More stories

  • in

    Artificial lighting affects the landscape of fear in a widely distributed shorebird

    Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).
    Google Scholar 
    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the ‘landscape of fear’ in Yellowstone National Park, US.A. Can. J. Zool. 79, 1401–1409 (2001).
    Google Scholar 
    Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).CAS 

    Google Scholar 
    Laundre, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).
    Google Scholar 
    Loggins, A. A., Shrader, A. M., Monadjem, A. & McCleery, R. A. Shrub cover homogenizes small mammals’ activity and perceived predation risk. Sci. Rep. 9, 16857 (2019).
    Google Scholar 
    Whittingham, M. J. & Evans, K. L. The effects of habitat structure on predation risk of birds in agricultural landscapes. Ibis 146, 210–220 (2004).
    Google Scholar 
    Marshall, K. L. A., Philpot, K. E. & Stevens, M. Microhabitat choice in island lizards enhances camouflage against avian predators. Sci. Rep. 6, 19815 (2016).CAS 

    Google Scholar 
    Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K. & Spottiswoode, C. N. Improvement of individual camouflage through background choice in ground-nesting birds. Nat. Ecol. Evol. 1, 1325–1333 (2017).
    Google Scholar 
    Wilson-Aggarwal, J. K., Troscianko, J. T., Stevens, M. & Spottiswoode, C. N. Escape distance in ground-nesting birds differs with individual level of camouflage. Am. Nat. 188, 231–239 (2016).
    Google Scholar 
    Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 19966 (2016).CAS 

    Google Scholar 
    Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J. & Davies, T. W. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176, 917–931 (2014).
    Google Scholar 
    Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).
    Google Scholar 
    Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).
    Google Scholar 
    Gaston, K. J. et al. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 61, 1098–1110 (2021).
    Google Scholar 
    Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2021).
    Google Scholar 
    Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160248 (2017).
    Google Scholar 
    Underwood, C. N., Davies, T. W. & Queir Os, A. M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 86, 781–789 (2017).
    Google Scholar 
    Burger, J., Howe, M. A., Hahn, D. C. & Chase, J. Effects of tide cycles on habitat selection and habitat partitioning by migrating shorebirds. Auk 94, 743–758 (1977).
    Google Scholar 
    Granadeiro, J. P., Dias, M. P., Martins, R. C. & Palmeirim, J. M. Variation in numbers and behaviour of waders during the tidal cycle: implications for the use of estuarine sediment flats. Acta Oecologica 29, 293–300 (2006).
    Google Scholar 
    Lourenço, P. M. et al. The energetic importance of night foraging for waders wintering in a temperate estuary. Acta Oecologica 34, 122–129 (2008).
    Google Scholar 
    McNeil, R., Drapeau, P. & Goss-Custard, J. D. The occurrence and adaptive significance of nocturnal habits in waterfowl. Biol. Rev. 67, 381–419 (1992).
    Google Scholar 
    Martin, G. R. Visual fields and their functions in birds. J. Ornithol. 148, 547–562 (2007).
    Google Scholar 
    Martin, G. R. What is binocular vision for? A birds’ eye view. J. Vis. 9, 1–19 (2009).
    Google Scholar 
    Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12, 347–355 (2014).
    Google Scholar 
    Leopold, M. F., Philippart, C. J. M. & Yorio, P. Nocturnal feeding under artificial light conditions by Brown-hooded Gull (Larus maculipennis) in Puerto Madryn harbour (Chubut Province, Argentina). Hornero 25, 55–60 (2010).
    Google Scholar 
    Pugh, A. R. & Pawson, S. M. Artificial light at night potentially alters feeding behaviour of the native southern black-backed gull (Larus dominicanus). Notornis 63, 37–39 (2016).
    Google Scholar 
    Santos, C. D. et al. Effects of artificial illumination on the nocturnal foraging of waders. Acta Oecologica 36, 166–172 (2010).
    Google Scholar 
    Montevecchi, W. A. Influences of Artificial Light on Marine Birds. in Ecological Consequences of Artificial Night Lighting (eds. Rich, C. & Longcore, T.) 94–113 (Island Press, 2006).Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).
    Google Scholar 
    Blumstein, D. T. Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).
    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).
    Google Scholar 
    Caro, T. Antipredator Defenses in Birds and Mammals. (University of Chicago Press, 2005).Tillmann, J. E. Fear of the dark: night-time roosting and anti-predation behaviour in the grey partridge (Perdix perdix L.). Behaviour 146, 999–1023 (2009).
    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2022-1. https://www.iucnredlist.org/species/22693190/117917038 (2022).Brown, D. et al. The Eurasian Curlew—the most pressing bird conservation priority in the UK? Br. Birds 108, 660–668 (2015).
    Google Scholar 
    Franks, S. E., Douglas, D. J. T., Gillings, S. & Pearce-Higgins, J. W. Environmental correlates of breeding abundance and population change of Eurasian Curlew Numenius arquata in Britain. Bird. Study 64, 393–409 (2017).
    Google Scholar 
    Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).
    Google Scholar 
    Clarke, J. A. Moonlight’s influence on predator/prey interactions between short-eared owls (Asio flammeus) and Deermice (Peromyscus maniculatus). Behav. Ecol. Sociobiol. 13, 205–209 (1983).
    Google Scholar 
    Mandelik, Y., Jones, M. & Dayan, T. Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol. Ecol. Res. 5, 501–515 (2003).
    Google Scholar 
    Alexander, R. D. The Evolution of Social Behavior | Annual Review of Ecology, Evolution, and Systematics. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).
    Google Scholar 
    Pulliam, H. R. On the advantages of flocking. J. Theor. Biol. 38, 419–422 (1973).CAS 

