More stories

  • in

    Species traits affect phenological responses to climate change in a butterfly community

    1.
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872. https://doi.org/10.1111/j.1365-2486.2007.01404.x (2007).
    ADS  Article  Google Scholar 
    2.
    Peñuelas, J. et al. Evidence of current impact of climate change on life: A walk from genes to the biosphere. Glob. Change Biol. 19, 2303–2338. https://doi.org/10.1111/gcb.12143 (2013).
    ADS  Article  Google Scholar 

    3.
    Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313. https://doi.org/10.1111/j.1365-2486.2010.02165.x (2010).
    ADS  Article  Google Scholar 

    4.
    Dapporto, L. et al. Rise and fall of island butterfly diversity: Understanding genetic differentiation and extinction in a highly diverse archipelago. Divers. Distrib. 23, 1169–1181. https://doi.org/10.1111/ddi.12610 (2017).
    Article  Google Scholar 

    5.
    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29. https://doi.org/10.1111/j.1365-294X.2007.03428.x (2008).
    Article  PubMed  Google Scholar 

    6.
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124. https://doi.org/10.1038/nclimate1347 (2012).
    ADS  Article  Google Scholar 

    7.
    Forister, M. L. & Shapiro, A. M. Climatic trends and advancing spring flight of butterflies in lowland California. Glob. Change Biol. 9, 1130–1135. https://doi.org/10.1046/j.1365-2486.2003.00643.x (2003).
    ADS  Article  Google Scholar 

    8.
    Altermatt, F. Tell me what you eat and I’ll tell you when you fly: Diet can predict phenological changes in response to climate change. Ecol. Lett. 13, 1475–1484. https://doi.org/10.1111/j.1461-0248.2010.01534.x (2010).
    Article  PubMed  Google Scholar 

    9.
    Stefanescu, C., Penuelas, J. & Filella, I. Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob. Change Biol. 9, 1494–1506. https://doi.org/10.1046/j.1365-2486.2003.00682.x (2003).
    ADS  Article  Google Scholar 

    10.
    Roy, D. B. & Sparks, T. H. Phenology of British butterflies and climate change. Glob. Change Biol. 6, 407–416. https://doi.org/10.1046/j.1365-2486.2000.00322.x (2000).
    ADS  Article  Google Scholar 

    11.
    Diez, J. M. et al. Forecasting phenology: from species variability to community patterns. Ecol. Lett. 15, 545–553. https://doi.org/10.1111/j.1461-0248.2012.01765.x (2012).
    Article  PubMed  Google Scholar 

    12.
    Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479. https://doi.org/10.1890/07-1748.1 (2008).
    Article  PubMed  Google Scholar 

    13.
    Glazaczow, A., Orwin, D. & Bogdziewicz, M. Increased temperature delays the late-season phenology of multivoltine insect. Sci. Rep. https://doi.org/10.1038/srep38022 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    14.
    van der Kolk, H.-J., WallisDeVries, M. F. & van Vliet, A. J. H. Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands. Ecol. Indicators 69, 205–212, https://doi.org/10.1016/j.ecolind.2016.04.028 (2016).

    15.
    Zografou, K. et al. Signals of climate change in butterfly communities in a mediterranean protected area. PLoS ONE 9, e87245. https://doi.org/10.1371/journal.pone.0087245 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    16.
    Visser, M. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. Biol. Sci. R. Soc. 275, 649–659, https://doi.org/10.1098/rspb.2007.0997 (2008).

    17.
    Kharouba, H. M., Paquette, S. R., Kerr, J. T. & Vellend, M. Predicting the sensitivity of butterfly phenology to temperature over the past century. Glob. Change Biol. 20, 504–514. https://doi.org/10.1111/gcb.12429 (2014).
    ADS  Article  Google Scholar 

    18.
    Roy, D. B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Glob. Change Biol. 21, 3313–3322. https://doi.org/10.1111/gcb.12920 (2015).
    ADS  Article  Google Scholar 

    19.
    Rapacciuolo, G. et al. Beyond a warming fingerprint: Individualistic biogeographic responses to heterogeneous climate change in California. Glob. Change Biol. 20, 2841–2855. https://doi.org/10.1111/gcb.12638 (2014).
    ADS  Article  Google Scholar 

    20.
    Fischer, K. & Fiedler, K. Life-history plasticity in the butterfly Lycaena hippothoe: Local adaptations and trade-offs. Biol. J. Lin. Soc. 75, 173–185. https://doi.org/10.1046/j.1095-8312.2002.00014.x (2002).
    Article  Google Scholar 

    21.
    Zografou, K. Who flies first?—Habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: A case study from the south-east Mediterranean Lepidoptera and Orthoptera phenology change. Ecol. Entomol. 40, 562–574. https://doi.org/10.1111/een.12220 (2015).
    Article  Google Scholar 

    22.
    Suggitt Andrew, J. et al. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8, https://doi.org/10.1111/j.1600-0706.2010.18270.x (2010).

    23.
    Dell, D., Sparks, T. & Dennis, R. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur. J. Entomol. 102, 161–167. https://doi.org/10.14411/eje.2005.026 (2005).
    Article  Google Scholar 

    24.
    Zipf, L., Williams, E. H., Primack, R. B. & Stichter, S. Climate effects on late-season flight times of Massachusetts butterflies. Int. J. Biometeorol. 61, 1667–1673. https://doi.org/10.1007/s00484-017-1347-8 (2017).
    ADS  CAS  Article  PubMed  Google Scholar 

    25.
    Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92, 1005–1012. https://doi.org/10.1890/i0012-9658-92-5-1005 (2011).
    Article  PubMed  Google Scholar 

    26.
    Melero, Y., Stefanescu, C. & Pino, J. General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biol. Cons. 201, 336–342. https://doi.org/10.1016/j.biocon.2016.07.029 (2016).
    Article  Google Scholar 

    27.
    Stefanescu, C., Peñuelas, J. & Filella, I. Butterflies highlight the conservation value of hay meadows highly threatened by land-use changes in a protected Mediterranean area. Biol. Cons. 126, 234–246. https://doi.org/10.1016/j.biocon.2005.05.010 (2005).
    Article  Google Scholar 

    28.
    Sparks, T. H., Huber, K. & Dennis, R. L. H. Complex phenological responses to climate warming trends? Lessons from history. Eur. J. Entomol. 103, 379–386 (2006).
    Article  Google Scholar 

    29.
    Wong, M. K. L., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022. https://doi.org/10.1111/brv.12488 (2019).
    Article  PubMed  Google Scholar 

    30.
    Gutiérrez, D. & Wilson, R. J. Intra- and interspecific variation in the responses of insect phenology to climate. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13348 (2020).
    Article  PubMed  Google Scholar 

    31.
    Zografou, K. et al. Butterfly phenology in Mediterranean mountains using space-for-time substitution. Ecol. Evolut. 10, 928–939. https://doi.org/10.1002/ece3.5951 (2020).
    Article  Google Scholar 

    32.
    Steltzer, H. & Post, E. Seasons and life cycles. Science 324, 886–887. https://doi.org/10.1126/science.1171542 (2009).
    Article  PubMed  Google Scholar 

    33.
    Hale, R., Morrongiello, J. R. & Swearer, S. E. Evolutionary traps and range shifts in a rapidly changing world. Biol. Let. 12, 20160003. https://doi.org/10.1098/rsbl.2016.0003 (2016).
    Article  Google Scholar 

    34.
    Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407. https://doi.org/10.1111/j.1365-2435.2007.01283.x (2007).
    Article  Google Scholar 

    35.
    Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 4455. https://doi.org/10.1038/s41467-019-12479-w (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Pau, S. et al. Predicting phenology by integrating ecology, evolution and climate science. Glob. Change Biol. 17, 3633–3643. https://doi.org/10.1111/j.1365-2486.2011.02515.x (2011).
    ADS  Article  Google Scholar 

    37.
    Sherry, R. A. et al. Divergence of reproductive phenology under climate warming. Proc. Natl. Acad. Sci. 104, 198. https://doi.org/10.1073/pnas.0605642104 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Wilson, R. J. & Fox, R. Insect responses to global change offer signposts for biodiversity and conservation. Ecol. Entomol. https://doi.org/10.1111/een.12970 (2020).
    Article  Google Scholar 

    39.
    Brooks, S. J. et al. The influence of life history traits on the phenological response of British butterflies to climate variability since the late-19th century. Ecography 40, 1152–1165. https://doi.org/10.1111/ecog.02658 (2017).
    Article  Google Scholar 

    40.
    Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species?. Ecology 96, 1473–1479. https://doi.org/10.1890/15-0131.1 (2015).
    Article  Google Scholar 

    41.
    Stocker, T. F. et al. Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 3–29 (2013).

    42.
    Swengel, A. B. Effects of fire and hay management on abundance of prairie butterflies. Biol. Cons. 76, 73–85 (1996).
    Article  Google Scholar 

    43.
    Zografou, K. et al. Severe decline and partial recovery of a rare butterfly on an active military training area. Biol. Cons. 216, 43–50. https://doi.org/10.1016/j.biocon.2017.09.026 (2017).
    Article  Google Scholar 

    44.
    Gillingham, P. K., Huntley, B., Kunin, W. E. & Thomas, C. D. The effect of spatial resolution on projected responses to climate warming. Divers. Distrib. 18, 990–1000. https://doi.org/10.1111/j.1472-4642.2012.00933.x (2012).
    Article  Google Scholar 

    45.
    Roy David, B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Global Change Biol. 21, 3313–3322, https://doi.org/10.1111/gcb.12920 (2015).

    46.
    Lemoine, N. P. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of asclepias host plants. PLoS ONE 10, e0118614. https://doi.org/10.1371/journal.pone.0118614 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Slansky, F. Phagism relationships among butterflies. J. N. Y. Entomol. Soc. 84, 91–105 (1976).
    Google Scholar 

    48.
    Morin, X., Roy, J., Sonié, L. & Chuine, I. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol. 186, 900–910. https://doi.org/10.1111/j.1469-8137.2010.03252.x (2010).
    Article  PubMed  Google Scholar 

    49.
    Chuine, I., Morin, X. & Bugmann, H. Warming. Photoperiods Tree Phenol. 329, 277–278. https://doi.org/10.1126/science.329.5989.277-e%JScience (2010).
    Article  Google Scholar 

    50.
    Luedeling, E., Girvetz, E. H., Semenov, M. A. & Brown, P. H. Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE 6, e20155. https://doi.org/10.1371/journal.pone.0020155 (2011).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Fu, Y. S. H. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl. Acad. USA 111, 7355–7360. https://doi.org/10.1073/pnas.1321727111%JProceedingsoftheNationalAcademyofSciences (2014).
    ADS  CAS  Article  Google Scholar 

    52.
    Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535 (2018).
    Article  Google Scholar 

    53.
    Barton, K. E., Edwards, K. F. & Koricheva, J. Shifts in woody plant defence syndromes during leaf development. Funct. Ecol. 33, 2095–2104. https://doi.org/10.1111/1365-2435.13435 (2019).
    Article  Google Scholar 

    54.
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228. https://doi.org/10.1038/s41558-018-0067-3 (2018).
    ADS  Article  Google Scholar 

    55.
    Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B Biol. Sci. 277, 1281–1287. https://doi.org/10.1098/rspb.2009.1910 (2010).
    Article  Google Scholar 

    56.
    Illán, J. G., Gutiérrez, D., Díez, S. B. & Wilson, R. J. Elevational trends in butterfly phenology: Implications for species responses to climate change. Ecol. Entomol. 37, 134–144. https://doi.org/10.1111/j.1365-2311.2012.01345.x (2012).
    Article  Google Scholar 

    57.
    Nufio, C. R., McGuire, C. R., Bowers, M. D. & Guralnick, R. P. Grasshopper community response to climatic change: Variation along an elevational gradient. PLoS ONE 5, e12977. https://doi.org/10.1371/journal.pone.0012977 (2010).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    58.
    Van Dyck, H., Bonte, D., Puls, R., Gotthard, K. & Maes, D. The lost generation hypothesis: Could climate change drive ectotherms into a developmental trap?. Oikos 124, 54–61. https://doi.org/10.1111/oik.02066 (2015).
    Article  Google Scholar 

    59.
    Scott, J. A. The Butterflies of North America: A Natural History and Field Guide. (Stanford University Press, 1992).

    60.
    Division, E. Final Integrated Natural Resources Management Plan 17003–25002 (The Pennsylvania Department of Military and Veterans Affairs, Annville, 2002).
    Google Scholar 

    61.
    Shuey, J. et al. Landscape-scale response to local habitat restoration in the regal fritillary butterfly (Speyeria idalia) (Lepidoptera: Nymphalidae). J. Insect Cons. 20, 773–780. https://doi.org/10.1007/s10841-016-9908-4 (2016).
    Article  Google Scholar 

    62.
    Metzler, E., Shuey, J., Ferge, L., Henderson, R. & Goldstein, P. Contributions to the understanding of tallgrass prairie-dependent butterflies and moths (Lepidoptera) and their biogeography in the United States. Ohio Biol. Surv. Bull. New Ser. 15, 1–143 (2005).
    Google Scholar 

    63.
    PNHP. PNHP Species Lists. Pennsylvania Natural Heritage Program. http://www.naturalheritage.state.pa.us/Species.aspx (2019).

