More stories

  • in

    Brucellosis in wildlife in Africa: a systematic review and meta-analysis

    1.Bengis, R. G. A revue of bovine Brucellosis in free-ranging African wildlife. in Proceedings of the ARC-Onderstepoort, OIE International Congress with WHO-Cosponsorship on anthrax, brucellosis, CBPP, clostridial and mycobacterial diseases : Berg-en-Dal, Kruger National Park, South Africa 178–183 (Onderstepoort Veterinary Inst, 1998).2.Kaliner, G., Staak, C., Kalinerj, G. & Staaklu, C. A case of orchitis caused by Brucella abortus in the African buffalo. J. Wildl. Dis. 9, 251–253 (1973).Article 

    Google Scholar 
    3.Schiemann, B. & Staak, C. Brucella melitensis in impala (Aepyceros melampus). Vet. Rec. 88, 344–344 (1971).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Ndengu, M. et al. Seroprevalence of brucellosis in cattle and selected wildlife species at selected livestock/wildlife interface areas of the Gonarezhou National Park Zimbabwe. Prev. Vet. Med. 146, 158–165 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Rollinson, D. H. L. Brucella agglutinins in East African game animals. Vet. Rec. 74, 904 (1962).
    Google Scholar 
    6.De Vos, V. & Van Niekerk, C. A. W. Brucellosis in the Kruger National Park. J. S. Afr. Vet. Assoc. 40, 331–334 (1969).
    Google Scholar 
    7.Sachs, R. & Staak, C. Evidence of brucellosis in antelope in the Serengeti. Vet. Record 79, 857–856 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.El-Tras, W. F., Tayel, A. A., Eltholth, M. M. & Guitian, J. Brucella infection in fresh water fish : Evidence for natural infection of Nile catfish, Clarias gariepinus, with Brucella melitensis. Vet. Microbiol. 141, 321–325 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lane, E. P. et al. A systematic health assessment of Indian ocean bottlenose (Tursiops aduncus) and indo-pacific humpback (Sousa plumbea) dolphins incidentally caught in shark nets off the KwaZulu-Natal coast South Africa. PLoS ONE 9, e107038 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Salem, A. A., Hamed, O. M. & Abd-Elkarim, A. M. Studies on some Brucella carriers in Egypt. Assiut Vet Med J 1, 181–187 (1974).
    Google Scholar 
    11.Condy, J. B. The status of disease in Rhodesian wildlife. Rhod. Sci. News 2, 96–99 (1968).
    Google Scholar 
    12.Condy, J. B. & Vickers, D. B. The isolation of Brucella abortus from a waterbuck (Kobus ellipsiprymnus). Vet. Rec. 85, 200 (1969).Article 

    Google Scholar 
    13.Bell, L. M., Hayles, L. B. & Chanda, A. B. Evidence of reservoir hosts of Brucella melitensis. Med. J. Zambia 10, 152–153 (1976).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Gradwell, D. V., Schutte, A. P., van Niekerk, C. A. & Roux, D. J. The isolation of Brucella abortus biotype I from African buffalo in the Kruger National Park. J. S. Afr. Vet. Assoc. 48, 41–43 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Karesh, W. B. et al. Health evaluation of five sympatric duiker species (Cephalophus spp.). J. Zool. Wildl. Med. 26, 485–502 (1995).
    Google Scholar 
    16.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    17.Bengis, R. G. & Erasmus, J. M. Wildlife diseases in South Africa: A review. Rev. Sci. Tech. Off. Int. des Epizoot. 7, 807–821 (1988).Article 

    Google Scholar 
    18.Durrheim, D. N. et al. Safety of travel in South Africa: The Kruger National Park. J. Travel Med. 8, 176–191 (2006).Article 

    Google Scholar 
    19.Eisenberg, T. et al. Isolation of potentially novel Brucella spp. from frogs. Appl. Environ. Microbiol. 78, 3753–3755 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Hoogstral, H., Kaiser, M. N., Traylor, M. A., Guindy, E. & Gaber, S. Ticks (Ixodidae) on birds migrating from Europe and Asia to Africa 1959–61. Bull. World Health Organ. 28, 235–262 (1963).
    Google Scholar 
    21.Michel, A. L. A. L. & Bengis, R. G. R. G. The African buffalo: A villain for inter-species spread of infectious diseases in southern Africa. Onderstepoort. J. Vet. Res. 79, 5 (2012).Article 

    Google Scholar 
    22.Monroe, B. P. et al. Collection and utilization of animal carcasses associated with zoonotic disease in Tshuapa district, the democratic republic of the Congo, 2012. J. Wildl. Dis. 51, 734–738 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Wolhuter, J., Bengis, R. G., Reilly, B. K. & Cross, P. C. Clinical demodicosis in African buffalo (Syncerus caffer) in the Kruger National Park. J. Wildl. Dis. 45, 2 (2009).Article 

    Google Scholar 
    24.Worthington, R. W. & Bigalke, R. D. A review of the infectious diseases of African wild ruminants. Onderstepoort. J. Vet. Res. 68, 291–323 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Mühldorfer, K. et al. The role of ‘atypical’ Brucella in amphibians: are we facing novel emerging pathogens?. J. Appl. Microbiol. 122, 40–53 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Ducrotoy, M. et al. Brucellosis in Sub-Saharan Africa: Current challenges for management, diagnosis and control. Acta Trop. 165, 179–193 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Munagandu, et al. Disease constraints for utilization of the African buffalo (Syncerus caffer) on game ranches in Zambia. Jpn. J. Vet. Res. 54, 3–13 (2006).
    Google Scholar 
    28.Munyua, P. et al. Prioritization of zoonotic diseases in Kenya, 2015. PLoS ONE 11, e0161576 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Conrad, P. A., Meek, L. A. & Dumit, J. Operationalizing a One Health approach to global health challenges. Comp. Immunol. Microbiol. Infect. Dis. 36, 211–216 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Bekker, J. L., Hoffman, L. C. & Jooste, P. J. Wildlife-associated zoonotic diseases in some southern African countries in relation to game meat safety: A review. Onderstepoort. J. Vet. Res. 79, 12 (2012).Article 

    Google Scholar 
    31.Muma, J. B. et al. The contribution of veterinary medicine to public health and poverty reduction in developing countries. Vet. Ital. 50, 117–129 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    32.Mugizi, D. R. et al. Isolation and Molecular Characterization of Brucella Isolates in Cattle Milk in Uganda. 2015, (2015).33.Mathew, C. et al. First isolation, identification, phenotypic and genotypic characterization of Brucella abortus biovar 3 from dairy cattle in Tanzania. BMC Vet. Res. 11, 2 (2015).Article 

    Google Scholar 
    34.Meyer, M. E. & Morgan, W. J. B. Designation of neotype strains and of biotype reference strains for species of the genus Brucella Meyer and Shaw. Int. J. Syst. Bacteriol. 23, 135–141 (1973).Article 

    Google Scholar 
    35.National Academies of Sciences, Engineering, and M. Revisiting brucellosis in the greater yellowstone area. Revisiting Brucellosis in the Greater Yellowstone Area (National Academies Press, 2017). doi:https://doi.org/10.17226/2475036.Muma, J. B. et al. Brucella seroprevalence of the Kafue lechwe (Kobus leche kafuensis) and Black lechwe (Kobus leche smithemani): Exposure associated to contact with cattle. Prev. Vet. Med. 100, 256–260 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Gorsich, E. E., Ezenwa, V. O., Cross, P. C., Bengis, R. G. & Jolles, A. E. Context-dependent survival, fecundity and predicted population-level consequences of brucellosis in African buffalo. J. Anim. Ecol. 84, 999–1009 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Hoogstraal, H., Kaiser, M. N., Traylor, M. A., Gaber, S. & Guindy, E. Ticks (Ixodoidea) on birds migrating from Africa to Europe and Asia. Bull. World Health Organ. 24, 197–212 (1961).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Alexander, K. A. et al. Buffalo, bush meat, and the zoonotic threat of brucellosis in Botswana. PLoS ONE 7, e32842 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Munn, Z., Moola, S., Riitano, D. & Lisy, K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int. J. Heal. Policy Manag. 3, 123–128 (2014).Article 

    Google Scholar 
    41.Madsen, M. et al. Serologic survey of Zimbabwean wildlife for brucellosis. J. Zoo. Wildl. Med. 26, 240–245 (1995).
    Google Scholar 
    42.Roberts, M. G. & Heesterbeek, J. A. P. Quantifying the dilution effect for models in ecological epidemiology. J. R. Soc. Interface 15, 2 (2018).Article 

    Google Scholar 
    43.Viana, M. et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 29, 270–279 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Souley Kouato, B. et al. Spatio-temporal patterns of foot-and-mouth disease transmission in cattle between 2007 and 2015 and quantitative assessment of the economic impact of the disease in Niger. Transbound Emerg. Dis. 65, 1049–1066 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Godfroid, J., Nielsen, K. & Saegerman, C. Diagnosis of brucellosis in livestock and wildlife. Croat Med. J. 51, 296–305 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Hartling, L. et al. Grey literature in systematic reviews : a cross-sectional study of the contribution of non-English reports, unpublished studies and dissertations to the results of meta- analyses in child-relevant reviews. 1–11 (2017). doi:https://doi.org/10.1186/s12874-017-0347-z47.Condy, J. B. & Vickers, D. B. Brucellosis in Rhodesian wildlife. J. S. Afr. Vet. Assoc. 43, 175–179 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Erume, J. et al. Serological and molecular investigation for brucellosis in swine in selected districts of Uganda. Trop. Anim. Health Prod. 48, 1147–1155 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Godfroid, J., Beckmen, K. & Helena Nymo, I. Removal of lipid from serum increases coherence between brucellosis rapid agglutination test and enzyme-linked immunosorbent assay in bears in Alaska, USA. J. Wildl. Dis. 52, 912–915 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Matope, G., Bhebhe, E., Muma, J. B. B., Lund, A. & Skjerve, E. Herd-level factors for Brucella seropositivity in cattle reared in smallholder dairy farms of Zimbabwe. Prev. Vet. Med. 94, 213–221 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Mwebe, R., Nakavuma, J. & Moriyón, I. Brucellosis seroprevalence in livestock in Uganda from 1998 to 2008: a retrospective study. Trop. Anim. Health Prod. 43, 603–608 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Aune, K., Rhyan, J. C., Russell, R., Roffe, T. J. & Corso, B. Environmental persistence of Brucella abortus in the Greater Yellowstone Area. J. Wildl. Manag. 76, 253–261 (2012).Article 

    Google Scholar 
    53.Enström, S. et al. Brucella seroprevalence in cattle near a wildlife reserve in Kenya. BMC Res. Notes 10, 2 (2017).Article 

    Google Scholar 
    54.Godfroid, J. Brucellosis in wildlife. Rev. Sci. Tech. 21, 277–286 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Martin, C., Pastoret, P. P., Brochier, B., Humblet, M. F. & Saegerman, C. A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Vet. Res. 42, 70 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Godfroid, J. et al. A ‘One Health’ surveillance and control of brucellosis in developing countries: Moving away from improvisation. Comp. Immunol. Microbiol. Infect. Dis. 36, 241–248 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Kamath, P. L. et al. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat. Commun. 7, 11448 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Michel, A. L. et al. Wildlife tuberculosis in South African conservation areas: Implications and challenges. Vet. Microbiol. 112, 91–100 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Pandey, G. S. et al. Serosurvey of brucella spp. infection in the Kafue Lechwe (Kobus leche kafuensis) of the Kafue flats in Zambia. Indian Vet. J. 76, 275–278 (1999).
    Google Scholar 
    60.Olsen, S. & Tatum, F. Swine brucellosis: Current perspectives. Vet. Med. Res. Rep. 8, 1–12 (2016).
    Google Scholar 
    61.Menshawy, A. M. S. et al. Assessment of Genetic Diversity of Zoonotic Brucella spp. Recovered from Livestock in Egypt Using Multiple Locus VNTR Analysis. (2014). doi:https://doi.org/10.1155/2014/35387662.Ibrahim, S. Studies on swine brucellosis in Egypt. J. Egypt Vet. Med. Assoc. 56, 1–12 (1996).
    Google Scholar 
    63.Ledwaba, B., Mafofo, J. & Van Heerden, H. Genome sequences of Brucella abortus and Brucella suis strains isolated from Bovine in Zimbabwe. Genome Announc. 2, 1063–1077 (2014).Article 

    Google Scholar 
    64.Fretin, D. et al. Unexpected Brucella suis biovar 2 infection in a dairy cow, Belgium. Emerging Infectious Diseases 19, 2053–2054 (Centers for Disease Control and Prevention, 2013).65.Maurin, M. Brucellosis at the dawn of the 21st century. Médecine Mal. Infect. 35, 6–16 (2005).CAS 
    Article 

