh NH, Reeder RC. Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter. Soil Sci Soc Am J. 2000;64:1285–90.
    CAS  Article  Google Scholar 

    75.
    Bajracharya RM, Lal R, Kimble JM. Diurnal and seasonal CO2-C flux from soil as related to erosion phases in central Ohio. Soil Sci Soc Am J. 2000;64:286–93.
    CAS  Article  Google Scholar 

    76.
    Liang Y, Lal R, Guo S, Liu R, Hu Y. Impacts of simulated erosion and soil amendments on greenhouse gas fluxes and maize yield in Miamian soil of central Ohio. Sci Rep. 2018;8:520.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    77.
    Van Der Voort M, Kempenaar M, Van Driel M, Raaijmakers JM, Mendes R. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol Lett. 2016;19:375–82.
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    García-Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, et al. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Glob Change Biol. 2015;21:1590–1600.
    Article  Google Scholar 

    79.
    Karimi B, Terrat S, Dequiedt S, Saby NPA, Horriguel W, Lelievre M, et al. Biogeography of soil bacteria and archaea across France. Sci Adv. 2018;4:eaat1808.
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microb. 2006;72:1719–28.
    CAS  Article  Google Scholar 

    81.
    Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 2009;3:992–1000.
    CAS  PubMed  Article  Google Scholar 

    82.
    Zhang C, Liu G, Xue S, Wang G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol Biochem. 2016;97:40–49.
    CAS  Article  Google Scholar 

    83.
    Wolińska A, Kuzniar A, Zielenkiewicz U, Izak D, Szafranek-Nakonieczna A, Banach A, et al. Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. Appl Soil Ecol. 2017;119:128–37.
    Article  Google Scholar 

    84.
    DeBruyn LM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M. Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil. Appl Environ Microb. 2011;77:6295–6300.
    CAS  Article  Google Scholar 

    85.
    Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013;7:384–94.
    CAS  PubMed  Article  Google Scholar 

    86.
    Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017;11:2691–704.
    PubMed  PubMed Central  Article  Google Scholar 

    87.
    Santos-Medellin C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio. 2017;8:e00764–17.
    PubMed  PubMed Central  Article  Google Scholar 

    88.
    Chowdhury TR, Lee JY, Bottos EM, Brislawn CJ, White RA, Bramer LM, et al. Metaphenomic responses of a native prairie soil microbiome to moisture perturbations. mSystems. 2019;4:e00061–19.
    Google Scholar 

    89.
    Mickan BS, Abbott LK, Solaiman ZM, Mathes F, Siddique KHM, Jenkins SN. Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biol Fert Soils. 2019;55:53–66.
    CAS  Article  Google Scholar 

    90.
    Van Horn DJ, Okie JG, Buelow HN, Gooseff MN, Barrett JE, Takacs-Vesbach CD. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl Environ Microb. 2014;80:3034–43.
    Article  CAS  Google Scholar 

    91.
    Kielak A, Pijl AS, Van Veen JA, Kowalchuk GA. Phylogenetic diversity of Acidobacteria in a former agricultural soil. ISME J. 2009;3:378–82.
    CAS  PubMed  Article  Google Scholar 

    92.
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.
    CAS  PubMed  Article  Google Scholar 

    93.
    Wolińska A, Kuzniar A, Zielenkiewicz U, Banach A, Blaszczyk M. Indicators of arable soils fatigue Bacterial – families and genera: a metagenomic approach. Ecol Indic. 2018;93:490–500.
    Article  Google Scholar 

    94.
    Yang F, Niu KC, Collins CG, Yan XB, Ji YG, Ling N. Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow. Land Degrad Dev. 2019;30:49–59.
    Article  Google Scholar 

    95.
    Vitousek PM, Menge DNL, Reed SC, Cleveland CC. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc B Biol Sci. 2013;368:1621.
    Article  CAS  Google Scholar 

    96.
    Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Wu YY, Zhu M, et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome. 2019;7:143.
    PubMed  PubMed Central  Article  Google Scholar 

    97.
    Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol. 2020;5:314–30.
    CAS  PubMed  Article  Google Scholar 

    98.
    Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem. 2016;97:188–98.
    CAS  Article  Google Scholar 

    99.
    Guo J, Ling N, Chen Z, Xue C, Li L, Liu L, et al. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. N Phytol. 2020;226:232–43.
    Article  Google Scholar 

    100.
    Qi G, Ma G, Chen S, Lin C, Zhao X. Microbial network and soil properties are changed in bacterial wilt-susceptible soil. Appl Environ Microb. 2019;85:e00162–19.
    CAS  Google Scholar 

    101.
    Xue L, Ren H, Brodribb TJ, Wang J, Yao X, Li S. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation. For Ecol Manag. 2020;459:117805.
    Article  Google Scholar 

    102.
    Ling N, Zhu C, Xue C, Chen H, Duan YH, Peng C. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol Biochem 2016;99:137–49.
    CAS  Article  Google Scholar 

    103.
    Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses. BMC Bioinforma. 2012;13:113.
    Article  Google Scholar 

    104.
    Bai YX, She WW, Miao L, Qin SG, Zhang YQ. Soil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, northern China. Soil Biol Biochem. 2020;150:108013.
    CAS  Article  Google Scholar 

    105.
    Szoboszlay M, Dohrmann AB, Poeplau C, Don A, Tebbe CC. Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe. FEMS Microbiol Ecol. 2017;93:fix146.
    Article  CAS  Google Scholar 

    106.
    Marcos MS, Bertiller MB, Olivera NL. Microbial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle size. Appl Soil Ecol. 2019;138:223–32.
    Article  Google Scholar 

    107.
    Hamamura N, Olson SH, Ward DM, Inskeep WP. Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microb. 2006;72:6316–24.
    CAS  Article  Google Scholar 

    108.
    Acosta‐Martínez V, Cotton J, Gardner T, Moore‐Kucera J, Zak J, Wester D, et al. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl Soil Ecol. 2014;84:69–82.
    Article  Google Scholar 

    109.
    Peng M, Jia H, Wang Q. The effect of land use on bacterial communities in Saline-Alkali soil. Curr Microbiol. 2017;74:325–33.
    CAS  PubMed  Article  Google Scholar 

    110.
    Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman NA, et al. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol. 2015;24:2433–48.
    CAS  PubMed  Article  Google Scholar 

    111.
    Byers AK, Condron L, Donavan T, O’Callaghan M, Patuawa T, Waipara N, et al. Soil microbial diversity in adjacent forest systems—contrasting native, old growth kauri (Agathis australis) forest with exotic pine (Pinus radiata) plantation forest. FEMS Microbiol Ecol. 2020;96:fiaa047.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    112.
    Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Trumbore, Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    113.
    Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528:60–68.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    114.
    Buzzard V, Michaletz ST, Deng Y, He Z, Ning D, Shen L, et al. Continental scale structuring of forest and soil diversity via functional traits. Nat Ecol Evol. 2019;3:1298–308.
    PubMed  Article  PubMed Central  Google Scholar 

    115.
    Wei X, Shao M, Gale W, Li L. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep. 2014;4:4062.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    116.
    Delgado‐Baquerizo M, Reith F, Dennis PG, Hamonts K, Powell JR, Young A, et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology. 2018;99:583–96.
    PubMed  Article  PubMed Central  Google Scholar 

    117.
    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.
    CAS  PubMed  Article  Google Scholar 

    118.
    Nottingham AT, Fierer N, Turner BL, Whitaker J, Ostle NJ, McNamara NP, et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology. 2018;99:2455–66.
    PubMed  PubMed Central  Article  Google Scholar 

    119.
    Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun. 2016;7:12083.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    120.
    Allison SD, Martiny JBH, et al. Resistance resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.
    CAS  PubMed  Article  Google Scholar 

    121.
    Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 2014;8:226–44.
    CAS  PubMed  Article  Google Scholar  More

  • in

    Easing COVID-19 lockdown measures while protecting the older restricts the deaths to the level of the full lockdown