    64.
    Pollard, E. & Yates, T. J. Monitoring Butterflies for Ecology and Conservation (1993).

    65.
    Nufio, C. R., McGuire, C. R., Bowers, M. D. & Guralnick, R. P. Grasshopper community response to climatic change: Variation along an elevational gradient. PLoS ONE https://doi.org/10.1371/journal.pone.0012977 (2010).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Glassberg, J. Butterflies through binoculars, the East. A field guide to the butterflies of Eastern North America, 242. (Oxford University Press, Inc., 1999).

    67.
    Brock, J. P. & Kaufman, K. Field Guide to Butterflies of North America., 391 (Hillstar Editions L.C, 2003).

    68.
    Brakefield, P. M. Geographical variability in, and temperature effects on, the phenology of Maniola jurtina and Pyronia tithonus (Lepidoptera, Satyrinae) in England and Wales. Ecol. Entomol. 12, 139–148. https://doi.org/10.1111/j.1365-2311.1987.tb00993.x (1987).
    Article  Google Scholar 

    69.
    de Arce Crespo, J. I. & Gutiérrez, D. Altitudinal trends in the phenology of butterflies in a mountainous area in central Spain. Eur. J. Entomol. 108, 651–658 (2011).

    70.
    Moussus, J.-P., Julliard, R. & Jiguet, F. Featuring 10 phenological estimators using simulated data. Methods Ecol. Evol. 1, 140–150. https://doi.org/10.1111/j.2041-210X.2010.00020.x (2010).
    Article  Google Scholar 

    71.
    Penny, D. The comparative method in evolutionary biology. J. Classif. 9, 169–172. https://doi.org/10.1007/BF02618482 (1992).
    MathSciNet  Article  Google Scholar 

    72.
    Earl, C., Belitz, M. et al. Spatial phylogenetics of butterflies in relation to environmental drivers and angiosperm diversity across North America. BioRxiv:2020.2007.2022.216119, https://doi.org/10.1101/2020.07.22.216119 (2020).

    73.
    PRISM. Climate Group, Parameter-elevation Regressions on Independent Slopes Model. Oregon State University, http://prism.oregonstate.edu. Accessed 24 July 2018.

    74.
    Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064. https://doi.org/10.1002/joc.1688 (2008).
    Article  Google Scholar 

    75.
    Peñuelas, J. et al. Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: Reductions in primary productivity in the heat and drought year of 2003. Glob. Change Biol. 13, 2563–2581. https://doi.org/10.1111/j.1365-2486.2007.01464.x (2007).
    ADS  Article  Google Scholar 

    76.
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 87, 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0 (1997).
    ADS  Article  Google Scholar 

    77.
    Walters, E. J., Morrell, C. H. & Auer, R. E. An investigation of the median-median method of linear regression. J. Stat. Educ. https://doi.org/10.1080/10691898.2006.11910582 (2006).
    Article  Google Scholar 

    78.
    Theil, H. in Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology (eds Baldev Raj & Johan Koerts) 345–381 (Springer Netherlands, 1992).

    79.
    Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389. https://doi.org/10.2307/2285891 (1968).
    MathSciNet  Article  MATH  Google Scholar 

    80.
    Siegel, A. F. Robust regression using repeated medians. Biometrika 69, 242–244. https://doi.org/10.2307/2335877 (1982).
    Article  MATH  Google Scholar 

    81.
    Schneider, G., Chicken, E. & Becvarik, R. NSM3: Functions and Datasets to Accompany Hollander, Wolfe, and Chicken – Nonparametric Statistical Methods, Third Edition. R Package Version 1.15. https://CRAN.R-project.org/package=NSM3. (2020).

    82.
    Patrick Bogaart, Loo, M. v. d. & Pannekoek, J. rtrim: Trends and Indices for Monitoring Data. R Package Version 2.1.1. https://CRAN.R-project.org/package=rtrim. (2020).

    83.
    Zografou, K. et al. Stable generalist species anchor a dynamic pollination network. Ecosphere 11, e03225. https://doi.org/10.1002/ecs2.3225 (2020).
    Article  Google Scholar 

    84.
    Pinheiro J, Bates D, DebRoy S & D, S. nlme: Linear and Nonlinear Mixed Effects Models. R Package v. 3.1‐117. (www document). https://CRAN.R-project.org/package=nlme. (2015).

    85.
    Felsenstein, J. Phylogenies and quantitative characters. Annu. Rev. Ecol. Syst. 19, 445–471. https://doi.org/10.1146/annurev.es.19.110188.002305 (1988).
    Article  Google Scholar  More

  • in

    The occurrence and ecology of microbial chain elongation of carboxylates in soils

    1.
    Barker HA, Taha SM. Clostridium kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol. J Bacteriol. 1942;43:347–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ, Plugge CM, et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol. 2016;50:2796–810.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Béchamp MA. Lettre de m. A. Béchamp a m. Dumas. Ann Chim Phys 1868;4:103–11.
    Google Scholar 

    4.
    Weimer PJ, Stevenson DM. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl Microbiol Biotechnol. 2012;94:461–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Kenealy WR, Waselefsky DM. Studies on the substrate range of Clostridium kluyveri – the use of propanol and succinate. Arch Microbiol. 1985;141:187–94.
    CAS  Article  Google Scholar 

    6.
    Barker HA, Kamen MD, Bornstein BT. The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium kluyveri. Proc Natl Acad Sci USA. 1945;31:373–81.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Bornstein BT, Barker HA. The energy metabolism of Clostridium kluyveri and the synthesis of fatty acids. J Biol Chem. 1948;172:659–69.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H, Strittimatter A, et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci USA. 2008;105:2128–33.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Gonzalez-Cabaleiro R, Lema JM, Rodriguez J, Kleerebezem R. Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energy Environ Sci. 2013;6:3780–9.
    CAS  Article  Google Scholar 

    10.
    Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT. Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol. 2014;27:115–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Rittmann BE & McCarty PL. Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Education: New York; 2001.

    12.
    Thauer RK, Jungermann K, Henninger H, Wenning J, Decker K. The energy metabolism of Clostridium kluyveri. Eur J Biochem. 1968;4:173–80.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Stadtman ER, Barker HA. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. I. Preparation of cell-free extracts that catalyze the conversion of ethanol and acetate to butyrate and caproate. J Biol Chem. 1949;180:1085–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Stadtman ER, Barker HA. Fatty acid synthesis by enzyme preparations of Clostridium kluyveri. VI. Reactions of acyl phosphates. J Biol Chem. 1950;184:769–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy Environ Sci. 2011;4:216–24.
    CAS  Article  Google Scholar 

    16.
    Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci. 2012;5:8189–92.
    CAS  Article  Google Scholar 

    17.
    Cavalcante WD, Leitao RC, Gehring TA, Angenent LT, Santaella ST. Anaerobic fermentation for n-caproic acid production: A review. Process Biochem. 2017;54:106–19.
    CAS  Article  Google Scholar 

    18.
    De Groof V, Coma M, Arnot T, Leak DJ, Lanham AB. Medium chain carboxylic acids from complex organic feedstocks by mixed culture fermentation. Molecules 2019;24:398.
    PubMed Central  Article  CAS  Google Scholar 

    19.
    Schievano A, Sciarria TP, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, et al. Electro-fermentation – merging electrochemistry with fermentation in industrial applications. Trends Biotechnol. 2016;34:866–78.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Jourdin L, Raes SMT, Buisman CJN, Strik D. Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density. Front Energy Res. 2018;6:7.
    Article  Google Scholar 

    21.
    Candry P, Huang SL, Carvajal-Arroyo JM, Rabaey K, Ganigue R. Enrichment and characterisation of ethanol chain elongating communities from natural and engineered environments. Sci Rep. 2020;10:1–10.
    Article  CAS  Google Scholar 

    22.
    Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere 2020;30:25–39.
    Article  Google Scholar 

    23.
    Rui JP, Peng JJ, Lu YH. Succession of bacterial populations during plant residue decomposition in rice field soil. Appl Environ Microbiol. 2009;75:4879–86.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Tsutsuki K, Ponnamperuma FN. Behavior of anaerobic decomposition in submerged soils – effect of organic material amendment, soil properties, and temperature. Soil Sci Plant Nutr. 1987;33:13–33.
    CAS  Article  Google Scholar 

    25.
    Roy R, Kluber HD, Conrad R. Early initiation of methane production in anoxic rice soil despite the presence of oxidants. FEMS Microbiol Ecol. 1997;24:311–20.
    CAS  Article  Google Scholar 

    26.
    Adeleke R, Nwangburuka C, Oboirien B. Origins, roles and fate of organic acids in soils: a review. S Afr J Bot. 2017;108:393–406.
    CAS  Article  Google Scholar 

    27.
    Mohana Rangan S, Mouti A, LaPat-Polasko L, Lowry GV, Krajmalnik-Brown R, Delgado A. Synergistic zero-valent iron (Fe0) and microbiological trichloroethene and perchlorate reductions are determined by the concentration and speciation of Fe. Environ Sci Technol. 2020;54:14422–31.
    Article  CAS  Google Scholar 

    28.
    Delgado AG, Kang D-W, Nelson KG, Fajardo-Williams D, Miceli JF, III, Done HY, et al. Selective enrichment yields robust ethene-producing dechlorinating cultures from microcosms stalled at cis-dichloroethene. PLoS ONE. 2014;9:e100654.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    29.
    Delgado AG, Fajardo-Williams D, Popat SC, Torres CI, Krajmalnik-Brown R. Successful operation of continuous reactors at short retention times results in high-density, fast-rate Dehalococcoides dechlorinating cultures. Appl Microbiol Biotechnol. 2014;98:2729–37.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Chen TF, Delgado AG, Yavuz BM, Maldonado J, Zuo Y, Kamath R, et al. Interpreting interactions between ozone and residual petroleum hydrocarbons in soil. Environ Sci Technol. 2017;51:506–13.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Esquivel-Elizondo S, Miceli J, Torres CI, Krajmalnik-Brown R. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation. Biotechnol Bioeng. 2018;115:341–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Delgado AG, Fajardo-Williams D, Kegerreis KL, Parameswaran P, Krajmalnik-Brown R. Impact of ammonium on syntrophic organohalide-respiring and fermenting microbial communities. mSphere. 2016;1:e00053–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Delgado AG, Fajardo-Williams D, Bondank E, Esquivel-Elizondo S, Krajmalnik-Brown R. Coupling bioflocculation of Dehalococcoides mccartyi to high-rate reductive dehalogenation of chlorinated ethenes. Environ Sci Technol. 2017;51:11297–307.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Esquivel-Elizondo S, Delgado AG, Krajmalnik-Brown R. Evolution of microbial communities growing with carbon monoxide, hydrogen, and carbon dioxide. FEMS Microbiol Ecol. 2017;93:fix076.
    Article  CAS  Google Scholar 

    35.
    Xiaoyu Z, Yong T, Cheng L, Xiangzhen L, Na W, Wenjie Z, et al. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production. Sci Rep. 2015;5:14360.
    Article  CAS  Google Scholar 

    36.
    Caporaso JG, Christian LL, William AW, Donna B-L, James H, Noah F, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–24.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Masella A, Bartram A, Truszkowski J, Brown D, Neufeld J. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform. 2012;13:31.
    CAS  Article  Google Scholar 

    38.
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–57.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, et al. RESCRIPt: Reproducible sequence taxonomy reference database management for the masses. bioRxiv. 2020; https://doi.org/10.1101/2020.10.05.326504.

