More stories

  • in

    The environmental and ecological determinants of elevated Ross River Virus exposure in koalas residing in urban coastal landscapes

    1.
    Gonzalez-Astudillo, V., Allavena, R., McKinnon, A., Larkin, R. & Henning, J. Decline causes of Koalas in South East Queensland, Australia: a 17-year retrospective study of mortality and morbidity. Sci. Rep. 7, 42587 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Ward, M. S. et al. Lots of loss with little scrutiny: The attrition of habitat critical for threatened species in Australia. Conserv. Sci. Pract. 1, e117 (2019).
    Google Scholar 

    3.
    Martin, R. & Handasyde, K. The Koala: Natural History, Conservation and Management (University of New South Wales Press Ltd (Hong Kong, Australian Natural History Series, 1999).
    Google Scholar 

    4.
    McAlpine, C. et al. Conserving koalas: A review of the contrasting regional trends, outlooks and policy challenges. Biol. Conserv. 192, 226–236 (2015).
    Article  Google Scholar 

    5.
    Shumway, N., Lunney, D., Seabrook, L. & McAlpine, C. Saving our national icon: An ecological analysis of the 2011 Australian Senate inquiry into status of the koala. Environ. Sci. Policy 54, 297–303 (2015).
    Article  Google Scholar 

    6.
    Adams-Hosking, C., Grantham, H. S., Rhodes, J. R., McAlpine, C. & Moss, P. T. Modelling climate-change-induced shifts in the distribution of the koala. Wildlife Res. 38, 122–130 (2011).
    Article  Google Scholar 

    7.
    Rhodes, J. R., Beyer, H., Preece, H. & McAlpine, C. South East Queensland koala population modelling study. UniQuest (2015).

    8.
    Dique, D. S., Preece, H. J., Thompson, J. & de Villiers, D. L. Determining the distribution and abundance of a regional koala population in south-east Queensland for conservation management. Wildlife Res. 31, 109–117 (2004).
    Article  Google Scholar 

    9.
    Thompson, J. The comparative ecology and population dynamics of koalas in the Koala Coast region of south-east Queensland. PhD Thesis, School of Integrative Biology, University of Queensland (2006).

    10.
    Rhodes, J. R. et al. Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol. Conserv. 144, 1081–1088 (2011).
    Article  Google Scholar 

    11.
    Denner, J. & Young, P. R. Koala retroviruses: Characterization and impact on the life of koalas. Retrovirology 10, 108 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    12.
    Nyari, S. et al. Epidemiology of chlamydial infection and disease in a free-ranging koala (Phascolarctos cinereus) population. PloS One 12 (2017).

    13.
    Waugh, C. A. et al. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus). Sci. Rep. 7, 1–11 (2017).
    ADS  CAS  Article  Google Scholar 

    14.
    McCallum, H., Kerlin, D. H., Ellis, W. & Carrick, F. Assessing the significance of endemic disease in conservation—koalas, chlamydia, and koala retrovirus as a case study. Conserv. Lett. 11, e12425 (2018).
    Article  Google Scholar 

    15.
    Aldred, J., Campbell, J., Mitchell, G., Davis, G. & Elliott, J. Involvement of wildlife in the natural cycle of Ross River and Barmah Forest viruses (Wildlife Disease Association Meeting, Melbourne, Australia, 1991).
    Google Scholar 

    16.
    Russell, R. C. Arboviruses and their vectors in Australia: An update on the ecology and epidemiology of some mosquito-borne arboviruses. Rev. Med. Vet. Entomol. 83, 141–158 (1995).
    Google Scholar 

    17.
    Harley, D., Sleigh, A. & Ritchie, S. Ross River virus transmission, infection, and disease: A cross-disciplinary review. Clin. Microbiol. Rev. 14, 909–932 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Seay, A. R. & Wolinsky, J. S. Ross river virus-induced demyelination: I Pathogenesis and histopathology. Ann. Neurol. 12, 380–389 (1982).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Azuolas, J., Wishart, E., Bibby, S. & Ainsworth, C. Isolation of Ross River virus from mosquitoes and from horses with signs of musculoskeletal disease. Aust. Vet. J. 81, 344–347 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Stephenson, E. B., Peel, A. J., Reid, S. A., Jansen, C. C. & McCallum, H. The non-human reservoirs of Ross River virus: A systematic review of the evidence. Parasite. Vector. 11, 188 (2018).
    Article  Google Scholar 

    21.
    Skinner, E. B. et al. Associations between Ross River Virus infection in humans and vector-vertebrate community ecology in Brisbane Australia. Vector-borne Zoonot. https://doi.org/10.1089/vbz.2019.2585 (2020).
    Article  Google Scholar 

    22.
    Martin, L. B., Weil, Z. M. & Nelson, R. J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. T. R. Soc. B. 363, 321–339 (2008).
    Article  Google Scholar 

    23.
    Nelson, R. J. & Demas, G. E. Seasonal changes in immune function. Quart. Rev. Biol. 71, 511–548 (1996).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Old, J. M. & Deane, E. M. Antibodies to the Ross River virus in captive marsupials in urban areas of eastern New South Wales Australia. J. Wildlife Dis. 41, 611–614 (2005).
    Article  Google Scholar 

    25.
    Muhar, A., Dale, P. E., Thalib, L. & Arito, E. The spatial distribution of Ross River virus infections in Brisbane: Significance of residential location and relationships with vegetation types. Environ. Health Prev. 4, 184–189 (2000).
    CAS  Article  Google Scholar 

    26.
    Ryan, P., Alsemgeest, D., Gatton, M. & Kay, B. Ross River virus disease clusters and spatial relationship with mosquito biting exposure in Redland Shire, southern Queensland Australia. J. Med. Entomol. 43, 1042–1059 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Davies, N. et al. Movement patterns of an arboreal marsupial at the edge of its range: A case study of the koala. Movement Ecol. 1, 8 (2013).
    Article  Google Scholar 

    28.
    Murphy, A. K. et al. Spatial and temporal patterns of Ross River virus in South East Queensland, Australia: Identification of hot spots at the rural-urban interface. Preprint available at Research Square. https://doi.org/10.21203/rs.3.rs-16140/v1 (2020).

    29.
    Potter, A., Johansen, C. A., Fenwick, S., Reid, S. A. & Lindsay, M. D. The seroprevalence and factors associated with Ross River virus infection in western grey kangaroos (Macropus fuliginosus) in Western Australia. Vector-borne Zoonot. 14, 740–745 (2014).
    Article  Google Scholar 

    30.
    Kay, B. H., Boyd, A. M., Ryan, P. A. & Hall, R. A. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane Australia. Am. J. Trop. Med. Hyg. 76, 417–423 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Doak, D. F., Marino, P. C. & Kareiva, P. M. Spatial scale mediates the influence of habitat fragmentation on dispersal success: Implications for conservation. Theor. Popul. Biol. 41, 315–336 (1992).
    Article  Google Scholar 

    32.
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. S. 34, 487–515 (2003).
    Article  Google Scholar 

    33.
    Di Giulio, M., Holderegger, R. & Tobias, S. Effects of habitat and landscape fragmentation on humans and biodiversity in densely populated landscapes. J. Environ. Manag. 90, 2959–2968 (2009).
    Article  Google Scholar 

    34.
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Article  Google Scholar 

    35.
    Allan, B. F., Keesing, F. & Ostfeld, R. S. Effect of forest fragmentation on Lyme disease risk. Conserv. Biol. 17, 267–272 (2003).
    Article  Google Scholar 

    36.
    Ostfeld, R. S. Biodiversity loss and the rise of zoonotic pathogens. Clin. Microbiol. Infect. 15, 40–43 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Johnson, B. J. et al. The roles of mosquito and bird communities on the prevalence of West Nile virus in urban wetland and residential habitats. Urban Ecosyst. 15, 513–531 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Quigley, B. L., Ong, V. A., Hanger, J. & Timms, P. Molecular dynamics and mode of transmission of koala retrovirus as it invades and spreads through a wild Queensland koala population. J. Virology 92 (2018).

    39.
    Woodward, W. et al. Koalas on North Stradbroke Island: diet, tree use and reconstructed landscapes. Wildlife Res. 35, 606–611 (2008).
    Article  Google Scholar 

    40.
    De Oliveira, S., Murray, P., De Villiers, D. & Baxter, G. Ecology and movement of urban koalas adjacent to linear infrastructure in coastal south-east Queensland. Aust. Mammal. 36, 45–54 (2014).
    Article  Google Scholar 

    41.
    Callaghan, J. et al. Ranking and mapping koala habitat quality for conservation planning on the basis of indirect evidence of tree-species use: A case study of Noosa Shire, south-eastern Queensland. Wildlife Res. 38, 89–102 (2011).
    Article  Google Scholar 

    42.
    MBRC. Koala Management Plan: The Mill at Moreton Bay Redevelopment, Moreton Bay Regional Council. www.moretonbay.qld.gov.au/files/assets/public/services/projects/the-mill/the-mill-koala-management-plan.pdf (2016).

    43.
    Hanger, J. et al. Final Technical Report: Moreton Bay Rail Koala Management Program (Department of Transport and Main Roads, Queensland, 2017).
    Google Scholar 

    44.
    Fabijan, J. et al. Prevalence and clinical significance of koala retrovirus in two South Australian koala (Phascolarctos cinereus) populations. J. Med. Microbiol. 68, 1072–1080 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Whisson, D. A., Zylinski, S., Ferrari, A., Yokochi, K. & Ashman, K. R. Patchy resources and multiple threats: How do koalas navigate an urban landscape?. Landsc. Urban Plan. 201, 103854 (2020).
    Article  Google Scholar 

    46.
    Mitchell, P. in Biology of the Koala (eds AK Lee, KA Handasyde, & GD Sanson) 171–187 (1990).

    47.
    Jansen, C. C., Zborowski, P., Ritchie, S. A. & Van Den Hurk, A. F. Efficacy of bird-baited traps placed at different heights for collecting ornithophilic mosquitoes in eastern Queensland Australia. Aust. J. Med. Entomol. 48, 53–59 (2009).
    Article  Google Scholar 

    48.
    Johnston, E. et al. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: Implications for disease vector surveillance. J. Vect. Ecol. 39, 48–55 (2014).
    Article  Google Scholar 

    49.
    Kay, B., Boreham, P. & Fanning, I. Host-feeding patterns of Culex annulirostris and other mosquitoes (Diptera: Culicidae) at Charleville, southwestern Queensland Australia. J. Med. Entomol. 22, 529–535 (1985).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Johansen, C., Power, S. & Broom, A. Determination of mosquito (Diptera: Culicidae) bloodmeal sources in Western Australia: Implications for arbovirus transmission. J. Med. Entomol. 46, 1167–1175 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Kay, B., Fanning, I. & Carley, J. The vector competence of Australian Culex annulirostris with Murray Valley encephalitis and Kunjin viruses. A J. Exp. Biol. Med. 62, 641–650 (1984).
    Article  Google Scholar 

    52.
    Jacups, S. P., Whelan, P. I. & Currie, B. J. Ross River virus and Barmah Forest virus infections: A review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector-Borne Zoonot. 8, 283–298 (2008).
    Article  Google Scholar 

    53.
    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Kelly, T. R. et al. One Health proof of concept: Bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Prev. Vet. Med. 137, 112–118 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jansen, C. C. et al. Epidemiologic, entomologic, and virologic factors of the 2014–15 Ross River Virus outbreak, Queensland Australia. Emerg. Infect. Dis. 25, 2243 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Woodruff, R. E. et al. Predicting Ross River virus epidemics from regional weather data. Epidemiology 1, 384–393 (2002).
    Article  Google Scholar 

    57.
    Kelly-Hope, L. A., Purdie, D. M. & Kay, B. H. Ross River virus disease in Australia, 1886–1998, with analysis of risk factors associated with outbreaks. J. Med. Entomol. 41, 133–150 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Flies, E. J., Flies, A. S., Fricker, S. R., Weinstein, P. & Williams, C. R. Regional comparison of mosquito bloodmeals in South Australia: Implications for Ross River virus ecology. J. Med. Entomol. 53, 902–910 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Stephenson, E. B., Murphy, A. K., Jansen, C. C., Peel, A. J. & McCallum, H. Interpreting mosquito feeding patterns in Australia through an ecological lens: An analysis of blood meal studies. Parasite. Vector. 12, 156 (2019).
    Article  Google Scholar 

    60.
    Gordon, G. Estimation of the age of the Koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae), from tooth wear and growth. Aust. Mammal. 14, 5–12 (1991).
    Google Scholar 

    61.
    Robbins, A., Loader, J., Timms, P. & Hanger, J. Optimising the short and long-term clinical outcomes for koalas (Phascolarctos cinereus) during treatment for chlamydial infection and disease. PLoS ONE 13(12), e0209673. https://doi.org/10.1371/journal.pone.0209679 (2018).
    Article  Google Scholar 

    62.
    Calenge, C. Home range estimation in R: the adehabitatHR package (Saint Benoist, Auffargis, France, Office national de la classe et de la faune sauvage, 2011).
    Google Scholar 

    63.
    Quantum, G. QGIS geographic information system. Open source geospatial foundation project. https://qgis.osgeo.org (2015).

