More stories

  • in

    Exploration for olive fruit fly parasitoids across Africa reveals regional distributions and dominance of closely associated parasitoids

    1.Wolfe, L. M. Why alien invaders succeed: Support for the escape-from-enemy hypothesis. Am. Nat. 160, 705–711. https://doi.org/10.1086/343872 (2002).Article 
    PubMed 

    Google Scholar 
    2.Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135. https://doi.org/10.1016/j.tree.2005.10.012 (2006).Article 
    PubMed 

    Google Scholar 
    3.Van Driesche, R. G. et al. Classical biological control for the protection of natural ecosystems. Biol. Control 54, S2–S33. https://doi.org/10.1016/j.biocontrol.2010.03.003 (2010).Article 

    Google Scholar 
    4.Hajek, A. E. et al. Exotic biological control agents: A solution or contribution to arthropod invasions?. Biol. Invasions 18, 953–969. https://doi.org/10.1007/s10530-016-1075-8 (2016).Article 

    Google Scholar 
    5.Schwarzlander, M., Hinz, H. L., Winston, R. L. & Day, M. D. Biological control of weeds: An analysis of introductions, rates of establishment and estimates of success, worldwide. Biocontrol 63, 319–331. https://doi.org/10.1007/s10526-018-9890-8 (2018).Article 

    Google Scholar 
    6.Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645. https://doi.org/10.1146/annurev-ento-010814-021005 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Hoddle, M. S., Lake, E. C., Minteer, C. R. & Daane, K. M. In Biological Control: A Global Initiative (eds Mason, P. G. & Dennis, N.) 69–92 (CSIRO Publishing, 2021).
    Google Scholar 
    8.Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. Biocontrol 63, 27–37. https://doi.org/10.1007/s10526-017-9841-9 (2018).Article 

    Google Scholar 
    9.Hoelmer, K. A. & Kirk, A. A. Selecting arthropod biological control agents against arthropod pests: Can the science be improved to decrease the risk of releasing ineffective agents?. Biol. Control 34, 255–264 (2005).Article 

    Google Scholar 
    10.Wang, X. G., Johnson, M. W., Daane, K. M. & Yokoyama, V. Y. Larger olive fruit size reduces the efficiency of Psyttalia concolor, as a parasitoid of the olive fruit fly. Biol. Control 49, 45–51. https://doi.org/10.1016/j.biocontrol.2009.01.004 (2009).Article 

    Google Scholar 
    11.Wang, X.-G., Levy, K., Son, Y., Johnson, M. W. & Daane, K. M. Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids. Biol. Control 60, 247–254. https://doi.org/10.1016/j.biocontrol.2011.11.012 (2012).Article 

    Google Scholar 
    12.Wharton, R. A. In Fruit flies: Their Biology, Natural Enemies and Control (eds Robinson, A. S. & Hooper, G.) 303–313 (Elsevier, 1989).
    Google Scholar 
    13.Purcell, M. F. Contribution of biological control to integrated pest management of tephritid fruit flies in the tropics and subtropics. Integr. Pest Manag. Rev. 3, 63–83 (1998).Article 

    Google Scholar 
    14.Ovruski, S. M., Aluja, M., Sivinski, J. & Wharton, R. A. Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin America and the southern United States: Diversity, distribution, taxonomic status and their use in fruit fly biological control. Integr. Pest Manag. Rev. 5, 81–107 (2000).Article 

    Google Scholar 
    15.Mohamed, S. A., Ramadan, M. M. & Ekesi, S. In Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture (eds Ekesi, S. et al.) 325–368 (Springer International Publishing, 2006).
    Google Scholar 
    16.Garcia, F. R. M., Ovruski, S. M., Suarez, L., Cancino, J. & Liburd, O. E. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects https://doi.org/10.3390/insects11100662 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Wharton, R. A. & Yoder, M. J. Wharton RA, Yoder MJ. 2017. Parasitoids of fruit-infesting tephritidae. http://paroffit.org. Accessed on November 15, 2020. (2017).18.Daane, K. M. & Johnson, M. W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 55, 155–169. https://doi.org/10.1146/annurev.ento.54.110807.090553 (2010).CAS 
    Article 

    Google Scholar 
    19.Tzanakakis, M. E. Seasonal development and dormancy of insects and mites feeding on olive: A review. Neth. J. Zool. 52, 87–224 (2003).Article 

    Google Scholar 
    20.Green, P. S. A revision of Olea L. (Oleaceae). Kew Bull. 57, 91–140 (2002).Article 

    Google Scholar 
    21.Bon, M. C. et al. Populations of Bactrocera oleae (Diptera: Tephritidae) and its parasitoids in Himalayan Asia. Ann. Entomol. Soc. Am. 109, 81–91. https://doi.org/10.1093/aesa/sav114 (2016).Article 

    Google Scholar 
    22.Zygouridis, N. E., Augustinos, A. A., Zalom, F. G. & Mathiopoulos, K. D. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102, 402–412 (2009).CAS 
    Article 

    Google Scholar 
    23.Augustinos, A. A. et al. Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica 125, 231–241 (2005).CAS 
    Article 

    Google Scholar 
    24.Nardi, F. et al. Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Mol. Phylogenet. Evol. 57, 678–686. https://doi.org/10.1016/j.ympev.2010.08.008 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Neuenschwander, P., Bigler, F., Delucchi, V. & Michelakis, S. E. Natural enemies of preimaginal stages of Dacus oleae Gmel. (Dipt., Tephritidae) in Western Crete. I. Bionomics and phenologies. Boll Lab. Entomol Agrar Filippo Silvestri 40, 3–32 (1983).
    Google Scholar 
    26.Boccaccio, L. & Petacchi, R. Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. Biocontrol 54, 607–616. https://doi.org/10.1007/s10526-009-9214-0 (2009).Article 

    Google Scholar 
    27.Borowiec, N. et al. Diversity and geographic distribution of the indigenous and exotic parasitoids of the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) Southern France. IOBC/WPRS Bull. 79, 71–78 (2012).
    Google Scholar 
    28.Al Khatib, F. et al. An integrative approach to species discrimination in the Eupelmus urozonus complex (Hymenoptera, Eupelmidae), with the description of 11 new species from the Western Palaearctic. Syst. Entomol. 39, 806–862. https://doi.org/10.1111/syen.12089 (2014).Article 

    Google Scholar 
    29.Kapaun, T., Nadel, H., Headrick, D. & Vredevoe, L. Biology and parasitism rates of Pteromalus nr. myopitae (Hymenoptera: Pteromalidae), a newly discovered parasitoid of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in coastal California. Biol. Control 53, 76–85. https://doi.org/10.1016/j.biocontrol.2009.11.002 (2010).Article 

    Google Scholar 
    30.Silvestri, F. Report on an expedition to Africa in search of natural enemies of fruit flies (Trupaneidae) with descriptions, observations and biological notes. Hawaii Board Agric. For. Div. Entomol. Bull. 3, 1–146 (1914).
    Google Scholar 
    31.Hoelmer, K. A., Kirk, A. A., Pickett, C. H., Daane, K. M. & Johnson, M. W. Prospects for improving biological control of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), with introduced parasitoids (Hymenoptera). Biocontrol Sci. Technol. 21, 1005–1025. https://doi.org/10.1080/09583157.2011.594951 (2011).Article 

    Google Scholar 
    32.Greathead, D. J. & Greathead, A. H. Biological control of insect pests by insect parasitoids and predators: The BIOCAT database. Biocontrol News Inf. 13, 61N-68N (1992).
    Google Scholar 
    33.Neuenschwander, P. Searching parasitoids of Dacus oleae (Gmel) (Dipt., Tephritidae) in South Africa. J. Appl. Entomol. 94, 509–522 (1982).
    Google Scholar 
    34.Loni, A. Developmental rate of Opius concolor (Hym.: Braconidae) at various constant temperatures. Entomophaga 42, 359–366 (1997).Article 

    Google Scholar 
    35.Miranda, M. A., Miquel, M., Terrassa, J., Melis, N. & Monerris, M. Parasitism of Bactrocera oleae (Diptera, Tephritidae) by Psyttalia concolor (Hymenoptera, Braconidae) in the Balearic Islands (Spain). J. Appl. Entomol. 132, 798–805 (2008).Article 

    Google Scholar 
    36.Muller, F. A., Dias, N. P., Gottschalk, M. S., Garcia, F. R. M. & Nava, D. E. Potential distribution of Bactrocera oleae and the parasitoids Fopius arisanus and Psyttalia concolor, aiming at classical biological control. Biol. Control 132, 144–151. https://doi.org/10.1016/j.biocontrol.2019.02.014 (2019).Article 

    Google Scholar 
    37.Chardonnet, F., Blanchet, A., Hurtrel, B., Marini, F. & Smith, L. Mass-rearing optimization of the parasitoid Psyttalia lounsburyi for biological control of the olive fruit fly. J. Appl. Entomol. 143, 277–288. https://doi.org/10.1111/jen.12573 (2019).Article 

    Google Scholar 
    38.La-Spina, M. et al. Effect of exposure time on mass-rearing production of the olive fruit fly parasitoid, Psyttalia lounsburyi (Hymenoptera: Braconidae). J. Appl. Entomol. 142, 319–326. https://doi.org/10.1111/jen.12478 (2018).CAS 
    Article 

    Google Scholar 
    39.Malausa, J. C. et al. Introductions of the African parasitoid Psyttalia lounsburyi in South of France for classical biological control of Bactrocera oleae. IOBC/WPRS Bull. 59, 163–170 (2010).
    Google Scholar 
    40.Daane, K. M. et al. Classic biological control of olive fruit fly in California, USA: Release and recovery of introduced parasitoids. Biocontrol 60, 317–330. https://doi.org/10.1007/s10526-015-9652-9 (2015).Article 

    Google Scholar 
    41.Wharton, R. A. & Gilstrap, F. Key to and status of opiine braconid (Hymenoptera) parasitoids used in biological control of Ceratitis and Dacus s.l. (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 76, 721–742 (1983).Article 

    Google Scholar 
    42.Sime, K. R. et al. Psyttalia ponerophaga (Hymenoptera: Braconidae) as a potential biological control agent of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California. Bull. Entomol. Res. 97, 233–242. https://doi.org/10.1017/S0007485307004865 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Sime, K. R. et al. The biology of Bracon celer as a parasitoid of the olive fruit fly. Biocontrol 51, 553–567. https://doi.org/10.1007/s10526-005-6079-8 (2006).Article 

    Google Scholar 
    44.Sime, K. R. et al. Diachasmimorpha longicaudata and D. kraussii (Hymenoptera: Braconidae), potential parasitoids of the olive fruit fly. Biocontrol Sci. Technol. 16, 169–179. https://doi.org/10.1080/09583150500188445 (2006).Article 

    Google Scholar 
    45.Sime, K. R., Daane, K. M., Messing, R. H. & Johnson, M. W. Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera: Braconidae), as a parasitoid of the olive fruit fly. Biol. Control 39, 248–255. https://doi.org/10.1016/j.biocontrol.2006.06.007 (2006).Article 