    42.
    Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST plus: architecture and applications. BMC Bioinform. 2009;10:1.
    Article  CAS  Google Scholar 

    44.
    Kusel K, Drake HL. Acetate synthesis in soil from a Bavarian beech forest. Appl Environ Microbiol. 1994;60:1370–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Kusel K, Drake HL. Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl Environ Microbiol. 1995;61:3667–75.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Duddleston KN, Kinney MA, Kiene RP, Hines ME. Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product. Glob Biogeochem Cycles. 2002;16:11.1–9.
    Article  CAS  Google Scholar 

    47.
    Thebrath B, Mayer HP, Conrad R. Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol Ecol. 1992;86:295–302.
    CAS  Article  Google Scholar 

    48.
    Delgado AG, Parameswaran P, Fajardo-Williams D, Halden RU, Krajmalnik-Brown R. Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb Cell Fact. 2012;11:128.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Kucek LA, Spirito CM, Angenent LT. High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation. Energy Environ Sci. 2016;9:3482–94.
    CAS  Article  Google Scholar 

    50.
    Volker AR, Gogerty DS, Bartholomay C, Hennen-Bierwagen T, Zhu HL, Bobik TA. Fermentative production of short-chain fatty acids in Escherichia coli. Microbiology 2014;160:1513–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Grootscholten TIM, Steinbusch KJJ, Hamelers HVM, Buisman CJN. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production. Bioresour Technol. 2013;135:440–5.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Reddy MV, Mohan SV, Chang YC. Medium-chain fatty acids (MCFA) production through anaerobic fermentation using Clostridium kluyveri: effect of ethanol and acetate. Appl Biochem Biotechnol. 2018;185:594–605.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Scarborough MJ, Lawson CE, Hamilton JJ, Donohue TJ, Noguera DR. Metatranscriptomic and thermodynamic insights into medium-chain fatty acid production using an anaerobic microbiome. mSystems 2018;3:6.
    Article  Google Scholar 

    54.
    Bao S, Wang QY, Zhang PY, Zhang Q, Wu Y, Li F, et al. Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: insight into carbon balance and microbial community. Energies 2019;12:3720.
    CAS  Article  Google Scholar 

    55.
    Spirito CM, Marzilli AM, Angenent LT. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction. Environ Sci Technol. 2018;52:13438–47.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Coma M, Vilchez-Vargas R, Roume H, Jauregui R, Pieper DH, Rabaey K. Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation. Environ Sci Technol. 2016;50:6467–76.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J 2009;3:992–1000.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Hollister EB, Forrest AK, Wilkinson HH, Ebbole DJ, Malfatti SA, Tringe SG, et al. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production. Appl Microbiol Biotechnol. 2010;88:389–99.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Mackie RI, Aminov RI, Hu WP, Klieve AV, Ouwerkerk D, Sundset MA, et al. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol. 2003;69:6808–15.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Ye TR, Cai HY, Liu X, Jiang HL. Dominance of Oscillospira and Bacteroides in the bacterial community associated with the degradation of high-concentration dimethyl sulfide under iron-reducing condition. Ann Microbiol. 2016;66:1199–206.
    CAS  Article  Google Scholar 

    63.
    Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016;24:523–4.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Clarke RTJ. Niche in pasture-fed ruminants for the large rumen bacteria Oscillospira, Lampropedia, and Quin’s and Eadie’s ovals. Appl Environ Microbiol. 1979;37:654–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Lee GH, Rhee MS, Chang DH, Lee J, Kim S, Yoon MH, et al. Oscillibacter ruminantium sp nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol. 2013;63:1942–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Iino T, Mori K, Tanaka K, Suzuki KI, Harayama S. Oscillibacter valericigenes gen. nov., sp nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol. 2007;57:1840–5.
    PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria – From metagenomic species to metabolic features. Environ Microbiol. 2017;19:835–41.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Wang H-J, Dai K, Wang Y-Q, Wang H-F, Zhang F, Zeng RJ. Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors. Bioresour Technol. 2018;267:650–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Fraj B, Ben Hania W, Postec A, Hamdi M, Ollivier B, Fardeau ML. Fonticella tunisiensis gen. nov., sp nov., isolated from a hot spring. Int J Syst Evol Microbiol. 2013;63:1947–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandezgarayzabal J, Garcia P, et al. The phylogeny of the genus Clostridium – Proposal of 5 new genera and 11 new species combinations. Int J Syst Bacteriol. 1994;44:812–26.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    71.
    BS Jeon, Kim BC, Um Y, et al. BI. Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Appl Microbiol Biotechnol. 2010;88:1161–7.
    Article  CAS  Google Scholar 

    72.
    Zhu XY, Zhou Y, Wang Y, Wu TT, Li XZ, Li DP, et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels. 2017;10:102.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    73.
    Robertson WJ, Bowman JP, Franzmann PD, Mee BJ. Desulfosporosinus meridiei sp nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol. 2001;51:133–40.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Lee YJ, Romanek CS, Wiegel J. Desulfosporosinus youngiae sp nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int J Syst Evol Microbiol. 2009;59:2743–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Spatial patterns in phage-Rhizobium coevolutionary interactions across regions of common bean domestication

    1.
    Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13:278–84.
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hatfull GF. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J Virol. 2015;89:8107–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Bouvier T, Del Giorgio PA. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol. 2007;9:287–97.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003;6:417–24.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Howard-Varona C, Hargreaves KR, Solonenko NE, Markillie LM, White RA, Brewer HM, et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 2018;12:1605–18.
    PubMed  PubMed Central  Article  Google Scholar 

    6.
    Weinbauer MG, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ Microbiol. 2004;6:1–11.
    PubMed  Article  PubMed Central  Google Scholar 

    7.
    Thurber RV. Current insights into phage biodiversity and biogeography. Curr Opin Microbiol. 2009;12:582–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Chow C-ET, Suttle CA. Biogeography of viruses in the sea. Annu Rev Virol. 2015;2:41–66.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Shkoporov AN, Khokhlova EV, Fitzgerald CB, Stockdale SR, Draper LA, Ross RP, et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat Commun. 2018;9:4781.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    11.
    Breitbart M, Miyake JH, Rohwer F. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol Lett. 2004;236:249–56.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014;5:4498.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Jameson E, Mann NH, Joint I, Sambles C, Mühling M. The diversity of cyanomyovirus populations along a North-South Atlantic Ocean transect. ISME J. 2011;5:1713–21.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Delong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N, et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 2006;311:496–503.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Finke JF, Suttle CA. The environment and cyanophage diversity: insights from environmental sequencing of DNA polymerase. Front Microbiol. 2019;10:167.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Hanson CA, Marston MF, Martiny JB. Biogeographic variation in host range phenotypes and taxonomic composition of marine cyanophage isolates. Front Microbiol. 2016;7:983.
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Huang S, Zhang S, Jiao N, Chen F. Marine cyanophages demonstrate biogeographic patterns throughout the global ocean. Appl Environ Microbiol. 2015;81:441–52.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Marston MF, Taylor S, Sme N, Parsons RJ, Noyes TJE, Martiny JBH. Marine cyanophages exhibit local and regional biogeography. Environ Microbiol. 2013;15:1452–63.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Winter C, Matthews B, Suttle CA. Effects of environmental variation and spatial distance on bacteria, archaea and viruses in sub-polar and arctic waters. ISME J. 2013;7:1507–18.
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Luo E, Aylward FO, Mende DR, Delong EF. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 2017;8:e01903–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Brum JR, Ignacio-espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    23.
    Dennehy JJ. What ecologists can tell virologists. Annu Rev Microbiol. 2014;68:117–35.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Held NL, Whitaker RJ. Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol. 2009;11:457–66.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Ashby B, Boots M. Multi-mode fluctuating selection in host–parasite coevolution. Ecol Lett. 2017;20:357–65.
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:916–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Vos M, Birkett PJ, Birch E, Griffiths RI, Buckling A. Local adaptation of bacteriophages to their bacterial hosts in soil. Science 2009;325:833.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Gomez P, Buckling A. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J. 2013;7:2242–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Kraemer SA, Boynton PJ. Evidence for microbial local adaptation in nature. Mol Ecol. 2017;26:1860–76.
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Kawecki T, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7:1225–41.
    Article  Google Scholar 

    31.
    Lenormand T. Gene flow and the limits to natural selection. Trends Ecol Evol. 2002;17:183–9.
    Article  Google Scholar 

    32.
    Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution. 2008;62:316–36.
    PubMed  Article  Google Scholar 

    33.
    Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol. 2013;22:5983–99.
    PubMed  Article  Google Scholar 

    34.
    Zhang Q-G, Buckling A. Migration highways and migration barriers created by host–parasite interactions. Ecol Lett. 2016;19:1479–85.
    PubMed  Article  Google Scholar 

    35.
    Wang IJ, Bradburd GS. Isolation by environment. Mol Ecol. 2014;23:5649–62.
    PubMed  Article  Google Scholar 

    36.
    Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci. 2002;269:931–6.
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Kunin V, He S, Warnecke F, Peterson SB, Garcia Martin H, Haynes M, et al. A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res. 2008;18:293–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Lopez Pascua L, Gandon S, Buckling A. Abiotic heterogeneity drives parasite local adaptation in coevolving bacteria and phages. J Evol Biol. 2012;25:187–95.
    CAS  PubMed  Article  Google Scholar 

    39.
    Baumann P. Biology of endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005;59:155–89.
    CAS  PubMed  Article  Google Scholar 

    40.
    Levy A, Gonzalez IS, Mittelviefhaus M, Clingenpeel S, Paredes SH, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2018;50:138–50.
    CAS  Article  Google Scholar 

    41.
    Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005;307:1915–20.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    42.
    Heath KD, Tiffin P. Context dependence in the coevolution of plant and rhizobial mutualists. Proc Biol Sci. 2007;274:1905–12.
    PubMed  PubMed Central  Google Scholar 

    43.
    Koch M, Delmotte N, Rehrauer H, Vorholt JA, Pessi G, Hennecke H. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant Microbe Interact. 2010;23:784–90.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Aguilar OM, Riva O, Peltzer E. Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci. 2004;101:13548–53.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, et al. Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. N Phytol. 2013;197:300–13.
    CAS  Article  Google Scholar 

    46.
    Koenig R, Gepts P. Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor Appl Genet. 1989;78:809–17.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Melkonian R, Moulin L, Béna G, Tisseyre P, Chaintreuil C, Heulin K, et al. The geographical patterns of symbiont diversity in the invasive legume Mimosa pudica can be explained by the competitiveness of its symbionts and by the host genotype. Environ Microbiol. 2014;16:2099–111.
    PubMed  Article  PubMed Central  Google Scholar 

    48.
    Tian CF, Young JPW, Wang ET, Tamimi SM, Chen WX. Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiol Ecol. 2010;73:563–76.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Burdon JJ, Thrall PH. Spatial and temporal patterns in coevolving plant and pathogen associations. Am Nat. 1999;153:S15–S33.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Van Cauwenberghe J, Visch W, Michiels J, Honnay O. Selection mosaics differentiate Rhizobium-host plant interactions across nitrogen environments. Oikos 2016;125:1755–61.
    Article  Google Scholar 

    51.
    Guimarães PR, Pires MM, Jordano P, Bascompte J, Thompson JN. Indirect effects drive coevolution in mutualistic networks. Nature 2017;550:511–4.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    52.
    Heath KD, Lau JA. Herbivores alter the fitness benefits of a plant–rhizobium mutualism. Acta Oecol. 2011;37:87–92.
    Article  Google Scholar 

    53.
    Rogers HS, Buhle ER, HilleRisLambers J, Fricke EC, Miller RH, Tewksbury JJ. Effects of an invasive predator cascade to plants via mutualism disruption. Nat Commun. 2017;8:6–13.
    Article  CAS  Google Scholar 

    54.
    Delmas E, Besson M, Brice MH, Burkle LA, Dalla Riva GV, Fortin MJ, et al. Analysing ecological networks of species interactions. Biol Rev. 2019;94:16–36.
    Article  Google Scholar 

    55.
    Gaiarsa MP, Guimarães PR. Interaction strength promotes robustness against cascading effects in mutualistic networks. Sci Rep. 2019;9:1–7.
    CAS  Article  Google Scholar 

    56.
    Sih A, Crowley P, McPeek M, Petranka J, Strohmeier K. Predation, competition, and prey communities: a review of field experiments. Annu Rev Ecol Syst. 1985;16:269–311.
    Article  Google Scholar 

    57.
    Parratt SR, Barrès B, Penczykowski RM, Laine AL. Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory. Mol Ecol. 2017;26:1964–79.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Hatcher MJ, Dick JTA, Dunn AM. How parasites affect interactions between competitors and predators. Ecol Lett. 2006;9:1253–71.
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Hutchinson MC, Bramon Mora B, Pilosof S, Barner AK, Kéfi S, Thébault E, et al. Seeing the forest for the trees: putting multilayer networks to work for community ecology. Funct Ecol. 2019;33:206–17.
    Article  Google Scholar 

    60.
    Koskella B, Taylor TB. Multifaceted impacts of bacteriophages in the plant microbiome. Annu Rev Phytopathol. 2018;56:361–80.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Evans TJ, Ind A, Komitopoulou E, Salmond GPC. Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J Appl Microbiol. 2010;109:505–14.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Perez Carrascal OM, Vaninsberghe D, Juárez S, Polz MF. Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris. Environ Microbiol. 2016;18:2660–76.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Santamaría RI, Bustos P, Sepúlveda-Robles O, Lozano L, Rodríguez C, Fernández JL, et al. Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl Environ Microbiol. 2014;80:446–54.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Carlson K. Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds). Bacteriophages: biology and applications. Boca Raton, FL: CRC Press; 2005). p. 437–94.

