More stories

  • in

    Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco-morphologically divergent cichlid fishes endemic to Lake Tanganyika

    1.
    Van der Laan, R. & Fricke, R. Eschmeyer’s Catalog of Fishes Family Group Names. http://www.calacademy.org/scientists/catalog-of-fishes-family-group-names (2020).
    2.
    Greenwood, P. H. African cichlids and evolutionary theories. In Evolution of Fish Species Flock (eds Echelle, A. A. & Kornfield, I.) 141–154 (University of Maine at Orono Press, Orono, 1984).
    Google Scholar 

    3.
    Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).
    CAS  PubMed  Article  Google Scholar 

    4.
    Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Tiercelin, J.-J. & Mondeguer, A. The geology of the Tanganyika trough. In Lake Tanganyika and its Life (ed. Coulter, G. W.) 7–48 (Oxford University Press, Oxford, 1991).
    Google Scholar 

    6.
    Irisarri, I. et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 3159 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Salzburger, W., Meyer, A., Baric, S., Verheyen, E. & Sturmbauer, C. Phylogeny of the Lake Tanganyika Cichlid species flock and its relationship to the Central and East African Haplochromine Cichlid Fish Faunas. Syst. Biol. 51, 113–135 (2002).
    PubMed  Article  Google Scholar 

    8.
    Salzburger, W., Mack, T., Verheyen, E. & Meyer, A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol. Biol. 5, 17 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    9.
    Koblmüller, S. et al. Age and spread of the haplochromine cichlid fishes in Africa. Mol. Phylogenet. Evol. 49, 153–169 (2008).
    PubMed  Article  CAS  Google Scholar 

    10.
    Sturmbauer, C., Salzburger, W., Duftner, N., Schelly, R. & Koblmüller, S. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Mol. Phylogenet. Evol. 57, 266–284 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Sturmbauer, C., Levinton, J. S. & Christy, J. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. Proc. Natl. Acad. Sci. U. S. A. 93, 10855–10857 (1996).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Joyce, D. A. et al. An extant cichlid fish radiation emerged in an extinct Pleistocene lake. Nature 435, 90–95 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Katongo, C., Koblmüller, S., Duftner, N., Mumba, L. & Sturmbauer, C. Evolutionary history and biogeographic affinities of the serranochromine cichlids in Zambian rivers. Mol. Phylogenet. Evol. 45, 326–338 (2007).
    CAS  PubMed  Article  Google Scholar 

    14.
    Sturmbauer, C., Koblmüller, S., Sefc, K. M. & Duftner, N. Phylogeographic history of the genus Tropheus, a lineage of rock-dwelling cichlid fishes endemic to Lake Tanganyika. Hydrobiologia 542, 335–366 (2005).
    Article  Google Scholar 

    15.
    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Svardal, H. et al. Ancestral hybridization facilitated species diversification in the Lake Malawi Cichlid fish adaptive radiation. Mol. Biol. Evol. 37, 1100–1113 (2020).
    PubMed  Article  Google Scholar 

    17.
    Kullander, S. O. & Roberts, T. R. Out of Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River. Ichthyol. Explor. Freshw. 22, 355–376 (2011).
    Google Scholar 

    18.
    West-Eberhard, M.-J. Developmental Plasticity and Evolution (Oxford University Press, Oxford, 2003).
    Google Scholar 

    19.
    Rossiter, A. The Cichlid fish assemblages of Lake Tanganyika: ecology, behaviour and evolution of its species flocks. In Advances in Ecological Research (eds Begon, M. & Fitter, A. H.) 187–252 (Academic Press Ltd., London, 1995).
    Google Scholar 

    20.
    Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Liem, K. F. Evolutionary strategies and morphological innovations: Cichlid Pharyngeal Jaws. Syst Biol. 22, 425–441 (1973).
    Google Scholar 

    23.
    Carleton, K. L., Dalton, B. E., Escobar-Camacho, D. & Nandamuri, S. P. Proximate and ultimate causes of variable visual sensitivities: Insights from cichlid fish radiations. Genesis 54, 299–325 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Maan, M. E. & Sefc, K. M. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences. Semin. Cell. Dev. Biol. 24, 516–528 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).
    CAS  PubMed  Article  Google Scholar 

    26.
    Malinsky, M. Andinoacara coeruleopunctatus Genome Browser Gateway. http://em-x1.gurdon.cam.ac.uk/cgi-bin/hgGateway?hgsid=6400&clade=vertebrate&org=A.+coeruleopunctatus&db=0 (2015).

    27.
    Conte, M. A. et al. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. GigaScience 8, giz030 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    28.
    Thibaud-Nissen, F. et al. P8008 the NCBI eukaryotic genome annotation pipeline. J. Anim. Sci. 94, 184 (2016).
    Article  Google Scholar 

    29.
    Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Conte,M.A., Gammerdinger,W.J., Bartie,K.L., Penman,D.J. & Kocher,T.D. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. bioRxiv https://doi.org/10.1101/099564 (2017).

    31.
    Vij, S. et al. Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding. PLoS Genet. 12, e1005954 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org (2015).

    33.
    Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Parra, G., Bradnam, K. & Korf, I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).
    CAS  PubMed  Article  Google Scholar 

    36.
    Dohmen, E., Kremer, L. P. M., Bornberg-Bauer, E. & Kemena, C. DOGMA: Domain-based transcriptome and proteome quality assessment. Bioinformatics 32, 2577–2581 (2016).
    CAS  PubMed  Article  Google Scholar 

    37.
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Hunt, M. et al. REAPR: a universal tool for genome assembly evaluation. Genome Biol. 14, R47 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Asalone, K. C. et al. Regional sequence expansion or collapse in heterozygous genome assemblies. PLoS Comput. Biol. 16, e1008104 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Conte, M. A. & Kocher, T. D. An improved genome reference for the African cichlid Metriaclima zebra. BMC Genomics 16, 724 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    41.
    Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2010).
    CAS  PubMed  Article  Google Scholar 

    42.
    McKenna, A. et al. The genome analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Rausch, T. et al. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Liu, Y. et al. Comparison of multiple algorithms to reliably detect structural variants in pears. BMC Genomics 21, 61 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Supernat, A., Vidarsson, O. V., Steen, V. M. & Stokowy, T. Comparison of three variant callers for human whole genome sequencing. Sci. Rep. 8, 17851 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    McCarthy, D. J. et al. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 6, 26 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Gunter, H. M., Schneider, R. F., Karner, I., Sturmbauer, C. & Meyer, A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol. Ecol. 26, 6634–6653 (2017).
    CAS  PubMed  Article  Google Scholar 

    48.
    Navon, D. et al. Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts. Proc. Natl. Acad. Sci. U. S. A. 117, 19321–19327 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: From polygenic to omnigenic. Cell 169, 1177–1186 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Adhikari, K. et al. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat. Commun. 7, 11616 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Liu, F. et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 8, e1002932 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Claes, P. et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat. Genet. 50, 414–423 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Lupo, G., Harris, W. A. & Lewis, K. E. Mechanisms of ventral patterning in the vertebrate nervous system. Nat. Rev. Neurosci. 7, 103–114 (2006).
    CAS  PubMed  Article  Google Scholar 

    54.
    Dworkin, S., Boglev, Y., Owens, H. & Goldie, S. J. The role of sonic hedgehog in craniofacial patterning, morphogenesis and cranial neural crest survival. J. Dev. Biol. 4, 24 (2016).
    PubMed Central  Article  PubMed  Google Scholar 

    55.
    Szabo-Rogers, H. L., Smithers, L. E., Yakob, W. & Liu, K. J. New directions in craniofacial morphogenesis. Dev. Biol. 341, 84–94 (2010).
    CAS  PubMed  Article  Google Scholar 

    56.
    Zhou, H., Kim, S., Ishii, S. & Boyer, T. G. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol. Cell Biol. 26, 8667–8682 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Vilhais-Neto, G. C. et al. Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463, 953–957 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    58.
    Clouthier, D. E., Garcia, E. & Schilling, T. F. Regulation of facial morphogenesis by endothelin signaling: Insights from mice and fish. Am. J. Med. Genet. A 152A, 2962–2973 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Fischer, C. et al. Complete mitochondrial DNA sequences of the Threadfin Cichlid (Petrochromis trewavasae) and the Blunthead Cichlid (Tropheus moorii) and patterns of mitochondrial genome evolution in cichlid fishes. PLoS ONE 8, e67048 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2016).

    61.
    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    62.
    Davis, M. P. A., van Dongen, S., Abreu-Goodger, C., Bartonicek, N. & Enright, A. J. Kraken: A set of tools for quality control and analysis of high-throughput sequence data. Methods 63, 41–49 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
    Article  Google Scholar 

    66.
    Buffalo, V. Scythe. https://github.com/vsbuffalo/scythe (2014).

    67.
    CLCbio Assembly Cell. https://www.quiagenbioinformatics.com/products/clc-assembly-cell (2015).

    68.
    Bushnell, B., Rood, J. & Singer, E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Xu, H. et al. FastUniq: A fast de novo duplicates removal tool for paired short reads. PLoS ONE 7, e52249 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Leggett, R. M., Clavijo, B. J., Clissold, L., Clark, M. D. & Caccamo, M. NextClip: An analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics 30, 566–568 (2014).
    CAS  PubMed  Article  Google Scholar 

    71.
    Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P. & Marth, G. T. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27, 1691–1692 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Broad Institute Picard Tools. https://github.com/broadinstitute/picard (2016).

    74.
    Hackl, T., Hedrich, R., Schultz, J. & Förster, F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30, 3004–3011 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Le, H. S., Schulz, M. H., McCauley, B. M., Hinman, V. F. & Bar-Joseph, Z. Probabilistic error correction for RNA sequencing. Nucleic Acids Res. 41, e109 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Liu, Y., Schröder, J. & Schmidt, B. Musket: A multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29, 308–315 (2013).
    CAS  PubMed  Article  Google Scholar 

    79.
    Liu,B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv:1308.2012 (2013).

    80.
    Denisov, G. et al. Consensus generation and variant detection by Celera Assembler. Bioinformatics 24, 1035–1040 (2008).
    CAS  PubMed  Article  Google Scholar 

    81.
    Kajitani, R. et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 24, 1384–1395 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    82.
    Pryszcz, L. P. & Gabaldón, T. Redundans: An assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    83.
    Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).
    CAS  PubMed  Article  Google Scholar 

    84.
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    85.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Frith, M. C., Wan, R. & Horton, P. Incorporating sequence quality data into alignment improves DNA read mapping. Nucleic Acids Res. 38, e100 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    87.
    English, A. C. et al. Mind the Gap: Upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    88.
    Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. 13, 238 (2012).
    CAS  Article  Google Scholar 

    89.
    Wences, A. H. & Schatz, M. C. Metassembler: Merging and optimizing de novo genome assemblies. Genome Biol. 16, 207 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    90.
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Kosugi, S., Hirakawa, H. & Tabata, S. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments. Bioinformatics 31, 3733–3741 (2015).
    CAS  PubMed  Google Scholar 

    92.
    Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    93.
    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    94.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Meth. 9, 357–359 (2012).
    CAS  Article  Google Scholar 

    95.
    Paulino, D. et al. Sealer: A scalable gap-closing application for finishing draft genomes. BMC Bioinform. 16, 230 (2015).
    Article  Google Scholar 

    96.
    Simpson, J. T. et al. ABySS: A parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Ponstingl, H. & Ning, Z. SMALT. https://www.sanger.ac.uk/science/tools/smalt-0 (2018).

    98.
    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    100.
    Stanke, M. & Morgenstern, B. Augustus: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    102.
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494–1512 (2013).
    CAS  Article  Google Scholar 

    103.
    Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    104.
    Wu, T. D. & Watanabe, C. K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).
    CAS  PubMed  Article  Google Scholar 

    105.
    Kent, W. J. BLAT—The BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    106.
    Oracle Inc. MySQL. https://www.mysql.com (2016).

    107.
    Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    108.
    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
    CAS  Article  Google Scholar 

    109.
    Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    110.
    Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).
    Article  Google Scholar 

    111.
    Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    112.
    Palmer, J. M. Funannotate: a fungal genome annotation and comparative genomics pipeline. https://github.com/nextgenusfs/funannotate (2016).

