More stories

  • in

    Biological and biochemical diversity in different biotypes of spotted stem borer, Chilo partellus (Swinhoe) in India

    1.
    Dujardin, J. P. Aporte de la genetica poblacional al control y vigilancia de vectores de la enfermedad de Chagas. In Curso Posgrado Genética Poblacional de Triatomineos Aplicada al Control Vectorial de la Enfermedad de Chagas (ed. Guhl, F.) 13–15 (Corcas Editores Ltda, 1997).
    Google Scholar 
    2.
    Pires, H. H. R., Barbosa, S. E., Margonari, C., Jurberg, J. & Diotaiuti, L. Variations of the external male genitalia in three populations of Triatoma infestans Klug, 1834. Minist. Saúde 93(4), 479–483 (1998).
    CAS  Google Scholar 

    3.
    Bambou, A. E. et al. Comparing genetic diversity of Sitophilus zeamais(Motchulsky) populations sampled in several agro-ecological areas between Central African Republic and Senegal. South Asian J. Exp. Biol. 4(4), 172–182 (2014).
    Google Scholar 

    4.
    Baldwin, J. D. & Dingle, H. Geographic variation in the effects of temperature on life-history traits in the large milkweed bug Oncopeltus fasciatus. Oecologia 69, 64–71 (1986).
    ADS  Article  Google Scholar 

    5.
    Blanckenhorn, W. U. Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Oecologia 109, 342–352 (1997).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Ikten, C., Skoda, S. R., Hunt, T. E., Molina-Ochoa, J. & Foster, J. E. Genetic variation and inheritance of diapause induction in two distinct voltine ecotypes of Ostrinia nubilalis (Lepidoptera: Crambidae). Ann. Entomol. Soc. Am. 104, 567–575 (2011).
    Article  Google Scholar 

    7.
    Dhillon, M. K., Hasan, F., Tanwar, A. K. & Bhadauriya, A. P. S. Effects of thermo-photoperiod on induction and termination of hibernation in Chilo partellus (Swinhoe). Bull. Entomol. Res. 107, 294–302 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Sharma, H. C. Host plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot. 12, 11–34 (1993).
    Article  Google Scholar 

    9.
    Dhillon, M. K., Hasan, F., Tanwar, A. K. & Bhadauriya, A. P. S. Factors responsible for aestivation in spotted stem borer, Chilo partellus (Swinhoe). J. Exp. Zool. A 331, 326–340 (2019).
    Article  Google Scholar 

    10.
    Dhillon, M. K. & Hasan, F. Consequences of diapause on post-diapause development, reproductive physiology and population growth of Chilo partellus (Swinhoe). Physiol. Entomol. 43, 196–206 (2018).
    CAS  Article  Google Scholar 

    11.
    Dhillon, M. K., Tanwar, A. K. & Hasan, F. Fitness consequences of delayed mating on reproductive performance of Chilo partellus (Swinhoe). J. Exp. Zool. A 331, 161–167 (2019).
    Article  Google Scholar 

    12.
    Dhillon, M. K. et al. Genetic regulation of diapause and associated traits in Chilo partellus (Swinhoe). Sci. Rep. 10, 1793 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Physiol. 33, 50–152 (2006).
    Article  Google Scholar 

    14.
    Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15(2), 407–420 (2006).
    CAS  PubMed  Article  Google Scholar 

    15.
    Rowntree, J. K., Cameron, D. D. & Preziosi, R. F. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts. Philos. Trans. R. Soc. B 366, 1380–1388 (2011).
    Article  Google Scholar 

    16.
    Giron, D. et al. Promises and challenges in insect–plant interactions. Entomol. Exp. Appl. 166(5), 319–343 (2018).
    Article  Google Scholar 

    17.
    Williams, R. S. & Howells, J. M. Effects of intraspecific genetic variation and prior herbivory in an old-field plant on the abundance of the specialist aphid Uroleucon nigrotuberculatum (Hemiptera: Aphididae). Environ. Entomol. 47, 422–431 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Matsubayashi, K. W., Ohshima, I. & Nosil, P. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 134, 1–27 (2010).
    Article  Google Scholar 

    19.
    Feder, J. L. et al. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc. Natl Acad. Sci USA 100, 10314–10319 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Althoff, M. D. & Pellmyr, O. Examining genetic structure in bogus yucca moth: A sequential approach to phylogeography. Evolution 56, 1632–1643 (2002).
    PubMed  Article  Google Scholar 

    21.
    Knowles, L. L. & Maddison, W. P. Statistical phylogeography. Mol. Ecol. 11, 2623–2635 (2002).
    PubMed  Article  Google Scholar 

    22.
    Templeton, A. R. Statistical phylogeography: Methods of evaluating and minimizing inference errors. Mol. Ecol. 13, 789–809 (2004).
    PubMed  Article  Google Scholar 

    23.
    Thomas, Y., Bethenod, M. T., Pelozuelo, L., Frérot, B. & Bourguet, D. Genetic isolation between two sympatric host-plant races of the European corn borer, Ostrinia nubilalis Hübner. I. Sex pheromone, moth emergence timing, and parasitism. Evolution 57, 261–273 (2003).
    PubMed  Google Scholar 

    24.
    Sharma, H. C., Taneja, S. L., Kameswara Rao, N. & Prasada Rao, K. E. Evaluation of sorghum germplasm for resistance to insect pests. Inf. Bull. 63, 177 (2003).
    Google Scholar 

    25.
    Sharma, H. C., Dhillon, M. K., Pampapathy, G. & Reddy, B. V. S. Inheritance of resistance to spotted stem borer, Chilo partellus in sorghum, Sorghum bicolor. Euphytica 156, 117–128 (2007).
    Article  Google Scholar 

    26.
    Kanta, U., Dhillon, B. S. & Sekhon, S. S. Evaluation and development of maize germplasm for resistance to spotted stem borer. In Insect Resistant Maize: Recent Advances and Utilization (ed. Mihm, J. A.) 246–254 (Proceedings of an International Symposium CIMMYT, 1997).
    Google Scholar 

    27.
    Rakshit, S. et al. Catalogue of Indian maize inbred lines. Tech. Bull. 3, 40 (2008).
    Google Scholar 

    28.
    Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Stireman, J. O. III., Nason, J. D. & Heard, S. B. Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59, 2573–2587 (2005).
    CAS  PubMed  Article  Google Scholar 

    30.
    Zytynska, S. E. & Preziosi, R. F. Genetic interactions influence host preference and performance in a plant-insect system. Evol. Ecol. 25, 1321–1333 (2011).
    Article  Google Scholar 

    31.
    Zytynska, S. E. & Preziosi, R. F. Host preference of plant genotypes is altered by intraspecific competition in a phytophagous insect. Arthropod-Plant Interact. 7, 349–357 (2013).
    Article  Google Scholar 

    32.
    Sharma, H. C. Biotechnological Approaches for Pest Management and Ecological Sustainability (CRC Press, 2009).
    Google Scholar 

    33.
    Sharma, H. C. & Dhillon, M. K. Climate change effects on arthropod diversity and its implications for pest management and sustainable crop production. In Agroclimatology: Linking Agriculture to Climate (eds Hatfield, J. L. et al.) 595–619 (Crop Science Society of America and Soil Science Society of America Inc, Madison, WI, 2020).
    Google Scholar 

    34.
    Smith, C. M. Plant Resistance to Arthropods: Molecular and Conventional Approaches (Springer, 2005).
    Google Scholar 

    35.
    Dhillon, M. K. & Sharma, H. C. Paradigm shifts in research on host plant resistance to insect pests. Indian J. Plant Protect. 40(1), 1–11 (2012).
    Google Scholar 

    36.
    Funk, D. J. Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52, 1744–1759 (1998).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Dres, M. & Mallet, J. Host races in plant-feeding insects and their importance in sympatric speciation. Philos. Trans. R. Soc. B 357, 471–492 (2002).
    Article  Google Scholar 

    38.
    Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).
    Article  Google Scholar 

    39.
    Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).
    ADS  CAS  PubMed  Article  Google Scholar 

    40.
    Ishiguro, N. & Tsuchida, K. Polymorphic microsatellite loci for the rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae). Appl. Entomol. Zool. 41, 565–568 (2006).
    CAS  Article  Google Scholar 

    41.
    Mukhopadhyay, J., Ghosh, K., Rangel, E. F. & Munstermann, L. E. Genetic variability in biochemical characters of Brazilian field populations of the Leishmania vector, Lutzomyia longipalpis (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 59(6), 893–901 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Vijaya Lakshmi, P., Amudhan, S., Bindu, K. H., Cheralu, C. & Bentur, J. S. A new biotype of the Asian rice gall midge Orseolia oryzae (Diptera: Cecidomyiidae) characterized from the Warangal population in Andhra Pradesh, India. Int. J. Trop. Insect Sci. 26, 207–211 (2006).
    Google Scholar 

    43.
    Himabindu, K., Suneetha, K., Sama, V. S. A. K. & Bentur, J. S. A new rice gall midge resistance gene in the breeding line CR57-MR1523, mapping with flanking markers and development of NILs. Euphytica 174, 179–187 (2010).
    CAS  Article  Google Scholar 