    66.
    Werle E, Schneider C, Renner M, Völker M, Fiehn W. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res. 1994;22:4354–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-Cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Gordon D, Green P. Consed: a graphical editor for next-generation sequencing. Bioinformatics 2013;29:2936–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    72.
    Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep. 2016;6:24373.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3 — new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci. 2009;106:19126–31.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–14.
    Article  Google Scholar 

    76.
    Lopes A, Tavares P, Petit M, Guérois R, Zinn-justin S. Automated classification of tailed bacteriophages according to their neck organization. BMC Genom. 2014;15:1027.
    Article  CAS  Google Scholar 

    77.
    Hyman P, Abedon ST. Phage host range and efficiency of plating. In: Clokie MRJ, Kropinski AM (eds). Bacteriophages, methods and protocols. Vol. I: Isolation, characterization, and interactions. Totowa, NJ: Humana Press; 2009. p. 175–202.

    78.
    Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Holmfeldt K, Solonenko N, Howard-Varona C, Moreno M, Malmstrom RR, Blow MJ, et al. Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems. Environ Microbiol. 2016;18:3949–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    80.
    Ishizawa H, Kuroda M, Morikawa M, Ike M. Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnol Biofuels. 2017;10:1–10.
    Article  CAS  Google Scholar 

    81.
    Cenens W, Makumi A, Mebrhatu MT, Lavigne R, Aertsen A. Phage–host interactions during pseudolysogeny. Bacteriophage 2013;3:e25029.
    PubMed  PubMed Central  Article  Google Scholar 

    82.
    Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    83.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Glinn D, et al. Community Ecology Package. https://cran.r-project.org, https://github.com/vegandevs/vegan. 2019.

    84.
    Flores CO, Poisot T, Valverde S, Weitz JS. BiMat: a MATLAB package to facilitate the analysis of bipartite networks. Methods Ecol Evol. 2016;7:127–32.
    Article  Google Scholar 

    85.
    Consul PC. A simple urn model dependent on predetermined strategy. Sankhyā Indian J Stat Ser B. 1974;36:391–9.
    Google Scholar 

    86.
    Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell. 2002;153:51–68.
    Article  Google Scholar 

    87.
    Flores CO, Valverde S, Weitz JS. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 2013;7:520–32.
    PubMed  Article  PubMed Central  Google Scholar 

    88.
    Porter SS, Chang PL, Conow CA, Dunham JP, Friesen ML. Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. ISME J. 2016;11:248–62.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    89.
    Greenlon A, Chang PL, Damtew ZM, Muleta A, Carrasquilla-Garcia N, Kim D, et al. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc Natl Acad Sci. 2019;116:15200–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Scola V, Ramond JB, Frossard A, Zablocki O, Adriaenssens EM, Johnson RM, et al. Namib desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Micro Ecol. 2018;75:193–203.
    CAS  Article  Google Scholar 

    91.
    Short CM, Suttle CA. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol. 2005;71:480–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    92.
    Edwards RA, Vega AA, Norman HM, Ohaeri M, Levi K, Dinsdale EA, et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol. 2019;4:1727–36.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Culley AI, Steward GF. New genera of RNA viruses in subtropical seawater, inferred from polymerase gene sequences. Appl Environ Microbiol. 2007;73:5937–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    Miranda-Sánchez F, Rivera J, Vinuesa P. Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes. Environ Microbiol. 2016;18:2375–91.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    95.
    Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, et al. Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts. N Phytol. 2016;209:319–33.
    CAS  Article  Google Scholar 

    96.
    Van Cauwenberghe J, Lemaire B, Stefan A, Efrose R, Michiels J, Honnay O. Symbiont abundance is more important than pre-infection partner choice in a Rhizobium – legume mutualism. Syst Appl Microbiol. 2016;39:345–9.
    PubMed  Article  PubMed Central  Google Scholar 

    97.
    Van Cauwenberghe J, Michiels J, Honnay O. Effects of local environmental variables and geographical location on the genetic diversity and composition of Rhizobium leguminosarum nodulating Vicia cracca populations. Soil Biol Biochem. 2015;90:71–9.
    Article  CAS  Google Scholar 

    98.
    Van Cauwenberghe J, Verstraete B, Lemaire B, Lievens B, Michiels J, Honnay O. Population structure of root nodulating Rhizobium leguminosarum in Vicia cracca populations at local to regional geographic scales. Syst Appl Microbiol. 2014;37:613–21.
    PubMed  Article  PubMed Central  Google Scholar 

    99.
    Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    100.
    Mühling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, et al. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environ Microbiol. 2005;7:499–508.
    PubMed  Article  PubMed Central  Google Scholar 

    101.
    Sun Y, Zhang S, Long L, Dong J, Chen F, Huang S. Genetic diversity and cooccurrence patterns of marine cyanopodoviruses and picocyanobacteria. Appl Environ Microbiol. 2018;84:e00591–18.
    CAS  PubMed  PubMed Central  Google Scholar 

    102.
    Chase AB, Arevalo P, Brodie EL, Polz MF, Karaoz U, Martiny JBH. Maintenance of sympatric and allopatric populations in free-living terrestrial bacteria. mBio. 2019;10:e02361–19.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS. Statistical structure of host – phage interactions. Proc Natl Acad Sci. 2011;108:E288.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    104.
    Koskella B, Thompson JN, Preston GM, Buckling A. Local biotic environment shapes the spatial scale of bacteriophage adaptation to bacteria. Am Nat. 2011;177:440–51.
    PubMed  Article  PubMed Central  Google Scholar 

    105.
    Koskella B, Parr N. The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time. Philos Trans R Soc B Biol Sci. 2015;370:20140297.
    Article  Google Scholar 

    106.
    Morgan AD, Gandon S, Buckling A. The effect of migration on local adaptation in a coevolving host-parasite system. Nature 2005;437:253–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    107.
    Gómez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:12453.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    108.
    Zhang Q-G, Buckling A. Resource-dependent antagonistic coevolution leads to a new paradox of enrichment. Ecology 2016;97:1319–28.
    PubMed  Article  PubMed Central  Google Scholar 

    109.
    Lopez-Pascua LDC, Buckling A. Increasing productivity accelerates host-parasite coevolution. J Evol Biol. 2008;21:853–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    110.
    Gurney J, Aldakak L, Betts A, Gougat-Barbera C, Poisot T, Kaltz O, et al. Network structure and local adaptation in co-evolving bacteria–phage interactions. Mol Ecol. 2017;26:1764–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    111.
    Thompson JN. The geographic mosaic of coevolution. Chicago, IL: Uni. Chicago Press; 2005. More

  • in

    Metabolomic signatures of coral bleaching history

    1.
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).
    CAS  PubMed  Google Scholar 
    2.
    Muscatine, L. & Porter, J. W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27, 454–460 (1977).
    Google Scholar 

    3.
    van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508–511 (2013).
    Google Scholar 

    4.
    National Academies of Sciences, Engineering, and Medicine A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs (The National Academies Press, 2019); https://doi.org/10.17226/25279

    5.
    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).
    CAS  PubMed  Google Scholar 

    6.
    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).
    CAS  PubMed  Google Scholar 

    7.
    Bay, R. & Palumbi, S. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol. 7, 1602–1612 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).
    PubMed  PubMed Central  Google Scholar 

    9.
    Ziegler, M., Seneca, F., Yum, L. & P, S.-N. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Hillyer, K. E. et al. 13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics 14, 12 (2018).
    Google Scholar 

    11.
    Hillyer, K. E. et al. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs 36, 105–118 (2017).
    Google Scholar 

    12.
    Sogin, E. M., Putnam, H., Gates, R. D., Putnam, H. M. & Anderson, P. E. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral Pocillopora damicornis. Metablomics 12, 71 (2016).
    Google Scholar 

    13.
    Hillyer, K. E., Tumanov, S., Villas-Bô As, S. & Davy, S. K. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. J. Exp. Biol. https://doi.org/10.1242/jeb.128660 (2016).

    14.
    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876 (2019).
    Google Scholar 

    15.
    Pinzón, J. H. et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R. Soc. Open Sci. 2, 140214 (2015).
    PubMed  PubMed Central  Google Scholar 

    16.
    Thomas, L. & Palumbi, S. R. The genomics of recovery from coral bleaching. Proc. R. Soc. B 284, 20171790 (2017).
    PubMed  Google Scholar 

    17.
    Wall, C. B. et al. Shifting baselines: repeat bleaching drives coral physiotypes through environmental legacy and cellular memory. Preprint at bioRxiv https://doi.org/10.1101/2020.04.23.056457 (2020).

    18.
    Matsuda, S. et al. Coral bleaching susceptibility is predictive of subsequent mortality within but not between coral species. Front. Ecol. Evol. 8, 178 (2020).
    Google Scholar 

    19.
    Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).
    Google Scholar 

    20.
    van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).
    Google Scholar 

    21.
    Anthony, K. R. N. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Change Biol. 21, 48–61 (2015).
    Google Scholar 

    22.
    da Silva, R. R., Lopes, N. P. & Silva, D. B. in Mass Spectrometry in Chemical Biology: Evolving Applications (eds da Silva, R. R. & Lopes, N. P.) 57–81 (Royal Society of Chemistry, 2017).

    23.
    Cunning, R., Ritson-Williams, R. & Gates, R. Patterns of bleaching and recovery of Montipora capitata in Kāne’ohe Bay, Hawai’i, USA. Mar. Ecol. Prog. Ser. 551, 131–139 (2016).
    CAS  Google Scholar 

    24.
    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3, 211–221 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Rosset, S. et al. Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts. Coral Reefs 38, 1241–1253 (2019).
    Google Scholar 

    26.
    Li, Y. et al. Simultaneous structural identification of diacylglyceryl-N-trimethylhomoserine (DGTS) and diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) in microalgae using dual Li+/H+ adduct ion mode by ultra-performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom. 31, 457–468 (2017).
    CAS  PubMed  Google Scholar 

    27.
    Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian–dinoflagellate symbiosis. Proc. Natl Acad. Sci. USA 114, 13194–13199 (2017).
    CAS  PubMed  Google Scholar 

    28.
    Weis, V. M. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).
    CAS  PubMed  Google Scholar 

    29.
    Mansour, J. S., Pollock, F. J., Díaz-Almeyda, E., Iglesias-Prieto, R. & Medina, M. Intra- and interspecific variation and phenotypic plasticity in thylakoid membrane properties across two Symbiodinium clades. Coral Reefs 37, 841–850 (2018).
    Google Scholar 

    30.
    Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).
    CAS  PubMed  Google Scholar 

    31.
    Quinn, R. A. et al. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc. R. Soc. B 283, 20160469 (2016).
    PubMed  Google Scholar 

    32.
    Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Galtier d’Auriac, I. et al. Before platelets: the production of platelet-activating factor during growth and stress in a basal marine organism. Proc. R. Soc. B 285, 20181307 (2018).
    PubMed  Google Scholar 

    34.
    Quistad, S. D. et al. Evolution of TNF-induced apoptosis reveals 550 My of functional conservation. Proc. Natl Acad. Sci. USA 111, 9567–9572 (2014).
    CAS  PubMed  Google Scholar 

    35.
    Williams, A. et al. Metabolomic shifts associated with heat stress in coral holobionts. Sci. Adv. 7, eabd4210 (2021).
    PubMed Central  Google Scholar 

    36.
    Takahashi, N. Chemistry of Plant Hormones (CRC, 1986).

    37.
    Reyes, F., Martín, R. & Fernández, R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Nat. Prod. 69, 668–670 (2006).
    CAS  PubMed  Google Scholar 

    38.
    Hill, R., Larkum, A. W. & Kramer, D. Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching. Coral Reefs 31, 963–975 (2012).
    Google Scholar 

    39.
    Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).
    CAS  PubMed  Google Scholar 

    40.
    Martin, F. J. et al. A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).
    PubMed  PubMed Central  Google Scholar 

    41.
    Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).
    CAS  PubMed  Google Scholar 

    43.
    Dixon, G., Abbott, E. & Matz, M. Meta-analysis of the coral environmental stress response: Acropora corals show opposing responses depending on stress intensity. Mol. Ecol. https://doi.org/10.1111/mec.15535 (2020).