    Google Scholar 
    46.Mkize, N., Hoelmer, K. A. & Villet, M. H. A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea ssp cuspidata, in the Eastern Cape of South Africa. Biocontrol Sci. Technol. 18, 991–1004 (2008).Article 

    Google Scholar 
    47.Sime, K. R., Daane, K. M., Wang, X.-G., Johnson, M. W. & Messing, R. H. Evaluation of Fopius arisanus as a biological control agent for the olive fruit fly in California. Agric. For. Entomol. 10, 423–431. https://doi.org/10.1111/j.1461-9563.2008.00401.x (2008).Article 

    Google Scholar 
    48.Wang, X. G. & Messing, R. H. Potential interactions between pupal and egg- or larval-pupal parasitoids of tephritid fruit flies. Environ. Entomol. 33, 1313–1320. https://doi.org/10.1603/0046-225x-33.5.1313 (2004).Article 

    Google Scholar 
    49.Wang, X. G. & Messing, R. H. The ectoparasitic pupal parasitoid, Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), attacks other primary tephritid fruit fly parasitoids: Host expansion and potential non-target impact. Biol. Control 31, 227–236 (2004).Article 

    Google Scholar 
    50.Wang, X.-G., Johnson, M. W., Yokoyama, V. Y., Pickett, C. H. & Daane, K. M. Comparative evaluation of two olive fruit fly parasitoids under varying abiotic conditions. Biocontrol 56, 283–293. https://doi.org/10.1007/s10526-010-9332-8 (2011).CAS 
    Article 

    Google Scholar 
    51.Daane, K. M. et al. Biological control of the olive fruit fly in California. Calif. Agric. 65, 21–28 (2011).Article 

    Google Scholar 
    52.Wang, X. G. et al. Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic Appl. Ecol. 10, 216–227. https://doi.org/10.1016/j.baae.2008.06.003 (2009).Article 

    Google Scholar 
    53.Nadel, H., Daane, K. M., Hoelmer, K. A., Pickett, C. H. & Johnson, M. W. Non-target host risk assessment of the idiobiont parasitoid, Bracon celer (Hymenoptera: Braconidae), for biological control of olive fruit fly in California. Biocontrol Sci. Technol. 19, 701–715. https://doi.org/10.1080/09583150902974384 (2009).Article 

    Google Scholar 
    54.Wharton, R. A. et al. Parasitoids of medfly, Ceratitis capitata, and related tephritids in Kenyan coffee: A predominantly koinobiont assemblage. Bull. Entomol. Res. 90, 517–526 (2000).CAS 
    Article 

    Google Scholar 
    55.Kimani-Njogu, S. W., Trostle, M. K., Wharton, R. A., Woolley, J. B. & Raspi, A. Biosystematics of the Psyttalia concolor species complex (Hymenoptera: Braconidae: Opiinae): the identity of populations attacking Ceratitis capitata (Diptera: Tephritidae) in coffee in Kenya. Biol. Control 20, 167–174 (2001).Article 

    Google Scholar 
    56.Rugman-Jones, P. F., Wharton, R., van Noort, T. & Stouthamer, R. Molecular differentiation of the Psyttalia concolor (Szépligeti) species complex (Hymenoptera: Braconidae) associated with olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), Africa. Biol. Control 49, 17–26. https://doi.org/10.1016/j.biocontrol.2008.12.005 (2009).CAS 
    Article 

    Google Scholar 
    57.Billah, M. K. et al. Cross mating studies among five fruit fly parasitoid populations: Potential biological control implications for tephritid pests. Biocontrol 53, 709–724 (2008).Article 

    Google Scholar 
    58.Narayanan, E. S. & Chawla, S. S. Parasites of fruit fly pests of the world. Beitrage zur Entomologie 12, 437–476 (1962).
    Google Scholar 
    59.Neuenschwander, P. Searching parasitoids of Dacus oleae in South Africa. Zeitschrift fur Angewandte Entomologie 94, 509–522 (1982).Article 

    Google Scholar 
    60.Daane, K. M. et al. Psyttalia lounsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California. Biol. Control 44, 78–89. https://doi.org/10.1016/j.biocontrol.2007.08.010 (2008).Article 

    Google Scholar 
    61.Benelli, G. et al. Behavioral and electrophysiological responses of the parasitic wasp Psyttalia concolor (Szepligeti) (Hymenoptera: Braconidae) to Ceratitis capitata-induced fruit volatiles. Biol. Control 64, 116–124. https://doi.org/10.1016/j.biocontrol.2012.10.010 (2013).CAS 
    Article 

    Google Scholar 
    62.Raspi, A. & Loni, A. Alcune note sull’allevamento massale di Opius concolor Szépligeti (Hym.: Braconidae) e su recnti tentative d’introduzione della specie in Toscana e Liguria. Frustula Entomol. 30, 135–145 (1994).
    Google Scholar 
    63.Johnson, M. W. et al. High temperature impacts olive fruit fly population dynamics in California’s Central Valley. Calif. Agric. 65, 29–33 (2011).Article 

    Google Scholar 
    64.Yokoyama, V. Y. et al. Performance of Psyttalia humilis (Hymenoptera: Braconidae) reared from irradiated host on olive fruit fly (Diptera: Tephritidae) in California. Environ. Entomol. 41, 497–507. https://doi.org/10.1603/en11252 (2012).Article 
    PubMed 

    Google Scholar 
    65.Yokoyama, V. Y. et al. Response of Psyttalia cf. concolor to olive fruit fly (Diptera: Tephritidae), high temperature, food, and bait sprays in California. Environ. Entomol. 40, 315–323 (2010).Article 

    Google Scholar 
    66.Yokoyama, V. Y. et al. Field performance and fitness of an olive fruit fly parasitoid, Psyttalia humilis (Hymenoptera: Braconidae), mass reared on irradiated Medfly. Biol. Control 54, 90–99. https://doi.org/10.1016/j.biocontrol.2010.04.008 (2010).Article 

    Google Scholar 
    67.Wang, X. G. et al. Overwintering survival of olive fruit Fly (Diptera: Tephritidae) and two introduced parasitoids in California. Environ. Entomol. 42, 467–476. https://doi.org/10.1603/en12299 (2013).Article 
    PubMed 

    Google Scholar 
    68.Daane, K. M., Wang, X. G., Johnson, M. W. & Cooper, M. L. Low temperature storage effects on two olive fruit fly parasitoids. Biocontrol 58, 175–185. https://doi.org/10.1007/s10526-012-9481-z (2013).CAS 
    Article 

    Google Scholar 
    69.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed 20 Dec 2020); https://www.r-project.org/index.htm (2020). More

  • in

    Ocean protection needs a spirit of compromise

    Coral reef shoals in the south Pacific, part of which is a marine protected area.Credit: Pete Niesen/Alamy

    After a year of pandemic-induced delays, 2021 is set to be a big year for biodiversity, climate and the ocean. Later this year, world leaders are expected to gather for meetings of the United Nations conventions on biological diversity and climate to set future agendas. Ocean policies will be a priority for both.Momentum is building for what is called the 30 × 30 campaign — a goal to protect 30% of the planet (both land and sea) by 2030. Last December, the 30% ocean goal was backed by the High Level Panel for a Sustainable Ocean Economy, which comprises the heads of state of 14 coastal nations, including some of the largest countries, such as Indonesia, and the smallest, like Palau. This is an important step.But this target is ambitious. At present, 15% of terrestrial surfaces are classed as protected, and only about 7% of the oceans have been designated or proposed as marine protected areas — so named because, within them, fishing and other industrial activities are prohibited or restricted. Just 2.6% of the oceans are either fully or highly protected. Although these numbers have been improving, they are behind schedule — a previous global target was to protect 17% of land and 10% of the oceans by 2020.Achieving the ocean’s full potential for helping humanity will require genuinely sustainable fishing practices, investments in renewable technologies such as offshore wind farms, and zero-emissions shipping. Carbon-hungry seagrasses and mangroves must also be restored. But efforts to achieve these goals inevitably create conflicts, because governments, the conservation community and industry tend to have different priorities. Such disagreements are impeding progress.
    Read the paper: Protecting the global ocean for biodiversity, food and climate
    Research published in Nature this week could help to resolve some of these tensions when establishing protected areas. Conservationist and National Geographic explorer-in-residence Enric Sala and his colleagues present a model showing how the ocean could be protected in a way that optimizes both environmental and fishing-industry benefits1. This model needs to be studied carefully as talks progress, because it could help nations to see where compromises are possible.The researchers assessed data on the distribution of ocean biodiversity (taking in 4,242 species); 1,150 commercially exploited seafood stocks; and carbon in marine sediments. They used these data to model the spaces where marine protected areas could be situated to achieve particular outcomes across three main goals. For example, a plan that protects 71% of the ocean could yield 91% of the maximum biodiversity benefits and 48% of the carbon benefits, but with no change to existing fisheries catches. In another scenario, 28% of the ocean could be protected to obtain a maximum increase in seafood catches while securing 35% of the maximum biodiversity benefits and 27% of the maximum carbon benefits.The model makes it clear that achieving the best outcome on all three goals will require give and take. Nations and stakeholder groups will need to weigh up each goal. That will be hard, but necessary; some countries will have to give a little of their profitable fisheries, for example. And under this model, nations will need to commit to reducing bottom trawling, a fishing practice that stirs up carbon-rich sediments on the sea floor, potentially releasing that carbon. According to one estimate2, the impact of this process on the ocean’s carbon-storage capacity is greater than that of other problems that receive more attention, such as the loss of biological carbon storage when mangroves are cleared.
    Read the paper: Enabling conditions for an equitable and sustainable blue economy
    Countries must also pay attention to equity and access, and ensure that decisions to create protected areas are made in consultation with affected and often vulnerable communities. December’s high-level panel report estimates that the economic opportunities provided by marine genetic resources, ecotourism, fisheries, renewable energy and carbon credits could reel in a net benefit of US$15.5 trillion by 2050. But, as Andrés Cisneros-Montemayor at the University of British Columbia in Vancouver, Canada, and his colleagues point out in this issue3, many coastal nations lack access to the infrastructure or governance needed to promote what is called a ‘sustainable blue economy’. As might be expected, some nations aren’t equipped to ensure that, say, their local fish stocks are protected from being used in farm feed; or that construction of new ports doesn’t unreasonably affect local communities or ecosystems.At present, most of the ocean economy isn’t exactly blue. A study of the 100 largest companies in the ocean economy (which together account for 60% of around US$2 trillion in annual revenue) showed that the majority profit from oil and gas. Even Norway, which co-chaired the high-level panel, recently announced 61 new offshore oil and gas licences, as well as its intention to grant sea-bed mining licences as early as 2023. Such moves are disappointing. Green groups and researchers must continue to put pressure on countries to live up to their promises.World leaders at the upcoming biodiversity and climate meetings have a big task. Expanding the blue economy is difficult given the economic consequences of protecting more of the ocean. But there is now not only momentum in this direction, but also research to show that it can be done. If humanity looks after the ocean, it will look after us. More