    44.
    Ratcliffe, R. H. et al. Biotype composition of Hessian fly (Diptera: Cecidomyiidae) populations from the Southeastern, Midwestern, and Northwestern United States and virulence to resistance genes in wheat. J. Econ. Entomol. 93(4), 1319–1328 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Zhou, H. et al. Genetic analysis and fine mapping of the gall midge resistance gene Gm5 in rice (Oryza sativa L.). Theor. Appl. Genet. 133, 2021–2033 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Dhillon, M. K. & Kumar, S. Amino acid profiling of Sorghum bicolor vis-à-vis Chilo partellus (Swinhoe) for biochemical interactions and plant resistance. Arthropod-Plant Interact. 11, 537–550 (2017).
    Article  Google Scholar 

    47.
    Dhillon, M. K. & Kumar, S. Lipophilic profiling of Sorghum bicolor (L.) seedlings vis-à-vis Chilo partellus (Swinhoe) larvae reveals involvement of biomarkers in sorghum-stem borer interactions. Indian J. Exp. Biol. 58, 95–108 (2020).
    CAS  Google Scholar 

    48.
    Atray, I., Bentur, J. S. & Nair, S. The Asian rice gall midge (Orseolia oryzae) mitogenome has evolved novel gene boundaries and tandem repeats that distinguish its biotypes. PLoS ONE 10(7), e0134625 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Fujita, D., Kohli, A. & Horgan, F. G. Rice resistance to planthoppers and leafhoppers. Crit. Rev. Plant Sci. 32, 162–191 (2013).
    CAS  Article  Google Scholar 

    50.
    Diehl, R. S. & Bush, G. L. An evolutionary and applied perspective of insect biotypes. Annu. Rev. Entomol. 29, 471–504 (1984).
    Article  Google Scholar 

    51.
    Claridge, M. F. & Den Hollander, J. A biotype concept and its application to insect pests of agriculture. Crop Prot. 2(1), 85–95 (1983).
    Article  Google Scholar 

    52.
    Downie, D. A. Baubles, bangles, and biotypes: A critical review of the use and abuse of the biotype concept. J. Insect Sci. 10, 176 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Perring, T. M. The Bemisia tabaci species complex. Crop Prot. 20, 725–737 (2001).
    Article  Google Scholar 

    54.
    Wenger, J. A. & Michel, A. P. Implementing an evolutionary framework for understanding genetic relationships of phenotypically defined insect biotypes in the invasive soybean aphid (Aphis glycines). Evol. Appl. 6(7), 1041–1053 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Sharma, H. C., Taneja, S. L., Leuschner, K. & Nwanze, K. F. Techniques to screen sorghum for resistance to insect pests. Inf. Bull. 32, 48 (1992).
    Google Scholar 

    56.
    Kumar, S. & Dhillon, M. K. Lipophilic metabolite profiling of maize and sorghum seeds and seedlings, and their pest spotted stem borer larvae: A standardized GC-MS based approach. Indian J. Exp. Biol. 53, 170–176 (2015).
    PubMed  Google Scholar 

    57.
    Dhillon, M. K., Kumar, S. & Gujar, G. T. A common HPLC-PDA method for amino acid analysis in insects and plants. Indian J. Exp. Biol. 52, 73–79 (2014).
    CAS  PubMed  Google Scholar  More

  • in

    The influence of biochar on the content of carbon and the chemical transformations of fallow and grassland humic acids

    Physicochemical and chemical properties of soils and BioC
    The physicochemical and chemical characteristics of the soils and BioC, as well as selected chemical properties of the HAs isolated from the soil and BioC are shown in Table 1.
    Table 1 Physicochemical and chemical characteristics of soils, BioC and isolated HAs.
    Full size table

    The properties of soils and BioC, such as the d, Corg, A, pH, and Q, were presented in detail previously4. Briefly, soils were characterised by a typical d value for mineral soils ≈ 2.60 g cm−3, and by a relatively low content of Corg and a high content of A. The pH of the soils was weakly acidic. The examined soils were characterised by low Q values, indicating a low content of organic structures dissociating to the negative surface charge (mainly carboxylic and phenolic groups). The HAs obtained from fallow and grassland were characterised by high QHA values (about 50 times higher in comparison with the Q values of fallow and grassland). The d value of BioC was typical for organic materials (1.46 g cm−3), moreover, the BioC contained a high content of OM, which was expressed as Corg. The pH of BioC was alkaline. This material was also characterised by a high Q value, which indicated its favourable sorption properties.
    The results of our studies showed that the E2/6 values were similar for the HAs originated from the two studied soils, suggesting a similar ratio of lignin-type compounds resistant to humification to the structures with a high humification degree. The ΔlgK reached values of 0.83 and 0.86 for HAs isolated from grassland and fallow, respectively, indicating a low degree of HA humification (Kumada’s classification for low humification degree of HAs: ΔlgK = 0.8–1.1)33. Slightly higher ΔlgK values obtained for the grassland HAs compared with the fallow suggested a higher content of less humified compounds, such as cellulose, hemicellulose, and lignin34.
    The ΔlgK of HAs isolated from BioC reached a value of 0.54, suggesting the presence of highly humified compounds, in comparison with soil HAs (Kumada’s classification for high humification degree of HAs: ΔlgK  8.0, above which the OH groups are deprotonated26, therefore we only report results in this pH range. Changes in the QHA values as a function of pH (Fig. 4A–D) were monotonic; these values increased towards an alkaline pH, which resulted from the fact that other fractions of functional groups dissociated successively at increasing pH values. Generally, in the first month of the experiment, the highest QHA values were observed for HAs obtained from fallow and grassland with the lowest BioC dose (Fig. 4A,C). This fact indicated that these HAs had the best sorption properties. In the last month of the experiment, the QHA values changed in an ambiguous way. The QHA at pH 9.0 values of HAs isolated from pure BioC were lower than those obtained from the soil, and moreover, BioC did not have an obvious effect on the QHA values of the soil HAs. Previous studies4 on impact of BioC on the physicochemical properties of Haplic Luvisol under different land uses, showed that BioC added to soil caused a significant increase in Q values in the last year of the experiment. Thus, we can conclude that BioC introduced OM with a variable surface charge but did not affect the soil’s QHA. It is possible that the BioC doses used in our experiment were insufficient to raise the QHA values.
    Figure 4

    Dependence of surface negative charge (QHA) on pH of the HAs solution. HAs obtained from fallow (A,B) and grassland (C,D) amended with BioC in 1st and 28th month of field experiment, as well as HAs obtained from BioC.

    Full size image

    Influence of BioC amendment on structure and chemical properties of HAs in fallow and grassland: spectroscopic approach
    The analyses of the HAs isolated from fallow and grassland amended with BioC showed changes in the structural properties of these compounds. The E2/6 parameter estimated from UV–Vis data was changing both under the influence of different BioC doses and during the 3 years of the experiment. However, it should be assumed that the observed changes were of a different nature for fallow (Fig. 5A) and for grassland (Fig. 5B), due to varied trends in the activity of BioC on the analysed soils.
    Figure 5

    Changes in E2/6 values obtained for HAs of fallow (A) and grassland (B) amended with BioC (0, 1, 2, 3 kg m−2) as a function of time. Average values from 3 replicates in each term, ± standard deviation. Other letter designations indicate significant differences between values at α  More

  • in

    Tracking late Pleistocene Neandertals on the Iberian coast

    1.
    Bennett, M. R. & Morse, S. A. Human Footprints: Fossilised Locomotion? (Springer International Publishing, Berlin, 2014).
    Google Scholar 
    2.
    Leakey, M. D. & Hay, R. L. Pliocene footprints in the Laetolil Beds at Laetoli, northern Tanzania. Nature 278, 317–323 (1979).
    ADS  Article  Google Scholar 

    3.
    Mietto, P., Avanzini, M. & Rolandi, G. Palaeontology: Human footprints in Pleistocene volcanic ash. Nature 422, 133 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Ashton, N. et al. Hominin footprints from early Pleistocene deposits at Happisburgh, UK. PLoS ONE 9, e88329 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Duveau, J. et al. The composition of a Neandertal social group revealed by the hominin footprints at Le Rozel (Normandy, France). PNAS 116, 19409–19414 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Masao, F. T. et al. New footprints from Laetoli (Tanzania) provide evidence for marked body size variation in early hominins. eLife 5, e19568 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Altamura, F. et al. Archaeology and ichnology at Gombore II-2, Melka Kunture, Ethiopia: Everyday life of a mixed-age hominin group 700,000 years ago. Sci. Rep. 8, 2815 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Bustos, D. et al. Footprints preserve terminal Pleistocene hunt? Human-sloth interactions in North America. Sci. Adv. 4, eaar7621 (2018).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Stewart, M. et al. Human footprints provide snapshot of last interglacial ecology in the Arabian interior. Sci. Adv. 6, eaba8940 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Barton, C. M. Stone tools and paleolithic settlement in the Iberian Peninsula. Proc. Prehist. Soc. 56, 15–32 (1990).
    Article  Google Scholar 

    11.
    Garralda, M. D. The Neandertals from the Iberian Peninsula. MUNIBE 57, 289–314 (2005).
    Google Scholar 

    12.
    Ruiz, M. N. et al. Last Neandertal occupations at Central Iberia: The lithic industry of Jarama VI rock shelter (Valdesotos, Guadalajara, Spain). Archaeol. Anthropol. Sci. 12, 45 (2020).
    Article  Google Scholar 

    13.
    Muñiz, F. et al. Following the last Neandertals: Mammal tracks in Late Pleistocene coastal dunes of Gibraltar (S Iberian Peninsula). Quat. Sci. Rev. 217, 297–309 (2019).
    ADS  Article  Google Scholar 

    14.
    Neto de Carvalho, C. et al. First vertebrate tracks and palaeoenvironment in a MIS-5 context in the Doñana National Park (Huelva, SW Spain). Quat. Sci. Rev. 243, 106508 (2020).
    Article  Google Scholar 

    15.
    Neto de Carvalho, C. et al. Paleoecological implications of large-sized wild boar tracks recorded during the last interglacial (Mis 5) at Huelva (Sw Spain). Palaios 35, 512–523 (2020).
    ADS  Article  Google Scholar 

    16.
    Rodríguez-Ramírez, A. et al. The role of neo-tectonics in the sedimentary infilling and geomorphological evolution of the Guadalquivir estuary (Gulf of Cadiz, SW Spain) during the Holocene. Geomorphology 219, 126–140 (2014).
    ADS  Article  Google Scholar 

    17.
    Rodríguez-Rámirez, A. Geomorfología del Parque Nacional de Doñana y su Entorno. (ed Organismo Autónomo Parques Nacionales) (Ministerio de Medio Ambiente, Madrid, 1998).