    Google Scholar 
    Barnard, C. J. Flock feeding and time budgets in the house sparrow (Passer domesticus L.). Anim. Behav. 28, 295–309 (1980).
    Google Scholar 
    Cooper, W. E. Jr. et al. Effects of risk, cost, and their interaction on optimal escape by nonrefuging Bonaire whiptail lizards, Cnemidophorus murinus. Behav. Ecol. 14, 288–293 (2003).
    Google Scholar 
    Lagos, P. A. et al. Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Can. J. Zool. 87, 1016–1023 (2009).
    Google Scholar 
    Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).
    Google Scholar 
    Tucker, V. A., Tucker, A. E., Akers, K. & Enderson, J. H. Curved flight paths and sideways vision in peregrine falcons (Falco peregrinus). J. Exp. Biol. 203, 3755–3763 (2000).CAS 

    Google Scholar 
    Carr, J. M. & Lima, S. L. Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight. Oecologia 174, 713–721 (2014).
    Google Scholar 
    van den Hout, P. J. & Martin, G. R. Extreme head-tilting in shorebirds: predator detection and sun avoidance. Wader Study Group Bull. 118, 18–21 (2011).
    Google Scholar 
    Ferguson, J. W. H., Galpin, J. S. & de Wet, M. J. Factors affecting the activity patterns of black-backed jackals Canis mesomelas. J. Zool. 214, 55–69 (1988).
    Google Scholar 
    Pyke, G. H. Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15, 523–575 (1984).
    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory. (Princeton University Press, 1986).Mouritsen, K. N. Predator avoidance in night-feeding dunlins calidris alpina: a matter of concealment. Ornis Scand. 23, 195–198 (1992).
    Google Scholar 
    Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manag. 67, 852–857 (2003).
    Google Scholar 
    Troscianko, J. OSpRad; an open-source, low-cost, high-sensitivity spectroradiometer (p. 2022.12.09.519768). bioRxiv https://doi.org/10.1101/2022.12.09.519768 (2022).Article 

    Google Scholar 
    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.4. http://florianhartig.github.io/DHARMa/ (2022).Core Team, R. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2022).
    Google Scholar  More

  • in

    TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature

    Lovegrove, B. G. A phenology of the evolution of endothermy in birds and mammals. Biol. Rev. 92, 1213–1240 (2017).
    Google Scholar 
    Cuthill, I. C. et al. The biology of color. Science 357, 1–7 (2017).
    Google Scholar 
    Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160345 (2017).
    Google Scholar 
    Smith, K. R. et al. Color change for thermoregulation versus camouflage in free-ranging lizards. Am. Nat. 188, 668–678 (2016).
    Google Scholar 
    Rudh, A. & Qvarnström, A. Adaptive colouration in amphibians. Semin. Cell Dev. Biol. 24, 553–561 (2013).
    Google Scholar 
    Geen, M. R. S. & Johnston, G. R. Coloration affects heating and cooling in three color morphs of the Australian bluetongue lizard, Tiliqua scincoides. J. Therm. Biol. 43, 54–60 (2014).
    Google Scholar 
    Tattersall, G. J., Eterovick, P. C. & de Andrade, D. V. Tribute to R. G. Boutilier: skin colour and body temperature changes in basking Bokermannohyla alvarengai (Bokermann 1956). J. Exp. Biol. 209, 1185–1196 (2006).
    Google Scholar 
    Tattersall, G. J., Hillman, S. S., Drewes, R. C. & Sokol, O. M. The thermogenesis of digestion in rattlesnakes. J. Exp. Biol. 207, 579–585 (2004).
    Google Scholar 
    Seebacher, F. & Murray, S. A. Transient receptor potential ion channels control thermoregulatory behaviour in reptiles. PLoS One 2, e281, 1–7 (2007).Forget-Klein, É. & Green, D. M. Toads use the subsurface thermal gradient for temperature regulation underground. J. Therm. Biol. 99, 1–9 (2021).
    Google Scholar 
    Kiefer, M. C., Van Sluys, M. & Rocha, C. F. D. Thermoregulatory behaviour in Tropidurus torquatus (Squamata, Tropiduridae) from Brazilian coastal populations: an estimate of passive and active thermoregulation in lizards. Acta Zool. 88, 81–87 (2007).
    Google Scholar 
    Spencer, K. et al. Growth at cold temperature increases the number of motor neurons to optimize locomotor function. Curr. Biol. 29, 1787–1799.e5 (2019).CAS 

