Genetic patterns in Mugil cephalus and implications for fisheries and aquaculture management
1.
Garibaldi, L. The FAO global capture production database: A six-decade effort to catch the trend. Mar. Pol. 36, 760–768 (2012).
Article Google Scholar
2.
FAO (Food and Agriculture Organization). The State of World Fisheries and Aquaculture 2018. in Meeting The Sustainable Development Goals. (FAO, Rome, 2018).
3.
Grant, W. S., Jasper, J., Bekkevold, D. & Adkison, M. Responsible genetic approach to stock restoration, sea ranching and stock enhancement of marine fishes and invertebrates. Rev. Fish Biol. Fish. 27, 615–649 (2017).
Article Google Scholar
4.
Christie, M. R., Marine, M. L., French, R. A., Waples, R. S. & Blouin, M. S. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109, 254–260 (2012).
CAS PubMed PubMed Central Article Google Scholar
5.
Ryman, N. & Laikre, L. Effects of supportive breeding on the genetically effective population size. Conserv. Biol. 5, 325–329 (1991).
Article Google Scholar
6.
Waples, R. S., Hindar, K., Karlsson, S. & Hard, J. J. Evaluating the Ryman–Laikre effect for marine stock enhancement and aquaculture. Curr. Zool. 62, 617–627 (2016).
PubMed PubMed Central Article Google Scholar
7.
Sun, X. & Hedgecock, D. Temporal genetic change in North American Pacific oyster populations suggests caution in seascape genetics analyses of high gene-flow species. Mar. Ecol. Prog. Ser. 565, 79–93 (2017).
ADS Article Google Scholar
8.
Bacheler, N. M., Wong, R. A. & Buckel, J. A. Movements and mortality rates of striped mullet in North Carolina. N. Am. J. Fish. Manage. 25, 361–373 (2005).
Article Google Scholar
9.
Whitfield, A. K., Panfili, J. & Durand, J.-D. A global review of the cosmopolitan flathead mullet Mugil cephalus Linnaeus 1758 (Teleostei: Mugilidae), with emphasis on the biology, genetics, ecology and fisheries aspects of this apparent species complex. Rev. Fish Biol. Fish. 22, 641–681 (2012).
Article Google Scholar
10.
Hsu, C.-C., Chang, C.-W., Iizuka, Y. & Tzeng, W.-N. A growth check deposited at estuarine arrival in otoliths of juvenile flathead mullet (Mugil cephalus L.). Zool. Stud. 48(3), 315–323 (2009).
Google Scholar
11.
Antuofermo, E. et al. First evidence of intersex condition in extensively reared mullets from Sardinian lagoons (central-western Mediterranean, Italy). Ital. J. Anim. Sci. 16, 283–291 (2017).
Article Google Scholar
12.
Heras, S., Roldán, M. I. & Castro, M. G. Molecular phylogeny of Mugilidae fishes revised. Rev. Fish Biol. Fish. 19, 217–231 (2009).
Article Google Scholar
13.
Heras, S., Maltagliati, F., Fernández, M. V. & Roldán, M. I. Shaken not stirred: A molecular contribution to the systematics of genus Mugil (Teleostei, Mugilidae). Integr. Zool. 11, 263–281 (2016).
PubMed Article Google Scholar
14.
Shen, K.-N., Jamandre, B. W., Hsu, C.-C., Tzeng, W.-N. & Durand, J.-D. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus. BMC Evol. Biol. 11, 83. https://doi.org/10.1186/1471-2148-11-83 (2011).
CAS Article PubMed PubMed Central Google Scholar
15.
Durand, J.-D. et al. Systematics of the grey mullets (Teleostei: Mugiliformes: Mugilidae): Molecular phylogenetic evidence challenges two centuries of morphology-based taxonomy. Mol. Phylogenet. Evol. 64, 73–92 (2012).
PubMed Article Google Scholar
16.
Rossi, A. R., Capula, M., Crosetti, D., Campton, D. E. & Sola, L. Genetic divergence and phylogenetic inferences in five species of Mugilidae (Pisces: Perciformes). Mar. Biol. 131, 213–218 (1998).
CAS Article Google Scholar
17.
Blel, H. et al. Selection footprint at the first intron of the Prl gene in natural populations of the flathead mullet (Mugil cephalus, L. 1758). J. Exp. Mar. Biol. Ecol. 387, 60–67 (2010).
CAS Article Google Scholar
18.
Durand, J., Blel, H., Shen, K., Koutrakis, E. & Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: A single mitochondrial clade and many nuclear barriers. Mar. Ecol.-Prog. Ser. 474, 243–261 (2013).
ADS Article Google Scholar
19.
Šegvić-Bubić, T. et al. Range expansion of the non-native oyster Crassostrea gigas in the Adriatic Sea. Acta Adriat. 57(2), 321–330 (2016).
Google Scholar
20.