    18.
    Pérez Muñoz, A. B. et al. Parque Nacional de Doñana. Guía Geológica. (ed Rodríguez Fernández, R.) (Instituto Geológico y Minero de España & Organismo Autónomo Parques Nacionales, Madrid, 2020).

    19.
    Instituto Hidrográfico de la Marina. Derrotero N° 2-Tomo 2 (Costas de Portugal y SO de España, Cádiz, 1992).
    Google Scholar 

    20.
    Rodríguez-Ramírez, A. et al. Analysis of the recent storm record in the southwestern spanish coast: Implications for littoral management. Sci. Total Environ. 303, 189–201 (2003).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    21.
    Gibbard, P. L., Head, M. J., Walker, M. J. C. & The Subcommission on Quaternary Stratigraphy. Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. J. Quat. Sci. 25, 96–102 (2010).
    Article  Google Scholar 

    22.
    Zazo, C. et al. Landscape evolution and geodynamic controls in the Gulf of Cadiz (Huelva coast, SW Spain) during the Late Quaternary. Geomorphology 68, 269–290 (2005).
    ADS  Article  Google Scholar 

    23.
    Duveau, J. Les empreintes de pieds du Rozel (Manche). Instantanés de groupes humains au Pléistocène supérieur. Approche combinée morphométrique et expérimentale. (Ph. D. dissertation. Muséum national d’Histoire naturelle, Paris, 2020).

    24.
    Manolis, S., Aiello, L., Henessy, R., Kyparissi-Apostolika, N. Middle Palaeolithic Footprints from Theopetra Cave (Thessaly, Greece) (ed Kyparissi-Apostolika, N.) 87–93 (Greek Ministry of Culture and Institute for Aegean Prehistory, Athens, 2000).

    25.
    Onac, B. P. et al. U-Th ages constraining the Neanderthal footprint at Vârtop Cave, Romania. Quat. Sci. Rev. 24, 1151–1157 (2005).
    ADS  Article  Google Scholar 

    26.
    Duveau, J., Berillon, G., Verna, C. 11-On the tracks of Neandertals: The ichnological assemblage from Le Rozel (Normandy, France). (eds Pastoors, A. & Lenssen-Erz, T.) (Springer Nature, in Press).

    27.
    Citton, P., Romano, M., Salvador, I. & Avanzini, M. Reviewing the upper Pleistocene human footprints from the ‘Sala dei Misteri’in the Grotta della Basura (Toirano, northern Italy) cave: An integrated morphometric and morpho-classificatory approach. Quat. Sci. Rev. 169, 50–64 (2017).
    ADS  Article  Google Scholar 

    28.
    Helm, C. W. et al. A New Pleistocene Hominin Tracksite from the Cape South Coast, South Africa. Sci. Rep. 8, 3772 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Dingwall, H. L., Hatala, K. G., Wunderlich, R. E. & Richmond, B. G. Hominin stature, body mass, and walking speed estimates based on 1.5 million-year-old fossil footprints at Ileret, Kenya. J. Hum. Evol. 64, 556–568 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Krishan, K. Estimation of stature from footprint and foot outline dimensions in Gujjars of North India. Forensic Sci. Int. 175, 93–101 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Fawzy, I. A. & Kamal, N. N. Stature and body weight estimation from various footprint measurements among Egyptian population. J. Forensic Sci. 55, 884–888 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    32.
    Reel, S., Rouse, S., Obe, W. V. & Doherty, P. Estimation of stature from static and dynamic footprints. Forensic Sci. Int. 219, 283-e1 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    33.
    Hemy, N., Flavel, A., Ishak, N. I. & Franklin, D. Sex estimation using anthropometry of feet and footprints in a Western Australian population. Forensic Sci. Int. 231, 402-e1 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Aiello, L. & Dean, C. An Introduction to Human Evolutionary Anatomy (Academic Press Inc., London, 1990).
    Google Scholar 

    35.
    Klenerman, L. & Wood, B. The Human Foot: A Companion to Clinical Studies (Springer, London, 2006).
    Google Scholar 

    36.
    Elftman, H. & Manter, J. Chimpanzee and human feet in bipedal walking. Am. J. Phys. Anthropol. 20, 69–79 (1935).
    Article  Google Scholar 

    37.
    Alexander, R. M. Principles of Animal Locomotion (Princeton University Press, Princeton, 2003).
    Google Scholar 

    38.
    Ruff, C. B., Trinkaus, E. & Holliday, T. W. Body mass and encephalization in Pleistocene Homo. Nature 387, 173 (1997).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Carretero, J. M. et al. Stature estimation from complete long bones in the Middle Pleistocene humans from the Sima de los Huesos, Sierra de Atapuerca (Spain). J. Hum. Evol. 62, 242–255 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neandertal behaviour. Nature 479, 525–528 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Hublin, J. J. The modern human colonization of western Eurasia: When and where?. Quat. Sci. Rev. 118, 194–210 (2015).
    ADS  Article  Google Scholar 

    42.
    Karavanić, I. et al. Paleolithic hominins and settlement in Croatia from MIS 6 to MIS 3: Research history and current interpretations. Quat. Int. 494, 152–166 (2018).
    Article  Google Scholar 

    43.
    Vallespi, E., Alvarez, G., Perez Sindreu, F. & Rufete, P. Nuevas atribuciones onubenses al Paleolitico Inferior y Medio. Huelva en su Historia I, 43–56 (1986).

    44.
    Viehmann, I. Prehistoric Human Footprints in Romania’s Caves. Theor. Appl. Karstol. 3, 229–234 (1987).
    Google Scholar 

    45.
    Harvati, K. The human fossil record from Romania: Early Upper Paleolithic European Mandibles and Neanderthal. (eds Harvati, K. & Roksandic, M.) 51–68 (Springer Netherlands, 2016).

    46.
    Zazo, C. et al. Pleistocene and Holocene Aeolian facies along the Huelva coast (southern Spain): Climatic and neotectonic implications. Geol. Mijn. 77, 209–224 (1999).
    Article  Google Scholar 

    47.
    Zazo, C. et al. El complejo eólico de El Abalario (Huelva) (eds Sanjaume, E., Gracia, F. J.) 407–425 (Sociedad Española de Geomorfología, Madrid, 2011)

    48.
    Paerl, H. W. & Yanarell, A. C. Environmental dynamics, community structure and function in a hypersaline microbial mat (eds Seckbach, J. & Oren, A.) 421–442, (Springer Netherlands, 2010).

    49.
    Porada, H. & Bouougri, E. Wrinkle structures—a critical review (eds Schieber, J. et al.) 135–144 (Elsevier, 2007).

    50.
    Gerdes, G. What Are Microbial Mats? (eds Seckbach, J. & Oren, A.) 3–25, (Springer Netherlands, 2010).

    51.
    Eriksson, P. G. et al. Paleoenvironmental Context Of Microbial Mat-Related Structures In Siliciclastic Rocks. (eds Seckbach, J. & Oren, A.) 71–108 (Springer Netherlands, 2010).

    52.
    Zilhão, J. et al. Last Interglacial Iberian Neandertals as fisher-hunter-gatherers. Science 367, 1443 (2020).
    ADS  Article  CAS  Google Scholar 

    53.
    Hardy, B. L. & Moncel, M.-H. Neanderthal use of fish, mammals, birds, starchy plants and wood 125–250,000 years ago. PLoS ONE 6, e23768 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Wall-Scheffler, C. M., Wagnild, J. & Wagler, E. Human footprint variation while performing load bearing tasks. PLoS ONE 10, e0118619 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Romagnoli, F., Martini, F. & Sarti, L. Neanderthal use of Callista chione shells as raw material for retouched tools in South-East Italy: Analysis of Grotta del Cavallo layer l assemblage with a new methodology. J. Archaeol. Method Theory 22, 1007–1037 (2015).
    Article  Google Scholar 

    56.
    Benito, B. M. et al. The ecological niche and distribution of Neanderthals during the Last Interglacial. J. Biogeogr. 44, 51–61 (2017).
    Article  Google Scholar 

    57.
    Villa, P. et al. Neandertals on the beach: Use of marine resources at Grotta dei Moscerini (Latium, Italy). PLoS ONE 15, e0226690 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Cortés-Sánchez, M. et al. Shellfish collection on the westernmost Mediterranean, Bajondillo cave (~ 160–35 cal kyr BP): A case of behavioral convergence?. Quat. Sci. Rev. 217, 284–196 (2019).
    ADS  Article  Google Scholar 