    Google Scholar 
    Herrel, A. & Bonneaud, C. Temperature dependence of locomotor performance in the tropical clawed frog, Xenopus tropicalis. J. Exp. Biol. 215, 2465–2470 (2012).
    Google Scholar 
    Casterlin, M. E. & Reynolds, W. W. Diel activity and thermoregulatory behavior of a fully aquatic frog: Xenopus laevis. Hydrobiologia 75, 189–191 (1980).
    Google Scholar 
    Guo, K. et al. The thermal dependence and molecular basis of physiological color change in Takydromus septentrionalis (Lacertidae). Biol. Open 10, 1–9 (2021).
    Google Scholar 
    De Velasco, J. B. & Tattersall, G. J. The influence of hypoxia on the thermal sensitivity of skin colouration in the bearded dragon, Pogona vitticeps. J. Comp. Physiol. B. 178, 867–875 (2008).CAS 

    Google Scholar 
    Stuart-Fox, D. & Moussalli, A. Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 463–470 (2009).
    Google Scholar 
    Sanabria, E. A., Vaira, M., Quiroga, L. B., Akmentins, M. S. & Pereyra, L. C. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae). J. Therm. Biol. 41, 1–5 (2014).
    Google Scholar 
    Clusella-Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal benefits of melanism in cordylid lizards: a theoretical and field test. Ecology 90, 2297–2312 (2009).
    Google Scholar 
    Duarte, R. C., Flores, A. A. V. & Stevens, M. Camouflage through colour change: mechanisms, adaptive value and ecological significance. Philos. Trans. R. Soc. B: Biol. Sci. 372, 1–7 (2017).Bertolesi, G. E. & McFarlane, S. Seeing the light to change colour: an evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res. 31, 354–373 (2018).CAS 

    Google Scholar 
    Bertolesi, G. E. et al. The regulation of skin pigmentation in response to environmental light by pineal type II opsins and skin melanophore melatonin receptors. J. Photochem. Photobiol. B Biol. 212, 112024 (2020).CAS 

    Google Scholar 
    Bagnara, J. T. Pineal regulation of the body lightening reaction in amphibian larvae. Sci. (80-.). 132, 1481–1483 (1960).CAS 

    Google Scholar 
    Bertolesi, G. E., Song, Y. N., Atkinson-Leadbeater, K., Yang, J.-L. J. & McFarlane, S. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation. Pigment Cell Melanoma Res. 30, 413–423 (2017).CAS 

    Google Scholar 
    Wang, H. & Siemens, J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temp. (Austin, Tex.) 2, 178–187 (2015).
    Google Scholar 
    Hoffstaetter, L. J., Bagriantsev, S. N. & Gracheva, E. O. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflug. Arch. Eur. J. Physiol. 470, 745–759 (2018).CAS 

    Google Scholar 
    Kashio, M. Thermosensation involving thermo-TRPs. Mol. Cell. Endocrinol. 520, 1–8 (2021).
    Google Scholar 
    Señarís, R., Ordás, P., Reimúndez, A. & Viana, F. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflug. Arch. 470, 761–777 (2018).
    Google Scholar 
    Guo, H., Carlson, J. A. & Slominski, A. Role of TRPM in melanocytes and melanoma. Exp. Dermatol. 21, 650–654 (2012).CAS 

    Google Scholar 
    Kadowaki, T. Evolutionary dynamics of metazoan TRP channels. Pflug. Arch. 467, 2043–2053 (2015).CAS 

    Google Scholar 
    Saito, S. & Tominaga, M. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temp. (Austin, Tex.) 4, 141–152 (2017).
    Google Scholar 
    Saito, S. et al. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates. J. Biol. Chem. 287, 30743–30754 (2012).CAS 

    Google Scholar 
    Saito, S. et al. Evolution of heat sensors drove shifts in thermosensation between xenopus species adapted to different thermal niches. J. Biol. Chem. 291, 11446–11459 (2016).CAS 

    Google Scholar 
    Gracheva, E. O. et al. Molecular basis of infrared detection by snakes. Nature 464, 1006–1011 (2010).CAS 

    Google Scholar 
    Laursen, W. J., Anderson, E. O., Hoffstaetter, L. J., Bagriantsev, S. N. & Gracheva, E. O. Species-specific temperature sensitivity of TRPA1. Temp. (Austin, Tex.) 2, 214–226 (2015).
    Google Scholar 
    Bertolesi, G. E., Hehr, C. L. & McFarlane, S. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland. Pigment Cell Melanoma Res. 28, 559–571 (2015).CAS 

    Google Scholar 
    Bagnara, J. T. The pineal and the body lightening reaction of larval amphibians. Gen. Comp. Endocrinol. 3, 86–100 (1963).CAS 

    Google Scholar 
    Nisembaum, L. et al. In the heat of the night: thermo-TRPV channels in the salmonid pineal photoreceptors and modulation of melatonin secretion. Endocrinology 156, 4629–4638 (2015).CAS 

    Google Scholar 
    Schartl, M. et al. What is a vertebrate pigment cell? Pigment Cell Melanoma Res. 29, 8–14 (2016).
    Google Scholar 
    Slominski, A. Cooling skin cancer: menthol inhibits melanoma growth. Focus on ‘TRPM8 activation suppresses cellular viability in human melanoma’. Am. J. Physiol. – Cell Physiol. 295, C293–C295 (2008).CAS 