    113.
    Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: Unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).
    CAS  PubMed  Article  Google Scholar 

    114.
    Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    115.
    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    116.
    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    117.
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    118.
    Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S. R. Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    120.
    Wucher,V. et al. FEELnc: A tool for Long non-coding RNAs annotation and its application to the dog transcriptome. bioRxiv https://doi.org/10.1101/064436 (2016).

    121.
    Thiel, T., Michalek, W., Varshney, R. K. & Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422 (2003).
    CAS  PubMed  Article  Google Scholar 

    122.
    Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends. Genet. 16, 276–277 (2000).
    CAS  PubMed  Article  Google Scholar 

    123.
    Jurka, J. W. RepBase. https://www.girinst.org/server/RepBase (2016).

    124.
    Smit, A. F. A. & Hubley, R. RepeatModeler Open-1.0. http://www.repeatmasker.org (2014).

    125.
    Price, A. L., Jones, N. C. & Pevzner, P. A. D. novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).
    CAS  PubMed  Article  Google Scholar 

    126.
    Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    127.
    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    128.
    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).
    CAS  PubMed  Article  Google Scholar 

    129.
    Rawlings, N. D., Barrett, A. J. & Finn, R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44, D343–D350 (2016).
    CAS  PubMed  Article  Google Scholar 

    130.
    Yin, Y. et al. dbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    131.
    Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    132.
    Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).
    CAS  PubMed  Google Scholar 

    133.
    Sterne-Weiler, T., Weatheritt, R. J., Best, A. J., Ha, K. C. H. & Blencowe, B. J. Efficient and accurate quantitative profiling of alternative splicing patterns of any complexity on a laptop. Mol. Cell 72, 187–200 (2018).
    CAS  PubMed  Article  Google Scholar 

    134.
    Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    135.
    Li, Y., Xiang, J. & Duan, C. Insulin-like growth factor-binding protein-3 plays an important role in regulating pharyngeal skeleton and inner ear formation and differentiation. J. Biol. Chem. 280, 3613–3620 (2005).
    CAS  PubMed  Article  Google Scholar 

    136.
    Lin, J. M. et al. Actions of fibroblast growth factor-8 in bone cells in vitro. Am. J. Physiol. Endocrinol. Metab. 297, E142–E150 (2009).
    CAS  PubMed  Article  Google Scholar 

    137.
    Nichols, J. T., Pan, L., Moens, C. B. & Kimmel, C. B. barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development 140, 2765–2775 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    138.
    Bush, J. O., Lan, Y. & Jiang, R. The cleft lip and palate defects in Dancer mutant mice result from gain of function of the Tbx10 gene. Proc. Natl. Acad. Sci. U. S. A. 101, 7022–7027 (2004).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    139.
    Vieira, A. R. et al. Medical sequencing of candidate genes for nonsyndromic cleft lip and palate. PLoS Genet. 1, e64 (2005).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    140.
    Papaioannou, V. E. The T-box gene family: Emerging roles in development, stem cells and cancer. Development 141, 3819–3833 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    141.
    Kang, Y. J., Stevenson, A. K., Yau, P. M. & Kollmar, R. Sparc protein is required for normal growth of zebrafish otoliths. J. Assoc. Res. Otolaryngol. 9, 436–451 (2008).
    PubMed  PubMed Central  Article  Google Scholar 

    142.
    Rosset, E. M. & Bradshaw, A. D. SPARC/osteonectin in mineralized tissue. Matrix Biol. 52–54, 78–87 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    143.
    Zarelli, V. E. & Dawid, I. B. Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2. Proc. Natl. Acad. Sci. U. S. A. 110, 2870–2875 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    144.
    Zhang, Z., Huynh, T. & Baldini, A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133, 3587–3595 (2006).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    145.
    Yutzey, K. E. DiGeorge syndrome, Tbx1, and retinoic acid signaling come full circle. Circ. Res. 106, 630–632 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    146.
    Ghassibe-Sabbagh, M. et al. FAF1, a gene that is disrupted in cleft palate and has conserved function in Zebrafish. Am. J. Hum. Genet. 88, 150–161 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    147.
    Wilm, T. P. & Solnica-Krezel, L. Essential roles of a zebrafish prdm1/blimp1 homolog in embryo patterning and organogenesis. Development 132, 393–404 (2005).
    CAS  PubMed  Article  Google Scholar 

    148.
    Wang, L., Rajan, H., Pitman, J. L., McKeown, M. & Tsai, C. C. Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors. Genes Dev. 20, 525–530 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    149.
    Plaster, N., Sonntag, C., Schilling, T. F. & Hammerschmidt, M. REREa/Atrophin-2 interacts with histone deacetylase and Fgf8 signaling to regulate multiple processes of zebrafish development. Dev. Dyn. 236, 1891–1904 (2007).
    CAS  PubMed  Article  Google Scholar 

    150.
    Jordan, V. K. et al. Genotype–phenotype correlations in individuals with pathogenic RERE variants. Hum. Mutat. 39, 666–675 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    151.
    Diepeveen, E. T., Kim, F. D. & Salzburger, W. Sequence analyses of the distal-less homeobox gene family in East African cichlid fishes reveal signatures of positive selection. BMC Evol. Biol. 13, 153 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    152.
    Stock, D. W. et al. The evolution of the vertebrate Dlx gene family. Proc. Natl. Acad. Sci. USA 93, 10858–10863 (1996).
    ADS  CAS  PubMed  Article  Google Scholar 

    153.
    Mark, M., Ghyselinck, N. B. & Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl. Recept. Signal. 7, e002 (2009).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    154.
    Linville, A., Radtke, K., Waxman, J. S., Yelon, D. & Schilling, T. F. Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches. Dev. Biol. 325, 60–70 (2009).
    CAS  PubMed  Article  Google Scholar 

    155.
    Swartz, M. E., Sheehan-Rooney, K., Dixon, M. J. & Eberhart, J. K. Examination of a palatogenic gene program in Zebrafish. Dev. Dyn. 240, 2204–2220 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    156.
    Iwata, J. et al. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J. Biol. Chem. 285, 4975–4982 (2010).
    CAS  PubMed  Article  Google Scholar 

    157.
    Prochazkova, M., Prochazka, J., Marangoni, P. & Klein, O. D. Bones, Glands, Ears and More: The Multiple Roles of FGF10 in Craniofacial Development. Front Genet. 9, 542 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    158.
    Du, J. et al. Different expression patterns of Gli1-3 in mouse embryonic maxillofacial development. Acta Histochem. 114, 620–625 (2012).
    CAS  PubMed  Article  Google Scholar  More

  • in

    Geochemical alkalinity and acidity as preferential site-specific for three lineages liverwort of Aneura pinguis cryptic species A

    Differentiation within A. pinguis cryptic species A
    Genetic studies using combined DNA sequences from five chloroplasts (rbcL-a, matK, rpoC1, trnL-F, trnH-pabA) and 1 (ITS) nuclear genomes (4598 bp) showed some differentiation within the A. pinguis cryptic species A into three distinct groups (lineages) A1, A2 and A3 (Fig. 3). Most of investigated plants belonging to the lineage A1 originated from the Pieniny Mts. (PNN), however two samples A1 were collected at the Beskidy Mts. (BS) and one at the Tatry Mts. (T). All plants identified to A2 and A3 came from the Beskidy Mts. and the Tatry Mts., respectively. Maximum parsimony analyses of combined plastid loci and the nuclear ITS locus produced trees showing that the lineage A3 is genetically the most distinct, while A1 and A2 reveal more similarity. In the K2P mode, the percentage of variation in the sequences between lineages A1 and A2 equals to 0.20%, while for A1 and A3 it raised five times, i.e. 1.0%. The same occurred for the lineages A2 and A3, 1.0%.
    Figure 3

    Phylogram resulting from maximum likelihood (ML) analysis based on combined data of all sequences and showing genetic similarity and differentiation between lineages A1, A2 and A3 of A. pinguis cryptic species A. Bootstrap values are given at branches. A. maxima was used as an outgroup for tree rooting.

    Full size image

    Total and water soluble (active) alkaline elements
    The total content of alkaline elements (Table 2) shows that the content of calcium (Ca) prevails over magnesium (Mg), potassium (K) and sodium (Na) at any investigated site, i.e. Pieniny Mts. (PNN), Beskidy Mts. (BS) and Tatry Mts. (T). Soil samples collected under the lineage A1 covered the whole three geographical distributions, where the site BS exhibited the highest Ca concentrations (31 459.6 mg kg−1) followed by PNN (16 178.8 mg kg−1) and finally T with 7 398.7 mg kg−1. Interestingly, the lineage A2 occurred only at the site BS characterised by high Ca content (27 303.4 mg kg−1), whereas A3 at the Tatry Mts. (T) where the level 22 227.6 mg kg−1 was recorded. These data imply that the lineage A1 may have developed site-specific adaptation mechanisms to various concentrations of calcium. In the case of A2 and A3, the observed Ca concentrations amounted to 27,303.4 and 22,227.6 mg kg−1, respectively and should be described as high.
    Table 2 Total content of alkaline elements (Ca, Mg, K, Na) in the growth media of A. pinguis cryptic species A genetic lineage A1, A2, A3 at Pieniny, Beskidy and Tatry Mts.
    Full size table

    Variations in magnesium (Mg) concentrations for the lineage A1 followed another pattern differing from that observed in the case of calcium. Its contents varied accordingly: T  > BS  > PNN, with the highest levels recorded for A3 and A1 at the Tatry MTs. (T), respectively. It should be mentioned that both Ca and Mg are in most cases responsible (Ca much more) for geochemical reactions controlling the pH of the growth media. The role of potassium (K) as well as sodium (Na) is generally less pronounced in these reactions, but also their contents, which were very low appeared as the proof.
    The evaluation of site-specific occurrence of the lineages A1, A2 and A3 should not be performed on the basis of total content solely of alkaline elements, since this fraction is mostly informative on the current status of Ca, Mg, K and Na. Therefore, we have tested the soil samples for recovering the concentrations expressed as active fractions (Table 3) potentially involved in the growth process of these lineages. The levels (percentage share into the total content) of active Ca are significantly low and varied as follows: PNN (3.27%)  > T (0.89%)  > BS (0.73%) for A1, but raised to 1.34% (BS) in the case of A2. The lineage A3 has recorded a concentration of 0.71%, slightly comparable to A1, but at the same site (T).
    Table 3 Content of active forms of alkaline elements (Ca, Mg, K, Na) in the growth media of A. pinguis cryptic species A genetic lineage A1, A2, A3 at Pieniny, Beskidy and Tatry Mts.
    Full size table

    Should these Ca concentrations reflect any trend in site-specific behavior of Aneura pinguis cryptic species A. three lineages? Preliminary observations may be indicative of the calciphilous character of A1, specifically for the PNN site, followed by A2 in the case of BS. Lineages identified at the relatively lower share of active Ca, that is below 1.00% may fall into the acidophilous range. The percentage share of active Mg into its total concentrations followed similar distribution patterns like active Ca, with A1 recording 2.53% at the PNN site. Magnesium and calcium are divalent elements, which significantly control the alkalinity of soil environment.
    In the case of the current study, the occurrence of this lineage (i.e. A1) at this site is not a random process. By applying the same criteria like for active Ca, it appeared that A1, A2 and A3 at the Beskidy as well as Tatry Mts. met the rule of active Mg  T (0.87).
    Lineage A2 index: BS = 4.34.
    Lineage A3 index: T = 1.31.
    The respective pH values changed quite accordingly to the indices as shown below:
    Lineage A1 site pH: BS (8.05)  > PNN (7.50)  > T (6.45).
    Lineage A2 site pH: BS = 7.85.
    Lineage A3 site pH: T = 7.08.
    These ranges imply that genetic lineages A1 and A2 are by essence both calciphilous biotypes and may occur on sites rich in Ca, mostly alkaline as confirmed by the PNN and BS sites. On the other hand, some biotypes of the lineage A1 may be easily adapting also to low Ca concentrations, indicative of acidophilous features, as in the case of A3. Both (A1 and A3) occur at the Tatry MTs.
    A detailed distribution of indices as well as respective pH is illustrated by the Figs. 4, 5 and 6, specifically for the genetic lineages A1, A2 and A3, respectively. The mean index values for the PNN site is 3.24 which discriminates the data into two groups: 60%  3.24. In the case of BS, the mean value amounted to 2.70, but for only two sampling sites. Therefore, the mean values of the singular site specific index shows a clear pattern, which strengthens the preferential adaptation of A1 in prevalence to alkalinity as follows: PPN (3.24)  > BS (2.70)  > T (0.87).
    Figure 4

    Singular site specific index of active forms of alkaline elements (Ca, Mg, K, Na) and pH in the growth media of A. pinguis cryptic species A genetic lineage A1 at Pieniny, Beskidy and Tatry Mts.