    59.
    Stringer, C. B. et al. Neandertal exploitation of marine mammals in Gibraltar. PNAS 105, 14319–14324 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    A multifaceted approach to understanding bat community response to disturbance in a seasonally dry tropical forest

    1.
    Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    3.
    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).
    PubMed  Article  Google Scholar 

    4.
    Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R. & Racey, P. A. Carpe noctem: the importance of bats as bioindicators. Endanger. Species Res. 8, 93–115 (2009).
    Article  Google Scholar 

    5.
    Rocha, R. et al. Design matters: an evaluation of the impact of small man-made forest clearings on tropical bats using a before-after-control-impact design. For. Ecol. Manag. 401, 8–16 (2017).
    Article  Google Scholar 

    6.
    Wood, J. R. et al. No single driver of biodiversity: divergent responses of multiple taxa across land use types. Ecosphere 8, e01997 (2017).
    Article  Google Scholar 

    7.
    Coutinho Cunto, G. C. & Bernard, E. Neotropical bats as indicators of environmental disturbance: what is the emerging message?. Acta Chiropterologica 14, 143–151 (2012).
    Article  Google Scholar 

    8.
    Medellín, R. A., Equihua, M. & Amin, M. A. Bat diversity and abundance as indicators of disturbance in neotropical rainforest. Conserv. Biol. 14, 1666–1675 (2000).
    Article  Google Scholar 

    9.
    Russo, D., Bosso, L. & Ancillotto, L. Novel perspectives on bat insectivory highlight the value of this ecosystem service in farmland: research frontiers and management implications. Agric. Ecosyst. Environ. 266, 31–38 (2018).
    Article  Google Scholar 

    10.
    Avila-Cabadilla, L. D., Stoner, K. E., Henry, M. & Alvarez Añorve, M. Y. Composition, structure and diversity of phyllostomid bat assemblages in different successional stages of a tropical dry forest. For. Ecol. Manag. 258, 986–996 (2009).
    Article  Google Scholar 

    11.
    Castro-Luna, A. A., Sosa, V. J. & Castillo-Campos, G. Quantifying phyllostomid bats at different taxonomic levels as ecological indicators in a disturbed tropical forest. Acta Chiropterologica 9, 219–228 (2007).
    Article  Google Scholar 

    12.
    García-Morales, R., Badano, E. I. & Moreno, C. E. Response of neotropical bat assemblages to human land use. Conserv. Biol. 27, 1096–1106 (2013).
    PubMed  Article  Google Scholar 

    13.
    Meyer, C. F. J. & Kalko, E. K. V. Bat assemblages on neotropical land-bridge islands: nested subsets and null model analyses of species co-occurrence patterns. Divers. Distrib. 14, 644–654 (2008).
    Article  Google Scholar 

    14.
    Farneda, F. Z. et al. Predicting biodiversity loss in island and countryside ecosystems through the lens of taxonomic and functional biogeography. Ecography 43, 97–106 (2020).
    Article  Google Scholar 

    15.
    Cisneros, L. M., Fagan, M. E. & Willig, M. R. Season-specific and guild-specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats. J. Anim. Ecol. 84, 373–385 (2015).
    PubMed  Article  Google Scholar 

    16.
    Peña-Cuellar, E., Stoner, K. E., Avila-Cabadilla, L. D., Martínez-Ramos, M. & Estrada, A. Phyllostomid bat assemblages in different successional stages of tropical rain forest in Chiapas, Mexico. Biodivers. Conserv. 21, 1381–1397 (2012).
    Article  Google Scholar 

    17.
    Fenton, A. M. B. et al. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica 24, 440–446 (1992).
    Article  Google Scholar 

    18.
    Avila-Cabadilla, L. D. et al. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests. PLoS ONE 7, e35228 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Falcão, L. A. D., do Espírito-Santo, M. M., Fernandes, G. W. & Paglia, A. P. Effects of habitat structure, plant cover, and successional stage on the bat assemblage of a tropical dry forest at different spatial scales. Diversity 10, 1–11 (2018).
    Article  Google Scholar 

    20.
    Avila-Cabadilla, L. D. et al. Phyllostomid bat occurrence in successional stages of neotropical dry forests. PLoS ONE 9, e84572 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    21.
    Falcão, L. A. D., do Espírito-Santo, M. M., Leite, L. O., Garro, R. N. S. L., Avila-Cabadilla, L. D. & Stoner, K. E. Spatiotemporal variation in phyllostomid bat assemblages over a successional gradient in a tropical dry forest in southeastern Brazil. J. Trop. Ecol. 30, 123–132 (2014).
    Article  Google Scholar 

    22.
    Zarazúa-Carbajal, M., Avila-Cabadilla, L. D., Alvarez-Añorve, M. Y., Benítez-Malvido, J. & Stoner, K. E. Importance of riparian habitat for frugivorous bats in a tropical dry forest in western Mexico. J. Trop. Ecol. 33, 74–82 (2017).
    Article  Google Scholar 

    23.
    Meyer, C. F. J., Struebig, M. J. & Willig, M. R. Responses of tropical bats to habitat fragmentation, logging, and deforestation. In Bats in the Anthropocene: conservation of bats in a changing world (eds. Voigt, C. C. & Kingston, T.) 63–103 (Springer International Publishing) doi:https://doi.org/10.1007/978-3-319-25220-9 (2016).

    24.
    Estrada, A. & Coates-Estrada, R. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biol. Conserv. 103, 237–245 (2002).
    Article  Google Scholar 

    25.
    Galindo-González, J. Clasificación de los murciélagos de la región de Los Tuxtlas, Veracruz, respecto a su respuesta a la fragmentación del hábitat. Acta Zoológica Mex. 20, 239–243 (2004).
    Google Scholar 

    26.
    Gorrensen, M. & Willing, M. R. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. J. Mammal. 85, 688–697 (2004).
    Article  Google Scholar 

    27.
    de Oliveira, H. F. M., de Camargo, N. F., Gager, Y. & Aguiar, L. M. S. The response of bats (Mammalia: Chiroptera) to habitat modification in a neotropical savannah. Trop. Conserv. Sci. 10, 1–14 (2017).
    Article  Google Scholar 

    28.
    de la Peña-Cuéllar, E., Benítez-Malvido, J., Avila-Cabadilla, L. D., Martínez-Ramos, M. & Estrada, A. Structure and diversity of phyllostomid bat assemblages on riparian corridors in a human-dominated tropical landscape. Ecol. Evol. 5, 903–913 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    García-Morales, R. et al. Deforestation impacts on bat functional diversity in tropical landscapes. PLoS ONE 11, 1–16 (2016).
    Article  CAS  Google Scholar 

    30.
    Daniel, S., Korine, C. & Pinshow, B. Central-place foraging in nursing, arthropod-gleaning bats. Can. J. Zool. 86, 623–626 (2008).
    Article  Google Scholar 

    31.
    Galindo-González, J. & Sosa, V. J. Frugivorous bats in isolated trees and riparian vegetation associated with human-made pastures in a fragmented tropical landscape. Southwest. Nat. 48, 579–589 (2003).
    Article  Google Scholar 

    32.
    Chazdon, R. L. et al. Rates of change in tree communities of secondary neotropical forests following major disturbances. Philos. Trans. R. Soc. B Biol. Sci. 362, 273–289 (2007).
    Article  Google Scholar 

    33.
    Brito, J., Camacho, M. A., Romero, V. & Vallejo, A. F. Mamíferos del Ecuador. Versión 2019.0. Museo de Zoología, Pontificia Universidad Católica del Ecuador. https://bioweb.bio/faunaweb/mammaliaweb (2019).

    34.
    Tirira, D. A field guide to the mammals of Ecuador. Asociación Ecuatoriana de Mastozoología and Murciélago Blanco Publishing House (2017).

    35.
    Jara-Guerrero, A., Maldonado Riofrío, D., Espinosa, C. I. & Duncan, D. H. Beyond the blame game: a restoration pathway reconciles ecologists’ and local leaders’ divergent models of seasonally dry tropical forest degradation. Ecol. Soc. 24, 22 (2019).
    Article  Google Scholar 

    36.
    Cueva Ortiz, J. et al. Influence of anthropogenic factors on the diversity and structure of a dry forest in the central part of the Tumbesian region (Ecuador-Perú). Forests 10, 1–22 (2019).
    Article  Google Scholar 

    37.
    Medina, A., Harvey, C. A., Sánchez Merlo, D., Vílchez, S. & Hernández, B. Bat diversity and movement in an agricultural landscape in Matiguás, Nicaragua. Biotropica 39, 120–128 (2007).
    Article  Google Scholar 

    38.
    Davies, K. F., Margules, C. R. & Lawrence, J. F. Which traits of species predict population declines in experimental forest fragments?. Ecology 81, 1450–1461 (2000).
    Article  Google Scholar 

    39.
    Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).
    Article  Google Scholar 

    40.
    Medellin, R. A. Chrotopterus auritus. Mamm. Species 343, 1–5 (1989).
    Google Scholar 

    41.
    Aguirre, L. F., Lens, L., Van Damme, R. & Matthysen, E. Consistency and variation in the bat assemblages inhabiting two forest islands within a neotropical savanna in Bolivia. J. Trop. Ecol. 19, 367–374 (2003).
    Article  Google Scholar 

    42.
    Stoner, K. E. Phyllostomid bat community structure and abundance in two contrasting tropical dry forests. Biotropica 37, 591–599 (2005).
    Article  Google Scholar 

    43.
    Gotelli, N. J. & Colwell, R. K. Estimating species richness. In Biological diversity: frontiers in measurement and assessment (eds. Magurran, A. & McGill, B. J.) 39–54 (Oxford University Press, 2011).