    Google Scholar 
    Yamamura, H., Ugawa, S., Ueda, T., Morita, A. & Shimada, S. TRPM8 activation suppresses cellular viability in human melanoma. Am. J. Physiol. Cell Physiol. 295, C296–C301 (2008).CAS 

    Google Scholar 
    Knowlton, W. M. et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J. Neurosci. 33, 2837–2848 (2013).CAS 

    Google Scholar 
    Weyer-Menkhoff, I., Pinter, A., Schlierbach, H., Schänzer, A. & Lötsch, J. Epidermal expression of human TRPM8, but not of TRPA1 ion channels, is associated with sensory responses to local skin cooling. Pain 160, 2699–2709 (2019).Kumasaka, M., Sato, S., Yajima, I. & Yamamoto, H. Isolation and developmental expression of tyrosinase family genes in Xenopus laevis. Pigment Cell Res. 16, 455–462 (2003).CAS 

    Google Scholar 
    Rodionov, V. I., Hope, A. J., Svitkina, T. M. & Borisy, G. G. Functional coordination of microtubule-based and actin-based motility in melanophores. Curr. Biol. 8, 165–169 (1998).CAS 

    Google Scholar 
    Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343 (2016).CAS 

    Google Scholar 
    Gosset, J. R. et al. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679. Eur. J. Pharm. Sci. 109S, S161–S167 (2017).
    Google Scholar 
    Winchester, W. J. et al. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J. Pharmacol. Exp. Ther. 351, 259–269 (2014).
    Google Scholar 
    Bianchi, B., Smith, P. A. & Abriel, H. The ion channel TRPM4 in murine experimental autoimmune encephalomyelitis and in a model of glutamate-induced neuronal degeneration. Mol. Brain 11, 1–10 (2018).
    Google Scholar 
    Li, K., Shi, Y., Gonye, E. C. & Bayliss, D. A. TRPM4 contributes to subthreshold membrane potential oscillations in multiple mouse pacemaker neurons. eNeuro 8, 1–13 (2021).
    Google Scholar 
    Dong, W. et al. Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum. J. Neurophysiol. 101, 803–815 (2009).
    Google Scholar 
    Bertolesi, G. E., Debnath, N., Atkinson-Leadbeater, K., Niedzwiecka, A. & McFarlane, S. Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference. Mol. Ecol. 30, 6659–6676 (2021).CAS 

    Google Scholar 
    Viczian, A. S. & Zuber, M. E. A simple behavioral assay for testing visual function in xenopus laevis. J. Vis. Exp. 12, 51726 (2014).
    Google Scholar 
    Myers, B. R., Sigal, Y. M. & Julius, D. Evolution of thermal response properties in a cold-activated TRP channel. PLoS One 4, e5741 (2009).
    Google Scholar 
    Furman, B. L. S. et al. Pan-African phylogeography of a model organism, the African clawed frog ‘Xenopus laevis’. Mol. Ecol. 24, 909–925 (2015).CAS 

    Google Scholar 
    Wilson, R. S., James, R. S. & Johnston, I. A. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis. J. Comp. Physiol. B. 170, 117–124 (2000).CAS 

    Google Scholar 
    Kashiwagi, K. et al. Xenopus tropicalis: an ideal experimental animal in amphibia. Exp. Anim. 59, 395–405 (2010).CAS 

    Google Scholar 
    Martínez-Freiría, F., Toyama, K. S., Freitas, I. & Kaliontzopoulou, A. Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. Sci. Rep. 10, 72871–1 (2020).Tanaka, K. Does the thermal advantage of melanism produce size differences in color-dimorphic snakes? Zool. Sci. 26, 698–703 (2009).
    Google Scholar 
    Moreno Azócar, D. L., Nayan, A. A., Perotti, M. G. & Cruz, F. B. How and when melanic coloration is an advantage for lizards: the case of three closely-related species of Liolaemus. Zool. (Jena.) 141, 125774 (2020).
    Google Scholar 
    Azócar, D. L. M. et al. Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade. J. Exp. Biol. 219, 1162–1171 (2016).
    Google Scholar 
    Smith, K. R. et al. Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proc. R. Soc. B Biol. Sci. 283, 20160626 (2016).
    Google Scholar 
    Rowe, J. W. et al. Thermal and substrate color-induced melanization in laboratory reared red-eared sliders (Trachemys scripta elegans). J. Therm. Biol. 61, 125–132 (2016).
    Google Scholar 
    Larsen, E. H. Dual skin functions in amphibian osmoregulation. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 253, 110869 (2021).CAS 