    Full size image

    Figure 5

    Singular site specific index of active forms of alkaline elements (Ca, Mg, K, Na) and pH in the growth media of A. pinguis cryptic species A genetic lineage A2 at Beskidy Mts.

    Full size image

    Figure 6

    Singular site specific index of active forms of alkaline elements (Ca, Mg, K, Na) and pH in the growth media of A. pinguis cryptic species A genetic lineage A3 at Tatry Mts.

    Full size image

    The genetic lineage A2 outlines a great variability in terms of the site specific index, which was slightly high (4.62) only for the sampling site BS 3–28. It should be mentioned that the mean value at this site raised up to 4.34, hence being 56% lower than the highest and next 49% higher than the lowest index. Curiously, the respective pH values did not vary significantly (7.83–7.89), which implies that A2 is decidedly calciphilous.
    Indices reported in the Fig. 6 fluctuated widely from 0.66 to 2.38 with a mean of 1.31. Only two values were higher but the remaining, i.e. about 67% placed below. Such high share reveals that the genetic lineage A3 is basically acidophilus. This is decidedly outlined by significantly low values of indices as a consequence of low concentrations of active Ca. More

  • in

    Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool

    1.
    Hiederer R, Köchy M. Global soil organic carbon estimates and the harmonized world soil database. EUR. 2011;79:25225.
    Google Scholar 
    2.
    Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014;5:81–91.
    CAS  Article  Google Scholar 

    3.
    Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang. 2013;3:909–12.
    CAS  Article  Google Scholar 

    4.
    Schimel JP, Weintraub MN. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem. 2003;35:549–63.
    CAS  Article  Google Scholar 

    5.
    Huang Y, Guenet B, Ciais P, Janssens IA, Soong JL, Wang Y, et al. ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition. Geosci Model Dev. 2018;11:2111–38.
    CAS  Article  Google Scholar 

    6.
    Georgiou K, Abramoff RZ, Harte J, Riley WJ, Torn MS. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat Commun. 2017;8:1223.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Kelleher BP, Simpson AJ. Humic substances in soils: are they really chemically distinct? Environ Sci Technol. 2006;40:4605–11.
    CAS  PubMed  Article  Google Scholar 

    8.
    Wang C, Wang X, Pei G, Xia Z, Peng B, Sun L, et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol Biochem. 2020;141:107687.
    CAS  Article  Google Scholar 

    9.
    Cotrufo MF, Wallenstein M, Boot C, Denef K, Paul E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol. 2013;19:988–95.
    Article  Google Scholar 

    10.
    Zhu X, Jackson RD, DeLucia EH, Tiedje JM, Liang C. The soil microbial carbon pump: from conceptual insights to empirical assessments. Glob Change Biol. 2020;26:6032–9.
    Article  Google Scholar 

    11.
    Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55.
    CAS  Article  Google Scholar 

    12.
    Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. Mineral control of soil organic carbon storage and turnover. Nature. 1997;389:170–3.
    CAS  Article  Google Scholar 

    13.
    Dwivedi D, Riley WJ, Torn MS, Spycher N, Maggi F, Tang JY. Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biol Biochem. 2017;107:244–59.
    CAS  Article  Google Scholar 

    14.
    Mikutta R, Kleber M, Torn MS, Jahn R. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry. 2006;77:25–56.
    CAS  Article  Google Scholar 

    15.
    Liang C, Balser TC. Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy. Nat Rev Microbiol. 2011;9:75–75.
    CAS  PubMed  Article  Google Scholar 

    16.
    Khan KS, Mack R, Castillo X, Kaiser M, Joergensen RG. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma. 2016;271:115–23.
    CAS  Article  Google Scholar 

    17.
    Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol. 2019;25:3578–90.
    PubMed  Article  Google Scholar 

    18.
    Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol Biochem. 2017;105:A3–8.
    Article  CAS  Google Scholar 

    19.
    Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, et al. Causes of variation in soil carbon simulations from CMIP5 Earth System Models and comparison with observations. Biogeosciences. 2013;10:1717–36.
    Article  Google Scholar 

    20.
    Parton WJ, Schimel DS, Cole CV, Ojima DS. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J. 1987;51:1173–9.
    CAS  Article  Google Scholar 

    21.
    Wang G, Post WM, Mayes MA. Development of microbial‐enzyme‐mediated decomposition model parameters through steady‐state and dynamic analyses. Ecol Appl. 2013;23:255–72.
    PubMed  Article  Google Scholar 

    22.
    Wang G, Mayes MA, Gu L, Schadt CW. Representation of dormant and active microbial dynamics for ecosystem modeling. PLoS ONE. 2014;9:e89252.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Wang G, Jagadamma S, Mayes MA, Schadt CW, Steinweg JM, Gu L, et al. Microbial dormancy improves development and experimental validation of ecosystem model. ISME J. 2015;9:226–37.
    CAS  PubMed  Article  Google Scholar 

    24.
    German D, Marcelo K, Stone M, Allison S. The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob Change Biol. 2012;18:1468–79.
    Article  Google Scholar 

    25.
    Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010;3:336–40.
    CAS  Article  Google Scholar 

    26.
    Li J, Wang G, Allison SD, Mayes MA, Luo Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry. 2014;119:67–84.
    Article  Google Scholar 

    27.
    Wieder WR, Grandy AS, Kallenbach CM, Bonan GB. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences. 2014;11:3899–917.
    Article  CAS  Google Scholar 

    28.
    Tang J, Riley WJ. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat Clim Chang. 2015;5:56–60.
    CAS  Article  Google Scholar 

    29.
    Sulman BN, Moore JA, Abramoff R, Averill C, Kivlin S, Georgiou K, et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry. 2018;141:109–23.
    CAS  Article  Google Scholar 

    30.
    Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat Clim Change. 2014;4:1099–102.
    CAS  Article  Google Scholar 

    31.
    Lawrence C, Neff J, Schimel J. Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment. Soil Biol Biochem. 2009;41:1923–34.
    CAS  Article  Google Scholar 

    32.
    Wang X, Wang C, Cotrufo MF, Sun L, Jiang P, Liu Z, et al. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover. Glob Change Biol. 2020;26:5277–89.
    Article  Google Scholar 

    33.
    Throckmorton HM, Bird JA, Dane L, Firestone MK, Horwath WR. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol Lett. 2012;15:1257–65.
    PubMed  Article  Google Scholar 

    34.
    Kindler R, Miltner A, Richnow H-H, Kästner M. Fate of gram-negative bacterial biomass in soil—mineralization and contribution to SOM. Soil Biol Biochem. 2006;38:2860–70.
    CAS  Article  Google Scholar 

    35.
    Schweigert M, Herrmann S, Miltner A, Fester T, Kästner M. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biol Biochem. 2015;88:120–7.
    CAS  Article  Google Scholar 

    36.
    Derrien D, Amelung W. Computing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model framework. Eur J Soil Sci. 2011;62:237–52.
    Article  Google Scholar 

    37.
    Dormand JR, Prince PJ. A family of embedded Runge-Kutta formulae. J Comput Appl Math. 1980;6:19–26.
    Article  Google Scholar 

    38.
    Shampine LF, Reichelt MW. The MATLAB ODE suite. Siam J Sci Comput. 1997;18:1–22.
    Article  Google Scholar 

    39.
    Coleman TF, Li Y. On the convergence of reflective newton methods for large-scale nonlinear minimization subject to bounds. Math Program. 1994;67:189–224.
    Article  Google Scholar 

    40.
    Coleman TF, Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim. 1996;6:418–45.
    Article  Google Scholar 

    41.
    Moré JJ. The Levenberg–Marquardt algorithm: implementation and theory. In: Watson GA (ed). Numerical Analysis. Springer: Berlin, Heidelberg, 1978, p. 105–16.

    42.
    Leave-one-out cross-validation. In: Sammut C, Webb GI, editors. Encyclopedia of machine learning. Boston, MA: Springer USA; 2010. p. 600–1.

    43.
    Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Glob Chang Biol. 2021.

    44.
    Farrell M, Prendergast-Miller M, Jones DL, Hill PW, Condron LM. Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biol Biochem. 2014;77:261–7.
    CAS  Article  Google Scholar 

    45.
    Hagerty SB, Allison SD, Schimel JP. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry. 2018;140:269–83.
    CAS  Article  Google Scholar 

    46.
    Qiao Y, Wang J, Liang G, Du Z, Zhou J, Zhu C, et al. Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. Sci Rep. 2019;9:5621.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles. 2005;19:GB1015.
    Article  CAS  Google Scholar 

    48.
    Wang G, Post WM, Mayes MA, Frerichs JT, Sindhu J. Parameter estimation for models of ligninolytic and cellulolytic enzyme kinetics. Soil Biol Biochem. 2012;48:28–38.
    Article  CAS  Google Scholar 

    49.
    Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73.
    CAS  PubMed  Article  Google Scholar 

    50.
    Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37:4302–15.
    Article  Google Scholar 

    51.
    Guevara M, Taufer M, Vargas R. Gap-free global annual soil moisture: 15 km grids for 1991–2018. Earth Syst Sci Data. 2020;2020:1–65.
    Google Scholar 

    52.
    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, et al. The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc. 1996;77:437–72.
    Article  Google Scholar 

    53.
    Batjes NH. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma. 2016;269:61–8.
    CAS  Article  Google Scholar 

    54.
    Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE. 2017;12:e0169748.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Olson DM, Dinerstein E. The Global 200: a representation approach to conserving the earth’s most biologically valuable ecoregions. Conserv Biol. 1998;12:502–15.
    Article  Google Scholar 

    56.
    Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem. 2002;34:139–62.
    Article  Google Scholar 

    57.
    Fernandez CW, Koide RT. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem. 2014;77:150–7.
    CAS  Article  Google Scholar 

    58.
    Hemkemeyer M, Dohrmann AB, Christensen BT, Tebbe CC. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front Microbiol. 2018;9:149.
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Mills A. Keeping in touch: microbial life on soil particle surfaces. Adv Agron. 2003;78:1–43.
    Article  Google Scholar 

    60.
    Kindler R, Miltner A, Thullner M, Richnow H-H, Kästner M. Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Org Geochem. 2009;40:29–37.
    CAS  Article  Google Scholar 

    61.
    Huang Y, Liang C, Duan X, Chen H, Li D. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma. 2019;353:340–6.
    CAS  Article  Google Scholar 

    62.
    Ahrens B, Braakhekke MC, Guggenberger G, Schrumpf M, Reichstein M. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model. Soil Biol Biochem. 2015;88:390–402.
    CAS  Article  Google Scholar 

    63.
    Nguyen RT, Harvey HR. Preservation via macromolecular associations during Botryococcus braunii decay: proteins in the Pula Kerogen. Org Geochem. 2003;34:1391–403.
    CAS  Article  Google Scholar 

    64.
    Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun. 2016;7:13630.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Puget P, Angers DA, Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biol Biochem. 1998;31:55–63.
    Article  Google Scholar 

    66.
    Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.
    CAS  PubMed  Article  Google Scholar 

    67.
    Spence A, Simpson AJ, McNally DJ, Moran BW, McCaul MV, Hart K, et al. The degradation characteristics of microbial biomass in soil. Geochim Cosmochim Acta. 2011;75:2571–81.
    CAS  Article  Google Scholar 

    68.
    Drigo B, Anderson IC, Kannangara GSK, Cairney JWG, Johnson D. Rapid incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal communities. Soil Biol Biochem. 2012;49:4–10.
    CAS  Article  Google Scholar 

    69.
    Wang G, Chen S. A review on parameterization and uncertainty in modeling greenhouse gas emissions from soil. Geoderma. 2012;170:206–16.
    CAS  Article  Google Scholar 

    70.
    Blagodatskaya Е, Blagodatsky S, Khomyakov N, Myachina O, Kuzyakov Y. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. Sci Rep. 2016;6:22240.
    CAS  Article  Google Scholar 