    44.
    Moreno, C. E. & Halffter, G. Assessing the completeness of bat biodiversity inventories using species accumulation curves. J. Appl. Ecol. 37, 149–158 (2000).
    Article  Google Scholar 

    45.
    Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. Biol. Sci. 345, 101–118 (1994).
    ADS  CAS  Article  Google Scholar 

    46.
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Article  Google Scholar 

    47.
    Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).
    Article  Google Scholar 

    48.
    Mena, J. L. & Williams de Castro, M. Diversidad y patrones reproductivos de quirópteros en un área urbana de Lima, Perú. Ecol. Apl. 1, 1–8 (2002).
    Article  Google Scholar 

    49.
    Pacheco, V., Cadenillas, R., Salas, E., Tello, C. & Zeballos, H. Diversidad y endemismo de los mamíferos del Perú. Rev. Peru. Biol. 16, 5–32 (2009).
    Google Scholar 

    50.
    Pinto, C. M., Marchán-Rivadeneira, M. R., Tapia, E. E., Carrera, J. P. & Baker, R. J. Distribution, abundance and roosts of the fruit bat Artibeus fraterculus (Chiroptera: Phyllostomidae). Acta Chiropterologica 15, 85–94 (2013).
    Article  Google Scholar 

    51.
    Homyack, J. A. Evaluating habitat quality of vertebrates using conservation physiology tools. Wildl. Res. 37, 332–342 (2010).
    Article  Google Scholar 

    52.
    Carrasco-Rueda, F. & Loiselle, B. A. Do riparian forest strips in modified forest landscapes aid in conserving bat diversity?. Ecol. Evol. 9, 4192–4209 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Lewis, S. E. Roost fidelity of bats: a review. Am. Soc. Mammal. Roost 76, 481–496 (1995).
    Google Scholar 

    54.
    Voss, R. S., Fleck, D. W., Strauss, R. E., Velazco, P. M. & Simmons, N. B. Roosting ecology of Amazonian bats: evidence for guild structure in hyperdiverse mammalian communities. Am. Museum Novit. 3870, 1–43 (2016).
    Article  Google Scholar 

    55.
    Hylander, K. & Ehrle, J. The mechanisms causing extinction debts. Trends Ecol. Evol. 28, 341–346 (2013).
    PubMed  Article  Google Scholar 

    56.
    Willig, M. R. et al. Guild-level responses of bats to habitat conversion in a lowland Amazonian rainforest: species composition and biodiversity. J. Mammal. 100, 223–238 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Meyer, C. F. J. Methodological challenges in monitoring bat population- and assemblage-level changes for anthropogenic impact assessment. Mamm. Biol. 80, 159–169 (2015).
    Article  Google Scholar 

    58.
    Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 10, 169–185 (2019).
    Article  Google Scholar 

    59.
    Sikes, R. S. & the Animal Care and Use Committee of the American Society of Mammalogists. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).

    60.
    Espinosa, C. I. et al. Bosques tropicales secos de la región Pacífico Ecuatorial: diversidad, estructura, funcionamiento e implicaciones para la conservación. Ecosistemas 21, 167–179 (2012).
    Google Scholar 

    61.
    García-Cervigón, A. I., Camarero, J. J. & Espinosa, C. I. Intra-annual stem increment patterns and climatic responses in five tree species from an Ecuadorian tropical dry forest. Trees 31, 1057–1067 (2017).
    Article  Google Scholar 

    62.
    Jara-Guerrero, A., De la Cruz, M. & Méndez, M. Seed dispersal spectrum of woody species in South Ecuadorian dry forests: environmental correlates and the effect of considering species abundance. Biotropica 43, 722–730 (2011).
    Article  Google Scholar 

    63.
    Vázquez, M., Larrea, M. & Ojeda, P. Biodiversidad en los bosques secos del suroccidente de la provincia de Loja (EcoCiencia, 2001).
    Google Scholar 

    64.
    Tapia-Armijos, M. F., Homeier, J., Espinosa, C. I., Leuschner, C. & De La Cruz, M. Deforestation and forest fragmentation in south Ecuador since the 1970s-losing a hotspot of biodiversity. PLoS ONE 10, e133701 (2015).
    Google Scholar 

    65.
    Cueva Ortiz, J. & Chalán, L. A. Cobertura vegetal y uso actual del suelo de la provincia de Loja. Informe Técnico (2010).

    66.
    Kalka, M. & Kalko, E. K. V. Gleaning bats as underestimated predators of herbivorous insects: diet of Micronycteris microtis (Phyllostomidae) in Panama. J. Trop. Ecol. 22, 1–10 (2006).
    Article  Google Scholar 

    67.
    Espinosa, C. I., Valle, D., Armijos, D., Jara-Guerrero, A. & Griffith, D. M. Bat abundance data from Zapotillo, Ecuador 2013–2017. Knowl. Netw. Biocomplexity https://doi.org/10.5063/F1765CQJ (2020).
    Article  Google Scholar 

    68.
    Barwell, L. J., Isaac, N. J. B. & Kunin, W. E. Measuring β-diversity with species abundance data. J. Anim. Ecol. 84, 1112–1122 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    69.
    Jakob, E. M., Marshall, S. D. & Uetz, G. W. Estimating fitness: a comparison of body condition indices. Oikos 77, 61–67 (1996).
    Article  Google Scholar 

    70.
    Reist, J. D. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can. J. Zool. 63, 1429–1439 (1985).
    ADS  Article  Google Scholar 

    71.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).

    72.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2018). More

  • in

    Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness

    1.
    Slobodkin, L. B. Growth and regulation of animal populations (Holt, Rinehart and Winston, 1961).
    2.
    Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).
    CAS  PubMed  Article  Google Scholar 

    3.
    Hendry, A. P. A critique for eco-evolutionary dynamics. Funct. Ecol. 33, 84–94 (2019).
    Article  Google Scholar 

    4.
    Turcotte, M. M., Reznick, D. N. & Hare, J. D. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol. Lett. 14, 1084–1092 (2011).
    PubMed  Article  Google Scholar 

    5.
    Hairston, N. G. Jr, Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).
    Article  Google Scholar 

    6.
    Tan, J., Rattray, J. B., Yang, X. & Jiang, L. Spatial storage effect promotes biodiversity during adaptive radiation. Proc. R. Soc. Lond. B 284, 20170841 (2017).
    Google Scholar 

    7.
    Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl Acad. Sci. USA 116, 2112–2117 (2019).
    CAS  PubMed  Article  Google Scholar 

    8.
    Faillace, C. A. & Morin, P. J. Evolution alters the consequences of invasions in experimental communities. Nat. Ecol. Evol. 1, 0013 (2017).
    Article  Google Scholar 

    9.
    Vanbergen, A. J., Espíndola, A. & Aizen, M. A. Risks to pollinators and pollination from invasive alien species. Nat. Ecol. Evol. 2, 16–25 (2018).
    PubMed  Article  Google Scholar 

    10.
    Hendry, A. P. Eco-evolutionary dynamics (Princeton Univ. Press, 2016).

    11.
    Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    12.
    Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    terHorst, C. P. & Zee, P. C. Eco-evolutionary dynamics in plant–soil feedbacks. Funct. Ecol. 30, 1062–1072 (2016).
    Article  Google Scholar 

    14.
    Soto, M. J., Domínguez‐Ferreras, A., Pérez‐Mendoza, D., Sanjuán, J. & Olivares, J. Mutualism versus pathogenesis: the give‐and‐take in plant–bacteria interactions. Cell. Microbiol. 11, 381–388 (2009).
    CAS  PubMed  Article  Google Scholar 

    15.
    Marchetti, M. et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 8, e1000280 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Saikkonen, K., Wäli, P., Helander, M. & Faeth, S. H. Evolution of endophyte–plant symbioses. Trends Plant Sci. 9, 275–280 (2004).
    CAS  PubMed  Article  Google Scholar 

    17.
    Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9, e01294-18 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Miller, E. T., Svanbäck, R. & Bohannan, B. J. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. Trends Ecol. Evol. 33, 926–935 (2018).
    PubMed  Article  Google Scholar 

    19.
    Griffin, E. A. et al. Plant host identity and soil macronutrients explain little variation in sapling endophyte community composition: is disturbance an alternative explanation? J. Ecol. 107, 1876–1889 (2019).
    CAS  Article  Google Scholar 

    20.
    Acosta, K. et al. Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS ONE 15, e0228560 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Sandler, G., Bartkowska, M., Agrawal, A. F. & Wright, S. I. Estimation of the SNP mutation rate in two vegetatively propagating species of duckweed. G3 10, 4191–4200 (2020).
    PubMed  Article  Google Scholar 

    22.
    Ishizawa, H., Kuroda, M., Morikawa, M. & Ike, M. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnol. Biofuels 10, 62 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Zhang, Y. et al. Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS ONE 5, e13527 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Tan, J., Yang, X., He, Q., Hua, X. & Jiang, L. Earlier parasite arrival reduces the repeatability of host adaptive radiation. ISME J. 14, 2358–2360 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Tan, J., Yang, X. & Jiang, L. Species ecological similarity modulates the importance of colonization history for adaptive radiation. Evolution 71, 1719–1727 (2017).
    PubMed  Article  Google Scholar 

    27.
    Meyer, J. R., Schoustra, S. E., Lachapelle, J. & Kassen, R. Overshooting dynamics in a model adaptive radiation. Proc. R. Soc. Lond. B 278, 392–398 (2011).
    Google Scholar 