  • in

    Social networks strongly predict the gut microbiota of wild mice

    1.Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Monachese M, Burton JP, Reid G. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics?. Appl Environ Microbiol. 2012;78:6397–404.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Chevalier C, Stojanovi O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163:1360–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL, Martens EC, et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 2012;336:1325–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Zhang N, He Q-S. Commensal microbiome promotes resistance to local and systemic infections. Chin Med J. 2015;128:2250–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016;535:75–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci USA. 2012;109:8334–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immuno l. 2019;195:74–85.Article 
    CAS 

    Google Scholar 
    11.Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336:1255–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.PubMed 
    Article 

    Google Scholar 
    13.Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lane AA, McGuire MK, McGuire MA, Williams JE, Lackey KA, Hagen EH, et al. Household composition and the infant fecal microbiome: the INSPIRE study. Am J Phys Anthropol. 2019;169:526–39.PubMed 
    Article 

    Google Scholar 
    15.Lehtimäki J, Karkman A, Laatikainen T, Paalanen L, von Hertzen L, Haahtela T, et al. Patterns in the skin microbiota differ in children and teenagers between rural and urban environments. Sci Rep. 2017;7:45651.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Tamburini S, Shen N, Wu H, medicine JC-N. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22:713–22.CAS 
    Article 

    Google Scholar 
    17.Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Ottman N, Ruokolainen L, Suomalainen A, Sinkko H, Karisola P, Lehtimäki J, et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J Allergy Clin Immunol. 2019;143:1198–206.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Grieneisen LE, Charpentier MJE, Alberts SC, Blekhman R, Bradburd G, Tung J, et al. Genes, geology and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc R Soc B Biol Sci. 2019;286:20190431.Article 

    Google Scholar 
    21.Sarkar A, Harty S, Johnson KV-A, Moeller AH, Archie EA, Schell LD, et al. Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol. 2020;4:1020–35.PubMed 
    Article 

    Google Scholar 
    22.Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science. 2018;362:453–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Hufeldt MR, Nielsen DS, Vogensen FK, Midtvedt T, Hansen AK. Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp Med. 2010;60:336–47.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Hildebrand F, Nguyen TLA, Brinkman B, Yunta R, Cauwe B, Vandenabeele P, et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 2013;14:R4.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Lees H, Swann J, Poucher SM, Nicholson JK, Holmes E, Wilson ID, et al. Age and microenvironment outweigh genetic influence on the Zucker rat microbiome. PloS One. 2014;9:e100916.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Tung J, Barreiro LB, Burns MB, Grenier JC, Lynch J, Grieneisen LE, et al. Social networks predict gut microbiome composition in wild baboons. Elife. 2015;4:e05224.PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    27.Raulo A, Ruokolainen L, Lane A, Amato K, Knight R, Leigh S, et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J Anim Ecol. 2018;87:388–99.PubMed 
    Article 

    Google Scholar 
    28.Perofsky AC, Lewis RJ, Abondano LA, Di Fiore A, Meyers LA. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc Biol Sci. 2017;284:20172274.PubMed 
    PubMed Central 

    Google Scholar 
    29.Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. Social behavior shapes the chimpanzee pan-microbiome. Sci Adv. 2016;2:e1500997.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Wikberg EC, Christie D, Sicotte P, Ting N. Interactions between social groups of colobus monkeys (Colobus vellerosus) explain similarities in their gut microbiomes. Anim Behav. 2020;163:17–31.Article 

    Google Scholar 
    31.Bennett G, Malone M, Sauther ML, Cuozzo FP, White B, Nelson KE, et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am J Primatol. 2016;78:883–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Theis KR, Schmidt TM, Holekamp KE. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep. 2012;2:615.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Leclaire S, Nielsen JF, Drea CM. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav Ecol. 2014;25:996–1004.Article 

    Google Scholar 
    34.Antwis RE, Lea JMD, Unwin B, Shultz S. Gut microbiome composition is associated with spatial structuring and social interactions in semi-feral Welsh Mountain ponies. Microbiome. 2018;6:207.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013;2:e00458.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Grieneisen LE, Livermore J, Alberts S, Tung J, Archie EA. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr Comp Biol. 2017;57:770–85.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Dill-McFarland KA, Tang Z-Z, Kemis JH, Kerby RL, Chen G, Palloni A, et al. Close social relationships correlate with human gut microbiota composition. Sci Rep. 2019;9:703.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Wilson EO. Elementary concepts in sociobiology. In: Wilson EO, editors. Sociobiology: The New Synthesis. 25th ed. Cambridge, Massachutes, USA: Harvard University Press; 2000. p. 8.
    Google Scholar 
    39.Godsall B. Mechanisms of space use in the wood mouse, Apodemus sylvaticus. Doctoral Thesis, London: Imperial College; 2015.40.Wolton RJ. The ranging and nesting behaviour of Wood mice, Apodemus sylvaticus (Rodentia: Muridae), as revealed by radio-tracking. J Zool. 2009;206:203–22.Article 

    Google Scholar 
    41.Stopka P, Macdonald DW. The market effect in the Wood mouse, Apodemus sylvaticus: selling information on reproductive status. Ethology. 2001;105:969–82.42.Walton JB, Andrews JF. Torpor induced by food deprivation in the Wood mouse Apodemus sylvaticus. J Zool. 2009;194:260–3.Article 

    Google Scholar 
    43.Wolton RJ. A possible role for faeces in range-marking by the Wood mouse, Apodemus sylvaticus. J Zool. 2009;206:286–91.Article 

    Google Scholar 
    44.Wolton RJ. Individual recognition by olfaction in the Wood Mouse, Apodemus sylvaticus. Behaviour. 1984;88:191–9.Article 

    Google Scholar 
    45.Godsall B, Coulson T, Malo AF. From physiology to space use: energy reserves and androgenization explain home-range size variation in a woodland rodent. J Anim Ecol. 2014;83:126–35.PubMed 
    Article 

    Google Scholar 
    46.Wang J, Santure AW. Parentage and sibship inference from multilocus genotype data under polygamy. Genetics. 2009;181:1579–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Farine DR. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol Evol. 2013;4:1187–94.Article 

    Google Scholar 
    48.Csardi G, Nepusz T. The igraph software package for complex network research. Inter J Complex Syst. 2006;1695:1–9.
    Google Scholar 
    49.Firth JA, Sheldon BC. Social carry-over effects underpin trans-seasonally linked structure in a wild bird population. Ecol Lett. 2016;19:1324–32.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. Methods for normalizing microbiome data: an ecological perspective. Methods. Ecol Evol. 2019;10:389–400.
    Google Scholar 
    53.Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods. Ecol Evol. 2016;7:1451–6.
    Google Scholar 
    54.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MH, Oksanen MJ, et al. The vegan package. Community Ecol Package. 2007;10:719.
    Google Scholar 
    55.Bürkner PC. brms: an R package for Bayesian multilevel models using stan. J Stat Softw. 2017;80:1–28.Article 

    Google Scholar 
    56.Bürkner PC. Advanced Bayesian multilevel modeling with the R package brms. R J. 2018;10:395–411.Article 

    Google Scholar 
    57.Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw. 2010;33:1–22.Article 

    Google Scholar 
    58.Dekker D, Krackhardt D, Snijders TA. Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika. 2007;72:563–81.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Ormerod KL, Wood DLA, Lachner N, Gellatly SL, Daly JN, Parsons JD, et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome. 2016;4:36.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Wieczorek AS, Schmidt O, Chatzinotas A, von Bergen M, Gorissen A, Kolb S. Ecological functions of agricultural soil bacteria and microeukaryotes in chitin degradation: a case study. Front Microbiol. 2019;10:1293.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Huang X, Liu L, Zhao J, Zhang J, Cai Z. The families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae are the dominant bacterial groups during reductive soil disinfestation with incorporated plant residues. Appl Soil Ecol. 2019; 135:65–72.62.Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Tew TE, Macdonald DW. Dynamics of space use and male vigour amongst wood mice, Apodemus sylvaticus, in the cereal ecosystem. Behav Ecol Sociobiol. 1994;34:337–45.Article 

    Google Scholar 
    64.Erazo D, Pedersen AB, Gallagher K, Fenton A. Who acquires infection from whom? Estimating herpesvirus transmission rates between wild rodent host groups. 2020, https://www.biorxiv.org/content/10.1101/2020.09.18.302489v1.65.Taylor SE, Klein LC, Lewis BP, Gruenewald TL, Gurung RAR, Updegraff JA. Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychol Rev. 2000;107:411–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Amato KR, Van Belle S, Di Fiore A, Estrada A, Stumpf R, White B, et al. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Micro Ecol. 2017;74:250–8.Article 

    Google Scholar 
    67.Brito IL, Gurry T, Zhao S, Huang K, Young SK, Shea TP, et al. Transmission of human-associated microbiota along family and social networks. Nat Microbiol. 2019;4:964–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Johnson KV-A. Gut microbiome composition and diversity are related to human personality traits. Hum Microbiome J. 2020;15:100069.Article 

    Google Scholar 
    69.Levin II, Zonana DM, Fosdick BK, Song SJ, Knight R, Safran RJ. Stress response, gut microbial diversity and sexual signals correlate with social interactions. Biol Lett. 2016;12:20160352.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Mouquet N, Loreau M. Community patterns in source‐sink metacommunities. Am Nat. 2003;162:544–57.PubMed 
    Article 

    Google Scholar 
    71.Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, et al. Social organization and parasite risk in mammals: Integrating theory and empirical studies. Annu Rev Ecol Evol Syst. 2003;34:517–47.Article 

    Google Scholar 
    72.Loehle C. Social barriers to pathogen transmission in wild animal populations. Ecology. 1995;76:326–35.Article 

    Google Scholar 
    73.Moeller A, Dufva R, Allander K. Parasites and the evolution of host social behavior. Adv Study Behav. 1993;22:65–102.Article 

    Google Scholar 
    74.Reese AT, Dunn RR. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio. 2018;9:4.Article 

    Google Scholar 
    75.Shade A. Diversity is the question, not the answer. ISME J. 2017;11:1–6.PubMed 
    Article 

    Google Scholar 
    76.Pallen MJ. The human microbiome and host-pathogen interactions. In: Metagenomics of the human body. New York, NY: Springer; 2011; p 43–61.77.Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Micro Ecol. 2014;69:434–43.Article 
    CAS 

    Google Scholar 
    78.Barribeau SM, Villinger J, Waldman B. Ecological immunogenetics of life-history traits in a model amphibian. Biol Lett. 2012;8:405–7.PubMed 
    Article 

    Google Scholar 
    79.Feng T, Elson CO. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 2011;4:15–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Amato KR. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. Am J Phys Anthropol. 2016;159:196–215.Article 

    Google Scholar 
    81.Knowles SCL, Eccles RM, Baltrūnaitė L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22:826–37.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Detecting the effects of predator-induced stress on the global metabolism of an ungulate prey using fecal metabolomic fingerprinting