    Overview
    In earlier work34, epidemiological models are broadly divided into two large categories, called forecasting and mechanistic. The former models fit a specific curve to the data and then attempt to predict the dynamics of the quantity under consideration. The most well known mechanistic models are the SIR-type models. As noted by Holmadahl and Buckee34, the mechanistic models involve substantially more complicated mathematical machinary than the forecasting models, but they have the advantage that they can make predictions even when the relevant circumstances change. In our case, since our goal is to make predictions after the situation changes due to the lifting of the lockdown measures, we need to consider a mechanistic model. However, it is widely known that the main limitation of mechanistic models is the difficulty of determining the parameters specifying such models. In this direction, a methodological advance was presented by the authors35, filling an important gap in the relevant literature: it was shown in35 that from the knowledge of the most reliable data of the epidemic in a given country, namely the cumulative number of deaths, it is possible to determine suitable combinations of the constant parameters (of the original model) which specify the differential equation characterizing the death dynamics. Furthermore, a robust numerical algorithm was presented for obtaining these parameters. One of these constants, denoted by c, is particularly important for the analysis of the effect of easing the lockdown conditions, because it is proportional to the number of contacts between asymptomatic individuals that are infected by SARS-CoV-2 and susceptible ones. Specifically, as the equations presented below will indicate, this coefficient is measured in units of inverse population (where the population represents the number of individuals to which we assign no units) times inverse days. This constant reflects the probability of infection given a contact which is proportional to the viral load (i.e., the viral concentration in the respiratory-tract fluid) of expelled respiratory droplets36. Easing the lockdown will lead to an increase of the value of this constant. Thus, in order to quantify this effect we assumed that the post-lockdown situation could be described by the same model but with c multiplied by an integer number (zeta), such as (zeta =2), or 3, etc. Assuming a fixed viral load emission (i.e., no face mask or similar protective measures), this would be tantamount to doubling or tripling the number of contacts per day. To put things into perspective, it is relevant to mention here that in the relevant literature a ballpark estimate for daily contacts of an individual is about 13.437.
    We first applied the above algorithm to the case of the COVID-19 epidemic in Greece. However, the novelty and the main interest of the present work consists of the extension and application of the above methodology to two subpopulations. This situation is significantly more complicated than that of2 and is described by 12 ODEs involving 18 parameters (details are discussed in the “Methods” section). Using this extended formulation, we analysed the effect of easing the lockdown measures under two distinct possible scenarios: in the first, we examined what would happen if the interactions between older persons, namely persons above 40 years of age, as well as between older and younger persons, namely those below 40, continue to be dictated by the same restrictions as those of the lockdown period. However, we assumed that the interaction among the young was progressively more free. In the second case, we analysed the effect of easing the lockdown measures in the entire population without distinguishing the older from the young. In principle, the effect on deaths in the above two scenarios could be analyzed by the extension of the rigorous results of35. However, due to the sparsity of the deaths data (especially for the younger population), this approach is practically not possible at present. Thus, we supplemented the data for deaths for the two subpopulations with data for the cumulative numbers of reported infected.
    Using four sets of data, namely the number of deaths and the number of reported infected for the older and the younger population we found that the above two alternatives would result in very different outcomes: in the first case, the total number of deaths of the two sub-populations and the number of total infections would be relatively small. In the second case, these numbers would be prohibitively high. Specifically, in the case of Greece, if the lockdown was to be continued indefinitely, our analysis suggests that the total numbers of deaths and infections would finally be around 165 and 2550, respectively. These numbers would remain essentially the same even if the lockdown measures for the interaction between the young people were eased substantially, provided that the interactions of older-older and older-young would remain the same as during the lockdown period. For example, even if the parameter measuring the effect of the lockdown restrictions on the young-young interactions were increased fourfold, the number of deaths and infections would be (according to the model extrapolation) 184 and 3585, respectively. On the other hand, even if the parameters characterizing all three interactions were increased only threefold, the relevant numbers would be 48144 and 1283462. It is clear that the latter numbers are prohibitive, suggesting that a generic release of the lockdown may be catastrophic.
    In our view, the explanations provided in the “Methods” section for the assumptions of our model, which show that these assumptions are typical in the standard epidemiological models, substantiate the qualitative conclusions (and notes of caution) regarding the impact of the above two different types of exit policies. This may provide a sense of how a partial restoration of regular life activities can be achieved without catastrophic consequences, while the race for pharmacological or vaccine-based interventions that will lead to an end of the current pandemic is still ongoing. Importantly, we also offer some caveats emphasizing the qualitative nature of our conclusions and possible factors that may substantially affect the actual outcome of the lifting of lockdown measures.
    Model setup: single population versus two age groups
    We divide the population in two subpopulations, the young (y) and the older (o). In order to explain the basic assumptions of our model we first consider a single population, and then discuss the needed modifications in our case which involves two subpopulations. Let E(t) denote the exposed (but not infectious) population. An individual in this population, after a median 4-day period (required for incubation — see e.g.38) will either become sick or will be asymptomatic; an interval of 3-10 days captures 98% of the cases. The sick (infected) and asymptomatic populations will be denoted, respectively, by I(t) and A(t). The rate at which an exposed person becomes asymptomatic is denoted by a; this means that each day aE(t) persons leave the exposed population and enter the asymptomatic population. Similarly, each day sE(t) leave the exposed population and enter the sick population. These processes, as well as the subsequent movements are depicted in the flowchart of Fig. 1.
    Figure 1

    Flowchart of the populations considered in the model and the rates of transformation between them. The corresponding dynamical equations are Eqs. (1)–(6).

    Full size image

    The asymptomatic individuals recover with a rate (r_1), i.e., each day (r_1A(t)) leave the asymptomatic population and enter the recovered population, which is denoted by R(t). The sick individuals either recover with a rate (r_2) or they become hospitalized, H(t), with a rate h. In turn, the hospitalized patients also have two possible destinations; either they recover with a rate (r_3), or they become deceased, D(t), with a rate d.
    It is straightforward to write the above statements in the language of mathematics; this gives rise to the equations (1)–(5) below:

    $$begin{aligned} frac{dA}{dt}= a E – r_1 A end{aligned}$$
    (1)

    $$begin{aligned} frac{dI}{dt}= s E – (h + r_2) I end{aligned}$$
    (2)

    $$begin{aligned} frac{dH}{dt}= h I – (r_3+d) H end{aligned}$$
    (3)

    $$begin{aligned} frac{dR}{dt}= r_1 A + r_2 I + r_3 H end{aligned}$$
    (4)

    $$begin{aligned} frac{dD}{dt}= d H end{aligned}$$
    (5)

    $$begin{aligned} frac{dE}{dt}= c left[ T – (E+I+A+H+R+D)right] left( A + b Iright) – (a+s) E end{aligned}$$
    (6)

    It is noted that our model is inspired by various expanded versions of the classic SIR model adapted to the particularities of COVID-19 (such as the key role of the asymptomatically infected). It is, in particular, inspired by, yet not identical with that of14. In order to complete the system of equations (1)–(6), it is necessary to describe the mechanism via which a person can become infected. For this purpose we adopt the standard assumptions made in the typical epidemiological models, such as the SIR (susceptible, infected, recovered) model: let T denote the total population and let c characterize the number of contacts per day made by an individual with the capacity to infect (c is thought of as being normalized by T). Such a person belongs to I, A or H. However, for simplicity we assume that the hospitalized population cannot infect; this assumption is based on two considerations: first, the strict protective measures taken at the hospital, and second, the fact that hospitalized patients are infectious only for part of their stay in the hospital. The latter fact is a consequence of the relevant time scales of virus shedding in comparison to the time to hospitalization and the duration of hospital stay. The asymptomatic individuals are (more) free to interact with others, whereas the (self-isolating) sick persons are not. Thus, we use c to characterize the contacts of the asymptomatic persons and b to indicate the different infectiousness (due to reduced contacts/self-isolation) of the sick in comparison to the asymptomatic individuals.
    The number of people available to be infected (i.e., the susceptible population) is (T-(E+I+A+H+R+D)). Indeed, the susceptible individuals consist of the total population minus all the individuals that are going or have gone through the course of some phase of infection, namely they either bear the infection at present ((E+A+I+H)) or have died from COVID-19 (D) or are assumed to have developed immunity to COVID-19 due to recovery (R). Hence, if we call the total initial individuals T, this susceptible population is given by the expression written earlier. The rate by which each day individuals enter E is given by the product of the above expression with (c(A+bI)). At the same time, as discussed earlier, every day ((a+s)E) persons leave the exposed population. It is relevant to note here that within this simpler model, it is possible to calculate the basic reproduction number (R_0), which is a quantity of substantial value in epidemiological studies32,33. In this model, this can be found to be33:

    $$begin{aligned} R_0=frac{c T}{a+s}left[ frac{a}{r_1} + frac{b s}{r_2+h} right] . end{aligned}$$
    (7)