    Google Scholar 
    Franco-Belussi, L., Sköld, H. N. & De Oliveira, C. Internal pigment cells respond to external UV radiation in frogs. J. Exp. Biol. 219, 1378–1383 (2016).
    Google Scholar 
    Langhelle, A., Lindell, M. J. & Nyström, P. Effects of ultraviolet radiation on amphibian embryonic and larval development. J. Herpetol. 33, 449–456 (1999).
    Google Scholar 
    Mueller, K. P. & Neuhauss, S. C. F. Sunscreen for fish: co-option of UV light protection for camouflage. PLoS One 9, e87372 (2014).
    Google Scholar 
    Perotti, M. G., Diéguez, M. & Del, C. Effect of UV-B exposure on eggs and embryos of patagonian anurans and evidence of photoprotection. Chemosphere 65, 2063–2070 (2006).CAS 

    Google Scholar 
    Nilsson Sköld, H., Aspengren, S. & Wallin, M. Rapid color change in fish and amphibians – function, regulation, and emerging applications. Pigment Cell Melanoma Res. 26, 29–38 (2013).
    Google Scholar 
    Vences, M. et al. Field body temperatures and heating rates in a montane frog population: the importance of black dorsal pattern for thermoregulation on JSTOR. Ann. Zool. Fennici 39, 209–220 (2002).
    Google Scholar 
    Lindgren, J. et al. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506, 484–488 (2014).CAS 

    Google Scholar 
    Bonino, M. F., Cruz, F. B. & Perotti, M. G. Does temperature at local scale explain thermal biology patterns of temperate tadpoles? J. Therm. Biol. 94, 102744 (2020).
    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 

    Google Scholar 
    Liu, T. et al. RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells. Oncol. Lett. 15, 4129–4136 (2018).
    Google Scholar 
    Kashina, A. S. et al. Protein Kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. Biol. 14, 1877–1881 (2004).CAS 

    Google Scholar  More

  • in

    Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model

    Daskalova, G. N. et al. Landscape-scale forest loss as a catalyst of population and biodiversity change. Science 368(6497), 1341–1347 (2020).ADS 
    CAS 

    Google Scholar 
    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366(6470), 1236–1239 (2019).ADS 
    CAS 

    Google Scholar 
    Siddig, A. A., Ellison, A. M., Ochs, A., Villar-Leeman, C. & Lau, M. K. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Ind. 60, 223–230 (2016).
    Google Scholar 
    Thancharoen, A. Well managed firefly tourism: A good tool for firefly conservation in Thailand. Lampyrid. 2, 142–148 (2012).
    Google Scholar 
    Hwang, Y. T., Moon, J., Lee, W. S., Kim, S. A. & Kim, J. Evaluation of firefly as a tourist attraction and resource using contingent valuation method based on a new environmental paradigm. J. Qual. Assur. Hosp. Tour. 21(3), 320–336 (2019).Carlson, A. D. & Copeland, J. Flash communication in fireflies. Q. Rev. Biol. 60(4), 415–436 (1985).
    Google Scholar 
    Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Adult firefly abundance is linked to weather during the larval stage in the previous year. Ecol. Entomol. 44(2), 265–273 (2018).
    Google Scholar 
    Lewis, S. M. et al. A global perspective on firefly extinction threats. Bioscience 70(2), 157–167 (2020).
    Google Scholar 
    Cao, C. Q., Zhang, Y., Wang, Y. Z. & He, H. Progress in the research, protection, development and utilization of fireflies. J. Environ. Entomol.1–36 (2022).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853–858 (2000).ADS 
    CAS 

    Google Scholar 
    Thorn, J. S., Nijman, V., Smith, D. & Nekaris, K. A. I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates:Nycticebus). Divers. Distrib. 15(2), 289–298 (2009).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40(1), 677–697 (2009).
    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).
    Google Scholar 
    Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-Niche Factor Analysis: How to compute habitat-suitability maps without absence data?. Ecology 83(7), 2027–2036 (2002).
    Google Scholar 
    Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. A (General). 135(3), 370–384 (1972).
    Google Scholar 
    Hastie, T. J. Generalized additive models. Statistical models in S. Routledge. 249–307 (2017).Stockwell, D. R. & Noble, I. R. Induction of sets of rules from animal distribution data: A robust and informative method of data analysis. Math. Comput. Simul. 33(5–6), 385–390 (1992).
    Google Scholar 
    Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186(2), 251–270 (2005).
    Google Scholar 
    Jung, J. M., Lee, W. H. & Jung, S. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomol. Res. 46(4), 223–235 (2016).
    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008).
    Google Scholar 
    Moreno, R., Zamora, R., Molina, J. R., Vasquez, A. & Herrera, M. Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Eco. Inform. 6(6), 364–370 (2011).
    Google Scholar 
    Wang, Z. et al. Prediction of potential distribution of the invasive Chrysanthemum Lace Bug, Corythucha marmorata in China based on Maxent. J. Environ. Entomol. 41(3), 626–633 (2019).
    Google Scholar 
    Li, A. et al. MaxEnt modeling to predict current and future distributions of Batocera lineolata (Coleoptera: Cerambycidae) under climate change in China. Ecoscience 27(1), 23–31 (2020).
    Google Scholar 
    Sutherland, L. N., Powell, G. S. & Bybee, S. M. Validating species distribution models to illuminate coastal fireflies in the South Pacific (Coleoptera: Lampyridae). Sci. Rep. 11(1), 1–12 (2021).ADS 