    1.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 

    Google Scholar 
    2.Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ritchie, E. G. et al. Ecosystem restoration with teeth: what role for predators?. Trends Ecol. Evol. 27(5), 265–271 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Terborgh, J. & Estes, J. A. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature (Island Press, 2010).
    Google Scholar 
    5.Creel, S. & Winnie, J. A. Responses of elk herd size to fine scale spatial and temporal variation in the risk of predation by wolves. Anim. Behav. 69, 1181–1189 (2005).Article 

    Google Scholar 
    6.Fischhoff, I. R., Sundaresan, S. R., Cordingley, J. & Rubenstein, D. I. Habitat use and movements of plains zebra (Equus burchelli) in response to predation danger from lions. Behav. Ecol. 18, 725–729 (2007).Article 

    Google Scholar 
    7.Latombe, G., Fortin, D. & Parrott, L. Spatio-temporal dynamics in the response of woodland caribou and moose to the passage of grey wolves. J. Anim. Ecol. 83, 185–198 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Prugh, L. R. et al. Designing studies of predation risk for improved inference in carnivore-ungulate systems. Biol. Conserv. 232, 194–207 (2019).Article 

    Google Scholar 
    9.Creel, S., Winnie, J. A. & Christianson, D. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. PNAS 106(30), 12388–12393 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Dulude-de Broin, F., Hamel, S., Mastromonaco, G. F. & Côté, S. D. Predation risk and mountain goat reproduction: evidence for stress-induced breeding suppression in a wild ungulate. Funct. Ecol. 34(5), 1003–1014 (2020).Article 

    Google Scholar 
    11.Moberg, G. P. & Mench, J. A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (CABI Publishing, 2000).
    Google Scholar 
    12.Boonstra, R. The ecology of stress: a marriage of disciplines. Funct. Ecol. 27, 7–10 (2013).Article 

    Google Scholar 
    13.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Kelley, K. W. Immunological consequences of changing environmental stimuli. In Animal Stress (ed. Moberg, G. P.) 193–223 (American Physiological Society, Bethesda, 1985).15.Mӧstl, E. & Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 23, 67–74 (2002).Article 

    Google Scholar 
    16.Ursin, H. & Eriksen, H. R. The cognitive activation theory of stress. Psychoneuroendocrinology 29(5), 567–592 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Lovallo, W. R. Individual differences in reactivity to stress. In Stress and Health. Biological and Psychological Interactions (ed. Lovallo, W. R.) 203–225 (Sage, 2016).18.Patchev, V. K. & Patchev, A. V. Experimental models of stress. Dialogues Clin. Neurosci. 8(4), 417–432 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Mills, J. L. Scientific Principles of Stress (University of the West Indie Press, 2012).
    Google Scholar 
    20.Henry, J. P. Biological basis of the stress response. Integr. Physiol. Behav. Sci. 27, 66–83 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Wu, Y., Patchev, A. V., Daniel, G., Almeida, O. F. X. & Spengler, D. Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology 155(5), 1751–1762 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    22.Novais, A., Monteiro, S., Roque, S., Correia-Neves, M. & Sousa, N. How age, sex and genotype shape the stress response. Neurob. Stress 6, 44–56 (2017).Article 

    Google Scholar 
    23.Romero, L. M. & Gormally, B. M. G. How truly conserved is the “well-conserved” vertebrate stress response?. Integr. Comp. Biol. 59(2), 273–281 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Millspaugh, J. J. & Washburn, B. E. Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen. Comp. Endocrinol. 138, 189–199 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Romero, L. M. Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol. 19(5), 249–255 (2004).PubMed 
    Article 

    Google Scholar 
    26.Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879 (2012).PubMed 
    Article 

    Google Scholar 
    27.Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. & Tillisch, K. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490–15496 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Mohajeri, M. H., La Fata, G., Steinert, R. E. & Weber, P. Relationship between the gut microbiome and brain function. Nutr. Rev. 76, 481–496 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E. & Savignac, H. M. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS 108(38), 16050–16055 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Beauclercq, S. et al. A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: a pilot study. J Anim. Sci. Biotechnol. 10, 21 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Jianguo, L., Xueyang, J., Cui, W., Changxin, W. & Xuemei, Q. Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress. Transl. Psychiatry 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    33.Valerio, A., Casadei, L., Giuliani, A. & Valerio, M. Fecal metabolomics as a novel non-invasive method for short-term stress monitoring in beef cattle. J. Proteome Res. 19(2), 845–853 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabolomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lindon, J. C., Nicholson, J. K. & Holmes, E. The Handbook of Metabonomics and Metabolomics (Elsevier, 2007).
    Google Scholar 
    37.Matysik, S., Le Roy, C. I., Liebisch, G. & Claus, S. P. Metabolomics of fecal samples: a practical consideration. Trends Food Sci. Technol. 57, 244–255 (2016).CAS 
    Article 

    Google Scholar 
    38.Nicholson, J. K. & Lindon, J. C. Metabonomics. Nature 455, 1054–1056 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Viant, M. R. Environmental metabolomics using 1H-NMR spectroscopy. Methods Mol. Biol. 410, 137–150 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W. & Goodacre, R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8(9), 1243–1266 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Worley, B. & Powers, R. Multivariate analysis in metabolomics. Curr. Metabolomics 1(1), 92–107 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Rivas-Ubach, A. et al. Ecometabolomics: optimized NMR-based method. Methods Ecol. Evol. 4(5), 464–473 (2013).Article 

    Google Scholar 
    43.Chen, M. X., Wang, S. Y., Kuo, C. H. & Tsai, I. L. Metabolome analysis for investigating host-gut microbiota interactions. JFMA 118(1), S10–S22 (2019).
    Google Scholar 
    44.Emwas, A. H. M. The Strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In Metabonomics. Methods in Molecular Biology (ed. Bjerrum, J. T.) 1277, 161–193 (Human Press, 2015).45.Emwas, A. H. M. et al. NMR spectroscopy for metabolomics research. Metabolites 9(7), 123 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    46.Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Wiles, G. J., Allen, H. L. & Hayes, G. E. Wolf Conservation and Management Plan for Washington (Washington Department of Fish and Wildlife, 2011).
    Google Scholar 
    48.Schmitz, O. J. & Trussell, G. C. Multiple stressors, state-dependence and predation risk-foraging trade-offs: toward a modern concept of trait-mediated indirect effects in communities and ecosystems. Curr. Opin. Behav. 12, 6–11 (2016).Article 

    Google Scholar 
    49.Brown, J. A. Mortality of Range Livestock in Wolf-Occupied Areas of Washington. Thesis. Washington State University, Pullman, WA, USA (2015).50.Fieberg, J. & Kochanny, C. O. Quantification of home range overlap: the importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).Article 

    Google Scholar 
    51.Robert, K., Garant, D. & Pelletier, F. Keep in touch: does spatial overlap correlate with contact rate frequency?. J. Wildl. Manag. 76(8), 1670–1675 (2012).Article 

    Google Scholar 
    52.Angel, S. P. et al. Climate change and cattle production: impact and adaptation. J. Vet. Med. Res. 5(4), 1134 (2018).
    Google Scholar 
    53.Brosh, A. et al. Energy cost of cows’ grazing activity: use of the heart rate method and the global positioning system for direct field estimation. J. Anim. Sci. 84, 1951–1967 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Provenza, F. D. Postingestive feed-back as an elemental determinant of food preference and intake in ruminants. J. Range Manag. 48, 2–17 (1995).Article 

    Google Scholar 
    55.Provenza, F. D. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74, 2010–2020 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Howery, L. D., Provenza, F. D., Ruyle, G. B. & Jordan, N. C. How do animals learn if rangeland plants are toxic or nutritious?. Rangelands 20, 4–9 (1998).
    Google Scholar 
    57.Davitt, B. B. & Nelson, J. R. Methodology for the determination of DAPA in feces of large ruminants. In Proceedings of the Western States and Provinces Elk Workshop (ed. Nelson, R.W.) 133–147 (Edmonton, 1984).58.Church, D. C. Digestive Physiology and Nutrition of Ruminants I (Oxford Press, 1969).
    Google Scholar 
    59.Sato, S. Leadership during actual grazing in a small herd of cattle. Appl. Anim. Ethol. 8, 53–65 (1982).Article 

    Google Scholar 
    60.Frair, J. L. et al. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos. Trans. R. Soc. B 365, 2187–2200 (2010).Article 

    Google Scholar 
    61.Deda, O., Gika, H. G., Wilson, I. D. & Theodoridis, G. A. An overview of fecal preparation for global metabolic profiling. J. Pharm. Biomed. 113, 137–150 (2015).CAS 
    Article 

    Google Scholar 
    62.Landakadurai, B. P., Nagato, E. G. & Simpson, M. J. Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ. Rev. 21, 180–205 (2013).Article 
    CAS 

    Google Scholar 
    63.Wiklund, S. et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Wishart, D. S. et al. HMDB: a knowledgebase for the human metabolome. Nucl. Acids Res. 37, D603–D610 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Frair, J. L. et al. Scale of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc. Ecol. 20, 273–287 (2005).Article 

    Google Scholar 
    66.Valerio, A. Stress-Mediated and Habitat-Mediated Risk Effects of Free-Ranging Cattle in Washington. Dissertation. Washington State University, Pullman, WA (2019).67.Winnie, J. & Creel, S. Sex-specific behavioral responses of elk to spatial and temporal variation in the threat of wolf predation. Anim. Behav. 73, 215–225 (2007).Article 

    Google Scholar 
    68.Bundy, J. G., Davey, M. P. & Viant, M. R. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5, 3–21 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Regulation of olfactomedin 4 by Porphyromonas gingivalis in a community context

    1.Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16:745–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Fitzsimonds ZR, Rodriguez-Hernandez CJ, Bagaitkar J, Lamont RJ. From beyond the pale to the pale riders: The emerging association of bacteria with oral cancer. J Dent Res. 2020;99:604–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Al-Hebshi NN, Borgnakke WS, Johnson NW. The microbiome of oral squamous cell carcinomas: a functional perspective. Curr Oral Health Rep. 2019;6:145–60.Article 

    Google Scholar 
    4.Hajishengallis G, Lamont RJ. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol. 2016;24:477–89.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Jiao Y, Hasegawa M, Inohara N. The role of oral pathobionts in dysbiosis during periodontitis development. J Dent Res. 2014;93:539–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Daep CA, Novak EA, Lamont RJ, Demuth DR. Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii. Infect Immun. 2011;79:67–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Kuboniwa M, Houser JR, Hendrickson EL, Wang Q, Alghamdi SA, Sakanaka A, et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol. 2017;2:1493–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mahmoud MY, Steinbach-Rankins JM, Demuth DR. Functional assessment of peptide-modified PLGA nanoparticles against oral biofilms in a murine model of periodontitis. J Control Release. 2019;297:3–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Mans JJ, von Lackum K, Dorsey C, Willis S, Wallet SM, Baker HV, et al. The degree of microbiome complexity influences the epithelial response to infection. BMC Genomics. 2009;10:380.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Ohshima J, Wang Q, Fitzsimonds ZR, Miller DP, Sztukowska MN, Jung YJ, et al. Streptococcus gordonii programs epithelial cells to resist Zeb2 induction by Porphyromonas gingivalis. Proc Natl Acad Sci USA. 2019;116:8544–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Miller DP, Fitzsimonds ZR, Lamont RJ. Metabolic signaling and spatial interactions in the oral polymicrobial community. J Dent Res. 2019;98:1308–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med. 2015;21:172–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. String v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Team RCR: a language and environment for statistical computing. R Foundation for Statistical Computing 2019.17.Tang Y, Horikoshi M, Li W. Ggfortify: Unified interface to visualize statistical results of popular R packages. R J. 2016;8:478–89.Article 

