More stories

  • in

    Elevated alpha diversity in disturbed sites obscures regional decline and homogenization of amphibian taxonomic, functional and phylogenetic diversity

    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 

    Google Scholar 
    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropogene. Trends Ecol. Evol. 30, 104–113 (2015).
    Google Scholar 
    Bradshaw, C. J. A., Sodhi, N. S. & Brook, B. W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 7, 79–87 (2009).
    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 

    Google Scholar 
    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).
    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 

    Google Scholar 
    Pasari, J. R., Levi, T., Zavaleta, E. S. & Tilman, D. Several scales of biodiversity affect ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 110, 10219–10222 (2013).ADS 
    CAS 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    Google Scholar 
    Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).
    Google Scholar 
    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).ADS 
    CAS 

    Google Scholar 
    de Coster, G., Banks-Leite, C. & Metzger, J. P. Atlantic forest bird communities provide different but not fewer functions after habitat loss. Proc. R. Soc. B 282, 20142844 (2015).
    Google Scholar 
    Riemann, J. C., Ndriantsoa, S. H., Rödel, M.-O. & Glos, J. Functional diversity in a fragmented landscape—habitat alterations affect functional trait composition of frog assemblages in Madagascar. Global Ecol. Conserv. 10, 173–183 (2017).
    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).CAS 

    Google Scholar 
    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).
    Google Scholar 
    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multi-functionality. Proc. Natl. Acad. Sci. U.S.A. 113, 3557–3562 (2016).ADS 

    Google Scholar 
    Mori, A. S., Isbell, F. & Seidl, R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).
    Google Scholar 
    Dehling, J. M. & Dehling, D. M. Conserving ecological functions of frog communities in Borneo requires diverse forest landscapes. Global Ecol. Conserv. 26, e01481 (2021).
    Google Scholar 
    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).ADS 
    CAS 

    Google Scholar 
    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).ADS 
    CAS 

    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. U.S.A. 100, 12765–12770 (2003).ADS 
    CAS 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 

    Google Scholar 
    Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. U.S.A. 117, 28140–28149 (2020).ADS 
    CAS 

    Google Scholar 
    Tilman, D. Functional diversity in Encyclopedia of biodiversity, Vol. 3. (ed. Levin S. A.) 109–120 (Academic Press, 2001)Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem function relationships. Ecology 92, 1573–1581 (2011).
    Google Scholar 
    Lean, C. & Maclaurin, J. The value of phylogenetic diversity in Biodiversity conservation and phylogenetic systematics. Topics in Biodiversity and Conservation 14. (eds. Pellens, R., Grandcolas, P.) 19–38 (Springer, 2016).Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).ADS 

    Google Scholar 
    Gumbs, R., Williams, R. C., Lowney, A. M. & Smith, D. Spatial and species-level metrics reveal global patterns of irreplaceable and imperiled gecko phylogenetic diversity. Israel J. Ecol. Evolut. 66, 239–252 (2020).
    Google Scholar 
    Brooks, D. R., Mayden, R. L. & McLennan, D. A. Phylogeny and biodiversity: Conserving our evolutionary legacy. Trends Ecol. Evol. 7, 55–59 (1992).CAS 

    Google Scholar 
    Phillimore, A. B. et al. Biogeographical basis of recent phenotypic divergence among birds: a global study of subspecies richness. Evolution 61, 942–957 (2007).
    Google Scholar 
    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).ADS 
    CAS 

    Google Scholar 
    Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).
    Google Scholar 
    Tucker, C. M. et al. Assessing the utility of conserving evolutionary history. Biol. Rev. 94, 1740–1760 (2019).
    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).
    Google Scholar 
    Villéger, S., Miranda, J. R., Hernández, D. F. & Mouillot, D. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20, 1512–1522 (2010).Gibbons, J. W. et al. Remarkable amphibian biomass and abundance in an isolated wetland: Implications for wetland conservation. Conserv. Biol. 20, 1457–1465 (2006).
    Google Scholar 
    Hocking, D. J. & Babbitt, K. J. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 9, 1–17 (2014).
    Google Scholar 
    Beebee, T. J. C. Amphibian breeding and climate change. Nature 374, 219–220 (1995).ADS 
    CAS 

    Google Scholar 
    Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681–684 (2001).ADS 
    CAS 

    Google Scholar 
    Cheng, T. L., Rovito, S. M., Wake, D. B. & Vredenburg, V. T. Coincident mass extirpation of neotropical amphibians with the emergence of the infection fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. U.S.A. 108, 9502–9507 (2011).ADS 
    CAS 

    Google Scholar 
    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. U.S.A. 105, 11466–11473 (2008).ADS 
    CAS 

    Google Scholar 
    Ernst, R. & Rödel, M.-O. Patterns of community composition in two tropical tree frog assemblages: Separating spatial structure and environmental effects in disturbed and undisturbed forests. J. Trop. Ecol. 24, 111–120 (2008).
    Google Scholar 
    Gardner, T. A. et al. The value of primary, secondary, and plantation forests for a Neotropical Herpetofauna. Conserv. Biol. 21, 775–787 (2007).
    Google Scholar 
    Gardner, T. A., Fitzherbert, E. B., Drewes, R. C., Howell, K. M. & Caro, T. Spatial and temporal patterns of abundance and diversity of an East African leaf litter amphibian fauna. Biotropica 39, 105–113 (2007).
    Google Scholar 
    Gillespie, G. R. et al. Conservation of amphibians in Borneo: relative value of secondary tropical forest and non-forest habitats. Biol. Cons. 152, 136–144 (2012).
    Google Scholar 
    Angarita-M., O., Montes-Correa, A. C. & Renjifo, J. M. Amphibians and reptiles of an agroforestry system in the Colombian Caribbean. Amphibian & Reptile Conservation 8, 33–52 (2015).Jiménez-Robles, O., Guayasamin, J. M., Ron, S. R. & De la Riva, I. Reproductive traits associated with species turnover of amphibians in Amazonia and its Andean slopes. Ecol. Evol. 7, 2489–2500 (2017).
    Google Scholar 
    Ernst, R., Linsenmair, K. E. & Rödel, M.-O. Diversity erosion beyond the species level: dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biol. Cons. 133, 143–155 (2006).
    Google Scholar 
    Oda, F. H. et al. Anuran species richness, composition, and breeding habitat preferences: a comparison between forest remnants and agricultural landscapes in Southern Brazil. Zool. Stud. 55, 34 (2016).
    Google Scholar 
    Sinsch, U., Lümkemann, K., Rosar, K., Schwarz, C. & Dehling, J. M. Acoustic niche partitioning in an anuran community inhabiting an Afromontane wetland (Butare, Rwanda). African Zool. 47, 60–73 (2012).
    Google Scholar 
    Tumushimire, L., Mindje, M., Sinsch, U. & Dehling, J. M. The anuran diversity of cultivated wetlands in Rwanda: Melting pot of generalists?. Salamandra 56, 99–112 (2020).
    Google Scholar 
    REMA. Rwanda State of Environment and Outlook Report 2017 – Achieving Sustainable Urbanization. (Rwanda Environment Management Authority, Government of Rwanda, 2017).Su, J. C., Debinski, D. M., Jakubauskas, M. E. & Kindscher, K. Beyond species richness: Community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv. Biol. 18, 167–173 (2004).
    Google Scholar 
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).ADS 
    CAS 

    Google Scholar 
    Zimkus, B. M., Rödel, M.-O. & Hillers, A. Complex patterns of continental speciation: Molecular phylogenetics and biogeography of sub-Saharan puddle frogs (Phrynobatrachus). Mol. Phylogenet. Evol. 55, 883–900 (2010).
    Google Scholar 
    Dehling, J. M. & Sinsch, U. Partitioning of morphospace in larval and adult reed frogs (Anura: Hyperoliidae: Hyperolius) of the Central African Albertine Rift. Zool. Anz. 280, 65–77 (2019).
    Google Scholar 
    Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).ADS 

    Google Scholar 
    Haddad, C. F. B. & Prado, C. P. A. Reproductive modes and their unexpected diversity in the Atlantic forest of Brazil. Bioscience 55, 207–217 (2005).
    Google Scholar 
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).ADS 
    CAS 

    Google Scholar 
    Alroy, J. Effects of habitat disturbance on tropical forest biodiversity. Proc. Natl. Acad. Sci. U.S.A. 114, 6056–6061 (2017).ADS 
    CAS 

    Google Scholar 
    Dehling, J. M. & Sinsch, U. Diversity of Ptychadena in Rwanda and taxonomic status of P. chrysogaster Laurent, 1954 (Amphibia, Anura, Ptychadenidae). ZooKeys 356, 69–102 (2013).IUCN. The IUCN Red List of Threatened Species. Version 2020–1. https://www.iucnredlist.org (2020).Portillo, F., Greenbaum, E., Menegon, M., Kusamba, C. & Dehling, J. M. Phylogeography and species boundaries of Leptopelis (Anura: Arthroleptidae) from the Albertine Rift. Mol. Phylogenet. Evol. 82, 75–86 (2015).
    Google Scholar 
    Channing, A., Dehling, J. M., Lötters, S. & Ernst, R. Species boundaries and taxonomy of the African River Frogs (Anura: Pyxicephalidae: Amietia). Zootaxa 4155, 1–76 (2016).CAS 

    Google Scholar 
    Rödel, M.-O. & Ernst, R. Measuring and monitoring amphibian diversity in tropical forests. I. An evaluation of methods with recommendations for standardization. Ecotropica 10, 1–14 (2004).Channing, A. & Howell, K. M. Amphibians of East Africa. (Chimaira, 2006).Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evolut. 2, 850–858 (2018).
    Google Scholar 
    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).
    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons. 61, 1–10 (1992).
    Google Scholar 
    Dehling, D. M. et al. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37, 1047–1055 (2014).
    Google Scholar 
    Baselga, A. et al. betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.6. https://CRAN.R-project.org/package=betapart (2022).Dehling, D. M. et al. Specialists and generalists fulfil important and complementary functional roles in ecological processes. Funct. Ecol. 35, 1810–1821 (2021).CAS 