    Google Scholar 
    Fu, X. H., Ballantyne, L. A. & Lambkin, C. Emeia gen. nov., a new genus of Luciolinae fireflies from China (Coleoptera: Lampyridae) with an unusual trilobite-like larva, and a redescription of the genus Curtos Motschulsky. Zootaxa. 3403(1), 1–53 (2012).Idris, N. S. et al. The dynamics of landscape changes surrounding a firefly ecotourism area. Glob. Ecol. Conserv. 29, e01741 (2021).
    Google Scholar 
    Santiago-Blay, J. A. Silent Sparks: The Wondrous World of Fireflies. Life: The Excitement of Biology. (2016).Picchi, M. S., Avolio, L., Azzani, L., Brombin, O. & Camerini, G. Fireflies and land use in an urban landscape: the case of Luciola italica L.(Coleoptera: Lampyridae) in the city of Turin. J. Insect Conserv. 17(4), 797–805 (2013).Pearsons, K. A., Lower, S. E. & Tooker, J. F. Toxicity of clothianidin to common Eastern North American fireflies. PeerJ 9, e12495 (2021).
    Google Scholar 
    Madruga Rios, O. & Hernández Quinta, M. Larval Feeding Habits of the Cuban Endemic FireflyAlecton discoidalisLaporte (Coleoptera: Lampyridae). Psyche J. Entomol. 2010, 1–5 (2010).Roberge, J. M. & Angelstam, P. E. R. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18(1), 76–85 (2004).
    Google Scholar 
    Bowen-Jones, E. & Entwistle, A. Identifying appropriate flagship species: The importance of culture and local contexts. Oryx 36(2), 189–195 (2002).
    Google Scholar 
    Walpole, M. J. & Leader-Williams, N. Tourism and flagship species in conservation. Biodivers. Conserv. 11(3), 543–547 (2002).Zhejiang Provincial Bureau of Statistics. Zhejiang physical geography profile, http://tjj.zj.gov.cn/col/col1525489/index.html (2022).Zhejiang Provincial Forestry Department. Announcement of Forest Resources and Their Ecological Function Value in Zhejiang Province. Zhejiang Daily. https://doi.org/10.38328/n.cnki.nzjrb.2016.002829 (2016).Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).
    Google Scholar 
    Brown, J. L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
    Google Scholar 
    Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 13(5), 922 (2021).ADS 

    Google Scholar 
    WAN, J. et al. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 19(8), 2072–2082 (2020).Zhou, R. et al. Projecting the potential distribution of glossina morsitans (Diptera: Glossinidae) under climate change using the MaxEnt model. Biology. 10(11), 1150 (2021).
    Google Scholar 
    Hill, M. P., Hoffmann, A. A., McColl, S. A. & Umina, P. A. Distribution of cryptic blue oat mite species in Australia: current and future climate conditions. Agric. For. Entomol. 14(2), 127–137 (2011).
    Google Scholar 
    Su, H., Bista, M. & Li, M. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. 11(1), 1 (2021).ADS 
    CAS 

    Google Scholar 
    Proosdij, A. J., Sosef, M., Wieringa, J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).
    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008).
    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6), 1223–1232 (2006).
    Google Scholar 
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6(1), 337–348 (2016).
    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).ADS 
    CAS 
    MATH 

    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133(3), 225–245 (2000).
    Google Scholar 
    Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P. M. Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquat. Conserv. Mar. Freshwat. Ecosyst. 27(3), 675–684 (2017).
    Google Scholar 
    Zhao, Y., Deng, X., Xiang, W., Chen, L. & Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Eco. Inform. 64, 101393 (2021).
    Google Scholar 
    Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Adult firefly abundance is linked to weather during the larval stage in the previous year. Ecol. Entomol. 44(2), 265–273 (2018).Chettri, B., Bhupathy, S. & Acharya, B. K. Distribution pattern of reptiles along an eastern Himalayan elevation gradient India. Acta Oecol. 36(1), 16–22 (2010).ADS 

    Google Scholar 
    Brown, J. H. Mammals on mountainsides: elevational patterns of diversity. Global Ecol. Biogeogr. 10(1), 101–109 (2001).Gairola, S., Sharma, C. M., Ghildiyal, S. K. & Suyal, S. Tree species composition and diversity along an altitudinal gradient in moist tropical montane valley slopes of the Garhwal Himalaya India. For. Sci. Technol. 7(3), 91–102 (2011).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29(5), 773–785 (2006).
    Google Scholar 
    Abe, N. Kansei estimation on luminescence of Firefly-Kansei information measurement and welfare utilization. J. Japan Soc. Kansei Eng. 3(2), 41–50 (2004).
    Google Scholar 
    Buckley, R. et al. Economic value of protected areas via visitor mental health. Nat. Commun. 10(1), 1 (2019).
    Google Scholar 
    Lewis, S. M. et al. Firefly tourism: Advancing a global phenomenon toward a brighter future. Conserv. Sci. Pract. 3(5), 1 (2021).
    Google Scholar  More

  • in

    Using click chemistry to study microbial ecology and evolution

    Saxon E, Bertozzi C. Cell surface engineering by a modified Staudinger reaction. Science. 2000;287:2007–10.CAS 