Piras, P. et al. A case study on the labeling of bottarga produced in Sardinia from ovaries of grey mullets (Mugil cephalus and Mugil capurrii) caught in Eastern Central Atlantic coasts. Ital. J. Food. Saf. 7(1), 6893. https://doi.org/10.4081/ijfs.2018.6893 (2018).
Article PubMed PubMed Central Google Scholar
21.
Miggiano, E. et al. Isolation and characterization of microsatellite loci in the striped mullet, Mugil cephalus. Mol. Ecol. Notes 5, 323–326 (2005).
CAS Article Google Scholar
22.
Jinliang, W. A parsimony estimator of the number of populations from a STRUCTURE‐like analysis. Mol. Ecol. Resour. 19, 970–981 (2019).
Article CAS Google Scholar
23.
FAO (Food and Agriculture Organization). Code of Conduct for Responsible Fisheries (FAO, Rome, 1995).
Google Scholar
24.
Mai, A. C. G. et al. Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil. Estuar. Coast. Shelf Sci. 149, 80–86 (2014).
ADS Article Google Scholar
25.
Pacheco-Almanzar, E., Simons, J., Espinosa-Perez, H., Chiappa-Carrara, X. & Ibanez, A. L. Can the name Mugil cephalus (Pisces: Mugilidae) be used for the species occurring in the north western Atlantic?. Zootaxa 4109, 381–390 (2016).
PubMed Article Google Scholar
26.
Waples, R. S. & Gaggiotti, O. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15, 1419–1439 (2006).
CAS PubMed Article Google Scholar
27.
Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).
Article Google Scholar
28.
Waples, R. S. & England, P. R. Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189, 633–644 (2011).
PubMed PubMed Central Article Google Scholar
29.
Murenu, M., Olita, A., Sabatini, A., Follesa, M. C. & Cau, A. Dystrophy effects on the Liza ramada (Risso, 1826) (Pisces, Mugilidae) population in the Cabras lagoon (Central-Western Sardinia). Chem. Ecol. 20, 425–433 (2004).
Article Google Scholar
30.
Ryman, N., Laikre, L. & Hössjer, O. Do estimates of contemporary effective population size tell us what we want to know?. Mol. Ecol. 28, 1904–1918 (2019).
PubMed PubMed Central Article Google Scholar
31.
Guinand, B. et al. Candidate gene variation in gilthead sea bream reveals complex spatiotemporal selection patterns between marine and lagoon habitats. Mar. Ecol. Prog. Ser. 558, 115–127 (2016).
ADS CAS Article Google Scholar
32.
Chaoui, L. et al. Microsatellite length variation in candidate genes correlates with habitat in the gilthead sea bream Sparus aurata. Mol. Ecol. 21, 5497–5511 (2012).
CAS PubMed Article Google Scholar
33.
González-Wangüemert, M. & Pérez-Ruzafa, Á. In two waters: contemporary evolution of lagoonal and marine white seabream (Diplodus sargus) populations. Mar. Ecol. 33, 337–349 (2012).
ADS Article Google Scholar
34.
Cardona, L. Effects of salinity on the habitat selection and growth performance of Mediterranean flathead grey mullet Mugil cephalus (Osteichthyes, Mugilidae). Estuar. Coast. Shelf Sci. 50, 727–737 (2000).
ADS Article Google Scholar
35.
Fortunato, R. C., Galán, A. R., Alonso, I. G., Volpedo, A. & Durà, V. B. Environmental migratory patterns and stock identification of Mugil cephalus in the Spanish Mediterranean Sea, by means of otolith microchemistry. Estuar. Coast. Shelf. Sci. 188, 174–180 (2017).
ADS Article CAS Google Scholar
36.
Jones, A. G., Small, C. M., Paczolt, K. A. & Ratterman, N. L. A practical guide to methods of parentage analysis. Mol. Ecol. Resour. 10, 6–30 (2010).
PubMed Article Google Scholar
37.
Taylor, H. R. The use and abuse of genetic marker-based estimates of relatedness and inbreeding. Ecol. Evol. 5, 3140–3150 (2015).
PubMed PubMed Central Article Google Scholar
38.
Coppinger, C. R. et al. Assessing the genetic diversity of catface grouper Epinephelus andersoni in the subtropical Western Indian Ocean. Fish. Res. 218, 186–197 (2019).
Article Google Scholar
39.
Cushman, E. L. et al. Development of a standardized molecular tool and estimation of genetic measures for responsible aquaculture-based fisheries enhancement of American Shad in North and South Carolina. Trans. Am. Fish. Soc. 148, 148–162 (2019).
Article Google Scholar
40.
Waples, R. S., Punt, A. E. & Cope, J. M. Integrating genetic data into management of marine resources: How can we do it better?. Fish. Fish. 9, 423–449 (2008).
Article Google Scholar
41.
Iacchei, M. et al. Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations. Mol. Ecol. 22, 3476–3494 (2013).
PubMed PubMed Central Article Google Scholar
42.
Bernardi, G., Beldade, R., Holbrook, S. J. & Schmitt, R. J. Full-sibs in cohorts of newly settled coral reef fishes. PLoS ONE 7(e44953), 2012. https://doi.org/10.1371/journal.pone.0044953 (2012).