    Google Scholar 
    66.Whatmore, A. M. et al. Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int. J. Syst. Evol. Microbiol. 64, 4120–4128 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Godfroid, J., Garin-Bastuji, B., Saegerman, C. & Blasco, J. M. Brucellosis in terrestrial wildlife. Rev. Sci. Tech. Off. Int. Epiz. 32, 27–42 (2013).CAS 
    Article 

    Google Scholar 
    68.Barendregt, J. J., Doi, S. A., Lee, Y. Y., Norman, R. E. & Vos, T. Meta-analysis of prevalence. J. Epidemiol. Community Health 67, 974–978 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.EpiGear. EpiGear International. Available at: http://www.epigear.com/. (Accessed: 8th February 2018)70.Doi, S. A. R. R., Barendregt, J. J., Khan, S., Thalib, L. & Williams, G. M. Advances in the meta-analysis of heterogeneous clinical trials I: The inverse variance heterogeneity model. Contemp. Clin. Trials 45, 130–138 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ 327, 557–560 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Heisch, R. B., Cooke, E. R., Harvey, A. E. & De Souz, F. The isolation of Brucella suis from rodents in Kenya. East Afr. Med. J. 40, 132–133 (1963).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Motsi, T. R., Tichiwangana, S. C., Matope, G., Mukarati, N. L. & Studies, V. A serological survey of brucellosis in wild ungulate species from five game parks in Zimbabwe. Onderstepoort. J. Vet. Res. 80, 586 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Roth, H. H. A survey of brucellosis in game animals in Rhodesia. Bull. Epizoot. Dis. Afr. Bull. des Epizoot en Afrique 15, 133–142 (1967).CAS 

    Google Scholar 
    75.Condy, J. B. & Vickers, D. B. Brucellosis in buffalo in Wankie National Park. Rhod. Vet. J. 8, 58–60 (1976).
    Google Scholar 
    76.Caron, A. et al. Relationship between burden of infection in ungulate populations and wildlife/livestock interfaces. Epidemiol. Infect. 141, 1522–1535 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Gomo, C. et al. Detection of Brucella abortus in Chiredzi district in Zimbabwe. Onderstepoort. J. Vet. Res. 79, 1–5 (2012).Article 

    Google Scholar 
    78.Chaparro, F., Lawrence, J. V., Bengis, R. & Myburgh, J. G. A serological survey for brucellosis in buffalo (Syncerus caffer) in the Kruger National Park. J. S. Afr. Vet. Assoc. 61, 110–111 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Fischer-Tenhagen, C., Hamblin, C., Quandt, S., Frö;lich, K. & Frö Lich, K. Serosurvey for selected infectious disease agents in free-ranging black and white rhinoceros in Africa. Journal of Wildlife Diseases 36, 316–323 (2000).80.Caron, A. et al. African buffalo movement and zoonotic disease risk across transfrontier conservation areas Southern Africa. Emerg. Infect. Dis. 22, 277–280 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Herr, S. & Marshall, C. Brucellosis in free-living African buffalo (Syncerus caffer): A serological survey. Onderstepoort. J. Vet. Res. 48, 133–134 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.De Vos, V., Van Niekerk, G. A. W. J. & McConell, E. E. A survey of selected bacteriological infections of the Chacma Baboon Papio Ursinus from the Kruger National Park. Koedoe 16, 1–10 (1973).
    Google Scholar 
    83.Hamblin, C., Anderson, C. E., Jago, M., Mlengeya, T. & Hirji, K. Antibodies to some pathogenic agents in free-living wild species in Tanzania. Epidemiol. Infect. 105, 585–594 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Assenga, J. A., Matemba, L. E., Muller, S. K., Malakalinga, J. J. & Kazwala, R. R. Epidemiology of Brucella infection in the human, livestock and wildlife interface in the Katavi-Rukwa ecosystem, Tanzania. BMC Vet. Res. 11, 8 (2015).Article 

    Google Scholar 
    85.Sachs, R., Staak, C. & Groocock, C. M. Serological investigation of brucellosis in game animals in Tanzania. Bull. Epizoo. Dis. Afr. 16, 93–100 (1968).CAS 

    Google Scholar 
    86.Fyumagwa, R. D., Wambura, P. N., Mellau, L. S. B. & Hoare, R. Seroprevalence of Brucella abortus in buffaloes and wildebeests in the Serengeti ecosystem: A threat to humans and domestic ruminants. Tanzania Vet. J. 26, 2 (2010).
    Google Scholar 
    87.Matope, G. et al. Evaluation of sensitivity and specificity of RBT, c-ELISA and fluorescence polarisation assay for diagnosis of brucellosis in cattle using latent class analysis. Vet. Immunol. Immunopathol. 141, 58–63 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Muma, J. B. et al. Serosurvey of Brucella Spp Infection in the Kafue Lechwe (Kobus Leche Kafuensis) of the Kafue Flats in Zambia. J. Wildl. Dis. 46, 1063–1069 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Waghela, S. Animal brucellosis in Kenya: A review. Bull. Anim. Heal. Prod. Afr. 24, 53–59 (1976).CAS 

    Google Scholar 
    90.Waghela, S., Karstad, L., Waghela, A. S. & Karstad, L. Antibodies to Brucella Spp among blue wildebeest and African Buffalo in Kenya. J. Wildl. Dis. 22, 189–192 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Magwedere, K. et al. Brucellae through the food chain: the role of sheep, goats and springbok (Antidorcus marsupialis) as sources of human infections in Namibia. J. South Afr. Vet. Assoc. Van Die Suid-Afrikaanse Veterinere Ver 82, 205–212 (2011).CAS 

    Google Scholar 
    92.Karesh, W. B. et al. Health evaluation of black-faced impala (Aepyceros melampus petersi) using blood chemistry and serology. J. Zoo. Wildl. Med. 28, 361–367 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Cooper, A. C. D. & Carmichael, I. H. The incidence of brucellosis in game in Botswana. Bull. Epizoot. Dis. Afr. 22, 119–124 (1974).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Thimm, B. Brucellosis in Uganda.pdf. Bull Epizoot Dis Africa 20, 43–56 (1972).95.Tanner, M. et al. Bovine tuberculosis and brucellosis in cattle and african buffalo in the limpopo national park mozambique. Transbound Emerg. Dis. 62, 632–638 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Gomo, C., de Garine-Wichatitsky, M., Caron, A. & Pfukenyi, D. M. Survey of brucellosis at the wildlife-livestock interface on the Zimbabwean side of the Great Limpopo Transfrontier Conservation Area. Trop. Anim. Health Prod. 44, 77–85 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Herr, S. & Marshall, C. Brucellosis in Free-Living African Buffalo (Syncerus-Caffer)—a Serological Survey. Onderstepoort. J. Vet. Res. 48, 133–134 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Integrative analysis of the microbiome and metabolome in understanding the causes of sugarcane bitterness

    Soil microbial diversity and community structureIn total, 1,334,381 reads were obtained for the bacterial 16S rRNA genes by high-throughput sequencing. After screening these gene sequences with strict criteria (described in “Materials and methods”), 1,061,916 valid sequences were obtained, accounting for 79.6% of the raw reads. Figure 1A shows that the observed richness, Chao1, and Shannon index in the SS (sweet sugarcane) group supported significantly higher richness (P  More

  • in

    Vaccinate in biodiversity hotspots to protect people and wildlife from each other

    Rural areas of low-to-middle-income countries host most biodiversity hotspots, where interactions between people and wildlife are frequent. These regions have less access to vaccines than do urban centres (Local Burden of Disease Vaccine Coverage Collaborators Nature 589, 415–419; 2021).Given the broad potential range of hosts for SARS-CoV-2, we suggest that vaccinating often-neglected populations around protected areas will reduce the risk of people infecting wildlife and creating secondary reservoirs of disease, and thence risking potential reinfection of humans with new variants. This should be considered after vaccination of priority groups, such as older people and health workers.Vaccinating people who live near felids, non-human primates, bats and other animals protects wildlife and limits ‘reverse spillovers’. Such events have been documented for various human respiratory viruses, for instance in wild great apes in west Africa (S. Köndgen et al. Curr. Biol. 18, 260–264; 2008).Non-standard actors, such as national park authorities or conservation organizations, could help vaccination to reach remote regions. This is called a One Health approach: it protects the health of people, animals and the environment. More

  • in

    Contaminant organisms recorded on plant product imports to South Africa 1994–2019

    Sample collection and handlingSource of samples to be screenedSouth Africa currently has 72 official points of entry—8 seaports, 10 airports and 54 land border posts10. The DALRRD has border inspectors at most of these points (although staffing levels have varied considerably). DALRRD border inspectors inspect goods and travellers entering the country for plant contaminants. As part of DALRRD’s biosecurity protocol, three types of samples are collected and sent to DALRRD laboratories in Stellenbosch or Pretoria for further investigation (Fig. 1).

    1.

    Intervention samples. If the border inspector finds or suspects a pest or pathogen in a consignment, he/she will take a sample and send it to one of DALRRD’s diagnostic laboratories. A suspicion of contamination is often the result of quarantine organisms being detected on previous consignments of the same commodity. The imported consignment is detained at the border until laboratory results are completed. Due to the time-sensitivity of such imports, the samples are usually only inspected or tested for the taxa of concern.

    2.

    Audit samples. As above, these samples are drawn from consignments of plant products for immediate use. However, they are drawn on an ad hoc (haphazard) basis from consignments that show no signs of contamination during border inspections. In the laboratory, these samples are often inspected or tested for multiple taxa.

    3.

    Post-entry quarantine (PEQ) samples. Plant products for propagation purposes or nursery material (e.g. in vitro plantlets, seedlings, budwood) are shipped in sealed packages and transported directly to DALRRD’s agricultural quarantine facilities. For small consignments (under 50 units), all units in the consignment are tested and inspected by laboratory officials. For larger consignments, random samples are drawn and inspected following a hypergeometric sampling protocol11. Inspection for arthropods and initial examination for micro-organisms takes place in a biosecurity containment facility (see Saccaggi & Pieterse12 for further details). The material is then grown in a dedicated quarantine facility and further testing for pathogens takes place when the plants are in active growth.