    44.
    Boström-Einarsson, L. et al. Coral restoration – a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).
    PubMed  PubMed Central  Google Scholar 

    45.
    Van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).
    PubMed  Google Scholar 

    46.
    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).
    PubMed  PubMed Central  Google Scholar 

    47.
    Bay, R., Rose, N., Logan, C. & Palumbi, S. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).
    PubMed  PubMed Central  Google Scholar 

    48.
    Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).
    PubMed  Google Scholar 

    49.
    Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).
    Google Scholar 

    50.
    Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).
    CAS  PubMed  Google Scholar 

    52.
    Martin, C. et al. Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry. Sci. Rep. 9, 3019 (2019).
    Google Scholar 

    53.
    Cunning, R., Gillette, P., Capo, T., Galvez, K. & Baker, A. C. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34, 155–160 (2015).
    Google Scholar 

    54.
    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).
    Google Scholar  More

  • in

    Ocean acidification may slow the pace of tropicalization of temperate fish communities

    1.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Article  Google Scholar 
    2.
    Pecl, G. T. et al. Biodiversity redistribution under climate: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Article  CAS  Google Scholar 

    3.
    Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894 (2008).
    CAS  Article  Google Scholar 

    4.
    Feary, D. A. et al. Latitudinal shift in coral reef fishes: why some species do other do not shift. Fish. Fish. (Oxf.) 15, 593–615 (2013).
    Article  Google Scholar 

    5.
    Nakamura, Y., Feary, D. A., Kanda, M. & Yamaoka, K. Tropical fishes dominate temperate reef fish communities within western Japan. PLoS ONE 8, e81107 (2013).
    Article  CAS  Google Scholar 

    6.
    Peers, M. J. L., Wehtje, M., Thornton, D. H. & Murray, D. L. Prey switching as a means of enhancing persistence in predators at the trailing southern edge. Glob. Change Biol. 20, 1126–1135 (2014).
    Article  Google Scholar 

    7.
    Verges, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).
    CAS  Article  Google Scholar 

    8.
    Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddo, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731 (2009).
    Article  Google Scholar 

    9.
    Johnson, C. R., Ling, S. D., Ross, J., Shepherd, S. & Miller, K. Establishment of the Long-Spined Sea Urchin (Centrostephanus rodgersii) in Tasmania: First Assessment of Potential Threats to Fisheries. FRDC Final Report, Project No. 2001/044 (School of Zoology & Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, 2005).

    10.
    Beck, H. J., Feary, D. A., Nakamura, Y. & Booth, D. J. Temperate macroalgae impacts tropical fish recruitment at forefront of range expansion. Coral Reefs 36, 639–651 (2017).
    Article  Google Scholar 

    11.
    Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl Acad. Sci. USA 112, 13272–13277 (2015).
    CAS  Article  Google Scholar 

    12.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    CAS  Article  Google Scholar 

    13.
    Connell, S. D. et al. The duality of ocean acidification as a resource and a stressor. Ecology 99, 1005–1010 (2018).
    Article  Google Scholar 

    14.
    Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Russell, B. D. & Connell, S. D. Species interactions drive fish biodiversity loss in a high-CO2 world. Curr. Biol. 27, 2177–2184 (2017).
    CAS  Article  Google Scholar 

    15.
    Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81–85 (2017).
    CAS  Article  Google Scholar 

    16.
    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Proc. R. Soc. B 368, 20120442 (2013).
    Google Scholar 

    17.
    Russell, B. D. et al. Future seagrass beds: can increased productivity lead to increased carbon storage? Mar. Pollut. Bull. 73, 463–469 (2013).
    CAS  Article  Google Scholar 

    18.
    Palacios, S. L. & Zimmerman, R. C. Response of ellgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344, 1–13 (2007).
    Article  Google Scholar 

    19.
    Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob. Change Biol. 17, 2488–2497 (2011).
    Article  Google Scholar 

    20.
    Linares, C. et al. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc. R. Soc. B Biol. Sci. 282, 20150587 (2015).
    CAS  Article  Google Scholar 

    21.
    Russell, B. D., Thompson, J. A. I., Falkenberg, L. J. & Connell, S. D. Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob. Change Biol. 15, 2153–2162 (2009).
    Article  Google Scholar 

    22.
    Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B Biol. Sci. 277, 1409–1415 (2010).
    Article  Google Scholar 

    23.
    Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162 (2011).
    Article  Google Scholar 

    24.
    Johnson, M. D., Comeau, S., Lantz, C. A. & Smith, J. E. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages. Coral Reefs 36, 1059–1070 (2017).
    Article  Google Scholar 

    25.
    Kroeker, K. J., Kordas, R. L. & Harley, D. G. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).
    Article  CAS  Google Scholar 

    26.
    Goldenberg, S. U., Nagelkerken, I., Ferreira, C. M., Ullah, H. & Connell, S. D. Boosted food web productivity through ocean acidification collapses under warming. Glob. Change Biol. 23, 4177–4184 (2017).
    Article  Google Scholar 

    27.
    Wernberg, T., Smale, D. A. & Thomsen, M. S. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob. Change Biol. 18, 1491–1498 (2012).
    Article  Google Scholar 

    28.
    Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515–14520 (2011).
    CAS  Article  Google Scholar 

    29.
    Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229–233 (2018).
    Article  Google Scholar 

    30.
    Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).
    Article  Google Scholar 

    31.
    Widdicombe, S., Dupont, S. & Thorndyke, M. Laboratory Experiments and Benthic Mesocosm Studies. Guide for Best Practices in Ocean Acidification Research and Data Reporting (EPOCA, 2008).

    32.
    Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).
    CAS  Article  Google Scholar 

    33.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    CAS  Article  Google Scholar 

    34.
    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).
    CAS  Article  Google Scholar 

    35.
    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
    Article  Google Scholar 

    36.
    Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Phil. Trans. R. Soc. B 370, 20130269 (2015).
    Article  Google Scholar 

    37.
    Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. 73, 470–484 (2013).
    CAS  Article  Google Scholar 

    38.
    Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102–114 (2007).
    Article  Google Scholar 

    39.
    Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Change 6, 89–93 (2016).
    CAS  Article  Google Scholar 

    40.
    Hall-Spencer, J. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).
    CAS  Article  Google Scholar 

    41.
    Kroeker, K., Gambi, M. C. & Micheli, F. Community dynamics and ecosystem simplification in a high-CO2 ocean. Proc. Natl Acad. Sci. USA 110, 12721–12726 (2013).
    CAS  Article  Google Scholar 

    42.
    Enochs, I. C. et al. Shift from coral to macroalgae dominance on volcanically acidified reef. Nat. Clim. Change 5, 1083–1088 (2015).
    CAS  Article  Google Scholar 

    43.
    Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).
    Article  Google Scholar 

    44.
    Perry, A. L., Low, O. L., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
    CAS  Article  Google Scholar 

    45.
    Steneck, R. S. Herbivory on coral reefs: a synthesis. In Proc. 6th International Coral Reef Symposium. Vol. 1, 37–49 (1988).

    46.
    Purcell, S. W. & Bellwood, D. R. A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). Environ. Biol. Fishes 37, 139–159 (1993).
    Article  Google Scholar 

    47.
    Curley, B. G., Gillanders, B. M. & Kingsford, M. J. Spatial and habitat related patterns of temperate reef fish assemblages: implications for the design of marine protected areas. Mar. Freshw. Res. 53, 1197–1210 (2002).
    Article  Google Scholar 

    48.
    Coen, L. D., Luckenbach, M. W. & Breitburg, D. L. The role of oyster reef as essential fish habitat: a review of current knowledge and some new perspectives. Am. Fish. Soc. Symp. 22, 438–454 (1999).
    Google Scholar 

    49.
    Lenihan, H. S. et al. Cascading of habitat degradation: oyster reefs invaded by refugee fishes escaping stress. Ecol. Appl. 11, 764–782 (2001).
    Article  Google Scholar 

    50.
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).
    CAS  Article  Google Scholar 

    51.
    Thomas, Y., Cassou, C., Gernez, P. & Pouvreau, S. Oysters as sentinels of climatic variability and climatic change in coastal ecosystems. Environ. Res. Lett. 13, 104009 (2018).
    Article  Google Scholar 

    52.
    Alleway, H. K. & Connell, S. D. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory. Conserv. Biol. 29, 795–804 (2015).
    Article  Google Scholar 

    53.
    Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. BioScience 168, 64–76 (2018).
    Article  Google Scholar 

    54.
    O’Brien, J. M. & Scheibling, R. E. Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts. Mar. Ecol. Prog. Ser. 599, 1–17 (2018).
    Article  Google Scholar 

    55.
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).
    Article  Google Scholar 

    56.
    Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).
    Article  Google Scholar 

    57.
    Smith, S. M., Fox, R. J., Booth, D. J. & Donelson, J. M. ‘Stick with your kind, or hang with locals?’ Implications of shoaling strategy for tropical reef fish on a range-expansion frontline. Glob. Change Biol. 24, 1663–1672 (2018).
    Article  Google Scholar 

    58.
    Kingsbury, K. M., Gillanders, B. M., Booth, D. J., Coni, E. O. C. & Nagelkerken, I. Range-extending coral reef fishes trade-off growth for maintenance of body condition in cooler waters. Sci. Total Environ. 703, 134598 (2019).
    Article  CAS  Google Scholar 

    59.
    Kingsbury, K. M., Gillanders, B. M., Booth, D. J. & Nagelkerken, I. Trophic niche segregation allows range-extending coral reef fishes to co-exist with temperate species under climate change. Glob. Change Biol. 26, 721–733 (2020).
    Article  Google Scholar 

    60.
    Foo, S. A., Dworjanyn, S. A., Poore, A. G. B. & Byrne, M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS ONE 7, e42497 (2012).
    CAS  Article  Google Scholar 

    61.
    Kelly, M. W., Padilla-Gamino, J. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrus purpuratus. Glob. Change Biol. 19, 2536–2546 (2013).
    Article  Google Scholar 

    62.
    Uthicke, S. et al. Little evidence of adaptation potential to ocean acidification at a CO2 vent. Ecol. Evol. 9, 10004–10016 (2019).
    Article  Google Scholar 

    63.
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).
    CAS  Article  Google Scholar 

    64.
    Siikayuopio, A. I., Mortesen, A., Dale, T. & Foss, A. Effects of carbon dioxide exposure on feed intake and gonad growth in green sea urchin, Stringylicentritus droebachiensis. Aquaculture 266, 97–101 (2007).
    Article  CAS  Google Scholar 

    65.
    Dworjanyn, S. A. & Byrne, M. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Proc. R. Soc. B Biol. Sci. 285, 20172684 (2018).
    Article  CAS  Google Scholar 

    66.
    Miles, H., Widdicombe, S., Spicer, J. I. & Hall-Spencer, J. Effects of anthropogenic seawater acidification on acid–base balance in the sea urchin Psammechinus miliaris. Mar. Pollut. Bull. 54, 89–96 (2007).
    CAS  Article  Google Scholar 

    67.
    Spicer, J. I., Widdicombe, S., Needham, H. R. & Berge, J. A. Impact of CO2-acidified seawater on the extracellular acid–base balance of the northern sea urchin Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 407, 19–25 (2011).
    CAS  Article  Google Scholar 

    68.
    Uthicke, S. et al. Echinometra sea urchins acclimatized to elevated pCO2 at volcanic vents outperform those under present-day pCO2 conditions. Glob. Change Biol. 22, 2451–2461 (2016).
    Article  Google Scholar 

    69.
    Wernberg, T. et al. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett. 13, 685–694 (2010).
    Article  Google Scholar 

    70.
    Simonson, E. J., Metaxas, A. & Scheibling, R. E. Kelp in hot water: effects of warming seawater temperature on kelp quality as a food source and settlement substrate. Mar. Ecol. Prog. Ser. 537, 105–119 (2015).
    CAS  Article  Google Scholar 

    71.
    Ross, P. M., Parker, L. & Byrne, M. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J. Mar. Sci. 73, 537–549 (2016).
    Article  Google Scholar 

    72.
    Wong, J. M., Johnson, K. M., Kelly, M. W. & Hofmann, G. E. Transcriptomics reveals transgenerational effects in purple sea urchin embryos: adult acclimation to upwelling conditions alters the response of their progeny to differential pCO2 levels. Mol. Ecol. 27, 1120–1137 (2018).
    CAS  Article  Google Scholar 

    73.
    Clark, M. S. et al. Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris. Sci. Rep. 9, 952 (2019).
    Article  CAS  Google Scholar 

    74.
    Ghedini, G., Russell, B. D. & Connell, S. D. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol. Lett. 18, 182–187 (2015).
    Article  Google Scholar 

    75.
    Munday, P. L., Rummer, J. L. & Baumann, H. Adaptation and evolutionary responses to high CO2. Fish. Physiol. 37, 369–395 (2019).
    Article  Google Scholar 

    76.
    Miller, G. M., Watson, S. A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat. Clim. Change 2, 858–861 (2012).
    CAS  Article  Google Scholar 

    77.
    Allan, B. J. M., Miller, G. M., McCormick, M. I., Domenici, P. & Munday, P. L. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc. R. Soc. B Biol. Sci. 281, 20132179 (2014).
    Article  Google Scholar 

    78.
    Welch, M., Watson, S., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effect of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat. Clim. Change 4, 1086–1089 (2014).
    CAS  Article  Google Scholar 

