Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest
1.
Ni, X. & Groffman, P. M. Declines in methane uptake in forest soils. Proc. Natl. Acad. Sci. USA 115, 8587–8590 (2018).
CAS PubMed Article Google Scholar
2.
IPCC. Climate change 2013: the physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
3.
Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).
ADS CAS Article Google Scholar
4.
Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl. Acad. Sci. USA 116, 2805–2813 (2019).
CAS PubMed Article Google Scholar
5.
Tate, K. R. Soil methane oxidation and land-use change–from process to mitigation. Soil Biol. Biochem. 80, 260–272 (2015).
CAS Article Google Scholar
6.
Thauer, R. K., Anne-Kristin, K., Henning, S., Wolfgang, B. & Reiner, H. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).
CAS PubMed Article Google Scholar
7.
Banger, K., Tian, H. & Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?. Glob. Change Biol. 18, 3259–3267 (2012).
ADS Article Google Scholar
8.
Murase, J. & Kimura, M. Methane production and its fate in paddy fields. IV. Sources of microorganisms and substrates responsible for anaerobic CH4 oxidation in subsoil. Soil Sci. Plant Nutr. 40, 57–61 (1994).
CAS Article Google Scholar
9.
Zhang, M., Huang, J., Sun, S., Rehman, M. & He, S. Depth-specific distribution and significance of nitrite-dependent anaerobic methane oxidation process in tidal flow constructed wetlands used for treating river water. Sci. Total Environ. 716, 107354 (2020).
Google Scholar
10.
Yu, X. et al. Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biol. Biochem. 144, 107775 (2020).
CAS Article Google Scholar
11.
Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).
CAS PubMed PubMed Central Article Google Scholar
12.
Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).
PubMed PubMed Central Article Google Scholar
13.
Dunfield, P., Knowles, R., Dumont, R. & Moore, T. R. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol. Biochem. 25, 321–326 (1993).
CAS Article Google Scholar
14.
Mer, J. L. & Roger, P. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50 (2001).
Article Google Scholar
15.
Aronson, E. L., Dubinsky, E. A. & Helliker, B. R. Effects of nitrogen addition on soil microbial diversity and methane cycling capacity depend on drainage conditions in a pine forest soil. Soil Biol. Biochem. 62, 119–128 (2013).
CAS Article Google Scholar
16.
Bodelier, P. L. E. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277 (2004).
CAS PubMed Article Google Scholar
17.
Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
ADS CAS PubMed PubMed Central Article Google Scholar
18.
Liu, L. & Greaver, T. L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117 (2009).
CAS PubMed Article Google Scholar
19.
Fowler, D., Coyle, M., Skiba, U., Sutton, M. A. & Voss, M. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B. 368, 20130164 (2013).
Article CAS Google Scholar
20.
Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).
ADS CAS Article Google Scholar
21.
Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).
ADS CAS Article Google Scholar
22.
Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).
ADS CAS PubMed Article Google Scholar
23.
Li, Q. et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest. Agric. For. Meteorol. 268, 48–54 (2019).
ADS Article Google Scholar
24.
Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341, 314–316 (1989).
ADS Article Google Scholar
25.
Hütsch, B. W., Webster, C. P. & Powlson, D. S. Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biol. Biochem. 26, 1613–1622 (1994).
Article Google Scholar
26.
Bodelier, P. L. E., Roslev, P., Henckel, T. & Frenzel, P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403, 421–424 (2000).
ADS CAS PubMed Article Google Scholar
27.
Kruger, M. & Frenzel, P. Effects of N-fertilisation on CH4 oxidation and production, and consequences for CH4 emissions from microcosms and rice fields. Glob. Change Biol. 9, 773–784 (2003).
ADS Article Google Scholar
28.
Delgado, J. A. & Mosier, A. R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. J. Environ. Qual. 25, 1105–1111 (1996).
CAS Article Google Scholar
29.
Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob. Change Biol. 17, 2196–2210 (2011).
ADS Article Google Scholar
30.