    71.
    German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem. 2011;43:1387–97.
    CAS  Article  Google Scholar 

    72.
    Wu J, Xiao H. Measuring the gross turnover time of soil microbial biomass C under incubation. Acta Pedol Sin. 2004;41:401–7.
    CAS  Google Scholar 

    73.
    Cheng W. Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C–N budgets. Soil Biol Biochem. 2009;41:1795–801.
    CAS  Article  Google Scholar 

    74.
    Luo Z, Tang Z, Guo X, Jiang J, Sun OJ. Non-monotonic and distinct temperature responses of respiration of soil microbial functional groups. Soil Biol Biochem. 2020;148:107902.
    CAS  Article  Google Scholar 

    75.
    de Graaff M-A, Classen AT, Castro HF, Schadt CW. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol. 2010;188:1055–64.
    PubMed  Article  CAS  Google Scholar 

    76.
    Paul EA. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biol Biochem. 2016;98:109–26.
    CAS  Article  Google Scholar 

    77.
    Crowther TW, Sokol NW, Oldfield EE, Maynard DS, Thomas SM, Bradford MA. Environmental stress response limits microbial necromass contributions to soil organic carbon. Soil Biol Biochem. 2015;85:153–61.
    CAS  Article  Google Scholar 

    78.
    Ding X, Chen S, Zhang B, He H, Filley TR, Horwath WR. Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau. Biol Fertil Soils. 2020;56:881–92.
    CAS  Article  Google Scholar 

    79.
    Mao D, Luo L, Wang Z, Zhang C, Ren C. Variations in net primary productivity and its relationships with warming climate in the permafrost zone of the Tibetan Plateau. J Geogr Sci. 2015;25:967–77.
    Article  Google Scholar 

    80.
    Wu J, Feng Y, Zhang X, Wurst S, Tietjen B, Tarolli P, et al. Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau. Sci Rep. 2017;7:15202.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    81.
    Li J, Wang G, Mayes MA, Allison SD, Frey SD, Shi Z, et al. Reduced carbon use efficiency and increased microbial turnover with soil warming. Glob Change Biol. 2019;25:900–10.
    Article  Google Scholar 

    82.
    Chen G, Ma S, Tian D, Xiao W, Jiang L, Xing A, et al. Patterns and determinants of soil microbial residues from tropical to boreal forests. Soil Biol Biochem. 2020;151:108059.
    CAS  Article  Google Scholar 

    83.
    Wang YP, Chen BC, Wieder WR, Leite M, Medlyn BE, Rasmussen M, et al. Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition. Biogeosciences. 2014;11:1817–31.
    CAS  Article  Google Scholar 

    84.
    Soares M, Rousk J. Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol Biochem. 2019;131:195–205.
    CAS  Article  Google Scholar 

    85.
    Liang C, Cheng G, Wixon DL, Balser TC. An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry. 2011;106:303–9.
    Article  Google Scholar 

    86.
    Fan Z, Liang C. Significance of microbial asynchronous anabolism to soil carbon dynamics driven by litter inputs. Sci Rep. 2015;5:9575.
    CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Climate warming enhances microbial network complexity and stability

    1.
    Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).
    CAS  Article  Google Scholar 
    2.
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
    CAS  Article  Google Scholar 

    3.
    Pržulj, N. & Malod-Dognin, N. Network analytics in the age of big data. Science 353, 123–124 (2016).
    Article  Google Scholar 

    4.
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).
    Article  Google Scholar 

    5.
    Okuyama, T. & Holland, J. N. Network structural properties mediate the stability of mutualistic communities. Ecol. Lett. 11, 208–216 (2008).
    Article  Google Scholar 

    6.
    Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).
    Article  Google Scholar 

    7.
    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).
    Article  Google Scholar 

    8.
    Toju, H. et al. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat. Ecol. Evol. 1, 0024 (2017).
    Article  Google Scholar 

    9.
    Montesinos-Navarro, A., Hiraldo, F., Tella, J. L. & Blanco, G. Network structure embracing mutualism–antagonism continuums increases community robustness. Nat. Ecol. Evol. 1, 1661–1669 (2017).
    Article  Google Scholar 

    10.
    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).
    Article  CAS  Google Scholar 

    11.
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).
    CAS  Article  Google Scholar 

    12.
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
    Article  CAS  Google Scholar 

    13.
    García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).
    Article  CAS  Google Scholar 

    14.
    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    15.
    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595–600 (2016).
    CAS  Article  Google Scholar 

    16.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    17.
    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).
    Article  Google Scholar 

    18.
    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).
    Article  Google Scholar 

    19.
    Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 3, 612–619 (2019).
    Article  Google Scholar 

    20.
    Zhou, J. et al. Functional molecular ecological networks. mBio 1, e00169–10 (2010).
    Google Scholar 

    21.
    Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).
    Article  CAS  Google Scholar 

    22.
    D’Amen, M., Mod, H. K., Gotelli, N. J. & Guisan, A. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography 41, 1233–1244 (2018).
    Article  Google Scholar 

    23.
    Barner, A. K., Coblentz, K. E., Hacker, S. D. & Menge, B. A. Fundamental contradictions among observational and experimental estimates of non-trophic species interactions. Ecology 99, 557–566 (2018).
    Article  Google Scholar 

    24.
    Goberna, M. et al. Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes. Mol. Ecol. Resour. 19, 1552–1564 (2019).
    Article  Google Scholar 

    25.
    Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. 13, 2647–2655 (2019).
    Article  Google Scholar 

    26.
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).
    Article  CAS  Google Scholar 

    27.
    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).
    CAS  Article  Google Scholar 

    28.
    Herren, C. M. & McMahon, K. D. Cohesion: a method for quantifying the connectivity of microbial communities. ISME J. 11, 2426–2438 (2017).
    Article  Google Scholar 

    29.
    Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2, e00122–11 (2011).
    Article  Google Scholar 

    30.
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).
    CAS  Article  Google Scholar 

    31.
    Zelikova, T. J. et al. Long-term exposure to elevated CO2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie. Proc. Natl Acad. Sci. USA 111, 15456–15461 (2014).
    CAS  Article  Google Scholar 

    32.
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).
    CAS  Article  Google Scholar 

    33.
    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
    Article  Google Scholar 

    34.
    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).

    35.
    Guo, X. et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nat. Commun. 11, 4897 (2020).
    CAS  Article  Google Scholar 

    36.
    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).
    CAS  Article  Google Scholar 

    37.
    Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).
    CAS  Article  Google Scholar 

    38.
    Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).
    Article  Google Scholar 

    39.
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).
    CAS  Article  Google Scholar 

    40.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
    CAS  Article  Google Scholar 

    41.
    Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).
    Google Scholar 

    42.
    Treves, D. S., Xia, B., Zhou, J. & Tiedje, J. M. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb. Ecol. 45, 20–28 (2003).
    CAS  Article  Google Scholar 

    43.
    Zhou, J., Xia, B., Huang, H., Palumbo, A. V. & Tiedje, J. M. Microbial diversity and heterogeneity in sandy subsurface soils. Appl. Environ. Microbiol. 70, 1723–1734 (2004).
    CAS  Article  Google Scholar 

    44.
    Zhou, J. et al. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68, 326–334 (2002).
    CAS  Article  Google Scholar 

    45.
    O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).
    Article  Google Scholar 

    46.
    Penton, C. R., Gupta, V. V. S. R., Yu, J. & Tiedje, J. M. Size matters: assessing optimum soil sample size for fungal and bacterial community structure analyses using high throughput sequencing of rRNA gene amplicons. Front. Microbiol. 7, 824 (2016).
    Google Scholar 

    47.
    Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).
    CAS  Article  Google Scholar 

    48.
    Hurt, R. A. et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl. Environ. Microbiol. 67, 4495–4503 (2001).
    CAS  Article  Google Scholar 

    49.
    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).
    CAS  Article  Google Scholar 

    50.
    Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).
    Article  CAS  Google Scholar 

    51.
    Wen, C. et al. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. PLoS ONE 12, e0176716 (2017).
    Article  CAS  Google Scholar 

    52.
    Zhou, J. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288–14 (2015).
    CAS  Article  Google Scholar 

    53.
    Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).
    CAS  Article  Google Scholar 

    54.
    Luo, F. et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics 8, 299 (2007).
    Article  CAS  Google Scholar 

    55.
    Luo, F., Zhong, J., Yang, Y., Scheuermann, R. H. & Zhou, J. Application of random matrix theory to biological networks. Phys. Lett. A 357, 420–423 (2006).
    CAS  Article  Google Scholar 

    56.
    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).
    Article  Google Scholar 

    57.
    Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).
    Article  Google Scholar 

    58.
    Mehta, M. L. Random Matrices 2nd edn (Elsevier, 2004).

    59.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N. & Stanley, H. E. Universal and non-universal properties of cross-correlations in financial time series. Phys. Rev. Lett. 83, 1471–1474 (1999).
    CAS  Article  Google Scholar 

    60.
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 44, 139–160 (1982).
    Google Scholar 

    61.
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).
    Article  Google Scholar 

    62.
    Pawlowsky-Glahn, V. & Egozcue, J. J. Compositional data and their analysis: an introduction. Geol. Soc. Spec. Publ. 264, 1–10 (2006).
    CAS  Article  Google Scholar 

    63.
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).
    CAS  Article  Google Scholar 

    64.
    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066 (2019).
    CAS  Article  Google Scholar 

    65.
    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).
    CAS  Article  Google Scholar 

    66.
    R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

    67.
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
    Article  Google Scholar 

    68.
    Oksanen, J. et al. vegan: Community Ecology Package. Version 2.5-6 (2019).

    69.
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).
    Article  CAS  Google Scholar 

    70.
    Yuan, M.M. et al. Mengting-Maggie-Yuan/warming-network-complexity-stability: warming-network-complexity-stability-v1.0. Version 1.0 (Zenodo, 2021); https://doi.org/10.5281/zenodo.4383469

    71.
    He, Z. et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J. 4, 1167–1179 (2010).
    CAS  Article  Google Scholar 

    72.
    He, Z. et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1, 67–77 (2007).
    CAS  Article  Google Scholar 

    73.
    Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 16892–16898 (2019).
    CAS  Article  Google Scholar 

    74.
    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).
    Article  Google Scholar 

    75.
    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).
    Google Scholar 

    76.
    Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).
    CAS  Article  Google Scholar 

    77.
    Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
    Article  Google Scholar 

    78.
    Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).
    Article  CAS  Google Scholar 

    79.
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).
    CAS  Article  Google Scholar 

    80.
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Reply to ‘can we predict microbial keystones?’. Nat. Rev. Microbiol. 17, 194 (2019).
    CAS  Article  Google Scholar 

    81.
    Röttjers, L. & Faust, K. Can we predict keystones? Nat. Rev. Microbiol. 17, 193 (2019).
    Article  CAS  Google Scholar 

    82.
    Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).
    Article  CAS  Google Scholar 

    83.
    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).
    CAS  Article  Google Scholar 

    84.
    Hui, C., McGeoch, M. A., Harrison, A. E. S. & Bronstein, E. J. L. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).
    Article  Google Scholar 

    85.
    Shi, Z. et al. Functional gene array-based ultrasensitive and quantitative detection of microbial populations in complex communities. mSystems 4, e00296–19 (2019).
    Google Scholar 

    86.
    Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 46 (2020).
    Article  Google Scholar  More

  • in

    Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities

    Viromes outperform total metagenomes in the recovery of viral sequences from complex soil communities
    To determine the extent to which viral sequences were enriched and bacterial and archaeal sequences were depleted in viromes, relative to total metagenomes, we performed a series of analyses to compare these two approaches. After quality filtering, total metagenomes yielded an average of 8,741,015 paired reads per library for April samples and 14,551,631 paired reads for August samples, while viromes yielded an average of 9,519,518 and 5,770,419 paired reads in April and August, respectively (Fig. 1A and Supplementary Table 2). Viromes displayed a significant depletion of bacterial and archaeal sequences, as evidenced by fewer reads classified as 16S rRNA gene fragments: 0.006% of virome reads, compared to 0.042% of reads in total metagenomes (Fig. 1B). Moreover, taxonomic classification of the recovered 16S rRNA gene reads revealed clear differences in the microbial profiles associated with each approach: total metagenomes were significantly enriched in Acidobacteria, Actinobacteria, Firmicutes, and Thaumarchaeota, whereas viromes were significantly enriched in Armatimonadetes, Saccharibacteria, and Parcubacteria (Supplementary Fig. 2A, B). These last two taxa belong to the candidate phyla radiation and are typified by small cells [59,60,61], which would be more likely to pass through the 0.22-um filter that we used for viral particle purification [37, 62]. Although we acknowledge that taxon-specific differences in 16S rRNA gene copy numbers could theoretically account for some of the observed differences in absolute numbers of reads assigned to 16S rRNA genes between viromes and total metagenomes [63], in the context of subsequent analyses (see below), the most parsimonious interpretation is that both the abundances and types of bacterial and archaeal genomic content differed between the two datasets.
    Fig. 1: Differences in sequence composition and assembly performance between total metagenomes and viromes.

