Exploration for olive fruit fly parasitoids across Africa reveals regional distributions and dominance of closely associated parasitoids
1.Wolfe, L. M. Why alien invaders succeed: Support for the escape-from-enemy hypothesis. Am. Nat. 160, 705–711. https://doi.org/10.1086/343872 (2002).Article
PubMed
Google Scholar
2.Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135. https://doi.org/10.1016/j.tree.2005.10.012 (2006).Article
PubMed
Google Scholar
3.Van Driesche, R. G. et al. Classical biological control for the protection of natural ecosystems. Biol. Control 54, S2–S33. https://doi.org/10.1016/j.biocontrol.2010.03.003 (2010).Article
Google Scholar
4.Hajek, A. E. et al. Exotic biological control agents: A solution or contribution to arthropod invasions?. Biol. Invasions 18, 953–969. https://doi.org/10.1007/s10530-016-1075-8 (2016).Article
Google Scholar
5.Schwarzlander, M., Hinz, H. L., Winston, R. L. & Day, M. D. Biological control of weeds: An analysis of introductions, rates of establishment and estimates of success, worldwide. Biocontrol 63, 319–331. https://doi.org/10.1007/s10526-018-9890-8 (2018).Article
Google Scholar
6.Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645. https://doi.org/10.1146/annurev-ento-010814-021005 (2015).CAS
Article
PubMed
Google Scholar
7.Hoddle, M. S., Lake, E. C., Minteer, C. R. & Daane, K. M. In Biological Control: A Global Initiative (eds Mason, P. G. & Dennis, N.) 69–92 (CSIRO Publishing, 2021).
Google Scholar
8.Heimpel, G. E. & Cock, M. J. W. Shifting paradigms in the history of classical biological control. Biocontrol 63, 27–37. https://doi.org/10.1007/s10526-017-9841-9 (2018).Article
Google Scholar
9.Hoelmer, K. A. & Kirk, A. A. Selecting arthropod biological control agents against arthropod pests: Can the science be improved to decrease the risk of releasing ineffective agents?. Biol. Control 34, 255–264 (2005).Article
Google Scholar
10.Wang, X. G., Johnson, M. W., Daane, K. M. & Yokoyama, V. Y. Larger olive fruit size reduces the efficiency of Psyttalia concolor, as a parasitoid of the olive fruit fly. Biol. Control 49, 45–51. https://doi.org/10.1016/j.biocontrol.2009.01.004 (2009).Article
Google Scholar
11.Wang, X.-G., Levy, K., Son, Y., Johnson, M. W. & Daane, K. M. Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids. Biol. Control 60, 247–254. https://doi.org/10.1016/j.biocontrol.2011.11.012 (2012).Article
Google Scholar
12.Wharton, R. A. In Fruit flies: Their Biology, Natural Enemies and Control (eds Robinson, A. S. & Hooper, G.) 303–313 (Elsevier, 1989).
Google Scholar
13.Purcell, M. F. Contribution of biological control to integrated pest management of tephritid fruit flies in the tropics and subtropics. Integr. Pest Manag. Rev. 3, 63–83 (1998).Article
Google Scholar
14.Ovruski, S. M., Aluja, M., Sivinski, J. & Wharton, R. A. Hymenopteran parasitoids on fruit-infesting Tephritidae (Diptera) in Latin America and the southern United States: Diversity, distribution, taxonomic status and their use in fruit fly biological control. Integr. Pest Manag. Rev. 5, 81–107 (2000).Article
Google Scholar
15.Mohamed, S. A., Ramadan, M. M. & Ekesi, S. In Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture (eds Ekesi, S. et al.) 325–368 (Springer International Publishing, 2006).