    Google Scholar 
    Dehling, D. M., Barreto, E. & Graham, C. H. The contribution of mutualistic interactions to functional and phylogenetic diversity. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.05.006 (2022).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2021). More

  • in

    High abundance of hydrocarbon-degrading Alcanivorax in plumes of hydrothermally active volcanoes in the South Pacific Ocean

    German CR, Von Damm KL. Hydrothermal processes. In: Holland HD, Turekian KK and Elderfield H, editors. Treatise geochem, Vol. 6. The oceans and marine geochemistry. Oxford, UK:Elsevier-Pergamon, 2004;181–222.Bell JB, Woulds C, Oevelen DV. Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling. Sci Rep. 2017;7:1–3.
    Google Scholar 
    McCollom TM. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep Res Part I Oceanogr Res Pap. 2000;47:85–101.CAS 

    Google Scholar 
    Tunnicliffe V, Baross JA, Gebruk AV, Giere O, Holland ME, Koschinsky A, et al. Group report: what are the interactions between biotic processes at vents and physical, chemical, and geological conditions. In: Halbach PE, Tunnicliffe V, and Hein JR, editors. Energy and Mass Transfer in Marine Hydrothermal Systems. Berlin-Dahlem:University Press; 2003;251–70.Nakamura K, Takai K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog Earth Planet Sci. 2014;1:1–24.
    Google Scholar 
    Wang W, Li Z, Zeng L, Dong C, Shao Z. The oxidation of hydrocarbons by diverse heterotrophic and mixotrophic bacteria that inhabit deep-sea hydrothermal ecosystems. ISME J. 2020;14:1994–2006.CAS 

    Google Scholar 
    Sinha RK, Krishnan KP, Kurian PJ. Complete genome sequence and comparative genome analysis of Alcanivorax sp. IO_7, a marine alkane-degrading bacterium isolated from hydrothermally-influenced deep seawater of southwest Indian ridge. Genomics 2021;113:884–91.CAS 

    Google Scholar 
    Li J, Yang J, Sun M, Su L, Wang H, Gao J, et al. Distribution and succession of microbial communities along the dispersal pathway of hydrothermal plumes on the Southwest Indian Ridge. Front Mar Sci. 2020;7:581381.
    Google Scholar 
    Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, et al. Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environ Microbiol. 2016;18:4348–68.
    Google Scholar 
    Li WL, Huang JM, Zhang PW, Cui GJ, Wei ZF, Wu YZ, et al. Periodic and spatial spreading of alkanes and Alcanivorax bacteria in deep waters of the Mariana Trench. Appl Environ Microbiol. 2019;85:e02089–18.CAS 

    Google Scholar 
    Brooijmans RJW, Pastink MI, Siezen RJ. Hydrocarbon-degrading bacteria: The oil-spill clean-up crew. Micro Biotechnol. 2009;2:587.CAS 

    Google Scholar 
    Scoma A, Barbato M, Borin S, Daffonchio D, Boon N. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. Sci Rep. 2016;6:1–3.
    Google Scholar 
    Lai Q, Wang L, Liu Y, Fu Y, Zhong H, Wang B, et al. Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol. 2011;61:1370–4.CAS 

    Google Scholar 
    Wu Y, Lai Q, Zhou Z, Qiao N, Liu C, Shao Z. Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. Int J Syst Evol Microbiol. 2009;59:1474–9.CAS 

    Google Scholar 
    Fernández-Martínez J, Pujalte MJ, García-Martínez J, Mata M, Garay E, Rodríguez-Valera F. Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol. 2003;53:331–8.
    Google Scholar 
    Radwan SS, Khanafer MM, Al-Awadhi HA. Ability of the so-called obligate hydrocarbonoclastic bacteria to utilize nonhydrocarbon substrates thus enhancing their activities despite their misleading name. BMC Microbiol. 2019;19:1–2.
    Google Scholar 
    Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, et al. Analysis of storage lipid accumulation in Alcanivorax borkumensis: Evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007;189:918–28.CAS 

    Google Scholar 
    Timm C, Davy B, Haase K, Hoernle KA, Graham IJ, De Ronde CEJ, et al. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc. Nat Commun. 2014;5:1–9.
    Google Scholar 
    Haase KM, Beier C, Bach W, Kleint C, Anderson MO, Rubin K, et al. SO-263 Cruise Report: Tonga Rift. 2018. https://doi.org/10.13140/RG.2.2.23035.16169.Gartman A, Hannington M, Jamieson JW, Peterkin B, Garbe-Schönberg D, Findlay AJ, et al. Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids. Geology 2018;46:39–42.CAS 

    Google Scholar 
    Falkenberg JJ, Keith M, Haase KM, Bach W, Klemd R, Strauss H, et al. Effects of fluid boiling on Au and volatile element enrichment in submarine arc-related hydrothermal systems. Geochim Cosmochim Acta. 2021;307:105–32.CAS 

    Google Scholar 
    Peters C, Strauss H, Haase K, Bach W, de Ronde CEJ, Kleint C, et al. SO2 disproportionation impacting hydrothermal sulfur cycling: Insights from multiple sulfur isotopes for hydrothermal fluids from the Tonga-Kermadec intraoceanic arc and the NE Lau Basin. Chem Geol. 2021;586:120586.CAS 

    Google Scholar 
    Baker ET, Walker SL, Massoth GJ, Resing JA. The NE Lau Basin: Widespread and abundant hydrothermal venting in the back-arc region behind a superfast subduction zone. Front Mar Sci. 2019;6:382.
    Google Scholar 
    Kim J, Lee KY, Kim JH. Metal-bearing molten sulfur collected from a submarine volcano: Implications for vapor transport of metals in seafloor hydrothermal systems. Geology 2011;39:351–4.CAS 

    Google Scholar 
    Klose L, Keith M, Hafermaas D, Kleint C, Bach W, Diehl A, et al. Trace element and isotope systematics in vent fluids and sulphides from Maka volcano, North Eastern Lau Spreading Centre: Insights into three-component fluid mixing. Front Earth Sci. 2021;9:1–26.
    Google Scholar 
    Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 

    Google Scholar 
    Dede B, Hansen CT, Neuholz R, Schnetger B, Kleint C, Walker S, et al. Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes. ISME J. 2022;16:1479–90.CAS 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 

    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: An R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 

    Google Scholar 
    Diehl A, Bach W. MARHYS (MARine HYdrothermal Solutions) Database: A global compilation of marine hydrothermal vent fluid, end member, and seawater compositions. Geochem Geophys Geosystems. 2020;21:e2020GC009385.
    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 

    Google Scholar 
    Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–9.CAS 

    Google Scholar 
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: A software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 

    Google Scholar 
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.CAS 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 

    Google Scholar 
    Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS 

    Google Scholar 
    Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.CAS 

    Google Scholar 
    Daims H, Brühl A, Amann R, Schleifer KH, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.CAS 

    Google Scholar 
    Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 1993;14:136–43.CAS 

    Google Scholar 
    Stahl DA, Amann R. Development and application of nucleic acid probes in bacterial systematics. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E, Goodfellow M, editors. Chichester, UK: John Wiley & Sons Ltd; 1991. pp. 205–48.Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst Appl Microbiol. 1992;15:593–600.
    Google Scholar 
    Eilers H, Pernthaler J, Glöckner FO, Amann R. Culturability and in situ abundance of pelagic Bacteria from the North Sea. Appl Environ Microbiol. 2000;66:3044–51.CAS 

    Google Scholar 
    Syutsubo K, Kishira H, Harayama S. Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol. 2001;3:371–9.CAS 

    Google Scholar 
    Morris RM, Rappé MS, Urbach E, Connon SA, Giovannoni SJ. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol. 2004;70:2836–42.CAS 

    Google Scholar 
    Bushnell B BBMap (version 35.14). 2015. https://sourceforge.net/projects/bbmap/.Andrews S. FastQC: A quality control tool for high throughput sequence data. Babraham Bioinforma. 2010; http://www.bioinformatics.babraham.ac.uk/projects/.Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: Fast estimation of metagenomic coverage and sequence diversity. mSystems 2018;3:e00039–18.
    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:1–9.
    Google Scholar 
    Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012;28:3211–7.CAS 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.CAS 

    Google Scholar 
    Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–5.CAS 

    Google Scholar 
    Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 

    Google Scholar 
    Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol. 2021;6:3–6.CAS 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 

    Google Scholar 
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotech. 2017;35:725–31.CAS 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
    Google Scholar 
    Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9.CAS 

    Google Scholar 
    Priest T, Heins A, Harder J, Amann R, Fuchs BM. Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group. ISME J. 2022;16:1570–82.CAS 

    Google Scholar 
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.CAS 

    Google Scholar 
    Karthikeyan S, Rodriguez‐R LM, Heritier‐Robbins P, Hatt JK, Huettel M, Kostka JE, et al. Genome repository of oil systems: An interactive and searchable database that expands the catalogued diversity of crude oil‐associated microbes. Environ Microbiol. 2020;22:2094–106.CAS 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.CAS 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.CAS 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 

    Google Scholar 
    Gomes AÉI, Stuchi LP, Siqueira NMG, Henrique JB, Vicentini R, Ribeiro ML, et al. Selection and validation of reference genes for gene expression studies in Klebsiella pneumoniae using Reverse Transcription Quantitative real-time PCR. Sci Rep. 2018;8:1–4.
    Google Scholar 
    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 2016;532:465–70.CAS 

