Environmental stressors, complex interactions and marine benthic communities’ responses
1.
Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).
Article Google Scholar
2.
Millenium Ecosystem Assessment. Ecosystems and Human Wellbeing: Wetlands and Water. World Resources Institute, Washington, DC. https://www.millenniumassessment.org/documents/document.358.aspx.pdf (2005).
3.
Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622. https://doi.org/10.1126/science.aad2622 (2016).
4.
Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
5.
Vinebrooke, R. D. et al. Impacts of multiple stressors on biodiversity and ecosystem functioning: The role of species co-tolerance. Oikos 104, 451–457 (2004).
Article Google Scholar
6.
Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Chang. Biol. 22, 2665–2675 (2016).
ADS PubMed Article Google Scholar
7.
Côté, I., Darling, E. & Brown, C. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B Biol. Sci. 283, 20152592. Doi: https://doi.org/10.1098/rspb.2015.2592 (2016).
8.
Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
ADS PubMed Article CAS Google Scholar
9.
Séguin, A., Gravel, D. & Archambault, P. Effect of disturbance regime on Alpha and Beta diversity of rock pools. Biodivers. J. 6, 1–17 (2014).
Google Scholar
10.
Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 1–7 (2015).
Article CAS Google Scholar
11.
Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).
ADS Article Google Scholar
12.
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
PubMed Article Google Scholar
13.
Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).
PubMed Article Google Scholar
14.
Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).
PubMed PubMed Central Article Google Scholar
15.
Galic, N., Sullivan, L. L., Grimm, V. & Forbes, V. E. When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568–577 (2018).
PubMed Article Google Scholar
16.
Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765. https://doi.org/10.1371/journal.pone.0065765 (2013).
ADS CAS Article PubMed PubMed Central Google Scholar
17.
Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Divers. Distrib. 20, 538–546 (2014).
Article Google Scholar
18.
Kaplan, I. C., Levin, P. S., Burden, M. & Fulton, E. A. Fishing catch shares in the face of global change: A framework for integrating cumulative impacts and single species management. Can. J. Fish. Aquat. Sci. 67, 1968–1982 (2010).
Article Google Scholar
19.
Ghedini, G., Russell, B. D. & Connell, S. D. Managing local coastal stressors to reduce the ecological effects of ocean acidification and warming. Water (Switzerland) 5, 1653–1661 (2013).
Google Scholar
20.
Hodgson, E. E., Halpern, B. S. & Essington, T. E. Moving beyond silos in cumulative effects assessment. Front. Ecol. Evol. 7, 1–8 (2019).
Article Google Scholar
21.
Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).
ADS CAS PubMed Article Google Scholar
22.
Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 106, 22341–22345 (2009).
ADS CAS PubMed Article Google Scholar
23.
Munday, P. L. et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. USA 106, 1848–1852 (2009).
ADS CAS PubMed Article Google Scholar
24.
Power, M. Assessing the effects of environmental stressors on fish populations. Aquat. Toxicol. 39, 151–169 (1997).
CAS Article Google Scholar
25.
Hodgson, E. E., Essington, T. E. & Halpern, B. S. Density dependence governs when population responses to multiple stressors are magnified or mitigated. Ecology 98, 2673–2683 (2017).
PubMed Article Google Scholar
26.
Griffith, G. P. & Fulton, E. A. New approaches to simulating the complex interaction effects of multiple human impacts on the marine environment. ICES J. Mar. Sci. 71, 764–774 (2014).
Article Google Scholar
27.
Harvey, E., Séguin, A., Nozais, C., Archambault, P. & Gravel, D. Identify effects dominate the impacts of multiple species extinctions on the functioning of complex food webs. Ecology 94, 169–179 (2013).
PubMed Article Google Scholar
28.
Schmolke, A., Brain, R., Thorbek, P., Perkins, D. & Forbes, V. Population modeling for pesticide risk assessment of threatened species—A case study of a terrestrial plant Boltonia decurrens. Environ. Toxicol. Chem. 36, 480–491 (2017).
CAS PubMed Article Google Scholar
29.
Calosi, P. et al. Adaptation and acclimatization to ocean acidification in marine ectotherms: An in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos. Trans. R. Soc. B, Biol. Sci. 368, (2013).
30.