    28.
    Tan, J., Kelly, C. K. & Jiang, L. Temporal niche promotes biodiversity during adaptive radiation. Nat. Commun. 4, 2102 (2013).
    PubMed  Article  CAS  Google Scholar 

    29.
    Spiers, A. J., Buckling, A. & Rainey, P. B. The causes of Pseudomonas diversity. Microbiology 146, 2345–2350 (2000).
    CAS  PubMed  Article  Google Scholar 

    30.
    Spiers, A. J., Bohannon, J., Gehrig, S. M. & Rainey, P. B. Biofilm formation at the air–liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol. Microbiol. 50, 15–27 (2003).
    CAS  PubMed  Article  Google Scholar 

    31.
    Bantinaki, E. et al. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity. Genetics 176, 441–453 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    McDonald, M. J., Gehrig, S. M., Meintjes, P. L., Zhang, X.-X. & Rainey, P. B. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation. GENETICS 183, 1041–1053 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Bailey, S. F., Dettman, J. R., Rainey, P. B. & Kassen, R. Competition both drives and impedes diversification in a model adaptive radiation. Proc. R. Soc. Lond. B 280, 20131253 (2013).
    Google Scholar 

    34.
    Hansen, S. K., Rainey, P. B., Haagensen, J. A. & Molin, S. Evolution of species interactions in a biofilm community. Nature 445, 533–536 (2007).
    CAS  PubMed  Article  Google Scholar 

    35.
    Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).
    CAS  PubMed  Article  Google Scholar 

    36.
    Ahmad, F., Ahmad, I. & Khan, M. S. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163, 173–181 (2008).
    CAS  PubMed  Article  Google Scholar 

    37.
    El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y. & Elbadry, M. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front. Microbiol. 5, 651 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Gómez, P. & Buckling, A. Real-time microbial adaptive diversification in soil. Ecol. Lett. 16, 650–655 (2013).
    PubMed  Article  Google Scholar 

    39.
    Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011).
    CAS  PubMed  Article  Google Scholar 

    40.
    Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Veach, A. M. et al. Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome 7, 76 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Lennon, J. T. & Martiny, J. B. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol. Lett. 11, 1178–1188 (2008).
    PubMed  Article  Google Scholar 

    43.
    Pantel, J. H., Duvivier, C. & Meester, L. D. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol. Lett. 18, 992–1000 (2015).
    PubMed  Article  Google Scholar 

    44.
    Faillace, C. A. & Morin, P. J. Evolution alters post-invasion temporal dynamics in experimental communities. J. Anim. Ecol. 89, 285–298 (2020).
    PubMed  Article  Google Scholar 

    45.
    Omilian, A. R., Cristescu, M. E. A., Dudycha, J. L. & Lynch, M. Ameiotic recombination in asexual lineages of Daphnia. Proc. Natl Acad. Sci. USA 103, 18638–18643 (2006).
    CAS  PubMed  Article  Google Scholar 

    46.
    Mao, Y., Botella, J. R., Liu, Y. & Zhu, J.-K. Gene editing in plants: progress and challenges. Natl Sci. Rev. 6, 421–437 (2019).
    CAS  Article  Google Scholar 

    47.
    Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of Bacteria and Archaea. Science 327, 167–170 (2010).
    CAS  PubMed  Article  Google Scholar 

    48.
    Yang, L. et al. Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments. Soil Biol. Biochem. 43, 915–922 (2011).
    CAS  Article  Google Scholar 

    49.
    Zabłocka-Godlewska, E., Przystaś, W. & Grabińska-Sota, E. Decolourization of diazo Evans blue by two strains of Pseudomonas fluorescens isolated from different wastewater treatment plants. Water Air Soil Pollut. 223, 5259–5266 (2012).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Paulsen, I. T. et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat. Biotechnol. 23, 873–878 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Rainey, P. B. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 1, 243–257 (1999).
    CAS  PubMed  Article  Google Scholar 

    52.
    Gilbert, S. et al. Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front. Chem. 6, 265 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    53.
    Bailey, M. J., Lilley, A. K., Thompson, I. P., Rainey, P. B. & Ellis, R. J. Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol. Ecol. 4, 755–764 (1995).
    CAS  PubMed  Article  Google Scholar 

    54.
    Spiers, A. J. & Rainey, P. B. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology 151, 2829–2839 (2005).
    CAS  PubMed  Article  Google Scholar 

    55.
    Lind, P. A., Libby, E., Herzog, J. & Rainey, P. B. Predicting mutational routes to new adaptive phenotypes. eLife 8, e38822 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    O’Brien, P. A., Webster, N. S., Miller, D. J. & Bourne, D. G. Host–microbe coevolution: applying evidence from model systems to complex marine invertebrate holobionts. mBio 10, e02241-18 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    57.
    Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028-16 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Landolt, E. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), Volume 2. The Family of Lemnaceae, A Monographic Study, Volume 1 (Geobotanical Institute, ETH Zurich, 1986).

    59.
    Ziegler, P., Sree, K. S. & Appenroth, K.-J. Duckweeds for water remediation and toxicity testing. Toxicol. Environ. Chem. 98, 1127–1154 (2016).
    CAS  Article  Google Scholar  More

  • in

    Genetic structure of Malus sylvestris and potential link with preference/performance by the rosy apple aphid pest Dysaphis plantaginea

    Plant and insect materials
    A total of 56 apple plants were grown from seeds and sampled for this study. Cultivated apple plants resulting from crosses between various cultivated apple varieties were used (M. domestica, referred to as “Dom”, N = 14, Table S1). The seeds were kindly provided by INRAE IRHS Angers that performed every year crosses for apple breeding programs. A total of 42 M. sylvestris plants were grown from field-collected seeds. These wild apple seeds originated from three out of the five known European wild apple populations (referred to as Danish: Syl_Dk, French: Syl_Fr and Romanian: Syl_Ro, N = 14 per population). Each population was represented by a single sampling site, and within each site, each seed was sampled on a single mother tree, so that each seedling has a different parental origin. Though M. domestica is usually grafted, new plants were grown from seed to eliminate the rootstock effect.
    After field sampling, seeds were stored at -20 °C before vernalization for the experiment. Seeds were then vernalized for three months at 4 °C in the dark, then grown in controlled conditions for two months before being individually transferred to 3 L pots containing commercial sterilized potting soil. Potted plants were grown in a growth chamber for four weeks under the following conditions: 20 ± 1 °C, 75 ± 5% Relative Humidity (RH), and a 16:8 light:dark (L:D) photoperiod. The 56 plants were then genotyped using 13 previously published microsatellite markers (see below) to confirm their genetic status (i.e., belonging to one of the M. sylvestris European populations or crop-to-wild/wild-to-wild hybrid).
    A single colony of D. plantaginea (Hemiptera: Aphididae) was used and provided by INRAE which were sampled as a population in spring 2018 from an apple tree at the Agrocampus Ouest orchard (Angers, France) (Philippe Robert, personal communication). This aphid population was mass reared without differentiating individual aphid clones on M. domestica cv. “Jonagold” plants obtained by in vitro multiplication21. Pots containing three plants (90 × 90 × 70 mm) were placed in a Plexiglas cube (50 cm). Mass rearing and experiments were performed in growth chambers under 20 ± 1 °C, 60 ± 5% RH, and a 16:8 L:D cycle.
    Synchronized first instar nymphs were obtained by placing parthenogenetic adult females on plantlets for 24 h before removing them. They were then reared on M. domestica cv. “Jonagold” plants inside Plexiglas aerated boxes (36 × 24 × 14 cm) for ten days then used as the young adult RAA for the behavioral/performance experiments.
    Apple population genetic diversity and structure
    Genomic DNA was extracted with the NucleoSpin plant DNA extraction kit II (Macherey & Nagel, Düren, Germany) according to the manufacturer’s instructions. Microsatellites were amplified by multiplex PCR, with the Multiplex PCR Kit (QIAGEN, Inc.). We used 13 microsatellite markers, Ch01f02, Ch01f03, Ch01h01, Ch01h10, Ch02c06, Ch02c09, Ch02c11, Ch02d08, Ch03d07, Ch04c07, Ch05f06, GD12, and Hi02c07 in four multiplexes (MP01, MP02, MP03, MP04)4. PCR were performed in a final reaction volume of 15 ml (7.5 ml of QIAGEN Multiplex Master Mix, 10–20 mM of each primer, with the forward primer labelled with a fluorescent dye and 10 ng of template DNA) (See4 for more details). The final volume was achieved with distilled water. A touch-down PCR program (initial annealing temperature of 60 °C, decreasing by 1 °C per cycle down to 55 °C) was used. Genotyping was performed on the GENTYANE platform (INRAE Clermont-Ferrand) using an ABI PRISM X3730XL, with 2 ml of GS500LIZ size standard (Applied Biosystems). Alleles were scored with GENEMAPPER 4.0 software (Applied Biosystems). Only multilocus genotypes with  0.1 were classified as crop-to-wild hybrids (i.e., introgressed by M. domestica). Once crop-wild hybrids removed, plants assigned to a given wild gene pool with a cumulated membership coefficient  > 0.9 were defined as “pure wild” individuals. Plants assigned to the wild gene pool with a cumulated membership coefficient  More

  • in

    Urbanization can benefit agricultural production with large-scale farming in China

    1.
    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).
    ADS  CAS  Article  Google Scholar 
    2.
    Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).
    ADS  CAS  Article  Google Scholar 

