Biological and biochemical diversity in different biotypes of spotted stem borer, Chilo partellus (Swinhoe) in India
1.
Dujardin, J. P. Aporte de la genetica poblacional al control y vigilancia de vectores de la enfermedad de Chagas. In Curso Posgrado Genética Poblacional de Triatomineos Aplicada al Control Vectorial de la Enfermedad de Chagas (ed. Guhl, F.) 13–15 (Corcas Editores Ltda, 1997).
Google Scholar
2.
Pires, H. H. R., Barbosa, S. E., Margonari, C., Jurberg, J. & Diotaiuti, L. Variations of the external male genitalia in three populations of Triatoma infestans Klug, 1834. Minist. Saúde 93(4), 479–483 (1998).
CAS Google Scholar
3.
Bambou, A. E. et al. Comparing genetic diversity of Sitophilus zeamais(Motchulsky) populations sampled in several agro-ecological areas between Central African Republic and Senegal. South Asian J. Exp. Biol. 4(4), 172–182 (2014).
Google Scholar
4.
Baldwin, J. D. & Dingle, H. Geographic variation in the effects of temperature on life-history traits in the large milkweed bug Oncopeltus fasciatus. Oecologia 69, 64–71 (1986).
ADS Article Google Scholar
5.
Blanckenhorn, W. U. Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Oecologia 109, 342–352 (1997).
ADS CAS PubMed Article PubMed Central Google Scholar
6.
Ikten, C., Skoda, S. R., Hunt, T. E., Molina-Ochoa, J. & Foster, J. E. Genetic variation and inheritance of diapause induction in two distinct voltine ecotypes of Ostrinia nubilalis (Lepidoptera: Crambidae). Ann. Entomol. Soc. Am. 104, 567–575 (2011).
Article Google Scholar
7.
Dhillon, M. K., Hasan, F., Tanwar, A. K. & Bhadauriya, A. P. S. Effects of thermo-photoperiod on induction and termination of hibernation in Chilo partellus (Swinhoe). Bull. Entomol. Res. 107, 294–302 (2017).
CAS PubMed Article PubMed Central Google Scholar
8.
Sharma, H. C. Host plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot. 12, 11–34 (1993).
Article Google Scholar
9.
Dhillon, M. K., Hasan, F., Tanwar, A. K. & Bhadauriya, A. P. S. Factors responsible for aestivation in spotted stem borer, Chilo partellus (Swinhoe). J. Exp. Zool. A 331, 326–340 (2019).
Article Google Scholar
10.
Dhillon, M. K. & Hasan, F. Consequences of diapause on post-diapause development, reproductive physiology and population growth of Chilo partellus (Swinhoe). Physiol. Entomol. 43, 196–206 (2018).
CAS Article Google Scholar
11.
Dhillon, M. K., Tanwar, A. K. & Hasan, F. Fitness consequences of delayed mating on reproductive performance of Chilo partellus (Swinhoe). J. Exp. Zool. A 331, 161–167 (2019).
Article Google Scholar
12.
Dhillon, M. K. et al. Genetic regulation of diapause and associated traits in Chilo partellus (Swinhoe). Sci. Rep. 10, 1793 (2020).
ADS CAS PubMed PubMed Central Article Google Scholar
13.
Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Physiol. 33, 50–152 (2006).
Article Google Scholar
14.
Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15(2), 407–420 (2006).
CAS PubMed Article Google Scholar
15.
Rowntree, J. K., Cameron, D. D. & Preziosi, R. F. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts. Philos. Trans. R. Soc. B 366, 1380–1388 (2011).
Article Google Scholar
16.
Giron, D. et al. Promises and challenges in insect–plant interactions. Entomol. Exp. Appl. 166(5), 319–343 (2018).
Article Google Scholar
17.
Williams, R. S. & Howells, J. M. Effects of intraspecific genetic variation and prior herbivory in an old-field plant on the abundance of the specialist aphid Uroleucon nigrotuberculatum (Hemiptera: Aphididae). Environ. Entomol. 47, 422–431 (2018).
CAS PubMed Article PubMed Central Google Scholar
18.
Matsubayashi, K. W., Ohshima, I. & Nosil, P. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 134, 1–27 (2010).
Article Google Scholar
19.
Feder, J. L. et al. Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc. Natl Acad. Sci USA 100, 10314–10319 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar
20.