    This will be useful below for the purposes of finding the change in c (under lockdown) needed in order for transmission to cross the threshold of (R_0=1) and thus to lead to growth of the epidemic. In the particular case of the data shown in Table 1, (R_0=0.4084), in accordance with the lockdown situation associated with a controlled epidemic.
    It is straightforward to modify the above model so that it can describe the dynamics of the older and younger subpopulations. Each subpopulation satisfies the same set of equations as those described above, except for the last equation which is modified as follows: the people available to be infected in each subpopulation are described by the expression given above where T, E, I, A, H, R, D have the superscripts (^o) or (^y), denoting older and young, respectively; (A+bI) is replaced in both cases by (A^o+A^y+b(I^o+I^y)) where for simplicity we have assumed that the infectiousness of the older and the young is the same. We have already considered the implications of the generalisation of the above model by allowing different parameters to describe the interaction of the older and young populations; this will be discussed in the “Methods” section. In what follows, we will discuss the results of this simpler “isotropic” interaction model.
    Quantitative model findings
    The parameters of the model are given in the flowchart of Fig. 1. Naturally, for the two-age model considered below, there is one set of such parameters associated with the younger population and one associated with the older one. The optimization routine used for the identification of these parameters is explained in detail in the “Methods” section. The parameters resulting from this optimization for the single population model are shown in Table 1, whereas for each of the two populations are given in Table 2. Clearly, many of these parameters are larger for the older population in comparison to the young, leading to a larger number of both infections and deaths in the older than in the young population.
    Table 1 Optimized model parameters for the single population model, and the variation interval of each parameter within the optimization process (for further details, see “Methods” section).
    Full size table

    Table 2 Optimized (isotropic) model parameters for the young and older populations, and the variation interval of each parameter within the optimization process (for further details, see “Methods” section).
    Full size table

    Support for the validity of our model is presented in Fig. 2, which depicts its comparison (using the above optimized parameters) with the available data. The situation corresponding to keeping the lockdown conditions indefinitely, is the one illustrated in Fig. 2. In this case, the number of deaths and cumulative infections rapidly reaches a plateau, indicating the elimination of the infection. Here, we have optimized the model on the basis of data used from Greece39 between April 3rd and May 4th. It is noted that daily updates occurred at 3pm for the country of Greece, hence it is not clear up to what time the data are collected that are included in the daily report. We have assumed that the data reflect the infections and deaths present on that particular day. This possibly shifts the starting point of our count by a few hours, but should not change the overall result trends.
    We next explain the implications of the model when different scenarios of ‘exit’ from the lockdown state are implemented. The relevant results are illustrated in Figs. 3, 4 and the essential conclusions are summarized in Table 3 for the numbers of deaths and cumulative infections, respectively. First, we need to explain the meaning of the parameter (zeta) appearing in the above tables: this parameter reflects the magnitude of the easing of the lockdown restrictions. Indeed, since the main effect of the lessening of these restrictions is that the number of contacts increases, we model the effect of easing the lockdown restrictions by multiplying the parameter c with a factor that we refer to as (zeta). The complete lockdown situation corresponds to (zeta)=1; the larger the value of (zeta), the lesser the restrictions imposed on the population. By employing the above quantitative measure of easing the lockdown restrictions, we consider in detail two distinct scenarios. In the first, which corresponds to the top rows of the Figures 3 and 4, we only allow the number of contacts of “young individuals with young individuals” (corresponding to the parameter (c^{yy}) mentioned in the “Methods” section) to be multiplied by the factor (zeta). This means that the lockdown measures are eased only with respect to the interaction of young individuals with other young individuals, while the interactions of the young individuals with the older ones, as well as the interactions among older individuals remain in the lockdown state. In the second scenario, corresponding to the bottom rows of the Figures 3 and 4, the restrictions of the lockdown are simultaneously eased in both the young and the older population; in this case all contacts are increased by the factor (zeta). It is noted that while we change c by this factor, we maintain the product cb at its previous value (i.e., we concurrently transform (crightarrow zeta c) and (brightarrow b/zeta)) considering that the sick still operate under self-isolation conditions and thus do not accordingly increase their number of contacts.
    Table 3 Deaths D(t) and cumulative infections C(t) in the case of increasing of the number of contacts by (zeta). The second and fourth columns refer to the case for which the lockdown measures are eased for the young population, whereas the third and fifth column refer to the one where this occurs for both the young and older populations.
    Full size table

    Figure 2

    Evolution of the current situation of deaths D(t) (left) and cumulative infections C(t) (right) in Greece, under the case of an indefinite continuation of the lockdown conditions. In this and all the figures that follow, the blue curve corresponds to the young population, while the red curve to the older population. The data for Greece from the 3rd of April to the 4th of May 2020 are depicted by dots. For the latter, alternate colors have been used (i.e., blue dots for the older population and red for the younger for clearer visualization).

    Full size image

    Fig. 3 corresponds to the case where the parameter (zeta) associated with the number of contacts between susceptible and asymptomatic individuals doubles. In this case, as also shown in Table 3, the situation does not worsen in a dramatic way. In particular, the number of deaths increases by 1, whereas the cumulative infections only increase by the small number of 58. In the second scenario where the number of contacts is doubled for both the young and the older populations, we find slightly larger (but not totally catastrophic) effects: the number of deceased individuals increases by 58 and the total number of infections grows by 1550.
    Figure 3

    Again the deaths D(t) and the cumulative infections C(t) are given for the case where the c factor (characterizing the number of contacts) amongst young individuals is doubled, but those of the older individuals (and of the young-older interaction) are kept fixed. This is shown in the top panels. In the bottom panels, the c’s of both young and old individuals are doubled.

    Full size image

    The situation becomes far more dire when the number of contacts is multiplied by a factor of 3 for both the young and older populations, meaning that the lockdown restrictions are eased significantly for the entire population. As shown in Table 3 and in Fig. 4, if the c’s of the young population only are multiplied by a factor of 3, then the deaths are increased by 3 and the infections by 198 (black line in the Figure and 3rd row of the Tables). This pales by comparison to the dramatic scenario when the c’s associated with both the young and older sub-populations are multiplied by 3; in this case, the number of deaths jumps dramatically to 48144, while the number of infections is a staggering 1283462, growing by about 500 times.
    Figure 4

    Same as reported in Fig. 3 but now where the contacts are multiplied by factors 3, 4 and 5. Full (dashed) lines hold for the young (older) population.

    Full size image

    An example corroborating the above qualitative trend can also be found in Fig. 4 and in the 4th and 5th rows of Table 3. Here, for e.g. (zeta =5), even the effect of releasing solely the young population leads to very substantial increases, namely to 6044 deaths and 306219 infections although of course it is nowhere near the scenarios of releasing both young and older populations. In the second scenario, the numbers are absolutely daunting: using the parameters of Table 2 we find that the number of deaths jumps to 83274 and the number of cumulative infections to 2221296.
    Figure 5

    Hospitalizations when only the young population (left) or both the young and older (right) population are released. Full (dashed) lines hold for the young (older) population.

    Full size image

    Finally, we show the prediction of the easing measures in the hospitalizations (i.e. daily occupied beds in hospitals). This is a crucial point to assess in order that the health system does not collapse because of COVID-19 patients. Figure 5 shows these trends for the above mentioned values of (zeta). In the case of releasing solely the young population (see left panel of the Figure), it is observed that the number of hospitalizations decreases monotonically except for (zeta =5), where the hospitalization peak is 523 for the young population and 1426 for the older one (values that are affordable by Greek health system); however, if both the young and older population are released (see right panel of the Figure), there is a monotonically decreasing behaviour only for (zeta =1) and 2. For higher (zeta) we observe that the height of the peak obviously increases with (zeta), while this peak also occurs earlier when the number of contacts is increased; for instance, for (zeta =3), the hospitalization peak number of the young population is 3844 whereas this value is 37030 for the older one, numbers that are, unfortunately, unaffordable for the Greek health system. These figures grow even further to 16869 and 163648 if (zeta =5).
    In light of the above results, the significance of preserving the lockdown restrictions of the sensitive groups of the older population is naturally emerging. It can be seen that in the case where the number of contacts is roughly doubled, the behavior of release of young or young and older individuals is not dramatic (although even in this case releasing only the young population is, of course, preferable). Nevertheless, a more substantial release of the young population is still not catastrophic. On the other hand, the higher rates of infection, hospitalization and proneness to death of senior individuals may bring about highly undesirable consequences, should both the young and older members of the population be allowed to significantly increase (by 3 times or more) their number of contacts. More

  • in

    Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean

    1.
    Longhurst A, Sathyendranath S, Platt T, Caverhill C. An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res. 1995;17:1245–71.
    Article  Google Scholar 
    2.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Falkowski PG, Raven JA. Aquatic photosynthesis. Princeton, NJ: Princeton University Press; 2013.