    Google Scholar 
    Staudinger H, Meyer J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. Helv Chim Acta. 1919;2:635–46. https://doi.org/10.1002/hlca.19190020164.Article 
    CAS 

    Google Scholar 
    Laughlin ST, Bertozzi CR. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc. 2007;2:2930–44.CAS 

    Google Scholar 
    Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels–Alder reactions in chemical biology. Chem Soc Rev. 2017;46:4895–950.CAS 

    Google Scholar 
    Lang K, Chin JW. Bioorthogonal reactions for labeling proteins. ACS Chem Biol. 2014;9:16–20. https://doi.org/10.1021/cb4009292.Article 
    CAS 

    Google Scholar 
    Kolb HC, Finn MG, Sharpless K. Click chemistry: diverse chemical function from a few good reactions. Angew Chemie-Int Ed. 2001;40:2004–21.CAS 

    Google Scholar 
    Tornøe C, Christensen C, Meldal M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J Org Chem. 2002;67:3057–64. https://doi.org/10.1021/jo011148j.Article 
    CAS 

    Google Scholar 
    Bakkum T, Leeuwen T, van, Sarris AJC, Elsland DM, van, Poulcharidis D, Overkleeft HS, et al. Quantification of bioorthogonal stability in immune phagocytes using flow cytometry reveals rapid degradation of strained alkynes. ACS Chem Biol. 2018;13:1173–9. https://doi.org/10.1021/acschembio.8b0035.Article 
    CAS 

    Google Scholar 
    Wang Q, Chan T, Hilgraf R, Fokin R, Sharpless K, Finn M. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc. 2003;125:3192–3.CAS 

    Google Scholar 
    Link A, Tirrell D. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J Am Chem Soc. 2003;125:11164–5.CAS 

    Google Scholar 
    Dieterich D, Link A, Tirrell D, Schuman E. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci USA. 2006;103:9482–7.CAS 

    Google Scholar 
    McKay C, Finn M. Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol. 2014;21:1075–101.CAS 

    Google Scholar 
    Agard N, Prescher J, Bertozzi C. A strain-promoted [3 + 2] Azide−Alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126:15046–7. https://doi.org/10.1021/ja044996f.Article 
    CAS 

    Google Scholar 
    Weissleder R, Hilderbrand S. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug Chem. 2008;19:2297–9.
    Google Scholar 
    Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, et al. Bioorthogonal chemistry. Nat Rev Methods. 2021;1:1–23.
    Google Scholar 
    Sletten E, Bertozzi C. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl. 2009;48:6974–98.CAS 

    Google Scholar 
    Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem Soc Rev. 2007;36:1249–62.CAS 

    Google Scholar 
    Banahene N, Kavunja HW, Swarts BM. Chemical reporters for bacterial glycans: development and applications. Chem Rev. 2021;122:3336–413. https://doi.org/10.1021/acs.chemrev.1c00729.Article 
    CAS 

    Google Scholar 
    Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;184:241–56.
    Google Scholar 
    Siegrist M, Whiteside S, Jewett J, Aditham A, Cava F, Bertozzi C. (D)-Amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem Biol. 2013;8:500–5.CAS 

    Google Scholar 
    Liechti G, Kuru E, Hall E, Kalinda A, Brun YV, VanNieuwenhze M, et al. A new metabolic cell wall labeling method reveals peptidoglycan in Chlamydia trachomatis. Nature. 2014;506:507. https://doi.org/10.1038/nature12892.Article 
    CAS 

    Google Scholar 
    Pilhofer M, Aistleitner K, Biboy J, Gray J, Kuru E, Hall E, et al. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat Commun. 2013;4:1–7.
    Google Scholar 
    Taylor JA, Bratton BP, Sichel SR, Blair KM, Jacobs HM, Demeester KE, et al. Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in helicobacter pylori. Elife. 2020;9:e52482.CAS 

    Google Scholar 
    Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chemie Int Ed. 2012;51:12519–23. https://doi.org/10.1002/anie.201206749.Article 
    CAS 

    Google Scholar 
    van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, et al. Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun. 2015;6:6878. https://doi.org/10.1038/ncomms7878.Article 
    CAS 

    Google Scholar 
    Wang W, Yang Q, Du Y, Zhou X, Du X, Wu Q. et al. Metabolic labeling of Peptidoglycan with NIR-II dye enables in vivo imaging of gut microbiota. Angew Chemie Int Ed. 2020;59:2628–33. https://doi.org/10.1002/anie.201910555.Article 
    CAS 

    Google Scholar 
    Wang W, Zhu Y, Chen X. imaging of gram-negative and gram-positive microbiotas in the mouse gut. Biochemistry. 2017;56:3889–93.CAS 

    Google Scholar 
    Geva-Zatorsky N, Alvarez D, Hudak JE, Reading NC, Erturk-Hasdemir D, Dasgupta S, et al. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat Med. 2015;21:1091–100.CAS 

    Google Scholar 
    Besanceney-Webler C, Jiang H, Wang W, Baughn AD, Wu P. Metabolic labeling of fucosylated glycoproteins in Bacteroidales species. Bioorg Med Chem Lett. 2011;21:4989–92.CAS 