    64.
    Doherty, R., Whitehead, R. & Gorman, B. The isolation of a third group A arbovirus in Australia, with preliminary observations on its relationship to epidemic polyarthritis. Aust. J. Sci. 26, 183–184 (1963).
    Google Scholar 

    65.
    Gyawali, N., Taylor-Robinson, A. W., Bradbury, R. S., Potter, A. & Aaskov, J. G. Infection of Western Gray Kangaroos (Macropus fuliginosus) with Australian arboviruses associated with human infection. Vector-Born Zoonotic Dis. 20, 33–39 (2020).
    Article  Google Scholar 

    66.
    Togami, E. et al. First evidence of concurrent enzootic and endemic transmission of Ross River virus in the absence of marsupial reservoirs in Fiji. Int. J. Infect. Dis. 96, 94–96 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gyawali, N., Murphy, A. K., Hugo, L. E. & Devine, G. J. A micro-PRNT for the detection of Ross River virus antibodies in mosquito blood meals: A useful tool for inferring transmission pathways. PLoS ONE 15, e0229314. https://doi.org/10.1371/journal.pone.0229314 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    68.
    Gatton, M. L., Kay, B. H. & Ryan, P. A. Environmental predictors of Ross River virus disease outbreaks in Queensland Australia. Am. J. Trop. Med. Hyg. 72, 792–799 (2005).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C. & Wainwright, C. L. Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br. J. Pharmacol. 160(7), 1573–1576 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    QDES. Queensland Department of Environment and Science, Wetland data – version 5 – Queensland series. https://www.des.qld.gov.au (2015).

    71.
    QDES. Queensland Department of Environment and Science, Matters of state environmental significance—wildlife habitat—koala habitat areas—core. https://www.des.qld.gov.au (2020).

    72.
    ESRI. Environmental Systems Research Institute. ArcGIS Desktop. Release 10.4 ed. Redlands, CA, USA. https://esri.com (2020). More

  • in

    Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes

    1.
    Fletcher, D. & Ross, K. Regulation of reproduction in eusocial Hymenoptera. Annu. Rev. Entomol. 30, 319–343. https://doi.org/10.1146/annurev.en.30.010185.001535 (1985).
    Article  Google Scholar 
    2.
    Bonabeau, E. Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443. https://doi.org/10.1007/s100219900038 (1998).
    Article  Google Scholar 

    3.
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University, Cambridge, 1990).
    Google Scholar 

    4.
    Beekman, M. & Oldroyd, B. P. Conflict and major transitions—why we need true queens. Curr. Opin. Insect Sci. 34, 73–79. https://doi.org/10.1016/j.cois.2019.03.009 (2019).
    Article  PubMed  Google Scholar 

    5.
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16. https://doi.org/10.1016/0022-5193(64)90038-4 (1964).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fletcher, D. J. C. & Blum, M. S. Regulation of queen number by workers in colonies of social insects. Science 219, 312–314. https://doi.org/10.1126/science.219.4582.312 (1983).
    ADS  CAS  Article  PubMed  Google Scholar 

    7.
    Liebig, J., Peeters, C. & Holldobler, B. Worker policing limits the number of reproductives in a ponerine ant. Proc. Biol. Sci. 266, 1865–1870 (1999).
    Article  Google Scholar 

    8.
    West, M. J. Foundress associations in polistine wasps: dominance hierarchies and the evolution of social behavior. Science 157, 1584–1585. https://doi.org/10.1126/science.157.3796.1584 (1967).
    ADS  CAS  Article  PubMed  Google Scholar 

    9.
    Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 218–222. https://doi.org/10.1038/nature02949 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Fukumoto, Y. A novel form of colony organization in the “queenless” ant Diacamma rugosum. Physiol. Ecol. Jpn. 26, 55–61 (1989).
    Google Scholar 

    11.
    Grüter, C. & Czaczkes, T. J. Communication in social insects and how it is shaped by individual experience. Anim. Behav. 151, 207–215. https://doi.org/10.1016/j.anbehav.2019.01.027 (2019).
    Article  Google Scholar 

    12.
    Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. News 30, 1–26 (2020).
    Google Scholar 

    13.
    Blomquist, G. J. & Bagneres, A. G. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Cambridge University Press, Cambridge, 2010).
    Google Scholar 

    14.
    Kather, R. & Martin, S. J. Evolution of cuticular hydrocarbons in the hymenoptera: a meta-analysis. J. Chem. Ecol. 41, 871–883. https://doi.org/10.1007/s10886-015-0631-5 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Van Oystaeyen, A. et al. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343, 287–290. https://doi.org/10.1126/science.1244899 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Keller, L. & Nonacs, P. The role of queen pheromones in social insects: queen control or queen signal?. Anim. Behav. 45, 787–794. https://doi.org/10.1006/anbe.1993.1092 (1993).
    Article  Google Scholar 

    17.
    Heinze, J. & d’Ettorre, P. Honest and dishonest communication in social Hymenoptera. J. Exp. Biol. 212, 1775–1779. https://doi.org/10.1242/jeb.015008 (2009).
    CAS  Article  PubMed  Google Scholar 

    18.
    Gobin, B., Billen, J. & Peeters, C. Policing behaviour towards virgin egg layers in a polygynous ponerine ant. Anim. Behav. 58, 1117–1122. https://doi.org/10.1006/anbe.1999.1245 (1999).
    CAS  Article  PubMed  Google Scholar 

    19.
    Holman, L., Dreier, S. & d’Ettorre, P. Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc. R. Soc. B Biol. Sci. 277, 2007–2015. https://doi.org/10.1098/rspb.2009.2311 (2010).
    CAS  Article  Google Scholar 

    20.
    Oi, C. A. et al. The origin and evolution of social insect queen pheromones: novel hypotheses and outstanding problems. BioEssays 37, 808–821. https://doi.org/10.1002/bies.201400180 (2015).
    CAS  Article  PubMed  Google Scholar 

    21.
    Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 1593. https://doi.org/10.1038/s41467-019-09567-2 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275. https://doi.org/10.1007/s10886-011-0036-z (2011).
    CAS  Article  PubMed  Google Scholar 

    23.
    Butler, C. G., Callow, R. K. & Johnston, N. C. Extraction and purification of ‘queen substance’ from queen bees. Nature 184, 1871–1871. https://doi.org/10.1038/1841871a0 (1959).
    ADS  CAS  Article  Google Scholar 

    24.
    van Zweden, J. S., Bonckaert, W., Wenseleers, T. & d’Ettorre, P. Queen signaling in social wasps. Evolution 68, 976–986. https://doi.org/10.1111/evo.12314 (2014).
    Article  PubMed  Google Scholar 

    25.
    Mitra, A. & Gadagkar, R. Queen signal should be honest to be involved in maintenance of eusociality: chemical correlates of fertility in Ropalidia marginata. Insectes Soc. 59, 251–255. https://doi.org/10.1007/s00040-011-0214-6 (2012).
    Article  Google Scholar 

    26.
    Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. B Biol. Sci. 277, 3793–3800. https://doi.org/10.1098/rspb.2010.0984 (2010).
    CAS  Article  Google Scholar 

    27.
    Hanus, R., Vrkoslav, V., Hrdý, I., Cvačka, J. & Šobotník, J. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc. R. Soc. B Biol. Sci. 277, 995–1002. https://doi.org/10.1098/rspb.2009.1857 (2010).
    CAS  Article  Google Scholar 

    28.
    Myles, T. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–91 (1999).
    Google Scholar 

    29.
    Vargo, E. L. & Husseneder, C. Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 54, 379–403. https://doi.org/10.1146/annurev.ento.54.110807.090443 (2009).
    CAS  Article  PubMed  Google Scholar 

    30.
    Lainé, L. V. & Wright, D. J. The life cycle of Reticulitermes spp. (Isoptera: Rhinotermitidae): what do we know?. Bull. Entomol. Res. 93, 267–278. https://doi.org/10.1079/ber2003238 (2003).
    Article  PubMed  Google Scholar 

    31.
    Thorne, B. L., Traniello, J. F. A., Adams, E. S. & Bulmer, M. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol. Ecol. Evol. 11, 149–169. https://doi.org/10.1080/08927014.1999.9522833 (1999).
    Article  Google Scholar 

    32.
    Hu, X. Recent Advances in Entomological Research: From Molecular Biology to Pest Management (eds Liu, T. & Kang, L.) 213–226 (Springer, Berlin, 2011).

    33.
    Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968. https://doi.org/10.1073/pnas.1004675107 (2010).
    ADS  Article  PubMed  Google Scholar 

    34.
    Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci. Nat. 104, 79. https://doi.org/10.1007/s00114-017-1501-5 (2017).
    CAS  Article  Google Scholar 

    35.
    Havlíčková, J. et al. (3R,6E)-nerolidol, a fertility-related volatile secreted by the queens of higher termites (Termitidae: Syntermitinae). Zeitschrift für Naturforschung C 74, 251–264. https://doi.org/10.1515/znc-2018-0197 (2019).
    CAS  Article  Google Scholar 

    36.
    Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1721419115 (2018).
    Article  PubMed  Google Scholar 

    37.
    Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, e0209810. https://doi.org/10.1371/journal.pone.0209810 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    38.
    Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898. https://doi.org/10.1002/ece3.6325 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Yamamoto, Y. & Matsuura, K. Queen pheromone regulates egg production in a termite. Biol. Let. 7, 727–729. https://doi.org/10.1098/rsbl.2011.0353 (2011).
    Article  Google Scholar 

    40.
    Sun, Q., Haynes, K. F. & Zhou, X. Temporal changes in cuticular hydrocarbons during worker-reproductive transition in the eastern subterranean termite (Blattodea: Rhinotermitidae). Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/saaa027 (2020).
    Article  Google Scholar 

    41.
    Perdereau, E., Dedeine, F., Christidès, J.-P. & Bagnères, A.-G. Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J. Chem. Ecol. 36, 1189–1198. https://doi.org/10.1007/s10886-010-9860-9 (2010).
    CAS  Article  PubMed  Google Scholar 

    42.
    Tarver, M. R., Schmelz, E. A., Rocca, J. R. & Scharf, M. E. Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J. Chem. Ecol. 35, 256–264. https://doi.org/10.1007/s10886-009-9594-8 (2009).
    CAS  Article  PubMed  Google Scholar 

    43.
    Tarver, M. R., Zhou, X. & Scharf, M. E. Socio-environmental and endocrine influences on developmental and caste-regulatory gene expression in the eusocial termite Reticulitermes flavipes. BMC Mol. Biol. 11, 28. https://doi.org/10.1186/1471-2199-11-28 (2010).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    44.
    Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780. https://doi.org/10.1098/rspb.2020.0780 (2020).
    Article  Google Scholar 

    45.
    Chen, Y. P. & Vinson, S. B. Effects of queen attractiveness to workers on the queen nutritional status and egg production in the polygynous Solenopsis invicta (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 93, 295–302. https://doi.org/10.1603/0013-8746(2000)093[0295:eoqatw]2.0.co;2 (2000).
    Article  Google Scholar 

    46.
    Ortius, D. & Heinze, J. Fertility signaling in queens of a North American ant. Behav. Ecol. Sociobiol. 45, 151–159 (1999).
    Article  Google Scholar 

