1.
Van der Laan, R. & Fricke, R. Eschmeyer’s Catalog of Fishes Family Group Names. http://www.calacademy.org/scientists/catalog-of-fishes-family-group-names (2020).
2.
Greenwood, P. H. African cichlids and evolutionary theories. In Evolution of Fish Species Flock (eds Echelle, A. A. & Kornfield, I.) 141–154 (University of Maine at Orono Press, Orono, 1984).
Google Scholar
3.
Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).
CAS PubMed Article Google Scholar
4.
Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).
ADS CAS PubMed Article Google Scholar
5.
Tiercelin, J.-J. & Mondeguer, A. The geology of the Tanganyika trough. In Lake Tanganyika and its Life (ed. Coulter, G. W.) 7–48 (Oxford University Press, Oxford, 1991).
Google Scholar
6.
Irisarri, I. et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 3159 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
7.
Salzburger, W., Meyer, A., Baric, S., Verheyen, E. & Sturmbauer, C. Phylogeny of the Lake Tanganyika Cichlid species flock and its relationship to the Central and East African Haplochromine Cichlid Fish Faunas. Syst. Biol. 51, 113–135 (2002).
PubMed Article Google Scholar
8.
Salzburger, W., Mack, T., Verheyen, E. & Meyer, A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5, 17 (2005).
PubMed PubMed Central Article Google Scholar
9.
Koblmüller, S. et al. Age and spread of the haplochromine cichlid fishes in Africa. Mol. Phylogenet. Evol. 49, 153–169 (2008).
PubMed Article CAS Google Scholar
10.
Sturmbauer, C., Salzburger, W., Duftner, N., Schelly, R. & Koblmüller, S. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Mol. Phylogenet. Evol. 57, 266–284 (2010).
CAS PubMed PubMed Central Article Google Scholar
11.
Sturmbauer, C., Levinton, J. S. & Christy, J. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. Proc. Natl. Acad. Sci. U. S. A. 93, 10855–10857 (1996).
ADS CAS PubMed PubMed Central Article Google Scholar
12.
Joyce, D. A. et al. An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435, 90–95 (2005).
ADS CAS PubMed Article Google Scholar
13.
Katongo, C., Koblmüller, S., Duftner, N., Mumba, L. & Sturmbauer, C. Evolutionary history and biogeographic affinities of the serranochromine cichlids in Zambian rivers. Mol. Phylogenet. Evol. 45, 326–338 (2007).
CAS PubMed Article Google Scholar
14.
Sturmbauer, C., Koblmüller, S., Sefc, K. M. & Duftner, N. Phylogeographic history of the genus Tropheus, a lineage of rock-dwelling cichlid fishes endemic to Lake Tanganyika. Hydrobiologia 542, 335–366 (2005).
Article Google Scholar
15.
Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
16.
Svardal, H. et al. Ancestral hybridization facilitated species diversification in the Lake Malawi Cichlid fish adaptive radiation. Mol. Biol. Evol. 37, 1100–1113 (2020).
PubMed Article Google Scholar
17.
Kullander, S. O. & Roberts, T. R. Out of Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River. Ichthyol. Explor. Freshw. 22, 355–376 (2011).
Google Scholar
18.
West-Eberhard, M.-J. Developmental Plasticity and Evolution (Oxford University Press, Oxford, 2003).
Google Scholar
19.
Rossiter, A. The Cichlid fish assemblages of Lake Tanganyika: ecology, behaviour and evolution of its species flocks. In Advances in Ecological Research (eds Begon, M. & Fitter, A. H.) 187–252 (Academic Press Ltd., London, 1995).
Google Scholar
20.
Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018).
PubMed PubMed Central Article Google Scholar
21.
Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).
ADS CAS PubMed PubMed Central Article Google Scholar
22.
Liem, K. F. Evolutionary strategies and morphological innovations: Cichlid Pharyngeal Jaws. Syst Biol. 22, 425–441 (1973).