    A Sequencing depth distribution across profiling methods and time points. The y-axis displays the number of paired reads in each library after quality trimming and adapter removal. Boxes display the median and interquartile range (IQR), and data points further than 1.5x IQR from box hinges are plotted as outliers. B Percent of reads classified as 16S rRNA gene fragments in the set of quality trimmed reads; the distribution of data within boxes, whiskers, and outliers is as in A. C Sequence complexity as measured by the frequency distribution of a representative set of k-mers (k = 31) detected in each library. The x-axis displays occurrence, i.e., the number of times a particular k-mer was found in a library, while the y-axis shows the number of k-mers that exhibited a specific occurrence. D Length distribution of contigs assembled from each library (min. length = 2Kbp). White dots represent the N50 of each assembly, and green squares display the viral enrichment, as measured by the percent of contigs classified as putatively viral by DeepVirFinder and/or VirSorter. Total MG = total metagenome.

    Full size image

    To assess differences in sequence complexity between the two profiling methods, we calculated the k-mer frequency spectrum for each library (Fig. 1C). Relative to viromes, total metagenomes displayed an increased number of singletons (k-mers observed only once) and an overall tendency toward lower k-mer occurrences, indicating that size-fractionating our soil communities reduced sequence complexity. These differences in sequence complexity translated into notable contrasts in the quality of de novo assemblies obtained from individual libraries (Fig. 1D), while viromes yielded 800 Mbp of assembled sequences across 169,421 contigs (250 Mbp assembled in ≥10 Kbp contigs), total metagenomes produced only 65 Mbp across 22,951 contigs (1.5 Mbp assembled in ≥10 Kbp contigs). The improved assembly quality from the viromes was despite lower sequencing throughput relative to total metagenomes, particularly for the August samples (Fig. 1A). Using DeepVirFinder [48] and VirSorter [47] to mine assemblies for viral contigs, we found that 52.4% of virome contigs and only 2.2% of total metagenome contigs were identified as viral. Together, these results show that our laboratory methods for removing contamination from cells and free DNA reduced genomic signatures from cellular organisms, substantially improved sequence assembly, and successfully enriched the viral signal in soil viromes relative to total metagenomes.
    Viromes facilitate exploration of the rare virosphere
    To remove redundancy in our assemblies, we clustered all 192,372 contigs into a set of 105,909 representative contigs (global identity threshold = 0.95). Following current standards to define viral populations (vOTUs) [51, 52], we then screened all nonredundant ≥10 Kbp contigs for viral signatures. We identified 4065 vOTUs with a median sequence length of 17,870 bp (max = 259,025 bp) and a median gene content of 27 predicted ORFs (max = 421 ORFs). To profile the viral communities in our samples, we mapped reads against this database of nonredundant vOTU sequences (≥90% average nucleotide identity, ≥75% coverage over the length of the contig). On average, 0.04% of total metagenomic reads and 23.4% of viromic reads were mapped to vOTUs (Supplementary Fig. 3A). One August virome sample (CS-H) had particularly low sequencing throughput and low vOTU recovery (Fig. 1A and Supplementary Fig. 3B) and was discarded from downstream analyses.
    In total, 2961 vOTUs were detected through read mapping in at least one sample. Of these, 2864 were exclusively found in viromes, 94 in both viromes and total metagenomes, and three in total metagenomes alone. Thus, viromes were able to recover 30 times as many viral populations as total metagenomes, even when vOTUs assembled from viromes were part of the reference set for read mapping. Notably, the three vOTUs exclusively detected in total metagenomes were only present in one metagenome from April that did not have a successful paired virome (Supplementary Fig. 4). Considering that all other vOTUs detected in total metagenomes were detected in at least one virome, it seems possible that the corresponding virome could have contained these vOTUs if sequencing had been successful. Consistent with capturing a representative amount of viral diversity from the viromes but not total metagenomes, our sampling effort was sufficient to approach a richness asymptote in vOTU accumulation curves derived from viromes but not total metagenomes (Fig. 2A).
    Fig. 2: Viral richness, abundance, and occupancy patterns captured by viromes compared to total metagenomes.

    A Accumulation curves of vOTUs in total metagenomes (red, n = 16) and viromes (blue, n = 14). Dots represent cumulative richness at each sampling effort across 100 permutations of sample order; the overlaid line displays the mean cumulative richness. The right graph includes the same total metagenomic data as the left graph, zoomed in along the y-axis. B Abundance-occupancy data based on vOTU profiles derived from viromes. Data in blue are from vOTUs detected only in viromes, and data in red are from vOTUs detected in both viromes and total metagenomes. Bottom left: dots represent the mean relative abundance (x-axis) and occupancy (percent of samples in which a given vOTU was detected, y-axis) that individual vOTUs displayed in viromes within a collection time point (April or August). Thus, vOTUs detected in both time points are represented twice. Red dots highlight the set of vOTUs shared between total metagenomes and viromes. Top: density curves showing the distribution of relative abundances for all vOTUs detected in viromes (blue) or the subset of vOTUs detected in viromes and total metagenomes (red). Bottom right: percent of vOTUs (x-axis) found at each occupancy level (y-axis). Red bars highlight the percent of vOTUs detected in both profiling methods. C Euler diagram displaying the overlap in detection for each vOTU (n = 2961) across profiling methods. Red vOTUs were detected by both profiling methods, and three vOTUs were detected exclusively in total metagenomes. Total MG = total metagenome.

    Full size image

    To examine the distribution of vOTUs along the abundance-occupancy spectrum, we compared mean relative abundances of vOTUs against the number of samples in which each vOTU was detected. Given the contrasting experimental conditions between the April and August collections, we performed this analysis within each time point. In viromes, highly abundant vOTUs tended to be recovered in the majority of samples (i.e., they displayed high occupancies), while rare vOTUs were typically recovered in only a few samples (Fig. 2B, C and Supplementary Fig. 5A), a trend usually observed in microbial communities [64]. Furthermore, more than 30% of vOTUs were found in all sampled plots, indicating the presence of a sizable core virosphere distributed throughout the field. In contrast, the distribution of 16S rRNA gene OTUs in viromes leaned toward lower occupancies (Supplementary Fig. 5B) as expected from the significant depletion of cellular genomes upon size fractionation (Fig. 1B). On the other hand, more than 80% of vOTUs in total metagenomes were detected only once (Supplementary Fig. 5C), despite the widespread distribution displayed by the 16S rRNA gene OTUs identified in the same samples (Supplementary Fig. 5D), suggesting a sparse recovery of viral diversity compared to a more complete recovery of bacterial and archaeal diversity in total metagenomes.
    Inspecting the abundance-occupancy patterns for the 94 vOTUs detected in both viromes and total metagenomes revealed that vOTUs recovered from total metagenomes were among the most abundant and ubiquitous in virome profiles (Fig. 2B), indicating that total soil metagenomes were more likely to miss the rare virosphere. Notably, comparing the relative abundances of vOTUs across paired total metagenomes and viromes showed that their abundance-based ranks were not always preserved (Supplementary Fig. 4). While this discrepancy could stem from methodological challenges associated with virome preparations (e.g., differential adsorption of viruses to the soil matrix could have impacted their resuspension and recovery, therefore affecting the relative abundances of the associated vOTUs), it is also likely that total metagenomes were more susceptible to subsampling biases as evidenced by the sparse and inconsistent recovery of vOTUs exhibited by this profiling method (Supplementary Fig. 5C).
    Viromes reveal a diverse taxonomic landscape
    To examine the taxonomic spread covered by our vOTUs, we compared them against the RefSeq prokaryotic virus database using vConTACT2, a network-based method to classify viral contigs [49]. Under this approach, vOTUs are grouped by shared predicted protein content into taxonomically informative viral clusters (VCs) that approximate viral genera. Of the 2961 vOTUs, 1712 were confidently assigned to VCs, while the rest were only weakly connected to other clusters (outliers, 784 vOTUs) or shared no genus-level predicted protein content with any other contigs (singletons, 465 vOTUs) (Supplementary Table 3). Only 130 vOTUs were grouped with RefSeq genomes, indicating that this dataset has substantially expanded known viral taxonomic diversity (Fig. 3A). Subsetting the vOTUs detected by each profiling method showed that viromes captured a more taxonomically diverse set of viruses: 1711 vOTUs detected in viromes were assigned to 533 VCs, while 68 vOTUs detected in total metagenomes (67 of which were also detected in viromes) were assigned to 54 VCs (53 of which were also detected in viromes). Thus, any potential biases in the types of viruses recovered through soil viromics (e.g., through preferential recovery of certain viral taxonomic groups from the soil matrix) were not immediately obvious. Any such biases were either eclipsed by the much greater taxonomic diversity of viruses recovered in viromes, relative to total metagenomes, and/or they also apply to total metagenomes, at least for the viruses and soils examined here.
    Fig. 3: Taxonomic diversity and predicted hosts of viral populations (vOTUs) identified in viromes compared to total metagenomes.

    A Gene-sharing network of vOTUs detected in viromes alone (blue nodes), total metagenomes (red nodes; nodes outlined in white were also detected in viromes, nodes outlined in black were detected exclusively in total metagenomes), and RefSeq prokaryotic virus genomes (gray nodes). Edges connect contigs or genomes with a significant overlap in predicted protein content. Only vOTUs and genomes assigned to a viral cluster (VC) are shown. Accompanying bar plots indicate the number of distinct VCs detected in total metagenomes and viromes (VCs detected in both profiling methods are counted twice, once per bar plot). B, C Subnetwork of all RefSeq genomes and co-clustered vOTUs. Colored nodes indicate the virus family (B) or the associated host phylum (C) of each RefSeq genome. Bar plots display the number of vOTUs classified as each predicted family (B) or host phylum (C) across total metagenomes and viromes (vOTUs detected in both profiling methods are counted twice, once per bar plot). Total MG = total metagenome.