    47.
    Hannonen, M. & Sundström, L. Proximate determinants of reproductive skew in polygyne colonies of the ant Formica fusca. Ethology 108, 961–973. https://doi.org/10.1046/j.1439-0310.2002.00829.x (2002).
    Article  Google Scholar 

    48.
    Keller, L. Evolutionary implications of polygyny in the Argentine ant, Iridomyrmex humilis (Mayr) (Hymenoptera: Formicinae): an experimental study. Anim. Behav. 36, 159–165 (1988).
    Article  Google Scholar 

    49.
    Vargo, E. L. Mutual pheromonal inhibition among queens in polygyne colonies of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 31, 205–210. https://doi.org/10.1007/bf00168648 (1992).
    Article  Google Scholar 

    50.
    Vander Meer, R. K., Morel, L. & Lofgren, C. S. A comparison of queen oviposition rates from monogyne and polygyne fire ant, Solenopsis invicta, colonies. Physiol. Entomol. 17, 384–390. https://doi.org/10.1111/j.1365-3032.1992.tb01036.x (1992).
    Article  Google Scholar 

    51.
    Lenoir, A., D’Ettorre, P., Errard, C. & Hefetz, A. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599. https://doi.org/10.1146/annurev.ento.46.1.573 (2001).
    CAS  Article  PubMed  Google Scholar 

    52.
    Martin, S. J., Carruthers, J. M., Williams, P. H. & Drijfhout, F. P. Host specific social parasites (Psithyrus) indicate chemical recognition system in bumblebees. J. Chem. Ecol. 36, 855–863. https://doi.org/10.1007/s10886-010-9805-3 (2010).
    CAS  Article  PubMed  Google Scholar 

    53.
    Kreuter, K. et al. How the social parasitic bumblebee Bombus bohemicus sneaks into power of reproduction. Behav. Ecol. Sociobiol. 66, 475–486 (2012).
    Article  Google Scholar 

    54.
    Mori, A. et al. Behavioural assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol. Ecol. Evol. 12, 315–322. https://doi.org/10.1080/08927014.2000.9522804 (2000).
    Article  Google Scholar 

    55.
    Ruano, F., Hefetz, A., Lenoir, A., Francke, W. & Tinaut, A. Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. J. Insect Physiol. 51, 1158–1164. https://doi.org/10.1016/j.jinsphys.2005.06.005 (2005).
    CAS  Article  PubMed  Google Scholar 

    56.
    Martin, S. J., Jenner, E. A. & Drijfhout, F. P. Chemical deterrent enables a socially parasitic ant to invade multiple hosts. Proc. Biol. Sci. 274, 2717–2721. https://doi.org/10.1098/rspb.2007.0795 (2007).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    57.
    Lhomme, P., Ayasse, M., Valterová, I., Lecocq, T. & Rasmont, P. Born in an alien nest: how do social parasite male offspring escape from host aggression?. PLoS ONE 7, e43053. https://doi.org/10.1371/journal.pone.0043053 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Hanus, R., Piskorski, R., Šobotník, J., Urbanová, K. & Valterová, I. Congress of Entomology 2008 (Durban, South Africa, 2008).

    59.
    Penick, C., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).
    Article  Google Scholar 

    60.
    Monnin, T. Chemical recognition of reproductive status in social insects. Ann. Zoolgici Fenn. 43, 515–530 (2006).
    Google Scholar 

    61.
    Endler, A., Liebig, J. & Hölldobler, B. Queen fertility, egg marking and colony size in the ant Camponotus floridanus. Behav. Ecol. Sociobiol. 59, 490–499 (2006).
    Article  Google Scholar 

    62.
    Foster, K. R. & Ratnieks, F. L. W. Facultative worker policing in a wasp. Nature 407, 692–693. https://doi.org/10.1038/35037665 (2000).
    ADS  CAS  Article  PubMed  Google Scholar 

    63.
    Bonckaert, W., Van Zweden, J. S., D’Ettorre, P., Billen, J. & Wenseleers, T. Colony stage and not facultative policing explains pattern of worker reproduction in the Saxon wasp. Mol. Ecol. 20, 3455–3468. https://doi.org/10.1111/j.1365-294X.2011.05200.x (2011).
    CAS  Article  PubMed  Google Scholar 

    64.
    Haverty, M. I., Grace, J. K., Nelson, L. J. & Yamamoto, R. T. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Copotermes formosanus shiraki (Isoptera: Rhinotermitidae). J. Chem. Ecol. 22, 1813–1834. https://doi.org/10.1007/bf02028506 (1996).
    CAS  Article  PubMed  Google Scholar 

    65.
    Howard, R. & Haverty, M. I. Seasonal variation in caste proportions of field colonies of Reticulitermes flavipes (Kollar) 1. Environ. Entomol. 10, 546–549. https://doi.org/10.1093/ee/10.4.546 (1981).
    Article  Google Scholar 

    66.
    Gordon, J. M., Šobotník, J. & Chouvenc, T. Colony-age-dependent variation in cuticular hydrocarbon profiles in subterranean termite colonies. Ecol. Evol. 10, 10095–10104. https://doi.org/10.1002/ece3.6669 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    67.
    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).
    Article  Google Scholar 

    68.
    Eyer, P. A. et al. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Authorea 1, 1–20 (2020).

    69.
    Dronnet, S., Chapuisat, M., Vargo, E. L., Lohou, C. & Bagnères, A.-G. Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol. Ecol. 14, 1311–1320. https://doi.org/10.1111/j.1365-294X.2005.02508.x (2005).
    CAS  Article  PubMed  Google Scholar 

    70.
    Junker, R. R. et al. Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications. New Phytol. 220, 739–749. https://doi.org/10.1111/nph.14505 (2018).
    Article  PubMed  Google Scholar 

    71.
    Aguero, C., Eyer, P. A. & Vargo, E. L. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci. Rep. 10, 4212 (2020).
    ADS  CAS  Article  Google Scholar 

    72.
    polymorphism and chemotaxonomy. Bagneres, A. G. et al. Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud). J. Chem. Ecol. 16, 3213–3244 (1990).
    Article  Google Scholar 

    73.
    Clément, J. L. et al. Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insectes Soc. 408, 202–215 (2001).
    Article  Google Scholar 

    74.
    Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R package. https://CRAN.R-project.org/package=PMCMR (2014).

    75.
    Kassambara, A. & Mundt, F. Extract and visualize the results of multivariate data analyses. Package ‘factoextra’, vol. 76. http://www.sthda.com/english/rpkgs/factoextra (2017).

    76.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020). More

  • in

    Identification of microalgae cultured in Bold’s Basal medium from freshwater samples, from a high-rise city

    1.
    Mobin, S., Chowdhury, H. & Alam, F. Commercially important bioproducts from microalgae and their current applications—a review. Energy Procedia. 60, 752–760 (2002).
    Google Scholar 
    2.
    Tragin, M. & Vaulot, D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci. Rep. https://doi.org/10.1038/s41598-018-32338-w (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    3.
    Phang, S. M. et al. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore Thailand and Vietnam. Raffles B Zool. 34, 13–59 (2016).
    Google Scholar 

    4.
    Pham, M. N., Tan, H. T. W., Mitrovic, S., & Yeo, H. H. T. A checklist of the algae of Singapore. In Raffles Museum of Biodiversity Research, 2nd edn (2011).

    5.
    Omar, W. M. W. Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop. Life Sci. Res. 21, 51–67 (2010).
    PubMed  PubMed Central  Google Scholar 

    6.
    Emporis GMBH. https://www.emporis.com/city/100422/singapore-singapore (2020).

    7.
    Waterways and Waterbodies. https://www.mewr.gov.sg/ssb/our-targets/green-blue-spaces/waterways-and-waterbodies (2020).

    8.
    Darienko, T., Gustavs, L., Eggert, A., Wolf, W., Proschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE. 10; e0127838. https://doi.org/10.1371/journal.pone.0127838 (2015).

    9.
    Radha, S., Fathima, A., Iyappan, S. & Mohandas, R. Direct colony PCR for rapid identification of varied microalgae from freshwater environment. J. Appl. Phycol. https://doi.org/10.1007/s10811-012-9895-0 (2013).
    Article  Google Scholar 

    10.
    Domozych, D. et al. The cell walls of green algae: a journey through evolution and diversity. Front. Plant. Sci. https://doi.org/10.3389/fpls.2012.00082 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Te, S. & Gin, K. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae. 10(3), 319–329. https://doi.org/10.1016/j.hal.2010.11.006 (2011).
    CAS  Article  Google Scholar 

    12.
    Hirano, K. et al. Detection of the oil-producing microalga Botryococcus braunii in natural freshwater environments by targeting the hydrocarbon biosynthesis gene SSL-3. Sci. Rep. https://doi.org/10.1038/s41598-019-53619-y (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    13.
    Newman, S. M. et al. Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126, 875–888 (1990).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Martin-Laurent, F. et al. DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 67, 2354–2359 (2001).
    CAS  Article  Google Scholar 

    15.
    Eland, L., Davenport, R. & Mota, C. R. Evaluation of DNA extraction methods for freshwater eukaryotic microalgae. Water Res. 46, 5355–5364 (2012).
    CAS  Article  Google Scholar 

    16.
    Simonelli, P. et al. Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies. J. Plankton Res. 31, 1465–1474 (2009).
    CAS  Article  Google Scholar 

    17.
    Frazão, B. & Silva, A. Molecular tools for phytoplankton monitoring samples. BioRxiv https://doi.org/10.1101/339655 (2018).
    Article  Google Scholar 

    18.
    Fei, C. et al. A quick method for obtaining high-quality DNA barcodes without DNA extraction in microalgae. J. Appl. Phycol. https://doi.org/10.1007/s10811-019-01926-2 (2020).
    Article  Google Scholar 

    19.
    Sonnenberg, R., Nolte, A. W. & Tautz, D. An evaluation of LSU rDNA D1–D2 sequences for their use in species identification. Front. Zool. https://doi.org/10.1186/1742-9994-4-6 (2007).
    Article  PubMed  PubMed Central  Google Scholar 

    20.
    Beals, L., Gross, M., & Harrell, S. Diversity indices. http://www.tiem.utk.edu/~gross/bioed/bealsmodules/shannonDI.html (2000).

    21.
    Khan, M. I., Jin, H. S. & Jong, D. K. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. https://doi.org/10.1186/s12934-018-0879-x (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Ji, M. K. et al. Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. J. Environ. Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000726 (2020).
    Article  Google Scholar 

    23.
    Patnaik, R., Singh, N., Bagchi, S., Rao, P. S. & Mallick, N. Utilization of Scenedesmus obliquus protein as a replacement of the commercially available fish meal under an algal refinery approach. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02114 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Mata, T. et al. Potential of microalgae Scendesmus obliquus grown in brewery wastewater for biodiesel production. Chem. Eng. Trans. 32, 901–906 (2013).
    Google Scholar 

    25.
    Afify, A. E. M. M. R., ElBaroty, G. S., ElBaz, F. K., AbdElBaky, H. H. & Murad, S. A. Scenedesmus obliquus: antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J. Gen. Eng. Biotech. 16, 399–408 (2018).
    Article  Google Scholar 

    26.
    Kent, M., Welladsen, H. M., Mangott, A. & Lee, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE https://doi.org/10.1371/journal.pone.0118985 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    27.
    Unpaprom, Y., Tipnee, S. & Ramaraj, R. Biodiesel from green alga Scenedesmus acuminatus. Int. J. Sustain. Green Energy 4, 1–6 (2015).
    CAS  Article  Google Scholar 

    28.
    De Alva, S. M., Luna-Pabello, V., Cadena, E. & Ortíz, E. Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresour. Technol. 146, 744–748 (2013).
    Article  Google Scholar 

    29.
    Patil, L. & Kaliwal, B. B. Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess. Biosyst. Eng. 42, 1–16 (2019).
    CAS  Article  Google Scholar 