Althoff, M. D. & Pellmyr, O. Examining genetic structure in bogus yucca moth: A sequential approach to phylogeography. Evolution 56, 1632–1643 (2002).
PubMed Article Google Scholar
21.
Knowles, L. L. & Maddison, W. P. Statistical phylogeography. Mol. Ecol. 11, 2623–2635 (2002).
PubMed Article Google Scholar
22.
Templeton, A. R. Statistical phylogeography: Methods of evaluating and minimizing inference errors. Mol. Ecol. 13, 789–809 (2004).
PubMed Article Google Scholar
23.
Thomas, Y., Bethenod, M. T., Pelozuelo, L., Frérot, B. & Bourguet, D. Genetic isolation between two sympatric host-plant races of the European corn borer, Ostrinia nubilalis Hübner. I. Sex pheromone, moth emergence timing, and parasitism. Evolution 57, 261–273 (2003).
PubMed Google Scholar
24.
Sharma, H. C., Taneja, S. L., Kameswara Rao, N. & Prasada Rao, K. E. Evaluation of sorghum germplasm for resistance to insect pests. Inf. Bull. 63, 177 (2003).
Google Scholar
25.
Sharma, H. C., Dhillon, M. K., Pampapathy, G. & Reddy, B. V. S. Inheritance of resistance to spotted stem borer, Chilo partellus in sorghum, Sorghum bicolor. Euphytica 156, 117–128 (2007).
Article Google Scholar
26.
Kanta, U., Dhillon, B. S. & Sekhon, S. S. Evaluation and development of maize germplasm for resistance to spotted stem borer. In Insect Resistant Maize: Recent Advances and Utilization (ed. Mihm, J. A.) 246–254 (Proceedings of an International Symposium CIMMYT, 1997).
Google Scholar
27.
Rakshit, S. et al. Catalogue of Indian maize inbred lines. Tech. Bull. 3, 40 (2008).
Google Scholar
28.
Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).
ADS CAS PubMed Article Google Scholar
29.
Stireman, J. O. III., Nason, J. D. & Heard, S. B. Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59, 2573–2587 (2005).
CAS PubMed Article Google Scholar
30.
Zytynska, S. E. & Preziosi, R. F. Genetic interactions influence host preference and performance in a plant-insect system. Evol. Ecol. 25, 1321–1333 (2011).
Article Google Scholar
31.
Zytynska, S. E. & Preziosi, R. F. Host preference of plant genotypes is altered by intraspecific competition in a phytophagous insect. Arthropod-Plant Interact. 7, 349–357 (2013).
Article Google Scholar
32.
Sharma, H. C. Biotechnological Approaches for Pest Management and Ecological Sustainability (CRC Press, 2009).
Google Scholar
33.
Sharma, H. C. & Dhillon, M. K. Climate change effects on arthropod diversity and its implications for pest management and sustainable crop production. In Agroclimatology: Linking Agriculture to Climate (eds Hatfield, J. L. et al.) 595–619 (Crop Science Society of America and Soil Science Society of America Inc, Madison, WI, 2020).
Google Scholar
34.
Smith, C. M. Plant Resistance to Arthropods: Molecular and Conventional Approaches (Springer, 2005).
Google Scholar
35.
Dhillon, M. K. & Sharma, H. C. Paradigm shifts in research on host plant resistance to insect pests. Indian J. Plant Protect. 40(1), 1–11 (2012).
Google Scholar
36.
Funk, D. J. Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52, 1744–1759 (1998).
PubMed Article PubMed Central Google Scholar
37.
Dres, M. & Mallet, J. Host races in plant-feeding insects and their importance in sympatric speciation. Philos. Trans. R. Soc. B 357, 471–492 (2002).
Article Google Scholar
38.
Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).
Article Google Scholar
39.
Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).
ADS CAS PubMed Article Google Scholar
40.
Ishiguro, N. & Tsuchida, K. Polymorphic microsatellite loci for the rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae). Appl. Entomol. Zool. 41, 565–568 (2006).
CAS Article Google Scholar
41.
Mukhopadhyay, J., Ghosh, K., Rangel, E. F. & Munstermann, L. E. Genetic variability in biochemical characters of Brazilian field populations of the Leishmania vector, Lutzomyia longipalpis (Diptera: Psychodidae). Am. J. Trop. Med. Hyg. 59(6), 893–901 (1998).