    79.
    Rummer, J. L. & Munday, P. L. Climate change and the evolution of reef fishes: past and future. Fish. Fish. (Oxf.) 18, 22–39 (2017).
    Article  Google Scholar 

    80.
    Connell, S. D. & Irving, A. D. Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J. Biogeogr. 35, 1608–1621 (2008).
    Article  Google Scholar 

    81.
    Pecorino, D., Lamare, M. D. & Barker, M. F. Growth, morphometrics and size structure of the Diamatidae sea urchin Centrostephanus rodgersii in northern New Zealand. Mar. Freshw. Res. 63, 624–634 (2012).
    Article  Google Scholar 

    82.
    Brinkman, T. J. & Smith, A. M. E. Effects of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand. Mar. Freshw. Res. 66, 360–370 (2015).
    Article  Google Scholar 

    83.
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 596, 82–90 (2017).
    Article  CAS  Google Scholar 

    84.
    Booth, D. J., Beretta, G. A., Brown, L. & Figueira, W. F. Predicting success of range-expanding coral reef fish in temperate habitats using fish in temperature–abundance relationships. Front. Mar. Sci. 5, 31 (2018).
    Article  Google Scholar 

    85.
    Ridgeway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613 (2007).
    Google Scholar 

    86.
    Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425 (2013).
    Article  Google Scholar 

    87.
    Figueira, W. F. & Booth, D. J. Increasing ocean temperatures allow tropical fishes to survive overwinter in temperate waters. Glob. Change Biol. 16, 506–516 (2010).
    Article  Google Scholar 

    88.
    McLeod, I. et al. Habitat value of Sydney rock oyster (Saccostrea glomerata) reefs on soft sediments. Mar. Freshw. Res. 71, 771–781 (2019).
    Article  Google Scholar 

    89.
    Gillies, C. L. et al. Australian shellfish ecosystems: past distribution, current status and future direction. PLoS ONE 13, e0190914 (2018).
    Article  CAS  Google Scholar 

    90.
    Minte-Vera, C. V., Moura, R. L. & Francini-Filho, R. B. Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar. Ecol. Prog. Ser. 367, 283–293 (2008).
    Article  Google Scholar 

    91.
    Fulton, C. J., Noble, M. N., Radford, B., Gallen, C. & Harasti, D. Microhabitat selectivity underpins regional indicators of fish abundance and replenishment. Ecol. Indic. 70, 222–231 (2016).
    Article  Google Scholar 

    92.
    Choat, J. H. & Clements, K. D. Diet in Odacid and Aplodactylid fishes from Australia and New Zealand. Aust. J. Mar. Freshw. Res. 43, 1451–1459 (1992).
    Article  Google Scholar 

    93.
    Clements, K. D. & Choat, J. H. Comparison of herbivory in the closely-related marine fish genera Girella and Kyphosus. Mar. Biol. 127, 579–586 (1997).
    Article  Google Scholar 

    94.
    Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853–866 (2007).
    Article  Google Scholar 

    95.
    Zarco-Perello, S., Wemberg, T., Langlois, T. J. & Vanderklift, M. A. Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Sci. Rep. 7, 820 (2017).
    Article  CAS  Google Scholar 

    96.
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).
    Article  Google Scholar 

    97.
    Paliy, O. & Shankar, V. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057 (2016).
    CAS  Article  Google Scholar 

    98.
    Hemingson, C. R. & Bellwood, D. R. Biogeographic patterns in major marine realms: function not taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography 41, 174–182 (2018).
    Article  Google Scholar 

    99.
    McClanahan, T. R. & Kaunda-Arara, B. Fishery recovery in a coral-reef marine park and its effect on the adjacent fishery. Conserv. Biol. 10, 1187–1199 (1996).
    Article  Google Scholar 

    100.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 

    101.
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).
    Article  Google Scholar 

    102.
    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).
    Article  Google Scholar 

    103.
    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

    104.
    Jax, K. Thresholds, tipping points and limits. In OpenNESS Ecosystem Services Reference Book (eds Potschin, M. & Jax, K.) (2016). More

  • in

    Development of a robust protocol for the characterization of the pulmonary microbiota

    Many precautions should be taken to limit the modification of the commensal communities studied and the increase of interindividual variation not attributable to the experimental variables. The following factors can influence the human microbiota and should be considered when designing studies targeting the lung microbiota: the administration of antibiotics or neoadjuvant25,26,27,28, the size of the lesion, the type of surgical procedure, the type of pulmonary pathology under study, and living habits of patients (e.g., smoking status, physical exercise, buccal hygiene, alcohol consumption)29,30,31,32,33,34.
    A more exhaustive list of concomitant factors was pointed out by Carney et al.35. However, as the different fields of microbiota studies expand, it is likely that additional variables that can alter its composition will be uncovered. The molecular tools currently used to analyze the human microbiota do not have the power to discriminate the impact of that many factors over the microbial profiles. Whenever possible, patients selected for lung microbiota studies should be extensively screened so that they can be as similar as possible. Longitudinal studies could also minimize the impact of those variables, as the same patient, with similar concomitant factors through the study, would be compared to himself overtime.
    Tissue management steps should consider the contamination possibilities. In addition to the selection of a less contamination-prone procedure, such as thoracoscopic lobectomy, the manipulations and the instrument used in subsampling the excised organ should be taken into account. A combination of bleach and humid heat was chosen to sterilize the instruments used to sample the cancerous and healthy tissue as it was considered the most easily accessible method. The use of humid heat itself (autoclave) lacks the power to completely neutralize bacterial genomic DNA in solutions and on surfaces36. On the other hand, the utilization of bleach, or a chlorinated detergent, leads to the complete degradation of contaminating DNA on surfaces, such as benches and instruments37,38, but requires rinsing to avoid corrosion. Hence, combining both methods, soaking the instruments in bleach 1.6% for 10 min before rinsing with distilled water and autoclaving in a sterilization pouches, ensures a minimal amount of DNA has to be degraded by moist heat. The rest of the single-use equipment used was commercially sterilized with ionizing radiation.
    Healthy lung tissue was subsampled from the pulmonary lobe containing the tumor to ensure that the developed method could be used on a variety of lung tissue samples. It could also act as a control of non-pathologic microbiota to allow comparisons of cancerous and non-cancerous samples within the same subject, hence minimizing the impact on inter-individual microbiota variations. In fact, Riquelme et al. found that the gut microbiota has the capacity to specifically colonize pancreatic tissue8. Correspondingly, the use of adjacent pulmonary tissue to the tumor could help get better insights at a specific colonization of the tumor by lung bacteria. A 5 cm distance between the tumor and the healthy sample was ensured to minimize the potential effect of increased inflammation surrounding the tumor. Furthermore, the lung microbiota composition seems to vary dependently on the position and depth of the respiratory tract, even inside a same lobe39. The healthy tissue was collected in the same tierce of pulmonary depth (Supplementary Fig. 4) in an attempt to sample a microbial community that it would be as representative of non-pathologic microbiota in the tumoral region as possible.
    The homogenization of frozen and thawed pulmonary tissues was attempted and was unsuccessful, both with the use of only a 2.8 mm tungsten bead in the Retsch – MM301 mixer mill (30 beats/s, 20 min) or of the Fisherbrand 150 homogenizer with plastic probes (Fisher scientific, Pittsburg). The elasticity of the tissue or its frozen state make the mass nearly unbreakable. The use of the Liberase™ TM enzymatic cocktail (collagenase I & II, thermolysin) prior to the mechanical homogenization proved successful and a homogeneous suspension was obtained using the two-step homogenization protocol (Supplementary Fig. 3). Multiple ratios of liquid to mass of tissue were tested and 3 mL/g was found optimal, as it facilitates the homogenization without overly diluting to sample. A similar ratio of liquid to tissue was used in breast tissue microbiota study40. The samples were first thawed at 4 °C to reduce potential growth or degradation of microorganisms. The digestion was performed directly in the 50 mL collection tube to limit the tissue manipulation and ensure possible contaminant tracking.
    Our team was also unable to replicate the results obtain by Yu et al. on larger tissue samples using 0.2 mg/mL of Proteinase K for 24 h13. The samples remained firm and turned brown. Using the Liberase™ cocktail enabled a much faster digestion (75 min) and broke down specifically the lung component responsible for its elasticity, the collagen.
    Three commercially available DNA extraction kits were tested. They were selected for their previous successful use in the study of pulmonary or gut microbiota and their intended application as described by the manufacturer. The extraction kits were first tested on homogenized lung tissue spiked with whole-cell bacterial community to assess the efficiency of DNA extraction and recuperation of the commercial kits. The three kits were able to recover more than 88% of the genera added to the samples. All the genera that were not detected by the Microbial and Powersoil (Cutibacterium acnes, Bacteroides vulgatus, Bifidobacterium adolescentis, D. radiodurans, Clostridium beijerinckii, L. gasseri), with the exception of H. pylori, were Gram-positive bacteria. This type of bacteria has been reported to require more aggressive extraction methods to break their tougher cell walls19. However, the bacterial community did not go through the enzymatic and physical homogenization that usually takes place before DNA extraction since we needed to obtain a homogenous tissue sample that could be processed with or without spiked bacteria. These hard to lyse Gram-positive bacteria could have been fragilized by these processes, rendering them easier to break down during the extraction protocol. Furthermore, the detection of the artificially incorporated bacteria does not account for the natural physical association that may occur between the human tissue and microbial cells. Nonetheless, these high percentages of recovery were promising and lead us to continue with the characterization of the extraction kits in a real-life context, meaning the analysis of the base-level microbiota in pulmonary samples collected and processed through the entire pipeline.
    Every measurement of the efficiency of extraction, including DNA yield (Supplementary Fig. 5), DNA purity (Supplementary Figs. 6 and 7), and alpha diversity (Fig. 1), pointed in the same direction. In fact, they all showed that the Blood extraction kit was the best option out of the three kits. Therefore, using the Blood kit is recommended as one of the pieces of a complete study design. Additionally, the presence of a high concentration of host DNA in tissue samples might tend to saturate the purification column, which could reduce to amount of bacterial DNA recovered. The superior DNA binding capacity of the affinity column of the Blood kit compared to the two others could explain its better performance and its higher yield in most cases. The samples extracted with the Blood kit were also associated with higher alpha diversity (Shannon index). Therefore, this extraction method was able to recover a higher number of different bacterial organisms (richness) and proportionality in the different OTUs (evenness). The absence of PCR inhibitors and a higher recuperation rate of bacterial DNA in the Blood extracted samples could have led to a more proper amplification in the sequencing process and to the recuperation of very low abundance bacterial DNA in the extraction eluate. For further research, it is advised to take the additional precaution of working under a biosafety cabinet or in the sterile field when analyzing the microbiota of lung tissues to reduce the risk of incorporation of airborne contaminants.
    The Illumina Miseq sequencing platform with the use of dual-index strategy has become the dominant technology used in microbial ecology studies for its cost efficiency, low error rate, and user-friendliness41,42,43. Most studies interested in the pulmonary microbiota have also used this technology11,13,14. The sequencing of the 16S rRNA gene amplicon was favored over a shotgun sequencing method because of the overwhelming quantity of human DNA joining bacterial genomes in the pulmonary tissue. The 16S rRNA gene is the most used marker of bacterial identification. No consensus has been reached on the selection of the 16S rRNA gene variable region (V) to sequence for human microbiota18,44. However, it should be kept consistent across studies to allow comparisons. Targeting the V3–V4 regions was suggested using the universal primers developed by Klindworth et al.45. Several microbiota studies, including lung microbiota, have also used these regions7,13,46,47,48.
    In the context of this study, genomic mock-community was spiked in DNA extracted from the pulmonary tissue at a biological meaningful concentration. Every genus added to the samples was successfully detected. Consequently, the high ratio of human DNA to bacterial DNA did not interfere with the amplification and detection steps of the sequencing procedure. The sequencing method in place seems adequate for its application in the characterization of pulmonary microbiota.
    Contaminating bacteria or DNA can have an important impact of the microbial profile observed in very low biomass samples such as pulmonary tissue23. Consequentially, in addition to proper protocol selection, methodological design that attempts to follow, detect, and account for contamination was proposed. Its main features include the incorporation of a single negative control that monitors the incorporation of contaminants at every step of the experimental method (Supplementary Fig. 3). Since every step of the protocol prior to the extraction is meant to be executed in a single tube and only by the addition of reagents, it is possible to carry and detect the contaminants introduced throughout the procedure. On the contrary, microbiota study methodologies usually dictate for the incorporation of multiple controls at every step of the procedure (e.g. DNA extraction kit, PCR controls, etc.)18. Although more informative as to which step leads to contamination, it makes data analysis harder since the presence of contamination in the multiple controls cannot by added.
    No bioinformatics standard operating procedure is available and what should be done with controls sequencing data is still under debate18. Some research groups tried to use a neutral community model49, additional qPCR data50, amplicon DNA yield, or prevalence algorithms51 to assess the influence of methodological contaminants. The removal of every bacterial OTU found in controls from the samples is often not appropriate as these OTUs might also be naturally present in the samples22. We propose using relative abundance ratio between samples and controls to remove contaminating OTUs. Since controls have much lower richness than extracted lung samples and that the total number of reads (sequencing depth) is distributed across every OTU, the relative abundance of reads for each OTU tend to be much higher in the control than the same OTU in samples. Therefore, if the relative abundance of an OTU is greatly superior in the sample than in the control, it is reasonable to think that the same OTU was also in the sample in a substantial quantity. To ensure that OTUs that were present in very low absolute abundance (e.g., from only 1–2 reads) do not lead to the removal of the highly abundant corresponding OTU in samples, only the OTUs with a ratio of 1000 (relative abundance of sample/relative abundance of sample) were kept. The rest of the OTUs found in controls were completely removed from the related samples, since the influence of contaminating DNA could not be differentiated from the pulmonary microbiota. This method would theoretically tolerate no more than 20 reads (0.1%) before removing the entire OTU from the sample if only one OTU was present in the samples (20,000 reads, 100%). The use of relative abundance helps reduce the absolute abundance bias induced by the divergence in sequencing depth. The OTUs were removed from both tissues at the same time or not at all to avoid adding artificial intraindividual variation. The authors acknowledge that the proposed contaminant management method does not have the in-dept validation of other methods, such as described by Davis et al. with the decontam package51. However, it does not share its limitations regarding the lack of consideration for OTU abundance and need of high number of controls to ensure sensitivity while using prevalence-based detection. Further research focused on the development of statistical methods to detect contaminant OTUs in the cases of lung microbiota is needed. This work is to be a starting point toward methodological standardization and its modular nature makes the bioinformatic contaminant management method proposed here interchangeable once a more robust one is uncovered.
    Pearson’s correlation tests were performed on the number of reads per OTU between the samples and their respective controls. Although these values were not normally distributed (Shapiro-Wilk, p  More