Google Scholar
23.
Carleton, K. L., Dalton, B. E., Escobar-Camacho, D. & Nandamuri, S. P. Proximate and ultimate causes of variable visual sensitivities: Insights from cichlid fish radiations. Genesis 54, 299–325 (2016).
PubMed PubMed Central Article Google Scholar
24.
Maan, M. E. & Sefc, K. M. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences. Semin. Cell. Dev. Biol. 24, 516–528 (2013).
PubMed PubMed Central Article Google Scholar
25.
Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).
CAS PubMed Article Google Scholar
26.
Malinsky, M. Andinoacara coeruleopunctatus Genome Browser Gateway. http://em-x1.gurdon.cam.ac.uk/cgi-bin/hgGateway?hgsid=6400&clade=vertebrate&org=A.+coeruleopunctatus&db=0 (2015).
27.
Conte, M. A. et al. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. GigaScience 8, giz030 (2019).
PubMed PubMed Central Article CAS Google Scholar
28.
Thibaud-Nissen, F. et al. P8008 the NCBI eukaryotic genome annotation pipeline. J. Anim. Sci. 94, 184 (2016).
Article Google Scholar
29.
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
CAS PubMed PubMed Central Article Google Scholar
30.
Conte,M.A., Gammerdinger,W.J., Bartie,K.L., Penman,D.J. & Kocher,T.D. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. bioRxiv https://doi.org/10.1101/099564 (2017).
31.
Vij, S. et al. Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genet. 12, e1005954 (2016).
PubMed PubMed Central Article CAS Google Scholar
32.
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org (2015).
33.
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
CAS PubMed PubMed Central Article Google Scholar
34.
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
PubMed PubMed Central Article CAS Google Scholar
35.
Parra, G., Bradnam, K. & Korf, I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).
CAS PubMed Article Google Scholar
36.
Dohmen, E., Kremer, L. P. M., Bornberg-Bauer, E. & Kemena, C. DOGMA: Domain-based transcriptome and proteome quality assessment. Bioinformatics 32, 2577–2581 (2016).
CAS PubMed Article Google Scholar
37.
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
CAS PubMed PubMed Central Article Google Scholar
38.
Hunt, M. et al. REAPR: a universal tool for genome assembly evaluation. Genome Biol. 14, R47 (2013).
PubMed PubMed Central Article Google Scholar
39.
Asalone, K. C. et al. Regional sequence expansion or collapse in heterozygous genome assemblies. PLoS Comput. Biol. 16, e1008104 (2020).
CAS PubMed PubMed Central Article Google Scholar
40.
Conte, M. A. & Kocher, T. D. An improved genome reference for the African cichlid Metriaclima zebra. BMC Genomics 16, 724 (2015).
PubMed PubMed Central Article CAS Google Scholar
41.
Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010).
CAS PubMed Article Google Scholar
42.
McKenna, A. et al. The genome analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
CAS PubMed PubMed Central Article Google Scholar
43.
Rausch, T. et al. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).
CAS PubMed PubMed Central Article Google Scholar
44.
Liu, Y. et al. Comparison of multiple algorithms to reliably detect structural variants in pears. BMC Genomics 21, 61 (2020).
PubMed PubMed Central Article Google Scholar
45.
Supernat, A., Vidarsson, O. V., Steen, V. M. & Stokowy, T. Comparison of three variant callers for human whole genome sequencing. Sci. Rep. 8, 17851 (2018).
ADS CAS PubMed PubMed Central Article Google Scholar
46.
McCarthy, D. J. et al. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 6, 26 (2014).
PubMed PubMed Central Article Google Scholar
47.
Gunter, H. M., Schneider, R. F., Karner, I., Sturmbauer, C. & Meyer, A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol. Ecol. 26, 6634–6653 (2017).
CAS PubMed Article Google Scholar
48.