    3.
    Bren D Amour, C. et al. Future urban land expansion and implications for global croplands. Proc. Natl Acad. Sci. USA 114, 8939–8944 (2017).
    Article  Google Scholar 

    4.
    Gardi, C., Panagos, P., Van Liedekerke, M., Bosco, C. & De Brogniez, D. Land take and food security: assessment of land take on the agricultural production in Europe. J. Environ Plann. Manag. 58, 898–912 (2015).
    Article  Google Scholar 

    5.
    Shi, K. et al. Urban expansion and agricultural land loss in China: a multiscale perspective. Sustainability 8, 790 (2016).
    Article  Google Scholar 

    6.
    Bai, X., Shi, P. & Liu, Y. Society: realizing China’s urban dream. Nature 509, 158–160 (2014).
    Article  Google Scholar 

    7.
    World Urbanization Prospects 2018 (United Nations, 2018); https://population.un.org/wup/Download/

    8.
    Zhai, Z., Chen, J. & Li, L. Future trends of China’s population and aging from 2015 to 2100 [in Chinese]. Popul. Res. 41, 60–71 (2017).
    Google Scholar 

    9.
    Van Vliet, J., Eitelberg, D. A. & Verburg, P. H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Change 43, 107–115 (2017).
    Article  Google Scholar 

    10.
    Chen, J. Rapid urbanization in China: a real challenge to soil protection and food security. Catena 69, 1–15 (2007).
    Article  Google Scholar 

    11.
    Martellozzo, F. et al. Urbanization and the loss of prime farmland: a case study in the Calgary–Edmonton corridor of Alberta. Reg. Environ. Change 15, 881–893 (2015).
    Article  Google Scholar 

    12.
    Yan, H., Liu, J., He, Q. H., Bo, T. & Cao, M. Assessing the consequence of land use change on agricultural productivity in China. Glob. Planet. Change 67, 13–19 (2009).
    ADS  Article  Google Scholar 

    13.
    Bai, X., Chen, J. & Shi, P. Landscape urbanization and economic growth in China: positive feedbacks and sustainability dilemmas. Environ. Sci. Technol. 46, 132–139 (2012).
    ADS  CAS  Article  Google Scholar 

    14.
    Statistical yearbooks of prefecture-level cities in 2015 [in Chinese]. National Bureau of Statistics http://www.stats.gov.cn/tjsj/ (2016).

    15.
    Zuo, L. et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 1, 304–313 (2018).
    Article  Google Scholar 

    16.
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
    ADS  CAS  Article  Google Scholar 

    17.
    Zhang, X. et al. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: evidence from long-term experiments with wheat–maize cropping systems in China. Sci. Total Environ. 562, 247–259 (2016).
    ADS  CAS  Article  Google Scholar 

    18.
    Wu, Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).
    ADS  CAS  Article  Google Scholar 

    19.
    Zou, B., Mishra, A. K. & Luo, B. Aging population, farm succession, and farmland usage: evidence from rural China. Land Use Policy 77, 437–445 (2018).
    Article  Google Scholar 

    20.
    Guidance on Accelerating the Development of Agricultural Productive Services (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2017).

    21.
    Ju, X., Gu, B., Wu, Y. & Galloway, J. N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Change 41, 26–32 (2016).
    Article  Google Scholar 

    22.
    Ren, C. et al. The impact of farm size on agricultural sustainability. J. Clean Prod. 220, 357–367 (2019).
    Article  Google Scholar 

    23.
    Adamopoulos, T. & Restuccia, D. The size distribution of farms and international productivity differences. Am. Econ. Rev. 104, 1667–1697 (2014).
    Article  Google Scholar 

    24.
    Wang, J., Chen, K. Z., Gupta, S. D. & Huang, Z. Is small still beautiful? A comparative study of rice farm size and productivity in China and India. China Agr. Econ. Rev. 7, 484–509 (2015).
    Article  Google Scholar 

    25.
    Lu, H., Xie, H., He, Y., Wu, Z. & Zhang, X. Assessing the impacts of land fragmentation and plot size on yields and costs: a translog production model and cost function approach. Agr. Syst. 161, 81–88 (2018).
    Article  Google Scholar 

    26.
    Syp, A., Faber, A., Borzecka-Walker, M. & Osuch, D. Assessment of greenhouse gas emissions in winter wheat farms using data envelopment analysis approach. Pol. J. Environ. Stud. 24, 2197–2203 (2015).
    CAS  Article  Google Scholar 

    27.
    Li, G., Feng, Z., You, L. & Fan, L. Re-examining the inverse relationship between farm size and efficiency. China Agr. Econ. Rev. 5, 473–488 (2013).
    Article  Google Scholar 

    28.
    Fan, L. et al. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. 26, 464–472 (2019).
    Article  Google Scholar 

    29.
    Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Env. Resour. 28, 315–358 (2003).
    Article  Google Scholar 

    30.
    Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl Acad. Sci. USA 115, 2335–2340 (2018).
    CAS  Article  Google Scholar 

    31.
    Resource and Environment Data Cloud Platform (Resource and Environment Science and Data Center, 2018); http://www.resdc.cn/Default.aspx

    32.
    Laborde, D., Martin, W., Swinnen, J. & Vos, R. COVID-19 risks to global food security. Science 369, 500–502 (2020).
    ADS  CAS  Article  Google Scholar 

    33.
    Shi, Q., Jin, H. & Zhuo, J. Does land expropriation definitely reduce farmers’ income: a survey of 7 villages in Shanghai: the defects and reforms of the current land expropriation system [in Chinese]. Manage. World 3, 77–82 (2011).
    Google Scholar 

    34.
    Liu, Y. & Li, Y. Revitalize the world’s countryside. Nature 548, 275–277 (2017).
    ADS  CAS  Article  Google Scholar 

    35.
    Liu, Y., Fang, F. & Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 40, 6–12 (2014).
    CAS  Article  Google Scholar 

    36.
    Measures for Land Acquisition Compensation and Social Security for Land-Expropriated Farmers in Jiangsu Province Provincial Government Order No. 93 (Jiangsu Provincial People’s Government, 2013).

    37.
    Wu, Y., Chen, Y., Deng, X. & Hui, E. C. M. Development of characteristic towns in China. Habitat Int. 77, 21–31 (2018).
    Article  Google Scholar 

    38.
    Yu, Y., Huang, Y. & Zhang, W. Modeling soil organic carbon change in croplands of China, 1980–2009. Glob. Planet Change 82–83, 115–128 (2012).
    ADS  Article  Google Scholar 

    39.
    No. 1 Central Document (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2020); http://www.moa.gov.cn/ztzl/jj2020zyyhwj/

    40.
    Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA 114, 8945–8950 (2017).
    Article  Google Scholar  More

  • in

    Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India

    1.
    Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015). https://doi.org/10.1071/9781486300679.
    Google Scholar 
    2.
    Singh, L. A. K. Ecological studies on the Indian gharial Gavialis gangeticus (Gmelin) (Reptilia, Crocodilia). PhD Thesis, Utkal University, Odisha (1978).

    3.
    Whitaker, R. The management of crocodilians in India. In Wildlife Management; Crocodiles and Alligators (eds Webb, G. J. W. et al.) 63–72 (Surrey Beatty and Sons, 1987).
    Google Scholar 

    4.
    Hussain, S. A. Reproductive success, hatchling survival and rate of increase of gharial Gavialis gangeticus in National Chambal Sanctuary, India. Biol. Conserv. 87, 261–268 (1999).
    Article  Google Scholar 

    5.
    Bustard, H. R. A future for the Gharial. Cheetal 17, 3–8 (1975).
    Google Scholar 

    6.
    Hussain, S. A. Basking site and water depth selection by gharial Gavialis gangeticus Gmelin 1789 (Crocodylia, Reptilia) in National Chambal Sanctuary, India and its implication for river conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 127–133 (2009).
    Article  Google Scholar 

    7.
    Lang, J. W., Chowfin, S. & Ross, J. P. Gavialis gangeticus (errata version published in 2019). IUCN Red List Threat. Species 2019 (2019).

    8.
    Basu, D. Saving the gharial. Indian Wildlifer 1, 7–15 (1981).
    Google Scholar 

    9.
    Singh, V. B. The status of the gharial (Gavialis gangeticus) in U.P. and its rehabilitation. J. Bombay Nat. Hist. Soc. 75, 668–683 (1978).
    Google Scholar 

    10.
    Stevenson, C. & Whitaker, R. Indian Gharial Gavialis gangeticus. In Crocodiles. Status Survey and Conservation Action Plan (eds Manolis, S. C. & Stevenson, C.) 139–143 (Crocodile Specialist Group, 2010).
    Google Scholar 

    11.
    Whitaker, R. & Basu, D. The gharial (Gavialis gangeticus) a review. J. Bombay Nat. Hist. Soc. 79, 531–548 (1982).
    Google Scholar 

    12.
    Whitaker, R. The gharial: Going extinct again. Iguana 14, 25–33 (2007).
    Google Scholar 

    13.
    Lang, J. W., Jailabdeen, A. & Kumar, P. Gharial ecology project—Update 2018–2019. IUCN-SSC Crocodile Spec. Gr. Newsl. 37, 15–17 (2018).
    Google Scholar 

    14.
    IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations IUCN. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission viiii + 57 pp. (2013).

    15.
    Schwartz, M. K. Guidelines on the use of molecular genetics in reintroduction programs. EU LIFE-Nature Proj. to Guidel. reintroduction Threat. species 51–58 (2005).