    Fig. 1Summary of border and laboratory processes associated with each of the three import sample sources included in this dataset, namely post-entry quarantine (PEQ), intervention and audit samples. Solid lines indicate that these processes are always followed, while dashed lines indicate that the process is sometimes followed. PEQ samples are received from plant propagation or nursery material that needs to be quarantined upon arrival. Intervention samples are received from consignments in which the border inspector finds or suspects a pest or pathogen. Audit samples are ad hoc samples drawn from consignments that show no sign of contamination. These sample sources are explained in more detail in the text.Full size imageTaxa inspection, testing and identification methodsAll inspections, testing and identifications are carried out by DALRRD laboratory officials specialised in each taxonomic group. Taxonomic identifications are routinely done by DALRRD officials, taxonomists at the Biosystematics Division of the South African Agricultural Research Council (ARC) or higher education institutions, depending on the expertise available at the time. All recorded identifications in the dataset were retained, regardless of level of identification or biosecurity status of the organism. It should, however, be noted that all organisms found were not always recorded (see below for further explanation).Arthropods (mostly insects and mites) and Molluscs are detected via visual inspection using a stereo-microscope. For these taxa, all organisms detected are recorded. Organisms are most commonly identified morphologically, with molecular identification being performed for certain groups. Identification is performed to the point at which a reasonable phytosanitary decision can be made (i.e. sometimes taxonomic precision is sacrificed for time and/or resource efficiency and logistic reasons). Thus specimens from predatory or saprophytic groups are often only identified to family or genus, while specimens within plant-feeding groups are identified to species where possible.Nematodes are detected by extraction from samples using relevant extraction methods. Saprophytic and predatory nematodes are sometimes noted, but often ignored as they are not considered to be of phytosanitary concern. Plant-feeding nematodes are identified morphologically to species where possible.Fungi and Bacteria are detected visually in the growing plant, as well as by conventional isolation and plating techniques, followed by biochemical tests and/or morphological identification. Some targeted pathogens are detected and identified by molecular techniques such as PCR and DNA sequencing. Saprophytic or secondary fungi or bacteria are sometimes noted, but often not recorded as part of the sample record.Viruses are screened for by immunological techniques, notably ELISA and hardwood and herbaceous indexing. ELISA techniques detect a target virus of concern and give no information as to the presence or absence of other viruses in the sample. Hardwood and herbaceous indexing are used to determine if any graft- or mechanically-transmissible viruses are present in the sample, although these methods cannot be used to determine the viruses’ identity.Phytoplasma screening is done by nested PCR designed to detect any phytoplasma. On specific crops, phytoplasma groups are detected by using targeted PCR methods. If necessary, sequencing of PCR products is used for more specific identification.Data collection and handlingMetadata for samples were recorded by the border inspector before submission to DALRRD’s laboratories. Ideally, he/she recorded geographic origin of the commodity, crop and sample type, date of collection, details of importer and exporter, organisms to test for and any additional observations. However, in practice, this information was not always recorded in full. See Tables 1, 2 and 3 for more details on information included in the dataset. Due to the sensitivity of this kind of trade data, some of the data in the current dataset are grouped or anonymised to protect confidentiality. In particular, import date is only listed as month and year and the names of importers and exporters are removed.Table 1 A summary of information fields and descriptions for each imported sample recorded in the South African plant import dataset used in the datasheet “List of contaminants on SA plant imports 1994–2019.csv”23.Full size tableTable 2 Information fields and descriptions for taxa information associated with contaminant organisms detected on import samples received by South Africa used in the datasheet “Metadata of contaminants on SA plant imports 1994–2019.csv”23.Full size tableTable 3 List of import commodity types used in the datasheet “List of contamiants on SA plant imports 1994–2019.csv”23. The original categories listed by the inspectors were expanded to 30 commodity types based on additional laboratory information and expert experience.Full size tableElectronic databases of samples received by the DALRRD laboratories were maintained by the laboratory staff. These databases were not official departmental databases and therefore did not need to include information relevant to other sections involved in biosecurity. For instance, total number of imports, total size of each consignment, observations of the inspector, details of phytosanitary certificates and release or detention of the consignment were never recorded. The databases also included samples processed by the laboratory for export or for national pest surveys. Partly due to their unofficial status, the databases were transient, with new databases started once software became outdated, the old one became too big or when new categories or information were to be included. For this study, we collated, curated and cross-checked information from nine of these databases, spanning 26 years from 1994 to 2019.Recorded laboratory data varied between taxa and over time and as priorities and understanding of biosecurity changed. In the initial years considered here (ca. 1994–2000), the focus was on pests or pathogens of quarantine importance, i.e. those on the prohibited list. Other organisms found on samples were not consistently recorded and, when they were, they were often recorded in broad groupings (e.g. “saprophytic nematodes”). More recently, there has been a shift towards recording all organisms detected, but this has still not been done consistently [although from ~2005 onwards the officials responsible for arthropods and molluscs have tried to record everything found (DS, MA personal observations)]. Thus prohibited (i.e. quarantine organisms) were always recorded, but the recording of other contaminants was inconsistent.Data clean-up started with collation of all data from the nine databases. Initially, these contained 99,023 records, with 50,655 recorded as imports, 31,163 as exports, 11,004 as surveys with the remaining 6,201 falling into other categories or uncategorised. Only imports were retained, as this was the only category of interest for this study. For some imports, sample information was recorded in one database, while results of inspections/tests for different taxa were recorded in other databases. Thus a single sample could have up to four duplicate records. Each of these was checked individually and collated into one record for the sample. Spelling mistakes, incorrectly recorded information (e.g. information recorded in the wrong field) and missing information were traced back through paper records and corrected wherever possible. If the original data could not be found, these ambiguous records were excluded. After this data clean-up, the dataset comprised a list of 26,291 import records, of which 2,572 resulted from intervention samples (sample source 1 above, Fig. 1), 10,629 were audit samples (sample source 2 above, Fig. 1) and 13,090 were PEQ samples (sample source 3 above, Fig. 1). Data clean-up then continued for the organisms found on the imported samples.Taxon names were extracted and spelling and classification were corrected and/or added by hand. The list of taxa was checked against the Global Biodiversity Information Facility (GBIF)13 using the software package ‘rgbif’14 in Rstudio version 1.3.95915 running R version 4.0.216. This highlighted additional spelling mistakes and provided a taxonomic backbone to work from. The classification of a number of taxa had changed over the years and thus using a common taxonomic backbone was needed for consistency. Some taxa, most notably some mite species, could not be found on GBIF. In these cases, the taxonomy provided by the taxonomist who initially identified the organism was retained. Virus taxonomic information was also not available on GBIF and the database of the International Committee on Taxonomy of Viruses (ICTV) was used17.Species occurrence in South Africa was determined by consulting published species distribution lists. The following data sources were consulted: GBIF13 (accessed 29 July and 03 Aug 2020); CABI Crop Pest Compendiums and Invasive Species Compendium18,19,20; the Catalogue of Life21; animal species checklists published by the South African Biodiversity Institute (SANBI)22; and for any remaining species internet searches were conducted for literature citing distributions (listed in Table 2).In South Africa, lists of organisms prohibited from entering the country have been compiled by DALRRD and the Department of Forestry, Fisheries and the Environment (DFFtE). DFFtE’s list of prohibited species focussed mostly on organisms of environmental concern, although some prohibited organisms were also of agricultural concern, while DALRRD is only concerned with agricultural pests. DALRRD issues import permits for each unique crop, commodity and country combination from which plant products originate. Thus there is no single consolidated quarantine list for South Africa. Furthermore, any quarantine list is not static, but needs to change as species’ distributions, taxonomic revisions or pest status changes. Thus it is very difficult to provide a list of which detected organisms are of quarantine status to South Africa at any given time and particularly in a dataset spanning 26 years. As far as possible, we have indicated the regulatory status of the species in the datasheet “Metadata of contaminants on SA plant imports 1994–2019.csv”23. This regulatory status would have been of critical importance to inform contemporary phytosanitary decisions. However, given that such lists are dynamic and a core aim of presenting these data is to facilitate analyses of future invaders9, it is important to present information on all organisms detected. Moreover, this allows a more comprehensive assessment of the role of different pathways and will facilitate comparisons with other countries. More

  • in

    Benthic and coral reef community field data for Heron Reef, Southern Great Barrier Reef, Australia, 2002–2018

    This study describes a unique point-based data set for coral reef environments, collected using a photoquadrat survey method published for seagrass environments1. The data set describes the spatial and temporal distribution of benthic community abundance and composition for Heron Reef, a 28 km2 shallow platform reef located in the Capricorn Bunker Group, Southern Great Barrier Reef (GBR), Australia. On average, 3,600 coral reef data points were collected annually over the period 2002 to 2018. Annual data sets were acquired for independent research projects, but the collection methods were consistent. The initial field data collection design was planned to acquire detailed field data to describe the spatial distribution and variability of benthic composition across the study site to assist with calibration and validation of earth observation-based mapping products.To create a map based on earth observation imagery, it is common to use training or calibration data to transform the imagery into a map of surface properties using a supervised algorithm (e.g. multivariate statistical clustering, random forest)2. To report on the accuracy measures of the maps, reference or validation data are contrasted with the output maps3. Hence for calibration and validation purposes, georeferenced field data must be representative of all the features to be mapped and collection should ideally coincide with satellite image acquisition. Many earth observation approaches have been implemented for mapping the benthic communities of Heron Reef4,5,6,7,8,9,10,11,12 and several of these maps are now accessible online6,13,14.Several studies have utilised time series benthic data to analyse changes in benthic community and coral type trends, supporting broad ecological knowledge of coral reef ecosystems such as the Caribbean reef degradation15 and coral cover decline on the GBR16. Similarly, benthic community and coral cover data sets have been identified as important indicators of coral reef health providing the backbone for monitoring and management initiatives around the world17,18.Articles and data sets have been published that describe the benthic community properties of Heron Reef, however, their spatial coverage, number of georeferenced data points, and revisit times are limited19. The time series photoquadrat data sets presented in this paper could be used for further understanding of benthic community distribution, including statistical analysis of trends in coral cover, analysis of changes in benthic community and coral type, or used for testing of other earth observation-based mapping and modelling approaches. Additionally, as our methodology describes machine annotation of the field photoquadrats, it would be possible to reanalyse the photoquadrats with new categories not previously considered important from a biological perspective (e.g. unknown disease or impact, or a specific benthic community type), or for other features (e.g. the counting of sea cucumbers (Holothuroidea sp.)).Detailed analyses of our complete data set may permit a greater understanding of the persistence and/or dynamics of the benthic community at Heron Reef. As such, our ongoing analyses include evaluation of changes in community composition following major impacts such as cyclones, coral bleaching, crown of thorns predation, etc., and additionally, statistical analyses of coral recovery after such impacts. To this degree, these benthic community data sets are invaluable. More

  • in

    Sedimentary ancient DNA as a tool in paleoecology

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Oviposition behavior of wild yellow fever vector mosquitoes (Diptera: Culicidae) in an Atlantic Forest fragment, Rio de Janeiro state, Brazil

    1.Alho, C. J. R. Importância da biodiversidade para a saúde humana: uma perspectiva ecológica. Estud. Avançados 26, 151–166 (2012).Article 

    Google Scholar 
    2.Docile, T. N., Figueiró, R., Portela, C. & Nessimian, J. L. Macroinvertebrate diversity loss in urban streams from tropical forests. Environ. Monit. Assess. https://doi.org/10.1007/s10661-016-5237-z (2016).Article 
    PubMed 

    Google Scholar 
    3.Mutuku, F. M. et al. Distribution, description, and local knowledge of larval habitats of Anopheles gambiae s.l. in a village in western Kenya. Am. J. Trop. Med. Hyg. 74, 44–53 (2006).Article 

    Google Scholar 
    4.Simard, F. et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 9, 17 (2009).Article 

    Google Scholar 
    5.Reiter, P. Yellow fever and dengue: a threat to Europe?. Eurosurveillance 15, 11–17 (2010).
    Google Scholar 
    6.Medlock, J. M. & Leach, S. A. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect. Dis. 15, 721–730 (2015).Article 

    Google Scholar 
    7.Alencar, J. et al. Ecosystem diversity of mosquitoes (Diptera: Culicidae) in a remnant of Atlantic Forest, Rio de Janeiro state, Brazil . Austral Entomol. https://doi.org/10.1111/aen.12508 (2020).Article 

    Google Scholar 
    8.Arnell, J. H. Mosquito studies (Diptera, Culicidae). XXXII. A revision of the genus Haemagogus. Contrib. Am. Entomol. Inst. 10, 1–174 (1973).
    Google Scholar 
    9.Alencar, J. et al. Flight height preference for oviposition of mosquito (diptera: Culicidae) vectors of sylvatic yellow fever virus near the hydroelectric reservoir of simplicío, minas Gerais, Brazil. J. Med. Entomol. 50, 791–795 (2013).Article 

    Google Scholar 
    10.Alencar, J. et al. Diversity of yellow fever mosquito vectors in the Atlantic forest of Rio de Janeiro, Brazil . Rev. Soc. Bras. Med. Trop. 49, 351–356 (2016).Article 

    Google Scholar 
    11.Gerais, M. Febre Amarela : uma visão do cenário atual. (2014).12.De Abreu, F. V. S. et al. Combination of surveillance tools reveals that yellow fever virus can remain in the same atlantic forest area at least for three transmission seasons. Mem. Inst. Oswaldo Cruz https://doi.org/10.1590/0074-02760190076 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Moreno, E. S. et al. Reemergência de febre amarela: Detecção de transmissão no estado de São Paulo, Brasil, 2008. Rev. Soc. Bras. Med. Trop. 44, 290–296 (2011).Article 

    Google Scholar 
    14.Bergallo, H. Estratégias e ações para a conservação da biodiversidade no estado do Rio de Janeiro. (Instituto Biomas, 2009).15.Silva, S. O. F. et al. Evaluation of multiple immersion effects on eggs from Haemagogus leucocelaenus, Haemagogus janthinomys, and Aedes albopictus (Diptera: Culicidae) under experimental conditions. J. Med. Entomol. 55, 1093–1097 (2018).Article 

    Google Scholar 
    16.Forattini, O. P. Culicidologia Médica: Identificação, Biologia, Epidemiologia. (Edusp – Editora da Universidade de São Paulo, 2002).17.Marcondes, C. & Alencar, J. Revisão de mosquitos Haemagogus Williston (Diptera: Culicidae) do Brasil. Rev. Biomed. 21, 221–238 (2010).
    Google Scholar 
    18.Reinert, J. F. Revised list of abbreviations for genera and subgenera of Culicidae (diptera) and notes on generic and subgeneric changes. J. Am. Mosq. Control Assoc. 17, 51–55 (2001).CAS 
    PubMed 

    Google Scholar 
    19.Guimaráes, A. É., De Mello, R. P., Lopes, C. M. & Gentile, C. Ecology of mosquitoes (Diptera: Culicidae) in areas of Serra do Mar State Park, State of São Paulo, Brazil. I—monthly frequency and climatic factors. Mem. Inst. Oswaldo Cruz 95, 1–16 (2000).Article 

    Google Scholar 
    20.Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).CAS 
    Article 

