Intraspecific differences in the invasion success of the Argentine ant Linepithema humile Mayr are associated with diet breadth
1.
Abril, S. & Gómez, C. Aggressive behaviour of the two European Argentine ant supercolonies (Hymenoptera: Formicidae) towards displaced native ant species of the northeastern Iberian Peninsula. Myrmecol. News 14, 99–106 (2010).
Google Scholar
2.
Blight, O. et al. Differences in behavioural traits among native and introduced colonies of an invasive ant. Biol. Invasions 19, 1389–1398 (2017).
Article Google Scholar
3.
Jun, G., Wei, D., Qiong, W. & Hong-liang, L. Thermal tolerance for two cohorts of a native and an invasive freshwater turtle species. Acta Herpetol. 13, 83–88 (2018).
Google Scholar
4.
Jackson, M. C. & Britton, J. R. Divergence in the trophic niche of sympatric freshwater invaders. Biol. Invasions 16, 1095–1103 (2014).
Article Google Scholar
5.
Pettitt-Wade, H., Wellband, K. W., Heath, D. D. & Fisk, A. T. Niche plasticity in invasive fishes in the Great Lakes. Biol. Invasions 17, 2565–2580 (2015).
Article Google Scholar
6.
Pyšek, P. & Richardson, D. M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 35, 25–55 (2010).
Article Google Scholar
7.
Cadotte, M. W., Murray, B. R. & Lovett-Doust, J. Ecological patterns and biological invasions: Using regional species inventories in macroecology. Biol. Invasions 8, 809–821 (2006).
Article Google Scholar
8.
Pyšek, P. & Richardson, D. M. Traits associated with invasiveness in alien plants: Where do we stand?. Biol. Invasions 193, 97–125 (2007).
Article Google Scholar
9.
Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman Group, London, 1996).
Google Scholar
10.
Lowe, S., Browne, S., Boudjelas, M. S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection From The Global Invasive Species Database. Encyclopedia of Biological Invasions vol. 12 (Invasive Species Specialist Group, 2000).
11.
Suarez, A. V., Holway, D. A. & Case, T. J. Patterns of spread in biological invasions dominated by long-distance jump dispersal: Insights from Argentine ants. Proc. Natl. Acad. Sci. U.S.A. 98, 1095–1100 (2001).
ADS CAS PubMed PubMed Central Article Google Scholar
12.
Roura-Pascual, N. et al. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc. Natl. Acad. Sci. U.S.A. 108, 220–225 (2011).
ADS CAS PubMed Article Google Scholar
13.
Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Cambridge, 1990).
Google Scholar
14.
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).
Article Google Scholar
15.
Suarez, A. V., Tsutsui, N. D., Holway, D. A. & Case, T. J. Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biol. Invasions 1, 43–53 (1999).
Article Google Scholar
16.
Giraud, T., Pedersen, J. S. & Keller, L. Evolution of supercolonies: The Argentine ants of southern Europe. Proc. Natl. Acad. Sci. U.S.A. 99, 6075–6079 (2002).
ADS CAS PubMed PubMed Central Article Google Scholar
17.
Pedersen, J. S., Krieger, M. J. B., Vogel, V., Giraud, T. & Keller, L. Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 60, 782–791 (2006).
PubMed Article Google Scholar
18.
Inoue, M. N. et al. Recent range expansion of the Argentine ant in Japan. Divers. Distrib. 19, 29–37 (2013).
Article Google Scholar
19.
Sunamura, E. et al. Four mutually incompatible Argentine ant supercolonies in Japan: inferring invasion history of introduced Argentine ants from their social structure. Biol. Invasions 11, 2329–2339 (2009).
Article Google Scholar
20.
Sunamura, E. et al. Intercontinental union of Argentine ants: behavioral relationships among introduced populations in Europe, North America, and Asia. Insectes Soc. 56, 143–147 (2009).
Article Google Scholar
21.
Thomas, M. L., Payne-Makrisâ, C. M., Suarez, A. V., Tsutsui, N. D. & Holway, D. A. When supercolonies collide: Territorial aggression in an invasive and unicolonial social insect. Mol. Ecol. 15, 4303–4315 (2006).
PubMed Article Google Scholar
22.
Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. 97, 5948–5953 (2000).
ADS CAS PubMed Article Google Scholar
23.
Corin, S. E., Abbott, K. L., Ritchie, P. A. & Lester, P. J. Large scale unicoloniality: The population and colony structure of the invasive Argentine ant (Linepithema humile) in New Zealand. Insectes Soc. 54, 275–282 (2007).