    4.
    Falkowski PG, Barber RT, Smetacek V. Biogeochemical controls and feedbacks on Ocean primary production. Science. 1998;281:200–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Palmer JR, Totterdell IJ. Production and export in a global ocean ecosystem model. Deep Sea Res Part Oceanogr Res Pap. 2001;48:1169–98.
    CAS  Article  Google Scholar 

    6.
    Legendre L, Rivkin RB. Fluxes of carbon in the upper ocean: regulation by food-web control nodes. Mar Ecol Prog Ser. 2002;242:95–109.
    Article  Google Scholar 

    7.
    Guidi L, Stemmann L, Jackson GA, Ibanez F, Claustre H, Legendre L, et al. Effects of phytoplankton community on production, size, and export of large aggregates: a world-ocean analysis. Limnol Oceanogr. 2009;54:1951–63.
    Article  Google Scholar 

    8.
    Michaels AF, Silver MW. Primary production, sinking fluxes and the microbial food web. Deep Sea Res Part Oceanogr Res Pap. 1988;35:473–90.
    Article  Google Scholar 

    9.
    Calbet A, Landry MR. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 2004;49:51–57.
    CAS  Article  Google Scholar 

    10.
    Jin X, Gruber N, Dunne JP, Sarmiento JL, Armstrong RA. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Glob Biogeochem Cycles. 2006;20:GB2015.
    Article  CAS  Google Scholar 

    11.
    Richardson TL, Jackson GA. Small phytoplankton and carbon export from the surface ocean. Science. 2007;315:838–40.
    CAS  PubMed  Article  Google Scholar 

    12.
    Uitz J, Claustre H, Griffiths FB, Ras J, Garcia N, Sandroni V. A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean). Deep Sea Res Part Oceanogr Res Pap. 2009;56:541–60.
    CAS  Article  Google Scholar 

    13.
    Uitz J, Claustre H, Gentili B, Stramski D. Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations. Glob Biogeochem Cycles. 2010;24:GB3016.

    14.
    Poulin FJ, Franks PJS. Size-structured planktonic ecosystems: constraints, controls and assembly instructions. J Plankton Res. 2010;32:1121–30.
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Ward BA, Dutkiewicz S, Jahn O, Follows MJ. A size-structured food-web model for the global ocean. Limnol Oceanogr. 2012;57:1877–91.
    Article  Google Scholar 

    16.
    Stoecker DK, Hansen PJ, Caron DA, Mitra A. Mixotrophy in the marine plankton. Annu Rev Mar Sci. 2017;9:311–35.
    Article  Google Scholar 

    17.
    Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Aumont O, et al. Influence of diatom diversity on the ocean biological carbon pump. Nat Geosci. 2018;11:27.
    Article  CAS  Google Scholar 

    18.
    Lancelot C, Hannon E, Becquevort S, Veth C, De, Baar HJW. Modeling phytoplankton blooms and carbon export production in the Southern Ocean: dominant controls by light and iron in the Atlantic sector in Austral spring 1992. Deep Sea Res Part Oceanogr Res Pap. 2000;47:1621–62.
    CAS  Article  Google Scholar 

    19.
    Wang S, Moore JK. Incorporating Phaeocystis into a Southern Ocean ecosystem model. J Geophys Res Oceans 2011;116:C01019.

    20.
    Worthen DL, Arrigo KR. A coupled ocean-ecosystem model of the Ross Sea. Part 1: Interannual variability of primary production and phytoplankton community structure. In: DiTullio GR, Dunbar RB, editors. Biogeochemistry of the Ross Sea. Antarct Res Ser. 2003;78:93–105.

    21.
    Li WKW. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr. 1994;39:169–75.
    CAS  Article  Google Scholar 

    22.
    Jardillier L, Zubkov MV, Pearman J, Scanlan DJ. Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J. 2010;4:1180–92.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Rii YM, Duhamel S, Bidigare RR, Karl DM, Repeta DJ, Church MJ. Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the South East Pacific Ocean: Picophytoplankton diversity and productivity in the S. Pacific. Limnol Oceanogr. 2016;61:806–24.
    Article  Google Scholar 

    24.
    Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci. 2008;105:17861–6.
    CAS  PubMed  Article  Google Scholar 

    25.
    Foster RA, Kuypers MMM, Vagner T, Paerl RW, Musat N, Zehr JP. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 2011;5:1484.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    26.
    Olofsson M, Robertson EK, Edler L, Arneborg L, Whitehouse MJ, Ploug H. Nitrate and ammonium fluxes to diatoms and dinoflagellates at a single cell level in mixed field communities in the sea. Sci Rep. 2019;9:1424.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Berthelot H, Duhamel S, L’Helguen S, Maguer J-F, Wang S, Cetinić I, et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 2019;13:651–62.
    CAS  PubMed  Article  Google Scholar 

    28.
    Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T, et al. Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J. 2010;4:1215–23.
    CAS  PubMed  Article  Google Scholar 

    29.
    Olofsson M, Kourtchenko O, Zetsche E-M, Marchant HK, Whitehouse MJ, Godhe A, et al. High single-cell diversity in carbon and nitrogen assimilations by a chain-forming diatom across a century. Environ Microbiol. 2019;21:142–51.
    CAS  PubMed  Article  Google Scholar 

    30.
    Zaoli S, Giometto A, Marañón E, Escrig S, Meibom A, Ahluwalia A, et al. Generalized size scaling of metabolic rates based on single-cell measurements with freshwater phytoplankton. Proc Natl Acad Sci. 2019;116:17323–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2014;28:862–86.
    Article  Google Scholar 

    32.
    Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE, van Heuven S, et al. The reinvigoration of the Southern Ocean carbon sink. Science. 2015;349:1221–4.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    33.
    Martin JH. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography. 1990;5:1–13.
    Article  Google Scholar 

    34.
    de Baar HJW, Jong JTM, de, Bakker DCE, Löscher BM, Veth C, Bathmann U, et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature. 1995;373:412.
    Article  Google Scholar 

    35.
    de Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A, Assmy P, et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J Geophys Res Oceans. 2005;110:C09S16.

    36.
    Weber LH, El-Sayed SZ. Contributions of the net, nano- and picoplankton to the phytoplankton standing crop and primary productivity in the Southern Ocean. J Plankton Res. 1987;9:973–94.
    Article  Google Scholar 

    37.
    Froneman PW, Laubscher RK, Mcquaid CD. Size-fractionated primary production in the South Atlantic and Atlantic Sectors of the Southern Ocean. J Plankton Res. 2001;23:611–22.
    CAS  Article  Google Scholar 

    38.
    Blain S, Quéguiner B, Armand L, Belviso S, Bombled B, Bopp L, et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature. 2007;446:1070–4.
    CAS  PubMed  Article  Google Scholar 

    39.
    Pollard R, Sanders R, Lucas M, Statham P. The Crozet Natural Iron Bloom and Export Experiment (CROZEX). Deep Sea Res Part II Top Stud Oceanogr. 2007;54:1905–14.
    CAS  Article  Google Scholar 

    40.
    Korb RE, Whitehouse MJ, Atkinson A, Thorpe SE. Magnitude and maintenance of the phytoplankton bloom at South Georgia: a naturally iron-replete environment. Mar Ecol Prog Ser. 2008;368:75–91.
    CAS  Article  Google Scholar 

    41.
    Kopczyńska EE, Fiala M, Jeandel C. Annual and interannual variability in phytoplankton at a permanent station off Kerguelen Islands, Southern Ocean. Polar Biol. 1998;20:342–51.
    Article  Google Scholar 

    42.
    Mosseri J, Quéguiner B, Armand L, Cornet-Barthaux V. Impact of iron on silicon utilization by diatoms in the Southern Ocean: a case study of Si/N cycle decoupling in a naturally iron-enriched area. Deep Sea Res Part II Top Stud Oceanogr. 2008;55:801–19.
    Article  Google Scholar 

    43.
    Park Y-H, Roquet F, Durand I, Fuda J-L. Large-scale circulation over and around the Northern Kerguelen Plateau. Deep Sea Res Part II Top Stud Oceanogr. 2008;55:566–81.
    Article  Google Scholar 

    44.
    Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci. 1999;56:1801–8.
    CAS  Article  Google Scholar 

    45.
    Aminot A, Kérouel R. Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Editions Versailles, France: Quae; 2007.

    46.
    Ras J, Claustre H, Uitz J. Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences. 2008;5:353–69.
    CAS  Article  Google Scholar 

    47.
    Mackey MD, Mackey DJ, Higgins HW, Wright SW. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser. 1996;144:265–83.
    CAS  Article  Google Scholar 

    48.
    Wright SW, van den Enden RL, Pearce I, Davidson AT, Scott FJ, Westwood KJ. Phytoplankton community structure and stocks in the Southern Ocean (30–80 E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep Sea Res Part II Top Stud Oceanogr. 2010;57:758–78.
    CAS  Article  Google Scholar 

    49.
    van Leeuwe MA, Visser RJW, Stefels J. The pigment composition of Phaeocystis antarctica (Haptophyceae) under various conditions of light, temperature, salinity, and iron. J Phycol. 2014;50:1070–80.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    50.
    Szymczak-Żyla M, Kowalewska G, Louda JW. The influence of microorganisms on chlorophyll a degradation in the marine environment. Limnol Oceanogr. 2008;53:851–62.
    Article  Google Scholar 

    51.
    Strom SL. Production of pheopigments by marine protozoa: results of laboratory experiments analysed by HPLC. Deep Sea Res Part Oceanogr Res Pap. 1993;40:57–80.
    CAS  Article  Google Scholar 

    52.
    Roca-Martí M, Puigcorbé V, Iversen MH, van der Loeff MR, Klaas C, Cheah W, et al. High particulate organic carbon export during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 2017;138:102–15.
    Article  CAS  Google Scholar 

    53.
    Bower SM, Carnegie RB, Goh B, Jones SR, Lowe GJ, Mak MW. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J Eukaryot Microbiol. 2004;51:325–32.
    CAS  PubMed  Article  Google Scholar 

    54.
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–D604.
    CAS  PubMed  Article  Google Scholar 

    55.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. https://doi.org/https://www.biorxiv.org/content/10.1101/299537v1.article-info. 2018;299537.