  • in

    Rats show direct reciprocity when interacting with multiple partners

    1.
    Lehmann, L. & Keller, L. The evolution of cooperation and altruism—a general framework and a classification of models. J. Evol. Biol. 19, 1365–1376 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Taborsky, M., Frommen, J. G. & Riehl, C. Correlated pay-offs are key to cooperation. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150084 (2016).
    Article  Google Scholar 

    3.
    Trivers, R. L. The evolution of altruism. Q. Rev. Biol. 46, 35–57 (1971).
    Article  Google Scholar 

    4.
    Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science (80-. ) 211, 1390–1396 (1981).
    ADS  MathSciNet  CAS  MATH  Article  Google Scholar 

    5.
    Pfeiffer, T., Rutte, C., Killingback, T., Taborsky, M. & Bonhoeffer, S. Evolution of cooperation by generalized reciprocity. Proc. R. Soc. B Biol. Sci. 272, 1115–1120 (2005).
    Article  Google Scholar 

    6.
    Rankin, D. J. & Taborsky, M. Assortment and the evolution of generalized reciprocity. Evolution (N. Y). 63, 1913–1922 (2009).

    7.
    Alexander, R. D. The Biology of Moral Systems (Aldine Gruyter, New York, 1987).
    Google Scholar 

    8.
    Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity by image scoring. Nature 393, 573 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Winkler, I., Jonas, K. & Rudolph, U. On the usefulness of memory skills in social interactions: Modifying the iterated Prisoner’s Dilemma. J. Conflict Resolut. 52, 375–384 (2008).
    Article  Google Scholar 

    10.
    Stevens, J. R., Volstorf, J., Schooler, L. J. & Rieskamp, J. Forgetting constrains the emergence of cooperative decision strategies. Front. Psychol. 1, 1–12 (2011).
    Article  Google Scholar 

    11.
    Milinski, M. & Wedekind, C. Working memory constrains human cooperation in the Prisoner’s Dilemma. Proc. Natl. Acad. Sci. 95, 13755–13758 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Volstorf, J., Rieskamp, J. & Stevens, J. R. The good, the bad, and the rare: Memory for partners in social interactions. PLoS One 6, e18945 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Barta, Z. et al. Optimal moult strategies in migratory birds. Philos. Trans. R. Soc. B Biol. Sci. 363, 211–229 (2008).
    Article  Google Scholar 

    14.
    Houston, A. I. & McNamara, J. M. Models of Adaptive Behaviour: An Approach Based on State (Cambridge University Press, Cambridge, 1999).
    Google Scholar 

    15.
    Tinbergen, N. The Study of Instinct (Clarendon Press, Oxford, 1951).
    Google Scholar 

    16.
    McNamara, J. M. & Houston, A. I. Integrating function and mechanism. Trends Ecol. Evol. 24, 670–675 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Gigerenzer, G., Todd, P. M. & ABC Research Group. Simple heuristics that make us smart. (Oxford University Press, 1999).

    18.
    Hurley, S. Social heuristics that make us smarter. Philos. Psychol. 18, 585–612 (2005).
    Article  Google Scholar 

    19.
    Isen, A. M. Positive affect, cognitive processes, and social behavior. Adv. Exp. Soc. Psychol. 20, 203–253 (1987).
    Google Scholar 

    20.
    Bartlett, M. Y. & DeSteno, D. Gratitude and prosocial behavior: Helping when it costs you. Psychol. Sci. 17, 319–325 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Stanca, L. Measuring indirect reciprocity: Whose back do we scratch? J. Econ. Psychol. 30, 190–202 (2009).
    Article  Google Scholar 

    22.
    Leimgruber, K. L. et al. Give what you get: Capuchin monkeys (Cebus apella) and 4-year-old children pay forward positive and negative outcomes to conspecifics. PLoS One 9, e87035 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Claidière, N. et al. Selective and contagious prosocial resource donation in capuchin monkeys, chimpanzees and humans. Sci. Rep. 5, 7631 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Gfrerer, N. & Taborsky, M. Working dogs cooperate among one another by generalised reciprocity. Sci. Rep. 7, 43867 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Rutte, C. & Taborsky, M. Generalized reciprocity in rats. PLoS Biol. 5, e196 (2007).
    CAS  Article  Google Scholar 

    26.
    Rutte, C. & Taborsky, M. The influence of social experience on cooperative behaviour of rats (Rattus norvegicus): Direct vs generalised reciprocity. Behav. Ecol. Sociobiol. 62, 499–505 (2008).
    Article  Google Scholar 

    27.
    Schneeberger, K., Dietz, M. & Taborsky, M. Reciprocal cooperation between unrelated rats depends on cost to donor and benefit to recipient. BMC Evol. Biol. 12, 41 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Schweinfurth, M. K., Aeschbacher, J., Santi, M. & Taborsky, M. Male Norway rats cooperate according to direct but not generalized reciprocity rules. Anim. Behav. 152, 93–101 (2019).
    Article  Google Scholar 

    29.
    Dolivo, V. & Taborsky, M. Cooperation among Norway rats: The importance of visual cues for reciprocal cooperation, and the role of coercion. Ethology 121, 1071–1080 (2015).
    Article  Google Scholar 

    30.
    Dolivo, V. & Taborsky, M. Norway rats reciprocate help according to the quality of help they received. Biol. Lett. 11, 20140959 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Wood, R. I., Kim, J. Y. & Li, G. R. Cooperation in rats playing the iterated Prisoner’s Dilemma game. Anim. Behav. 114, 27–35 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    32.
    Schweinfurth, M. K. & Taborsky, M. The transfer of alternative tasks in reciprocal cooperation. Anim. Behav. 131, 35–41 (2017).
    Article  Google Scholar 

    33.
    Schweinfurth, M. K. & Taborsky, M. Reciprocal trading of different commodities in Norway rats. Curr. Biol. 28, 594–599 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Stieger, B., Schweinfurth, M. K. & Taborsky, M. Reciprocal allogrooming among unrelated Norway rats (Rattus norvegicus) is affected by previously received cooperative, affiliative and aggressive behaviours. Behav. Ecol. Sociobiol. 71, 182 (2017).
    Article  Google Scholar 

    35.
    Delmas, G. E., Lew, S. E. & Zanutto, S. B. High mutual cooperation rates in rats learning reciprocal altruism: The role of payoff matrix. PLoS ONE 14, 1–14 (2019).
    Article  CAS  Google Scholar 

    36.
    Barnett, S. A. & Spencer, M. M. Feeding social behaviour and interspecific competition in wild rats. Behaviour 3, 229–242 (1951).
    Google Scholar 

    37.
    Norton, S., Culver, B. & Mullenix, P. Development of nocturnal behavior in albino rats. Behav. Biol. 15, 317–331 (1975).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Schweinfurth, M. K. & Taborsky, M. Rats play tit-for-tat instead of integrating cooperative experiences over multiple interactions. Proc. R. Soc. 287, 20192423 (2020).
    Google Scholar 

    39.
    Engqvist, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav. 70, 967–971 (2005).
    Article  Google Scholar 

    40.
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. 8, 6–10 (2010).
    Article  CAS  Google Scholar 

    41.
    Schweinfurth, M. K. et al. Do female Norway rats form social bonds? Behav. Ecol. Sociobiol. 71, 98 (2017).
    Article  Google Scholar 

    42.
    Davis, D. E. The characteristics of rat populations. Q. Rev. Biol. 28, 373–401 (1953).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    McGuire, B., Pizzuto, T., Bemis, W. E. & Getz, L. L. General ecology of a rural population of Norway rats (Rattus norvegicus) based on intensive live trapping. Am. Midl. Nat. 155, 221–236 (2006).
    Article  Google Scholar 

    44.
    Dunbar, R. I. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493 (1992).
    Article  Google Scholar 

    45.
    Panoz-Brown, D. et al. Replay of episodic memories in the rat. Curr. Biol. 28, 1628–1634 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Crystal, J. D. Prospective memory. Curr. Biol. 23, 750–751 (2013).
    Article  CAS  Google Scholar 

    47.
    Telle, H. Beitrag zur Erkenntnis der Verhaltensweise von Ratten, vergleichend dargestellt bei Rattus norvegicus und Rattus rattus. Zeitschrift für Angew. Zool. 53, 129–196 (1966).
    Google Scholar 

    48.
    Calhoun, J. B. The ecology and sociobiology of the Norway rat. (U.S. Dept. of Health, Education, and Welfare, Public Health Service, 1979).

    49.
    Mogil, J. S. Mice are people too: Increasing evidence for cognitive, emotional and social capabilities in laboratory rodents. Can. Psychol. 60, 14–20 (2019).
    Article  Google Scholar 

    50.
    Dolivo, V., Rutte, C. & Taborsky, M. Ultimate and proximate mechanisms of reciprocal altruism in rats. Learn. Behav. 44, 223–226 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    51.
    Müller, J. J. A., Massen, J. J. M., Bugnyar, T. & Osvath, M. Ravens remember the nature of a single reciprocal interaction sequence over 2 days and even after a month. Anim. Behav. 128, 69–78 (2017).
    Article  Google Scholar 

    52.
    Stevens, J. R. & Hauser, M. D. Why be nice? Psychological constraints on the evolution of cooperation. Trends Cogn. Sci. 8, 60–65 (2004).
    PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips

    1.
    Steffan-Dewenter, I., Potts, S. G. & Packer, L. Pollinator diversity and crop pollination services are at risk. Trends Ecol. Evol. 20, 651–652 (2005).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. 108, 5909–5914 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Goulson, D. Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 34, 1–26 (2003).
    Article  Google Scholar 

    5.
    Paini, D. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Aust. Ecol. 29, 399–407 (2004).
    Article  Google Scholar 

    6.
    Aslan, C. E., Liang, C. T., Galindo, B., Kimberly, H. & Topete, W. The role of honey bees as pollinators in natural areas. Nat. Areas J. 36, 478–489 (2016).
    Article  Google Scholar 

    7.
    Mallinger, R. E., Gaines-Day, H. R. & Gratton, C. Do managed bees have negative effects on wild bees? A systematic review of the literature. PLoS ONE 12, e0189268 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Wignall, V. R. et al. Seasonal variation in exploitative competition between honeybees and bumblebees. Oecologia 192, 351–361 (2020).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Thomson, D. M. Detecting the effects of introduced species: A case study of competition between Apis and Bombus. Oikos 114, 407–418 (2006).
    Article  Google Scholar 

    10.
    Franco, E. L., Aguiar, C. M. & Ferreiraz, V. S. Plant use and niche overlap between the introduced honey bee (Apis mellifera) and the native bumblebee (Bombus atratus) (Hymenoptera: Apidae) in an area of tropical mountain vegetation in northeastern Brazil. Sociobiology 53, 141–150 (2009).
    Google Scholar 

    11.
    Herbertsson, L., Lindström, S. A., Rundlöf, M., Bommarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616 (2016).
    Article  Google Scholar 

    12.
    Thomson, D. M. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecol. Lett. 19, 1247–1255 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl. Acad. Sci. 103, 13890–13895 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Badano, E. I. & Vergara, C. H. Potential negative effects of exotic honey bees on the diversity of native pollinators and yield of highland coffee plantations. Agric. For. Entomol. 13, 365–372 (2011).
    Article  Google Scholar 

    15.
    Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 280, 20122767 (2013).
    Article  Google Scholar 

    16.
    Müller, H. T. Interaction Between Bombus terrestris and Honeybees in Red Clover Fields Reduces Abundance of Other Bumblebees and Red Clover Yield and Honeybees in Red Clover Fields Reduces Abundance of Other Bumblebees and Red Clover Yield (Norwegian University of Life Sciences, Ås, 2016).
    Google Scholar 

    17.
    Grass, I. et al. Pollination limitation despite managed honeybees in South African macadamia orchards. Agric. Ecosyst. Environ. 260, 11–18 (2018).
    Article  Google Scholar 

    18.
    hUallacháin, D. Ó. (United Nations Convention to Combat Desertification, Bonn, Germany, 2017).