    Google Scholar 
    Duarte CM. Seafaring in the 21st century: the Malaspina 2010 circumnavigation expedition. Limnol Oceanogr Bull. 2015;24:11–4.
    Google Scholar 
    Anantharaman K, Breier JA, Dick GJ. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. ISME J. 2016;10:225–39.CAS 

    Google Scholar 
    Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682.
    Google Scholar 
    Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Addendum: Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl.nov.). Front Microbiol. 2017;9:772.
    Google Scholar 
    Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJS. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol. 2004;47:345–57.CAS 

    Google Scholar 
    Ramasamy KP, Rajasabapathy R, Lips I, Mohandass C, James RA. Genomic features and copper biosorption potential of a new Alcanivorax sp. VBW004 isolated from the shallow hydrothermal vent (Azores, Portugal). Genomics 2020;112:3268–73.CAS 

    Google Scholar 
    Barbato M, Scoma A, Mapelli F, De Smet R, Banat IM, Daffonchio D, et al. Hydrocarbonoclastic Alcanivorax isolates exhibit different physiological and expression responses to N-dodecane. Front Microbiol. 2016;7:2056.
    Google Scholar 
    Sevilla E, Yuste L, Rojo F. Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes. Micro Biotechnol. 2015;8:693–706.CAS 

    Google Scholar 
    Tivey MK. Black and white smokers. In: Harff J, Meschede M, Petersen S, Thiede Jö, editors. Encyclopedia of Marine Geosciences. Dordrecht: Springer Netherlands; 2016. p. 58–62.Djurhuus A, Mikalsen SO, Giebel HA, Rogers AD. Cutting through the smoke: The diversity of microorganisms in deep-sea hydrothermal plumes. R Soc Open Sci. 2017;4:160829.
    Google Scholar 
    Leahy JG, Colwell RR. Microbial degradation of hydrocarbons in the environment. Microbiol Rev. 1990;54:305–15.CAS 

    Google Scholar 
    Atlas R, Bragg J. Bioremediation of marine oil spills: When and when not – The Exxon Valdez experience. Micro Biotechnol. 2009;2:213–21.CAS 

    Google Scholar 
    Reva ON, Hallin PF, Willenbrock H, Sicheritz-Ponten T, Tümmler B, Ussery DW. Global features of the Alcanivorax borkumensis SK2 genome. Environ Microbiol. 2008;10:614–25.CAS 

    Google Scholar 
    Gregory GJ, Morreale DP, Carpenter MR, Kalburge SS, Boyd EF. Quorum sensing regulators AphA and OpaR control expression of the operon responsible for biosynthesis of the compatible solute ectoine. Appl Environ Microbiol. 2019;85:e01543–19.CAS 

    Google Scholar 
    Richter AA, Mais CN, Czech L, Geyer K, Hoeppner A, Smits SHJ, et al. Biosynthesis of the stress-protectant and chemical chaperon ectoine: biochemistry of the transaminase EctB. Front Microbiol. 2019;10:2811.
    Google Scholar 
    Schneiker S, Dos Santos VAPM, Bartels D, Bekel T, Brecht M, Buhrmester J, et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol. 2006;24:997–1004.CAS 

    Google Scholar 
    Wang W, Shao Z. Enzymes and genes involved in aerobic alkane degradation. Front Microbiol. 2013;4:116.
    Google Scholar 
    Barclay W, Rodd JA, Pflueger JC, Havard KR, Helu SP. Oil plays in the kingdom of Tonga, Southwest Pacific. PESA J. 1993;21:79–92.
    Google Scholar 
    Chadwick WW, Rubin KH, Merle SG, Bobbitt AM, Kwasnitschka T, Embley RW. Recent eruptions between 2012-2018 discovered at West Mata submarine volcano (NE Lau Basin, SW Pacific) and characterized by new ship, AUV, and ROV data. Front Mar Sci. 2019;6:495.
    Google Scholar 
    Baumberger T, Lilley MD, Lupton JE, Baker ET, Resing JA, Buck NJ, et al. Dissolved gas and metal composition of hydrothermal plumes from a 2008 submarine eruption on the Northeast Lau Spreading Center. Front Mar Sci. 2020;7:171.
    Google Scholar 
    Lupton J, Rubin KH, Arculus R, Lilley M, Butterfield D, Resing J, et al. Helium isotope, C/3 He, and Ba‐Nb‐Ti signatures in the northern Lau Basin: Distinguishing arc, back‐arc, and hotspot affinities. Geochem Geophys. 2015;16:1133–55.CAS 

    Google Scholar 
    Graham DW. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. In: Porcelli D, Wieler R, Ballentine C, editors. Noble gases in Geochemistry and cosmochemistry, Rev Mineral Geochem. Vol 47. Washington D.C.: Mineral Soc. Of Am; 2002. p. 247–318.Lupton JE, Arculus RJ, Greene RR, Evans LJ, Goddard CI. Helium isotope variations in seafloor basalts from the Northwest Lau Backarc Basin: Mapping the influence of the Samoan hotspot. Geophys Res Lett. 2009;36:L17313.
    Google Scholar 
    Gordon GW. Naturally occurring organohalogen compounds – A comprehensive survey. Prog Chem Org Nat Prod. 1996;68:1–423.
    Google Scholar 
    Spietz RL, Butterfield DA, Buck NJ, Larson BI, Chadwick WW, Walker SL, et al. Deep-sea volcanic eruptions create unique chemical and biological linkages between the subsurface lithosphere and the oceanic hydrosphere. Oceanography. 2018;31:128–35.
    Google Scholar 
    Huber JA, Butterfield DA, Baross JA. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol. 2003;43:393–409.CAS 

    Google Scholar  More

  • in

    Artificial lighting affects the landscape of fear in a widely distributed shorebird

    Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).
    Google Scholar 
    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the ‘landscape of fear’ in Yellowstone National Park, US.A. Can. J. Zool. 79, 1401–1409 (2001).
    Google Scholar 
    Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).CAS 

    Google Scholar 
    Laundre, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).
    Google Scholar 
    Loggins, A. A., Shrader, A. M., Monadjem, A. & McCleery, R. A. Shrub cover homogenizes small mammals’ activity and perceived predation risk. Sci. Rep. 9, 16857 (2019).
    Google Scholar 
    Whittingham, M. J. & Evans, K. L. The effects of habitat structure on predation risk of birds in agricultural landscapes. Ibis 146, 210–220 (2004).
    Google Scholar 
    Marshall, K. L. A., Philpot, K. E. & Stevens, M. Microhabitat choice in island lizards enhances camouflage against avian predators. Sci. Rep. 6, 19815 (2016).CAS 

    Google Scholar 
    Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K. & Spottiswoode, C. N. Improvement of individual camouflage through background choice in ground-nesting birds. Nat. Ecol. Evol. 1, 1325–1333 (2017).
    Google Scholar 
    Wilson-Aggarwal, J. K., Troscianko, J. T., Stevens, M. & Spottiswoode, C. N. Escape distance in ground-nesting birds differs with individual level of camouflage. Am. Nat. 188, 231–239 (2016).
    Google Scholar 
    Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 19966 (2016).CAS 

    Google Scholar 
    Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J. & Davies, T. W. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176, 917–931 (2014).
    Google Scholar 
    Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).
    Google Scholar 
    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).
    Google Scholar 
    Gaston, K. J. et al. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 61, 1098–1110 (2021).
    Google Scholar 
    Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2021).
    Google Scholar 
    Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160248 (2017).
    Google Scholar 
    Underwood, C. N., Davies, T. W. & Queir Os, A. M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 86, 781–789 (2017).
    Google Scholar 
    Burger, J., Howe, M. A., Hahn, D. C. & Chase, J. Effects of tide cycles on habitat selection and habitat partitioning by migrating shorebirds. Auk 94, 743–758 (1977).
    Google Scholar 
    Granadeiro, J. P., Dias, M. P., Martins, R. C. & Palmeirim, J. M. Variation in numbers and behaviour of waders during the tidal cycle: implications for the use of estuarine sediment flats. Acta Oecologica 29, 293–300 (2006).
    Google Scholar 
    Lourenço, P. M. et al. The energetic importance of night foraging for waders wintering in a temperate estuary. Acta Oecologica 34, 122–129 (2008).
    Google Scholar 
    McNeil, R., Drapeau, P. & Goss-Custard, J. D. The occurrence and adaptive significance of nocturnal habits in waterfowl. Biol. Rev. 67, 381–419 (1992).
    Google Scholar 
    Martin, G. R. Visual fields and their functions in birds. J. Ornithol. 148, 547–562 (2007).
    Google Scholar 
    Martin, G. R. What is binocular vision for? A birds’ eye view. J. Vis. 9, 1–19 (2009).
    Google Scholar 
    Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12, 347–355 (2014).
    Google Scholar 
    Leopold, M. F., Philippart, C. J. M. & Yorio, P. Nocturnal feeding under artificial light conditions by Brown-hooded Gull (Larus maculipennis) in Puerto Madryn harbour (Chubut Province, Argentina). Hornero 25, 55–60 (2010).
    Google Scholar 
    Pugh, A. R. & Pawson, S. M. Artificial light at night potentially alters feeding behaviour of the native southern black-backed gull (Larus dominicanus). Notornis 63, 37–39 (2016).
    Google Scholar 
    Santos, C. D. et al. Effects of artificial illumination on the nocturnal foraging of waders. Acta Oecologica 36, 166–172 (2010).
    Google Scholar 
    Montevecchi, W. A. Influences of Artificial Light on Marine Birds. in Ecological Consequences of Artificial Night Lighting (eds. Rich, C. & Longcore, T.) 94–113 (Island Press, 2006).Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).
    Google Scholar 
    Blumstein, D. T. Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).
    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).
    Google Scholar 
    Caro, T. Antipredator Defenses in Birds and Mammals. (University of Chicago Press, 2005).Tillmann, J. E. Fear of the dark: night-time roosting and anti-predation behaviour in the grey partridge (Perdix perdix L.). Behaviour 146, 999–1023 (2009).
    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2022-1. https://www.iucnredlist.org/species/22693190/117917038 (2022).Brown, D. et al. The Eurasian Curlew—the most pressing bird conservation priority in the UK? Br. Birds 108, 660–668 (2015).
    Google Scholar 
    Franks, S. E., Douglas, D. J. T., Gillings, S. & Pearce-Higgins, J. W. Environmental correlates of breeding abundance and population change of Eurasian Curlew Numenius arquata in Britain. Bird. Study 64, 393–409 (2017).
    Google Scholar 
    Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).
    Google Scholar 
    Clarke, J. A. Moonlight’s influence on predator/prey interactions between short-eared owls (Asio flammeus) and Deermice (Peromyscus maniculatus). Behav. Ecol. Sociobiol. 13, 205–209 (1983).
    Google Scholar 
    Mandelik, Y., Jones, M. & Dayan, T. Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol. Ecol. Res. 5, 501–515 (2003).
    Google Scholar 
    Alexander, R. D. The Evolution of Social Behavior | Annual Review of Ecology, Evolution, and Systematics. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).
    Google Scholar 
    Pulliam, H. R. On the advantages of flocking. J. Theor. Biol. 38, 419–422 (1973).CAS 