Article Google Scholar
24.
Hayasaka, D. et al. Different acute toxicity of fipronil baits on invasive Linepithema humile supercolonies and some non-target ground arthropods. Ecotoxicology 24, 1221–1228 (2015).
CAS PubMed Article Google Scholar
25.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019).
26.
Rudnick, D. & Resh, V. Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea. Freshw. Biol. 50, 1323–1336 (2005).
Article Google Scholar
27.
Jackson, M. C. et al. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE 7, 1–12 (2012).
Google Scholar
28.
Sunamura, E., Nishisue, K., Terayama, M. & Tatsuki, S. Invasion of four Argentine ant supercolonies into Kobe Port, Japan: Their distributions and effects on indigenous ants (Hymenoptera: Formicidae). Sociobiology 50, 659–674 (2007).
Google Scholar
29.
Nakahama, N. et al. Identification of the mitochondrial DNA haplotype of an invasive Linepithema humile (Mayr, 1868) (Hymenoptera: Formicidae) population of a new location in Japan for its effective eradication. Entomol. News 128, 217–225 (2019).
Article Google Scholar
30.
Sato, K., Sakamoto, H., Hirata, M., Ozaki, M. & Higashi, S. Household and Structural Insects Relationship Among Establishment Durations , Kin Relatedness , Aggressiveness , and Distance Between Populations of Eight Invasive Argentine Ant (Hymenoptera : Formicidae) Supercolonies in Japan. 110, 1676–1684 (2017).
31.
Layman, C. A., Arrington, D. A., Montana, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure?. Ecol. Soc. Am. 89, 2358–2359 (2007).
Google Scholar
32.
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
PubMed Article Google Scholar
33.
Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).
Article Google Scholar
34.
VanderZanden, M. J. & Rasmussen, J. B. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80, 1395–1404 (1999).
Article Google Scholar
35.
Cerling, T. E., Harris, J. M. & Leakey, M. G. Browsing and grazing in elephants: The isotope record of modern and fossil proboscideans. Oecologia 120, 364–374 (1999).
ADS PubMed Article Google Scholar
36.
Tipple, B. J. & Pagani, M. The early origins of terrestrial C4 photosynthesis. Annual Review of Earth and Planetary Sciences (2007).
37.
Takeda, T., Ueno, O., Samejima, M. & Ohtani, T. An investigation for the occurrence of C4 photosynthesis in the Cyperaceae from Australia. Bot. Mag. Tokyo 98, 393–411 (1985).
Article Google Scholar
38.
Hyodo, F., Kohzu, A. & Tayasu, I. Linking aboveground and belowground food webs through carbon and nitrogen stable isotope analyses. Ecol. Res. 25, 745–756 (2010).
CAS Article Google Scholar
39.
Hishi, T., Hyodo, F., Saitoh, S. & Takeda, H. The feeding habits of collembola along decomposition gradients using stable carbon and nitrogen isotope analyses. Soil Biol. Biochem. 39, 1820–1823 (2007).
CAS Article Google Scholar
40.
Suehiro, W. et al. Radiocarbon analysis reveals expanded diet breadth associates with the invasion of a predatory ant. Sci. Rep. 7, 1–10 (2017).
CAS Article Google Scholar
41.
Tillberg, C. V., Holway, D. A., LeBrun, E. G. & Suarez, A. V. Trophic ecology of invasive Argentine ants in their native and introduced ranges. Proc. Natl. Acad. Sci. U. S. Am. 104, 20856–20861 (2007).
ADS CAS Article Google Scholar
42.
Roeder, K. A. & Kaspari, M. From cryptic herbivore to predator: Stable isotopes reveal consistent variability in trophic levels in an ant population. Ecology 98, 297–303 (2017).
PubMed Article Google Scholar
43.
Post, D. M. et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).
ADS PubMed Article Google Scholar
44.
Tayasu, I., Hirasawa, R., Ogawa, N. O., Ohkouchi, N. & Yamada, K. New organic reference materials for carbon- and nitrogen-stable isotope ratio measurements provided by Center for Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology. Limnology 12, 261–266 (2011).
CAS Article Google Scholar
45.
Pettitt-Wade, H., Wellband, K. W. & Fisk, A. T. Inconsistency for the niche breadth invasion success hypothesis in aquatic invertebrates. Limnol. Oceanogr. 63, 144–159 (2018).
ADS Article Google Scholar More