    Full size image

    Most of the 130 vOTUs clustered with RefSeq viral genomes could be taxonomically classified at the family level (Fig. 3B). Podoviridae was the most highly represented family, followed by Siphoviridae and Myoviridae. Myoviridae were only detected in viromes, not total metagenomes, further confirming that viromes do not seem to exclude viral groups relative to total metagenomes—if anything, the opposite seems to be true. Among the Siphoviridae clusters, we could further identify three vOTUs as belonging to the genus Decurrovirus, which are phages of Arthrobacter, a genus of Actinobacteria common in soil [65,66,67]. Because the genome network was highly structured by host taxonomy (Fig. 3A, [68]), we used consistent host signatures among RefSeq viruses in the same VC to assign putative hosts to vOTUs in VCs shared with RefSeq genomes. Most such vOTUs were putatively assigned to Proteobacteria, Actinobacteria, or Bacteroidetes hosts, and a few were linked to Firmicutes. Interestingly, these bacterial phyla were among the most abundant taxa in the 16S rRNA gene profiles derived from the total metagenomes from these soils (Supplementary Fig. 2A).
    Although soil viromes and total metagenomes have been compared [62] and their presumed advantages and disadvantages have been reviewed [10], here a comprehensive comparison of results from both profiling approaches applied to the same samples showed that soil viromes recover richer (Fig. 2A) and more taxonomically diverse (Fig. 3) soil viral communities than total metagenomes.
    Compositional patterns of agricultural soil viral communities and their ecological drivers
    Since viromes vastly outperformed total metagenomes in capturing the viral diversity in our samples, we focused on viromes to explore the compositional relationships among viral communities. To assess the impact of each individual experimental factor on beta diversity, we performed separate permutational multivariate analyses of variance (PERMANOVA) on Bray–Curtis dissimilarities (Supplementary Table 4). Collection time point had a significant effect (R2 = 0.50, p = 0.001), but biochar (R2 = 0.19, p = 0.58) and nitrogen (R2 = 0.12, p = 0.75) treatments did not (only samples from the August time points, after nitrogen amendments, were considered for the nitrogen analysis). Additionally, to determine if the location of each sampled plot had an impact on community composition, we tested the effect of plot position along the West–East (W–E) and South–North (S–N) axes of the field (Supplementary Table 4). Viral communities displayed a significant spatial gradient along the W–E axis (R2 = 0.17, p = 0.046) but not the S–N axis (R2 = 0.10, p = 0.20). Given the significant spatiotemporal structuring in our samples, we performed an additional PERMANOVA to examine the effect of biochar while accounting for these factors (Supplementary Table 5) and detected a significant effect (R2 = 0.19, p = 0.012) only when both collection time point and W–E gradient were part of the model. We did not detect a significant effect of nitrogen treatment, even after accounting for the W–E gradient in the August samples (Supplementary Table 5).
    To assess whether the bacterial and archaeal communities displayed similar compositional trends and could therefore potentially explain patterns in viral community composition, we attempted to generate metagenome assembled genomes (MAGs) from our total metagenomes. However, the low quality of total metagenomic assemblies (Fig. 1D) precluded MAG reconstruction (19 MAGs with a median completeness of 30.3), so instead we used 16S rRNA gene profiles recovered from total metagenomes (Supplementary Fig. 2A). Although 16S rRNA genes accounted for More

  • in

    Gulf of Mexico blue hole harbors high levels of novel microbial lineages

    1.
    Saunders JK, Fuchsman CA, McKay C, Rocap G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc Natl Acad Sci USA. 2019;116:9925–30.
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun. 2018;9:1729.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O, Paulmier A, et al. Cryptic oxygen cycling in anoxic marine zones. Proc Natl Acad Sci USA. 2017;114:8319–24.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Sun X, Kop LFM, Lau MCY, Frank J, Jayakumar A, Lücker S, et al. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. ISME J. 2019;13:2391–402.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536:179–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Thamdrup B, Steinsdóttir HGR, Bertagnolli AD, Padilla CC, Patin NV, Garcia-Robledo E, et al. Anaerobic methane oxidation is an important sink for methane in the ocean’s largest oxygen minimum zone. Limnol Oceanogr. 2019;64:2569–85.
    CAS  Article  Google Scholar 

    7.
    Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, et al. Declining oxygen in the global ocean and coastal waters. Science. 2018;359:eaam7240.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    8.
    Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523:208–U173.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol. 2015;25:690–701.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.

    11.
    Mylroie JE, Carew JL, Moore AI. Blue holes: definition and genesis. Carbonates Evaporates. 1995;10:225–33.
    CAS  Article  Google Scholar 

    12.
    Canganella F, Bianconi G, Kato C, Gonzalez J. Microbial ecology of submerged marine caves and holes characterized by high levels of hydrogen sulphide. Rev Environ Sci Biotechnol. 2007;6:61–70.

    13.
    Gischler E, Shinn EA, Oschmann W, Fiebig J, Buster NA. A 1500-year holocene caribbean climate archive from the blue hole, Lighthouse Reef, Belize. J Coast Res. 2008;246:1495–505.
    Article  CAS  Google Scholar 

    14.
    Pohlman JW. The biogeochemistry of anchialine caves: progress and possibilities. Hydrobiologia. 2011;677:33–51.
    CAS  Article  Google Scholar 

    15.
    Davis MC, Garey JR. Microbial function and hydrochemistry within a stratified anchialine sinkhole: A window into coastal aquifer interactions. Water. 2018;10:972–972.
    Article  CAS  Google Scholar 

    16.
    Garman KM, Rubelmann H, Karlen DJ, Wu T, Garey JR. Comparison of an inactive submarine spring with an active nearshore anchialine spring in Florida. Hydrobiologia. 2011;677:65–87.

    17.
    Gonzalez BC, Iliffe TM, Macalady JL, Schaperdoth I, Kakuk B. Microbial hotspots in anchialine blue holes: Initial discoveries from the Bahamas. Hydrobiologia. 2011;677:149–56.
    CAS  Article  Google Scholar 

    18.
    Seymour JR, Humphreys WF, Mitchell JG. Stratification of the microbial community inhabiting an anchialine sinkhole. Aquat Microb Ecol. 2007;50:11–24.

    19.
    Yao P, Wang XC, Bianchi TS, Yang ZS, Fu L, Zhang XH, et al. Carbon cycling in the world’s deepest blue hole. J Geophys Res. 2020;125:e2019JG005307.

    20.
    He H, Fu L, Liu Q, Fu L, Bi N, Yang Z, et al. Community Structure, abundance and potential functions of bacteria and archaea in the Sansha Yongle blue hole, Xisha, South China Sea. Front Microbiol. 2019;10:2404–2404.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    He P, Xie L, Zhang X, Li J, Lin X, Pu X, et al. Microbial diversity and metabolic potential in the stratified Sansha Yongle Blue Hole in the South China Sea. Sci Rep. 2020;10:5949–5949.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    DeWitt D. Submarine springs and other Karst features in offshore waters of the Gulf of Mexico and Tampa Bay, Southwest Florida Water Management District. 2003.

    23.
    Hu C, Muller-Karger FE, Swarzenski PW. Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys Res Lett. 2006;33:L11601.
    Google Scholar 

    24.
    Smith CG, Swarzenski PW. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnol Oceanogr. 2012;57:471–85.
    CAS  Article  Google Scholar 

    25.
    Vargo GA, Heil CA, Fanning KA, Dixon LK, Neely MB, Lester K, et al. Nutrient availability in support of Karenia brevis blooms on the central West Florida Shelf: What keeps Karenia blooming? Continental Shelf Res. 2008;28:73–98.
    Article  Google Scholar 

    26.
    Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science. 2009;326:578–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Weisberg RH, Liu YG, Lembke C, Hu CM, Hubbard K, Garrett M. The coastal ocean circulation influence on the 2018 West Florida Shelf K. brevis Red Tide Bloom. J Geophys Res Oceans. 2019;124:2501–12.
    Article  Google Scholar 

    28.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Rodriguez RLM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. Msystems. 2018;3: e00039-18.

    31.
    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    32.
    Thiel V, Costas AMG, Fortney NW, Martinez JN, Tank M, Roden EE, et al. “Candidatus Thermonerobacter thiotrophicus,” a non-phototrophic member of the Bacteroidetes/Chlorobi with dissimilatory sulfur metabolism in hot spring mat communities. Front Microbiol. 2019;9:3159–3159.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Helly JJ, Levin LA. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res Part I. 2004;51:1159–68.
    CAS  Article  Google Scholar 

    34.
    Xie LP, Wang BD, Pu XM, Xin M, He PQ, Li CX, et al. Hydrochemical properties and chemocline of the Sansha Yongle blue hole in the South China Sea. Sci Total Environ. 2019;649:1281–92.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Thamdrup B, Dalsgaard T, Revsbech NP. Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific. Deep-Sea Res Part I. 2012;65:36–45.
    CAS  Article  Google Scholar 

    36.
    Wyrtki K. The oxygen minima in relation to ocean circulation. Deep-Sea Res Oceanographic Abstr. 1962;9:11–23.
    CAS  Article  Google Scholar 

    37.
    Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev. 2009;33:999–1043.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Luther GW, Findlay AJ, MacDonald DJ, Owings SM, Hanson TE, Beinart RA, et al. Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol. 2011;2:1–9.
    Article  CAS  Google Scholar 

    39.
    Houghton JL, Foustoukos DI, Flynn TM, Vetriani C, Bradley AS, Fike DA. Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry. Environ Microbiol. 2016;18:3057–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Kelly DP, Shergill JK, Lu WP, Wood AP. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol. 1997;71:95–107.
    CAS  Article  Google Scholar 

    41.
    Grimm F, Franz B, Dahl C. Thiosulfate and sulfur oxidation in purple sulfur bacteria. In: Dahl C, Friedrich C, editors. Microbial sulfur metabolism. Springer: Heidelberg, Germany; 2008. p. 101–16.

    42.
    Zopfi J, Ferdelman TG, Fossing H. Distribution and fate of sulfur intermediates – sulfite, tetrathionate, thiosulfate, and elemental sulfur – in marine sediments. In: Amend JP, Edwards KJ, Lyons TW, editors. Sulfur biogeochemistry: past and present. The Geological Society of America: Boulder, Colorado; 2004. p. 97–116.

    43.
    Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;16:723–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Hawley AK, Brewer HM, Norbeck AD, Pasǎ-Tolić L, Hallam SJ. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc Natl Acad Sci USA. 2014;111:11395–400.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Murillo AA, Ramírez-Flandes S, DeLong EF, Ulloa O. Enhanced metabolic versatility of planktonic sulfur-oxidizing gamma-proteobacteria in an oxygen-deficient coastal ecosystem. Front Mar Sci. 2014;1:1–13.

    48.
    Shah V, Chang BX, Morris RM. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 2017;11:263–71.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, et al. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol. 2002;68:316–25.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Luther GW, Glazer BT, Hohmann L, Popp JI, Tailefert M, Rozan TF, et al. Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. J Environ Monit. 2001;3:61–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Rozan TF, Theberge SM, Luther G. Quantifying elemental sulfur (S0), bisulfide (HS-) and polysulfides (S(x)2-) using a voltammetric method. Analyt Chim Acta. 2000;415:175–84.
    CAS  Article  Google Scholar 

    52.
    Sievert SM, Wieringa EBA, Wirsen CO, Taylor CD. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ Microbiol. 2007;9:271–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Moussard H, Corre E, Cambon-Bonavita MA, Fouquet Y, Jeanthon C. Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13 degrees N hydrothermal vent field, East Pacific Rise. FEMS Microbiol Ecol. 2006;58:449–63.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De PV. Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol. 2006;72:2637–43.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Taillefert M, Bono AB, Luther GW. Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: voltammetric evidence of an aging process. Environ Sci Technol. 2000;34:2169–77.
    CAS  Article  Google Scholar 

    56.
    Barco RA, Emerson D, Sylvan JB, Orcutt BN, Jacobson Meyers ME, Ramírez GA, et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl Environ Microbiol. 2015;81:5927–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean Coast. Science. 2010;330:1375–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Ding J, Zhang Y, Wang H, Jian H, Leng H, Xiao X. Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading Southwest Indian Ridge. Front Microbiol. 2017;8:1012.

    60.
    Leon-Zayas R, Peoples L, Biddle JF, Podell S, Novotny M, Cameron J, et al. The metabolic potential of the single cell genomes obtained from the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Environ Microbiol. 2017;19:2769–84.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Liu X, Li M, Castelle CJ, Probst AJ, Zhou Z, Pan J, et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome. 2018;6:102–102.
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Ortiz-Alvarez R, Casamayor EO. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep. 2016;8:210–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Suominen S, Dombrowski N, Damste JSS, Villanueva L. A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulphidic zone. Environ Microbiol. 2021. https://doi.org/10.1111/1462-2920.14902.

    64.
    Castelle CJ, Banfield JF. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell. 2018;172:1181–97.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett. 2019;366:fnz008.

    66.
    Tian RM, Ning DL, He ZL, Zhang P, Spencer SJ, Gao SH, et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome. 2020;8:51.

    67.
    Vigneron A, Cruaud P, Langlois V, Lovejoy C, Culley AI, Vincent WF. Ultra-small and abundant: Candidate phyla radiation bacteria are potential catalysts of carbon transformation in a thermokarst lake ecosystem. Limnol Oceanogr Lett. 2020;5:212–20.
    Article  Google Scholar 

    68.
    Beam JP, Becraft ED, Brown JM, Schulz F, Jarett JK, Bezuidt O, et al. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Front Microbiol. 2020;11:1848.

    69.
    Luef B, Frischkorn KR, Wrighton KC, Holman HYN, Birarda G, Thomas BC, et al. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun. 2015;6:6372.

    70.
    Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I, Thomas BC, et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 2014;8:1452–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Konstantinidis KT, Tiedje JM. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA. 2004;101:3160–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    72.
    Moya A, Pereto J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet. 2008;9:218–29.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    73.
    Moran NA, Plague GR. Genomic changes following host restriction in bacteria. Curr Opin Genet Dev. 2004;14:627–33.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Chaudhury P, Quax TEF, Albers SV. Versatile cell surface structures of archaea. Mol Microbiol. 2018;107:298–311.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Pohlschroder M, Esquivel RN. Archaeal type IV pili and their involvement in biofilm formation. Front Microbiol. 2015;6:190.