CAS Article Google Scholar
43.
Como, S., van der Velde, G. & Magni, P. Temporal variation in the trophic levels of secondary consumers in a Mediterranean coastal lagoon (Cabras lagoon, Italy). Estuaries Coasts 41, 218–232 (2018).
CAS Article Google Scholar
44.
Floris, R., Manca, S. & Fois, N. Microbial ecology of intestinal tract of gilthead sea bream (Sparus aurata Linnaeus, 1758) from two coastal lagoons of Sardinia (Italy). Transit. Waters Bullet. 7(2), 4–12. https://doi.org/10.1285/i1825229Xv7n2p4 (2013).
Article Google Scholar
45.
Merella, P. & Garippa, G. Metazoan parasites of grey mullets (Teleostea: Mugilidae) from the Mistras lagoon (Sardinia-Western Mediterranean). Sci. Mar. 65, 201–206 (2001).
Article Google Scholar
46.
Pitacco, V. et al. Spatial patterns of macrobenthic alpha and beta diversity at different scales in Italian transitional waters (Central Mediterranean). Estuar. Coast. Shelf Sci. 222, 126–138 (2019).
ADS Article Google Scholar
47.
Cioffi, F. & Gallerano, F. From rooted to floating vegetal species in lagoons as a consequence of the increases of external nutrient load: An analysis by model of the species selection mechanism. Appl. Math. Model. 30, 10–37 (2006).
MATH Article Google Scholar
48.
Wasko, A. P., Martins, C., Oliveira, C. & Foresti, F. Non-destructive genetic sampling in fish. An improved method for DNA extraction from fish fins and scales. Hereditas 138, 161–165 (2003).
PubMed Article Google Scholar
49.
Waples, R. S. Testing for Hardy–Weinberg proportions: Have we lost the plot?. J. Hered. 106, 1–19 (2015).
PubMed Article Google Scholar
50.
Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
PubMed Article Google Scholar
51.
Kinnison, M. T., Bentzen, P., Unwin, M. J. & Quinn, T. P. Reconstructing recent divergence: Evaluating nonequilibrium population structure in New Zealand chinook salmon. Mol. Ecol. 11, 739–754 (2002).
CAS PubMed Article Google Scholar
52.
Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001).
MathSciNet MATH Article Google Scholar
53.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).
Google Scholar
54.
Cossu, P. et al. Influence of genetic drift on patterns of genetic variation: The footprint of aquaculture practices in Sparus aurata (Teleostei: Sparidae). Mol. Ecol. 28, 3012–3024 (2019).
PubMed Article Google Scholar
55.
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Article CAS Google Scholar
56.
Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).
CAS PubMed Article Google Scholar
57.
Dąbrowski, M. J. et al. Reliability assessment of null allele detection: Inconsistencies between and within different methods. Mol. Ecol. Resour. 14, 361–373 (2014).
PubMed Article CAS Google Scholar
58.
Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant Markers: A Bayesian perspective. Genetics 180, 977–993 (2008).
PubMed PubMed Central Article Google Scholar
59.
Kauer, M. O., Dieringer, D. & Schlötterer, C. A microsatellite variability screen for positive selection associated with the “Out of Africa” habitat expansion of drosophila melanogaster. Genetics 165, 1137–1148 (2003).
CAS PubMed PubMed Central Google Scholar
60.
Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
PubMed Article Google Scholar
61.
Paris, M. et al. Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Mol. Ecol. 19, 325–337 (2010).
PubMed Article Google Scholar
62.
Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).
Article Google Scholar
63.
Piry, S., Luikart, G. & Cornuet, J.-M. Computer note. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90, 502–503 (1999).
Article Google Scholar
64.
Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).
CAS PubMed Article Google Scholar
65.
Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).
PubMed Article Google Scholar
66.
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
CAS PubMed Google Scholar
67.
Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).
PubMed Article Google Scholar
68.
Ryman, N. & Palm, S. POWSIM: A computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol. Notes 6, 600–602 (2006).
Article Google Scholar
69.
Blouin, M. S., Parsons, M., Lacaille, V. & Lotz, S. Use of microsatellite loci to classify individuals by relatedness. Mol. Ecol. 5, 393–401 (1996).
CAS PubMed Article Google Scholar
70.
Kraemer, P. & Gerlach, G. Demerelate: Calculating interindividual relatedness for kinship analysis based on codominant diploid genetic markers using R. Mol. Ecol. Resour. 17, 1371–1377 (2017).
CAS PubMed Article Google Scholar
71.
Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ml-relate: A computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes 6, 576–579 (2006).
CAS Article Google Scholar
72.
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
CAS PubMed PubMed Central Google Scholar
73.
Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).
CAS PubMed PubMed Central Google Scholar
74.
Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).
CAS PubMed Article Google Scholar
75.
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94. https://doi.org/10.1186/1471-2156-11-94 (2010).
Article PubMed PubMed Central Google Scholar
76.
Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
CAS PubMed Article Google Scholar More