    30.
    Henard, C., Guarnieri, M. & Knoshaug, E. The Chlorella vulgaris S-nitrosoproteome under nitrogen-replete and -deplete conditions. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2016.00100 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Chai, S. et al. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS ONE https://doi.org/10.1371/journal.pone.0199873 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    32.
    Ishiguro, S. et al. Cell wall membrane fraction of Chlorella sorokiniana enhances host antitumor immunity and inhibits colon carcinoma growth in mice. Integr. Cancer Ther. https://doi.org/10.1177/1534735419900555 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Barone, R. S. C., Sonoda, D. Y., Lorenz, E. K. & Cyrino, J. E. P. Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds. Sci. Agric. https://doi.org/10.1590/1678-992x-2016-0457 (2018).
    Article  Google Scholar 

    34.
    Guo, M. et al. Effects of neutrophils peptide-1 transgenic Chlorella ellipsoidea on the gut microbiota of male Sprague-Dawley rats, as revealed by high-throughput 16S rRNA sequencing. World J. Microbiol. Biotechnol. https://doi.org/10.1007/s11274-015-1994-z (2016).
    Article  PubMed  Google Scholar 

    35.
    El-Dalatony, M. et al. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioproc. E 19, 510–518 (2014).
    Article  Google Scholar 

    36.
    Scaife, M. et al. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 82, 532–546 (2015).
    CAS  Article  Google Scholar 

    37.
    Kamyab, H. et al. Efficiency of microalgae Chlamydomonas on the removal of pollutants from palm oil mill effluent (POME). Energy Procedia. 75, 2400–2408 (2015).
    CAS  Article  Google Scholar 

    38.
    Ciorba, D. & Truta, A. A. C. Cytotoxic exposure of green algas Chlamydomonas peterfii Gerloff in radon aerosols. J. Phys. Rom. https://doi.org/10.1016/j.biortech.2013.07.061 (2013).
    Article  Google Scholar 

    39.
    Santhakumaran, P., Kookal, S., Mathew, L. & Ray, J. G. Bioprospecting of three rapid-growing freshwater green algae, promising biomass for biodiesel production. BioEnergy Res. 12, 680–693 (2019).
    CAS  Article  Google Scholar 

    40.
    Rauytanapanit, M. et al. Nutrient deprivation-associated changes in green microalga Coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids. Mar. Drugs https://doi.org/10.3390/md17060328 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Kumar, M. S. et al. Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content. J. Renew. Sustain. Energ. https://doi.org/10.1063/1.4901541 (2014).
    Article  Google Scholar 

    42.
    Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R. & Singh, R. High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE 14(e0221930), 2019. https://doi.org/10.1371/journal.pone.0221930 (2019).
    CAS  Article  Google Scholar 

    43.
    Mourelle, M., Gómez, C. & Legido, J. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics. https://doi.org/10.3390/cosmetics4040046 (2017).
    Article  Google Scholar 

    44.
    Singh, G. & Thomas, P. Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour. Technol. 117, 80–85 (2012).
    CAS  Article  Google Scholar 

    45.
    Sathasivam, R., Radhakrishnan, R., Hashem, A. & AbdAllah, E. F. Microalgae metabolites: a rich source for food and medicine. Saudi J. Biol. Sci. 26, 709–722 (2019).
    CAS  Article  Google Scholar 

    46.
    Neustupa, J. & Škaloud, P. Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant. Ecol. Evol. 143, 51–62 (2010).
    Article  Google Scholar 

    47.
    Prakash, J., Antonisamy, J. & Jeeva, S. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac. J. Trop. Biomed. 1, S170–S173. https://doi.org/10.1016/s2221-1691(11)60149-4 (2011).
    Article  Google Scholar 

    48.
    Gumbi, S., Majeke, B., Olaniran, A. & Mutanda, T. Isolation, identification and high-throughput screening of neutral lipid producing indigenous microalgae from South African aquatic habitats. Appl. Biochem. Biotech. 182, 382–399. https://doi.org/10.1007/s12010-016-2333-z (2016).
    CAS  Article  Google Scholar 

    49.
    Lee, K., Eisterhold, M. L., Rindi, F., Palanisami, S. & Nam, P. Isolation and screening of microalgae from natural habitats in the midwestern United States of America for biomass and biodiesel sources. J. Nat. Sci. Biol. Med. https://doi.org/10.4103/0976-9668.136178 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    50.
    Lewandowska, A., Śliwińska-Wilczewska, S. & Woźniczka, D. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Mar. Pollut. Bull. 125, 30–38. https://doi.org/10.1016/j.marpolbul.2017.07.064 (2017).
    CAS  Article  PubMed  Google Scholar  More

  • in

    Stress hormone-mediated antipredator morphology improves escape performance in amphibian tadpoles

    1.
    Tollrian, R. & Harvell, C. D. The Ecology and Evolution of Inducible Defenses (Princeton University Press, Princeton, 1998).
    Google Scholar 
    2.
    Ohgushi, T., Schmitz, O. J. & Holt, R. D. Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives (Cambridge University Press, Cambridge, 2013).
    Google Scholar 

    3.
    Ellers, J. & Stuefer, J. F. Frontiers in phenotypic plasticity research: new questions about mechanisms, induced responses, and ecological impacts. Evol. Ecol. 24, 523–526 (2010).
    Article  Google Scholar 

    4.
    Mitchell, M. D., Bairos-Novak, K. R. & Ferrari, M. C. Mechanisms underlying the control of responses to predator odours in aquatic prey. J. Exp. Biol. 220, 1937–1946 (2017).
    PubMed  Article  Google Scholar 

    5.
    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. Roy. Soc. B Biol. Sci. 272, 2627–2634 (2005).
    Google Scholar 

    6.
    Brönmark, C. & Hansson, L.-A. Chemical Ecology in Aquatic Systems (Oxford University Press, Oxford, 2012).
    Google Scholar 

    7.
    Middlemis Maher, J., Werner, E. E. & Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. R. Soc. B Biol. Sci. 280, 20123075 (2013).
    Article  CAS  Google Scholar 

    8.
    Dennis, S. R., LeBlanc, G. A. & Beckerman, A. P. Endocrine regulation of predator-induced phenotypic plasticity. Oecologia 176, 625–635 (2014).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Matsunami, M. et al. Transcriptome analysis of predator- and prey-induced phenotypic plasticity in the Hokkaido salamander (Hynobius retardatus). Mol. Ecol. 24, 3064–3076 (2015).
    CAS  PubMed  Article  Google Scholar 

    10.
    Weiss, L. C. Sensory ecology of predator-induced phenotypic plasticity. Front. Behav. Neurosci. 12, 330 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Hawlena, D. & Schmitz, O. J. Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat. 176, 537–556 (2010).
    PubMed  Article  Google Scholar 

    12.
    Auld, J. R. & Relyea, R. A. Adaptive plasticity in predator-induced defenses in a common freshwater snail: altered selection and mode of predation due to prey phenotype. Evol. Ecol. 25, 189–202 (2011).
    Article  Google Scholar 

    13.
    Meuthen, D., Baldauf, S. A., Bakker, T. C. & Thünken, T. Neglected patterns of variation in phenotypic plasticity: age-and sex-specific antipredator plasticity in a cichlid fish. Am. Nat. 191, 475–490 (2018).
    PubMed  Article  Google Scholar 

    14.
    Schoeppner, N. M. & Relyea, R. A. Interpreting the smells of predation: how alarm cues and kairomones induce different prey defenses. Func. Ecol. 23, 1114–1121 (2009).
    Article  Google Scholar 

    15.
    Hettyey, A. et al. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia 179, 699–710 (2015).
    ADS  PubMed  Article  Google Scholar 

    16.
    Fraker, M. E. et al. Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioral inhibition and suppression of the neuroendocrine stress axis. Horm. Behav. 55, 520–529 (2009).
    CAS  PubMed  Article  Google Scholar 

    17.
    Hossie, T. J., Ferland-Raymond, B., Burness, G. & Murray, D. L. Morphological and behavioural responses of frog tadpoles to perceived predation risk: a possible role for corticosterone mediation?. Écoscience 17, 100–108 (2010).
    Article  Google Scholar 

    18.
    McDiarmid, R. W. & Altig, R. Tadpoles: the Biology of Anuran Larvae (University of Chicago Press, Chicago, 1999).
    Google Scholar 

    19.
    Relyea, R. A. Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85, 172–179 (2004).
    Article  Google Scholar 

    20.
    Wilson, R. S., Kraft, P. G. & Van Damme, R. Predator-specific changes in the morphology and swimming performance of larval Rana lessonae. Func. Ecol. 19, 238–244 (2005).
    Article  Google Scholar 

    21.
    Van Buskirk, J. & McCollum, S. A. Influence of tail shape on tadpole swimming performance. J. Exp. Biol. 203, 2149–2158 (2000).
    PubMed  Google Scholar 

    22.
    Eidietis, L. Size-related performance variation in the wood frog (Rana sylvatica) tadpole tactile-stimulated startle response. Can. J. Zool. 83, 1117–1127 (2005).
    Article  Google Scholar 

    23.
    Perotti, M. G., Pueta, M., Jara, F. G., Úbeda, C. A. & Moreno Azocar, D. L. Lack of functional link in the tadpole morphology induced by predators. Curr. Zool. 62, 227–235 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Mori, T. et al. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles. Biol. Open 6, 1726–1733 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Lindgren, B., Orizaola, G. & Laurila, A. Interacting effects of predation risk and resource level on escape speed of amphibian larvae along a latitudinal gradient. J. Evol. Biol. 31, 1216–1226 (2018).
    PubMed  Article  Google Scholar 

    26.
    Van Buskirk, J., Anderwald, P., Lüpold, S., Reinhardt, L. & Schuler, H. The lure effect, tadpole tail shape, and the target of dragonfly strikes. J. Herp. 37, 420–424 (2003).
    Article  Google Scholar 

    27.
    Dijk, B., Laurila, A., Orizaola, G. & Johansson, F. Is one defence enough? Disentangling the relative importance of morphological and behavioural predator-induced defences. Behav. Ecol. Sociobiol. 70, 237–246 (2016).
    Article  Google Scholar 

    28.
    Glennemeier, K. A. & Denver, R. J. Moderate elevation of corticosterone content affects fitness components in northern leopard frog (Rana pipiens) tadpoles. Gen. Comp. Endocrinol. 127, 16–25 (2002).
    CAS  PubMed  Article  Google Scholar 

    29.
    Glennemeier, K. A. & Denver, R. J. Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. J. Exp. Zool. 292, 32–40 (2002).
    CAS  PubMed  Article  Google Scholar 

    30.
    Muir, A. M., Vecsei, P. & Krueger, C. C. A perspective on perspectives: methods to reduce variation in shape analysis of digital images. Trans. Am. Fish. Soc. 141, 1161–1170 (2012).
    Article  Google Scholar 

    31.
    Fraker, M. E. & Luttbeg, B. Predator-prey space use and the spatial distribution of predation events. Behaviour 149, 555–574 (2012).
    Article  Google Scholar 

    32.
    Denver, R. J. Hormonal correlates of environmentally induced metamorphosis in the western spadefoot toad, Scaphiopus hammondii. Gen. Comp. Endocrinol. 110, 326–336 (1998).
    CAS  PubMed  Article  Google Scholar 

    33.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
    Article  Google Scholar 

    34.
    R Core Team. R: A language and environment for statistical computing, version 3.6.1. (R Foundation for Statistical Computing, 2019).