Navon, D. et al. Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts. Proc. Natl. Acad. Sci. U. S. A. 117, 19321–19327 (2020).
CAS PubMed PubMed Central Article Google Scholar
49.
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: From polygenic to omnigenic. Cell 169, 1177–1186 (2017).
CAS PubMed PubMed Central Article Google Scholar
50.
Adhikari, K. et al. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat. Commun. 7, 11616 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
51.
Liu, F. et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 8, e1002932 (2012).
CAS PubMed PubMed Central Article Google Scholar
52.
Claes, P. et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat. Genet. 50, 414–423 (2018).
CAS PubMed PubMed Central Article Google Scholar
53.
Lupo, G., Harris, W. A. & Lewis, K. E. Mechanisms of ventral patterning in the vertebrate nervous system. Nat. Rev. Neurosci. 7, 103–114 (2006).
CAS PubMed Article Google Scholar
54.
Dworkin, S., Boglev, Y., Owens, H. & Goldie, S. J. The role of sonic hedgehog in craniofacial patterning, morphogenesis and cranial neural crest survival. J. Dev. Biol. 4, 24 (2016).
PubMed Central Article PubMed Google Scholar
55.
Szabo-Rogers, H. L., Smithers, L. E., Yakob, W. & Liu, K. J. New directions in craniofacial morphogenesis. Dev. Biol. 341, 84–94 (2010).
CAS PubMed Article Google Scholar
56.
Zhou, H., Kim, S., Ishii, S. & Boyer, T. G. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol. Cell Biol. 26, 8667–8682 (2006).
CAS PubMed PubMed Central Article Google Scholar
57.
Vilhais-Neto, G. C. et al. Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463, 953–957 (2010).
ADS CAS PubMed Article Google Scholar
58.
Clouthier, D. E., Garcia, E. & Schilling, T. F. Regulation of facial morphogenesis by endothelin signaling: Insights from mice and fish. Am. J. Med. Genet. A 152A, 2962–2973 (2010).
PubMed PubMed Central Article Google Scholar
59.
Fischer, C. et al. Complete mitochondrial DNA sequences of the Threadfin Cichlid (Petrochromis trewavasae) and the Blunthead Cichlid (Tropheus moorii) and patterns of mitochondrial genome evolution in cichlid fishes. PLoS ONE 8, e67048 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
60.
Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2016).
61.
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
PubMed PubMed Central Article CAS Google Scholar
62.
Davis, M. P. A., van Dongen, S., Abreu-Goodger, C., Bartonicek, N. & Enright, A. J. Kraken: A set of tools for quality control and analysis of high-throughput sequence data. Methods 63, 41–49 (2013).
CAS PubMed PubMed Central Article Google Scholar
63.
Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).
PubMed PubMed Central Article Google Scholar
64.
Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
65.
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Article Google Scholar
66.
Buffalo, V. Scythe. https://github.com/vsbuffalo/scythe (2014).
67.
CLCbio Assembly Cell. https://www.quiagenbioinformatics.com/products/clc-assembly-cell (2015).
68.
Bushnell, B., Rood, J. & Singer, E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056 (2017).
PubMed PubMed Central Article CAS Google Scholar
69.
Xu, H. et al. FastUniq: A fast de novo duplicates removal tool for paired short reads. PLoS ONE 7, e52249 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
70.
Leggett, R. M., Clavijo, B. J., Clissold, L., Clark, M. D. & Caccamo, M. NextClip: An analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics 30, 566–568 (2014).
CAS PubMed Article Google Scholar
71.
Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P. & Marth, G. T. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27, 1691–1692 (2011).
CAS PubMed PubMed Central Article Google Scholar
72.
Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
PubMed PubMed Central Article CAS Google Scholar
73.
Broad Institute Picard Tools. https://github.com/broadinstitute/picard (2016).
74.
Hackl, T., Hedrich, R., Schultz, J. & Förster, F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30, 3004–3011 (2014).