Cai, Z. et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196, 7–14 (1997).
CAS Article Google Scholar
31.
Malghani, S., Reim, A., Fischer, J. V., Conrad, R. & Trumbore, S. E. Soil methanotroph abundance and community composition are not influenced by substrate availability in laboratory incubations. Soil Biol. Biochem. 101, 184–194 (2016).
CAS Article Google Scholar
32.
Schnyder, E., Bodelier, P. L. E., Hartmann, M., Henneberger, R. & Niklaus, P. A. Positive diversity-functioning relationships in model communities of methanotrophic bacteria. Ecology 99, 714–723 (2018).
PubMed Article Google Scholar
33.
Wang, C., Liu, D. & Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120, 126–133 (2018).
CAS Article Google Scholar
34.
Shrestha, M., Shrestha, P. M., Frenzel, P. & Conrad, R. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. ISME J. 4, 1545–1556 (2010).
CAS PubMed Article Google Scholar
35.
Liu, H. et al. Responses of soil methanogens, methanotrophs, and methane fluxes to land-use conversion and fertilization in a hilly red soil region of southern China. Environ. Sci. Pollut. Res. 24, 8731–8743 (2017).
CAS Article Google Scholar
36.
Bao, Q., Ding, L. J., Huang, Y. & Xiao, K. Effect of rice straw and/or nitrogen fertiliser inputs on methanogenic archaeal and denitrifying communities in a typical rice paddy soil. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 375–386 (2019).
CAS Google Scholar
37.
Ho, A. et al. The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J. 8, 1945–1948 (2014).
PubMed PubMed Central Article Google Scholar
38.
Dan, H. et al. The response of methanotrophs to additions of either ammonium, nitrate or urea in alpine swamp meadow soil as revealed by stable isotope probing. FEMS Microbiol. Ecol. 7, fiz077 (2019).
Google Scholar
39.
Zhang, D., Mo, L., Chen, X., Zhang, L. & Xu, X. Effect of nitrogen addition on methanotrophs in temperate forest soil. Acta Ecol. Sin. 37, 8254–8263 (2017).
Google Scholar
40.
Mohanty, S. R., Bodelier, P. L. E., Floris, V. & Conrad, R. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl. Environ. Microbiol. 72, 1346–1354 (2006).
CAS PubMed PubMed Central Article Google Scholar
41.
Hu, A. & Lu, Y. The differential effects of ammonium and nitrate on methanotrophs in rice field soil. Soil Biol. Biochem. 85, 31–38 (2015).
CAS Article Google Scholar
42.
Shrestha, P. M. et al. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. ISME J. 6, 1115–1126 (2012).
CAS PubMed Article Google Scholar
43.
Jang, I., Lee, S., Zoh, K. D. & Kang, H. Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biol. Biochem. 43, 620–627 (2011).
CAS Article Google Scholar
44.
Song, X., Chen, X., Zhou, G., Jiang, H. & Peng, C. Observed high and persistent carbon uptake by Moso bamboo forests and its response to environmental drivers. Agric. For. Meteorol. 247, 467–475 (2017).
ADS Article Google Scholar
45.
Song, X. et al. Carbon sequestration by Chinese bamboo forests, and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).
CAS Article Google Scholar
46.
Jia, Y. et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 4, 3763 (2014).
PubMed PubMed Central Article CAS Google Scholar
47.
Song, X., Zhou, G., Gu, H. & Qi, L. Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest. Plant Soil 395, 391–400 (2015).
CAS Article Google Scholar
48.
Mo, J., Fang, Y., Xu, G., Li, D. & Xue, J. The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China. Acta Ecol. Sin. 25, 682–690 (2005).
CAS Google Scholar
49.
Zhang, W. et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China. J. Geophys. Res. 113, D11116 (2008).
ADS Article CAS Google Scholar
50.
Song, X. et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci. Adv. 6, eaaw5790 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
51.
Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).
CAS PubMed PubMed Central Article Google Scholar
52.