    35.
    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Soft. 69, 1–33 (2016).
    Article  Google Scholar 

    36.
    Therneau, T. M. & Lumley, T. R Package ‘survival’ version 3.1-8 (2019).

    37.
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 541–554 (2001).
    Article  Google Scholar 

    39.
    Berner, D. Size correction in biology: how reliable are approaches based on (common) principal component analysis?. Oecologia 166, 961–971 (2011).
    ADS  PubMed  Article  Google Scholar 

    40.
    Humphreys, R. K. & Ruxton, G. D. What is known and what is not yet known about deflection of the point of a predator’s attack. Biol. J. Linn. Soc. 123, 483–495 (2018).
    Article  Google Scholar 

    41.
    Blair, J. & Wassersug, R. J. Variation in the pattern of predator-induced damage to tadpole tails. Copeia 2000, 390–401 (2000).
    Article  Google Scholar 

    42.
    Van Buskirk, J., Ferrari, M., Kueng, D., Näpflin, K. & Ritter, N. Prey risk assessment depends on conspecific density. Oikos 120, 1235–1239 (2011).
    Article  Google Scholar 

    43.
    McCoy, M. W. Conspecific density determines the magnitude and character of predator-induced phenotype. Oecologia 153, 871–878 (2007).
    ADS  PubMed  Article  Google Scholar 

    44.
    Van Buskirk, J. & McCollum, S. A. Functional mechanisms of an inducible defence in tadpoles: morphology and behaviour influence mortality risk from predation. J. Evol. Biol 13, 336–347 (2000).
    Article  Google Scholar 

    45.
    Van Buskirk, J. Phenotypic lability and the evolution of predator-induced plasticity in tadpoles. Evolution 56, 361–370 (2002).
    PubMed  Article  Google Scholar 

    46.
    Hossie, T., Landolt, K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 173–184 (2017).
    Article  Google Scholar 

    47.
    Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).
    PubMed  Article  Google Scholar 

    48.
    Steiner, U. K. & Van Buskirk, J. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff. PLoS ONE 4, e6160 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Ferrari, M. C., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88, 698–724 (2010).
    Article  Google Scholar 

    50.
    Luttbeg, B., Ferrari, M. C., Blumstein, D. T. & Chivers, D. P. Safety cues can give prey more valuable information than danger cues. Am. Nat. 195, 636–648 (2020).
    PubMed  Article  Google Scholar 

    51.
    Schmitz, O. J. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions. F1000Research 6, 1767 (2017).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Experimentally constrained early reproduction shapes life history trajectories and behaviour

    Study system and study population
    We used the seed beetle Callosobruchus maculatus (Chrysomelidae, Bruchinae). In the laboratory, these beetles are kept under conditions (dry legume storage environments; see below) that mimic the conditions in which they have evolved for thousands of generations, since this species has adapted to exploiting dry seeds in human grain storages for several thousands of years16,17. In our study, we used one of the preferred hosts of this beetle, the mung bean (Vigna radiata, hereafter referred simply as beans). After mating, the inseminated females glue eggs on the surface of the beans. After hatching, the first larval instar burrows into the bean’s endosperm where it feeds and completes development. Importantly, females are able to discriminate clean from previously infested beans18. Whenever possible, females prefer to distribute their eggs uniformly (1 egg/seed), trying to avoid laying eggs on beans on which an egg (own or non-own) has already been deposited. This is because only a very small fraction of eggs deposited in an already parasitized bean develop successfully as a result of bean size limitations and larval competition19. When host deprivation is maintained for a long time ( > 4 days20) females may lay eggs on unsuitable substrates as well. In our population, infested Vigna radiata beans typically contain a single larva developing inside, and generally, a bean of this species provides resources to support only the development of one individual21. The species is sexually dimorphic, has a short generation time ( 0.95; p  More

  • in

    Multi-kingdom ecological drivers of microbiota assembly in preterm infants

    1.
    Charbonneau, M. R. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Derrien, M., Alvarez, A. S. & de Vos, W. M. The gut microbiota in the first decade of life. Trends Microbiol. 27, 997–1010 (2019).
    CAS  PubMed  Article  Google Scholar 

    5.
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).
    CAS  PubMed  Article  Google Scholar 

    9.
    Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Fischbach, M. A. Microbiome: focus on causation and mechanism. Cell 174, 785–790 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Widder, S. et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J. 10, 2557–2568 (2016).
    MathSciNet  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Vrancken, G., Gregory, A. C., Huys, G. R. B., Faust, K. & Raes, J. Synthetic ecology of the human gut microbiota. Nat. Rev. Microbiol. 17, 754–763 (2019).
    CAS  PubMed  Article  Google Scholar 

    13.
    Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).
    CAS  PubMed  Article  Google Scholar 

    14.
    Wolfe, B. E., Button, J. E., Santarelli, M. & Dutton, R. J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158, 422–433 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).
    Article  Google Scholar 

    16.
    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).
    CAS  PubMed  Article  Google Scholar 

    17.
    Shade, A. et al. Macroecology to unite all life, large and small. Trends Ecol. Evol. 33, 731–744 (2018).
    PubMed  Article  Google Scholar 

    18.
    Gregory, K. E. et al. Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome 4, 68 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Gibson, M. K. et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 1, 16024 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    DiBartolomeo, M. E. & Claud, E. C. The developing microbiome of the preterm infant. Clin. Ther. 38, 733–739 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    La Rosa, P. S. et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl Acad. Sci. USA 111, 12522–12527 (2014).
    ADS  PubMed  Article  CAS  Google Scholar 

    22.
    Costello, E. K., Carlisle, E. M., Bik, E. M., Morowitz, M. J. & Relman, D. A. Microbiome assembly across multiple body sites in low-birthweight infants. MBio 4, e00782-13 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Stewart, C. J. et al. Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome 4, 67 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Gasparrini, A. J. et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 4, 2285–2297 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Reynolds, L. A. & Finlay, B. B. Early life factors that affect allergy development. Nat. Rev. Immunol. 17, 518–528 (2017).
    CAS  PubMed  Article  Google Scholar 

    27.
    Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    The Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).
    ADS  Article  CAS  Google Scholar 

    32.
    Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Limon, J. J., Skalski, J. H. & Underhill, D. M. Commensal fungi in health and disease. Cell Host Microbe 22, 156–165 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Koskinen, K. et al. First insights into the diverse human archaeome: specific detection of Archaea in the gastrointestinal tract, lung, and nose and on skin. MBio 8, 00824-17 (2017).
    Article  Google Scholar 

    35.
    Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. 13, 2647–2655 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Contijoch, E. J. et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8, e40553 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 28 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Ishwaran, H. & Rao, J. S. Spike and slab variable selection: frequentist and Bayesian strategies. Ann. Stat. 33, 730–773 (2005).
    MathSciNet  MATH  Article  Google Scholar 

    41.
    Gonze, D., Coyte, K. Z., Lahti, L. & Faust, K. Microbial communities as dynamical systems. Curr. Opin. Microbiol. 44, 41–49 (2018).
    PubMed  Article  Google Scholar 

    42.
    Bucci, V. et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A. & Navarrete, S. A. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology 99, 690–699 (2018).
    PubMed  Article  Google Scholar 

    44.
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLOS Comput. Biol. 8, e1002687 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLOS Comput. Biol. 8, e1002606 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066 (2019).
    CAS  PubMed  Article  Google Scholar 

    47.
    Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLOS Comput. Biol. 9, e1003388 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Pammi, M., Liang, R., Hicks, J., Mistretta, T. A. & Versalovic, J. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol. 13, 257 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Changes in the human footprint in and around Indonesia’s terrestrial national parks between 2012 and 2017

    1.
    BPS. Statistik Indonesia 2018 (Badan Pusat Statistik, Jakarta, 2018).
    Google Scholar 
    2.
    KLHK. Pedoman penilaian efektivitas pengelolaan kawasan konservasi di Indonesia. (Direktorat Kawasan Konservasi dan Direktorat Jenderal Konservasi Sumber Daya Alam dan Ekosistem, Kementerian Lingkungan Hidup dan Kehutanan, Jakarta, 2015).

    3.
    Ditjen KSDAE. Statistik Direktorat Jenderal KSDAE 2017 (Kementerian Lingkungan Hidup dan Kehutanan Direktorat Jenderal Konservasi Sumber Daya Alam dan Ekosistem, Jakarta, 2018).

    4.
    Mulyana, A. et al. Kebijakan pengelolaan zona khusus. Dapatkah meretas kebuntuan dalam menata ruang Taman Nasional di Indonesia? Brief, 1 (2010).

    5.
    CBD. Convention on Biological Diversity https://www.cbd.int/sp/ (2019).

    6.
    Murninngtyas, E. et al. (eds) Indonesian Biodiversity Strategy and Action Plan (IBSAP) 2015–2020 (Ministry of the National Development Planning/ BAPPENAS, Jakarta, 2016).
    Google Scholar 

    7.
    Wiratno. Sepuluh cara baru kelola kawasan konservasi di Indonesia: membangun “organisasi pembelajar” (Direktorat Jenderal KSDAE Kementrian Lingkungan Hidup dan Kehutanan, Jakarta, 2018).

    8.
    Coad, L. et al. Measuring impact of protected area management interventions: current and future use of the Global Database of Protected Area Management Effectiveness. Philos. Trans. R. Soc. B 370, 20140281. https://doi.org/10.1098/rstb.2014.0281 (2015).
    Article  Google Scholar 

    9.
    Geldmann, J. Evaluating the effectiveness of protected areas for maintaining biodiversity, securing habitats, and reducing threats. PhD thesis. (PhD School of the Faculty of Science, University of Copenhagen, 2013).

    10.
    Supriatna, J., Dwiyahreni, A. A., Winarni, N., Mariati, S. & Margules, C. Deforestation of primate habitat on Sumatra and adjacent islands Indonesia. Primate Conserv. 31, 71–82 (2017).
    Google Scholar 

    11.
    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7(12306), 1–7. https://doi.org/10.1038/ncomms12306 (2016).
    CAS  Article  Google Scholar 

    12.
    Eklund, J. & Cabeza, M. Quality of governance and effectiveness of protected areas: crucial concepts for conservation planning. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.13284 (2016).
    Article  PubMed  Google Scholar 

    13.
    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–789. https://doi.org/10.1126/science.aap9565 (2018).
    CAS  Article  PubMed  Google Scholar 

    14.
    Wiratno. Tersesat di jalan yang benar. Seribu hari mengelola Leuser (Direktorat PKPS, Jakarta, 2012).

    15.
    Gaveau, D. L. A. et al. Examining protected area effectiveness in Sumatra: importance of regulations governing unprotected lands. Conserv. Lett. 5, 142–148. https://doi.org/10.1111/j.1755-263X.2011.00220.x (2012).
    Article  Google Scholar 

    16.
    Azmi, W. & Gunaryadi, D. Current status of Asian elephants in Indonesia. Gajah 35, 55–61 (2011).
    Google Scholar 

    17.
    O’Brien, T. G. & Kinnaird, M. F. Changing populations of birds and mammals in North Sulawesi. Oryx 30, 150–156 (1996).
    Article  Google Scholar 

    18.
    Wheeler, P. & Dwiyahreni, A. Large mammal monitoring in Lambusango. Interim Progress Report January 2007 (University of Hull, UK, 2007).

    19.
    Gaveau, D. L. A., Wich, S. A. & Marshall, A. J. Are protected areas conserving primate habitat in Indonesia? In An introduction to primate conservation (eds Wich, S. A. & Marshal, A. J.) 193–200 (Oxford University Press, Oxford, 2016).
    Google Scholar 

    20.
    Wibisono, H. T. & Pusparini, W. Sumatran tiger (Panthera tigris sumatrae): a review of conservation status. Integr. Zool. 5, 313–323. https://doi.org/10.1111/j.1749-4877.2010.00219.x (2010).
    Article  PubMed  Google Scholar 

    21.
    Dwiyahreni, A.A. et al. Forest cover changes in Indonesia’s terrestrial national parks between 2012 and 2017. Biodiversitas, 22(3), 1235–1242. https://doi.org/10.13057/biodiv/d220320 (2021).  

    22.
    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52(10), 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 (2002).
    Article  Google Scholar 

    23.
    CIESIN. United Nation’s World Population Prospects (UN WPP)-Adjusted Population Density https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11 (2018).

