A DNA barcode-based survey of wild urban bees in the Loire Valley, France
1.
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
PubMed PubMed Central Article CAS Google Scholar
2.
Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).
PubMed Article Google Scholar
3.
Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
Article Google Scholar
4.
Thomas, C. D., Jones, T. H. & Hartley, S. E. “Insectageddon”: A call for more robust data and rigorous analyses. Glob. Chang. Biol. 25, 1891–1892 (2019).
ADS PubMed Article Google Scholar
5.
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science (80-) 368, 417–420 (2020).
ADS Article CAS Google Scholar
6.
Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
PubMed Article Google Scholar
7.
Pérez-Méndez, N. et al. The economic cost of losing native pollinator species for orchard production. J. Appl. Ecol. 57, 599–608 (2020).
Article Google Scholar
8.
Porto, R. G. et al. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Secur. 12, 1425–1442 (2020).
Article Google Scholar
9.
Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).
PubMed PubMed Central Article Google Scholar
10.
Godfray, H. C. J. et al. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20140558 (2014).
Article Google Scholar
11.
Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the Wild Bee Community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
12.
Geslin, B. et al. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecol. Evol. 6, 6599–6615 (2016).
PubMed PubMed Central Article Google Scholar
13.
Geslin, B., Le Féon, V., Kuhlmann, M., Vaissière, B. E. & Dajoz, I. The bee fauna of large parks in downtown Paris, France. Ann. la Société Entomol. Fr. 51, 487–493 (2015).
Article Google Scholar
14.
Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).
PubMed PubMed Central Article Google Scholar
15.
Lerman, S. B., Contosta, A. R., Milam, J. & Bang, C. To mow or to mow less: Lawn mowing frequency affects bee abundance and diversity in suburban yards. Biol. Conserv. 221, 160–174 (2018).
Article Google Scholar
16.
Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).
ADS CAS PubMed PubMed Central Article Google Scholar
17.
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
ADS CAS PubMed Article Google Scholar
18.
McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129, 372–382 (2006).
Article Google Scholar
19.
Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).
PubMed Article Google Scholar
20.
Ropars, L., Dajoz, I. & Geslin, B. La ville un désert pour les abeilles sauvages? J. Bot. Soc. Bot. Fr. 79, 29–35 (2017).
Google Scholar
21.
Falk, S. et al. Evaluating the ability of citizen scientists to identify bumblebee (Bombus) species. PLoS ONE 14, e0218614 (2019).
CAS PubMed PubMed Central Article Google Scholar
22.
Bloom, E. H. & Crowder, D. W. Promoting data collection in pollinator citizen science projects. Citiz. Sci. Theory Pract. 5(1), 3 https://doi.org/10.5334/cstp.217 (2020).
23.
Levé, M., Baudry, E. & Bessa-Gomes, C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total Environ. 647, 420–430 (2019).
ADS PubMed Article CAS Google Scholar
24.
Mason, L. & Arathi, H. S. Assessing the efficacy of citizen scientists monitoring native bees in urban areas. Glob. Ecol. Conserv. 17, e00561 (2019).
Article Google Scholar
25.
Sheffield, C. S. et al. Contribution of DNA barcoding to the study of the bees (Hymenoptera: Apoidea) of Canada: Progress to date. Can. Entomol. 149, 736–754 (2017).
Article Google Scholar
26.
Sheffield, C. S., Hebert, P. D. N., Kevan, P. G. & Packer, L. DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Mol. Ecol. Resour. 9, 196–207 (2009).
CAS PubMed Article Google Scholar
27.
Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. N. DNA barcoding largely supports 250 years of classical taxonomy: Identifications for Central European bees (Hymenoptera, Apoidea partim ). Mol. Ecol. Resour. 15, 985–1000 (2015).
CAS PubMed Article Google Scholar
28.
Packer, L. & Ruz, L. DNA barcoding the bees (Hymenoptera: Apoidea) of Chile: Species discovery in a reasonably well known bee fauna with the description of a new species of Lonchopria (Colletidae). Genome 60, 414–430 (2017).
CAS PubMed Article Google Scholar
29.
Tang, M. et al. High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods Ecol. Evol. 6, 1034–1043 (2015).
PubMed PubMed Central Article Google Scholar
30.
Sonet, G. et al. Using next-generation sequencing to improve DNA barcoding: Lessons from a small-scale study of wild bee species (Hymenoptera, Halictidae). Apidologie 49, 671–685 (2018).
CAS Article Google Scholar
31.
Creedy, T. J. et al. A validated workflow for rapid taxonomic assignment and monitoring of a national fauna of bees (Apiformes) using high throughput DNA barcoding. Mol. Ecol. Resour. 20, 40–53 (2020).
CAS PubMed Article Google Scholar
32.
Gueuning, M. et al. Evaluating next-generation sequencing (NGS) methods for routine monitoring of wild bees: Metabarcoding, mitogenomics or NGS barcoding. Mol. Ecol. Resour. 19, 847–862 (2019).