Alsterberg, C., Sundbäck, K. & Hulth, S. Functioning of a shallow-water sediment system during experimental warming and nutrient enrichment. PLoS One 7, (2012).
31.
Rosenberg, R. Eutrophication – The future marine coastal nuisance?. Mar. Pollut. Bull. 16, 227–231 (1985).
CAS Article Google Scholar
32.
Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).
ADS CAS Article Google Scholar
33.
McGlathery, K. J., Sundbäck, K. & Anderson, I. C. Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Mar. Ecol. Prog. Ser. 348, 1–18 (2007).
ADS CAS Article Google Scholar
34.
Attrill, M. J. & Power, M. Effects on invertebrate populations of drought-induced changes in estuarine water quality. Mar. Ecol. Prog. Ser. 203, 133–143 (2000).
ADS CAS Article Google Scholar
35.
McLusky, D. S., Hull, S. C. & Elliott, M. Variations in the intertidal and subtidal macrofauna and sediments along a salinity gradient in the upper Forth estuary. Netherlands J. Aquat. Ecol. 27, 101–109 (1993).
Article Google Scholar
36.
Levinton, J., Doall, M., Ralston, D., Starke, A. & Allam, B. Climate change, precipitation and impacts on an estuarine refuge from disease. PLoS ONE 6(4), e18849 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
37.
Greimel, F. et al. Hydropeaking impacts and mitigation in Riverine ecosystem management: Science for governing towards a sustainable future (ed. Schmutz, S. & Sendzimir, J.) 91–110 (Aquatic Ecology Series 8, 2018).
38.
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. Nature 421, 37–42 (2003).
ADS CAS PubMed Article Google Scholar
39.
Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Chang. 2, 821–824 (2012).
ADS Article Google Scholar
40.
Lotzel, H. K. & Worm, B. Complex interactions of climatic and ecological controls on macroalgal recruitment. Limnol. Oceanogr. 47, 1734–1741 (2002).
ADS Article Google Scholar
41.
Paerl, H. W. & Scott, J. T. Throwing fuel on the fire: Synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environ. Sci. Technol. 44, 7756–7758 (2010).
ADS CAS PubMed Article Google Scholar
42.
Drejou, E. et al. Biodiversity and habitat assessment of coastal benthic communities in a sub-Arctic industrial harbour area. Water J. 12, 2424. https://doi.org/10.3390/w12092424 (2020).
Article Google Scholar
43.
Romero, F., Acuña, V., Font, C., Freixa, A. & Sabater, S. Effects of multiple stressors on river biofilms depend on the time scale. Sci. Rep. 9, 15810. https://doi.org/10.1038/s41598-019-52320-42 (2019).
ADS Article PubMed PubMed Central Google Scholar
44.
Borja, A., Franco, J. & Pérez, V. A. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environmentls. Mar. Pollut. Bull. 40, 1100–1114 (2000).
CAS Article Google Scholar
45.
Bourget, E., Ardisson, P.-L., Lapointe, L. & Daigle, G. Environmental factors as predictors of epibenthic assemblage biomass in the St Lawrence system. Estuar. Coast. Shelf. Sci. 57, 641–652 (2003).
ADS CAS Article Google Scholar
46.
McLusky, D.S. & Allan, D.G. Aspects of the biology of Macoma balthica (L.) from estuarine Firth of Forth. J. Molluscan Stud. 42, 31–45 (1976).
47.
Cottrell, R. S., Kenny, D. B., Hutchison, Z. L. & Last, K. S. The influence of organic material and temperature on the burial tolerance of the blue mussel, Mytilus edulis: Considerations for the management of marine aggregate dredging. PLoS ONE 11, 1. https://doi.org/10.1371/journal.pone.0147534 (2020).
CAS Article Google Scholar
48.
Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. 16, 229–311 (1978).
Google Scholar
49.
Ratcliffe, P.J., Jones, N.V. & Walters, N.J. The survival of Macoma balthica (L.) in mobile sediments. In Feeding and Survival Strategies of Estuarine Organisms (ed. Jones, N.V & Wolff, W.J.) 91–108 (Plenum Press, 1981).
50.
Riaux-Gobin, C. & Klein, B. Microphytobenthic biomass measurement using HPLC and conventional pigment analysis. In Handbooks of Methods in Aquatic Microbial Ecology, (ed. Kemp, P.F., Sherr, B.F., Sherr, E.B. & Cole, J.J.) 369–376 (Lewis Publishers, 1993).