    19.
    Vaughan, M. & Skinner, M. Using 2014 farm bill programs for pollinator conservation. USDA Biol. Tech. Note 78, 2nd Ed. (2015).

    20.
    Vaughan, M. & Skinner, M. Using Farm Bill programs for pollinator conservation. USDA-NRCS National Plant Data Center, USDA Biol. Tech. Note 78 (2008).

    21.
    FSA. CP42 pollinator habitat: Establishing and supporting diverse pollinator-friendly habitat. (Farm Service Agency, U.S. Department of Agriculture, Washington, D.C., 2013).

    22.
    Venturini, E. M., Drummond, F. A., Hoshide, A. K., Dibble, A. C. & Stack, L. B. Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecol. Sustain. Food Syst. 41, 101–142 (2017).
    Article  Google Scholar 

    23.
    Wood, T. J., Holland, J. M., Hughes, W. O. & Goulson, D. Targeted agri-environment schemes significantly improve the population size of common farmland bumblebee species. Mol. Ecol. 24, 1668–1680 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    24.
    Haaland, C. & Gyllin, M. Butterflies and bumblebees in greenways and sown wildflower strips in southern Sweden. J. Insect Conserv. 14, 125–132 (2010).
    Article  Google Scholar 

    25.
    Ponisio, L. C., M’Gonigle, L. K. & Kremen, C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob. Change Biol. 22, 704–715 (2016).
    ADS  Article  Google Scholar 

    26.
    Dolezal, A. G., Clair, A. L. S., Zhang, G., Toth, A. L. & O’Neal, M. E. Native habitat mitigates feast–famine conditions faced by honey bees in an agricultural landscape. Proc. Natl. Acad. Sci. 116, 25147–25155 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Venturini, E., Drummond, F., Hoshide, A., Dibble, A. & Stack, L. B. Pollination reservoirs in lowbush blueberry (Ericales: Ericaceae). J. Econ. Entomol. 110, 333–346 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Morandin, L. A. & Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 23, 829–839 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).
    Article  Google Scholar 

    30.
    Feltham, H., Park, K., Minderman, J. & Goulson, D. Experimental evidence of the benefit of wild flower strips to crop pollination. Ecol. Evolut. 5, 3523–3530 (2015).
    Article  Google Scholar 

    31.
    Gross, C. & Mackay, D. Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). Biol. Cons. 86, 169–178 (1998).
    Article  Google Scholar 

    32.
    do Carmo, R. M., Franceschinelli, E. V. & da Silveira, F. A. Introduced honeybees (Apis mellifera) reduce pollination success without affecting the floral resource taken by native pollinators. Biotropica 36, 371–376 (2004).
    Google Scholar 

    33.
    Bruckman, D. & Campbell, D. R. Floral neighborhood influences pollinator assemblages and effective pollination in a native plant. Oecologia 176, 465–476 (2014).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Carvalheiro, L. G. et al. Natural and within-farmland biodiversity enhances crop productivity. Ecol. Lett. 14, 251–259 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Jönsson, A. M. et al. Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Clim. Change 109, 695–718 (2011).
    ADS  Article  Google Scholar 

    37.
    Scheper, J. et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 52, 1165–1175 (2015).
    Article  Google Scholar 

    38.
    Krimmer, E., Martin, E. A., Krauss, J., Holzschuh, A. & Steffan-Dewenter, I. Size, age and surrounding semi-natural habitats modulate the effectiveness of flower-rich agri-environment schemes to promote pollinator visitation in crop fields. Agric. Ecosyst. Environ. 284, 106590 (2019).
    Article  Google Scholar 

    39.
    Klein, A. M. et al. Wild pollination services to California almond rely on semi-natural habitat. J. Appl. Ecol. 49, 723–732 (2012).
    Google Scholar 

    40.
    Grab, H., Poveda, K., Danforth, B. & Loeb, G. Landscape context shifts the balance of costs and benefits from wildflower borders on multiple ecosystem services. Proc. R. Soc. B Biol. Sci. 285, 20181102 (2018).
    Article  Google Scholar 

    41.
    Prendergast, K. S., Menz, M. H., Dixon, K. W. & Bateman, P. W. The relative performance of sampling methods for native bees: An empirical test and review of the literature. Ecosphere 11, e03076 (2020).
    Article  Google Scholar 

    42.
    Cane, J. H., Minckley, R. L. & Kervin, L. J. Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: pitfalls of pan-trapping. J. Kansas Entomol. Soc. 73, 225–231 (2000).
    Google Scholar 

    43.
    O’Connor, R. S. et al. Monitoring insect pollinators and flower visitation: The effectiveness and feasibility of different survey methods. Methods Ecol. Evol. 10, 2129–2140. https://doi.org/10.1111/2041-210x.13292 (2019).
    Article  Google Scholar 

    44.
    Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. Do managed bees drive parasite spread and emergence in wild bees?. Int. J. Parasitol. Parasites Wildlife 5, 64–75 (2016).
    Article  Google Scholar 

    45.
    Alger, S. A., Burnham, P. A., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PloS One 14, e0217822 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Schaffer, W. M. et al. Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology 60, 976–987 (1979).
    Article  Google Scholar 

    47.
    Pleasants, J. M. Bumblebee response to variation in nectar availability. Ecology 62, 1648–1661 (1981).
    Article  Google Scholar 

    48.
    Ginsberg, H. S. Foraging ecology of bees in an old field. Ecology 64, 165–175 (1983).
    Article  Google Scholar 

    49.
    Schaffer, W. M. et al. Competition for nectar between introduced honey bees and native North American bees and ants. Ecology 64, 564–577 (1983).
    Article  Google Scholar 

    50.
    Gross, C. L. The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem. Biol. Cons. 102, 89–95 (2001).
    Article  Google Scholar 

    51.
    Hudewenz, A. & Klein, A.-M. Competition between honey bees and wild bees and the role of nesting resources in a nature reserve. J. Insect Conserv. 17, 1275–1283 (2013).
    Article  Google Scholar 

    52.
    Johnson, L. K. & Hubbell, S. P. Aggression and competition among stingless bees: Field studies. Ecology 55, 120–127 (1974).
    Article  Google Scholar 

    53.
    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1–10 (2019).
    ADS  CAS  Article  Google Scholar 

    55.
    Garibaldi, L. A. et al. From research to action: enhancing crop yield through wild pollinators. Front. Ecol. Environ. 12, 439–447 (2014).
    Article  Google Scholar 

    56.
    Connelly, H., Poveda, K. & Loeb, G. Landscape simplification decreases wild bee pollination services to strawberry. Agric. Ecosyst. Environ. 211, 51–56 (2015).
    Article  Google Scholar 

    57.
    MacInnis, G. & Forrest, J. R. K. Pollination by wild bees yields larger strawberries than pollination by honey bees. J. Appl. Ecol. 56, 824–832. https://doi.org/10.1111/1365-2664.13344 (2019).
    Article  Google Scholar 

    58.
    Seeley, T. D. Social foraging by honeybees: how colonies allocate foragers among patches of flowers. Behav. Ecol. Sociobiol. 19, 343–354 (1986).
    Article  Google Scholar 

    59.
    Bänsch, S., Tscharntke, T., Gabriel, D. & Westphal, C. Crop pollination services: complementary resource use by social vs solitary bees facing crops with contrasting flower supply. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13777 (2020).

    60.
    Nye, W. P. & Anderson, J. L. Insect pollinators frequenting strawberry blossoms and the effect of honey bees on yield and fruit quality. J. Am. Soc. Horticult. Sci. 99, 40 (1974).
    Google Scholar 

    61.
    De Oliveira, D., Savoie, L. & Vincent, C. in VI International Symposium on Pollination 288, 420–424 (1990).

    62.
    Chagnon, M., Gingras, J. & DeOliveira, D. Complementary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). J. Econ. Entomol. 86, 416–420 (1993).
    Article  Google Scholar 

    63.
    Horth, L. & Campbell, L. A. Supplementing small farms with native mason bees increases strawberry size and growth rate. J. Appl. Ecol. 55, 591–599 (2018).
    Article  Google Scholar 

    64.
    Pfister, S. C. et al. Dominance of cropland reduces the pollen deposition from bumble bees. Sci. Rep. 8, 13873 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Artz, D. R. & Nault, B. A. Performance of Apis mellifera, Bombus impatiens, and Peponapis pruinosa (Hymenoptera: Apidae) as pollinators of pumpkin. J. Econ. Entomol. 104, 1153–1161 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    66.
    Petersen, J., Huseth, A. & Nault, B. Evaluating pollination deficits in pumpkin production in New York. Environ. Entomol. 43, 1247–1253 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    McGrady, C., Troyer, R. & Fleischer, S. Wild bee visitation rates exceed pollination thresholds in commercial cucurbita agroecosystems. J. Econ. Entomol. 113, 562–574 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Geslin, B. et al. Advances in Ecological Research Vol. 57, 147–199 (Elsevier, San Diego, 2017).
    Google Scholar 

    69.
    Steffan-Dewenter, I. & Tscharntke, T. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122, 288–296 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Torné-Noguera, A., Rodrigo, A., Osorio, S. & Bosch, J. Collateral effects of beekeeping: Impacts on pollen-nectar resources and wild bee communities. Basic Appl. Ecol. 17, 199–209 (2016).
    Article  Google Scholar 

    71.
    Free, J. B. Insect Pollination of Crops (Academic Press, London, 1970).
    Google Scholar 

    72.
    Delaplane, K. S., Mayer, D. R. & Mayer, D. F. Crop pollination by bees. (CABI, 2000).

    73.
    Phillips, B. Current honey bee and bumble bee stocking information. Michigan State University, MSU Extension: Pollination (2019). https://www.canr.msu.edu/news/current_honey_bee_stocking_information_and_an_introduction_to_commercial_bu.

    74.
    Angelella, G. M. & O’Rourke, M. E. Pollinator habitat establishment after organic and no-till seedbed preparation methods. HortScience 52, 1349–1355 (2017).
    CAS  Article  Google Scholar 

    75.
    Blaauw, B. R. & Isaacs, R. Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wildflowers. Basic Appl. Ecol. 15, 701–711 (2014).
    Article  Google Scholar 

    76.
    Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B Biol. Sci. 281, 20132440 (2014).
    Article  Google Scholar 

    77.
    King, S. R., Davis, A. R. & Wehner, T. C. Classical genetics and traditional breeding. In Genetics, Genomics, and Breeding of Cucurbits (eds. Wang, Y.-H. et al.) 61–92 (CRC Press, 2012).

    78.
    Kronenberg, H. G. Poor fruit setting in strawberries. I. Euphytica 8, 47–57 (1959).
    Article  Google Scholar 

    79.
    Kronenberg, H. G., Braak, J. & Zeilinga, A. Poor fruit setting in strawberries. II. Euphytica 8, 245–251 (1959).
    Article  Google Scholar 

    80.
    Robinson, R. W. & Decker-Walters, D. S. Cucurbits (CAB Intl., New York, 1997).
    Google Scholar 

    81.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

    82.
    Magnusson, A. et al. Package ‘glmmTMB’. R Package Version 0.2. 0 (2017).

    83.
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R Package Version 2, 74 (2007).
    Google Scholar 

    84.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1, 3 (2018).
    Google Scholar 

    85.
    Wien, H., Stapleton, S., Maynard, D., McClurg, C. & Riggs, D. Flowering, sex expression, and fruiting of pumpkin (Cucurbita sp.) cultivars under various temperatures in greenhouse and distant field trials. HortScience 39, 239–242 (2004).
    Article  Google Scholar  More