    76.
    Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems. 2020;5:e00415–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    77.
    Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020;14:2105–15.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    78.
    Santoro AE, Richter RA, Dupont CL. Planktonic marine Archaea. Annu Rev Mar Sci. 2019;11:131–58.
    Article  Google Scholar 

    79.
    Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 2019;13:663–75.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. Microbiol Open. 2019;8:e00852.
    Google Scholar 

    81.
    Martin-Cuadrado AB, Garcia-Heredia I, Moltó AG, López-Úbeda R, Kimes N, López-García P, et al. A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. ISME J. 2015;9:1619–34.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    82.
    Martin-Cuadrado AB, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martínez E, Henn MR, et al. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J. 2008;2:865–86.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Moreira D, Rodríguez-Valera F, López-García P. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environ Microbiol. 2004;6:959–69.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    84.
    Sforna MC, Philippot P, Somogyi A, Van Zuilen MA, Medjoubi K, Schoepp-Cothenet B, et al. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat Geosci. 2014;7:811–5.
    CAS  Article  Google Scholar 

    85.
    Meheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun. 2019;10:4173.

    86.
    Luther GW, Glazer BT, Ma S, Trouwborst RE, Moore TS, Metzger E, et al. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Mar Chem. 2008;108:221–35.
    CAS  Article  Google Scholar 

    87.
    Brendel PJ, Luther GW. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments. Environ Sci Technol. 1995;29:751–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    88.
    Arar EJ, Collins GB. Method 445.0 in vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. Washington, DC: U.S. Environmental Protection Agency; 1997.

    89.
    Bran+Luebbe/Seal. Ammonia in water and seawater, in Method No G-171-96. 2005. Norderstedt, Germany.

    90.
    Bran+Luebbe/Seal. Nitrate and nitrite in water and seawater; total nitrogen in persulfate digests, in Metho No G-172-96. 2010. Norderstedt, Germany.

    91.
    Solórzano L, Sharp JH. Determination of total dissolved nitrogen in natural waters. Limnol Oceanogr. 1980;25:751–4.
    Article  Google Scholar 

    92.
    Solórzano L, Sharp JH. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr. 1980;25:754–8.
    Article  Google Scholar 

    93.
    Dickson AG, Sabine CL, Christian JR. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3. 2007.

    94.
    Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Analy Chim Acta. 1962;27:31–6.
    CAS  Article  Google Scholar 

    95.
    Stookey LL. Ferrozine—a new spectrophotometric reagent for iron. Anal Chem. 1970;42:779–81.
    CAS  Article  Google Scholar 

    96.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    97.
    Padilla CC, Bertagnolli AD, Bristow LA, Sarode N, Glass JB, Thamdrup B, et al. Metagenomic binning recovers a transcriptionally active gammaproteobacterium linking methanotrophy to partial denitrification in an anoxic oxygen minimum zone. Front Mar Sci. 2017;4:23–23.
    Article  Google Scholar 

    98.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    100.
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    101.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550–550.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    102.
    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217–e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.

    104.
    Willis AD, Martin BD. DivNet: estimating diversity in networked communities. bioRxiv. 2018. Available from https://www.biorxiv.org/content/10.1101/305045v1.

    105.
    Wickham H. Elegant graphics for data analysis. New York: Springer-Verlag; 2016.
    Google Scholar 

    106.
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. vegan: Community Ecology package, in R package version 2.5-5. 2019. https://cran.r-project.org/package=vegan.

    107.
    Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51–51.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    108.
    Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A, Eisen JA, et al. Automated and accurate estimation of gene family abundance from shotgun metagenomes. PLoS Comput Biol. 2015;11:e1004573.

    109.
    Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell. 2016;166:1103–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    110.
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    111.
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    112.
    Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32:1088–90.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    113.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    114.
    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119–119.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    115.
    James BT, Luczak BB, Girgis HZ. MeShClust: an intelligent tool for clustering DNA sequences. Nucleic Acids Res. 2018;46:e83.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    116.
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019;36:2251–2.
    PubMed Central  Article  CAS  Google Scholar 

    117.
    Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics. 2019;20:405–405.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    118.
    Dunivin TK, Yeh SY, Shade A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol. 2019;17:45–45.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    119.
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.

    120.
    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104.

    121.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    122.
    Olm MR, Brown CT, Brooks B, Banfield JF. DRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    123.
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.
    PubMed Central  Google Scholar 

    124.
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    125.
    Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47:p. W256–9.
    Article  CAS  Google Scholar  More

  • in

    Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions

    Distribution, frequency, and functional implications of mutations during laboratory evolution of obligate syntrophy
    We evaluated whether the selection of mutations in the same genes (i.e., “parallel evolution” [17]) had contributed to improvements in syntrophic growth of Dv and Mm across independent evolution lines, all of which started with the same ancestral clone of each organism. The goal of this analysis was to focus on generalized strategies for adaptation to syntrophy, irrespective of the culturing condition so we investigated parallelism across both U and H lines. Based on the number of mutations (normalized to gene length and genome size) in Dv and Mm across 13 evolved lines (six lines designated U for “uniform” conditions with continuous shaking and seven H lines for “heterogenous” conditions without shaking), we calculated a G-score [18] (“goodness-of-fit”, see “Methods” section [18]) to assess if the observed parallel evolution rate was higher than expected by chance. The “observed G-score” was calculated as the sum of G-scores for all genes in the genome of each organism; mean and standard deviation of “expected G-scores” were calculated through 1000 simulations of randomizing locations of observed numbers of mutations across the genome of each organism. The observed total G-score for Dv (1092.617) and Mm (805.02) was significantly larger than the expected mean G-score (Dv: 798.19 ± 14.99, Z = 19.63 and Mm: 564.83 ± 15.95, Z = 15.06), demonstrating significant parallel evolution across lines.
    With the exception of five high G-score genes (DVU0597, DVU1862, DVU0436, DVU0013, and DVU2394), which were mutated during long term salt adaptation of Dv [19], mutations in other high G-score genes appeared to be putatively specific to syntrophic interactions. Altogether, 24 genes in Dv and 16 genes in Mm associated with core processes had accumulated function modulating mutations across at least 2 or more evolution lines (Fig. 2 and Supplementary Table S1). Signal transduction and regulatory gene mutations (seven in Dv and six in Mm) represented 19.9% and 27.2% of all mutations in Dv and Mm, respectively, similar to long term laboratory evolution of E. coli [18], potentially because their influence on the functions of many genes [20, 21]. We also observed missense and nonsense mutations in outer membrane and transport functions (four genes in Dv and three genes in Mm). For example, the highest G-score gene in Dv, DVU0799—an abundant outer membrane porin for the uptake of sulfate and other solutes in low-sulfate conditions [22], was mutated early across all lines, with at least two missense mutations in UE3 (S223Y) and UA3 (T242P). Notably, the regulator of the archaellum operon (MMP1718) had the highest G-score with frameshift (11 lines) and nonsynonymous coding (2 lines) mutations [23]. Similarly, two motility-associated genes of Dv (DVU1862 and DVU3227) also accumulated frameshift, nonsense and nonsynonymous mutations across 4 H and 3 U lines. Together, these observations were consistent with other laboratory evolution experiments performed in liquid media [24], suggesting that retaining motility has a fitness cost during syntrophy [25, 26].
    Fig. 2: Frequency and location of high G-score mutations in Dv (A) and Mm (B) across 13 independent evolution lines.

    SnpEff predicted impact of mutations* are indicated as moderate (orange circles) or high (red circles) with the frequency of mutations indicated by node size. Expected number of mutations for each gene was calculated based on the gene length and the total number of mutations in a given evolution line. Genes with parallel changes were ranked by calculating a G (goodness of fit) score between observed and expected values and indicated inside each panel. Mutations for each gene are plotted along their genomic coordinates (vertical axes) across 13 evolution lines (horizontal axes). Total number of mutations for a given gene is shown as horizontal bar plots. [*HIGH impact mutations: gain or loss of start and stop codons and frameshift mutations; MODERATE impact mutations: codon deletion, nonsynonymous in coding sequence, change or insertion of codon; low impact mutations: synonymous coding and nonsynonymous start codon].

    Full size image

    Consistent with our previous observation that obligate mutual interdependence drove the erosion of metabolic independence of Dv [5, 27], mutations in SR genes were among the top contributors to the total G-score in Dv (DVU2776 (74.7), DVU1295 (46.5), DVU0846 (42.9), and DVU0847 (22.3)). However, it was intriguing that DVU2776 (DsrC), which catalyzes the conversion of sulfite to sulfide, the final step in SR, accumulated function modulating but not loss-of-function mutations across six lines. The functional impact of these mutations is not clear but it is possible that these changes might alter previously suggested alternative roles for this gene, including electron confurcation for the oxidation of lactate [28], sulfite reduction, 2-thiouridine biosynthesis and possibly gene regulation [29].
    Analysis of temporal appearance and combinations of mutations across evolution lines
    Growth characteristics of all evolution lines improved by the 300th generation [4], and in some lines even before the appearance of SR− mutations, indicating that mutations in other genes had also contributed to improvements in syntrophy. Each evolution line had at least 8 and up to 13 out of 24 high G-score mutations in Dv, while Mm had mutations in at least 5 and up to 10 out of 16 high G-score genes. We interrogated the temporal order in which high G-score mutations were selected and the combinations in which they co-existed in each evolution line to uncover evidence for epistatic interactions in improving obligate syntrophy. Indeed, missense mutations in DsrC (DVU2776) were fixed simultaneously with the appearance of loss of function mutations in one of two sigma 54 type regulators (DVU2894, DVU2394) in lines HA2, and UR1 (P = 5.40 × 10−5). In rare instances, we also observed that some high G-score mutations co-occurred across evolution lines, e.g., two U- and one H-line consistently showed for at least two time points a mutation in DVU1283 (GalU) coexisting with mutations in DVU2394 (P = 5.04 × 10−3). More commonly, the combinations of high G-score gene mutations varied across multiple lines. In fact, no two lines possessed identical combination of high G-score gene mutations (Fig. 3A, B), and many high-frequency mutations were uniquely present or absent in different lines (Fig. 3C, D).
    Fig. 3: Frequency and time of appearance of mutations through 1 K generations of laboratory evolution lines of Dv and Mm cocultures.

    The heat maps display frequency of mutations in genes (rows) in Dv (A) and Mm (B) in each evolution line, ordered from early to later generations (horizontal axis). High G-score genes are shown in red font and their G-score rank is shown to the left in gray shaded box, also in red font. Bar plots above heat maps indicate total number of mutations in each generation and the color indicates impact of mutation. Use “Frequency”, “Generations”, and “Mutation impact” key below the heat maps for interpretation. Mutations that were unique to each evolution line is shown in (C, D) for Dv and Mm, respectively. E The heatmap illustrates a selective sweep across both organisms in line HS3.