51.
Davies, B. E. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. J. 38, 150–151 (1974).
ADS Article Google Scholar
52.
Wentworth, C. K. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).
ADS Article Google Scholar
53.
Folk, R. L. & Ward, W. C. Brazos River Bar: a study in the significance of grain size parameters. J. Sediment. Petrol. 27, 3–26 (1957).
ADS Article Google Scholar
54.
Galbraith, P. et al. Physical oceanographic conditions in the Gulf of St. Lawrence during 2018. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/046, iv + 69 p. (2019).
55.
Baden, S., Boström, C., Tobiasson, S., Arponen, H. & Moksnes, P. O. Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: A broad-scale field experiment in the Baltic-Skagerrak area. Limnol. Oceanogr. 55, 1435–1448 (2010).
ADS CAS Article Google Scholar
56.
Moksnes, P.-O., Gullström, M., Tryman, K. & Baden, S. Trophic cascades in a temperature seagrass community. Oikos 117, 763–777 (2008).
Article Google Scholar
57.
Bonsdorff, E. Establisment, growth and dynamics of a Macoma balthica (L.) population. Limnologica. 15, 403–405 (1984)
58.
Castañeda, R. A., Cvetanovska, E., Hamelin, K. M., Simard, M. A. & Ricciardi, A. Distribution, abundance and condition of an invasive bivalve (Corbicula fluminea) along an artificial thermal gradient in the St Lawrence River. Aquat. Invasions. 13, 379–392 (2018).
Article Google Scholar
59.
Baden, S. P. & Eriksson, S. P. Role, routes and effects of manganese in crustaceans. Oceanogr. Mar. Biol. Ann. Rev. 44, 61–83 (2006).
Google Scholar
60.
Page, T. M., Worthington, S., Calosi, P. & Stillman, J. H. Effects of elevated pCO2 on crab survival and exoskeleton composition depend on shell function and species distribution: A comparative analysis of carapace and claw mineralogy across four porcelain crab species from different habitats. ICES J. Mar. Sci. 74, 1021–1032 (2017).
Article Google Scholar
61.
Small, D., Calosi, P., White, D., Spicer, J. I. & Widdicombe, S. Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquat. Biol. 10, 11–21 (2010).
Article Google Scholar
62.
Marchant, H. K., Calosi, P. & Spicer, J. I. Short-term exposure to hypercapnia does not compromise feeding, acid-base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damage. J. Mar. Biol. Assoc. UK 90, 1379–1384 (2010).
Article Google Scholar
63.
Horne, F.R. & Tarsitano, S. The mineralization and biomechanics of the exoskeleton. In The Biology and Fisheries of the Slipper Lobster (ed. Lavalli, K.L & Spanier, E.) 183–189 (CRC Press, 2007).
64.
Tao, J., Zhou, D., Zhang, Z., Xu, X. & Tang, R. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean. Proc. Natl. Acad. Sci. USA 106, 22096–22101 (2009).
ADS CAS PubMed Article Google Scholar
65.
Menu-Courey, K. et al. Energy metabolism and survival of the juvenile recruits of the American lobster (Homarus americanus) exposed to a gradient of elevated seawater pCO2. Mar. Environ. Res. 143, 111–123 (2019).
CAS PubMed Article Google Scholar
66.
Siddon, E. C., Heintz, R. A. & Mueter, F. J. Conceptual model of energy allocation in walleye pollock (Theragra chalcogramma) from age-0 to age-1 in the southeastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 94, 140–149 (2013).
67.
Anderson, M. J. Permanova: A fortran computer program for permutational multivariate analysis of variance (University of Auckland, Auckland, Department of Statistics, 2005).
Google Scholar
68.
Clarke, K.R & Gorley, R.N. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth (2006).
69.
Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).
CAS PubMed Article Google Scholar
70.
Thornton, D. C. O., Dong, L. F., Underwood, G. J. C. & Nedwell, D. B. Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquat. Microb. Ecol. 27, 285–300 (2002).
Article Google Scholar
71.