    Google Scholar 
    18.Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. Upset: Visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Liu W, Lee HW, Liu Y, Wang R, Rodgers GP. Olfactomedin 4 is a novel target gene of retinoic acids and 5-aza-2’-deoxycytidine involved in human myeloid leukemia cell growth, differentiation, and apoptosis. Blood. 2010;116:4938–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Liu W, Rodgers GP. Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer. Cancer Metastasis Rev. 2016;35:201–12.PubMed 
    Article 
    CAS 

    Google Scholar 
    22.Chen T, Siddiqui H, Olsen I. In silico comparison of 19 Porphyromonas gingivalis strains in genomics, phylogenetics, phylogenomics and functional genomics. Front Cell Infect Microbiol. 2017;7:28.PubMed 
    PubMed Central 

    Google Scholar 
    23.Dashper SG, Mitchell HL, Seers CA, Gladman SL, Seemann T, Bulach DM, et al. Porphyromonas gingivalis uses specific domain rearrangements and allelic exchange to generate diversity in surface virulence factors. Front Microbiol. 2017;8:48.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.To TT, Liu Q, Watling M, Bumgarner RE, Darveau RP, McLean JS. Draft genome sequence of low-passage clinical isolate Porphyromonas gingivalis MP4-504. Genome Announc. 2016;4:e00256–16.25.Acuna-Amador L, Primot A, Cadieu E, Roulet A, Barloy-Hubler F. Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains. BMC Genom. 2018;19:54.Article 
    CAS 

    Google Scholar 
    26.Ye L, Kriegl L, Reiter FP, Munker SM, Itzel T, Teufel A, et al. Prognostic significance and functional relevance of olfactomedin 4 in early-stage hepatocellular carcinoma. Clin Transl Gastroenterol. 2020;11:e00124.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Li Y, Gong Y, Ma J, Gong X. Overexpressed circ-RPL15 predicts poor survival and promotes the progression of gastric cancer via regulating mir-502-3p/OLFM4/STAT3 pathway. Biomed Pharmacother. 2020;127:110219.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Cong Z, Ye G, Bian Z, Yu M, Zhong M. Jagged-1 attenuates LPS-induced apoptosis and ROS in rat intestinal epithelial cells. Int J Clin Exp Pathol. 2018;11:3994–4003.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Ashizawa Y, Kuboki S, Nojima H, Yoshitomi H, Furukawa K, Takayashiki T, et al. OLFM4 enhances STAT3 activation and promotes tumor progression by inhibiting GRIM19 expression in human hepatocellular carcinoma. Hepatol Commun. 2019;3:954–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell. 2013;23:171–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zhou Y, Sztukowska M, Wang Q, Inaba H, Potempa J, Scott DA, et al. Noncanonical activation of β-catenin by Porphyromonas gingivalis. Infect Immun. 2015;83:3195–203.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Lasica AM, Ksiazek M, Madej M, Potempa J. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front Cell Infect Microbiol. 2017;7:215.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Bozkulak EC, Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol. 2009;29:5679–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mark Welch JL, Ramirez-Puebla ST, Borisy GG. Oral microbiome geography: micron-scale habitat and niche. Cell Host Microbe. 2020;28:160–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA. 2016;113:E791–800.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. The biogeography of polymicrobial infection. Nat Rev Microbiol. 2016;14:93–105.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Meuric V, Martin B, Guyodo H, Rouillon A, Tamanai-Shacoori Z, Barloy-Hubler F, et al. Treponema denticola improves adhesive capacities of Porphyromonas gingivalis. Mol Oral Microbiol. 2013;28:40–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Redanz S, Cheng X, Giacaman RA, Pfeifer CS, Merritt J, Kreth J. Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. Mol Oral Microbiol. 2018;33:337–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao L, Herzberg MC, et al. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol Microbiol. 2006;60:121–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Potempa J, Nguyen KA. Purification and characterization of gingipains. Curr Protoc Protein Sci. 2007; 20:1–27.41.Liu X, Ramsey MM, Chen X, Koley D, Whiteley M, Bard AJ. Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc Natl Acad Sci USA. 2011;108:2668–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Shinozaki S, Nakamura T, Iimura M, Kato Y, Iizuka B, Kobayashi M, et al. Upregulation of Reg 1α and GW112 in the epithelium of inflamed colonic mucosa. Gut. 2001;48:623–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Liu W, Yan M, Liu Y, Wang R, Li C, Deng C, et al. Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proc Natl Acad Sci USA. 2010;107:11056–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Jauregui CE, Wang Q, Wright CJ, Takeuchi H, Uriarte SM, Lamont RJ. Suppression of T-cell chemokines by Porphyromonas gingivalis. Infect Immun. 2013;81:2288–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Takeuchi H, Hirano T, Whitmore SE, Morisaki I, Amano A, Lamont RJ. The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8 production by dephosphorylation of NF-κB RelA/p65. PLoS Pathog. 2013;9:e1003326.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012;333:1–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Hajishengallis G. Porphyromonas gingivalis-host interactions: open war or intelligent guerilla tactics? Microbes Infect. 2009;11:637–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Zhang X, Huang Q, Yang Z, Li Y, Li CY. GW112, a novel antiapoptotic protein that promotes tumor growth. Cancer Res. 2004;64:2474–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Stark JE, Opoka AM, Fei L, Zang H, Davies SM, Wong HR, et al. Longitudinal characterization of olfactomedin-4 expressing neutrophils in pediatric patients undergoing bone marrow transplantation. PLoS One. 2020;15:e0233738.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Marimuthu A, Chavan S, Sathe G, Sahasrabuddhe NA, Srikanth SM, Renuse S, et al. Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome. Biochim Biophys Acta. 2013;1834:2308–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Gao XZ, Wang GN, Zhao WG, Han J, Diao CY, Wang XH, et al. Blocking OLFM4/HIF-1α axis alleviates hypoxia-induced invasion, epithelial-mesenchymal transition, and chemotherapy resistance in non-small-cell lung cancer. J Cell Physiol. 2019;234:15035–43.CAS 
    Article 

    Google Scholar 
    52.Kobayashi D, Koshida S, Moriai R, Tsuji N, Watanabe N. Olfactomedin 4 promotes S-phase transition in proliferation of pancreatic cancer cells. Cancer Sci. 2007;98:334–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Xiu MX, Liu YM, Kuang BH. The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother. 2020;129:110416.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Al-Attar A, Alimova Y, Kirakodu S, Kozal A, Novak MJ, Stromberg AJ, et al. Activation of Notch-1 in oral epithelial cells by P. gingivalis triggers the expression of the antimicrobial protein PLA2-IIA. Mucosal Immunol. 2018;11:1047–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Zhang B, Elmabsout AA, Khalaf H, Basic VT, Jayaprakash K, Kruse R, et al. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFβ/Notch signalling pathway and increased cell proliferation. BMC Genom. 2013;14:770.CAS 
    Article 

    Google Scholar 
    56.Xing Q, Ye Q, Fan M, Zhou Y, Xu Q, Sandham A. Porphyromonas gingivalis lipopolysaccharide inhibits the osteoblastic differentiation of preosteoblasts by activating Notch1 signaling. J Cell Physiol. 2010;225:106–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Weber S, Saftig P. Ectodomain shedding and ADAMs in development. Development. 2012;139:3693–709.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Smith TM Jr, Tharakan A, Martin RK. Targeting ADAM10 in cancer and autoimmunity. Front Immunol. 2020;11:499.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Stasikowska-Kanicka O, Wagrowska-Danilewicz M, Kulicka P, Danilewicz M. Overexpression of ADAM10 in oral squamous cell carcinoma with metastases. Pol J Pathol. 2018;69:67–72.PubMed 
    Article 

    Google Scholar 
    60.Saha N, Robev D, Himanen JP, Nikolov DB. ADAM proteases: Emerging role and targeting of the non-catalytic domains. Cancer Lett. 2019;467:50–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Hocevar K, Vizovisek M, Wong A, Koziel J, Fonovic M, Potempa B, et al. Proteolysis of gingival keratinocyte cell surface proteins by gingipains secreted from Porphyromonas gingivalis—proteomic insights into mechanisms behind tissue damage in the diseased gingiva. Front Microbiol. 2020;11:722.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Aw J, Scholz GM, Huq NL, Huynh J, O’Brien-Simpson NM, Reynolds EC. Interplay between Porphyromonas gingivalis and EGF signalling in the regulation of CXCL14. Cell Microbiol. 2018;20:e12837.PubMed 
    Article 
    CAS 

    Google Scholar 
    63.Tada H, Matsuyama T, Nishioka T, Hagiwara M, Kiyoura Y, Shimauchi H, et al. Porphyromonas gingivalis gingipain-dependently enhances IL-33 production in human gingival epithelial cells. PLoS One. 2016;11:e0152794.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Kesavalu L, Holt SC, Ebersole JL. Virulence of a polymicrobic complex, Treponema denticola and Porphyromonas gingivalis, in a murine model. Oral Microbiol Immunol. 1998;13:373–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Ebersole JL, Feuille F, Kesavalu L, Holt SC. Host modulation of tissue destruction caused by periodontopathogens: effects on a mixed microbial infection composed of Porphyromonas gingivalis and Fusobacterium nucleatum. Micro Pathog. 1997;23:23–32.CAS 
    Article 

    Google Scholar 
    66.Orth RK, O’Brien-Simpson NM, Dashper SG, Reynolds EC. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol Oral Microbiol. 2011;26:229–40.PubMed 
    Article 

    Google Scholar 
    67.Bradshaw DJ, Marsh PD, Watson GK, Allison C. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun. 1998;66:4729–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Tan KH, Seers CA, Dashper SG, Mitchell HL, Pyke JS, Meuric V, et al. Porphyromonas gingivalis and Treponema denticola exhibit metabolic symbioses. PLoS Pathog. 2014;10:e1003955.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Diaz PI, Zilm PS, Rogers AH. Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology. 2002;148:467–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Aruni AW, Roy F, Fletcher HM. Filifactor alocis has virulence attributes that can enhance its persistence under oxidative stress conditions and mediate invasion of epithelial cells by Porphyromonas gingivalis. Infect Immun. 2011;79:3872–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Aruni AW, Zhang K, Dou Y, Fletcher H. Proteome analysis of coinfection of epithelial cells with Filifactor alocis and Porphyromonas gingivalis shows modulation of pathogen and host regulatory pathways. Infect Immun. 2014;82:3261–74.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Wang Q, Wright CJ, Dingming H, Uriarte SM, Lamont RJ. Oral community interactions of Filifactor alocis in vitro. PLoS One. 2013;8:e76271.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Chioma O, Aruni AW, Milford TA, Fletcher HM. Filifactor alocis collagenase can modulate apoptosis of normal oral keratinocytes. Mol Oral Microbiol. 2017;32:166–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Ishihara K. Virulence factors of Treponema denticola. Periodontol 2000. 2010;54:117–35.PubMed 
    Article 