    Google Scholar 
    21.Possas, C. et al. Yellow fever outbreak in Brazil: the puzzle of rapid viral spread and challenges for immunisation. Mem. Inst. Oswaldo Cruz 113, e180278 (2018).Article 

    Google Scholar 
    22.Brasil, M. da S. Uma análise da situação de saúde com enfoque nas doenças imunopreveníveis e na imunização. Ministário da Saúde https://bvsms.saude.gov.br/bvs/saudelegis/gm/1998/prt3916_30_10_1998.htmlhttp://bvsms.saude.gov.br/bvs/saudelegis/gm/2017/prt2436_22_09_2017.html (2019).23.Cunha, M. S. et al. Epizootics due to Yellow Fever Virus in São Paulo State, Brazil: viral dissemination to new areas (2016–2017). Sci. Rep. 9, 1–13 (2019).ADS 

    Google Scholar 
    24.Lourenço-de-Oliveira, R. & Failloux, A. B. High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas. PLoS Negl. Trop. Dis. 11, 1–11 (2017).
    Google Scholar 
    25.De Figueiredo, M. L. et al. Mosquitoes infected with dengue viruses in Brazil. Virol. J. 7, 1–5 (2010).Article 

    Google Scholar 
    26.Marcondes, C. B. & de Ximenes, M. F. F. M. Zika virus in Brazil and the danger of infestation by aedes (Stegomyia) mosquitoes. Rev. Soc. Bras. Med. Trop. 49, 4–10 (2016).Article 

    Google Scholar 
    27.Grard, G. et al. Zika virus in Gabon (Central Africa) – 2007: a new threat from Aedes albopictus?. PLoS Negl. Trop. Dis. 8, 1–6 (2014).ADS 
    Article 

    Google Scholar 
    28.de Gomes, A. C. et al. Aedes albopictus em área rural do Brasil e implicações na transmissão de febre amarela silvestre. Rev. Saude Publica 33, 95–97 (1999).Article 

    Google Scholar 
    29.Guimarães, A. E. Mosquitos no Parque Nacional da Serra dos Órgãos, Estado do Rio de Janeiro, Brasil. II. Distribuição vertical. Mem. Inst. Oswaldo Cruz 80, 1–2 (1985).MathSciNet 
    Article 

    Google Scholar 
    30.Lopes, J., Arias, J. R. & Yood, J. D. C. Evidências Preliminares De Estratificação Vertical De Postura De Ovos Por Alguns Culicidae (Diptera), Em Floresta No Município De Manaus – Amazonas. Acta Amaz. 13, 431–439 (1983).Article 

    Google Scholar 
    31.Alencar, J. et al. A comparative study of the effect of multiple immersions on Aedini (Diptera: Culicidae) mosquito eggs with emphasis on sylvan vectors of yellow fever virus. Mem. Inst. Oswaldo Cruz 109, 114–117 (2014).Article 

    Google Scholar 
    32.Entomologia médica. 2.O Volume. Culicini: Culex, Aedes e Psorophora | Mosquito Taxonomic Inventory. (1965).33.Principais Mosquitos de Importância Sanitária no Brasil – Fundação Oswaldo Cruz (Fiocruz): Ciência e tecnologia em saúde para a população brasileira. (FIOCRUZ, 1994).34.Amerasinghe, F. P. & Alagoda, T. S. B. Mosquito oviposition in bamboo traps, with special reference to Aedes albopictus, Aedes novalbopictus and Armigeres subalbatus. Int. J. Trop. Insect Sci. 5, 493–500 (1984).Article 

    Google Scholar 
    35.Obenauer, P. J., Kaufman, P. E., Allan, S. A. & Kline, D. L. Infusion-baited ovitraps to survey ovipositional height preferences of container-inhabiting mosquitoes in two Florida habitats. J. Med. Entomol. 46, 1507–1513 (2009).CAS 
    Article 

    Google Scholar 
    36.Althouse, B. M. et al. Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl. Trop. Dis. 10, 1–11 (2016).Article 

    Google Scholar 
    37.Hamrick, P. N. et al. Geographic patterns and environmental factors associated with human yellow fever presence in the Americas. PLoS Negl. Trop. Dis. 11, 1–27 (2017).Article 

    Google Scholar 
    38.Couto-Lima, D. et al. Seasonal population dynamics of the primary yellow fever vector haemagogus leucocelaenus (Dyar & shannon) (diptera: Culicidae) is mainly influenced by temperature in the atlantic forest, Southeast Brazil. Mem. Inst. Oswaldo Cruz 115, 1–13 (2020).Article 

    Google Scholar 
    39.Davis, N. C., Division, I. H., Foundation, R., Health, P. & Health, P. The effect of various temperatures in modifying the extrinsic incubation period of the yellow fever virus in Aedes Aegypti. Am. J. Epidemiol. 16, 163–176 (1931).Article 

    Google Scholar 
    40.Johansson, M. A., Arana-Vizcarrondo, N., Biggerstaff, B. J. & Staples, J. E. Incubation periods of yellow fever virus. Am. J. Trop. Med. Hyg. 83, 183–188 (2010).Article 

    Google Scholar 
    41.De Paiva, C. A. et al. Determination of the spatial susceptibility to yellow fever using a multicriteria analysis. Mem. Inst. Oswaldo Cruz 114, 1–8 (2019).Article 

    Google Scholar 
    42.Calado, D. C. & Navarro da Silva, M. A. Evaluation of the temperature influence on the development of Aedes albopictus. Rev. Saude Publica 36, 173–179 (2002).Article 

    Google Scholar 
    43.Docile, T. N. et al. Frequency of Aedes sp. Linnaeus (Diptera: Culicidae) and Associated Entomofauna in Bromeliads from a Forest Patch within a densely Urbanized Area. Neotrop. Entomol. 46, 613–621 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Meta-analysis reveals that animal sexual signalling behaviour is honest and resource based

    1.Andersson, M. B. Sexual Selection (Princeton Univ. Press, 1994).2.Clark, C. J. The role of power versus energy in courtship: what is the ‘energetic cost’of a courtship display? Anim. Behav. 84, 269–277 (2012).Article 

    Google Scholar 
    3.Vehrencamp, S. L., Bradbury, J. W. & Gibson, R. M. The energetic cost of display in male sage grouse. Anim. Behav. 38, 885–896 (1989).Article 

    Google Scholar 
    4.Kotiaho, J. S. Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biol. Rev. 76, 365–376 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Mappes, J., Alatalo, R. V., Kotiaho, J. & Parri, S. Viability costs of condition-dependent sexual male display in a drumming wolf spider. Proc. R. Soc. Lond. B 263, 785–789 (1996).Article 

    Google Scholar 
    6.Zuk, M. & Kolluru, G. R. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 73, 415–438 (1998).Article 

    Google Scholar 
    7.Woods, W. A. Jr, Hendrickson, H., Mason, J. & Lewis, S. M. Energy and predation costs of firefly courtship signals. Am. Nat.170, 702–708 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA 78, 3721–3725 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Cotton, S., Fowler, K. & Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. R. Soc. Lond. B 271, 771–783 (2004).Article 

    Google Scholar 
    10.Tomkins, J. L., Radwan, J., Kotiaho, J. S. & Tregenza, T. Genic capture and resolving the lek paradox. Trends Ecol. Evol. 19, 323–328 (2004).PubMed 
    Article 

    Google Scholar 
    11.Grafen, A. Biological signals as handicaps. J. Theor. Biol. 144, 517–546 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Johnstone, R. A. Sexual selection, honest advertisement and the handicap principle: reviewing the evidence. Biol. Rev. 70, 1–65 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Seymour, R. M. & Sozou, P. D. Duration of courtship effort as a costly signal. J. Theor. Biol. 256, 1–13 (2009).PubMed 
    Article 

    Google Scholar 
    14.Byers, J., Hebets, E. & Podos, J. Female mate choice based upon male motor performance. Anim. Behav. 79, 771–778 (2010).Article 

    Google Scholar 
    15.Moran, N. P., Sánchez-Tójar, A., Schielzeth, H. & Reinhold, K. Poor nutritional condition promotes high-risk behaviours: a systematic review and meta-analysis. Biol. Rev. https://doi.org/10.1111/brv.12655 (2020).16.Cotton, S., Small, J. & Pomiankowski, A. Sexual selection and condition-dependent mate preferences. Curr. Biol. 16, R755–R765 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Kokko, H. Evolutionarily stable strategies of age-dependent sexual advertisement. Behav. Ecol. Sociobiol. 41, 99–107 (1997).Article 

    Google Scholar 
    18.Moore, F. R., Shuker, D. M. & Dougherty, L. Stress and sexual signaling: a systematic review and meta-analysis. Behav. Ecol. 27, 363–371 (2016).Article 

    Google Scholar 
    19.Dougherty, L. R. Meta-analysis shows the evidence for context-dependent mating behaviour is inconsistent or weak across animals. Ecol. Lett. https://doi.org/10.1111/ele.13679 (2021).20.Umbers, K. D., Symonds, M. R. & Kokko, H. The mathematics of female pheromone signaling: strategies for aging virgins. Am. Nat. 185, 417–432 (2015).PubMed 
    Article 

    Google Scholar 
    21.Simmons, L. W. Sexual signalling by females: do unmated females increase their signalling effort? Biol. Lett. https://doi.org/10.1098/rsbl.2015.0298 (2015).22.Reynolds, J. D. Should attractive individuals court more? Theory and a test. Am. Nat. 141, 914–927 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Jennions, M. D. & Backwell, P. R. Variation in courtship rate in the fiddler crab Uca annulipes: is it related to male attractiveness? Behav. Ecol. 9, 605–611 (1998).Article 

    Google Scholar 
    24.Candolin, U. The relationship between signal quality and physical condition: is sexual signalling honest in the three-spined stickleback? Anim. Behav. 58, 1261–1267 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).Article 

    Google Scholar 
    26.Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Buchanan, K. L., Spencer, K. A., Goldsmith, A. & Catchpole, C. Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). Proc. R. Soc. Lond. B 270, 1149–1156 (2003).CAS 
    Article 

    Google Scholar 
    28.Chemnitz, J., Jentschke, P. C., Ayasse, M. & Steiger, S. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. R. Soc. B 282, 20150832 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    29.Richardson, J. & Smiseth, P. T. Nutrition during sexual maturation and at the time of mating affects mating behaviour in both sexes of a burying beetle. Anim. Behav. 151, 77–85 (2019).Article 

    Google Scholar 
    30.Balsby, T. J. Song activity and variability in relation to male quality and female choice in whitethroats Sylvia communis. J. Avian Biol. 31, 56–62 (2000).Article 

    Google Scholar 
    31.Nickley, B., Saintignon, D. & Roberts, J. A. Influence of predator cues on terminal investment in courtship by male Schizocosa ocreata (Hentz, 1844) wolf spiders (Araneae: Lycosidae). J. Arachnol. 44, 176–181 (2016).Article 

    Google Scholar 
    32.Kehl, T. et al. Pheromone blend does not explain old male mating advantage in a butterfly. Ethology 120, 1137–1145 (2014).Article 

    Google Scholar 
    33.Houslay, T. M., Houslay, K. F., Rapkin, J., Hunt, J. & Bussiere, L. F. Mating opportunities and energetic constraints drive variation in age-dependent sexual signalling. Funct. Ecol. 31, 728–741 (2017).Article 

    Google Scholar 
    34.Smith, M. J. & Roberts, J. D. Call structure may affect male mating success in the quacking frog Crinia georgiana (Anura: Myobatrachidae). Behav. Ecol. Sociobiol. 53, 221–226 (2003).Article 

    Google Scholar 
    35.Lehtonen, T. K. Signal value of male courtship effort in a fish with paternal care. Anim. Behav. 83, 1153–1161 (2012).Article 

    Google Scholar 
    36.Bertram, S. M., Harrison, S. J., Thomson, I. R. & Fitzsimmons, L. P. Adaptive plasticity in wild field cricket’s acoustic signaling. PLoS ONE 8, e69247 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rundus, A. S., Biemuller, R., DeLong, K., Fitzgerald, T. & Nyandwi, S. Age-related plasticity in male mate choice decisions by Schizocosa retrorsa wolf spiders. Anim. Behav. 107, 233–238 (2015).Article 

    Google Scholar 
    38.Koricheva, J., Gurevitch, J. & Mengeresen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).39.Harts, A. M., Booksmythe, I. & Jennions, M. D. Mate guarding and frequent copulation in birds: a meta‐analysis of their relationship to paternity and male phenotype. Evolution 70, 2789–2808 (2016).PubMed 
    Article 

    Google Scholar 
    40.Partridge, C., Boettcher, A. & Jones, A. G. The role of courtship behavior and size in mate preference in the sex-role-reversed gulf pipefish, Syngnathus scovelli. Ethology 119, 692–701 (2013).Article 