CAS PubMed Article PubMed Central Google Scholar
42.
Vijaya Lakshmi, P., Amudhan, S., Bindu, K. H., Cheralu, C. & Bentur, J. S. A new biotype of the Asian rice gall midge Orseolia oryzae (Diptera: Cecidomyiidae) characterized from the Warangal population in Andhra Pradesh, India. Int. J. Trop. Insect Sci. 26, 207–211 (2006).
Google Scholar
43.
Himabindu, K., Suneetha, K., Sama, V. S. A. K. & Bentur, J. S. A new rice gall midge resistance gene in the breeding line CR57-MR1523, mapping with flanking markers and development of NILs. Euphytica 174, 179–187 (2010).
CAS Article Google Scholar
44.
Ratcliffe, R. H. et al. Biotype composition of Hessian fly (Diptera: Cecidomyiidae) populations from the Southeastern, Midwestern, and Northwestern United States and virulence to resistance genes in wheat. J. Econ. Entomol. 93(4), 1319–1328 (2000).
CAS PubMed Article PubMed Central Google Scholar
45.
Zhou, H. et al. Genetic analysis and fine mapping of the gall midge resistance gene Gm5 in rice (Oryza sativa L.). Theor. Appl. Genet. 133, 2021–2033 (2020).
CAS PubMed Article PubMed Central Google Scholar
46.
Dhillon, M. K. & Kumar, S. Amino acid profiling of Sorghum bicolor vis-à-vis Chilo partellus (Swinhoe) for biochemical interactions and plant resistance. Arthropod-Plant Interact. 11, 537–550 (2017).
Article Google Scholar
47.
Dhillon, M. K. & Kumar, S. Lipophilic profiling of Sorghum bicolor (L.) seedlings vis-à-vis Chilo partellus (Swinhoe) larvae reveals involvement of biomarkers in sorghum-stem borer interactions. Indian J. Exp. Biol. 58, 95–108 (2020).
CAS Google Scholar
48.
Atray, I., Bentur, J. S. & Nair, S. The Asian rice gall midge (Orseolia oryzae) mitogenome has evolved novel gene boundaries and tandem repeats that distinguish its biotypes. PLoS ONE 10(7), e0134625 (2015).
PubMed PubMed Central Article CAS Google Scholar
49.
Fujita, D., Kohli, A. & Horgan, F. G. Rice resistance to planthoppers and leafhoppers. Crit. Rev. Plant Sci. 32, 162–191 (2013).
CAS Article Google Scholar
50.
Diehl, R. S. & Bush, G. L. An evolutionary and applied perspective of insect biotypes. Annu. Rev. Entomol. 29, 471–504 (1984).
Article Google Scholar
51.
Claridge, M. F. & Den Hollander, J. A biotype concept and its application to insect pests of agriculture. Crop Prot. 2(1), 85–95 (1983).
Article Google Scholar
52.
Downie, D. A. Baubles, bangles, and biotypes: A critical review of the use and abuse of the biotype concept. J. Insect Sci. 10, 176 (2010).
CAS PubMed PubMed Central Article Google Scholar
53.
Perring, T. M. The Bemisia tabaci species complex. Crop Prot. 20, 725–737 (2001).
Article Google Scholar
54.
Wenger, J. A. & Michel, A. P. Implementing an evolutionary framework for understanding genetic relationships of phenotypically defined insect biotypes in the invasive soybean aphid (Aphis glycines). Evol. Appl. 6(7), 1041–1053 (2013).
PubMed PubMed Central Article Google Scholar
55.
Sharma, H. C., Taneja, S. L., Leuschner, K. & Nwanze, K. F. Techniques to screen sorghum for resistance to insect pests. Inf. Bull. 32, 48 (1992).
Google Scholar
56.
Kumar, S. & Dhillon, M. K. Lipophilic metabolite profiling of maize and sorghum seeds and seedlings, and their pest spotted stem borer larvae: A standardized GC-MS based approach. Indian J. Exp. Biol. 53, 170–176 (2015).
PubMed Google Scholar
57.
Dhillon, M. K., Kumar, S. & Gujar, G. T. A common HPLC-PDA method for amino acid analysis in insects and plants. Indian J. Exp. Biol. 52, 73–79 (2014).
CAS PubMed Google Scholar More