    Google Scholar 
    75.Aruni AW, Roy F, Sandberg L, Fletcher HM. Proteome variation among Filifactor alocis strains. Proteomics. 2012;12:3343–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Umana A, Sanders BE, Yoo CC, Casasanta MA, Udayasuryan B, Verbridge SS, et al. Utilizing whole fusobacterium genomes to identify, correct, and characterize potential virulence protein families. J Bacteriol. 2019;201:e00273–19.77.Duan D, Scoffield JA, Zhou X, Wu H. Fine-tuned production of hydrogen peroxide promotes biofilm formation of Streptococcus parasanguinis by a pathogenic cohabitant Aggregatibacter actinomycetemcomitans. Environ Microbiol. 2016;18:4023–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Stacy A, Everett J, Jorth P, Trivedi U, Rumbaugh KP, Whiteley M. Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc Natl Acad Sci USA. 2014;111:7819–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Stacy A, Fleming D, Lamont RJ, Rumbaugh KP, Whiteley M. A commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration. mBio 2016;7:e00782–16.80.Smalley JW, Birss AJ, Withnall R, Silver J. Interactions of Porphyromonas gingivalis with oxyhaemoglobin and deoxyhaemoglobin. Biochem J. 2002;362:239–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Brown JL, Yates EA, Bielecki M, Olczak T, Smalley JW. Potential role for Streptococcus gordonii-derived hydrogen peroxide in heme acquisition by Porphyromonas gingivalis. Mol Oral Microbiol. 2018;33:322–35.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15:30–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci USA. 2011;108:4152–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6:1176–85.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard

    1.Stuart, Y. E., Losos, J. B. & Algar, A. C. The island-mainland species turnover relationship. Proc. R. Soc. B Biol. Sci. 279, 4071–4077 (2012).Article 

    Google Scholar 
    2.Grant, P. R. Evolution on Islands (Oxford University Press, 1998).
    Google Scholar 
    3.Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443 (2007).Article 

    Google Scholar 
    4.Armstrong, C. et al. Genomic associations with bill length and disease reveal drift and selection across island bird populations. Evol. Lett. 2(1), 22–36 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Eldridge, M. D. B. et al. Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv. Biol. 13, 531–541 (1999).Article 

    Google Scholar 
    6.Wright, S. Isolation by distance under diverse systems of mating. Genetics 31, 39–59 (1946).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49(4), 725 (1964).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: From genotyping to genome typing. Nat. Rev. Genet. 4(12), 981–994 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Nei, M., Suzuki, Y. & Nozawa, M. The neutral theory of molecular evolution in the genomic era. Annu. Rev. Genom. Hum. Genet. 11, 265–289 (2010).CAS 
    Article 

    Google Scholar 
    10.Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl. Acad. Sci. U.S.A. 110(38), 15307–15312 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    11.Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D. & Serra, L. Rapid evolution of a geographic cline in size in an introduced fly. Science 287(5451), 308–309 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    12.Prates, I., Angilleta, M. J., Wilson, R. S., Niehaus, A. C. & Navas, C. A. Dehydration hardly slows hopping toads (Rhinella granulosa) from xeric and mesic environments. Physiol. Biochem. Zool. 86(4), 451–457 (2013).PubMed 
    Article 

    Google Scholar 
    13.Prates, I., Penna, A., Trefaut, M. & Carnaval, A. C. Local adaptation in mainland anole lizards: Integrating population history and genome-environment associations. Ecol. Evol. 8, 11932–11944 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Funk, W. C. et al. Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyonlittoralis). Mol. Ecol. 25(10), 2176–2194 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Friis, G. et al. Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol. Ecol. 27(24), 5137–5153 (2018).PubMed 
    Article 

    Google Scholar 
    16.Bover, P., Quintana, J. & Alcover, J. A. Three islands, three worlds: Paleogeography and evolution of the vertebrate fauna from the Balearic Islands. Quatern. Int. 182, 135–144 (2008).Article 

    Google Scholar 
    17.Pérez-Mellado, V. Les sargantanes de les Balears (Edicions Quaderns de Natura de les Balears, Documenta Balear, 2009).
    Google Scholar 
    18.Pérez-Mellado, V. et al. Population density in Podarcis lilfordi (Squamata, Lacertidae), a lizard species endemic to small islets in the Balearic Islands (Spain). Amphibia-Reptilia 29(1), 49–60 (2008).Article 

    Google Scholar 
    19.Brown, R. P. et al. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards. Mol. Phylogenet. Evol. 48(1), 350–358 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    20.Terrasa, B. et al. Foundations for conservation of intraspecific genetic diversity revealed by analysis of phylogeographical structure in the endangered endemic lizard Podarcis lilfordi. Divers. Distrib. 15(2), 207–221 (2009).Article 

    Google Scholar 
    21.Terrasa, B. et al. Use of NCPA to understanding genetic sub-structuring of Podarcis lilfordi from the Balearic archipelago. Amphibia-Reptilia 30(4), 505–514 (2009).Article 

    Google Scholar 
    22.Emig, C. C. & Geistdoerfer, P. The Mediterranean deep-sea fauna: Historical evolution, bathymetric variations and geographical changes. Carnets Geol. https://doi.org/10.4267/2042/3230 (2004).Article 

    Google Scholar 
    23.Pérez-Cembranos, A. et al. Morphological and genetic diversity of the Balearic lizard, Podarcis lilfordi (Günther, 1874): Is it relevant to its conservation?. Divers. Distrib. 26, 1122–1141 (2020).Article 

    Google Scholar 
    24.Palumbi, S. R. The Evolution Explosion: How Humans Cause Rapid Evolutionary Change (W. W. Norton & Company, 2002).
    Google Scholar 
    25.Ashley, M. V. et al. Evolutionary enlightened management. Biol. Conserv. 111, 115–123 (2003).Article 

    Google Scholar 
    26.Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).Article 

    Google Scholar 
    27.Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10), e3376 (2008).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    28.Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5), e37135 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    29.Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17(2), 81 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Brown, R. P., Paterson, S. & Risse, J. Genomic signatures of historical allopatry and ecological divergence in an island lizard. Genome Biol. Evol. 8(11), 3618–3626 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jin, Y. & Brown, R. P. Morphological species and discordant mtDNA: A genomic analysis of Phrynocephalus lizard lineages on the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 139, 106523 (2019).PubMed 
    Article 

    Google Scholar 
    32.Yang, W. et al. Spatial variation in gene flow across a hybrid zone reveals causes of reproductive isolation and asymmetric introgression in wall lizards. Evolution 74(7), 1289–1300 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Li, Y. L., Xue, D. X., Zhang, B. D. & Liu, J. X. Population genomic signatures of genetic structure and environmental selection in the catadromous roughskin sculpin Trachidermus fasciatus. Genome Biol. Evol. 11(7), 1751–1764 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst. 31(1), 139–162 (2000).Article 

    Google Scholar 
    35.Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).Article 

    Google Scholar 
    36.Perrier, C., Ferchaud, A. L., Sirois, P., Thibault, I. & Bernatchez, L. Do genetic drift and accumulation of deleterious mutations preclude adaptation? Empirical investigation using RAD seq in a northern lacustrine fish. Mol. Ecol. 26(22), 6317–6335 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Sovic, M., Fries, A., Martin, S. A. & Lisle Gibbs, H. Genetic signatures of small effective population sizes and demographic declines in an endangered rattlesnake, Sistrurus catenatus. Evol. Appl. 12(4), 664–678 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Cao, R. et al. Genetic structure and diversity of Australian freshwater crocodiles (Crocodylus johnstoni) from the Kimberley, Western Australia. Conserv. Genet. 21, 421–429 (2020).Article 

    Google Scholar 
    39.Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity?. Mol. Ecol. 19(15), 3038–3051 (2010).PubMed 
    Article 

    Google Scholar 
    40.Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11(2), e12412 (2018).Article 

    Google Scholar 
    41.Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25(20), 5073–5092 (2016).PubMed 
    Article 

    Google Scholar 
    42.Campbell-Staton, S. C., Edwards, S. V. & Losos, J. B. Climate mediated adaptation after mainland colonization of an ancestrally subtropical island lizard, Anolis carolinensis. J. Evol. Biol. 29(11), 2168–2180 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Rodríguez, A. et al. Genomic and phenotypic signatures of climate adaptation in an Anolis lizard. Ecol. Evol. 7(16), 6390–6403 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Islet tameness: Escape behavior and refuge use in populations of the Balearic lizard (Podarcis lilfordi) exposed to differing predation pressure. Can. J. Zool. 87(10), 912–919 (2009).Article 

    Google Scholar 
    45.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Influence of risk on hiding time by Balearic lizards (Podarcis lilfordi): Predator approach speed, directness, persistence, and proximity. Herpetologica 66(2), 131–141 (2010).Article 

    Google Scholar 
    46.Cooper, W. E. & Pérez-Mellado, V. Island tameness: Reduced escape responses and morphological and physiological antipredatory adaptations related to escape in lizards. In Islands and Evolution (eds Pérez-Mellado, V. & Ramon, M. M.) 231–253 (Institut Menorquí d’Estudis, 2010).
    Google Scholar 
    47.Cooper, W. E. & Pérez-Mellado, V. Historical influence of predation pressure on escape by Podarcis lizards in the Balearic Islands. Biol. J. Linn. Soc. 107, 254–268 (2012).Article 

    Google Scholar 
    48.Mayr, E. Animal Species and Evolution (The Belknap Press, Harvard University Press, 1963).
    Google Scholar 
    49.Bover, P. et al. Late Miocene/Early Pliocene vertebrate fauna from Mallorca (Balearic Islands, Western Mediterranean): An update. Integr. Zool. 9, 183–196 (2014).PubMed 
    Article 

    Google Scholar 
    50.Vervust, B., Grbac, I. & Van Damme, R. Differences in morphology, performance and behaviour between recently diverged populations of Podarcissicula mirror differences in predation pressure. Oikos 116(8), 1343–1352 (2007).Article 

    Google Scholar 
    51.Marques, D. A., Jones, F. C., Di Palma, F., Kingsley, D. M. & Reimchen, T. E. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2(7), 1128–1138 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Stockwell, C. A. & Ashley, M. V. Rapid adaptation and conservation. Conserv. Biol. 18, 272–273 (2004).Article 

    Google Scholar 
    54.Truong, H. T. et al. Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE 7(5), e37565 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    55.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22(11), 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Goudet, J. & Jombart, T. hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.5-7. Available from http://github.com/jgx65/hierfstat (2015).58.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19(9), 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jombart, T. & Ahmed, I. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).CAS 
    Article 