    Google Scholar 
    41.Anderson, A. P. & Jones, A. G. Choosy Gulf pipefish males ignore age but prefer active females with deeply keeled bodies. Anim. Behav. 155, 37–44 (2019).Article 

    Google Scholar 
    42.Sundin, J., Rosenqvist, G. & Berglund, A. Hypoxia delays mating in the broad-nosed pipefish. Mar. Biol. Res. 11, 747–754 (2015).Article 

    Google Scholar 
    43.McLennan, D. A. & Shires, V. L. Correlation between the level of infection with Bunodera inconstans and Neoechinorhynchus rutili and behavioral intensity in female brook sticklebacks. J. Parasitol. 81, 675–682 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Simmons, L. W. Courtship role reversal in bush-crickets—another role for parasites. Behav. Ecol. 5, 259–266 (1994).Article 

    Google Scholar 
    45.Schatral, A. Diet influences male–female interactions in the bush-cricket Requena verticalis (Orthoptera, Tettigoniidae). J. Insect Behav. 6, 379–388 (1993).Article 

    Google Scholar 
    46.Serrano, J. M. & Penna, M. Sexual monomorphism in the advertisement calls of a neotropical frog. Biol. J. Linn. Soc. 123, 388–401 (2018).Article 

    Google Scholar 
    47.Yamane, T. & Yasuda, T. The effects of mating status and time since mating on female sex pheromone levels in the rice leaf bug, Trigonotylus caelestialium. Naturwissenschaften 101, 153–156 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Klein, S. L. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol. Behav. 79, 441–449 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Poulin, R. in Advances in the Study of Behavior Vol. 41 (eds Mitani, J. et al.) 151–186 (Elsevier, 2010).51.Clancey, E. & Byers, J. A. The definition and measurement of individual condition in evolutionary studies. Ethology 120, 845–854 (2014).Article 

    Google Scholar 
    52.Wilgers, D. J. & Hebets, E. A. in Animal Signaling and Function: An Integrative Approach (eds Irschick, D. J. et al.) 229–252 (John Wiley & Sons, 2015).53.Řežucha, R. & Reichard, M. Strategic exploitation of fluctuating asymmetry in male Endler’s guppy courtship displays is modulated by social environment. J. Evol. Biol. 28, 356–367 (2015).PubMed 
    Article 

    Google Scholar 
    54.Oliveira, R. F., Taborsky, M. & Brockmann, H. J. Alternative Reproductive Tactics: An Integrative Approach (Cambridge Univ. Press, 2008).55.Gray, D. A. Female house crickets, Acheta domesticus, prefer the chirps of large males. Anim. Behav. 54, 1553–1562 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Lubanga, U., Peters, R. & Steinbauer, M. Substrate-borne vibrations of male psyllids vary with body size and age but females are indifferent. Anim. Behav. 120, 173–182 (2016).Article 

    Google Scholar 
    57.Ah‐King, M. & Gowaty, P. A. A conceptual review of mate choice: stochastic demography, within‐sex phenotypic plasticity, and individual flexibility. Ecol. Evol. 6, 4607–4642 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Adamo, S. A., Kovalko, I., Easy, R. H. & Stoltz, D. A viral aphrodisiac in the cricket Gryllus texensis. J. Exp. Biol. 217, 1970–1976 (2014).PubMed 
    Article 

    Google Scholar 
    60.Aguilar, T. M., Maia, R., Santos, E. S. A. & Macedo, R. H. Parasite levels in blue-black grassquits correlate with male displays but not female mate preference. Behav. Ecol. 19, 292–301 (2008).Article 

    Google Scholar 
    61.Ahtiainen, J. J., Alataio, R. V., Mappes, J. & Vertainen, L. Fluctuating asymmetry and sexual performance in the drumming wolf spider Hygrolycosa rubrofasciata. Ann. Zool. Fenn. 40, 281–292 (2003).
    Google Scholar 
    62.Ahtiainen, J. J., Alatalo, R. V., Kortet, R. & Rantala, M. J. Immune function, dominance and mating success in drumming male wolf spiders Hygrolycosa rubrofasciata. Behav. Ecol. Sociobiol. 60, 826–832 (2006).Article 

    Google Scholar 
    63.Alonso, J. C., Magana, M., Martin, C. A. & Palacin, C. Sexual traits as quality indicators in lekking male great bustards. Ethology 116, 1084–1098 (2010).Article 

    Google Scholar 
    64.Alonso, J. C., Magana, M., Palacin, C. & Martin, C. A. Correlates of male mating success in great bustard leks: the effects of age, weight, and display effort. Behav. Ecol. Sociobiol. 64, 1589–1600 (2010).Article 

    Google Scholar 
    65.Amorim, M. C. P. & Almada, V. C. The outcome of male–male encounters affects subsequent sound production during courtship in the cichlid fish Oreochromis mossambicus. Anim. Behav. 69, 595–601 (2005).Article 

    Google Scholar 
    66.Amorim, M. C. P. & Neves, A. S. M. Acoustic signalling during courtship in the painted goby, Pomatoschistus pictus. J. Mar. Biol. Assoc. UK 87, 1017–1023 (2007).Article 

    Google Scholar 
    67.Amorim, M. C. P. et al. Painted gobies sing their quality out loud: acoustic rather than visual signals advertise male quality and contribute to mating success. Funct. Ecol. 27, 289–298 (2013).Article 

    Google Scholar 
    68.Amorim, M. C. P. et al. Lusitanian toadfish song reflects male quality. J. Exp. Biol. 213, 2997–3004 (2010).PubMed 
    Article 

    Google Scholar 
    69.Amundsen, T. & Forsgren, E. Male preference for colourful females affected by male size in a marine fish. Behav. Ecol. Sociobiol. 54, 55–64 (2003).Article 

    Google Scholar 
    70.An, D. & Waldman, B. Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus. Biol. Lett. https://doi.org/10.1098/rsbl.2016.0018 (2016).71.Andersson, S. Costs of sexual advertising in the lekking Jackson’s Widowbird. Condor 96, 1–10 (1994).Article 

    Google Scholar 
    72.Andrade, M. C. B. & Mason, A. C. Male condition, female choice, and extreme variation in repeated mating in a scaly cricket, Ornebius aperta (Orthoptera: Gryllidae: Mogoplistinae). J. Insect Behav. 13, 483–497 (2000).Article 

    Google Scholar 
    73.Anichini, M., Frommolt, K. H. & Lehmann, G. U. C. To compete or not to compete: bushcricket song plasticity reveals male body condition and rival distance. Anim. Behav. 142, 59–68 (2018).Article 

    Google Scholar 
    74.Arak, A. Female mate selection in the natterjack toad: active choice or passive atraction? Behav. Ecol. Sociobiol. 22, 317–327 (1988).
    Google Scholar 
    75.Arvidsson, B. L. & Neergaard, R. Mate choice in the willow warbler—a field experiment. Behav. Ecol. Sociobiol. 29, 225–229 (1991).Article 

    Google Scholar 
    76.Atagan, Y. & Forstmeier, W. Protein supplementation decreases courtship rate in the zebra finch. Anim. Behav. 83, 69–74 (2012).Article 

    Google Scholar 
    77.Backwell, P. R. Y., Jennions, M. D., Christy, J. H. & Schober, U. Pillar building in the fiddler-crab Uca beebei—evidence for a condition dependent ornament. Behav. Ecol. Sociobiol. 36, 185–192 (1995).Article 

    Google Scholar 
    78.Bakker, T. C. M. & Milinski, M. Sequential female choice and the previous male effect in sticklebacks. Behav. Ecol. Sociobiol. 29, 205–210 (1991).Article 

    Google Scholar 
    79.Becker, L. J. S., Aspbury, A. S. & Gabor, C. R. Body size dependent male sexual behavior in a natural population of sailfin mollies (Poecilia latipinna). Am. Midl. Nat. 167, 366–372 (2012).Article 

    Google Scholar 
    80.Bee, M. A. et al. Assessing acoustic signal variability and the potential for sexual selection and social recognition in boreal chorus frogs (Pseudacris maculata). Ethology 116, 564–576 (2010).Article 

    Google Scholar 
    81.Beeler, A. E., Rauter, C. M. & Moore, A. J. Pheromonally mediated mate attraction by males of the burying beetle Nicrophorus orbicollis: alternative calling tactics conditional on both intrinsic and extrinsic factors. Behav. Ecol. 10, 578–584 (1999).Article 

    Google Scholar 
    82.Bertram, S. M. & Bowen, M. Field cricket species differences in the temporal patterns of long-distance mate attraction signals. Ethology 112, 850–857 (2006).Article 

    Google Scholar 
    83.Bertram, S. M., Whattam, E. M., Visanuvimol, L., Bennett, R. & Lauzon, C. Phosphorus availability influences cricket mate attraction displays. Anim. Behav. 77, 525–530 (2009).Article 

    Google Scholar 
    84.Birkhead, T. R., Fletcher, F. & Pellatt, E. J. Sexual selection in the zebra finch Taeniopygia guttata: condition, sex traits and immune capacity. Behav. Ecol. Sociobiol. 44, 179–191 (1998).Article 

    Google Scholar 
    85.Biro, P. A., Fanson, K. V. & Santostefano, F. Stress-induced peak (but not resting) metabolism correlates with mating display intensity in male guppies. Ecol. Evol. 6, 6537–6545 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Bolund, E., Martin, K., Kempenaers, B. & Forstmeier, W. Inbreeding depression of sexually selected traits and attractiveness in the zebra finch. Anim. Behav. 79, 947–955 (2010).Article 

    Google Scholar 
    87.Bolund, E., Schielzeth, H. & Forstmeier, W. No heightened condition dependence of zebra finch ornaments—a quantitative genetic approach. J. Evol. Biol. 23, 586–597 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Bosholn, M., Fecchio, A., Silveira, P., Braga, E. M. & Anciaes, M. Effects of avian malaria on male behaviour and female visitation in lekking blue-crowned manakins. J. Avian Biol. 47, 457–465 (2016).Article 

    Google Scholar 
    89.Brandt, L. S. E., Ludwar, B. C. & Greenfield, M. D. Co-occurrence of preference functions and acceptance thresholds in female choice: mate discrimination in the lesser wax moth. Ethology 111, 609–625 (2005).Article 

    Google Scholar 
    90.Briggs, V. S. Call trait variation in Morelett’s tree frog, Agalychnis moreletii, of Belize. Herpetologica 66, 241–249 (2010).Article 

    Google Scholar 
    91.Buchanan, K. L., Catchpole, C. K., Lewis, J. W. & Lodge, A. Song as an indicator of parasitism in the sedge warbler. Anim. Behav. 57, 307–314 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Buchinger, T. J. et al. Increased pheromone signaling by small male sea lamprey has distinct effects on female mate search and courtship. Behav. Ecol. Sociobiol. 71, 155 (2017).93.Callander, S., Jennions, M. D. & Backwell, P. R. Y. The effect of claw size and wave rate on female choice in a fiddler crab. J. Ethol. 30, 151–155 (2012).Article 

    Google Scholar 
    94.Candolin, U. & Salesto, T. Does competition allow male mate choosiness in threespine sticklebacks? Am. Nat. 173, 273–277 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Castellano, S., Rosso, A., Doglio, S. & Giacoma, C. Body size and calling variation in the green toad (Bufo viridis). J. Zool. 248, 83–90 (1999).Article 

    Google Scholar 
    96.Chiswell, R., Girard, M., Fricke, C. & Kasumovic, M. M. Prior mating success can affect allocation towards future sexual signaling in crickets. PeerJ 2, e657 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Churchill, E. R., Dytham, C. & Thom, M. D. F. Differing effects of age and starvation on reproductive performance in Drosophila melanogaster. Sci. Rep. 9, 2167 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Clark, D. C., DeBano, S. J. & Moore, A. J. The influence of environmental quality on sexual selection in Nauphoeta cinerea (Dictyoptera: Blaberidae). Behav. Ecol. 8, 46–53 (1997).Article 

    Google Scholar 
    99.Clark, D. C. & Moore, A. J. Social communication in the Madagascar hissing cockroach—features of male courtship hisses and a comparison of courtship and agonistic hisses. Behaviour 132, 401–417 (1995).Article 

    Google Scholar 
    100.Clayton, D. H. Mate choice in experimentally parasitized rock doves: lousy males lose. Am. Zool. 30, 251–262 (1990).Article 

    Google Scholar 
    101.Cobb, M., Connolly, K. & Burnet, B. The relationship between locomotor activity and courtship in the melanogaster species sub-group of Drosophila. Anim. Behav. 35, 705–713 (1987).Article 