Google Scholar
16.Garcia, F. R. M., Ovruski, S. M., Suarez, L., Cancino, J. & Liburd, O. E. Biological control of tephritid fruit flies in the Americas and Hawaii: A review of the use of parasitoids and predators. Insects https://doi.org/10.3390/insects11100662 (2020).Article
PubMed
PubMed Central
Google Scholar
17.Wharton, R. A. & Yoder, M. J. Wharton RA, Yoder MJ. 2017. Parasitoids of fruit-infesting tephritidae. http://paroffit.org. Accessed on November 15, 2020. (2017).18.Daane, K. M. & Johnson, M. W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 55, 155–169. https://doi.org/10.1146/annurev.ento.54.110807.090553 (2010).CAS
Article
Google Scholar
19.Tzanakakis, M. E. Seasonal development and dormancy of insects and mites feeding on olive: A review. Neth. J. Zool. 52, 87–224 (2003).Article
Google Scholar
20.Green, P. S. A revision of Olea L. (Oleaceae). Kew Bull. 57, 91–140 (2002).Article
Google Scholar
21.Bon, M. C. et al. Populations of Bactrocera oleae (Diptera: Tephritidae) and its parasitoids in Himalayan Asia. Ann. Entomol. Soc. Am. 109, 81–91. https://doi.org/10.1093/aesa/sav114 (2016).Article
Google Scholar
22.Zygouridis, N. E., Augustinos, A. A., Zalom, F. G. & Mathiopoulos, K. D. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102, 402–412 (2009).CAS
Article
Google Scholar
23.Augustinos, A. A. et al. Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica 125, 231–241 (2005).CAS
Article
Google Scholar
24.Nardi, F. et al. Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Mol. Phylogenet. Evol. 57, 678–686. https://doi.org/10.1016/j.ympev.2010.08.008 (2010).CAS
Article
PubMed
Google Scholar
25.Neuenschwander, P., Bigler, F., Delucchi, V. & Michelakis, S. E. Natural enemies of preimaginal stages of Dacus oleae Gmel. (Dipt., Tephritidae) in Western Crete. I. Bionomics and phenologies. Boll Lab. Entomol Agrar Filippo Silvestri 40, 3–32 (1983).
Google Scholar
26.Boccaccio, L. & Petacchi, R. Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. Biocontrol 54, 607–616. https://doi.org/10.1007/s10526-009-9214-0 (2009).Article
Google Scholar
27.Borowiec, N. et al. Diversity and geographic distribution of the indigenous and exotic parasitoids of the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) Southern France. IOBC/WPRS Bull. 79, 71–78 (2012).
Google Scholar
28.Al Khatib, F. et al. An integrative approach to species discrimination in the Eupelmus urozonus complex (Hymenoptera, Eupelmidae), with the description of 11 new species from the Western Palaearctic. Syst. Entomol. 39, 806–862. https://doi.org/10.1111/syen.12089 (2014).Article
Google Scholar
29.Kapaun, T., Nadel, H., Headrick, D. & Vredevoe, L. Biology and parasitism rates of Pteromalus nr. myopitae (Hymenoptera: Pteromalidae), a newly discovered parasitoid of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in coastal California. Biol. Control 53, 76–85. https://doi.org/10.1016/j.biocontrol.2009.11.002 (2010).Article
Google Scholar
30.Silvestri, F. Report on an expedition to Africa in search of natural enemies of fruit flies (Trupaneidae) with descriptions, observations and biological notes. Hawaii Board Agric. For. Div. Entomol. Bull. 3, 1–146 (1914).
Google Scholar
31.Hoelmer, K. A., Kirk, A. A., Pickett, C. H., Daane, K. M. & Johnson, M. W. Prospects for improving biological control of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), with introduced parasitoids (Hymenoptera). Biocontrol Sci. Technol. 21, 1005–1025. https://doi.org/10.1080/09583157.2011.594951 (2011).Article
Google Scholar
32.Greathead, D. J. & Greathead, A. H. Biological control of insect pests by insect parasitoids and predators: The BIOCAT database. Biocontrol News Inf. 13, 61N-68N (1992).
Google Scholar
33.Neuenschwander, P. Searching parasitoids of Dacus oleae (Gmel) (Dipt., Tephritidae) in South Africa. J. Appl. Entomol. 94, 509–522 (1982).
Google Scholar
34.Loni, A. Developmental rate of Opius concolor (Hym.: Braconidae) at various constant temperatures. Entomophaga 42, 359–366 (1997).Article
Google Scholar
35.Miranda, M. A., Miquel, M., Terrassa, J., Melis, N. & Monerris, M. Parasitism of Bactrocera oleae (Diptera, Tephritidae) by Psyttalia concolor (Hymenoptera, Braconidae) in the Balearic Islands (Spain). J. Appl. Entomol. 132, 798–805 (2008).Article
Google Scholar
36.Muller, F. A., Dias, N. P., Gottschalk, M. S., Garcia, F. R. M. & Nava, D. E. Potential distribution of Bactrocera oleae and the parasitoids Fopius arisanus and Psyttalia concolor, aiming at classical biological control. Biol. Control 132, 144–151. https://doi.org/10.1016/j.biocontrol.2019.02.014 (2019).Article
Google Scholar
37.Chardonnet, F., Blanchet, A., Hurtrel, B., Marini, F. & Smith, L. Mass-rearing optimization of the parasitoid Psyttalia lounsburyi for biological control of the olive fruit fly. J. Appl. Entomol. 143, 277–288. https://doi.org/10.1111/jen.12573 (2019).Article
Google Scholar
38.La-Spina, M. et al. Effect of exposure time on mass-rearing production of the olive fruit fly parasitoid, Psyttalia lounsburyi (Hymenoptera: Braconidae). J. Appl. Entomol. 142, 319–326. https://doi.org/10.1111/jen.12478 (2018).CAS
Article
Google Scholar
39.Malausa, J. C. et al. Introductions of the African parasitoid Psyttalia lounsburyi in South of France for classical biological control of Bactrocera oleae. IOBC/WPRS Bull. 59, 163–170 (2010).