    Google Scholar 
    Barnard, C. J. Flock feeding and time budgets in the house sparrow (Passer domesticus L.). Anim. Behav. 28, 295–309 (1980).
    Google Scholar 
    Cooper, W. E. Jr. et al. Effects of risk, cost, and their interaction on optimal escape by nonrefuging Bonaire whiptail lizards, Cnemidophorus murinus. Behav. Ecol. 14, 288–293 (2003).
    Google Scholar 
    Lagos, P. A. et al. Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Can. J. Zool. 87, 1016–1023 (2009).
    Google Scholar 
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).
    Google Scholar 
    Tucker, V. A., Tucker, A. E., Akers, K. & Enderson, J. H. Curved flight paths and sideways vision in peregrine falcons (Falco peregrinus). J. Exp. Biol. 203, 3755–3763 (2000).CAS 

    Google Scholar 
    Carr, J. M. & Lima, S. L. Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight. Oecologia 174, 713–721 (2014).
    Google Scholar 
    van den Hout, P. J. & Martin, G. R. Extreme head-tilting in shorebirds: predator detection and sun avoidance. Wader Study Group Bull. 118, 18–21 (2011).
    Google Scholar 
    Ferguson, J. W. H., Galpin, J. S. & de Wet, M. J. Factors affecting the activity patterns of black-backed jackals Canis mesomelas. J. Zool. 214, 55–69 (1988).
    Google Scholar 
    Pyke, G. H. Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15, 523–575 (1984).
    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory. (Princeton University Press, 1986).Mouritsen, K. N. Predator avoidance in night-feeding dunlins calidris alpina: a matter of concealment. Ornis Scand. 23, 195–198 (1992).
    Google Scholar 
    Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manag. 67, 852–857 (2003).
    Google Scholar 
    Troscianko, J. OSpRad; an open-source, low-cost, high-sensitivity spectroradiometer (p. 2022.12.09.519768). bioRxiv https://doi.org/10.1101/2022.12.09.519768 (2022).Article 

    Google Scholar 
    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.4. http://florianhartig.github.io/DHARMa/ (2022).Core Team, R. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2022).
    Google Scholar  More

  • in

    Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica

    Siegert M, Ross N, Le Brocq A. Recent advances in understanding Antarctic subglacial lakes and hydrology. Philos Trans R Soc A-Math Phys Eng Sci. 2016;374:20140306.
    Google Scholar 
    Fricker H, Scambos T, Bindschadler R, Padman L. An active subglacial water system in West Antarctica mapped from space. Science. 2007;315:1544–8.CAS 

    Google Scholar 
    Livingstone S, Li Y, Rutishauser A, Sanderson R, Winter K, Mikucki J, et al. Subglacial lakes and their changing role in a warming climate. Nat Rev Earth Environ. 2022;3:106–24.
    Google Scholar 
    Tulaczyk S, Mikucki J, Siegfried M, Priscu J, Barcheck C, Beem L, et al. WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann Glaciol. 2014;55:51–8.
    Google Scholar 
    Priscu J, Achberger A, Cahoon J, Christner B, Edwards R, Jones W, et al. A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarctitc Sci. 2013;25:637–47.
    Google Scholar 
    Christner BC, Priscu JC, Achberger AM, Barbante C, Carter SP, Christianson K, et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature. 2014;512:310–3.CAS 

    Google Scholar 
    Michaud A, Dore J, Achberger A, Christner B, Mitchell A, Skidmore M, et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat Geosci. 2017;10:582–6.CAS 

    Google Scholar 
    Achberger A, Christner B, Michaud A, Priscu J, Skidmore M, Vick-Majors T, et al. Microbial community structure of Subglacial Lake Whillans, West Antarctica. Front Microbiol. 2016;7:1457.
    Google Scholar 
    Vick-Majors TJ, Mitchell AC, Achberger AM, Christner BC, Dore JE, Michaud AB, et al. Physiological ecology of microorganisms in Subglacial Lake Whillans. Front Microbiol. 2016;7:1705.
    Google Scholar 
    Vick‐Majors TJ, Michaud AB, Skidmore ML, Turetta C, Barbante C, Christner BC, et al. Biogeochemical connectivity between freshwater ecosystems beneath the West Antarctic Ice Sheet and the Sub‐Ice Marine Environment. Global Biogeochem Cycles. 2020;34:1–17.
    Google Scholar 
    Montross S, Skidmore M, Tranter M, Kivimaki A, Parkes R. A microbial driver of chemical weathering in glaciated systems. Geology. 2013;41:215–8.CAS 

    Google Scholar 
    Gill-Olivas B, Telling J, Tranter M, Skidmore M, Christner B, O’Doherty S, et al. Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica. Commun Earth Environ. 2021;2:1–12.
    Google Scholar 
    Priscu JC, Kalin J, Winans J, Campbell T, Siegfried MR, Skidmore M, et al. Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Ann Glaciol. 2021;62:340–52.
    Google Scholar 
    Fricker H, Scambos T. Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003-2008. J Glaciol. 2009;55:303–15.
    Google Scholar 
    Carter S, Fricker H, Siegfried M. Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica. J Glaciol. 2013;59:1147–62.
    Google Scholar 
    Venturelli RA, Boehman B, Davis C, Hawkings JR, Johnston SE, Gustafson CD, et al. Constraints on the timing and extent of deglacial grounding line retreat in West Antarctica from subglacial sediments. AGU Advances. 2022; (in review).Kingslake J, Scherer R, Albrecht T, Coenen J, Powell R, Reese R, et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature. 2018;558:430–4.CAS 

    Google Scholar 
    Venturelli RA, Siegfried MR, Roush KA, Li W, Burnett J, Zook R, et al. Mid-Holocene Grounding Line Retreat and Readvance at Whillans Ice Stream, West Antarctica. Geophys Res Lett. 2020;47:e2020GL088476.
    Google Scholar 
    Scherer R, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H, Kamb B. Pleistocene collapse of the West Antarctic ice sheet. Science. 1998;281:82–5.CAS 

    Google Scholar 
    Achberger A. Structure and functional potential of microbial communities in Subglacial Lake Whillans and at the Ross Ice Shelf Grounding Zone, West Antarctica: Louisiana State University; 2016.Blythe D, Duling D, Gibson D. Developing a hot-water drill system for the WISSARD project: 2. In situ water production. Ann Glaciol. 2014;55:298–310.
    Google Scholar 
    Burnett J, Rack FR, Blythe D, Swanson P, Duling D, Gibson D, et al. Developing a hot-water drill system for the WISSARD project: 3. Instrumentation and control systems. Ann Glaciol. 2014;55:303–10.
    Google Scholar 
    Rack F, Duling D, Blythe D, Burnett J, Gibson D, Roberts G, et al. Developing a hot-water drill system for the WISSARD project: 1. Basic drill system components and design. Ann Glaciol. 2014;55:285–97.
    Google Scholar 
    Michaud A, Vick-Majors T, Achberger A, Skidmore M, Christner B, Tranter M, et al. Environmentally clean access to Antarctic subglacial aquatic environments. Antarctic Sci. 2020;32:1–12.Kallmeyer J, Smith DC, Spivack AJ, D’Hondt S. New cell extraction procedure applied to deep subsurface sediments. Limnol Oceanogr Methods. 2008;6:236–45.
    Google Scholar 
    Pan D, Morono Y, Inagaki F, Takai K. An improved method for extracting viruses from sediment: detection of far more viruses in the subseafloor than previously reported. Front Microbiol. 2019;10:878.
    Google Scholar 
    Battin T, Wille A, Sattler B, Psenner R. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol. 2001;67:799–807.CAS 

    Google Scholar 
    Klock J-H, Wieland A, Seifert R, Michaelis W. Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Marine Biol. 2007;152:1077–85.CAS 

    Google Scholar 
    Miyatake T, Moerdijk-Poortvliet T, Stal L, Boschker H. Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ C-13 pulse-chase method. Limnol Oceanogr. 2014;59:1275–87.CAS 

    Google Scholar 
    Albalasmeh A, Berhe A, Ghezzehei T. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers. 2013;97:253–61.CAS 

    Google Scholar 
    Lerotic M, Mak R, Wirick S, Meirer F, Jacobsen C. MANTiS: a program for the analysis of X-ray spectromicroscopy data. J Synchrotron Radiat. 2014;21:1206–12.CAS 