    Google Scholar 
    102.Cordes, N. et al. Larval food composition affects courtship song and sperm expenditure in a lekking moth. Ecol. Entomol. 40, 34–41 (2015).Article 

    Google Scholar 
    103.Cornuau, J. H., Schmeller, D. S., Courtois, E. A., Jolly, T. & Loyau, A. It takes two to tango: relative influence of male and female identity and morphology on complex courtship display in a newt species. Ethology 121, 218–226 (2015).Article 

    Google Scholar 
    104.Costa, F. J. V. & Macedo, R. H. Coccidian oocyst parasitism in the blue-black grassquit: influence on secondary sex ornaments and body condition. Anim. Behav. 70, 1401–1409 (2005).Article 

    Google Scholar 
    105.Crocker-Buta, S. P. & Leary, C. J. Hormonal and social correlates of courtship signal quality and behaviour in male green treefrogs. Anim. Behav. 146, 13–22 (2018).Article 

    Google Scholar 
    106.da Rocha, S. M. C., Lima, A. P. & Kaefer, I. L. Territory size as a main driver of male-mating success in an Amazonian nurse frog (Allobates paleovarzensis, Dendrobatoidea). Acta Ethol. 21, 51–57 (2018).Article 

    Google Scholar 
    107.David, M., Auclair, Y., Dall, S. R. X. & Cezilly, F. Pairing context determines condition-dependence of song rate in a monogamous passerine bird. Proc. R. Soc. B 280, 20122177 (2013).PubMed 
    Article 

    Google Scholar 
    108.Deb, R., Bhattacharya, M. & Balakrishnan, R. Females of a tree cricket prefer larger males but not the lower frequency male calls that indicate large body size. Anim. Behav. 84, 137–149 (2012).Article 

    Google Scholar 
    109.Devigili, A., Kelley, J. L., Pilastro, A. & Evans, J. P. Expression of pre- and postcopulatory traits under different dietary conditions in guppies. Behav. Ecol. 24, 740–749 (2013).Article 

    Google Scholar 
    110.Drayton, J. M., Hunt, J., Brooks, R. & Jennions, M. D. Sounds different: inbreeding depression in sexually selected traits in the cricket Teleogryllus commodus. J. Evol. Biol. 20, 1138–1147 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Drayton, J. M., Milner, R. N. C., Hunt, J. & Jennions, M. D. Inbreeding and advertisement calling in the cricket Teleogryllus commodus: laboratory and field experiments. Evolution 64, 3069–3083 (2010).PubMed 

    Google Scholar 
    112.Droney, D. C. Environmental influences on male courtship and implications for female choice in a lekking Hawaiian Drosophila. Anim. Behav. 51, 821–830 (1996).Article 

    Google Scholar 
    113.Droney, D. C. The influence of the nutritional content of the adult male diet on testis mass, body condition and courtship vigour in a Hawaiian Drosophila. Funct. Ecol. 12, 920–928 (1998).Article 

    Google Scholar 
    114.Duffield, K. R. et al. Age-dependent variation in the terminal investment threshold in male crickets. Evolution 72, 578–589 (2018).Article 

    Google Scholar 
    115.Eastwood, L. & Burnet, B. Courtship latency in male Drosophila melanogaster. Behav. Genet. 7, 359–372 (1977).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Engqvist, L. & Sauer, K. P. Influence of nutrition on courtship and mating in the scorpionfly Panorpa cognata (Mecoptera, insecta). Ethology 109, 911–928 (2003).Article 

    Google Scholar 
    117.Forrest, T. G. et al. Mate choice in ground crickets (Gryllidae, Nemoiinae). Fla. Entomol. 74, 74–80 (1991).Article 

    Google Scholar 
    118.Galeotti, P. et al. Courtship displays and mounting calls are honest, condition-dependent signals that influence mounting success in Hermann’s tortoises. Can. J. Zool. 83, 1306–1313 (2005).Article 

    Google Scholar 
    119.Gibson, J. S. & Uetz, G. W. Effect of rearing environment and food availability on seismic signalling in male wolf spiders (Araneae: Lycosidae). Anim. Behav. 84, 85–92 (2012).Article 

    Google Scholar 
    120.Gibson, R. M. Relationships between blood parasites, mating success and phenotypic cues in male sage grouse Centrocercus urophasianus. Am. Zool. 30, 271–278 (1990).Article 

    Google Scholar 
    121.Gilbert, R., Karp, R. D. & Uetz, G. W. Effects of juvenile infection on adult immunity and secondary sexual characters in a wolf spider. Behav. Ecol. 27, 946–954 (2016).Article 

    Google Scholar 
    122.Gilbert, R. & Uetz, G. W. Courtship and male ornaments as honest indicators of immune function. Anim. Behav. 117, 97–103 (2016).Article 

    Google Scholar 
    123.Given, M. Interrelationships among calling effort, growth rate, and chorus tenure in Bufo fowleri. Copeia 2002, 979–987 (2002).Article 

    Google Scholar 
    124.Greenspan, S. E., Roznik, E. A., Schwarzkopf, L., Alford, R. A. & Pike, D. A. Robust calling performance in frogs infected by a deadly fungal pathogen. Ecol. Evol. 6, 5964–5972 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Gumulka, M. & Rozenboim, I. Effect of the age of ganders on reproductive behavior and fertility in a competitive mating structure. Ann. Anim. Sci. 17, 733–746 (2017).Article 

    Google Scholar 
    126.Hankison, S. J. & Ptacek, M. B. Within and between species variation in male mating behaviors in the Mexican sailfin mollies Poecilia velifera and P. petenensis. Ethology 113, 802–812 (2007).Article 

    Google Scholar 
    127.Harrison, S. J., Thomson, I. R., Grant, C. M. & Bertram, S. M. Calling, courtship, and condition in the fall field cricket, Gryllus pennsylvanicus. PLoS ONE 8, e60356 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Hausfater, G., Gerhardt, H. C. & Klump, G. M. Parasites and mate choice in gray treefrogs, Hyla versicolor. Am. Zool. 30, 299–311 (1990).Article 

    Google Scholar 
    129.Hay, D. E. & McPhail, J. D. Courtship behaviour of male threespine sticklebacks (Gasterosteus aculeatus) from old and new hybrid zones. Behaviour 137, 1047–1063 (2000).Article 

    Google Scholar 
    130.Head, M. L., Fox, R. J. & Barber, I. Environmental change mediates mate choice for an extended phenotype, but not for mate quality. Evolution 71, 135–144 (2017).PubMed 
    Article 

    Google Scholar 
    131.Hegde, S. N. & Krishna, M. S. Size-assortative mating in Drosophila malerkotliana. Anim. Behav. 54, 419–426 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    132.Hegyi, G. et al. Nutritional correlates and mate acquisition role of multiple sexual traits in male collared flycatchers. Naturwissenschaften 97, 567–576 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    133.Henderson, L. J., Brazeal, K. R. & Hahn, T. P. Plumage coloration and social context influence male investment in song. Biol. Lett. 14, 20180300 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Hermann, C. M., Brudermann, V., Zimmermann, H., Vollmann, J. & Sefc, K. M. Female preferences for male traits and territory characteristics in the cichlid fish Tropheus moorii. Hydrobiologia 748, 61–74 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Hoefler, C. D., Carlascio, A. L., Persons, M. H. & Rypstra, A. L. Male courtship repeatability and potential indirect genetic benefits in a wolf spider. Anim. Behav. 78, 183–188 (2009).Article 

    Google Scholar 
    136.Hoefler, C. D., Moore, J. A., Reynolds, K. T. & Rypstra, A. L. The effect of experience on male courtship and mating behaviors in a cellar spider. Am. Midl. Nat. 163, 255–268 (2010).Article 

    Google Scholar 
    137.Hoefler, C. D., Persons, M. H. & Rypstra, A. L. Evolutionarily costly courtship displays in a wolf spider: a test of viability indicator theory. Behav. Ecol. 19, 974–979 (2008).Article 

    Google Scholar 
    138.Hoileitner, M., Nechtelberger, H. & Hoi, H. Song rate as a signal for nest-site quality in blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 37, 399–405 (1995).Article 

    Google Scholar 
    139.Holzer, B., Jacot, A. & Brinkhof, M. W. G. Condition-dependent signaling affects male sexual attractiveness in field crickets, Gryllus campestris. Behav. Ecol. 14, 353–359 (2003).Article 

    Google Scholar 
    140.Honarmand, M., Riebel, K. & Naguib, M. Nutrition and peer group composition in early adolescence: impacts on male song and female preference in zebra finches. Anim. Behav. 107, 147–158 (2015).Article 

    Google Scholar 
    141.Houde, A. E. & Torio, A. J. Effect of parasitic infection on male color pattern and female choice in guppies. Behav. Ecol. 3, 346–351 (1992).Article 

    Google Scholar 
    142.Howard, R. D. & Young, J. R. Individual variation in male vocal traits and female mating preferences in Bufo americanus. Anim. Behav. 55, 1165–1179 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    143.Hughes, A. L. Male size, mating success, and mating strategy in the mosquitofish Gambusia affinis (Poeciliidae). Behav. Ecol. Sociobiol. 17, 271–278 (1985).Article 

    Google Scholar 
    144.Humfeld, S. C. Condition-dependent signaling and adoption of mating tactics in an amphibian with energetic displays. Behav. Ecol. 24, 859–870 (2013).Article 

    Google Scholar 
    145.Jacot, A., Scheuber, H. & Brinkhof, M. W. G. Costs of an induced immune response on sexual display and longevity in field crickets. Evolution 58, 2280–2286 (2004).PubMed 
    Article 

    Google Scholar 
    146.Jacot, A., Scheuber, H., Holzer, B., Otti, O. & Brinkhof, M. W. G. Diel variation in a dynamic sexual display and its association with female mate-searching behaviour. Proc. R. Soc. B 275, 579–585 (2008).PubMed 
    Article 

    Google Scholar 
    147.Jennions, M. D. Tibial coloration, fluctuating asymmetry and female choice behaviour in the damselfly Platycypha caligata. Anim. Behav. 55, 1517–1528 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    148.Jha, N. A. & Kumar, V. Protein-rich food does not affect singing behaviour and song quality in adult zebra finches, Taeniopygia guttata. Curr. Sci. 111, 1693–1696 (2016).Article 

    Google Scholar 
    149.Jiguet, F. & Bretagnolle, V. Sexy males and choosy females on exploded leks: correlates of male attractiveness in the Little Bustard. Behav. Process. 103, 246–255 (2014).Article 

    Google Scholar 
    150.Jones, K. M., Monaghan, P. & Nager, R. G. Male mate choice and female fecundity in zebra finches. Anim. Behav. 62, 1021–1026 (2001).Article 

    Google Scholar 
    151.Joshi, A. M., Narayan, E. J. & Gramapurohit, N. P. Interrelationship among steroid hormones, energetics and vocalisation in the Bombay night frog (Nyctibatrachus humayuni). Gen. Comp. Endocrinol. 246, 142–149 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    152.Joyce, A. L., Bernal, J. S., Vinson, S. B. & Lomeli-Flores, R. Influence of adult size on mate choice in the solitary and gregarious parasitoids, Cotesia marginiventris and Cotesia flavipes. J. Insect Behav. 22, 12–28 (2009).Article 

    Google Scholar 
    153.Junca, F. A. et al. Advertisement call of species of the genus Frostius Cannatella 1986 (Anura: Bufonidae). Acta Herpetol. 7, 189–201 (2012).
    Google Scholar 
    154.Kaefer, I. L. & Lima, A. P. Sexual signals of the Amazonian frog Allobates paleovarzensis: geographic variation and stereotypy of acoustic traits. Behaviour 149, 15–33 (2012).Article 

    Google Scholar 
    155.Kahn, A. T., Dolstra, T., Jennions, M. D. & Backwell, P. R. Y. Strategic male courtship effort varies in concert with adaptive shifts in female mating preferences. Behav. Ecol. 24, 906–913 (2013).Article 

    Google Scholar 
    156.Karl, I., Heuskin, S. & Fischer, K. Dissecting the mechanisms underlying old male mating advantage in a butterfly. Behav. Ecol. Sociobiol. 67, 837–849 (2013).Article 

    Google Scholar 
    157.Kaspi, R., Taylor, P. W. & Yuval, B. Diet and size influence sexual advertisement and copulatory success of males in Mediterranean fruit fly leks. Ecol. Entomol. 25, 279–284 (2000).Article 

    Google Scholar 
    158.Kennedy, C. E. J., Endler, J. A., Poynton, S. L. & McMinn, H. Parasite load predicts mate choice in guppies. Behav. Ecol. Sociobiol. 21, 291–295 (1987).Article 