Wang, M., Xu, X., Wang, W., Wang, G. & Su, C. Effects of slag and biochar amendments on methanogenic community structures in paddy fields. Acta Ecol. Sin. 38, 2816–2818 (2018).
Article Google Scholar
53.
Zeikus, J. G. Biology of methanogenic bacteria. Bacteriol. Rev. 41, 514–541 (1977).
CAS PubMed PubMed Central Article Google Scholar
54.
Täumer, J. et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob. Change Biol. 27, 929–940 (2021).
55.
Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A. K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20(3), 1016–1029 (2018).
CAS PubMed PubMed Central Article Google Scholar
56.
Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 487 (2015).
Article Google Scholar
57.
Deng, Y. et al. Upland soil cluster gamma dominates methanotrophic communities in upland grassland soils. Sci. Total Environ. 670, 826–836 (2019).
ADS CAS PubMed Article Google Scholar
58.
Henckel, T., Friedrich, M. & Conrad, R. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl. Environ. Microbiol. 65, 1980–1990 (1999).
CAS PubMed PubMed Central Article Google Scholar
59.
Lieberman, R. L. & Rosenzweig, A. C. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39, 147–164 (2004).
CAS PubMed Article Google Scholar
60.
Freitag, T. E. & Prosser, J. I. Correlation of methane production and functional gene transcriptional activity in a peat soil. Appl. Environ. Microbiol. 75, 6679–6687 (2009).
CAS PubMed PubMed Central Article Google Scholar
61.
Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson prize lecture. Microbiology 144, 2377–2406 (1998).
CAS PubMed Article Google Scholar
62.
Schnell, S. & King, G. M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl. Environ. Microbiol. 60, 3514–3521 (1994).
CAS PubMed PubMed Central Article Google Scholar
63.
Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
MathSciNet Google Scholar
64.
Shannon, C. E. A. mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
MathSciNet MATH Article Google Scholar
65.
Li, Q. et al. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo (Phyllostachys edulis) plantations under simulated nitrogen deposition. Environ. Res. Lett. 13, 044029 (2018).
ADS Article CAS Google Scholar
66.
Li, Q., Song, X., Gu, H. & Gao, F. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations. Sci. Rep. 6, 28235 (2016).
ADS PubMed PubMed Central Article Google Scholar
67.
Frey, S. D., Knorr, M., Parrent, J. L. & Simpson, R. T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196, 159–171 (2004).
Article Google Scholar
68.
Lin, Y. et al. Long-term application of lime or pig manure rather than plant residues suppressed diazotroph abundance and diversity and altered community structure in an acidic ultisol. Soil Biol. Biochem. 123, 218–228 (2018).
CAS Article Google Scholar
69.
Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).
PubMed Article Google Scholar
70.
Zhou, X., Guo, Z., Chen, C. & Jia, Z. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations. Biogeosciences 14, 2101–2111 (2017).
ADS CAS Article Google Scholar
71.
Nicol, G. W., Leininger, S., Schleper, C. & Prosser, J. I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10, 2966–2978 (2008).
CAS PubMed Article Google Scholar
72.
Vitousek, P. M. et al. Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737 (1997).
Google Scholar
73.
Treseder, K. K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).
PubMed Article Google Scholar
74.
Serna-Chavez, H. M. & Bodegom, P. M. V. Global drivers and patterns of microbial abundance in soil. Glob. Ecol. Biogeogr. 22, 1162–1172 (2013).
Article Google Scholar
75.
Rosso, L., Lobry, J. R., Bajard, S. & Flandrois, J. P. Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol. 61, 610–616 (1995).
CAS PubMed PubMed Central Article Google Scholar
76.
Högberg, M. N., Högberg, P. & Myrold, D. D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three?. Oecologia 150, 590–601 (2007).
ADS PubMed Article Google Scholar
77.
Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).
Google Scholar
78.
Kolb, S. The quest for atmospheric methane oxidizers in forest soils. Environ. Microbiol. Rep. 1, 336–346 (2009).