    16.
    White, L. C., Moseby, K. E., Thomson, V. A., Donnellan, S. C. & Austin, J. J. Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biol. Conserv. 219, 1–11 (2018).
    Article  Google Scholar 

    17.
    Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 4, 709–725 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).
    PubMed  Article  Google Scholar 

    19.
    Katdare, S. et al. Gharial (Gavialis gangeticus) populations and human influences on habitat on the River Chambal, India. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 364–371 (2011).
    Article  Google Scholar 

    20.
    Nair, T., Thorbjarnarson, J. B., Aust, P. & Krishnaswamy, J. Rigorous gharial population estimation in the Chambal: Implications for conservation and management of a globally threatened crocodilian. J. Appl. Ecol. 49, 1046–1054 (2012).
    Article  Google Scholar 

    21.
    Hussain, S. A. Ecology of gharial (Gavialis gangeticus) in National Chambal Sanctuary. MPhil Thesis, Aligarh Muslim University, Uttar Pradesh (1991).

    22.
    Sharma, S. P. et al. Mitochondrial DNA analysis reveals extremely low genetic diversity in a managed population of the Critically Endangered Gharial (Gavialis gangeticus, Gmelin 1789). Herpetol. J. 30, 202–206 (2020).
    Article  Google Scholar 

    23.
    Jogayya, K. N., Meganathan, P. R., Dubey, B. & Haque, I. Novel microsatellite DNA markers for Indian Gharial (Gavialis gangeticus). Conserv. Genet. Resour. 5, 787–790 (2013).
    Article  Google Scholar 

    24.
    Zhu, H., Wu, X., Xue, H., Wei, L. & Hu, Y. Isolation of polymorphic microsatellite loci from the Chinease alligator (Alligator sinensis). Mol. Ecol. Resour. 9, 892–894 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Glenn, T. C. et al. Characterization of microsatellite DNA loci in American alligators. Copeia 3, 591–601 (1998).
    Article  Google Scholar 

    26.
    Ojeda, G. N., Amavet, P. S., Rueda, E. C., Siroski, P. A. & Larriera, A. Mating system of Caiman yacare (Reptilia: Alligatoridae) described from microsatellite genotypes. J. Hered. 108, 135–141 (2017).
    PubMed  PubMed Central  Google Scholar 

    27.
    Yu, D. et al. Analysis of genetic variation and bottleneck in a captive population of Siamese crocodile using novel microsatellite loci. Conserv. Genet. Resour. 3, 217–220 (2011).
    Article  Google Scholar 

    28.
    Hinlo, M. R. P. et al. Population genetics implications for the conservation of the Philippine Crocodile Crocodylus mindorensis Schmidt, 1935 (Crocodylia: Crocodylidae). J. Threat. Taxa 6, 5513–5533 (2014).
    Article  Google Scholar 

    29.
    Mcvay, J. D. et al. Evidence of multiple paternity in Morelet’s Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. J. Exp. Zool. Part A Ecol. Genet. Physiol. 309, 643–648 (2008).
    Article  Google Scholar 

    30.
    Dever, J. A., Strauss, R. E., Rainwater, T. R., McMurry, S. T. & Densmore, I. L. D. Genetic diversity, population subdivision, and gene flow in Morelet’s crocodile (Crocodylus moreletii) from Belize, Central America. Copeia 4, 1078–1091 (2002).
    Article  Google Scholar 

    31.
    Aggarwal, R. K., Lalremruata, A. & Dubey, B. Development of fourteen novel microsatellite markers of Crocodylus palustris, the Indian mugger, and their cross-species transferability in ten other crocodilians. Conserv. Genet. Resour. 7, 197–200 (2014).
    Article  Google Scholar 

    32.
    Campos, J. C., Mobaraki, A., Abtin, E., Godinho, R. & Brito, J. C. Preliminary assessment of genetic diversity and population connectivity of the Mugger Crocodile in Iran. Amphib. Reptil. 39, 126–131 (2018).
    Article  Google Scholar 

    33.
    Garner, A., Rachlow, J. L. & Hicks, J. F. Patterns of genetic diversity and its loss in mammalian populations. Conserv. Biol. 19, 1215–1221 (2005).
    Article  Google Scholar 

    34.
    Rossi, N. A. et al. High levels of population genetic differentiation in the American crocodile (Crocodylus acutus). PLoS ONE 15, e0235288 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    35.
    van Asch, B. et al. Phylogeography, genetic diversity, and population structure of Nile crocodile populations at the fringes of the southern African distribution. PLoS ONE 14, 1–20 (2019).
    Google Scholar 

    36.
    Luck, N. L. et al. Mitochondrial DNA analyses of the saltwater crocodile (Crocodylus porosus) from the Northern Territory of Australia. Aust. J. Zool. 60, 18–25 (2012).
    Article  Google Scholar 

    37.
    Russello, M. A., Brazaitis, P., Gratten, J., Watkins-Colwell, G. J. & Caccone, A. Molecular assessment of the genetic integrity, distinctiveness and phylogeographic context of the Saltwater crocodile (Crocodylus porosus) on Palau. Conserv. Genet. 8, 777–787 (2007).
    CAS  Article  Google Scholar 

    38.
    Ray, D. A. et al. Low levels of nucleotide diversity in Crocodylus moreletiiand evidence of hybridization with C. acutus. Conserv. Genet. 5, 449–462 (2004).
    CAS  Article  Google Scholar 

    39.
    Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).
    CAS  PubMed  Article  Google Scholar 

    41.
    Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Blackwell Publishing, 2007).
    Google Scholar 

    43.
    Guries, R. P. & Ledig, F. T. Genetic structure of populations and differentiation in forest trees. in Conkle, MT (tech. coord.) Proceedings of the symposium on isozymes of North American forest trees and forest insects. USDA For. Serv. Gen. Tech. Rep. PSW-48 42–47 (1979).

    44.
    Biebach, I. & Keller, L. F. Inbreeding in reintroduced populations: The effects of early reintroduction history and contemporary processes. Conserv. Genet. 11, 527–538 (2010).
    Article  Google Scholar 

    45.
    Wang, J. Estimating pairwise relatedness in a small sample of individuals. Heredity (Edinb). 119, 302–313 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Degiorgio, M. & Rosenberg, N. A. An unbiased estimator of gene diversity in samples containing related individuals p. Mol. Biol. Evol. 26, 501–512 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    48.
    Girod, C., Vitalis, R., Leblois, R. & Fréville, H. Inferring population decline and expansion from microsatellite data: A simulation-based evaluation of the msvar method. Genetics 188, 165–179 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    49.
    Luikart, G. & Cornuet, J. M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237 (1998).
    Article  Google Scholar 

    50.
    Keller, L. F. et al. Immigration and the ephemerality of a natural population bottleneck: Evidence from molecular markers. Proc. R Soc. London. Ser. B Biol. Sci. 268, 1387–1394 (2001).
    CAS  Article  Google Scholar 

    51.
    Cristescu, R., Sherwin, W. B., Handasyde, K., Cahill, V. & Cooper, D. W. Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: The importance of the microsatellite structure. Conserv. Genet. 11, 1043–1049 (2010).
    Article  Google Scholar 

    52.
    Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21, 3403–3418 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    53.
    Hoban, S. M., Gaggiotti, O. E. & Bertorelle, G. The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: A simulation-based study. Mol. Ecol. 22, 3444–3450 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).
    Google Scholar 

    56.
    Miquel, C. et al. Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol. Ecol. Notes 6, 985–988 (2006).
    Article  Google Scholar 

    57.
    Oaks, J. R. A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution (N.Y.) 65, 3285–3297 (2011).
    Google Scholar 

    58.
    Broquet, T. & Petit, E. Quantifying genotyping errors in noninvasive population genetics. Mol. Ecol. 13, 3601–3608 (2004).
    CAS  PubMed  Article  Google Scholar 

    59.
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).
    CAS  PubMed  Article  Google Scholar 

    60.
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
    Article  CAS  Google Scholar 

    61.
    Valière, N. GIMLET: A computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379 (2002).
    Google Scholar 

    62.
    Peakall, R. & Smouse, P. E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    64.
    Kalinowski, S. T. HP-RARE 1.0—A computer program for performing rarefaction on measures of allelic richness.pdf. Mol. Ecol. Notes 5, 187–189 (2005).
    CAS  Article  Google Scholar 

    65.
    Weir, B. S. & Cockerham, C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y.). 38, 1358–1370 (1984).
    CAS  Google Scholar 

    66.
    Hedrick, P. W. A standardized genetic differentiation measure. Evolution (N. Y.). 59, 1633–1638 (2005).
    CAS  Google Scholar 

    67.
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    68.
    Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: An r package for manipulating, summarizing and analysing population genetic data. Mol. Ecol. Resour. 17, 5–11 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    72.
    Earl, D. A. & VonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Article  Google Scholar 

    73.
    Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
    Article  Google Scholar 

    74.
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).
    PubMed  PubMed Central  Google Scholar 

    75.
    Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinforma. Online. 1, 47–50 (2005).
    CAS  Google Scholar 

    76.
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).
    Article  Google Scholar 

    77.
    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).
    CAS  PubMed  Article  Google Scholar 

    78.
    Di Rienzo, A. et al. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 91, 3166–3170 (1994).
    ADS  PubMed  Article  Google Scholar 

    79.
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. Ser. 41, 95–98 (1999).
    CAS  Google Scholar 

    81.
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
    CAS  Article  Google Scholar  More