    Google Scholar 
    159.Ketola, T., Kortet, R. & Kotiaho, J. S. Endurance in exercise is associated with courtship call rate in decorated crickets, Gryllodes sigillatus. Evol. Ecol. Res. 11, 1131–1139 (2009).
    Google Scholar 
    160.Ketola, T. & Kotiaho, J. S. Inbreeding, energy use and sexual signaling. Evol. Ecol. 24, 761–772 (2010).Article 

    Google Scholar 
    161.Kim, T. W. & Choe, J. C. The effect of food availability on the semilunar courtship rhythm in the fiddler crab Uca lactea (de Haan) (Brachyura: Ocypodidae). Behav. Ecol. Sociobiol. 54, 210–217 (2003).Article 

    Google Scholar 
    162.Kim, T. W., Sakamoto, K., Henmi, Y. & Choe, J. C. To court or not to court: reproductive decisions by male fiddler crabs in response to fluctuating food availability. Behav. Ecol. Sociobiol. 62, 1139–1147 (2008).Article 

    Google Scholar 
    163.King, B. H., Saporito, K. B., Ellison, J. H. & Bratzke, R. M. Unattractiveness of mated females to males in the parasitoid wasp Spalangia endius. Behav. Ecol. Sociobiol. 57, 350–356 (2005).Article 

    Google Scholar 
    164.Kitsunezuka, K., Okutani-Akamatsu, Y., Watanabe, T. & Oku, K. Effects of male age on the mating behavior of both sexes in the sorghum plant bug, Stenotus rubrovittatus (Hemiptera: Miridae). Appl. Entomol. Zool. 48, 73–77 (2013).Article 

    Google Scholar 
    165.Knapp, R. A. Influence of energy reserves on the expression of a secondary sexual trait in male bicolor damselfish, Stegastes partitus. Bull. Mar. Sci. 57, 672–681 (1995).
    Google Scholar 
    166.Kodric-Brown, A. Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav. Ecol. Sociobiol. 25, 393–401 (1989).Article 

    Google Scholar 
    167.Kolluru, G. R., Bertram, S. M., China, E. H., Dunmeyer, C. V. & Graves, J. S. Mating behavior and its morphological correlates in two color morphs of Girardinus metallicus (Pisces: Poeciliidae), a species previously thought not to exhibit courtship display. Behav. Process. 106, 44–52 (2014).Article 

    Google Scholar 
    168.Kotiaho, J. S. Testing the assumptions of conditional handicap theory: costs and condition dependence of a sexually selected trait. Behav. Ecol. Sociobiol. 48, 188–194 (2000).Article 

    Google Scholar 
    169.Kotiaho, J. S. Sexual selection and condition dependence of courtship display in three species of horned dung beetles. Behav. Ecol. 13, 791–799 (2002).Article 

    Google Scholar 
    170.Kotiaho, J. S., Alatalo, R. V., Mappes, J. & Parri, S. Sexual signalling and viability in a wolf spider (Hygrolycosa rubrofasciata): measurements under laboratory and field conditions. Behav. Ecol. Sociobiol. 46, 123–128 (1999).Article 

    Google Scholar 
    171.Kotiaho, J. S., Simmons, L. W. & Tomkins, J. L. Towards a resolution of the lek paradox. Nature 410, 684–686 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    172.Krishna, M. S. & Hegde, S. N. Influence of body size in mating success in three sympatric species of Drosophila. Ital. J. Zool. 70, 47–52 (2003).Article 

    Google Scholar 
    173.Kuczynski, M. C., Bello-DeOcampo, D. & Getty, T. No evidence of terminal investment in the gray treefrog (Hyla versicolor): older males do not signal at greater effort. Copeia 103, 530–535 (2015).Article 

    Google Scholar 
    174.Kuczynski, M. C., Storks, L., Gering, E. & Getty, T. Male treefrogs in low condition resume signaling faster following simulated predator attack. Behav. Ecol. Sociobiol. 70, 347–355 (2016).Article 

    Google Scholar 
    175.Kuriwada, T. Horn length is not correlated with calling efforts in the horn-headed cricket Loxoblemmus doenitzi (Orthoptera: Gryllidae). Entomol. Sci. 19, 228–232 (2016).Article 

    Google Scholar 
    176.Kuriwada, T. & Kasuya, E. Age-dependent changes in calling effort in the bell cricket Meloimorpha japonica. J. Ethol. 29, 99–105 (2011).Article 

    Google Scholar 
    177.Leary, C. J., Lippincott, J., Harris, S. & Hawkins, D. L. A test of the energetics-hormone vocalization model in the green treefrog. Gen. Comp. Endocrinol. 213, 32–39 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    178.Lehtonen, T. K., Svensson, P. A. & Wong, B. B. M. The influence of recent social experience and physical environment on courtship and male aggression. BMC Evol. Biol. 16, 18 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    179.Lehtonen, T. K., Svensson, P. A. & Wong, B. B. M. Aggressive desert goby males also court more, independent of the physiological demands of salinity. Sci. Rep. 8, 9352 (2018).180.Lode, T. & Le Jacques, D. Influence of advertisement calls on reproductive success in the male midwife toad Alytes obstetricans. Behaviour 140, 885–898 (2003).Article 

    Google Scholar 
    181.Lomborg, J. P. & Toft, S. Nutritional enrichment increases courtship intensity and improves mating success in male spiders. Behav. Ecol. 20, 700–708 (2009).Article 

    Google Scholar 
    182.Lopez, P. T. & Narins, P. M. Mate choice in the neotropical frog, Eleutherodactylus coqui. Anim. Behav. 41, 757–772 (1991).Article 

    Google Scholar 
    183.Lynn, S. E., Stamplis, T. B., Barrington, W. T., Weida, N. & Hudak, C. A. Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch. Horm. Behav. 58, 214–222 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    184.Magellan, K., Pettersson, L. B. & Magurran, A. E. Quantifying male attractiveness and mating behaviour through phenotypic size manipulation in the Trinidadian guppy, Poecilia reticulata. Behav. Ecol. Sociobiol. 58, 366–374 (2005).Article 

    Google Scholar 
    185.Magoolagan, L., Mawby, P. J., Whitehead, F. A. & Sharp, S. P. The effect of early life conditions on song traits in male dippers (Cinclus cinclus). PLoS ONE 13, e0205101 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    186.Manica, L. T., Maia, R., Dias, A., Podos, J. & Macedoc, R. H. Vocal output predicts territory quality in a neotropical songbird. Behav. Process. 109, 21–26 (2014).Article 

    Google Scholar 
    187.Mariette, M., Kelley, J. L., Brooks, R. & Evans, J. P. The effects of inbreeding on male courtship behaviour and coloration in guppies. Ethology 112, 807–814 (2006).Article 

    Google Scholar 
    188.Mateos, C. & Carranza, J. Effects of male dominance and courtship display on female choice in the ring-necked pheasant. Behav. Ecol. Sociobiol. 45, 235–244 (1999).Article 

    Google Scholar 
    189.Matsuo, T. Effect of social condition on behavioral development during early adult phase in Drosophila prolongata. J. Ethol. 36, 15–22 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    190.McAuley, E. M. & Bertram, S. M. Field crickets compensate for unattractive static long-distance call components by increasing dynamic signalling effort. PLoS ONE 11, e0167311 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    191.McCullough, E. L. & Simmons, L. W. Selection on male physical performance during male–male competition and female choice. Behav. Ecol. 27, 1288–1295 (2016).Article 

    Google Scholar 
    192.McLean, M. J., Bishop, P. J., Hero, J. M. & Nakagawa, S. Assessing the information content of calls of Litoria chloris: quality signalling versus individual recognition. Aust. J. Zool. 60, 120–126 (2012).Article 

    Google Scholar 
    193.McNeil, G. V., Friesen, C. N., Gray, S. M., Aldredge, A. & Chapman, L. J. Male colour variation in a eurytopic African cichlid: the role of diet and hypoxia. Biol. J. Linn. Soc. 118, 551–568 (2016).Article 

    Google Scholar 
    194.Memmott, R. & Briffa, M. Exaggerated displays do not improve mounting success in male seaweed flies Fucellia tergina (Diptera: Anthomyiidae). Behav. Process. 120, 73–79 (2015).Article 

    Google Scholar 
    195.Milazzo, M. et al. Ocean acidification affects fish spawning but not paternity at CO2 seeps. Proc. R. Soc. B 283, 20161021 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    196.Morales, M. B., Alonso, J. C., Martin, C., Martin, E. & Alonso, J. Male sexual display and attractiveness in the great bustard Otis tarda: the role of body condition. J. Ethol. 21, 51–56 (2003).Article 

    Google Scholar 
    197.Morris, M. R. Female choice of large males in the treefrog Hyla ebraccata. J. Zool. 223, 371–378 (1991).Article 

    Google Scholar 
    198.Morris, M. R., Rios-Cardenas, O. & Darrah, A. Male mating tactics in the northern mountain swordtail fish (Xiphophorus nezahualcoyotl): coaxing and coercing females to mate. Ethology 114, 977–988 (2008).Article 

    Google Scholar 
    199.Muramatsu, D. The function of the four types of waving display in Uca lactea: effects of audience, sand structure, and body size. Ethology 117, 408–415 (2011).Article 

    Google Scholar 
    200.Murphy, C. G. Nightly timing of chorusing by male barking treefrogs (Hyla gratiosa): the influence of female arrival and energy. Copeia 1999, 333–347 (1999).Article 

    Google Scholar 
    201.Naguib, M., Heim, C. & Gil, D. Early developmental conditions and male attractiveness in zebra finches. Ethology 114, 255–261 (2008).Article 

    Google Scholar 
    202.O’Hanlon, J. C., Wignall, A. E. & Herberstein, M. E. Short and fast vs long and slow: age changes courtship in male orb-web spiders (Argiope keyserlingi). Sci. Nat. 105, 3 (2018).Article 
    CAS 

    Google Scholar 
    203.Ohata, M., Wada, K. & Koga, T. Waving display by male Scopimera globosa (Brachyura: Ocypodoidea) as courtship behavior. J. Crustac. Biol. 25, 637–639 (2005).Article 

    Google Scholar 
    204.Olsson, K. H., Kvarnemo, C. & Svensson, O. Relative costs of courtship behaviours in nest-building sand gobies. Anim. Behav. 77, 541–546 (2009).Article 

    Google Scholar 
    205.Ortiz-Santaliestra, M. E., Marco, A., Fernández-Benéitez, M. J. & Lizana, M. Alteration of courtship behavior because of water acidification and minor effect of ammonium nitrate in the Iberian newt (Lissotriton boscai). Environ. Toxicol. Chem. 28, 1500–1505 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    206.Papadopoulos, N. T., Katsoyannos, B. I., Kouloussis, N. A., Economopoulos, A. P. & Carrey, J. R. Effect of adult age, food, and time of day on sexual calling incidence of wild and mass-reared Ceratitis capitata males. Entomol. Exp. Appl. 89, 175–182 (1998).Article 

    Google Scholar 
    207.Pariser, E. C., Mariette, M. M. & Griffith, S. C. Artificial ornaments manipulate intrinsic male quality in wild-caught zebra finches (Taeniopygia guttata). Behav. Ecol. 21, 264–269 (2010).Article 

    Google Scholar 
    208.Partridge, L., Ewing, A. & Chandler, A. Male size and mating success in Drosophila melanogaster: the roles of male and female behaviour. Anim. Behav. 35, 555–562 (1987).Article 

    Google Scholar 
    209.Passmore, N. I., Bishop, P. J. & Caithness, N. Calling behavior influences mating success in male painted reed frogs, Hyperolius marmoratus. Ethology 92, 227–241 (1992).Article 

    Google Scholar 
    210.Pedroso, S. S., Barber, I., Svensson, O., Fonseca, P. J. & Amorim, M. C. P. Courtship sounds advertise species identity and male quality in sympatric Pomatoschistus spp. gobies. PLoS ONE 8, e64620 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    211.Pelabon, C. et al. Do microsporidian parasites affect courtship in two-spotted gobies? Mar. Biol. 148, 189–196 (2005).Article 

    Google Scholar 
    212.Pellitteri-Rosa, D., Sacchi, R., Galeotti, P., Marchesi, M. & Fasola, M. Courtship displays are condition-dependent signals that reliably reflect male quality in Greek tortoises, Testudo graeca. Chelonian Conserv. Biol. 10, 10–17 (2011).Article 

    Google Scholar 
    213.Perezlachaud, G. & Campan, M. Influence of previous sexual experience and postemergence rearing conditions on the mating-behavior of Chryseida bennetti. Entomol. Exp. Appl. 76, 163–170 (1995).Article 

    Google Scholar 
    214.Poole, K. G. & Murphy, C. G. Preferences of female barking treefrogs, Hyla gratiosa, for larger males: univariate and composite tests. Anim. Behav. 73, 513–524 (2007).Article 