    Google Scholar 
    61.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6(11), 3461–3475 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4(8), 782–788 (2013).Article 

    Google Scholar 
    64.Nei, M. The Theory and Estimation of Genetic Distance. Genetic Structure of Populations 45–54 (University of Hawaii Press, 1973).
    Google Scholar 
    65.Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180(2), 977–993 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30(7), 1687–1699 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24(17), 4348–4370 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27(9), 2215–2233 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Jin, L., Yu, J. P., Yang, Z. J., Merilä, J. & Liao, W. B. Modulation of gene expression in liver of hibernating Asiatic Toads (Bufo gargarizans). Int. J. Mol. Sci. 19(8), 2363 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Secor, S. M. & Carey, H. V. Integrative physiology of fasting. Compr. Physiol. 6(2), 773–825 (2011).
    Google Scholar 
    71.Bahudhanapati, H., Bhattacharya, S. & Wei, S. Evolution of vertebrate adam genes; duplication of testicular adams from ancient adam9/9-like loci. PLoS ONE 10(8), e0136281 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Alibardi, L. Immunolocalization of matrix metalloproteinases in regenerating lizard tail suggests that an intense remodelling activity allows for apical tail growth. Acta Zool. 101(2), 124–132 (2020).Article 

    Google Scholar 
    73.The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).Article 
    CAS 

    Google Scholar 
    74.Tosini, G., Baba, K., Hwang, C. K. & Iuvone, P. M. Melatonin: An underappreciated player in retinal physiology and pathophysiology. Exp. Eye Res. 103, 82–89 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Voronin, D. A. & Kiseleva, E. V. Functional role of proteins containing ankyrin repeats. Tsitologiia 49(12), 989–999 (2007).CAS 
    PubMed 

    Google Scholar 
    76.Yang, L. et al. Transcriptome analysis and identification of genes associated with chicken sperm storage duration. Poult. Sci. 99(2), 1199–1208 (2020).PubMed 
    Article 

    Google Scholar 
    77.Geng, X. et al. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J. Proteomics 119, 196–208 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Subramaniam, N., Petrik, J. J. & Vickaryous, M. K. VEGF, FGF-2 and TGF β expression in the normal and regenerating epidermis of geckos: Implications for epidermal homeostasis and wound healing in reptiles. J. Anat. 232(5), 768–782 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Pillai, A., Desai, I. & Balakrishnan, S. Pharmacological inhibition of FGFR1 signaling attenuates the progression of tail regeneration in the northern house gecko Hemidactylus flaviviridis. Int. J. Life Sci. Biotechnol. Pharma Res. 2, 263–278 (2013).
    Google Scholar 
    80.Schoettl, T., Fischer, I. P. & Ussar, S. Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol. 221, jeb162958 (2018).PubMed 
    Article 

    Google Scholar 
    81.Wang, X. et al. Identification of a novel 43-bp insertion in the heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene and its associations with growth and carcass traits in chickens. Anim. Biotechnol. 30(3), 252–259 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Sun, C. et al. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics 16(1), 565 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Ng, C. S. et al. Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics 16(1), 756 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Qu, Y. et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 4(1), 1–9 (2013).
    Google Scholar 
    85.Fischer, I., Kosik, K. S. & Sapirstein, V. S. Heterogeneity of microtubule-associated protein (MAP2) in vertebrate brains. Brain Res. 436(1), 39–48 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Singchat, W. et al. Chromosome map of the Siamese cobra: Did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?. BMC Genomics 19(1), 939 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360(6391), 881–888 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    88.Vitulo, N., Dalla Valle, L., Skobo, T., Valle, G. & Alibardi, L. Transcriptome analysis of the regenerating tail vs. the scarring limb in lizard reveals pathways leading to successful vs. unsuccessful organ regeneration in amniotes. Dev. Dyn. 246(2), 116–134 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Carobbio, S., Guénantin, A. C., Samuelson, I., Bahri, M. & Vidal-Puig, A. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864(1), 37–50 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Oviposition behavior of wild yellow fever vector mosquitoes (Diptera: Culicidae) in an Atlantic Forest fragment, Rio de Janeiro state, Brazil

    1.Alho, C. J. R. Importância da biodiversidade para a saúde humana: uma perspectiva ecológica. Estud. Avançados 26, 151–166 (2012).Article 

    Google Scholar 
    2.Docile, T. N., Figueiró, R., Portela, C. & Nessimian, J. L. Macroinvertebrate diversity loss in urban streams from tropical forests. Environ. Monit. Assess. https://doi.org/10.1007/s10661-016-5237-z (2016).Article 
    PubMed 

    Google Scholar 
    3.Mutuku, F. M. et al. Distribution, description, and local knowledge of larval habitats of Anopheles gambiae s.l. in a village in western Kenya. Am. J. Trop. Med. Hyg. 74, 44–53 (2006).Article 

    Google Scholar 
    4.Simard, F. et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 9, 17 (2009).Article 

    Google Scholar 
    5.Reiter, P. Yellow fever and dengue: a threat to Europe?. Eurosurveillance 15, 11–17 (2010).
    Google Scholar 
    6.Medlock, J. M. & Leach, S. A. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect. Dis. 15, 721–730 (2015).Article 

    Google Scholar 
    7.Alencar, J. et al. Ecosystem diversity of mosquitoes (Diptera: Culicidae) in a remnant of Atlantic Forest, Rio de Janeiro state, Brazil . Austral Entomol. https://doi.org/10.1111/aen.12508 (2020).Article 

    Google Scholar 
    8.Arnell, J. H. Mosquito studies (Diptera, Culicidae). XXXII. A revision of the genus Haemagogus. Contrib. Am. Entomol. Inst. 10, 1–174 (1973).
    Google Scholar 
    9.Alencar, J. et al. Flight height preference for oviposition of mosquito (diptera: Culicidae) vectors of sylvatic yellow fever virus near the hydroelectric reservoir of simplicío, minas Gerais, Brazil. J. Med. Entomol. 50, 791–795 (2013).Article 

    Google Scholar 
    10.Alencar, J. et al. Diversity of yellow fever mosquito vectors in the Atlantic forest of Rio de Janeiro, Brazil . Rev. Soc. Bras. Med. Trop. 49, 351–356 (2016).Article 

    Google Scholar 
    11.Gerais, M. Febre Amarela : uma visão do cenário atual. (2014).12.De Abreu, F. V. S. et al. Combination of surveillance tools reveals that yellow fever virus can remain in the same atlantic forest area at least for three transmission seasons. Mem. Inst. Oswaldo Cruz https://doi.org/10.1590/0074-02760190076 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Moreno, E. S. et al. Reemergência de febre amarela: Detecção de transmissão no estado de São Paulo, Brasil, 2008. Rev. Soc. Bras. Med. Trop. 44, 290–296 (2011).Article 

    Google Scholar 
    14.Bergallo, H. Estratégias e ações para a conservação da biodiversidade no estado do Rio de Janeiro. (Instituto Biomas, 2009).15.Silva, S. O. F. et al. Evaluation of multiple immersion effects on eggs from Haemagogus leucocelaenus, Haemagogus janthinomys, and Aedes albopictus (Diptera: Culicidae) under experimental conditions. J. Med. Entomol. 55, 1093–1097 (2018).Article 

    Google Scholar 
    16.Forattini, O. P. Culicidologia Médica: Identificação, Biologia, Epidemiologia. (Edusp – Editora da Universidade de São Paulo, 2002).17.Marcondes, C. & Alencar, J. Revisão de mosquitos Haemagogus Williston (Diptera: Culicidae) do Brasil. Rev. Biomed. 21, 221–238 (2010).
    Google Scholar 
    18.Reinert, J. F. Revised list of abbreviations for genera and subgenera of Culicidae (diptera) and notes on generic and subgeneric changes. J. Am. Mosq. Control Assoc. 17, 51–55 (2001).CAS 
    PubMed 

    Google Scholar 
    19.Guimaráes, A. É., De Mello, R. P., Lopes, C. M. & Gentile, C. Ecology of mosquitoes (Diptera: Culicidae) in areas of Serra do Mar State Park, State of São Paulo, Brazil. I—monthly frequency and climatic factors. Mem. Inst. Oswaldo Cruz 95, 1–16 (2000).Article 

    Google Scholar 
    20.Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).CAS 
    Article 

    Google Scholar 
    21.Possas, C. et al. Yellow fever outbreak in Brazil: the puzzle of rapid viral spread and challenges for immunisation. Mem. Inst. Oswaldo Cruz 113, e180278 (2018).Article 

    Google Scholar 
    22.Brasil, M. da S. Uma análise da situação de saúde com enfoque nas doenças imunopreveníveis e na imunização. Ministário da Saúde https://bvsms.saude.gov.br/bvs/saudelegis/gm/1998/prt3916_30_10_1998.htmlhttp://bvsms.saude.gov.br/bvs/saudelegis/gm/2017/prt2436_22_09_2017.html (2019).23.Cunha, M. S. et al. Epizootics due to Yellow Fever Virus in São Paulo State, Brazil: viral dissemination to new areas (2016–2017). Sci. Rep. 9, 1–13 (2019).ADS 

    Google Scholar 
    24.Lourenço-de-Oliveira, R. & Failloux, A. B. High risk for chikungunya virus to initiate an enzootic sylvatic cycle in the tropical Americas. PLoS Negl. Trop. Dis. 11, 1–11 (2017).
    Google Scholar 
    25.De Figueiredo, M. L. et al. Mosquitoes infected with dengue viruses in Brazil. Virol. J. 7, 1–5 (2010).Article 

    Google Scholar 
    26.Marcondes, C. B. & de Ximenes, M. F. F. M. Zika virus in Brazil and the danger of infestation by aedes (Stegomyia) mosquitoes. Rev. Soc. Bras. Med. Trop. 49, 4–10 (2016).Article 

    Google Scholar 
    27.Grard, G. et al. Zika virus in Gabon (Central Africa) – 2007: a new threat from Aedes albopictus?. PLoS Negl. Trop. Dis. 8, 1–6 (2014).ADS 
    Article 

    Google Scholar 
    28.de Gomes, A. C. et al. Aedes albopictus em área rural do Brasil e implicações na transmissão de febre amarela silvestre. Rev. Saude Publica 33, 95–97 (1999).Article 

    Google Scholar 
    29.Guimarães, A. E. Mosquitos no Parque Nacional da Serra dos Órgãos, Estado do Rio de Janeiro, Brasil. II. Distribuição vertical. Mem. Inst. Oswaldo Cruz 80, 1–2 (1985).MathSciNet 
    Article 

    Google Scholar 
    30.Lopes, J., Arias, J. R. & Yood, J. D. C. Evidências Preliminares De Estratificação Vertical De Postura De Ovos Por Alguns Culicidae (Diptera), Em Floresta No Município De Manaus – Amazonas. Acta Amaz. 13, 431–439 (1983).Article 