    Google Scholar 
    Bonneville S, Delpomdor F, Preat A, Chevalier C, Araki T, Kazemian M, et al. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci Adv. 2020;6:eaax7599.CAS 

    Google Scholar 
    Le Guillou C, Bernard S, De la Pena F, Le Brech Y. XANES-based quantification of carbon functional group concentrations. Anal Chem. 2018;90:8379–86.
    Google Scholar 
    Solomon D, Lehmann J, Kinyangi J, Liang B, Heymann K, Dathe L, et al. Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference organic compounds. Soil Sci Soc Am J. 2009;73:1817–30.CAS 

    Google Scholar 
    Michaud A, Skidmore M, Mitchell A, Vick-Majors T, Barbante C, Turetta C, et al. Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology. 2016;44:347–50.CAS 

    Google Scholar 
    Raiswell R, Hawkings J, Eisenousy A, Death R, Tranter M, Wadham J. Iron in glacial systems: speciation, reactivity, freezing behavior, and alteration during transport. Front Earth Sci. 2018;6:222.
    Google Scholar 
    Hyacinthe C, Bonneville S, Van Cappellen P. Reactive iron(III) in sediments: Chemical versus microbial extractions. Geochimica Et Cosmochimica Acta. 2006;70:4166–80.CAS 

    Google Scholar 
    Raiswell R, Benning L, Tranter M, Tulaczyk S. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem Trans. 2008;9:7.
    Google Scholar 
    Raiswell R, Vu H, Brinza L, Benning L. The determination of labile Fe in ferrihydrite by ascorbic acid extraction: Methodology, dissolution kinetics and loss of solubility with age and de-watering. Chem Geol. 2010;278:70–9.CAS 

    Google Scholar 
    Fossing H, Jorgensen B. Measurement of bacterial sulfate reduction in sediments—evaluation of a single-step chromium reduction method. Biogeochemistry. 1989;8:205–22.CAS 

    Google Scholar 
    Cline J. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr. 1969;14:454.CAS 

    Google Scholar 
    Kallmeyer J, Ferdelman T, Weber A, Fossing H, Jorgensen B. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol Oceanogr Methods. 2004;2:171–80.
    Google Scholar 
    Roy H, Weber H, Tarpgaard I, Ferdelman T, Jorgensen B. Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive S-35 tracer. Limnol Oceanogr Methods. 2014;12:196–211.
    Google Scholar 
    Caporaso J, Lauber C, Walters W, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 

    Google Scholar 
    Button DK, Robertson BR. Determination of DNA content of aquatic bacteria by flow cytometry. Appl Environ Microbiol. 2001;67:1636–45.CAS 

    Google Scholar 
    Michaud AB, Priscu JC, the Salsa Science Team. Sediment oxygen consumption in Antarctic subglacial environments. Limnology and Oceanography. 2022. (In Review).Siegfried MR, Venturelli RA, Patterson MO, Arnuk W, Campbell TD, Gustafson CD, et al. The life and death of a subglacial lake in West Antarctica. Geology. 2023; in press; https://doi.org/10.1130/G50995.1.Vyse S, Herzschuh U, Pfalz G, Pestryakova L, Diekmann B, Nowaczyk N, et al. Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene: combining hydroacoustic profiling and down-core analyses. Biogeosciences. 2021;18:4791–816.CAS 

    Google Scholar 
    Oliva-Urcia B, Moreno A, Leunda M, Valero-Garces B, Gonzalez-Samperiz P, Gil-Romera G, et al. Last deglaciation and Holocene environmental change at high altitude in the Pyrenees: the geochemical and paleomagnetic record from Marbor, Lake (N Spain). J Paleolimnol. 2018;59:349–71.
    Google Scholar 
    Davis C. Ecology of subglacial lake microbial communities in West Antarctica: University of Florida; 2022.Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, et al. Bacteria beneath the West Antarctic ice sheet. Environ Microbiol. 2009;11:609–15.CAS 

    Google Scholar 
    Boyd E, Hamilton T, Havig J, Skidmore M, Shock E. Chemolithotrophic Primary Production in a Subglacial Ecosystem. Appl Environ Microbiol. 2014;80:6146–53.
    Google Scholar 
    Sattley WM, Madigan MT. Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol. 2006;72:5562–8.CAS 

    Google Scholar 
    Dieser M, Broemsen E, Cameron KA, King GM, Achberger A, Choquette K, et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J. 2014;8:2305–16.CAS 

    Google Scholar 
    Vaclavkova S, Schultz-Jensen N, Jacobsen O, Elberling B, Aamand J. Nitrate-controlled anaerobic oxidation of pyrite by thiobacillus cultures. Geomicrobiol J. 2015;32:412–9.CAS 

    Google Scholar 
    Gustafson C, Key K, Siegfried M, Winberry J, Fricker H, Venturelli R, et al. A dynamic saline groundwater system mapped beneath an Antarctic ice stream. Science. 2022;376:640–4.CAS 

    Google Scholar 
    Priscu JC, Tulaczyk S, Studinger M, Kennicutt M, Christner BC, Foreman CM. Antarctic subglacial water: origin, evolution and ecology. Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems Oxford University Press, Oxford. 2008:119–35.Whitman W, Coleman D, Wiebe W. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 1998;95:6578–83.CAS 

    Google Scholar 
    Scherer R. Quaternary and tertiary microfossils from beneath Ice Stream-B—evidence for a dynamic West Antarctic ice-sheet history. Global Planet Change. 1991;90:395–412.
    Google Scholar 
    Haran T, Bohlander J, Scambos T, Painter T, Fahnestock M. MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map, Version 2. 2021; Boulder, Colorado USA NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/4ZL43A4619AF.Mouginot J, Rignot E, Scheuchl B. Continent‐Wide Interferometric SAR Phase Mapping of Antarctic Ice Velocity. Geophysical Research Letters. 2019;46:9710–8. https://doi.org/10.1029/2019GL083826.Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Ligtenberg SRM, van den Broeke MR, et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature. 2013;502:89–92. https://doi.org/10.1038/nature12567. More