    57.
    Not F, Simon N, Biegala IC, Vaulot D. Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH TSA) to assess eukaryotic picoplankton composition. Aquat Micro Ecol. 2002;28:157–66.
    Article  Google Scholar 

    58.
    Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res. 2003;25:1331–46.
    Article  Google Scholar 

    59.
    Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr. 1992;37:1434–46.
    CAS  Article  Google Scholar 

    60.
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

    61.
    Lafond A, Leblanc K, Legras J, Cornet V, Quéguiner B. The structure of diatom communities constrains biogeochemical properties in surface waters of the Southern Ocean (Kerguelen Plateau). J Mar Syst. 2020;212:103458.
    Article  Google Scholar 

    62.
    Chisholm SW. Phytoplankton size. In: Falkowski PG, Woodhead AD, Vivirito K, editors. Primary productivity and biogeochemical cycles in the sea. US, Boston, MA: Springer; 1992. p. 213–37.

    63.
    Marchetti A, Cassar N. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications. Geobiology. 2009;7:419–31.
    CAS  PubMed  Article  Google Scholar 

    64.
    Alderkamp A-C, Kulk G, Buma AGJ, Visser RJW, Van Dijken GL, Mills MM, et al. The effect of iron limitation on the photophysiology of Phaeocystis antarctica (prymnesiophyceae) and Fragilariopsis cylindrus (bacillariophyceae) under dynamic irradiance. J Phycol. 2012;48:45–59.
    CAS  PubMed  Article  Google Scholar 

    65.
    Marañón E. Inter-specific scaling of phytoplankton production and cell size in the field. J Plankton Res. 2008;30:157–63.
    Article  CAS  Google Scholar 

    66.
    Huete-Ortega M, Cermeño P, Calvo-Díaz A, Marañón E. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proc R Soc B Biol Sci. 2012;279:1815–23.
    Article  Google Scholar 

    67.
    Hogle SL, Dupont CL, Hopkinson BM, King AL, Buck KN, Roe KL, et al. Pervasive iron limitation at subsurface chlorophyll maxima of the California Current. Proc Natl Acad Sci. 2018;115:13300–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet F, et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature. 2009;457:467–70.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Lampe RH, Mann EL, Cohen NR, Till CP, Thamatrakoln K, Brzezinski MA, et al. Different iron storage strategies among bloom-forming diatoms. Proc Natl Acad Sci. 2018;115:E12275–E12284.
    CAS  PubMed  Article  Google Scholar 

    70.
    Litchman E, Klausmeier CA. Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst. 2008;39:615–39.
    Article  Google Scholar 

    71.
    Luxem KE, Ellwood MJ, Strzepek RF. Intraspecific variability in Phaeocystis antarctica’s response to iron and light stress. PLOS One. 2017;12:e0179751.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    72.
    Closset I, Lasbleiz M, Leblanc K, Quéguiner B, Cavagna A-J, Elskens M, et al. Seasonal evolution of net and regenerated silica production around a natural Fe-fertilized area in the Southern Ocean estimated with Si isotopic approaches. Biogeosciences. 2014;11:5827–46.
    Article  Google Scholar 

    73.
    Egge J, Aksnes D. Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser. 1992;83:281–9.
    CAS  Article  Google Scholar 

    74.
    Lam PJ, Bishop JKB. High biomass, low export regimes in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 2007;54:601–38.
    Article  Google Scholar 

    75.
    Maiti K, Charette MA, Buesseler KO, Kahru M. An inverse relationship between production and export efficiency in the Southern Ocean. Geophys Res Lett. 2013;40:1557–61.
    Article  Google Scholar 

    76.
    Le Moigne FAC, Henson SA, Cavan E, Georges C, Pabortsava K, Achterberg EP, et al. What causes the inverse relationship between primary production and export efficiency in the Southern Ocean? Geophys Res Lett. 2016;43:4457–66.
    Article  CAS  Google Scholar 

    77.
    Christaki U, Lefèvre D, Georges C, Colombet J, Catala P, Courties C, et al. Microbial food web dynamics during spring phytoplankton blooms in the naturally iron-fertilized Kerguelen area (Southern Ocean). Biogeosciences. 2014;11:6739–53.
    Article  Google Scholar 

    78.
    Christaki U, Gueneugues A, Liu Y, Blain S, Catala P, Colombet J, et al. Seasonal microbial food web dynamics in contrasting Southern Ocean productivity regimes. Limnol Oceanogr. 2021;66:108–22.

    79.
    Planchon F, Ballas D, Cavagna A-J, Bowie AR, Davies D, Trull T, et al. Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach. Biogeosciences. 2015;12:3831–48.
    Article  Google Scholar 

    80.
    Cassar N, Wright SW, Thomson PG, Trull TW, Westwood KJ, Salas Mde, et al. The relation of mixed-layer net community production to phytoplankton community composition in the Southern Ocean. Glob Biogeochem Cycles. 2015;29:446–62.
    CAS  Article  Google Scholar 

    81.
    Sassenhagen I, Irion S, Jardillier L, Moreira D, Christaki U. Protist interactions and community structure during early autumn in the Kerguelen Region (Southern Ocean). Protist. 2020;171:125709.
    CAS  PubMed  Article  Google Scholar 

    82.
    Henschke N, Blain S, Cherel Y, Cotte C, Espinasse B, Hunt BPV, et al. Population demographics and growth rate of Salpa thompsoni on the Kerguelen Plateau. J Marine Systems. 2021;214:103489.
    Article  Google Scholar 

    83.
    Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol. 2004;10:1973–80.
    Article  Google Scholar 

    84.
    Iversen MH, Pakhomov EA, Hunt BPV, van der Jagt H, Wolf-Gladrow D, Klaas C. Sinkers or floaters? Contribution from salp pellets to the export flux during a large bloom event in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 2017;138:116–25.
    CAS  Article  Google Scholar 

    85.
    Irion S, Jardillier L, Sassenhagen I, Christaki U. Marked spatiotemporal variations in small phytoplankton structure in contrasted waters of the Southern Ocean (Kerguelen area). Limnol Oceanogr. 2020;65:2835–52.

    86.
    Le Moigne FAC, Poulton AJ, Henson SA, Daniels CJ, Fragoso GM, Mitchell E, et al. Carbon export efficiency and phytoplankton community composition in the Atlantic sector of the Arctic Ocean. J Geophys Res Oceans. 2015;120:3896–912.
    Article  Google Scholar 

    87.
    DiTullio GR, Grebmeier JM, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, et al. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature. 2000;404:595–8.
    CAS  PubMed  Article  Google Scholar 

    88.
    Pauthenet E, Roquet F, Madec G, Guinet C, Hindell M, McMahon CR, et al. Seasonal meandering of the Polar Front upstream of the Kerguelen Plateau. Geophys Res Lett. 2018;45:9774–81.
    Article  Google Scholar  More

  • in

    Predicting spatial patterns of soil bacteria under current and future environmental conditions

    1.
    Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A. 2016;113:5970–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95:6578–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Singh JS, Gupta VK. Soil microbial biomass: a key soil driver in management of ecosystem functioning. Sci Total Environ. 2018;634:497–500.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci U S A. 2007;104:11436–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Ettema CH, Wardle DA. Spatial soil ecology. Trends Ecol Evol. 2002;17:177–83.
    Article  Google Scholar 

    8.
    Terrat S, Horrigue W, Dequietd S, Saby NPA, Lelièvre M, Nowak V, et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE. 2017;12:e0186766.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Ladau J, Shi Y, Jing X, He J-S, Chen L, Lin X, et al. Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes. mSystems. 2018;3:e00167–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES Secretariat; 2019.
    Google Scholar 

    11.
    Guisan A, Broennimann O, Buri A, Cianfrani C, D’Amen M, Di Cola V, et al. Climate change impacts on mountain biodiversity. In: Lovejoy TE, Hannah L, editors. Biodiversity and climate change. Yale, USA: Yale University Press; 2019. p. 221–33.