CAS PubMed PubMed Central Article Google Scholar
75.
Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).
CAS PubMed PubMed Central Article Google Scholar
76.
Le, H. S., Schulz, M. H., McCauley, B. M., Hinman, V. F. & Bar-Joseph, Z. Probabilistic error correction for RNA sequencing. Nucleic Acids Res. 41, e109 (2013).
CAS PubMed PubMed Central Article Google Scholar
77.
Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).
PubMed PubMed Central Article CAS Google Scholar
78.
Liu, Y., Schröder, J. & Schmidt, B. Musket: A multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29, 308–315 (2013).
CAS PubMed Article Google Scholar
79.
Liu,B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv:1308.2012 (2013).
80.
Denisov, G. et al. Consensus generation and variant detection by Celera Assembler. Bioinformatics 24, 1035–1040 (2008).
CAS PubMed Article Google Scholar
81.
Kajitani, R. et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 24, 1384–1395 (2014).
CAS PubMed PubMed Central Article Google Scholar
82.
Pryszcz, L. P. & Gabaldón, T. Redundans: An assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113 (2016).
PubMed PubMed Central Article CAS Google Scholar
83.
Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).
CAS PubMed Article Google Scholar
84.
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18 (2012).
PubMed PubMed Central Article Google Scholar
85.
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
CAS PubMed PubMed Central Article Google Scholar
86.
Frith, M. C., Wan, R. & Horton, P. Incorporating sequence quality data into alignment improves DNA read mapping. Nucleic Acids Res. 38, e100 (2010).
PubMed PubMed Central Article CAS Google Scholar
87.
English, A. C. et al. Mind the Gap: Upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
88.
Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. 13, 238 (2012).
CAS Article Google Scholar
89.
Wences, A. H. & Schatz, M. C. Metassembler: Merging and optimizing de novo genome assemblies. Genome Biol. 16, 207 (2015).
PubMed PubMed Central Article CAS Google Scholar
90.
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
CAS PubMed PubMed Central Article Google Scholar
91.
Kosugi, S., Hirakawa, H. & Tabata, S. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments. Bioinformatics 31, 3733–3741 (2015).
CAS PubMed Google Scholar
92.
Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
PubMed PubMed Central Article Google Scholar
93.
Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).
PubMed PubMed Central Article CAS Google Scholar
94.
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Meth. 9, 357–359 (2012).
CAS Article Google Scholar
95.
Paulino, D. et al. Sealer: A scalable gap-closing application for finishing draft genomes. BMC Bioinform. 16, 230 (2015).
Article Google Scholar
96.
Simpson, J. T. et al. ABySS: A parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009).
CAS PubMed PubMed Central Article Google Scholar
97.
Ponstingl, H. & Ning, Z. SMALT. https://www.sanger.ac.uk/science/tools/smalt-0 (2018).
98.
Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).
CAS PubMed PubMed Central Article Google Scholar
99.
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
CAS PubMed PubMed Central Article Google Scholar
100.
Stanke, M. & Morgenstern, B. Augustus: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).
CAS PubMed PubMed Central Article Google Scholar
101.
Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).
CAS PubMed PubMed Central Article Google Scholar
102.
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494–1512 (2013).
CAS Article Google Scholar
103.
Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
CAS PubMed PubMed Central Article Google Scholar
104.
Wu, T. D. & Watanabe, C. K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).
CAS PubMed Article Google Scholar
105.
Kent, W. J. BLAT—The BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
CAS PubMed PubMed Central Article Google Scholar
106.
Oracle Inc. MySQL. https://www.mysql.com (2016).
107.
Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).
CAS PubMed PubMed Central Article Google Scholar
108.
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
CAS Article Google Scholar
109.
Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).
CAS PubMed PubMed Central Article Google Scholar
110.
Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).
Article Google Scholar
111.
Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005).
CAS PubMed PubMed Central Article Google Scholar
112.