  • in

    Coral reef structural complexity loss exposes coastlines to waves

    Ecological sampling and structural complexity profilesThe ecological sampling consists of 10 surveys, taking place in 2005 and from 2008 to 2016, and documents changes in coral colony abundance and size distributions (i.e. width, length, and height) for the three most conspicuous taxa (i.e. Acropora, Pocillopora, and Porites) within a 10 m2 transect on the outer slope23. To quantify reef structural complexity, we built a 3D model of the coral assemblages distributed along a cross-section of the reef substrate separating the 20 m water depth from the reef crest, representing a 160 m stretch along the reef slope (Fig. 1). First, we take 200 overlapping high-resolution photos (300 dpi) of 10 individual corals from each species (i.e. n = 30 coral colonies) and built 3D models using the Agisoft Metashape software24, capturing intra- and inter-species morphological variability (Fig. 1). Then, we systematically and randomly select one of the ten 3D coral models for each taxon to add to the substrate until that the sum of the planar area for each 3D coral models match with the coral cover reported for each taxon and for each year23. We randomly place coral colonies along the 160 m reef cross-section going from 20 m depth to the reef crest (Fig. 1). The individual coral 3D models are resized in width, length, and height according to ecological surveys, and, randomly rotated between − π/2 and π/2 to ensure ecological variability. Finally, we estimated structural complexity of the 3D coral assemblage model using the function rumple_index of the LidR package25 in R 4.0.026. We repeat this approach 100 times for each year, resulting in a total of 1000 reef structural complexity profiles. Our estimates are consistent with previous reef structural complexity estimates at this location27.Figure 1(a) Representation of the three different coral species (Acropora hyacinthus in red, Pocillopora cf. verrucosa in yellow, and Porites lutea in blue). (b) A representaitive Ha’apiti reef cross-section simulation (one of 1000 total simulations) on the outer slope across a water depth range of 0–20 m.Full size imageHydrodynamic and topographic measurementsMo’orea (French Polynesia) is encircled by coral reefs, 500–700 m wide with a dominant swell direction coming from the southwest. In this study, we focus on Ha’apiti, a site with a southwest orientation that is considered as a high-energy site28. We extract 30-year offshore wave data (1980–2010) from a wave hindcast8,29 (Fig. 2a). We also collect high-frequency, in situ wave data using INW PT2X Aquistar and DHI SensorONE pressure transducers (PTs), which are logged at 4 Hz30. The sensors are installed at four locations along a cross-shelf gradient (Fig. 2b,c) covering a 250 m long stretch, including sections through the fore reef, reef crest, and reef flat. Pressure records are corrected for pressure attenuation with depth31 and are split into 15-min bursts30.Figure 2(a) Histogram of the offshore wave height (m) at Ha’apiti, Mo’orea (French Polynesia) in 2016. (b) Aerial view of Ha’apiti (WorldView-3 imagery) with an outline of the wave transect and sensor location. The ecological sampling took place near the S1 location c. Topographic cross-section of the wave transect and position of the sensors on the sea bottom.Full size imageThe beach profile and the reef morphology are measured using airborne bathymetric and topo-bathymetric lidar surveys conducted in June 2015 by the Service Hydrographique & Océanographique de la Marine (SHOM). The bathymetric data are defined by the combination of bathymetric laser (for the submerged part of the beach) and topo-bathymetric laser (for the subaerial beach). The data come at 1 m resolution and are available at https://diffusion.shom.fr.Hydraulic roughness vs structural complexitySpectral attenuation analysis of the water level measurements32,33 is used to estimate the Nikuradse (hydraulic; kn) roughness34 of the coral reef surface along the beach profile sections covered by the pressure transducers. The method is described in detail in the references provided above and uses the conservation of energy equations to obtain estimates of wave energy dissipation from friction. We obtain more than 300 kn estimates for each pair of sensors, each representing a different geomorphologic section. Since the field measurements took place in 2015, the kn outputs obtained from the fore reef section concur with the reef structural complexity estimates of that year (Fig. 3). Then, we define a coefficient factor according to the geomorphologic section as ⍺back reef = kn, back reef/kn, fore reef and ⍺reef crest = kn, reef crest/kn, fore reef. We carefully delineate the sandy section from the reef sections within the cross-shelf gradient (i.e. within the reef flat, lagoon section) and apply the following procedure. First, for the reef sections, we apply the relationship between the reef structural complexity and kn (Fig. 3) to convert our reef structural complexity estimates into continuous kn profiles through Monte Carlo simulations, using the coefficient factor of each geomorphologic section (e.g., forereef, reef crest, and back reef). Second, for the sandy section, we define kn on the grounds of the mean grain size (d50 = 63 μm). Applying this workflow (Fig. 3), we obtain 100 continuous kn profiles for each year (i.e. n = 1000 kn profiles in total).Figure 3Flow chart illustrating how the kn profiles have been obtained along the cross-section at Ha’apiti. The relationship between the Structural complexity (SC) and the Nikuradse roughness (kn) measurements can be described as kn = 0.01 × SC2.98.Full size imageHydrodynamic modelNearshore wave propagation is simulated using a nonlinear wave model based on the Boussinesq Equations35. The rationale of using a Boussinesq type model instead of other types of models (e.g. SWAN) is that the former is able to describe in detail (i.e. 1 m grid resolution) several hydrodynamic parameters (e.g. nearshore nonlinear wave propagation, shoaling, refraction, dissipation due to the bottom friction and breaking and run-up) in the swash zone. The model is defined as follows:$$frac{partial U}{partial t}+frac{1}{h}frac{partial {M}_{u}}{partial x}-frac{1}{h}Ufrac{partial left(Uhright)}{partial x}+gfrac{partialupzeta }{partial x}=frac{left({d}^{2}+2partialupzeta right)}{3}frac{{partial }^{3}U}{partial {x}^{2}partial t}+{d}_{x}hfrac{{partial }^{2}U}{partial xpartial t}+frac{{partial }^{2}}{3}left(Ufrac{{partial }^{3}U}{{partial x}^{3}}-frac{partial U}{partial x}frac{{partial }^{2}U}{partial {x}^{2}}right)+dfrac{partialupzeta }{partial mathrm{x}}frac{{partial }^{2}U}{partialupzeta partial mathrm{t}}+d{d}_{x}Ufrac{{partial }^{2}U}{partial {x}^{2}}+{d}_{x}frac{partialupzeta }{partial mathrm{x}}frac{partial mathrm{U}}{partial mathrm{t}}-dfrac{{partial }^{2}}{partial mathrm{x}partial mathrm{t}}left(delta frac{partial mathrm{U}}{partial mathrm{x}}right)+E-frac{{tau }_{b}}{rho h}+B{d}^{2}left(frac{{partial }^{3}U}{partial {x}^{2}}+gfrac{{partial }^{3}upzeta }{partial {x}^{3}}+frac{{partial }^{2}left(Ufrac{partial U}{partial x}right)}{partial {x}^{2}}right)+2Bd{d}_{x}left(frac{{partial }^{2}U}{partial xpartial t}+gfrac{{partial }^{2}upzeta }{partial {mathrm{x}}^{2}}right),$$
    (1)
    where, U is the mean over the depth horizontal velocity, ζ is the surface elevation, d is the water depth, uo is the near bottom velocity, h = d + ζ, ({M}_{u}=left(d+zeta right){u}_{0}^{2}+delta ({c}^{2}-{u}_{0}^{2})), δ is the roller thickness determined geometrically36, E is an eddy viscosity, τb is the bed friction term and B = 1/1535.In this work the wave breaking mechanism is based on the surface roller concept36. However, in the swash zone, surface roller is not present and the eddy viscosity concept is used to describe the breaking process. The term E in Eq. (1) is written:$${mathrm{E}}_{{mathrm{b}}_{mathrm{x}}}= {mathrm{B}}_{mathrm{b}}frac{1}{mathrm{h}+upeta }{left{{{mathrm{v}}_{e}left[left(mathrm{h}+upeta right)mathrm{U}right]}_{mathrm{x}}right}}_{mathrm{x}},$$
    (2)
    where ({v}_{e}) is the eddy viscosity coefficient:$${mathrm{v}}_{mathrm{e}}={{ell}}^{2}left|frac{partial {mathrm{U}}}{partial {mathrm{x}}}right|,$$
    (3)
    where ({ell}) is the mixing length ({ell}) = 3.5 h και Βb37.The width of the swash zone is assumed to extend from the run-down point (seaward boundary) up to the run-up point (landward boundary). We start from a first estimate of the run-up R using the Stockdon formula38 and the depths below R/4 are considered as the swash zone, using Eq. (2). The final wave run-up height R which comes as output is estimated by the model.The ‘dry bed’ boundary condition is used to simulate run-up35. The numerical solution is based on the fourth-order time predictor–corrector scheme39. Therefore, the bed friction term τb is calculated such as:$${tau }_{bx}=frac{1}{2}rho {f}_{w}Uleft|Uright|,$$
    (4)
    where fw is the bottom friction coefficient40, which is an explicit approximation to the implicit, semi-empirical formula given by Jonsson, 196741.$${f}_{mathrm{w}}=mathrm{exp}left[{5.213left(frac{{mathrm{k}}_{mathrm{n}}}{{mathrm{alpha }}_{0}}right)}^{0.194}-5.977right],$$
    (5)
    where αo is the amplitude of the near-bed wave orbital motion and kn is the Nikuradse roughness height.Simulations and post processingWe use our wave propagation model to assess how different coral reef states affect the impact waves have on the coast. We run an ensemble of 10,000 simulations that covers all the possible combinations of (i) 10 bottom roughness profiles expressing the different observed coral reef states (i.e. healthy vs. not unhealthy); and (ii) 1000 percentiles of wave conditions. The wave conditions are produced as follows: (i) from the weekly values, we estimate all significant wave height (Hs) percentiles from 0.1 to 100, with a step of 0.1; (ii) the resulting 1000 Hs values are linked to the corresponding peak wave period Tp using a copula expressing the dependence of the two variables42. The output of the simulations is the nearshore Hs and 2% exceedance run-up (R2%) height for each of the 1000 conditions and 10 coral reef states. To quantify how the coral reef states are altering wave propagation during extreme events, we apply extreme value analysis to estimate the R2% for different return periods43. We then compare how the return period curves changed from the two coral reef states and we define the change in frequency of extreme R2% under unhealthy coral reefs. It is important to highlight that the tidal range is  More

  • in

    Mapping the Amazon’s fish under threat

    When I first came to the Amazon from central Brazil in 1978, I was planning to stay just a year, but I was mesmerized by the size of the rainforest’s rivers and its biodiversity. I ended up staying longer and earned my master’s degree in aquatic biology in 1984 from the National Institute for Amazonian Research (INPA), in Manaus, Brazil. I then went to get my PhD in ecology and evolutionary biology at the University of Arizona in Tucson, and returned to Manaus in 1998 to work as an ichthyologist at INPA.I was part of the team that started INPA’s fish collection in 1978. At the time, most scientific information on Amazonian fish, including specimens, had been collected by researchers and stored at other institutions around the world. Brazilians couldn’t easily access any of it. Now, INPA has preserved and catalogued more than 600,000 fish, all of which are available to our graduate students and scientific community.
    Women in science
    This picture, from last June, was taken at a Manicoré River creek in northwest Brazil during a Greenpeace expedition. I’m holding a bag of small fish, collected using sieves.Since 2006, the riverside communities on the Manicoré have been advocating for a reserve to protect their land from non-sustainable practices. They asked Greenpeace to help map the area’s biodiversity to bolster their application. Greenpeace in turn invited INPA researchers for its mapping expedition. We spent 20 days collecting and registering the wide range of creatures in the Manicoré’s basins.Besides fires, the Amazon has been hit hard by deforestation and industrial activities. We registered a decline in populations of several fish species after the construction of the hydroelectric complex of Belo Monte — the second- largest in the world — in the Xingu River. These species can thrive only in the oxygenated environment of running rivers and waterfalls, which have been largely destroyed. More

  • in

    Natural hybridization reduces vulnerability to climate change

    Ackerly, D. D. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164, S165–S184 (2003).Article 

    Google Scholar 
    Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).Article 
    CAS 

    Google Scholar 
    Hansen, M. M., Olivieri, I., Waller, D. M. & Nielsen, E. E. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 21, 1311–1329 (2012).Article 

    Google Scholar 
    Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).Article 

    Google Scholar 
    Becker, M. et al. Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nat. Clim. Change 3, 1039–1043 (2013).Article 

    Google Scholar 
    Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).Article 

    Google Scholar 
    Todesco, M. et al. Hybridization and extinction. Evol. Appl. 9, 892–908 (2016).Article 
    CAS 

    Google Scholar 
    Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).Article 

    Google Scholar 
    Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).Article 

    Google Scholar 
    vonHoldt, B. M., Brzeski, K. E., Wilcove, D. S. & Rutledge, L. Y. Redefining the role of admixture and genomics in species conservation. Conserv. Lett. 11, e12371 (2018).Article 

    Google Scholar 
    Hamilton, J. A. & Miller, J. M. Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv. Biol. 30, 33–41 (2016).Article 

    Google Scholar 
    Ralls, K., Sunnucks, P., Lacy, R. C. & Frankham, R. Genetic rescue: a critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 251, 108784 (2020).Article 

    Google Scholar 
    Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal) adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    Rellstab, C., Dauphin, B. & Exposito‐Alonso, M. Prospects and limitations of genomic offset in conservation management. Evol. Appl. 14, 1202–1212 (2021).Article 

    Google Scholar 
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).Article 
    CAS 