    Full size image

    Mutations in high G-score genes appeared consistently in all evolution lines (P 80% EPD-03 vs, More

  • in

    Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting

    1.
    Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 474–485 (2018).
    ADS  CAS  Article  Google Scholar 
    2.
    Diffenbaugh, N. S., Singh, D. & Mankin, J. S. Unprecedented climate events: historical changes, aspirational targets, and national commitments. Sci. Adv. 4, eaao3354 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).
    ADS  CAS  Article  Google Scholar 

    4.
    United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement (2015).

    5.
    Intergovernmental Panel on Climate Change (IPCC). Fifth Assessment Report: Climate Change (AR5) (2014).

    6.
    Nabuurs, G. J. et al. Forestry. In Climate Change 2007: Mitigation (Cambridge University Press, 2007).

    7.
    Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).
    ADS  Article  Google Scholar 

    8.
    Xu, Z., Smyth, C. E., Lemprière, T. C., Rampley, G. J. & Kurz, W. A. Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia. Can. Mitig. Adapt. Strateg. Glob. Change 23, 257–290 (2018).
    Article  Google Scholar 

    9.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    10.
    Peterson St-Laurent, G., Hagerman, S., Kozak, R. & Hoberg, G. Public perceptions about climate change mitigation in British Columbia’s forest sector. PLoS ONE 13, e0195999 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).
    PubMed  Article  Google Scholar 

    13.
    Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).
    CAS  PubMed  Article  Google Scholar 

    14.
    Marchand, W. et al. Untangling methodological and scale considerations in growth and productivity trend estimates of Canada’s forests. Environ. Res. Lett. 13, 093001 (2018).
    ADS  Article  Google Scholar 

    15.
    Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F. & Sork, V. L. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc. Natl Acad. Sci. USA. 116, 25179–25185 (2019).
    CAS  PubMed  Article  Google Scholar 

    16.
    Sally, N. A. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu Rev. Ecol. Evol. Syst. 44, 367–388 (2013).
    Article  Google Scholar 

    17.
    Lemprière, T. C. et al. Canadian boreal forests and climate change mitigation. Environ. Rev. 21, 293–321 (2013).
    Article  Google Scholar 

    18.
    Winder, R., Nelson, E. & Beardmore, T. Ecological implications for assisted migration in Canadian forests. For. Chron. 87, 731–744 (2011).
    Article  Google Scholar 

    19.
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
    PubMed  Article  Google Scholar 

    20.
    Isaac-Renton, M. et al. Northern forest tree populations are physiologically maladapted to drought. Nat. Commun. 9, 5254 (2018).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Field, E., Schönrogge, K., Barsoum, N., Hector, A. & Gibbs, M. Individual tree traits shape insect and disease damage on oak in a climate‐matching tree diversity experiment. Ecol. Evol. 9, 8524–8540 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    22.
    Depardieu, C. et al. Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. N. Phytol. 227, 427–439 (2020).
    CAS  Article  Google Scholar 

    23.
    Montwé, D., Isaac-Renton, M., Hamann, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Commun. 9, 1574 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Girardin, M. P. et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Change Biol. 22, 627–643 (2016).
    ADS  Article  Google Scholar 

    25.
    Hember, R. A., Kurz, W. A. & Coops, N. C. Increasing net ecosystem biomass production of Canada’s boreal and temperate forests despite decline in dry climates. Glob. Biogeochem. Cycles 31, 134–158 (2017).
    CAS  Article  Google Scholar 

    26.
    Boucher, D. et al. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecol. Appl. 28, 1245–1259 (2018).
    PubMed  Article  Google Scholar 

    27.
    Klein, R. J. T., Schipper, E. L. F. & Dessai, S. Integrating mitigation and adaptation into climate and development policy: three research questions. Environ. Sci. Policy 8, 579–588 (2005).
    Article  Google Scholar 

    28.
    Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: species’ traits, environmental variation, and vertebrate diversification. Proc. Natl Acad. Sci. USA 113, 8041–8048 (2016).
    CAS  PubMed  Article  Google Scholar 

    29.
    Massatti, R. et al. Population history provides foundational knowledge for utilizing and developing native plant restoration materials. Evol. Appl. 11, 2025–2039 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Sork, V. L. et al. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet. Genomes 9, 901–911 (2013).
    Article  Google Scholar 

    31.
    Morgenstern, E. K. & Mullin, T. J. Growth and survival of black spruce in the range-wide provenance study. Can. J. Res. 20, 130–143 (1990).
    Article  Google Scholar 

    32.
    Rehfeldt, G. E., Wykoff, W. R. & Ying, C. C. Physiologic plasticity, evolution, and impacts of a changing climate on Pinus contorta. Clim. Change 50, 355–376 (2001).
    Article  Google Scholar 

    33.
    Morgenstern, E. K. Range-wide genetic variation of black spruce. Can. J. Res. 8, 463–473 (1978).
    Article  Google Scholar 

    34.
    Thomson, A. M., Riddell, C. L. & Parker, W. H. Boreal forest provenance tests used to predict optimal growth and response to climate change: 2. Black spruce. Can. J. Res. 39, 143–153 (2009).
    Article  Google Scholar 

    35.
    Pedlar, J. H. & McKenney, D. W. Assessing the anticipated growth response of northern conifer populations to a warming climate. Sci. Rep. 7, 43881 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Mahony, C. R. et al. Evaluating genomic data for management of local adaptation in a changing climate: a lodgepole pine case study. Evol. Appl. 13, 116–131 (2020).
    PubMed  Article  Google Scholar 

    37.
    Housset, J. M. et al. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. N. Phytol. 218, 630–645 (2018).
    Article  Google Scholar 

    38.
    Heer, K. et al. Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol. Ecol. 27, 1428–1438 (2018).
    CAS  PubMed  Article  Google Scholar 

    39.
    Bouriaud, O., Teodosiu, M., Kirdyanov, A. V. & Wirth, C. Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences 12, 6205–6217 (2015).
    ADS  CAS  Article  Google Scholar 

    40.
    Babst, F. et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 197, 1–20 (2018).
    ADS  Article  Google Scholar 

    41.
    Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol. Ecol. 13, 2735–2747 (2004).
    CAS  PubMed  Article  Google Scholar 

    42.
    Gérardi, S., Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce: assemblages of organelle genomes. Mol. Ecol. 19, 5265–5280 (2010).
    PubMed  Article  CAS  Google Scholar 

    43.
    Rehfeldt, G. E., Leites, L. P., Joyce, D. G. & Weiskittel, A. R. Role of population genetics in guiding ecological responses to climate. Glob. Change Biol. 24, 858–868 (2018).
    ADS  Article  Google Scholar 

    44.
    Beaulieu, J., Corriveau, A. & Daoust, G. Phenotypic Stability and Delineation of Black Spruce Breeding Zones in Quebec. Vol. LAU-X-85E (Forestry Canada, Quebec Region, Sainte-Foy, Quebec, 1989).

    45.
    Perrin, M., Rossi, S. & Isabel, N. Synchronisms between bud and cambium phenology in black spruce: early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).
    PubMed  Article  Google Scholar 

    46.
    Sniderhan, A. E., McNickle, G. G. & Baltzer, J. L. Assessing local adaptation vs. plasticity under different resource conditions in seedlings of a dominant boreal tree species. AoB Plants 10, ply004 (2018).

    47.
    Newton, P. F. Systematic review of yield responses of four North American conifers to forest tree improvement practices. Ecol. Manag. 172, 29–51 (2003).
    Article  Google Scholar 

    48.
    Marchand, W. et al. Strong overestimation of water‐use efficiency responses to rising CO2 in tree‐ring studies. Glob. Change Biol. https://doi.org/10.1111/gcb.15166 (2020).

    49.
    Metsaranta, J. M. Long-term tree-ring derived carbon dynamics of an experimental plantation in relation to species and density in Northwestern Ontario. Can. Ecol. Manag. 441, 229–241 (2019).
    Article  Google Scholar 

    50.
    Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    DOrangeville, L. et al. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 352, 1452–1455 (2016).
    ADS  CAS  Article  Google Scholar 

    52.
    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Rossi, S. Bud break responds more strongly to daytime than night‐time temperature under asymmetric experimental warming. Glob. Change Biol. 9 (2016).

    54.
    Frechette, E., Ensminger, I., Bergeron, Y., Gessler, A. & Berninger, F. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate? Tree Physiol. 31, 1204–1216 (2011).
    CAS  PubMed  Article  Google Scholar 

    55.
    Verbyla, D. Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environ. Res. Lett. 10, 125016 (2015).
    ADS  Article  Google Scholar 

    56.
    Trujillo, E. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 5, 5 (2012).
    Article  CAS  Google Scholar 

    57.
    Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H. & Silkin, P. P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400, 149–151 (1999).
    ADS  CAS  Article  Google Scholar 

    58.
    Ols, C., Girardin, M. P., Hofgaard, A., Bergeron, Y. & Drobyshev, I. Monitoring climate sensitivity shifts in tree-rings of eastern boreal North America using model-data comparison: shifts in tree growth sensivity to climate. Ecosystems 21, 1042–1057 (2018).
    CAS  Article  Google Scholar 

    59.
    Prunier, J., Gérardi, S., Laroche, J., Beaulieu, J. & Bousquet, J. Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol. Ecol. 21, 4270–4286 (2012).
    CAS  PubMed  Article  Google Scholar 

    60.
    Capblancq, T. et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. https://doi.org/10.1111/jeb.13610 (2020).

    61.
    Liepe, K. J., Hamann, A., Smets, P., Fitzpatrick, C. R. & Aitken, S. N. Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world. Evol. Appl. 9, 409–419 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    62.
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).
    PubMed  Article  Google Scholar 

    63.
    Wegrzyn, J. L. et al. Cyberinfrastructure and resources to enable an integrative approach to studying forest trees. Evol. Appl. 13, 228–241 (2020).
    PubMed  Article  Google Scholar 

    64.
    Kurz, W. A. et al. Carbon in Canada’s boreal forest —a synthesis. Environ. Rev. 21, 260–292 (2013).
    CAS  Article  Google Scholar 

    65.
    Alberto, F. J. et al. Potential for evolutionary responses to climate change—evidence from tree populations. Glob. Change Biol. 19, 1645–1661 (2013).
    ADS  Article  Google Scholar 

    66.
    Splawinski, T. B., Cyr, D., Gauthier, S., Jetté, J.-P. & Bergeron, Y. Analyzing risk of regeneration failure in the managed boreal forest of northwestern Quebec. Can. J. Res. 49, 680–691 (2019).
    Article  Google Scholar 

    67.
    Chaste, E., Girardin, M. P., Kaplan, J. O., Bergeron, Y. & Hély, C. Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada’s managed boreal forest. Landsc. Ecol. https://doi.org/10.1007/s10980-019-00780-4 (2019).

    68.
    McLane, S. C., Daniels, L. D. & Aitken, S. N. Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment. Ecol. Manag. 262, 115–123 (2011).
    Article  Google Scholar 

    69.
    Larsson, L. CooRecorder and Cdendro Programs of the CooRecorder/Cdendro Package (Version 7.6) (Cybis Elektronik, 2013).

    70.
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 43, 69–78 (1983).

    71.
    de Lafontaine, G., Prunier, J., Gérardi, S. & Bousquet, J. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana × P. rubens). Mol. Ecol. 24, 5229–5247 (2015).
    PubMed  Article  Google Scholar 

    72.
    Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA. 102, 15785–15790 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    73.
    Ung, C.-H., Jing Guo, X. & Fortin, M. Canadian national taper models. For. Chron. 89, 211–224 (2013).
    Article  Google Scholar 

    74.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Wang, J. The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Mol. Ecol. Resour. 17, 981–990 (2017).
    CAS  PubMed  Article  Google Scholar 

    76.
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
    CAS  PubMed  Article  Google Scholar 

    77.
    Excoffier, L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J. Mol. Evol. 30, 125–139 (1990).
    ADS  CAS  PubMed  Article  Google Scholar 

    78.
    Meirmans, P. G. genodive version 3.0: easy‐to‐use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    79.
    Regniere, J. & Bolstad, P. Statistical simulation of daily air temperature patterns Eastern North America to forecast seasonal events in insect pest management. Environ. Entomol. 23, 1368–1380 (1994).
    Article  Google Scholar 

    80.
    Hogg, E. H., Barr, A. G. & Black, T. A. A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agric. Meteorol. 178–179, 173–182 (2013).
    Article  Google Scholar 

    81.
    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).
    MathSciNet  MATH  Article  Google Scholar 

    82.
    Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).
    CAS  PubMed  Article  Google Scholar 

    83.
    Wood, S. Generalized Additive Models: An Introduction with R. 2nd edn Vol. 66 (Chapman and Hall/CRC, 2006).

    84.
    R Development Core Team. R: A Language and Environment for Statistical Computing (2013).

    85.
    Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, https://doi.org/10.18637/jss.v022.i04 (2007).

    86.
    Fisher R. A. Statistical Methods for Research Workers 4th edn (Oliver and Boyd, London, 1932).

    87.
    Legendre, P. & Legendre, L. Numerical Ecology Vol. 24, 3rd edn (Elsevier Science BV, Amsterdam, 2012).

    88.
    Reiss, P. T. & Ogden, R. T. Smoothing parameter selection for a class of semiparametric linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 505–523 (2009).
    MathSciNet  MATH  Article  Google Scholar 

    89.
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).
    MathSciNet  MATH  Article  Google Scholar 

    90.
    Beaudoin, A. et al. Mapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imagery. Can. J. Res. 44, 521–532 (2014).
    Article  Google Scholar  More