Palmer, J. M. Funannotate: a fungal genome annotation and comparative genomics pipeline. https://github.com/nextgenusfs/funannotate (2016).
113.
Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: Unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).
CAS PubMed Article Google Scholar
114.
Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119 (2014).
PubMed PubMed Central Article CAS Google Scholar
115.
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
CAS PubMed PubMed Central Article Google Scholar
116.
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
CAS PubMed PubMed Central Article Google Scholar
117.
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
PubMed PubMed Central Article CAS Google Scholar
118.
Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).
CAS PubMed PubMed Central Article Google Scholar
119.
Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S. R. Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003).
CAS PubMed PubMed Central Article Google Scholar
120.
Wucher,V. et al. FEELnc: A tool for Long non-coding RNAs annotation and its application to the dog transcriptome. bioRxiv https://doi.org/10.1101/064436 (2016).
121.
Thiel, T., Michalek, W., Varshney, R. K. & Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422 (2003).
CAS PubMed Article Google Scholar
122.
Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends. Genet. 16, 276–277 (2000).
CAS PubMed Article Google Scholar
123.
Jurka, J. W. RepBase. https://www.girinst.org/server/RepBase (2016).
124.
Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0. http://www.repeatmasker.org (2014).
125.
Price, A. L., Jones, N. C. & Pevzner, P. A. D. novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).
CAS PubMed Article Google Scholar
126.
Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).
CAS PubMed PubMed Central Article Google Scholar
127.
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
CAS PubMed PubMed Central Article Google Scholar
128.
Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).
CAS PubMed Article Google Scholar
129.
Rawlings, N. D., Barrett, A. J. & Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44, D343–D350 (2016).
CAS PubMed Article Google Scholar
130.
Yin, Y. et al. dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).
CAS PubMed PubMed Central Article Google Scholar
131.
Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).
CAS PubMed PubMed Central Article Google Scholar
132.
Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).
CAS PubMed Google Scholar
133.
Sterne-Weiler, T., Weatheritt, R. J., Best, A. J., Ha, K. C. H. & Blencowe, B. J. Efficient and accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop. Mol. Cell 72, 187–200 (2018).
CAS PubMed Article Google Scholar
134.
Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
CAS PubMed PubMed Central Article Google Scholar
135.
Li, Y., Xiang, J. & Duan, C. Insulin-like growth factor-binding protein-3 plays an important role in regulating pharyngeal skeleton and inner ear formation and differentiation. J. Biol. Chem. 280, 3613–3620 (2005).
CAS PubMed Article Google Scholar
136.
Lin, J. M. et al. Actions of fibroblast growth factor-8 in bone cells in vitro. Am. J. Physiol. Endocrinol. Metab. 297, E142–E150 (2009).
CAS PubMed Article Google Scholar
137.
Nichols, J. T., Pan, L., Moens, C. B. & Kimmel, C. B. barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development 140, 2765–2775 (2013).
CAS PubMed PubMed Central Article Google Scholar
138.
Bush, J. O., Lan, Y. & Jiang, R. The cleft lip and palate defects in Dancer mutant mice result from gain of function of the Tbx10 gene. Proc. Natl. Acad. Sci. U. S. A. 101, 7022–7027 (2004).
ADS CAS PubMed PubMed Central Article Google Scholar
139.
Vieira, A. R. et al. Medical sequencing of candidate genes for nonsyndromic cleft lip and palate. PLoS Genet. 1, e64 (2005).
PubMed PubMed Central Article CAS Google Scholar
140.
Papaioannou, V. E. The T-box gene family: Emerging roles in development, stem cells and cancer. Development 141, 3819–3833 (2014).
CAS PubMed PubMed Central Article Google Scholar
141.
Kang, Y. J., Stevenson, A. K., Yau, P. M. & Kollmar, R. Sparc protein is required for normal growth of zebrafish otoliths. J. Assoc. Res. Otolaryngol. 9, 436–451 (2008).