    Google Scholar 
    Rellstab, C. et al. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol. 25, 5907–5924 (2016).Article 

    Google Scholar 
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).Article 

    Google Scholar 
    Exposito-Alonso, M. et al. Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nat. Ecol. Evol. 2, 352–358 (2018).Article 

    Google Scholar 
    Kindt, R. AlleleShift: an R package to predict and visualize population-level changes in allele frequencies in response to climate change. PeerJ 9, e11534 (2021).Article 

    Google Scholar 
    Gain, C. & François, O. LEA 3: factor models in population genetics and ecological genomics with R. Mol. Ecol. Resour. 21, 2738–2748 (2020).Article 

    Google Scholar 
    Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol. 5, 1350–1360 (2021).Article 

    Google Scholar 
    Taylor, S. A., Larson, E. L. & Harrison, R. G. Hybrid zones: windows on climate change. Trends Ecol. Evol. 30, 398–406 (2015).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).Article 
    CAS 

    Google Scholar 
    McGuigan, K., Franklin, C. E., Moritz, C. & Blows, M. W. Adaptation of rainbow fish to lake and stream habitats. Evolution 57, 104–118 (2003).
    Google Scholar 
    Smith, S., Bernatchez, L. & Beheregaray, L. RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics 14, 375 (2013).Article 
    CAS 

    Google Scholar 
    Smith, S. et al. Latitudinal variation in climate‐associated genes imperils range edge populations. Mol. Ecol. 29, 4337–4349 (2020).Article 
    CAS 

    Google Scholar 
    Sandoval-Castillo, J. et al. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proc. Natl Acad. Sci. USA 117, 17112–17121 (2020).Article 
    CAS 

    Google Scholar 
    Brauer, C., Unmack, P. J., Smith, S., Bernatchez, L. & Beheregaray, L. B. On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Mol. Ecol. 27, 3484–3497 (2018).Article 
    CAS 

    Google Scholar 
    Attard, C. R. et al. Fish out of water: genomic insights into persistence of rainbowfish populations in the desert. Evolution 76, 171–183 (2022).Article 

    Google Scholar 
    Gates, K. et al. Environmental selection, rather than neutral processes, best explain patterns of diversity in a tropical rainforest fish. Preprint at bioRxiv https://doi.org/10.1101/2022.1105.1113.491913 (2022).Article 

    Google Scholar 
    McCairns, R. J. S., Smith, S., Sasaki, M., Bernatchez, L. & Beheregaray, L. B. The adaptive potential of subtropical rainbowfish in the face of climate change: heritability and heritable plasticity for the expression of candidate genes. Evol. Appl. 9, 531–545 (2016).Article 
    CAS 

    Google Scholar 
    McGuigan, K., Zhu, D., Allen, G. & Moritz, C. Phylogenetic relationships and historical biogeography of melanotaeniid fishes in Australia and New Guinea. Mar. Freshwat. Res. 51, 713–723 (2000).Article 

    Google Scholar 
    Unmack, P. J. et al. Malanda Gold: the tale of a unique rainbowfish from the Atherton Tablelands, now on the verge of extinction. Fish. Sahul. 30, 1039–1054 (2016).
    Google Scholar 
    Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 51, 238–254 (2002).Article 

    Google Scholar 
    Pope, L., Estoup, A. & Moritz, C. Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellites. Mol. Ecol. 9, 2041–2053 (2000).Article 
    CAS 

    Google Scholar 
    Hugall, A., Moritz, C., Moussalli, A. & Stanisic, J. Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc. Natl Acad. Sci. USA 99, 6112–6117 (2002).Article 
    CAS 

    Google Scholar 
    Moritz, C. et al. Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc. R. Soc. B. 276, 1235–1244 (2009).Article 
    CAS 

    Google Scholar 
    Phillips, B. L., Baird, S. J. & Moritz, C. When vicars meet: a narrow contact zone between morphologically cryptic phylogeographic lineages of the rainforest skink, Carlia rubrigularis. Evolution 58, 1536–1548 (2004).
    Google Scholar 
    Krosch, M. N., Baker, A. M., Mckie, B. G., Mather, P. B. & Cranston, P. S. Deeply divergent mitochondrial lineages reveal patterns of local endemism in chironomids of the Australian Wet Tropics. Austral Ecol. 34, 317–328 (2009).Article 

    Google Scholar 
    Williams, S. E., Bolitho, E. E. & Fox, S. Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. R. Soc. B. 270, 1887–1892 (2003).Article 

    Google Scholar 
    Whitehead, P. et al. Temporal development of the Atherton Basalt Province, north Queensland. Aust. J. Earth Sci. 54, 691–709 (2007).Article 
    CAS 

    Google Scholar 
    Moy, K. G., Unmack, P. J., Lintermans, M., Duncan, R. P. & Brown, C. Barriers to hybridisation and their conservation implications for a highly threatened Australian fish species. Ethology 125, 142–152 (2019).Article 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article 
    CAS 

    Google Scholar 
    Buerkle, C. A. Maximum‐likelihood estimation of a hybrid index based on molecular markers. Mol. Ecol. Notes 5, 684–687 (2005).Article 
    CAS 

    Google Scholar 
    Anderson, E. & Thompson, E. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217–1229 (2002).Article 
    CAS 

    Google Scholar 
    Dorion, S. & Landry, J. Activation of the mitogen-activated protein kinase pathways by heat shock. Cell Stress Chaperones 7, 200 (2002).Article 
    CAS 

    Google Scholar 
    Blumstein, M. et al. Protocol for projecting allele frequency change under future climate change at adaptive-associated loci. STAR Protoc. 1, 100061 (2020).Article 

    Google Scholar 
    Gougherty, A. V., Keller, S. R. & Fitzpatrick, M. C. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nat. Clim. Change 11, 166–171 (2021).Article 

    Google Scholar 
    Blumstein, M. et al. A new perspective on ecological prediction reveals limits to climate adaptation in a temperate tree species. Curr. Biol. 30, 1447–1453. e1444 (2020).Article 
    CAS 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).Article 
    CAS 

    Google Scholar 
    Goicoechea, P. G. et al. Adaptive introgression promotes fast adaptation in oaks marginal populations. Preprint available at bioRxiv https://doi.org/10.1101/731919 (2019).Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl Acad. Sci. USA 104, 3883–3888 (2007).Article 
    CAS 

    Google Scholar 
    De Carvalho, D. et al. Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree. Mol. Ecol. 19, 1638–1650 (2010).Article 

    Google Scholar 
    De-Kayne, R. et al. Genomic architecture of adaptive radiation and hybridization in Alpine whitefish. Nat. Commun. 13, 4479 (2022).Article 
    CAS 

    Google Scholar 
    Baskett, M. L. & Gomulkiewicz, R. Introgressive hybridization as a mechanism for species rescue. Theor. Ecol. 4, 223–239 (2011).Article 

    Google Scholar 
    Meier, J. I. et al. The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes. Nat. Commun. 10, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    Svardal, H. et al. Ancestral hybridization facilitated species diversification in the Lake Malawi cichlid fish adaptive radiation. Mol. Biol. Evol. 37, 1100–1113 (2020).Article 
    CAS 

    Google Scholar 
    Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16, 359–371 (2015).Article 
    CAS 

    Google Scholar 
    Jeong, C. et al. Admixture facilitates genetic adaptations to high altitude in Tibet. Nat. Commun. 5, 1–7 (2014).Article 

    Google Scholar 
    Nolte, A. W., Freyhof, J., Stemshorn, K. C. & Tautz, D. An invasive lineage of sculpins, Cottus sp. (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proc. R. Soc. B. 272, 2379–2387 (2005).Article 

    Google Scholar 
    Fitzpatrick, M. C., Chhatre, V. E., Soolanayakanahally, R. Y. & Keller, S. R. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Mol. Ecol. Resour. 21, 2749–2765 (2021).Article 
    CAS 

    Google Scholar 
    Schneider, C., Cunningham, M. & Moritz, C. Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia. Mol. Ecol. 7, 487–498 (1998).Article 

    Google Scholar 
    Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).Article 

    Google Scholar 
    Pfennig, K. S., Kelly, A. L. & Pierce, A. A. Hybridization as a facilitator of species range expansion. Proc. R. Soc. B. 283, 20161329 (2016).Article 

    Google Scholar 
    Soulé, M. E. What is conservation biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. Bioscience 35, 727–734 (1985).
    Google Scholar 
    Biermann, C. & Havlick, D. Genetics and the question of purity in cutthroat trout restoration. Restor. Ecol. 29, e13516 (2021).Article 

    Google Scholar 
    Fredrickson, R. J. & Hedrick, P. W. Dynamics of hybridization and introgression in red wolves and coyotes. Conserv. Biol. 20, 1272–1283 (2006).Article 

    Google Scholar 
    Hirashiki, C., Kareiva, P. & Marvier, M. Concern over hybridization risks should not preclude conservation interventions. Conserv. Sci. Pract. 3, e424 (2021).
    Google Scholar 
    Unmack, P. J., Allen, G. R. & Johnson, J. B. Phylogeny and biogeography of rainbowfishes (Melanotaeniidae) from Australia and New Guinea. Mol. Phylogenet. Evol. 67, 15–27 (2013).Article 

    Google Scholar 
    Allen, G. Rainbowfishes in Nature and the Aquarium (Tetra Publications, 1995).Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).Article 

    Google Scholar 
    Pusey, B., Kennard, M. J. & Arthington, A. H. Freshwater Fishes of North-eastern Australia (CSIRO Publishing, 2004).Zhu, D., Degnan, S. & Moritz, C. Evolutionary distinctiveness and status of the endangered Lake Eacham rainbowfish (Melanotaenia eachamensis). Conserv. Biol. 12, 80–93 (1998).Article 