    Google Scholar 
    215.Prathibha, M., Krishna, M. S. & Jayaramu, S. C. Male age influence on male reproductive success in Drosophila ananassae (Diptera: Drosophilidae). Ital. J. Zool. 78, 168–173 (2011).Article 

    Google Scholar 
    216.Pruett-jones, S. G., Pruett-jones, M. A. & Jones, H. I. Parasites and sexual selection in birds of paradise. Am. Zool. 30, 287–298 (1990).Article 

    Google Scholar 
    217.Pryke, S. R. & Andersson, S. Experimental evidence for female choice and energetic costs of male tail elongation in red-collared widowbirds. Biol. J. Linn. Soc. 86, 35–43 (2005).Article 

    Google Scholar 
    218.Ptacek, M. B. & Travis, J. Inter-population variation in male mating behaviours in the sailfin mollie, Poecilia latipinna. Anim. Behav. 52, 59–71 (1996).Article 

    Google Scholar 
    219.Ptacek, M. B. & Travis, J. Mate choice in the sailfin molly, Poecilia latipinna. Evolution 51, 1217–1231 (1997).PubMed 
    Article 

    Google Scholar 
    220.Rahman, M. M., Kelley, J. L. & Evans, J. P. Condition-dependent expression of pre- and postcopulatory sexual traits in guppies. Ecol. Evol. 3, 2197–2213 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    221.Rahman, M. M., Turchini, G. M., Gasparini, C., Norambuena, F. & Evans, J. P. The expression of pre- and postcopulatory sexually selected traits reflects levels of dietary stress in guppies. PLoS ONE 9, e105856 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    222.Reifer, M. L., Harrison, S. J. & Bertram, S. M. How dietary protein and carbohydrate influence field cricket development, size and mate attraction signalling. Anim. Behav. 139, 137–146 (2018).Article 

    Google Scholar 
    223.Rezaei, A., Krishna, M. S. & Santhosh, H. T. Male age affects female mate preference, quantity of accessory gland proteins, and sperm traits and female fitness in D. melanogaster. Zool. Sci. 32, 16–24 (2015).Article 

    Google Scholar 
    224.Ritchie, M. G., Sunter, D. & Hockham, L. R. Behavioral components of sex role reversal in the tettigoniid bushcricket Ephippiger ephippiger. J. Insect Behav. 11, 481–491 (1998).Article 

    Google Scholar 
    225.Ritschard, M. & Brumm, H. Zebra finch song reflects current food availability. Evol. Ecol. 26, 801–812 (2012).Article 

    Google Scholar 
    226.Rodd, F. H. & Sokolowski, M. B. Complex origins of variation in the sexual-behavior of male Trinidadian guppies, Poecilia reticulata—interactions between social-environment, heredity, body-size and age. Anim. Behav. 49, 1139–1159 (1995).Article 

    Google Scholar 
    227.Rosenthal, M. F. & Hebets, E. A. Temporal patterns of nutrition dependence in secondary sexual traits and their varying impacts on male mating success. Anim. Behav. 103, 75–82 (2015).Article 

    Google Scholar 
    228.Sadowski, J. A., Grace, J. L. & Moore, A. J. Complex courtship behavior in the striped ground cricket, Allonemobius socius (Orthoptera: Gryllidae): does social environment affect male and female behavior? J. Insect Behav. 15, 69–84 (2002).Article 

    Google Scholar 
    229.Scheuber, H., Jacot, A. & Brinkhof, M. W. G. Condition dependence of a multicomponent sexual signal in the field cricket Gryllus campestris. Anim. Behav. 65, 721–727 (2003).Article 

    Google Scholar 
    230.Shakeel, M., He, X. Z., Martin, N. A., Hanan, A. & Wang, Q. Mating behaviour of the European leafminer Scaptomyza flava (Diptera: Drosophilidae). NZ Plant Prot. 63, 108–112 (2010).
    Google Scholar 
    231.Shelly, T. E., Edu, J. & Pahio, E. Female medflies mate selectively with young males but gain no apparent fitness benefits. J. Insect Behav. 24, 55–66 (2011).Article 

    Google Scholar 
    232.Shelly, T. E. & Kennelly, S. S. Starvation and the mating success of wild male Mediterranean fruit flies (Diptera: Tephritidae). J. Insect Behav. 16, 171–179 (2003).Article 

    Google Scholar 
    233.Shuker, D. et al. Mating behavior, sexual selection, and copulatory courtship in a promiscuous beetle. J. Insect Behav. 15, 617–631 (2002).Article 

    Google Scholar 
    234.Sikkel, P. C. Effects of nest quality on male courtship and female spawning-site choice in an algal-nesting damselfish. Bull. Mar. Sci. 57, 682–689 (1995).
    Google Scholar 
    235.Sisodia, S. & Singh, B. N. Size dependent sexual selection in Drosophila ananassae. Genetica 121, 207–217 (2004).PubMed 
    Article 

    Google Scholar 
    236.Smit, J. A. H., Loning, H., Ryan, M. J. & Halfwerk, W. Environmental constraints on size-dependent signaling affects mating and rival interactions. Behav. Ecol. 30, 724–732 (2019).Article 

    Google Scholar 
    237.Snekser, J. L., Leese, J., Ganim, A. & Itzkowitz, M. Caribbean damselfish with varying territory quality: correlated behaviors but not a syndrome. Behav. Ecol. 20, 124–130 (2009).Article 

    Google Scholar 
    238.Spencer, K. A., Buchanan, K. L., Goldsmith, A. R. & Catchpole, C. K. Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm. Behav. 44, 132–139 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    239.Spencer, K. A. et al. Developmental stress affects the attractiveness of male song and female choice in the zebra finch (Taeniopygia guttata). Behav. Ecol. Sociobiol. 58, 423–428 (2005).Article 

    Google Scholar 
    240.Sundin, J., Vossen, L. E., Nilsson-Sköld, H. & Jutfelt, F. No effect of elevated carbon dioxide on reproductive behaviors in the three-spined stickleback. Behav. Ecol. 28, 1482–1491 (2017).Article 

    Google Scholar 
    241.Suzaki, Y., Katsuki, M., Miyatake, T. & Okada, Y. Relationships among male sexually selected traits in the bean bug, Riptortus pedestris (Heteroptera: Alydidae). Entomol. Sci. 18, 278–282 (2015).Article 

    Google Scholar 
    242.Takeshita, F., Murai, M., Matsumasa, M. & Henmi, Y. Multimodal signaling in fiddler crab: waving to attract mates is condition-dependent but other sexual signals are not. Behav. Ecol. Sociobiol. 72, 140 (2018).243.Tarano, Z. Variation in male advertisement calls in the neotropical frog Physalaemus enesefae. Copeia 2001, 1064–1072 (2001).Article 

    Google Scholar 
    244.Taylor, M. I., Turner, G. F., Robinson, R. L. & Stauffer, J. R. Sexual selection, parasites and bower height skew in a bower-building cichlid fish. Anim. Behav. 56, 379–384 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    245.Tejedo, M. Large male mating advantage in natterjack toads, Bufo calamita: sexual selection or energetic constraints? Anim. Behav. 44, 557–569 (1992).Article 

    Google Scholar 
    246.Tolle, A. E. & Wagner, W. E. Costly signals in a field cricket can indicate high- or low-quality direct benefits depending upon the environment. Evolution 65, 283–294 (2011).PubMed 
    Article 

    Google Scholar 
    247.Toth, C. A., Santure, A. W., Holwell, G. I., Pattemore, D. E. & Parsons, S. Courtship behaviour and display-site sharing appears conditional on body size in a lekking bat. Anim. Behav. 136, 13–19 (2018).Article 

    Google Scholar 
    248.Turiegano, E., Monedero, I., Pita, M., Torroja, L. & Canal, I. Effect of Drosophila melanogaster female size on male mating success. J. Insect Behav. 26, 89–100 (2013).Article 

    Google Scholar 
    249.Van Hout, A. J. M., Pinxten, R., Geens, A. & Eens, M. Non-breeding song rate reflects nutritional condition rather than body condition. PLoS ONE 7, e36547 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    250.Villarreal, A. E., Godin, J. G. J. & Bertram, S. M. Influence of the operational sex ratio on mutual mate choice in the Jamaican field cricket (Gryllus assimilis): testing the predictions of the switch point theorem. Ethology 124, 816–828 (2018).Article 

    Google Scholar 
    251.Wacker, S., de Jong, K., Forsgren, E. & Amundsen, T. Large males fight and court more across a range of social environments: an experiment on the two spotted goby Gobiusculus flavescens. J. Fish. Biol. 81, 21–34 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    252.Wagner, W. E. & Hoback, W. W. Nutritional effects on male calling behaviour in the variable field cricket. Anim. Behav. 57, 89–95 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    253.Walling, C. A., Stamper, C. E., Salisbury, C. L. & Moore, A. J. Experience does not alter alternative mating tactics in the burying beetle Nicrophorus vespilloides. Behav. Ecol. 20, 153–159 (2009).Article 

    Google Scholar 
    254.Watson, N. L. & Simmons, L. W. Mate choice in the dung beetle Onthophagus sagittarius: are female horns ornaments? Behav. Ecol. 21, 424–430 (2010).Article 

    Google Scholar 
    255.Whattam, E. M. & Bertram, S. M. Effects of juvenile and adult condition on long-distance call components in the Jamaican field cricket, Gryllus assimilis. Anim. Behav. 81, 135–144 (2011).Article 

    Google Scholar 
    256.Wilgers, D. J. & Hebets, E. A. Complex courtship displays facilitate male reproductive success and plasticity in signaling across variable environments. Curr. Zool. 57, 175–186 (2011).Article 

    Google Scholar 
    257.Wilgers, D. J. & Hebets, E. A. Age-related female mating decisions are condition dependent in wolf spiders. Behav. Ecol. Sociobiol. 66, 29–38 (2012).Article 

    Google Scholar 
    258.Wilson, A. D. M. et al. Behavioral correlations across activity, mating, exploration, aggression, and antipredator contexts in the European house cricket, Acheta domesticus. Behav. Ecol. Sociobiol. 64, 703–715 (2010).Article 

    Google Scholar 
    259.Win, A. T., Kojima, W. & Ishikawa, Y. Age-related male reproductive investment in courtship display and nuptial gifts in a moth, Ostrinia scapulalis. Ethology 119, 325–334 (2013).Article 

    Google Scholar 
    260.Woodhead, A. P. Male age: effect on mating behaviour and success in the cockroach Diploptera punctata. Anim. Behav. 34, 1874–1879 (1986).Article 

    Google Scholar 
    261.Yamada, K. & Soma, M. Diet and birdsong: short-term nutritional enrichment improves songs of adult Bengalese finch males. J. Avian Biol. 47, 865–870 (2016).Article 

    Google Scholar 
    262.Yuval, B., Kaspi, R., Shloush, S. & Warburg, M. S. Nutritional reserves regulate male participation in Mediterranean fruit fly leks. Ecol. Entomol. 23, 211–215 (1998).Article 

    Google Scholar 
    263.Zuk, M. et al. The role of male ornaments and courtship behavior in female mate choice of red jungle fowl. Am. Nat. 136, 459–473 (1990).Article 

    Google Scholar 
    264.Chargé, R., Saint Jalme, M., Lacroix, F., Cadet, A. & Sorci, G. Male health status, signalled by courtship display, reveals ejaculate quality and hatching success in a lekking species. J. Anim. Ecol. 79, 843–850 (2010).PubMed 

    Google Scholar 
    265.Lipsey, M. & Wilson, D. Practical Meta-analysis (Sage Publications, 2001).266.Hedges, L. V. & Olkin, I. Statistical Methods for Meta-analysis (Academic Press, 1985).267.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    268.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).269.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    270.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    271.Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B 326, 119–157 (1989).CAS 
    Article 

    Google Scholar 
    272.Tacutu, R. et al. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    273.Carey, J. & Judge, D. Longevity Records: Life Spans of Mammals, Birds, Amphibians, Reptiles, and Fish (Odense Univ. Press, 2000).274.Höglund, J. & Alatalo, R. V. Leks (Princeton Univ. Press, 2005).275.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    276.Noble, D. W., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta‐analyses. Mol. Ecol. 26, 2410–2425 (2017).PubMed 
    Article 

    Google Scholar 
    277.Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. Introduction to Meta-analysis (John Wiley, 2009).278.Higgins, J., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).Article 

    Google Scholar 
    279.Nakagawa, S. & Santos, E. S. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    280.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).PubMed 
    Article 

    Google Scholar 
    281.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    282.Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    283.Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634 (1997).CAS 
    Article 

    Google Scholar  More