    12.
    Yashiro E, Pinto-Figueroa E, Buri A, Spangenberg JE, Adatte T, Niculita-Hirzel H, et al. Local environmental factors drive divergent grassland soil bacterial communities in the western Swiss Alps. Appl Environ Microbiol. 2016;82:6303–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Karimi B, Terrat S, Dequiedt S, Saby NPA, Horrigue W, Lelièvre M, et al. Biogeography of soil bacteria and archaea across France. Sci Adv. 2018;4:eaat1808.
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    King AJ, Freeman KR, McCormick KF, Lynch RC, Lozupone C, Knight R, et al. Biogeography and habitat modelling of high-alpine bacteria. Nat Commun. 2010;1:53.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A. 2006;103:626–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Trumbore SE, Czimczik CI. An uncertain future for soil carbon. Science. 2008;321:1455–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Hettelingh JP, Posch M, Slootweg J, Reinds GJ, Spranger T, Tarrason L. Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. In: Brimblecombe P, Hara H, Houle D, Novak M, editors. Acid rain—deposition to recovery. Dordrecht: Springer; 2007. p. 379–84.
    Google Scholar 

    18.
    IPCC (2014). Climate Change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri RK, Meyer LA, editors. Geneva, Switzerland: IPCC. p. 151.

    19.
    Hagedorn F, Gavazov K, Alexander JM. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science. 2019;365:1119–23.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Monteith DT, Evans CD. The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue. Environ Pollut. 2005;137:3–13.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Augustin S, Achermann B. Deposition von Luftschadstoffen in der Schweiz: Entwicklung, aktueller Stand und Bewertung. Schweizerische Z fur Forstwes. 2012;163:323–30.
    Article  Google Scholar 

    22.
    Blaser P, Zysset M, Zimmermann S, Luster J. Soil acidification in southern Switzerland between 1987 and 1997: A case study based on the critical load concept. Environ Sci Technol. 1999;33:2383–9.
    CAS  Article  Google Scholar 

    23.
    McGovern ST, Evans CD, Dennis P, Walmsley CA, Turner A, McDonald MA. Resilience of upland soils to long term environmental changes. Geoderma. 2013;197-198:36–42.
    CAS  Article  Google Scholar 

    24.
    Kirk GJD, Bellamy PH, Lark RM. Changes in soil pH across England and Wales in response to decreased acid deposition. Glob Change Biol. 2010;16:3111–9.
    Google Scholar 

    25.
    Kosonen Z, Schnyder E, Hiltbrunner E, Thimonier A, Schmitt M, Seitler E, et al. Current atmospheric nitrogen deposition still exceeds critical loads for sensitive, semi-natural ecosystems in Switzerland. Atmos Environ. 2019;211:214–25.
    CAS  Article  Google Scholar 

    26.
    Tipping E, Davies JAC, Henrys PA, Kirk GJD, Lilly A, Dragosits U, et al. Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations. Sci Rep. 2017;7:1890.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R. Globally rising soil heterotrophic respiration over recent decades. Nature. 2018;560:80–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Change. 2018;8:885–9.
    CAS  Article  Google Scholar 

    29.
    Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem. 1995;27:753–60.
    CAS  Article  Google Scholar 

    30.
    Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M, Buchmann N, et al. Soil warming alters microbial substrate use in alpine soils. Glob Change Biol. 2014;20:1327–38.
    Article  Google Scholar 

    31.
    Lettens S, Van Orshoven J, Van Wesemael B, Muys B, Perrin D. Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Glob Change Biol. 2005;11:2128–40.
    Article  Google Scholar 

    32.
    Yang Y, Fang J, Smith P, Tang Y, Chen A, Ji C, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob Change Biol. 2009;15:2723–9.
    Article  Google Scholar 

    33.
    Yang Y, Li P, Ding J, Zhao X, Ma W, Ji C, et al. Increased topsoil carbon stock across China’s forests. Glob Change Biol. 2014;20:2687–96.
    Article  Google Scholar 

    34.
    Smith P. Soils and climate change. Curr Opin Environ Sustain. 2012;4:539–44.
    Article  Google Scholar 

    35.
    Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73.
    CAS  PubMed  Article  Google Scholar 

    36.
    Glenn AR, Dilworth MJ. Soil acidity and the microbial population: survival and growth of bacteria in low pH. In: Wright RJ, Baligar VC, Murrmann RP, editors. Developments in plant and soil sciences. Dordrecht: Springer; 1991. p. 567–79.
    Google Scholar 

    37.
    Xue P-P, Carrillo Y, Pino V, Minasny B, McBratney AB. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci Rep. 2018;8:11725.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol. 2010;76:999–1007.
    CAS  PubMed  Article  Google Scholar 

    39.
    Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science. 2013;342:621–4.
    CAS  PubMed  Article  Google Scholar 

    40.
    Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.
    PubMed  Article  Google Scholar 

    41.
    Zhang X, Zhang G, Chen Q, Han X. Soil bacterial communities respond to climate changes in a temperate steppe. PLoS ONE. 2013;8:e78616.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Guisan A, Thuiller W, Zimmermann NE. Habitat suitability and distribution models: with applications in R. Cambridge, UK: Cambridge University Press; 2017.

    43.
    D’Amen M, Rahbek C, Zimmermann NE, Guisan A. Spatial predictions at the community level: from current approaches to future frameworks. Biol Rev Camb Philos Soc. 2017;92:169–87.
    PubMed  Article  Google Scholar 

    44.
    Guisan A, Rahbek C. SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr. 2011;38:1433–44.
    Article  Google Scholar 

    45.
    Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat J-P, Guisan A. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers Distrib. 2011;17:1122–31.
    Article  Google Scholar 

    46.
    Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A. Are niche-based species distribution models transferable in space? J Biogeogr. 2006;33:1689–703.
    Article  Google Scholar 

    47.
    Buri A, Grand S, Yashiro E, Adatte T, Spangenberg JE, Pinto‐Figueroa E, et al. What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. J Biogeogr. 2020;47:1143–53.
    Article  Google Scholar 

    48.
    Bouët M. Climat et météorologie de la Suisse romande. Lausanne: Payot edn; 1985.
    Google Scholar 

    49.
    Zingg B. Modélisation de la réserve hydrique des sols dans les Alpes vaudoises méridionales. Master thesis. Lausanne, Switzerland: University of Lausanne; 2015.
    Google Scholar 

    50.
    Swisstopo. Geological map of Switzerland. 2019.

    51.
    Hirzel A, Guisan A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol Model. 2002;157:331–41.
    Article  Google Scholar 

    52.
    Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Østerås M, et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods. 2009;79:266–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Yashiro E, Pinto-Figueroa E, Buri A, Spangenberg JE, Adatte T, Niculita-Hirzel H, et al. Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Sci Rep. 2018;8:5758.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018;34:2371–5.
    CAS  PubMed  Article  Google Scholar 

    55.
    Myers EW, Miller W. Optimal alignments in linear space. Bioinformatics. 1988;4:11–17.
    CAS  Article  Google Scholar 

    56.
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.
    CAS  Article  Google Scholar 

    57.
    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.
    CAS  Article  Google Scholar 

    58.
    McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516–22.
    CAS  Article  Google Scholar 

    63.
    Dubuis A, Giovanettina S, Pellissier L, Pottier J, Vittoz P, Guisan A. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J Veg Sci. 2013;24:593–606.
    Article  Google Scholar 

    64.
    Zubler EM, Fischer AM, Liniger MA, Croci-Maspoli M, Scherrer SC, Appenzeller C. Localized climate change scenarios of mean temperature and precipitation over Switzerland. Clim Change. 2014;125:237–52.
    Article  Google Scholar 

    65.
    Buri A. Above- and belowground biogeography: spatial modelling of a hidden system. PhD thesis. Lausanne: University of Lausanne; 2019.
    Google Scholar 

    66.
    Guisan A, Theurillat J-P. Assessing alpine plant vulnerability to climate change: a modeling perspective. Integr Assess. 2000;1:307–20.
    Article  Google Scholar 

    67.
    Wood SN. Generalized additive models: an introduction with R. Boca Raton, USA: Chapman and Hall/CRC; 2017.

    68.
    Greenwell B, Boehmke B, Cunningham J, Developers G. gbm: Generalized boosted regression models, 2.1.5. edn. 2019.

    69.
    Ver Hoef JM, Boveng PL. Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology. 2007;88:2766–72.
    PubMed  Article  Google Scholar 

    70.
    Hartig F. DHARMa: residual diagnostics for hierarchical (Multi-Level/Mixed) regression models. R package, 0.2.4 edn. 2019.