    24.
    Wan, J. Z., Wang, C. J. & Yuc, F. H. Human footprint and climate disappearance in vulnerable ecoregions of protected areas. Global Planet. Change 170, 260–268. https://doi.org/10.1016/j.gloplacha.2018.09.002 (2018).
    ADS  Article  Google Scholar 

    25.
    Leroux, S. J. et al. Global protected areas and IUCN designations: do the categories match the conditions?. Biol. Conserv. 143, 609–616. https://doi.org/10.1016/j.biocon.2009.11.018 (2010).
    Article  Google Scholar 

    26.
    Ayram, C. A. C., Mendoza, M. E., Etter, A. & Salicrup, D. R. P. Anthropogenic impact on habitat connectivity: a multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecol. Ind. 72, 895–909. https://doi.org/10.1016/j.ecolind.2016.09.007 (2017).
    Article  Google Scholar 

    27.
    Tapia-Armijos, M. F., Homeier, J. & Muntac, D. D. Spatio-temporal analysis of the human footprint in South Ecuador: influence of human pressure on ecosystems and effectiveness of protected areas. Appl. Geogr. 78, 22–32. https://doi.org/10.1016/j.apgeog.2016.10.007 (2017).
    Article  Google Scholar 

    28.
    Li, S., Wu, J., Gong, J. & Li, S. Human footprint in Tibet: assessing the spatial layout and effectiveness of nature reserves. Sci. Total Environ. 621, 18–29. https://doi.org/10.1016/j.scitotenv.2017.11.216 (2018).
    ADS  CAS  Article  PubMed  Google Scholar 

    29.
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. https://doi.org/10.1016/j.biocon.2013.02.018 (2013).
    Article  Google Scholar 

    30.
    Anderson, E. & Mammides, C. The role of protected areas in mitigating human impact in the world’s last wilderness areas. Ambio https://doi.org/10.1007/s13280-019-01213-x (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    31.
    Mulyana, A., Kosmaryandi, N., Hakim, N., Suryadi, S. & Suwito. Ruang adaptif: refleksi penataan zona/blok di kawasan konservasi (Direktorat Pemolaan dan Informasi Konservasi Alam dan Direktorat Jenderal Konservasi Sumberdaya Alam dan Ekosistem, Kementerian Lingkungan Hidup dan Kehutanan, Bogor, 2019).

    32.
    Landuse thematic map 2012 and 2017 (Indonesian Ministry of Environment and Forestry)

    33.
    Binamarga Map 2014 (Indonesian Ministry of Public Works)

    34.
    Rusmin, N., Edy, S., Robby, A. & Dwi, K. R. Study of the potential expansion of new rice fields in Central Maluku District to support food security in Maluku Province. IOP Conf. Ser. Earth Environ. Sci. 334, 012067. https://doi.org/10.1088/1755-1315/334/1/012067 (2019).
    Article  Google Scholar 

    35.
    Harrison, M. E., Capilla, B. R., Thornton, S. A., Cattau, M. E., & Page, S.E. Impacts of the 2015 fire season on peat-swamp forest biodiversity in Indonesian Borneo. In 15th International Peat Congress 2016, 713–717 (2016).

    36.
    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 00, 1–5. https://doi.org/10.1038/nature11318 (2012).
    CAS  Article  Google Scholar 

    37.
    Opdam, P. Exploring the role of science in sustainable landscape management: an introduction to the special issue. Sustainability 10, 1–6. https://doi.org/10.3390/su10020331 (2018).
    Article  Google Scholar 

    38.
    Field, D. R. Symbiotic relationships between national parks and neighboring social-biological regions in National Parks and rural development. In Practice, Policy in the United States (eds Machlis, G. E. & Field, D. R.) 211–218 (Island Press, Washington, DC, 2000).
    Google Scholar 

    39.
    IUCN. Protected area categories. Category II: National Park. https://www.iucn.org/theme/protected-areas/about/protected-areas-categories/category-ii-national-park (2017).

    40.
    Alamgir, M. et al. High-risk infrastructure projects pose imminent threats to forests in Indonesian Borneo. Sci. Rep. https://doi.org/10.1038/s41598-018-36594-8 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    41.
    Sloan, S. et al. Transnational conservation and infrastructure development in the heart of Borneo. PLoS ONE 14(9), e0221947. https://doi.org/10.1371/journal.pone.0221947 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    42.
    Sloan, S., Alamgir, M., Campbell, M. J., Setyawati, T. & Laurance, W. F. Development corridors and remnant-forest conservation in Sumatra Indonesia. Trop. Conserv. Sci. 12, 1–9. https://doi.org/10.1177/1940082919889509 (2019).
    Article  Google Scholar 

    43.
    Healey, R. M. et al. Road mortality threatens endemic species in a national park in Sulawesi Indonesia. Glob. Ecol. Conserv. 24, e01281. https://doi.org/10.1016/j.gecco.2020.e01281 (2020).
    Article  Google Scholar 

    44.
    Du, W., Penabaz-Wiley, S. M., Njeru, A. M. & Kinoshita, I. Models and approaches for integrating protected areas with their surroundings: a review of the literature. Sustainability 7, 8151–8177. https://doi.org/10.3390/su7078151 (2015).
    Article  Google Scholar 

    45.
    Verma, M. et al. Severe human pressures in the Sundaland biodiversity hotspot. Conserv. Sci. Pract. 2(e169), 2020. https://doi.org/10.1111/csp2.169 (2020).
    Article  Google Scholar 

    46.
    DeFries, R., Hansen, A., Newton, A. C. & Hansen, M. C. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 15(1), 19–26 (2005).
    Article  Google Scholar 

    47.
    Brun, C. et al. Analysis of deforestation and protected area effectiveness in Indonesia: a comparison of Bayesian spatial models. Glob. Environ. Change 31, 285–295. https://doi.org/10.1016/j.gloenvcha.2015.02.004 (2015).
    Article  Google Scholar 

    48.
    Mariati, S., Kusnoputranto, H., Supriatna, J. & Koestoer, R. H. Habitat Loss of Sumatran elephants (Elephas maximus sumatranus) in Tesso Nilo Forest, Riau, Indonesia. Aust. J. Basic Appl. Sci. 8(2), 248–255 (2014).
    Google Scholar 

    49.
    Busch, J. & Ferretti-Gallon, K. What drives deforestation and what stops it? A meta-analysis. Rev. Environ. Econ. Policy 11(1), 3–23. https://doi.org/10.1093/reep/rew013 (2017).
    Article  Google Scholar 

    50.
    Tacconi, L., Rodriguesa, R. J. & Maryudi, A. Law enforcement and deforestation: lessons for Indonesia from Brazil. For. Policy Econ. 108, 101943. https://doi.org/10.1016/j.forpol.2019.05.029 (2019).
    Article  Google Scholar 

    51.
    Bruner, A., Gullison, G., Rice, R. E., da Fonseca, R. E. & Gustavo, A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128. https://doi.org/10.1126/science.291.5501.125 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    52.
    Adams, V. M., Iacona, G. D. & Possingham, H. P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. https://doi.org/10.1038/s41893-019-0275-5 (2019).
    Article  Google Scholar 

    53.
    Bickford, D. et al. In Indonesia’s protected areas need more protection: suggestions from island examples in biodiversity and human livelihoods in protected areas: case studies from the Malay Archipelago (eds Sodhi, N. S. et al.) 53–77 (Cambridge University Press, Cambridge, 2008).
    Google Scholar 

    54.
    Baier, M. The Kayan Mentarang National Park: Indonesia’s new national park in North Central Borneo bordering Northern Sarawak and Sabah. Borneo Res. Bull. 40, 297 (2009).
    Google Scholar 

    55.
    Anau, N., Hakim, A., Lekson, A. S. & Setyowati, E. Local wisdom practices of Dayak indigenous people in the management of Tana’ Ulen in the Kayan Mentarang National Park of Malinau Regency, North Kalimantan Province Indonesia. RJOAS 7(91), 156–167. https://doi.org/10.18551/rjoas.2019-07.16 (2019).
    Article  Google Scholar 

    56.
    Susanti, R. & Zuhud, E. A. M. Traditional ecological knowledge and biodiversity conservation: the medicinal plants of the Dayak Krayan people in Kayan Mentarang National Park Indonesia. Biodiversitas 20(9), 2764–2779. https://doi.org/10.13057/biodiv/d200943 (2019).
    Article  Google Scholar 

    57.
    Blankespoor, B., Dasgupta, S. & Wheeler, D. Protected areas and deforestation: new results from high-resolution panel data. Nat. Resour. Forum 41, 55–68. https://doi.org/10.1111/1477-8947.12118 (2017).
    Article  Google Scholar 

    58.
    Sanderson, E. W., Walston, J. & Robinson, J. G. From bottleneck to breakthrough: urbanization and the future of biodiversity conservation. Bioscience 20, 1–15 (2018).
    Google Scholar 

    59.
    Immanuel, G. et al. Indonesia. Pathways to sustainable land-use and food systems. FABLE Report (2019).

    60.
    Allan, J. R. et al. Recent increases in human pressure and forest loss threaten many natural world heritage sites. Biol. Conserv. 206, 47–55. https://doi.org/10.1016/j.biocon.2016.12.011 (2017).
    Article  Google Scholar 

    61.
    Damayanti, E.K. Legality of National Parks and Involvement of Local People: Case Studies in Java, Indonesia and Kerala, India. Thesis. Ph.D. in Agricultural Science. (University of Tsukuba, Japan, 2008).

    62.
    Smiet, A. C. Forest ecology on Java: human impact and vegetation of montane forest. J. Trop. Ecol. 8, 129–152 (1992).
    Article  Google Scholar 

    63.
    Wijaya, I. K. M. The semiotics of banyan trees spaces in Denpasar. Bali. LivaS Int. J. Livable 4(2), 48–59. https://doi.org/10.25105/livas.v4i2.5564 (2019).
    Article  Google Scholar 

    64.
    Wijaya, M. H. & Sutrisni, K. How can the existence of customary laws protect the water preservation in the Cau Belayu (Tabanan) traditional village?. Yustisia 7(3), 600–613. https://doi.org/10.20961/yustisia.v7i3.21560 (2018).
    Article  Google Scholar 

    65.
    Swandi, I. W. Kearifan lokal Bali untuk pelestarian alam: kajian wacana kartun-kartun majalah “Bog-Bog”. Jurnal Kajian Bali 7(2), 229–248. https://doi.org/10.24843/JKB.2017.v07.i02.p12 (2017).
    Article  Google Scholar 

    66.
    Sobirin, S. Pranata Mangsa dan budaya kearifan lingkungan. Jurnal Budaya Nusantara 2(1), 250–264. https://doi.org/10.36456/b.nusantara.vol2.no1.a1719 (2018).
    Article  Google Scholar 

    67.
    Apriando, T. Brubuh, kearifan masyarakat Jawa menjaga hutan. Mongabay. https://www.mongabay.co.id/2015/02/12/brubuh-kearifan-masyarakat-jawa-menjaga-hutan/ (2015).

    68.
    Sulfiantono, A., Hermawan, M. T. T. & Maluyi, A. Comparison of Effectiveness of the management of conservation areas of China and Indonesia. Int. J. Sci. 11, 73–82 (2013).
    Google Scholar 

    69.
    Supriatna, J. Berwisata di Taman Nasional (Yayasan Obor, Jakarta, 2014).
    Google Scholar 

    70.
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067. https://doi.org/10.1038/sdata.2016.67 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    71.
    Willmott, C. J. & Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79. https://doi.org/10.3354/CR030079 (2005).
    Article  Google Scholar 

    72.
    Viera, A. J. & Garrett, J. M. Understanding interobserver agreement: the kappa statistic. Fam. Med. 37, 360–363 (2005).
    PubMed  Google Scholar 

    73.
    R Development Core Team. R. A Language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2014). More

  • in

    Tropical storms trigger phytoplankton blooms in the deserts of north Indian Ocean