CAS PubMed PubMed Central Article Google Scholar
33.
Lanner, J., Curto, M., Pachinger, B., Neumüller, U. & Meimberg, H. Illumina midi-barcodes: Quality proof and applications. Mitochondrial DNA Part A 30, 490–499 (2019).
CAS Article Google Scholar
34.
González-Vaquero, R. A., Roig-Alsina, A. & Packer, L. DNA barcoding as a useful tool in the systematic study of wild bees of the tribe Augochlorini (Hymenoptera: Halictidae). Genome 59, 889–898 (2016).
PubMed Article CAS PubMed Central Google Scholar
35.
Gibbs, J. DNA barcoding a nightmare taxon: Assessing barcode index numbers and barcode gaps for sweat bees. Genome 61, 21–31 (2018).
CAS PubMed Article PubMed Central Google Scholar
36.
Dorey, J. P., Schwarz, M. P. & Stevens, M. I. Review of the bee genus Homalictus Cockerell (Hymenoptera: Halictidae) from Fiji with description of nine new species. Zootaxa 4674, 1–46 (2019).
Article Google Scholar
37.
Williams, P. H. et al. Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syst. Biodivers. 10, 21–56 (2012).
Article Google Scholar
38.
Magnacca, K. N. & Brown, M. J. F. DNA barcoding a regional fauna: Irish solitary bees. Mol. Ecol. Resour. 12, 990–998 (2012).
CAS PubMed Article Google Scholar
39.
de Waard, J. R. et al. A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Sci. Data 6, 308 (2019).
Article CAS Google Scholar
40.
Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
41.
Gueuning, M., Frey, J. E. & Praz, C. Ultraconserved yet informative for species delimitation: UCEs resolve long-standing systematic enigma in Central European bees. Mol. Ecol. Mec. https://doi.org/10.1111/mec.15629 (2020).
Article Google Scholar
42.
Phillips, J. D., French, S. H., Hanner, R. H. & Gillis, D. J. HACSim: An R package to estimate intraspecific sample sizes for genetic diversity assessment using haplotype accumulation curves. PeerJ Comput. Sci. 6, e243 (2020).
Article Google Scholar
43.
Phillips, J. D., Gwiazdowski, R. A., Ashlock, D. & Hanner, R. An exploration of sufficient sampling effort to describe intraspecific DNA barcode haplotype diversity: Examples from the ray-finned fishes (Chordata: Actinopterygii). DNA Barcodes 3(1), 66–73 (2015).
44.
Phillips, J. D., Gillis, D. J. & Hanner, R. H. Incomplete estimates of genetic diversity within species: Implications for DNA barcoding. Ecol. Evol. 9, 2996–3010 (2019).
PubMed PubMed Central Article Google Scholar
45.
Muséum national d’Histoire naturelle (ed). 2003-2020. Inventaire National du Patrimoine Naturel. https://inpn.mnhn.fr.
46.
Zayed, A., Constantin, ŞA. & Packer, L. Successful biological invasion despite a severe genetic load. PLoS ONE 2, e868 (2007).
ADS PubMed PubMed Central Article CAS Google Scholar
47.
Lecocq, T. et al. The alien’s identity: Consequences of taxonomic status for the international bumblebee trade regulations. Biol. Conserv. 195, 169–176 (2016).
Article Google Scholar
48.
Danforth, B. N. Phylogeny of the bee genus Lasioglossum (Hymenoptera: Halictidae) based on mitochondrial COI sequence data. Syst. Entomol. 24, 377–393 (1999).
Article Google Scholar
49.
Hebert, P. D. N. et al. A Sequel to Sanger: Amplicon sequencing that scales. BMC Genom. 19, 219 (2018).
Article CAS Google Scholar
50.
Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
51.
Carolan, J. C. et al. Colour patterns do not diagnose species: Quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS ONE 7, e29251 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
52.
Praz, C., Müller, A. & Genoud, D. Hidden diversity in European bees: Andrena amieti sp. n., a new Alpine bee species related to Andrena bicolor (Fabricius, 1775) (Hymenoptera, Apoidea, Andrenidae). Alp. Entomol. 3, 11–38 (2019).
Article Google Scholar
53.
Pauly, A. Abeilles de Belgique et des régions limitrophes (Insecta: Hymenoptera: Apoidea) Famille Halictidae. (Institut royal des sciences naturelles de Belgique, 2019).
54.
Gonçalves, R. B. & Oliveira, P. S. Preliminary results of bowl trapping bees (Hymenoptera, Apoidea) in a southern Brazil forest fragment. J. Insect Biodivers. 1, 1–9 (2013).
Article Google Scholar
55.
Buri, P., Humbert, J.-Y. & Arlettaz, R. Promoting pollinating insects in intensive agricultural matrices: Field-scale experimental manipulation of hay-meadow mowing regimes and its effects on bees. PLoS One 9(1), e85635 (2014).
56.
Rhoades, P. et al. Sampling technique affects detection of habitat factors influencing wild bee communities. J. Insect Conserv. 21, 703–714 (2017).