    71.
    Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.
    Article  Google Scholar 

    72.
    Scherrer D, D’Amen M, Fernandes RF, Mateo RG, Guisan A. How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods Ecol Evol. 2018;9:2155–66.
    Article  Google Scholar 

    73.
    Evans JD. Straightforward statistics for the behavioral sciences. Pacific Grove, USA: Thomson Brooks/Cole Publishing Co; 1996.

    74.
    Elith J, Ferrier S, Huettmann F, Leathwick J. The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. Ecol Model. 2005;186:280–9.
    Article  Google Scholar 

    75.
    Bradie J, Leung B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J Biogeogr. 2017;44:1344–61.
    Article  Google Scholar 

    76.
    Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, et al. Assessing species vulnerability to climate change. Nat Clim Change. 2015;5:215.
    Article  Google Scholar 

    77.
    Fierer N, Schimel JP, Holden PA. Influence of drying–rewetting frequency on soil bacterial community structure. Micro Ecol. 2003;45:63–71.
    CAS  Article  Google Scholar 

    78.
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340.
    Article  Google Scholar 

    79.
    Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–79.
    PubMed  Article  PubMed Central  Google Scholar 

    82.
    Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett. 2010;13:1310–24.
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Pearman PB, Guisan A, Broennimann O, Randin CF. Niche dynamics in space and time. Trends Ecol Evol. 2008;23:149–58.
    PubMed  Article  PubMed Central  Google Scholar 

    84.
    Bååth E, Anderson TH. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem. 2003;35:955–63.
    Article  CAS  Google Scholar 

    85.
    Nottingham AT, Baath E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob Change Biol. 2019;25:827–38.
    Article  Google Scholar 

    86.
    Li L, Xu M, Eyakub Ali M, Zhang W, Duan Y, Li D. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS ONE. 2018;13:e0203812.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    87.
    Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem. 2012;50:58–65.
    CAS  Article  Google Scholar 

    88.
    Galloway JN. Acid deposition: perspectives in time and space. Water Air Soil Pollut. 1995;85:15–24.
    CAS  Article  Google Scholar 

    89.
    Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett. 2015;10:024019.
    Article  CAS  Google Scholar 

    90.
    Falkengren-Grerup U, Brink D-Jt, Brunet J. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For Ecol Manage. 2006;225:74–81.
    Article  Google Scholar 

    91.
    Saby NPA, Arrouays D, Antoni V, Lemercier B, Follain S, Walter C, et al. Changes in soil organic carbon in a mountainous French region, 1990–2004. Soil Use Manage. 2008;24:254–62.
    Article  Google Scholar 

    92.
    Cianfrani C, Buri A, Verrecchia E, Guisan A. Generalizing soil properties in geographic space: approaches used and ways forward. PLoS ONE. 2018;13:e0208823.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Ren B, Hu Y, Chen B, Zhang Y, Thiele J, Shi R, et al. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Sci Rep. 2018;8:5619.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    94.
    Lembrechts JJ, Nijs I, Lenoir J. Incorporating microclimate into species distribution models. Ecography. 2019;42:1267–79.
    Article  Google Scholar 

    95.
    Schink B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek. 2002;81:257–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci U S A. 2015;112:7033–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Schröder B. Challenges of species distribution modeling belowground. J Plant Nutr Soil Sci. 2008;171:325–37.
    Article  CAS  Google Scholar 

    98.
    Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A. 2012;109:21390–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Araújo MB, Anderson RP, Márcia Barbosa A, Beale CM, Dormann CF, Early R, et al. Standards for distribution models in biodiversity assessments. Sci Adv. 2019;5:eaat4858.
    PubMed  PubMed Central  Article  Google Scholar 

    100.
    Pinto-Figueroa EA, Seddon E, Yashiro E, Buri A, Niculita-Hirzel H, van der Meer JR, et al. Archaeorhizomycetes spatial distribution in soils along wide elevational and environmental gradients reveal co-abundance patterns with other fungal saprobes and potential weathering capacities. Front Microbiol. 2019;10:656.
    PubMed  PubMed Central  Article  Google Scholar 

    101.
    Smith AB, Godsoe W, Rodriguez-Sanchez F, Wang HH, Warren D. Niche estimation above and below the species level. Trends Ecol Evol. 2019;34:260–73.
    PubMed  Article  PubMed Central  Google Scholar 

    102.
    Hadly EA, Spaeth PA, Li C. Niche conservatism above the species level. Proc Natl Acad Sci U S A. 2009;106 Suppl 2:19707–14.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Peterson AT. Ecological niche conservatism: a time-structured review of evidence. J Biogeogr. 2011;38:817–27.
    Article  Google Scholar 

    104.
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N, et al. is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    105.
    Gardner W, Mulvey EP, Shaw EC. Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychol Bull. 1995;118:392–404.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    106.
    Guisan A, Lehmann A, Ferrier S, Austin M, Overton JMC, Aspinall R, et al. Making better biogeographical predictions of species’ distributions. J Appl Ecol. 2006;43:386–92.
    Article  Google Scholar 

    107.
    Elith J, Graham CH. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography. 2009;32:66–77.
    Article  Google Scholar 

    108.
    Sites JW, Marshall JC. Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol. 2003;18:462–70.
    Article  Google Scholar 

    109.
    Ward DM. A macrobiological perspective on microbial species. Microbe. 2006;1:269.
    Google Scholar 

    110.
    Ward DM, Cohan FM, Bhaya D, Heidelberg JF, Kühl M, Grossman A. Genomics, environmental genomics and the issue of microbial species. Heredity. 2008;100:207–19.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    111.
    Vandermeer J. Niche theory. Annu Rev Ecol Syst. 1972;3:107–32.
    Article  Google Scholar 

    112.
    Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A. 2008;105:2504–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    113.
    Song H-K, Shi Y, Yang T, Chu H, He J-S, Kim H, et al. Environmental filtering of bacterial functional diversity along an aridity gradient. Sci Rep. 2019;9:866.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    114.
    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    115.
    Lenoir J, Svenning J-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography. 2015;38:15–28.
    Article  Google Scholar 

    116.
    Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470:479–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Fungi and insects compensate for lost vertebrate seed predation in an experimentally defaunated tropical forest

    1.
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Harrison, R. D. et al. Impacts of hunting on tropical forests in Southeast Asia. Conserv. Biol. 30, 972–981 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Brodie, J. F. & Aslan, C. E. Halting regime shifts in floristically intact tropical forests deprived of their frugivores. Restor. Ecol. 20, 153–157 (2012).
    Article  Google Scholar 

    4.
    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 1–7 (2019).
    Article  CAS  Google Scholar 

    6.
    Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl Acad. Sci. USA 113, 892–897 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Dantas de Paula, M. et al. Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos 127, 1526–1538 (2018).
    Article  Google Scholar 

    9.
    Chanthorn, W. et al. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9, 1–9 (2019).
    CAS  Article  Google Scholar 

    10.
    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Song, X., Lim, J. Y., Yang, J. & Luskin, M. S. When do Janzen–Connell effects matter? A phylogenetic meta‐analysis of conspecific negative distance and density dependence experiments. Ecol. Lett. https://doi.org/10.1111/ele.13665 (2020).
    Article  PubMed  Google Scholar 

    12.
    Muller-Landau, H. C. Predicting the long-term effects of hunting on plant species composition and diversity in tropical forests. Biotropica 39, 372–384 (2007).
    Article  Google Scholar 

    13.
    Asquith, N. M., Wright, S. J. & Clauss, M. J. Does mammal community composition control recruitment in neotropical forests? Evidence from Panama. Ecology 78, 941–946 (1997).
    Article  Google Scholar 

    14.
    DeMattia, E. A., Curran, L. M. & Rathcke, B. J. Effects of small rodents and large mammals on neotropical seeds. Ecology 85, 2161–2170 (2004).
    Article  Google Scholar 

    15.
    Paine, C. E. T., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree community structure. Ecology 97, 3326–3336 (2016).
    PubMed  Article  Google Scholar 

    16.
    Wirth, R., Meyer, S. T., Leal, I. R. & Tabarelli, M. Plant herbivore interactions at the forest edge. in Progress in Botany (eds. Lüttge, U., Beyschlag, W. & Murata, J.). 69, 423–448 (Springer, Berlin, Heidelberg, 2008).