    Tropical cyclone-induced bloom in NIO
    We have analysed the tropical cyclones that occurred over the bay from 1997 to 2019 in accordance with the availability of satellite Chl-a measurements. Out of 51 storm events, 30 are identified as the phytoplankton bloom events (i.e. the Chl-a values greater than of 0.2 mg/m3) in BoB and 18 in AS across all seasons35,36,37. In the case of BoB, we have divided our analyses for pre-monsoon and post-monsoon, as the cyclone occurrences are rare in other seasons (e.g. winter and monsoon). Over AS, some cyclones also occur in the beginning of monsoon season. The spatio-temporal variability of cyclones is closely connected to the seasonal changes in the monsoon trough35,38. In pre-monsoon season, the trough passes over the northern BoB, but it passes through the central bay with an east-west orientation in the post-monsoon, and facilitates the formation of more number of TCs during the period39. The big seasonal change in wind shear and relative vorticity are the reasons for the lower number of cyclones in the pre-monsoon season. In general, the upwelling driven nutrient influx to the surface together with sunlight leads to the enhancement of Chl-a or phytoplankton bloom after the passage of cyclones in the open ocean40.
    The Bay of Bengal cyclones
    During pre-monsoon, the bay is least productive, but the western boundary current helps more production in the coastal regions41. The higher wind speed associated with TCs deepens (about 30 m) Mixed Layer Depth (MLD), and rupture the pycnocline and pumps nutrients to the surface24. In general, TCs occurring during pre-monsoon move northwards and pass north-eastern coast of India or Bangladesh42 (Fig. 1). To estimate the cyclone-induced phytoplankton bloom, we performed spatial analyses for each cyclone during the period 1997–2019 and selected cases are shown in Supplementary Fig. 1 for BOB01 in 2003, BOB01 in 2004 and Mala in 2006. The maps of Chl-a concentrations superimposed with Sea Level Anomaly (SLA) for the same period are shown in Supplementary Fig. 1. The cyclone BOB01 was a category 1 storm with a maximum sustained wind (MSW) of 39 m/s, which occurred during 10–19 May 2003. The Chl-a remained well below 0.2 mg/m3 prior to occurrence of the cyclone, which enhanced to 0.5 mg/m3 with a small area of about 1 mg/m3 at 9°–10° N, 86°–87° E, just after passage of the cyclone. This is consistent with its high Ekman Pumping Velocity (EPV) and small Translational Speed (TS) in that period. In addition, the Chl-a enhancement was higher for the Category 1 cyclone BOB01 that occurred during 14–19 May 2004 and was about 0.5 mg/m3 after passage of the cyclone. The bloom sustained for the next 5 days as also shown in Supplementary Fig. 1. On the other hand, Mala was the strongest cyclone occurred during the pre-monsoon period (24–28 April 2006) in the last two decades over BoB with a MSW speed of 61 m/s. The Chl-a increased from 0.1 to 1.0 mg/m3 after the cyclone passage in five days, with a small area of Chl-a about 1.0 mg/m3 on the immediate left of its track. The Chl-a concentration remained close to 0.5 mg/m3 in the next 5 days. Both EPV and TS were favourable for sustained upwelling and Chl-a bloom in the case of cyclone Mala. In all three cases, the closed contours of Sea surface Height Anomaly (SSHA) is negative, which indicate the presence of cold-core (cyclonic) eddies that triggered turbulent mixing and sustained Chl-a bloom. We have not used any specific eddy detection method but used the composite of SSHA to identify the presence of eddies, as done by Girishkumar et al.43.
    Fig. 1: The cyclone tracks and pre-cyclone background Chl-a value.

    a The study region North Indian Ocean (NIO) and the tracks for the pre- (green) and post-monsoon (yellow) cyclones for BoB and AS (red), as analysed for all cyclones occurred during the study period (1997–2019).

    Full size image

    We applied the same method to identify the phytoplankton bloom that occurred for each cyclone event in BoB after 1996 and estimated the corresponding EPV and TS for diagnosing the physical mechanisms that made different scales of blooms. The results are presented in Table 1 and Fig. 2. The analyses show that the bloom was comparatively larger for the cyclone BOB01 in 2004, about 3.28 mg/m3. The increase in Chl-a is negatively correlated with TS and is in agreement with the intensity of cyclone with a statistically significant correlation value of −0.30 (at the 95% confidence interval as per the P-test44). The TS is lower and bloom is larger for BOB01 in 2003, as the faster moving storms tend to intensify rapidly when compared to slower moving storms (i.e. wind speed 14 m/s). In contrast, the slow-moving storms expend more time over the ocean and thereby, increases the magnitude of upwelling to enhance the Chl-a over the region45. The estimated EPV is about 1.8 × 10−4 m/s for BOB01 in 2003 and is consistent with the observed Chl-a concentrations, whereas the EPV is about 1 × 10−4 m/s and Chl-a concentration is about 1.87 mg/m3 for the cyclone Mala. It suggests that TS has a prominent role in cyclone-induced upwelling and associated phytoplankton bloom.
    Table 1 The cyclone-induced Chl-a blooms in the pre-monsoon seasons since 1997 in BoB.
    Full size table

    Fig. 2: The cyclone-induced Chl-a in BoB.

    The observed enhancement in Chl-a (mg/m3) following the cyclone passage (5-day average) in the post and pre-monsoon seasons in BoB. The translational speed of the closest track points where the bloom occurred in (m/s), the ratio of wind speed to translational speed (WS/TS), and EPV (Ekman Pumping Velocity) as the cyclones reach their maximum intensity (m/s) are also shown in the lower panels.

    Full size image

    Post-monsoon is the active storm season over BoB, and about 25 cyclones with significant enhancement in Chl-a concentration are identified during the 1997–2019 period. As the haline stratification is stronger in BoB due to the monsoon rain and river water influx, the presence of BL increases SST, which fuel the storms over the bay46. Presence of BL weakens the impact of cooling in the mixed layer driven by cyclones and favours the intensification of post-monsoon cyclones2. We have also analysed the variability in BL, MLD, isothermal layer depth (ILD) and Chl-a for selected storms passed over the Argo Floats (see next section). The cyclones either form or develop further over the southeast BoB, but some move west northwest and cross the peninsular coast. Some cyclones recurve towards the west central bay and pass the central and northeast coast of India, but some hit Bangladesh and upper Burma coast47, as illustrated in Fig. 1.
    Figure 3 presents a closer look at the bloom and its spatial distribution for selected cyclones during the post-monsoon season; e.g. the cyclones Sidr, Madi and Vardah overlaid with SSHA contours. Sidr, a category 4 cyclone occurred during 11–16 November 2007 with a MSW of about 44 m/s. The Chl-a is about 0.5 mg/m3 during the cyclone period at the right side of the track, but the bloom has spread to a wider area with values close to 0.5 mg/m3 just after the passage of cyclone. The analyses of SSHA further provide evidence for the eddy-mediated phytoplankton bloom. The phytoplankton bloom also sustained for another 5 days. This is also in agreement with that reported in other analyses, although bloom values were estimated for 19 November in the other studies48,49. The cyclone Madi, occurred during 6–13 December 2013, showed an enhancement of about 0.5 mg/m3 during the cyclone period with a region of 1 mg/m3 in the left side of the track. Some regions with 2–3 mg/m3 are also observed at the right and left sides of cyclone track, and the bloom sustained for the next 5 days with values of about 1 mg/m3 in the adjacent areas. The closed contours of negative SSHA suggest the presence of cyclonic eddies there. The phytoplankton bloom during this particular period is also contributed by the cyclone Lehar that occurred a week before, in 23–28 November; demonstrating the impact of occurrences of consecutive storms over the same oceanic region. Nevertheless, the cyclone Vardah showed an enhancement of about 1.92 mg/m3, which is higher than that of Sidr due to the higher EPV of the former. As for Lehar and Madi, there was another cyclone Nada that appeared during the period 29 November–2 December 2016, just before the appearance of Vardah, and that storm might have also contributed to the Chl-a bloom during the period of Vardah.
    Fig. 3: The spatial extension of Chl-a bloom for selected post-monsoon cyclones in BoB.

    The Chl-a averaged, overlaid with SSHA contours (solid—positive and dashed—negative), for 5 days before cyclone, during the entire cyclone period, five days just after the passage of cyclone and next 5 days for a Sidr (2007), b Madi (2013), and c Vardah (2016). The tracks of the respective cyclones are also shown.

    Full size image

    Figure 4 shows the time evolution of physical and biological observations during the period of TCs Phailin, Hudhud and Vardah. The biogeochemical Argo float WMO ID 2902086 was closer to the track of TC Phailin, and the float WMO ID 2902114 was near the tracks of Hudhud and Vardah. Supplementary Table 1 shows the name of cyclones, Argo IDs, and distance between the float and nearest track point of respective cyclones. Figure 4 (right) represents the subsurface temperature up to 200 m with MLD, ILD, BLT and D23 (23° isotherm) for selected cyclones occurred over BoB. Figure 4 (left) represents the subsurface Chl-a concentration up to 200 m driven by the same cyclones. Prior to the passage of cyclones, the profiles represent typical hydrographic state of the oceans with warm waters near the surface and cold waters in the subsurface. The MLD was shallower about 20 m and the ocean was warm from September to December in 2013 during the passage of cyclone Phailin. The other cyclones occurred in 2013 were Helen, Lehar and Madi. Similar situation was observed in September–December of 2014 for Hudhud, but a colder and deeper MLD is observed in September–December of 2016 for Vardah. These are consistent with the climatological oceanic characteristics observed in BoB during the post-monsoon seasons. The time-depth cross-section of Chl-a reveals that the Chl-a concentration remains small in the surface, but about 0.8–1.0 mg/m3 at 40–60 m for the cyclone Phailin. The Chl-a concentration is about 3 mg/m3 for the cyclone Hudhud and about 1.5 mg/m3 for Vardah.
    Fig. 4: Bio-Argo measurements.

    Temporal evolution (right panel) of depth-time section up to 200 m of temperature of some selected cyclones in the BoB. The MLD (cyan), ILD (blue), BLT (green), and D23 (black) are also indicated in the figure. The vertical black lines indicate the cyclone period. The subsurface Chl-a concentration (left panel) up to 200 m for some selected cyclones in BoB. The vertical black lines indicate the cyclone period.

    Full size image

    To identify the differential oceanic response of the cyclones at the Argo float locations, we further examined the presence of eddies that play a major role in regulating the physical and biogeochemical processes. The analysis of 7-day SSHA composite before and during the cyclone period at the location of Argo float shows the presence of cold-core (negative SSHA) eddies before the passage of cyclone Phailin, Madi and Hudhud, whereas a warm-core (positive SSHA) eddy prior to the passage of Vardah (Fig. 5). The lower TS and a cold-core eddy during the cyclone Hudhud, and higher TS and a warm-core eddy during the cyclone Vardah produce contrasting oceanic response43. The temperature measurements during the periods of Hudhud and Vardah exhibit comparable response to cold and warm-core eddies, respectively. Another feature of cold-core eddies is trapping the near inertial oscillations in the mixed layer50, which accelerates the entrainment at the bottom of mixed layer and vertical shear as observed during the period of Hudhud. Conversely, the proximity of warm-core eddies triggers rapid vertical dispersion of near inertial energy, which suppresses the mixing and shear as for Vardah50.
    Fig. 5: Eddies and primary productivity.

    The 7-day composite of sea level anomaly (m) before and during the cyclones in BoB. The black solid lines represent the cyclone tracks, the stars represent the genesis location of the cyclone and the box represents the Argo float location.