Pinckney, J., Paerl, H. W. & Fitzpatrick, M. Impacts of seasonality and nutrients on microbial mat community structure and function. Mar. Ecol. Prog. Ser. 123, 207–216 (1995).
ADS Article Google Scholar
72.
Lin, J. & Hines, A. H. Effects of suspended food availability on the feeding mode and burial depth of the Baltic clam Macoma balthica. Oikos 69, 28–36 (1994).
Article Google Scholar
73.
Bougrier, S., Hawkins, A. J. S. & Héral, M. Preingestive selection of different microalgal mixtures in Crassostrea gigas and Mytilus edulis, analyzed by flow cytometry. Aquaculture 150, 123–134 (1997).
Article Google Scholar
74.
Cognie, B., Barillé, L. & Rincé, Y. Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries Coast. 24, 126–131 (2001).
Article Google Scholar
75.
Camargo, J. A. & Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849 (2006).
CAS PubMed Article Google Scholar
76.
Davenport, J. & Redpath, K.J. Copper and the mussel Mytilus edulis (L.) in Toxins, drugs and pollutants in marine animals (ed. Bolis, L., Zadunaisky, J. & Gilles, R.) 176–189 (Springler-Verlag, 1984).
77.
Gosling, E. Bivalve Molluscs: Biology, Ecology and Culture (ed. Blackwell Publishing) 95–96 (Wiley-Blackwell, 2003).
78.
Hauton, C. Physiological responses: Effects of salinity as a stressor to aquatic in- vertebrates. In Stressors in the Marine Environment: Physiological and Ecological Responses; Societal Implications (ed. Solan, M & Whiteley, N.M.) 3–24 (Oxford University Press, 2016)
79.
Almada-Villela, P. C. The effects of reduced salinity on the shell growth of small Mytilus edulis. J. Mar. Biol. Assoc. U.K. 64, 171–182 (1984).
80.
Kautsky, N., Johannesson, K. & Tedengren, M. Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. I. Growth and morphology. Mar. Ecol. Prog. Ser. 59, 203–210 (1990).
81.
Westerbom, M., Kilpi, M. & Mustonen, O. Blue mussels, Mytilus edulis, at the edge of the range: Population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Mar. Biol. 140, 991–999 (2002).
Article Google Scholar
82.
Qiu, J., Tremblay, R. & Bourget, E. Ontogenetic changes in hyposaline tolerance in the mussels Mytilus edulis and M. trossulus: implications for distribution. Mar. Ecol. Prog. Ser. 228, 143–152 (2002).
83.
Cederwal, H. & Elmgren, R. Biomass increase of benthic macro- fauna demonstrates eutrophication of the Baltic Sea. Ophelia Suppl. 1, 287–304 (1980).
Google Scholar
84.
Josefson, A. B. & Rasmussen, B. Nutrient retention by benthic macrofaunal biomass of Danish estuaries: Importance of nutrient load and residence time. Estuar. Coast. Shelf Sci. 50, 205–216 (2000).
ADS CAS Article Google Scholar
85.
Carmichael, R. H., Shriver, A. C. & Valiela, I. Bivalve response to estuarine eutrophication: The balance between enhanced food supply and habitat alterations. J. Shellfish Res. 31, 1–11 (2012).
Article Google Scholar
86.
Lin, J. & Hines, A. Effects of suspended food availability on the feeding mode and burial depth of the Baltic clam. Macoma balthica. Oiko 69, 28–36 (1994).
Article Google Scholar
87.
Findlay, H. S. et al. Comparing the impact of high CO2 on calcium carbonate structures in different marine organisms. Mar. Biol. Res. 7, 565–575 (2011).
Article Google Scholar
88.
Ries, J.B., Cohen. A.L. & McCorkle, D.C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131−1134 (2009).
89.
Michaelidis, B., Ouzounis, C., Paleras, A. & Pörtner, H. O. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. Ser. 293, 109–118 (2005).
ADS Article Google Scholar
90.
Whiteley, N. M., Scott, J. L., Breeze, S. J. & McCann, L. Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol. 204, 1003–1011 (2001).
CAS PubMed Google Scholar
91.
Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).
PubMed Article Google Scholar
92.
Withey, J. C. et al. Maximizing return on conservation investment in the conterminous USA. Ecol. Lett. 15, 1249–1256 (2012).
PubMed Article Google Scholar More