    Google Scholar 
    31.Alencar, J. et al. A comparative study of the effect of multiple immersions on Aedini (Diptera: Culicidae) mosquito eggs with emphasis on sylvan vectors of yellow fever virus. Mem. Inst. Oswaldo Cruz 109, 114–117 (2014).Article 

    Google Scholar 
    32.Entomologia médica. 2.O Volume. Culicini: Culex, Aedes e Psorophora | Mosquito Taxonomic Inventory. (1965).33.Principais Mosquitos de Importância Sanitária no Brasil – Fundação Oswaldo Cruz (Fiocruz): Ciência e tecnologia em saúde para a população brasileira. (FIOCRUZ, 1994).34.Amerasinghe, F. P. & Alagoda, T. S. B. Mosquito oviposition in bamboo traps, with special reference to Aedes albopictus, Aedes novalbopictus and Armigeres subalbatus. Int. J. Trop. Insect Sci. 5, 493–500 (1984).Article 

    Google Scholar 
    35.Obenauer, P. J., Kaufman, P. E., Allan, S. A. & Kline, D. L. Infusion-baited ovitraps to survey ovipositional height preferences of container-inhabiting mosquitoes in two Florida habitats. J. Med. Entomol. 46, 1507–1513 (2009).CAS 
    Article 

    Google Scholar 
    36.Althouse, B. M. et al. Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl. Trop. Dis. 10, 1–11 (2016).Article 

    Google Scholar 
    37.Hamrick, P. N. et al. Geographic patterns and environmental factors associated with human yellow fever presence in the Americas. PLoS Negl. Trop. Dis. 11, 1–27 (2017).Article 

    Google Scholar 
    38.Couto-Lima, D. et al. Seasonal population dynamics of the primary yellow fever vector haemagogus leucocelaenus (Dyar & shannon) (diptera: Culicidae) is mainly influenced by temperature in the atlantic forest, Southeast Brazil. Mem. Inst. Oswaldo Cruz 115, 1–13 (2020).Article 

    Google Scholar 
    39.Davis, N. C., Division, I. H., Foundation, R., Health, P. & Health, P. The effect of various temperatures in modifying the extrinsic incubation period of the yellow fever virus in Aedes Aegypti. Am. J. Epidemiol. 16, 163–176 (1931).Article 

    Google Scholar 
    40.Johansson, M. A., Arana-Vizcarrondo, N., Biggerstaff, B. J. & Staples, J. E. Incubation periods of yellow fever virus. Am. J. Trop. Med. Hyg. 83, 183–188 (2010).Article 

    Google Scholar 
    41.De Paiva, C. A. et al. Determination of the spatial susceptibility to yellow fever using a multicriteria analysis. Mem. Inst. Oswaldo Cruz 114, 1–8 (2019).Article 

    Google Scholar 
    42.Calado, D. C. & Navarro da Silva, M. A. Evaluation of the temperature influence on the development of Aedes albopictus. Rev. Saude Publica 36, 173–179 (2002).Article 

    Google Scholar 
    43.Docile, T. N. et al. Frequency of Aedes sp. Linnaeus (Diptera: Culicidae) and Associated Entomofauna in Bromeliads from a Forest Patch within a densely Urbanized Area. Neotrop. Entomol. 46, 613–621 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Impact of artificial light at night on diurnal plant-pollinator interactions

    1.Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).ADS 
    Article 

    Google Scholar 
    2.Kyba, C. C. et al. Artificially lit surface of earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).ADS 
    Article 

    Google Scholar 
    3.Longcore, T. & Rich, C. Ecological light pollution. Front. Ecol. Environ. 2, 191–198 (2004).Article 

    Google Scholar 
    4.Rich, C. & Longcore, T. Ecological Consequences of Artificial Night Lighting, (Island Press, 2013).5.Davies, T. W., Bennie, J. & Gaston, K. J. Street lighting changes the composition of invertebrate communities. Biol. Lett. rsbl20120216 8, 764–767 (2012).6.Gaston, K. J. & Bennie, J. Demographic effects of artificial nighttime lighting on animal populations. Environ. Rev. 22, 323–330 (2014).Article 

    Google Scholar 
    7.Desouhant, E., Gomes, E., Mondy, N. & Amat, I. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomologia Experimentalis et Applicata 167, 37–58 (2019).Article 

    Google Scholar 
    8.Sanders, D. & Gaston, K. J. How ecological communities respond to artificial light at night. J. Exp. Zool. Part A: Ecol. Integr. Physiol. 329, 394–400 (2018).
    Google Scholar 
    9.Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).Article 

    Google Scholar 
    10.Blake, D., Hutson, A. M., Racey, P. A., Rydell, J. & Speakman, J. R. Use of lamplit roads by foraging bats in southern England. J. Zool. 234, 453–462 (1994).Article 

    Google Scholar 
    11.Polak, T., Korine, C., Yair, S. & Holderied, M. W. Differential effects of artificial lighting on flight and foraging behaviour of two sympatric bat species in a desert. J. Zool. 285, 21–27 (2011).
    Google Scholar 
    12.Spoelstra, K. et al. Response of bats to light with different spectra: Light-shy and agile bat presence is affected by white and green, but not red light. Proc. R. Soc. B: Biol. Sci. 284, 11–15 (2017).Article 

    Google Scholar 
    13.Straka, T. M., Wolf, M., Gras, P., Buchholz, S. & Voigt, C. C. Tree cover mediates the effect of artificial light on urban bats. Front. Ecol. Evol. 7, 91 (2019).Article 

    Google Scholar 
    14.Heiling, A. M. Why do nocturnal orb-web spiders (Araneidae) search for light? Behav. Ecol. 46, 43–49 (1999).Article 

    Google Scholar 
    15.Bennie, J., Davies, T. W., Cruse, D., Inger, R. & Gaston, K. J. Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations. J. Appl. Ecol. 55, 2698–2706 (2018).CAS 
    Article 

    Google Scholar 
    16.Grenis, K. & Murphy, S. M. Direct and indirect effects of light pollution on the performance of an herbivorous insect. Insect Sci. 26, 770–776 (2019).Article 

    Google Scholar 
    17.McMunn, M. S. et al. Artificial light increases local predator abundance, predation rates, and herbivory. Environ. Entomol. 48, 1331–1339 (2019).Article 

    Google Scholar 
    18.Giavi, S., Blösch, S., Schuster, G. & Knop, E. Artificial light at night can modify ecosystem functioning beyond the lit area. Sci. Rep. 10, 1–11 (2020).Article 

    Google Scholar 
    19.Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Macgregor, C. J., Evans, D. M., Fox, R. & Pocock, M. J. O. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Change Biol. 23, 697–707 (2017).ADS 
    Article 

    Google Scholar 
    21.Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant. Ecosphere 10, 1–16 (2019).22.Junker, R. R. et al. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 27, 329–341 (2013).Article 

    Google Scholar 
    23.Bennie, J., Duffy, J. P., Davies, T. W., Correa-Cano, M. E. & Gaston, K. J. Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote Sens. 7, 2715–2730 (2015).ADS 
    Article 

    Google Scholar 
    24.Bennie, J., Davies, T. W., Cruse, D. & Gaston, K. J. Ecological effects of artificial light at night on wild plants. J. Ecol. 104, 611–620 (2016).Article 

    Google Scholar 
    25.Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160256 (2017).26.Yon, F. et al. Fitness consequences of altering floral circadian oscillations for Nicotiana attenuata. J. Integr. Plant Biol. 59, 180–189 (2017).CAS 
    Article 

    Google Scholar 
    27.Yon, F., Kessler, D., Joo, Y., Kim, S.-G. & Baldwin, I. T. Fitness consequences of a clock pollinator filter in Nicotiana attenuata flowers in nature. J. Integr. Plant Biol. 59, 805–809 (2017).CAS 
    Article 

    Google Scholar 
    28.Fenske, M. P., Nguyen, L. A. P., Horn, E. K., Riffell, J. A. & Imaizumi, T. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Sci. Rep. 8, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    29.Rusman, Q., Lucas-Barbosa, D. & Poelman, E. H. Dealing with mutualists and antagonists: Specificity of plant-mediated interactions between herbivores and flower visitors, and consequences for plant fitness. Funct. Ecol. 32, 1022–1035 (2018).Article 

    Google Scholar 
    30.Rusman, Q., Lucas-Barbosa, D., Poelman, E. H. & Dicke, M. Ecology of plastic flowers. Trends Plant Sci. 24, 725–740 (2019).31.Barber, N. A., Adler, L. S., Theis, N., Hazzard, R. V. & Kiers, E. T. Herbivory reduces plant interactions with above-and belowground antagonists and mutualists. Ecology 93, 1560–1570 (2012).Article 

    Google Scholar 
    32.Liao, K., Gituru, R. W., Guo, Y.-H. & Wang, Q.-F. Effects of floral herbivory on foraging behaviour of bumblebees and female reproductive success in Pedicularis gruina (Orobanchaceae). Flora – Morphol., Distrib., Funct. Ecol. Plants 208, 562–569 (2013).Article 

    Google Scholar 
    33.Schiestl, F. P., Kirk, H., Bigler, L., Cozzolino, S. & Desurmont, G. A. Herbivory and floral signaling: phenotypic plasticity and tradeoffs between reproduction and indirect defense. N. Phytologist 203, 257–266 (2014).CAS 
    Article 

    Google Scholar 
    34.Jacobsen, D. J. & Raguso, R. A. Lingering effects of herbivory and plant defenses on pollinators. Curr. Biol. 28, R1164–R1169 (2018).CAS 
    Article 

    Google Scholar 
    35.Barber, N. A., Adler, L. S. & Bernardo, H. L. Effects of above-and belowground herbivory on growth, pollination, and reproduction in cucumber. Oecologia 165, 377–386 (2011).ADS 
    Article 

    Google Scholar 
    36.Poveda, K., Steffan-Dewenter, I., Scheu, S. & Tscharntke, T. Effects of below-and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135, 601–605 (2003).ADS 
    Article 

    Google Scholar 
    37.Ivey, C. T. & Carr, D. E. Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). Am. J. Bot. 92, 1641–1649 (2005).Article 

    Google Scholar 
    38.Lucas-Barbosa, D. et al. Visual and odour cues: plant responses to pollination and herbivory affect the behaviour of flower visitors. Funct. Ecol. 30, 431–441 (2016).Article 

    Google Scholar 
    39.Dominoni, D. M. & Partecke, J. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula). Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 370, 20140118 (2015).40.Davies, T. W. & Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Change Biol. 24, 872–882 (2018).ADS 
    Article 

    Google Scholar 
    41.Sage, R. F. Global change biology: a primer. Global Change Biol. 26, 3–30 (2019).42.Gibson, R. H., Knott, B., Eberlein, T. & Memmott, J. Sampling method influences the structure of plant-pollinator networks. Oikos 120, 822–831 (2011).Article 

    Google Scholar 
    43.R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).44.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    45.Giavi, S., Fontaine, C., Knop, E. Data and code for ‘Impact of artificial light at night on diurnal plant-pollinator interactions’ (Version v1) [Data set and data code]. Zenodo https://zenodo.org/record/4540407#.YCqYPTKg82w (2021). More