    17.
    Paine, C. E. T. & Beck, H. Seed predation by Neotropical rain forest mammals increases diversity in seedling recruitment. Ecology 88, 3076–3087 (2007).
    PubMed  Article  Google Scholar 

    18.
    Jia, S. et al. Global signal of top-down control of terrestrial plant communities by herbivores. Proc. Natl Acad. Sci. USA 115, 6237–6242 (2018).
    CAS  PubMed  Article  Google Scholar 

    19.
    Wright, S. J. & Duber, H. C. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyraceae, with implications for tropical tree diversity. Biotropica 33, 583–595 (2001).
    Article  Google Scholar 

    20.
    Dracxler, C. M., Pires, A. S. & Fernandez, F. A. S. Invertebrate seed predators are not all the same: Seed predation by bruchine and scolytine beetles affects palm recruitment in different ways. Biotropica 43, 8–11 (2011).
    Article  Google Scholar 

    21.
    Sarmiento, C. et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc. Natl Acad. Sci. 114, 11458–11463 (2017).
    CAS  PubMed  Article  Google Scholar 

    22.
    Kluger, C. G. et al. Host generalists dominate fungal communities associated with seeds of four Neotropical pioneer species. J. Trop. Ecol. 24, 351–354 (2008).
    Article  Google Scholar 

    23.
    Velho, N., Isvaran, K. & Datta, A. Rodent seed predation: effects on seed survival, recruitment, abundance, and dispersion of bird-dispersed tropical trees. Oecologia 169, 995–1004 (2012).
    ADS  PubMed  Article  Google Scholar 

    24.
    Curran, L. M. & Webb, C. O. Experimental tests of the spatiotemporal scale of seed predation in mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 129–148 (2000).
    Article  Google Scholar 

    25.
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
    Article  Google Scholar 

    26.
    Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn. Popul 298, 312 (1971).
    Google Scholar 

    27.
    Levi, T. et al. Tropical forests can maintain hyperdiversity because of enemies. PNAS 116, 581–586 (2019).
    CAS  PubMed  Article  Google Scholar 

    28.
    Terborgh, J. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179, 303–314 (2012).
    PubMed  Article  Google Scholar 

    29.
    Nathan, R. & Casagrandi, R. A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond. J. Ecol. 92, 733–746 (2004).
    Article  Google Scholar 

    30.
    Owen-Smith, R. N. Megaherbivores: The influence of very large body size on ecology. (Cambridge University Press, 1988).

    31.
    Kurten, E. L. Cascading effects of contemporaneous defaunation on tropical forest communities. Biol. Conserv. 163, 22–32 (2013).
    Article  Google Scholar 

    32.
    Mendoza, E. & Dirzo, R. Seed-size variation determines interspecific differential predation by mammals in a Neotropical rain forest. Oikos 116, 1841–1852 (2007).
    Article  Google Scholar 

    33.
    Wright, S. J. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspect. Plant Ecol. Evol. Syst. 6, 73–86 (2003).
    Article  Google Scholar 

    34.
    Casula, P., Wilby, A. & Thomas, M. B. Understanding biodiversity effects on prey in multi-enemy systems. Ecol. Lett. 9, 995–1004 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Wright, S. J. et al. Poachers alter mammal abundance, seed dispersal, and seed predation in a Neotropical forest. Conserv. Biol. 14, 227–239 (2000).
    Article  Google Scholar 

    36.
    Beckman, N. G. & Muller-landau, H. C. Differential effects of hunting on pre-dispersal seed predation and primary and secondary seed removal of two Neotropical tree species. Biotropica 39, 328–339 (2007).
    Article  Google Scholar 

    37.
    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Glob. Ecol. Conserv 3, 824–830 (2015).
    Article  Google Scholar 

    39.
    Culot, L., Bello, C., Batista, J. L. F., do Couto, H. T. Z. & Galetti, M. Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests. Sci. Rep. 7, 1–8 (2017).
    CAS  Article  Google Scholar 

    40.
    Rosin, C. & Poulsen, J. R. Hunting-induced defaunation drives increased seed predation and decreased seedling establishment of commercially important tree species in an Afrotropical forest. Ecol. Manag. 382, 206–213 (2016).
    Article  Google Scholar 

    41.
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
    CAS  PubMed  Article  Google Scholar 

    42.
    Terborgh, J. Using Janzen-Connell to predict the consequences of defaunation and other disturbances of tropical forests. Biol. Conserv. 163, 7–12 (2013).
    Article  Google Scholar 

    43.
    Brodie, J. F., Helmy, O. E., Brockelman, W. Y. & Maron, J. L. Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal-dispersed tree. Ecol. Appl. 19, 854–863 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Dylewski, L., Ortega, Y. K., Bogdziewicz, M. & Pearson, D. E. Seed size predicts global effects of small mammal seed predation on plant recruitment. Ecol. Lett. 23, 1024–1033 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Bodmer, R. Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica 23, 255–261 (1991).
    Article  Google Scholar 

    46.
    Galetti, M. et al. Defaunation affect population and diet of rodents in Neotropical rainforests. Biol. Conserv. 190, 2–7 (2015).
    Article  Google Scholar 

    47.
    Dirzo, R., Mendoza, E. & Ortíz, P. Size-related differential seed predation in a heavily defaunated neotropical rain forest. Biotropica 39, 355–362 (2007).
    Article  Google Scholar 

    48.
    Luskin, M. S. et al. Cross-boundary subsidy cascades from oil palm degrade distant tropical forests. Nat. Commun. 8, 1–8 (2017).
    Article  CAS  Google Scholar 

    49.
    Vázquez-Yanes, C. & Orozco-Segovia, A. Patterns of seed longevity and germination in the tropical rainforest. Annu. Rev. Ecol. Syst. 24, 69–87 (1993).
    Article  Google Scholar 

    50.
    Hulme, P. E. Post-dispersal seed predation and seed bank persistence. Seed Sci. Res. 8, 513–519 (1998).
    ADS  Article  Google Scholar 

    51.
    Franco, M. & Silvertown, J. A comparative demography of plants based upon elasticities of vital rates. Ecology 85, 531–538 (2004).
    Article  Google Scholar 

    52.
    Howe, H. F. & Miriti, M. N. When seed dispersal matters. Bioscience 54, 651–660 (2004).
    Article  Google Scholar 

    53.
    Cannon, P. G., O’Brien, M. J., Yusah, K. M., Edwards, D. P. & Freckleton, R. P. Limited contributions of plant pathogens to density-dependent seedling mortality of mast fruiting Bornean trees. Ecol. Evol. 10, 13154–13164 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Lamperty, T., Zhu, K., Poulsen, J. R. & Dunham, A. E. Defaunation of large mammals alters understory vegetation and functional importance of invertebrates in an Afrotropical forest. Biol. Conserv. 241, 10829 (2020).
    Article  Google Scholar 

    55.
    Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 1–7 (2015).
    Article  CAS  Google Scholar 

    56.
    Peguero, G., Muller-Landau, H. C., Jansen, P. A. & Wright, S. J. Cascading effects of defaunation on the coexistence of two specialized insect seed predators. J. Anim. Ecol. 86, 136–146 (2017).
    PubMed  Article  Google Scholar 

    57.
    Marsh, C. W. & Greer, A. G. Forest land-use in Sabah, Malaysia: an introduction to danum valley. Philos. Trans. R. Soc. B Biol. Sci. 335, 331–339 (1992).
    ADS  Article  Google Scholar 

    58.
    Dial, R., Bloodworth, B., Lee, A., Boyne, P. & Heys, J. The distribution of free space and its relation to canopy composition at six forest sites. Science 50, 312–325 (2004).
    Google Scholar 

    59.
    Sakai, S. General flowering in lowland mixed dipterocarp forests of South-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002).
    Article  Google Scholar 

    60.
    Blate, G. M., Peart, D. R. & Leighton, M. Post-dispersal predation on isolated seeds: a comparative study of 40 tree species in a Southeast Asian rainforest. Oikos 82, 522–538 (1998).
    Article  Google Scholar 

    61.
    Wong, S. T. E., Servheen, C., Ambu, L. & Norhayati, A. Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. J. Trop. Ecol. 21, 627–639 (2005).
    Article  Google Scholar 

    62.
    Curran, L. M. & Leighton, M. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 101–128 (2000).
    Article  Google Scholar 

    63.
    Corlett, R. T. Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update. Glob. Ecol. Conserv. 11, 1–22 (2017).
    Article  Google Scholar 

    64.
    Fern, K. Tropical Plants Database. (2014). Available at: tropical.theferns.info. (Accessed: 4th June 2020)

    65.
    O’Brien, M. J., Philipson, C. D., Tay, J. & Hector, A. The influence of variable rainfall frequency on germination and early growth of shade-tolerant dipterocarp seedlings in Borneo. PLoS ONE 8, e70287 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Colon, C. P. & Campos-Arceiz, A. The impact of gut passage by binturongs (Arctictus binturong) on seed germination. Raffles Bull. Zool. 61, 417–421 (2013).
    Google Scholar 

    67.
    Sowa, S., Roos, E. E. & Zee, F. Anesthetic storage of recalcitrant seed: nitrous oxide prolongs longevity of lychee and longan. HortScience 26, 597–599 (1991).
    CAS  Article  Google Scholar 

    68.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    69.
    R Core Team. R: A language and environment for statistical computing. (2018).

    70.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar  More