Google Scholar
40.Daane, K. M. et al. Classic biological control of olive fruit fly in California, USA: Release and recovery of introduced parasitoids. Biocontrol 60, 317–330. https://doi.org/10.1007/s10526-015-9652-9 (2015).Article
Google Scholar
41.Wharton, R. A. & Gilstrap, F. Key to and status of opiine braconid (Hymenoptera) parasitoids used in biological control of Ceratitis and Dacus s.l. (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 76, 721–742 (1983).Article
Google Scholar
42.Sime, K. R. et al. Psyttalia ponerophaga (Hymenoptera: Braconidae) as a potential biological control agent of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California. Bull. Entomol. Res. 97, 233–242. https://doi.org/10.1017/S0007485307004865 (2007).CAS
Article
PubMed
Google Scholar
43.Sime, K. R. et al. The biology of Bracon celer as a parasitoid of the olive fruit fly. Biocontrol 51, 553–567. https://doi.org/10.1007/s10526-005-6079-8 (2006).Article
Google Scholar
44.Sime, K. R. et al. Diachasmimorpha longicaudata and D. kraussii (Hymenoptera: Braconidae), potential parasitoids of the olive fruit fly. Biocontrol Sci. Technol. 16, 169–179. https://doi.org/10.1080/09583150500188445 (2006).Article
Google Scholar
45.Sime, K. R., Daane, K. M., Messing, R. H. & Johnson, M. W. Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera: Braconidae), as a parasitoid of the olive fruit fly. Biol. Control 39, 248–255. https://doi.org/10.1016/j.biocontrol.2006.06.007 (2006).Article
Google Scholar
46.Mkize, N., Hoelmer, K. A. & Villet, M. H. A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea ssp cuspidata, in the Eastern Cape of South Africa. Biocontrol Sci. Technol. 18, 991–1004 (2008).Article
Google Scholar
47.Sime, K. R., Daane, K. M., Wang, X.-G., Johnson, M. W. & Messing, R. H. Evaluation of Fopius arisanus as a biological control agent for the olive fruit fly in California. Agric. For. Entomol. 10, 423–431. https://doi.org/10.1111/j.1461-9563.2008.00401.x (2008).Article
Google Scholar
48.Wang, X. G. & Messing, R. H. Potential interactions between pupal and egg- or larval-pupal parasitoids of tephritid fruit flies. Environ. Entomol. 33, 1313–1320. https://doi.org/10.1603/0046-225x-33.5.1313 (2004).Article
Google Scholar
49.Wang, X. G. & Messing, R. H. The ectoparasitic pupal parasitoid, Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), attacks other primary tephritid fruit fly parasitoids: Host expansion and potential non-target impact. Biol. Control 31, 227–236 (2004).Article
Google Scholar
50.Wang, X.-G., Johnson, M. W., Yokoyama, V. Y., Pickett, C. H. & Daane, K. M. Comparative evaluation of two olive fruit fly parasitoids under varying abiotic conditions. Biocontrol 56, 283–293. https://doi.org/10.1007/s10526-010-9332-8 (2011).CAS
Article
Google Scholar
51.Daane, K. M. et al. Biological control of the olive fruit fly in California. Calif. Agric. 65, 21–28 (2011).Article
Google Scholar
52.Wang, X. G. et al. Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic Appl. Ecol. 10, 216–227. https://doi.org/10.1016/j.baae.2008.06.003 (2009).Article
Google Scholar
53.Nadel, H., Daane, K. M., Hoelmer, K. A., Pickett, C. H. & Johnson, M. W. Non-target host risk assessment of the idiobiont parasitoid, Bracon celer (Hymenoptera: Braconidae), for biological control of olive fruit fly in California. Biocontrol Sci. Technol. 19, 701–715. https://doi.org/10.1080/09583150902974384 (2009).Article
Google Scholar
54.Wharton, R. A. et al. Parasitoids of medfly, Ceratitis capitata, and related tephritids in Kenyan coffee: A predominantly koinobiont assemblage. Bull. Entomol. Res. 90, 517–526 (2000).CAS