    Full size image

    Vardah was a category 1 cyclone that occurred during 6–13 December 2016. The Chl-a amount before the passage of cyclone was about 0.23 mg/m3, but it escalated to 1.92 mg/m3 in 5 days after the passage of cyclone. The bloom continued to exist for the next 5 days as shown in Fig. 3. Unlike the pre-monsoon cases, for which the Chl-a is restored back to open ocean values in 10 days after the passage of cyclones, the bloom continued to persist even longer periods for the post-monsoon cases. The changes in Chl-a concentrations before and after the passage of cyclones in all three cases are greater than 0.2 mg/m3 and are higher for the lower category tropical storms. These analyses are consistent with the frequent occurrence of cyclones over the south east BoB during this season, as shown in Supplementary Table 2. It is also compelling to note that higher intensity cyclones occur over the north as compared to south BoB, which may be due to the presence of BL in the northern BoB as BL does not exist or insignificantly shallow in the south BoB in any season. The barrier layer in turn favours intensification of tropical cyclones whereas the absence of BL favours the storm-induced upwelling that eventually makes the Chl-a blooms45. Note that the stratification is very strong in northern BoB due to the river water input there51.
    Supplementary Table 2 and Fig. 2 also show the results of Chl–bloom events in the post-monsoon seasons in 1997–2019. For instance, the Chl-a increased from 0.53 to 1.13 mg/m3 in the northern and southwestern BoB after the super cyclone of 1999 (25 October–3 November), as also shown by Madhu et al.52. Similar enhancements in Chl-a are estimated for BOB08 (1997), BOB05 (2000) and Madi (2013), about 0.6–3 mg/m3, depending on the cyclones. Although the cyclones BOB06 (1999), Sidr (2007), Giri (2010) and Phailin (2013) were category 4 or 5 cyclones, the high TS and lower EPV did not magnify the Chl-a concentrations to the level of bloom initiated by other cyclones. The enhancement of Chl-a estimated in our study during the cyclone Phailin is in agreement with the reported value of 0.9 mg/m3 for the period 16–24 October 2013 by Vidya et al.21. They also computed the bloom associated with Thane, about 0.7 mg/m3 in the post-cyclone period (1–8 January 2012) at 10°–13° N and 82°–86° E. Nevertheless, we have estimated about 1.8 mg/m3 for the post-cyclone period for Thane. The cyclone Hudhud produced a Chl-a bloom of up to 2.8 mg/m3 in 8–15 October 2014 along the track, as analysed by Chacko27 using the MODIS data, which is very close to our estimate of 2.8 mg/m3. We find similar enhancements in Chl-a that reported by Rao et al.26 for BOB05 in 16–23 November 2000, about 1.2 mg/m3 as deduced from the MODIS data. The other cyclones show moderate bloom values, below 1 mg/m3 as listed in Supplementary Table 2. Nevertheless, the low intensity cyclones such as BOB08 (1997) and Thane (2011) exhibit notable increment in Chl-a following the passage of cyclone, about 1.25–1.8 mg/m3, which is in agreement with their comparatively lower TS and higher EPV during the cyclone period. It also attests the impact and significance of TS in deciding the amplitude of phytoplankton bloom; suggesting sustained low intensity winds trigger strong upwelling to cause intense bloom events.
    The Arabian Sea cyclones
    In Arabian Sea, about 18 out of 33 cyclones are identified as phytoplankton bloom events (55%) during the study period 1997–2019, in which one occurred in pre-monsoon, three in monsoon and nine in post-monsoon seasons. Since the frequency of occurrences is very small, we have not separated the analyses into seasons or regions of landfall, but a selected case is presented in Supplementary Fig 2. For a better understanding of the behaviour of cyclones, we have selected three cyclones, ARB01 (2001), Mukda (2006) and Megh (2015), one in each season for this discussion. Supplementary Fig 3 illustrates the spatial distribution of Chl-a superimposed with SSHA for the selected cyclones. The ARB01 (2001) was a category 3 cyclone that occurred during 21–28 May 2001 with a MSW of about 60 m/s. The surface Chl-a concentration before the cyclone appearance was below 0.2 mg/m3 due to the profound heating in May53,54. It was one of the strongest cyclones appeared over AS, but measurements were sparse during the cyclone period, and thus, only a small area of about 1 mg/m3 is observed at 16°–17° N, 69°–72° E after passage of the cyclone. Analysis of IRS–P4 measurements by Subramanyam et al.29 found a very large bloom of about 5–8 mg/m3 at 17° N, from 67° E to 71° E. However, our analyses show the bloom of about 2.07 mg/m3 in the region 67°–68° E, 16°–17° N. The difference in bloom values could be due to the difference in datasets, region and period of analyses. As found in the case of BoB, there are closed contours of negative SSHA, which strengthens the observed cyclone-induced and eddy-mediated phytoplankton bloom.
    Mukda was a tropical storm that occurred during 21–24 September 2006 with a MSW of 28 m/s. The Chl-a along the right side of the track was above 0.5 mg/m3 even before the cyclone period. The cyclone Megh was considered as the worst to hit Yemen and it occurred just after the passage of another cyclone Chapala over the same region. Megh was a category 3 cyclone with a MSW of 57 m/s. The Chl-a was about 0.7 mg/m3 in the post-cyclone stage, but a small region of about 1.0 mg/m3 was also observed at the right end of the track. Table 2 and Fig. 6 show the analysis of phytoplankton bloom occurrences in AS during the study period (1997–2019). It shows higher Chl-a concentrations in connection with the cyclones ARB01 and ARB02 in 2001, Mukda in 2006 and Megh in 2015, and are consistent with their lower TS. The situation in 2015 was also similar, in which the Category 4 cyclone Chapala showed higher bloom than that of the category 3 cyclone Megh. Similarly, the Category 4 cyclone Kyaar triggered higher bloom than that of the Category 3 cyclone Maha in 2019.
    Table 2 The cyclone-induced Chl-a blooms in the post-monsoon seasons since 1997 in AS.
    Full size table

    Fig. 6: The Chl-a blooms associated with cyclones in Arabian Sea.

    The observed enhancement in Chl-a (mg/m3) following the cyclone passage (5-day average) over AS. The translational speed of the closest track points where the bloom occurred in (m/s), the ratio of wind speed to translational speed (WS/TS) and EPV when cyclone reached its maximum intensity (m/s) are also shown.

    Full size image

    Supplementary Fig. 3 shows the time evolution of biological and physical observations from the Argo float (WMO ID 2902120) in the period of TCs Nilofar, Chapala and Megh. The distance between float location and nearest track point is provided in Supplementary Table 1. The temperature profiles show warm waters near the surface and cold waters in the subsurface before the cyclone passage, as for a typical oceanic state (Supplementary Fig. 4). The MLD is shallower about 20 m and the ocean is warm throughout September–December 2014 and October–December 2015 during the passage of cyclones Nilofar, Megh and Chapala. The time-depth cross-section of chlorophyll shows about 0.8–1 mg/m3 at 40–60 m. However, the Chl-a values remain about 1 mg/m3 for cyclones Megh and Chapala close to the surface; supporting the satellite measurements. The analysis of 7-day SSHA composite shows a cold-core eddy before the passage of cyclone Nilofar whereas warm-core eddies before the passage of Chapala and Megh at the buoy location (Supplementary Fig. 5). The warm-core eddies before the passage of Chapala and Megh could also be the reason for their rapid intensification.
    Tropical storms and category 1 cyclones
    Although a number of cyclones occurred over NIO during the 1997–2019 period, the phytoplankton bloom happened mostly for the storms and lower category cyclones. For instance, there were five cyclones that appeared over BoB in the pre-monsoon seasons that triggered phytoplankton bloom, four (80%) of them were either tropical storms or category 1 cyclones (Table 1). Similarly, out of 25 cyclones that made Chl-a blooms in BoB during the post-monsoon seasons, 20 of them were (80%) either tropical storms or category 1 cyclones. An analogues occurrence of cyclone-induced phytoplankton bloom is observed for the lower category cyclones in AS, where eight cyclones out of 18 (44.4%) were either tropical storms or category 1 cyclones. These analyses suggest that the slow-moving storms stay more time over the oceans and impart high momentum to upwell the subsurface nutrient-rich water, leading to the phytoplankton blooms in the open oceans with a time lag of 4–12 days, as illustrated in Fig. 7 (blue coloured bar chart). The bloom is as higher as about 20–500% with respect to the pre-cyclone Chl-a levels, and is even up to 1385% as for the case of BoB01 in 2003 and 3758% for the cyclone Gonu in AS (Supplementary Fig. 6); demonstrating the impact and scale of cyclone-induced primary productivity in the open oceans. This slow-moving cyclone-induced primary productivity is very important in the context of climate change, as there is a global slowdown in the translational speed of tropical cyclones.
    Fig. 7: The change in cyclone-induced bloom and time lag.

    Left: with respect to pre-cyclone Chl-a values (blue), 0.5 mg/m3 (dark blue) and 0.2 mg/m3 (magenta) for the post-monsoon cyclones in Bay of Bengal (BoB). Right: The time lag in days in cyclone-induced Chl-a bloom with respect to the pre-cyclone Chl-a (blue histograms, left) for the post-monsoon cyclones of BoB.

    Full size image

    To test robustness of the estimates of cyclone-induced change in Chl-a (i.e. Fig. 7), we also considered two other background Chl-a values (i.e. 0.2 and 0.5 mg/m3), which were also taken as the background Chl-a of the ocean basins and the Chl-a threshold for bloom detection. Since the value extracted from the 1° × 1° latitude-longitude region at the track (i.e. blue diagrams) is different from the basin average and bloom threshold values, there are significant differences in the amplitude of blooms, as displayed in Fig. 7. It shows that the pre-cyclone Chl-a values are between 0.5 and 0.2 mg/m3. Therefore, the change in Chl-a is higher with the estimates based on 0.2 mg/m3 (magenta histogram) and about 10 cyclones show a change in Chl-a of about 400%. The highest bloom of about 800–850% is found for Madi (2013), Hudhud (2014) and BOB05 (1999). On the other hand, the change in Chl-a with respect to 0.5 mg/m3 (dark blue histogram) is lower than that with the pre-cyclone estimates, and the change is mostly within 250%, although few cyclones show around 400%. The highest bloom is observed for the cyclone Madi (2013), about 300%. In AS, the Chl-a bloom is mostly between 300 and 1000%, except for Gonu in 2007. The change in Chl-a is about 6000% with respect to the basin average of 0.2 mg/m3, and about 3500% based on the bloom threshold for the cyclone Gonu. The assessment confirm that the cyclone-induced bloom (change in percent) in AS is about five times higher than that of BoB.
    The impact of ENSO and IOD on Chl-a blooms
    Several studies have examined the relationship between El Niño and Southern Oscillation (ENSO) and cyclone activity across different oceanic basins12,55,56. The influence of ENSO on tropical cyclone activity in BoB during the period 1997–2010 is also investigated by Girishkumar et al.19. We have chosen the dates after the cyclone passage, and considered the Niño and IOD indices to classify the cyclones occurred in the El Niño, La Niña, normal, positive IOD (PIOD) and negative IOD (NIOD) years, as listed in Table 1, Table 2 and Supplementary Table 2. In addition, we have prepared the composites of Chl-a and SSHA for 10 days before and after the passage of each cyclone to assess the inter-annual variability in Chl-a and SSHA with respect to the El Niño, La Niña, normal, PIOD and NIOD years (Fig. 8, for BoB). Out of the 25 cyclones, three of them occurred in El Niño, fourteen in La Niña, nine in normal, four in PIOD and five in NIOD years. The cyclones those occurred in PIOD or NIOD years also happened to be in the El Niño/La Niña years and therefore included in both analyses, and are shown in the figure. The number of cyclones are more in the La Niña years, which were mostly followed by the normal, PIOD and NIOD years. The magnitude of phytoplankton bloom is higher in the PIOD years than that in the NIOD years. In the El Niño years, the magnitude of bloom is comparatively smaller and the bloom in normal years is around 0.5 mg/m3.
    Fig. 8: The differences in Chl-a during El Niño, La Niña, normal, PIOD and NIOD years.

    The SSHA a 10-day before and b during the passage of cyclone) and Chl-a composite maps with respect to El Niño, La Niña, normal, PIOD and NIOD years in the BoB. The respective cyclone tracks are also shown.

    Full size image

    Supplementary Fig. 9 shows the composite of SSHA and Chl-a with respect to El Niño, La Niña, normal, PIOD and NIOD years in AS. Here, more number of cyclones occurred in the El Niño years as compared to that in the La Niña and normal years. In contrast, there are more number of cyclones in the PIOD years than the NIOD years in AS, but the amplitude of bloom is higher for the NIOD years. These are also the reasons for the differences in phytoplankton bloom in AS and BoB, as the impact of ENSO and IOD events is different in both basins. The response of cyclones in IOD years are similar to those in the La Niña years. Although the spatial extent of bloom is larger in the El Niño years owing to the higher number of cyclone occurrences, the magnitude of bloom is higher for the cyclones occurred in La Niña and NIOD years. The normal years exhibit bloom similar to that of the El Niño years. In BoB, the analysis of SSHA composite for the El Niño, La Niña, IOD and normal years is dominated by negative SSHA (suggesting the presence of cold-core eddies), but the normal years are more influenced by warm-core eddies (e.g. Fig. 8). In AS, on the other hand, the normal, La Niña and IOD years are dominated by cold-core eddies, whereas the El Niño years are overwhelmed by warm-core eddies (e.g. Supplementary Fig. 9). The influence of IOD is higher than that of ENSO, which is one of the reasons for the inter-annual variability of phytoplankton blooms. The characteristics of phytoplankton blooms in AS and BoB are in contrast with the differences in SST in IOD years in both basins, and this feature is also found with the cyclone-induced blooms. There are noticeable difference in Chl-a concentrations among the normal and El Niño, La Niña, PIOD or NIOD years, and are exhibited in Supplementary Figs. 7 and 8. More