PubMed PubMed Central Article Google Scholar
142.
Rosset, E. M. & Bradshaw, A. D. SPARC/osteonectin in mineralized tissue. Matrix Biol. 52–54, 78–87 (2016).
PubMed PubMed Central Article CAS Google Scholar
143.
Zarelli, V. E. & Dawid, I. B. Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2. Proc. Natl. Acad. Sci. U. S. A. 110, 2870–2875 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
144.
Zhang, Z., Huynh, T. & Baldini, A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133, 3587–3595 (2006).
CAS PubMed PubMed Central Article Google Scholar
145.
Yutzey, K. E. DiGeorge syndrome, Tbx1, and retinoic acid signaling come full circle. Circ. Res. 106, 630–632 (2010).
CAS PubMed PubMed Central Article Google Scholar
146.
Ghassibe-Sabbagh, M. et al. FAF1, a gene that is disrupted in cleft palate and has conserved function in Zebrafish. Am. J. Hum. Genet. 88, 150–161 (2011).
CAS PubMed PubMed Central Article Google Scholar
147.
Wilm, T. P. & Solnica-Krezel, L. Essential roles of a zebrafish prdm1/blimp1 homolog in embryo patterning and organogenesis. Development 132, 393–404 (2005).
CAS PubMed Article Google Scholar
148.
Wang, L., Rajan, H., Pitman, J. L., McKeown, M. & Tsai, C. C. Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors. Genes Dev. 20, 525–530 (2006).
PubMed PubMed Central Article CAS Google Scholar
149.
Plaster, N., Sonntag, C., Schilling, T. F. & Hammerschmidt, M. REREa/Atrophin-2 interacts with histone deacetylase and Fgf8 signaling to regulate multiple processes of zebrafish development. Dev. Dyn. 236, 1891–1904 (2007).
CAS PubMed Article Google Scholar
150.
Jordan, V. K. et al. Genotype–phenotype correlations in individuals with pathogenic RERE variants. Hum. Mutat. 39, 666–675 (2018).
CAS PubMed PubMed Central Article Google Scholar
151.
Diepeveen, E. T., Kim, F. D. & Salzburger, W. Sequence analyses of the distal-less homeobox gene family in East African cichlid fishes reveal signatures of positive selection. BMC Evol. Biol. 13, 153 (2013).
PubMed PubMed Central Article Google Scholar
152.
Stock, D. W. et al. The evolution of the vertebrate Dlx gene family. Proc. Natl. Acad. Sci. USA 93, 10858–10863 (1996).
ADS CAS PubMed Article Google Scholar
153.
Mark, M., Ghyselinck, N. B. & Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl. Recept. Signal. 7, e002 (2009).
PubMed PubMed Central Article CAS Google Scholar
154.
Linville, A., Radtke, K., Waxman, J. S., Yelon, D. & Schilling, T. F. Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches. Dev. Biol. 325, 60–70 (2009).
CAS PubMed Article Google Scholar
155.
Swartz, M. E., Sheehan-Rooney, K., Dixon, M. J. & Eberhart, J. K. Examination of a palatogenic gene program in Zebrafish. Dev. Dyn. 240, 2204–2220 (2011).
CAS PubMed PubMed Central Article Google Scholar
156.
Iwata, J. et al. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J. Biol. Chem. 285, 4975–4982 (2010).
CAS PubMed Article Google Scholar
157.
Prochazkova, M., Prochazka, J., Marangoni, P. & Klein, O. D. Bones, Glands, Ears and More: The Multiple Roles of FGF10 in Craniofacial Development. Front Genet. 9, 542 (2018).
CAS PubMed PubMed Central Article Google Scholar
158.
Du, J. et al. Different expression patterns of Gli1-3 in mouse embryonic maxillofacial development. Acta Histochem. 114, 620–625 (2012).
CAS PubMed Article Google Scholar More