    Google Scholar 
    McGuigan, K., Chenoweth, S. F. & Blows, M. W. Phenotypic divergence along lines of genetic variance. Am. Nat. 165, 32–43 (2005).Article 

    Google Scholar 
    Sunnucks, P. & Hales, D. F. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13, 510–524 (1996).Article 
    CAS 

    Google Scholar 
    Peterson, B., Weber, J., Kay, E., Fisher, H. & Hoekstra, H. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).Article 
    CAS 

    Google Scholar 
    Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. H. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet. 1, 171–182 (2011).Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).Article 
    CAS 

    Google Scholar 
    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).Article 
    CAS 

    Google Scholar 
    Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).Article 

    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F‐statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Bailey, R. ribailey/gghybrid: gghybrid R package for Bayesian hybrid index and genomic cline estimation. v2.0.0 https://doi.org/10.5281/zenodo.3676498 (2020).Wringe, B. hybriddetective: automates the process of detecting hybrids from genetic data. R package version 0.1.0.9000 https://github.com/bwringe/hybriddetective (2016).Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).Article 
    CAS 

    Google Scholar 
    Malinsky, M., Matschiner, M. & Svardal, H. Dsuite‐Fast D‐statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).Article 

    Google Scholar 
    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article 
    CAS 

    Google Scholar 
    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).Article 
    CAS 

    Google Scholar 
    Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).Article 
    CAS 

    Google Scholar 
    Malinsky, M. et al. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350, 1493–1498 (2015).Article 
    CAS 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
    CAS 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    Karger, D. N. et al. CHELSA climatologies at high resolution for the Earth’s land surface areas (v.1.0). https://doi.org/10.1594/WDCC/CHELSA_v1 (2016).Ackerley, D. & Dommenget, D. Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures. Geosci. Model Dev. 9, 2077–2098 (2016).Article 

    Google Scholar 
    Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim: high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 1–9 (2018).Article 

    Google Scholar 
    Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21,000 years at regional and global scales. Ecography 40, 1348–1358 (2017).Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    Lemus-Canovas, M., Lopez-Bustins, J. A., Martin-Vide, J. & Royé, D. synoptReg: an R package for computing a synoptic climate classification and a spatial regionalization of environmental data. Environ. Model. Softw. 118, 114–119 (2019).Article 

    Google Scholar 
    Hao, T., Elith, J., Guillera‐Arroita, G. & Lahoz‐Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25, 839–852 (2019).Article 

    Google Scholar 
    Galpern, P., Peres‐Neto, P. R., Polfus, J. & Manseau, M. MEMGENE: spatial pattern detection in genetic distance data. Methods Ecol. Evol. 5, 1116–1120 (2014).Article 

    Google Scholar 
    Peres‐Neto, P. R. & Galpern, P. memgene: spatial pattern detection in genetic distance data using Moran’s eigenvector maps. R package version 1.0.1 https://cran.r-project.org/web/packages/memgene/ (2019).Oksanen, J. et al. vegan: community ecology package. R package version 2.3–0 https://cran.r-project.org/web/packages/vegan/ (2015).Forester, B. R., Jones, M. R., Joost, S., Landguth, E. L. & Lasky, J. R. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol. Ecol. 25, 104–120 (2015).Article 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).Article 
    CAS 

    Google Scholar 
    Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).Article 
    CAS 

    Google Scholar 
    Brauer, C. J. et al. Data for ‘Natural hybridisation reduces vulnerability to climate change’. figshare https://doi.org/10.6084/m9.figshare.21692918 (2022).Brauer, C. J. et al. Code for ‘Natural hybridisation reduces vulnerability to climate change’. GitHub https://github.com/pygmyperch/NER (2022). More

  • in

    Global vegetation resilience linked to water availability and variability

    Vegetation and land-cover dataTo monitor vegetation at the global scale, we use three datasets: (1) vegetation optical depth (VOD, 0.25°, Ku-Band, daily 1987–201723) (Fig. 1A), (2) AVHRR GIMMSv3g normalized difference vegetation index (NDVI, 1/12°, bi-weekly 1981–201524) (Fig. 1B), and (3) MODIS MOD13 NDVI at 0.05° (16-day, 2000–202125). We correct for spurious values in the NDVI data (e.g., cloud contamination) using the method of Chen et al.43. We resample the VOD data using bi-weekly medians to agree with the NDVI data time sampling.For all three vegetation datasets, we remove seasonality and long-term trends using seasonal trend decomposition by Loess4,44 based on the proposed optimal parameters listed in Cleveland et al.44 (code available on Zenodo45). That is, we use a period of 24 (bi-monthly, 1 year), 47 for the trend smoother (just under 2 years) and 25 for low-pass (just over 1 year). We only use the STL residual—the de-seasoned and de-trended NDVI and VOD time series—in our analysis.To contextualize our understanding of vegetation resilience, we use MODIS MCD12Q1 land cover46 (Fig. 1C) as well as a global average aridity index based on WorldCLIM data31 (Fig. 1D). We exclude from our analysis anthropogenic and non-vegetated landscapes (e.g., permanent snow and ice, desert, urban), as well as any land covers which have changed (e.g., forest to grassland) during the period 2001–2020.Precipitation data and variability metricsTo measure precipitation at the global scale, we rely upon ERA5 data (~30 km, monthly, 1981–2021)33. We process global-scale precipitation metrics using the Google Earth Engine47 platform. We further use the sum of soil moisture from the surface down to 28 cm of depth (first two layers of the ECMWF Integrated Forecasting System soil moisture estimates) to quantify soil moisture means and inter-annual variability33.It is well-documented that vegetation resilience is responsive to the MAP of certain regions1. However, the role of precipitation variability in controlling vegetation resilience has not been well-studied. Here we examine precipitation variability in terms of both intra- and inter-annual patterns. Intra-annual precipitation variability is determined in terms of the Walsh-Lawler Seasonality index32 (Fig. 1D), calculated using monthly data from ERA533.Partly due to the fact that precipitation is non-negative, simple inter-annual variability metrics such as the standard deviation of annual precipitation sums are biased by the absolute precipitation sums; higher precipitation regions have a higher possible range of variability. To limit the influence of MAP, we hence investigate the standard deviation of annual precipitation sums normalized by the MAP, over the period 1981–2021, based on ERA5 data33 (Fig. 1F). We motivate our normalization by MAP with the strong linear relationship between MAP and MAP standard deviation (Supplementary Fig. S2). We further confirm our discovered relationships (Fig. 5) using only those regions where MAP was between the 40 and 60th percentile of MAP for a given land cover (Supplementary Figs. S11,S12). This serves as an additional check that our normalization of MAP standard deviation by MAP does not bias the inferred relationship between vegetation resilience and precipitation variability. Similarly, we generate a normalized inter-annual soil moisture variability by normalizing year-on-year soil moisture standard deviation (Supplementary Fig. S8) by long-term mean soil moisture (Supplementary Fig. S5).Empirical resilience estimationResilience is defined as the ability of a system to recover from perturbations, and can be quantified empirically by the speed of recovery to the previous state16,17. To measure resilience on the global scale, we employ a recently introduced methodology4 which we will briefly summarize in the following.We first identify sharp transitions in the vegetation time series using an 18-point (9 month) moving window to define local slopes throughout the time series48. We then identify slopes above the 99th percentile, and define connected regions as individual perturbations. The highest peak (largest instantaneous slope) within each connected region is then labeled as an individual disturbance.The employed approach does not delineate every rapid transition in a time series due to our reliance on percentiles; our dataset will be inherently biased towards the largest transitions. Furthermore, the same transitions are not guaranteed to be captured for both NDVI and VOD data in each location, as the percentiles will naturally vary between the datasets. Finally, our method will in some cases produce false positives, especially in cases where a given time series does not have any significant rapid transitions. To limit the influence of false positives on our results, we discard any perturbations where the time series does not drop significantly, and where the period before and after a given transition does not pass a two-sample Kolmogorov–Smirnov test4.Finally, using our global set of time-series transitions, we can identify each local vegetation (NDVI or VOD) minima, and use the five following years of data to fit an exponential function to the residual time series, assuming that the recovery after a perturbation to a vegetation state x0 follows approximately the equation$$x(t),approx ,{x}_{0}{e}^{rt}$$
    (1)
    where x(t) denotes the vegetation state at time t after the perturbation. Negative r indicates that the vegetation system will return to the original stable state at rate ∣r∣. For positive r, the initial perturbation would be amplified, suggesting a non-resilient vegetation state. Our empirical recovery rates are defined as the fitted exponent r, obtained for each detected transition in the NDVI and VOD residual time series. We finally use the coefficient of determination R2 to remove instances where the fitted exponential poorly matches the underlying data4.For the empirical estimate of the restoring rate obtained from fitting an exponential to the recovery after an abrupt negative deviation of VOD or NDVI, abrupt changes in the mean state induced by changing sensors rather than an actual vegetation shift may impact the results. However, all datasets used here are tightly cross-calibrated to eliminate mean-shifts when new instruments are introduced23,24. It is therefore unlikely that changes in the instrumentation of the various datasets unduly influence our empirical estimates of λ.Dynamical system metrics of resilienceThe lag-one autocorrelation (AC1) has previously been proposed to measure the stability of real-world dynamical systems in general, and the resilience of vegetation systems in particular1,19,20,21,49. Based on the concept of critical slowing down, the AC1 has, together with the variance, also been suggested as an early-warning indicator for forthcoming critical transitions50,51. Mathematically, the suitability of the variance and AC1 as resilience measures and early-warning indicators can be motivated as follows4,52,53. First, linearize the system around a given stable state x*:$$dbar{x}=lambda bar{x}dt+sigma dW$$
    (2)
    for (bar{x}: !!=x-{x}^{*}), assuming a Wiener Process W with standard deviation σ. The dynamics are stable for λ  More