Article
Google Scholar
55.Kimani-Njogu, S. W., Trostle, M. K., Wharton, R. A., Woolley, J. B. & Raspi, A. Biosystematics of the Psyttalia concolor species complex (Hymenoptera: Braconidae: Opiinae): the identity of populations attacking Ceratitis capitata (Diptera: Tephritidae) in coffee in Kenya. Biol. Control 20, 167–174 (2001).Article
Google Scholar
56.Rugman-Jones, P. F., Wharton, R., van Noort, T. & Stouthamer, R. Molecular differentiation of the Psyttalia concolor (Szépligeti) species complex (Hymenoptera: Braconidae) associated with olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), Africa. Biol. Control 49, 17–26. https://doi.org/10.1016/j.biocontrol.2008.12.005 (2009).CAS
Article
Google Scholar
57.Billah, M. K. et al. Cross mating studies among five fruit fly parasitoid populations: Potential biological control implications for tephritid pests. Biocontrol 53, 709–724 (2008).Article
Google Scholar
58.Narayanan, E. S. & Chawla, S. S. Parasites of fruit fly pests of the world. Beitrage zur Entomologie 12, 437–476 (1962).
Google Scholar
59.Neuenschwander, P. Searching parasitoids of Dacus oleae in South Africa. Zeitschrift fur Angewandte Entomologie 94, 509–522 (1982).Article
Google Scholar
60.Daane, K. M. et al. Psyttalia lounsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California. Biol. Control 44, 78–89. https://doi.org/10.1016/j.biocontrol.2007.08.010 (2008).Article
Google Scholar
61.Benelli, G. et al. Behavioral and electrophysiological responses of the parasitic wasp Psyttalia concolor (Szepligeti) (Hymenoptera: Braconidae) to Ceratitis capitata-induced fruit volatiles. Biol. Control 64, 116–124. https://doi.org/10.1016/j.biocontrol.2012.10.010 (2013).CAS
Article
Google Scholar
62.Raspi, A. & Loni, A. Alcune note sull’allevamento massale di Opius concolor Szépligeti (Hym.: Braconidae) e su recnti tentative d’introduzione della specie in Toscana e Liguria. Frustula Entomol. 30, 135–145 (1994).
Google Scholar
63.Johnson, M. W. et al. High temperature impacts olive fruit fly population dynamics in California’s Central Valley. Calif. Agric. 65, 29–33 (2011).Article
Google Scholar
64.Yokoyama, V. Y. et al. Performance of Psyttalia humilis (Hymenoptera: Braconidae) reared from irradiated host on olive fruit fly (Diptera: Tephritidae) in California. Environ. Entomol. 41, 497–507. https://doi.org/10.1603/en11252 (2012).Article
PubMed
Google Scholar
65.Yokoyama, V. Y. et al. Response of Psyttalia cf. concolor to olive fruit fly (Diptera: Tephritidae), high temperature, food, and bait sprays in California. Environ. Entomol. 40, 315–323 (2010).Article
Google Scholar
66.Yokoyama, V. Y. et al. Field performance and fitness of an olive fruit fly parasitoid, Psyttalia humilis (Hymenoptera: Braconidae), mass reared on irradiated Medfly. Biol. Control 54, 90–99. https://doi.org/10.1016/j.biocontrol.2010.04.008 (2010).Article
Google Scholar
67.Wang, X. G. et al. Overwintering survival of olive fruit Fly (Diptera: Tephritidae) and two introduced parasitoids in California. Environ. Entomol. 42, 467–476. https://doi.org/10.1603/en12299 (2013).Article
PubMed
Google Scholar
68.Daane, K. M., Wang, X. G., Johnson, M. W. & Cooper, M. L. Low temperature storage effects on two olive fruit fly parasitoids. Biocontrol 58, 175–185. https://doi.org/10.1007/s10526-012-9481-z (2013).CAS
Article
Google Scholar
69.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed 20 Dec 2020); https://www.r-project.org/index.htm (2020). More