Article Google Scholar
57.
Lettow, M. C. et al. Bee community responses to a gradient of oak savanna restoration practices. Restor. Ecol. 26, 882–890 (2018).
Article Google Scholar
58.
Onuferko, T. M., Skandalis, D. A., Cordero, R. L. & Richards, M. H. Rapid initial recovery and long-term persistence of a bee community in a former landfill. Insect Conserv. Divers. 11, 88–99 (2018).
Article Google Scholar
59.
Geroff, R. K., Gibbs, J. & McCravy, K. W. Assessing bee (Hymenoptera: Apoidea) diversity of an Illinois restored tallgrass prairie: Methodology and conservation considerations. J. Insect Conserv. 18, 951–964 (2014).
Article Google Scholar
60.
Griffin, S. R., Bruninga-Socolar, B., Kerr, M. A., Gibbs, J. & Winfree, R. Wild bee community change over a 26-year chronosequence of restored tallgrass prairie. Restor. Ecol. 25, 650–660 (2017).
Article Google Scholar
61.
Ropars, L., Dajoz, I. & Geslin, B. La diversité des abeilles parisiennes. Osmia 7, 14–19 (2018).
Article Google Scholar
62.
Portman, Z. M., Bruninga-Socolar, B. & Cariveau, D. P. The state of bee monitoring in the United States: A call to refocus away from bowl traps and towards more effective methods. Ann. Entomol. Soc. Am. 113, 337–342 (2020).
Article Google Scholar
63.
Magnacca, K. N. & Brown, M. J. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evol. Biol. 10, 174 (2010).
64.
Ballare, K. M. et al. Utilizing field collected insects for next generation sequencing: Effects of sampling, storage, and DNA extraction methods. Ecol. Evol. 9, 13690–13705 (2019).
PubMed PubMed Central Article Google Scholar
65.
Hill, G. E. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol. Evol. 6, 5831–5842 (2016).
PubMed PubMed Central Article Google Scholar
66.
Ascher, J. S. & Pickering, J. Life bee species guide and world checklist (Hymenoptera Apoidea Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_species (2020).
67.
LaBerge, W. E. A revision of the bees of the genus Andrena of the western hemisphere. Part XI. Minor subgenera and subgeneric key. Trans. Am. Entomol. Soc. 111, 441–567 (1985).
Google Scholar
68.
Warncke, K. Die Untergattungen der westpalaarktischen Bienengattung Andrena F. Memorias e Estud Muséu Zool. da Univ. Coimbra 307, 1–110 (1968).
Google Scholar
69.
Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 6: Andrena, Melitturga, Panurginus, Panurgus. Fauna Helv. 26, 1–317 (2010).
70.
Michener, C. The bees of the world. (Johns Hopkins University Press, Baltimore, 2000).
Google Scholar
71.
Michener, C. D. The Social Behavior of the Bees: A Comparative Study (Harvard University Press, Cambridge, 1974).
Google Scholar
72.
Pauly, A., Noël, G., Sonet, G., Notton, D. G. & Boevé, J.-L. Integrative taxonomy resuscitates two species in the Lasioglossum villosulum complex (Kirby, 1802) (Hymenoptera: Apoidea: Halictidae). Eur. J. Taxon. 541 (2019).
73.
Eberle, J., Ahrens, D., Mayer, C., Niehuis, O. & Misof, B. A plea for standardized nuclear markers in metazoan DNA taxonomy. Trends Ecol. Evol. 35, 336–345 (2020).
PubMed Article Google Scholar
74.
Roulston, T. H., Smith, S. A. & Brewster, A. L. A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) Fauna. J. Kansas Entomol. Soc. 80, 179–181 (2007).
Article Google Scholar
75.
Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).
Article Google Scholar
76.
Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 5: Ammobates, Ammobatoides, Anthophora, Biastes, Ceratina, Dasypoda, Epeoloides, Epeolus, Eucera, Macropis, Melecta, Melitta, Nomada, Pasites, Tetralonia, Thyreus, Xylocopa. Fauna Helv. 20, 1–356 (2007).
77.
Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 2: Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha. Fauna Helv. 4, 1–239 (1999).
78.
Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 3: Halictus, Lasioglossum. Fauna Helv. 6, 1–208 (2001).
79.
Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 4: Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis. Fauna Helv. 9, 1–273 (2004).
80.
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
CAS PubMed Google Scholar
81.
Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system. Mol. Ecol. Notes 7, 355–364 (2007).
82.
Katoh, K. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
ADS CAS PubMed PubMed Central Article Google Scholar
83.
Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).
ADS CAS PubMed Article Google Scholar
84.
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
ADS PubMed PubMed Central Article CAS Google Scholar
85.
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
CAS PubMed PubMed Central Article Google Scholar
86.
Wickham, H. ggplot2 (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-98141-3.
Google Scholar
87.
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
CAS PubMed Article Google Scholar
88.
Nei, M. Molecular evolutionary genetics (Columbia University Press, New York, 1987). More