CAS PubMed Article Google Scholar
79.
Topp, E. & Pettey, E. Soils as sources and sinks for atmospheric methane. Can. J. Soil Sci. 77, 167–177 (1997).
CAS Article Google Scholar
80.
Bender, M. & Conrad, R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol. Biochem. 27, 1517–1527 (1995).
CAS Article Google Scholar
81.
Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7(8), 1150–1161 (2005).
CAS PubMed Article Google Scholar
82.
Degelmann, D. M., Borken, W., Drake, H. L. & Kolb, S. Different atmospheric methane-oxidizing communities in European Beech and Norway Spruce Soils. Appl. Environ. Microbiol. 76(10), 3228–3235 (2010).
CAS PubMed PubMed Central Article Google Scholar
83.
Li, S., Yu, Y. & He, S. Summary of research on dissolved organic carbon (DOC). Soil Environ. Sci. 11, 422–429 (2002).
Google Scholar
84.
Zhang, R. et al. Nitrogen deposition enhances photosynthesis in Moso bamboo but increases susceptibility to other stress factors. Front. Plant Sci. 8, 1975 (2017).
PubMed PubMed Central Article Google Scholar
85.
Wan, X. et al. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 387, 103–116 (2015).
CAS Article Google Scholar
86.
Demoling, F., Figueroa, D. & Bååth, E. Comparison of factors limiting bacterial growth in different soils. Soil Biol. Biochem. 39, 485–2495 (2007).
Article CAS Google Scholar
87.
Aronson, E. L. & Helliker, B. R. Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology 91, 3242–3251 (2010).
CAS Article Google Scholar
88.
Cheng, S. et al. The primary factors controlling methane uptake from forest soils and their responses to increased atmospheric nitrogen deposition: a review. Acta Ecol. Sin. 32, 4914–4923 (2012).
ADS CAS Article Google Scholar
89.
Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017 (2012).
CAS PubMed Article Google Scholar
90.
Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).
ADS Article Google Scholar
91.
Song, X., Li, Q. & Gu, H. Effect of nitrogen deposition and management practices on fine root decomposition in Moso bamboo plantations. Plant Soil 410, 207–215 (2017).
CAS Article Google Scholar
92.
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
CAS Article Google Scholar
93.
Li, Y. et al. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol. Biochem. 122, 173–185 (2018).
CAS Article Google Scholar
94.
Lu, R. Methods for Soil Agro-chemistry Analysis (China Agricultural Science and Technology Press, Beijing, 2000).
Google Scholar
95.
Bourne, D. G., Mcdonald, I. R. & Murrell, J. C. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl. Environ. Microbiol. 67, 3802 (2001).
CAS PubMed PubMed Central Article Google Scholar
96.
Angel, R., Claus, P. & Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 6, 847–862 (2011).
PubMed PubMed Central Article CAS Google Scholar
97.
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
CAS PubMed PubMed Central Article Google Scholar
98.
Wang, Q. et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4, e00592-e613 (2013).
PubMed PubMed Central Google Scholar
99.
Kou, Y. et al. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils. Soil Biol. Biochem. 111, 104–114 (2017).
CAS Article Google Scholar
100.
Kou, Y. et al. Climate and soil parameters are more important than denitrifier abundances in controlling potential denitrification rates in Chinese grassland soils. Sci. Total Environ. 669, 62–69 (2019).
ADS CAS PubMed Article Google Scholar
101.
Wei, H. et al. Contrasting soil bacterial community, diversity, and function in two forests in China. Front. Microbiol. 9, 1693 (2018).
PubMed PubMed Central Article Google Scholar
102.
Liu, W. et al. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology 101, e03053 (2020).
PubMed Google Scholar
103.
Tang, X., Liu, S., Zhou, G., Zhang, D. & Zhou, C. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Glob. Change Biol. 12, 546–560 (2006).
ADS Article Google Scholar More