    Google Scholar 
    Han Z, Thuy-Boun PS, Pfeiffer W, Vartabedian VF, Torkamani A, Teijaro JR, et al. Identification of an N-acetylneuraminic acid-presenting bacteria isolated from a human microbiome. Sci Rep. 2021;11:1–12.
    Google Scholar 
    Becam J, Walter T, Burgert A, Schlegel J, Sauer M, Seibel J, et al. Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria. Sci Rep. 2017;7:1–12.CAS 

    Google Scholar 
    Nilsson I, Lee SY, Sawyer WS, Baxter Rath CM, Lapointe G, Six DA. Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes. J Lipid Res. 2020;61:870–83.CAS 

    Google Scholar 
    Evershed RP, Crossman ZM, Bull ID, Mottram H, Dungait JAJ, Maxfield PJ, et al. 13C-Labelling of lipids to investigate microbial communities in the environment. Curr Opin Biotechnol. 2006;17:72–82.CAS 

    Google Scholar 
    Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA. 2008;105:2415–20. https://doi.org/10.1073/pnas.0712168105.Article 

    Google Scholar 
    Smriga S, Samo TJ, Malfatti F, Villareal J, Azam F. Individual cell DNA synthesis within natural marine bacterial assemblages as detected by ‘click’ chemistry. Aquat Microb Ecol. 2014;72:269–80.
    Google Scholar 
    Beauchemina ET, Hunter C, Maurice CF. Actively replicating gut bacteria identified by 5-ethynyl-2’-deoxyuridine (EdU) click chemistry and cell sorting. bioRxiv. 2022. https://www.biorxiv.org/content/10.1101/2022.07.20.500840v2.Sinclair L, Barthelemy C, Cantrell D. Single cell glucose uptake assays: a cautionary tale. Immunometabolism. 2020;2. https://pubmed.ncbi.nlm.nih.gov/32879737/.Hu F, Chen DZ, Zhang DL, Shen Y, Wei L, Min PW. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew Chem Int Ed Engl. 2015;54:9821.CAS 

    Google Scholar 
    Kiick K, Saxon E, Tirrell D, Bertozzi C. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci USA. 2002;99:19–24.CAS 

    Google Scholar 
    Kiick K, Tirrell D. Protein engineering by in vivo incorporation of non-natural amino acids: control of incorporation of methionine analogues by Methionyl-tRNA Synthetase. Tetrahedron. 2000;56:9487–93.CAS 

    Google Scholar 
    Ignacio B, Bakkum T, Bonger K, Martin N, van Kasteren S. Metabolic labeling probes for interrogation of the host-pathogen interaction. Org Biomol Chem. 2021;19:2856–70.CAS 

    Google Scholar 
    Bagert JD, Kessel JC, van, Sweredoski MJ, Feng L, Hess S, Bassler BL, et al. Time-resolved proteomic analysis of quorum sensing in Vibrio harveyi. Chem Sci. 2016;7:1797–806.CAS 

    Google Scholar 
    Babin BM, Atangcho L, Van Eldijk MB, Sweredoski MJ, Moradian A, Hess S, et al. Selective proteomic analysis of antibiotic-tolerant cellular subpopulations in pseudomonas aeruginosa biofilms. 2017. https://doi.org/10.1128/mBio.01593-17.Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol. 2014;16:2568–90. https://doi.org/10.1111/1462-2920.12436.Article 
    CAS 

    Google Scholar 
    Samo TJ, Smriga S, Malfatti F, Sherwood BP, Azam F. Broad distribution and high proportion of protein synthesis active marine bacteria revealed by click chemistry at the single cell level. Front Mar Sci. 2014;0:48.
    Google Scholar 
    Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc Natl Acad Sci USA. 2016;113:E4069–78. https://doi.org/10.1073/pnas.1603757113.Article 
    CAS 

    Google Scholar 
    Couradeau E, Sasse J, Goudeau D, Nath N, Hazen TC, Bowen BP, et al. Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat Commun. 2019;10:1–10.CAS 

    Google Scholar 
    Leizeaga A, Estrany M, Forn I, Sebastián M. Using click-chemistry for visualizing in situ changes of translational activity in planktonic marine bacteria. Front Microbiol. 2017;0:2360.
    Google Scholar 
    Lindivat M, Larsen A, Hess-Erga OK, Bratbak G, Hoell IA. Bioorthogonal non-canonical amino acid tagging combined with flow cytometry for determination of activity in aquatic microorganisms. Front Microbiol. 2020;0:1929.
    Google Scholar 
    Chen L, Zhao B, Li X, Cheng Z, Wu R, Xia Y. Isolating and characterizing translationally active fraction of anammox microbiota using bioorthogonal non-canonical amino acid tagging. Chem Eng J. 2021;418:129411.CAS 

    Google Scholar 
    McKay LJ, Smith HJ, Barnhart EP, Schweitzer HD, Malmstrom RR, Goudeau D, et al. Activity-based, genome-resolved metagenomics uncovers key populations and pathways involved in subsurface conversions of coal to methane. ISME J. 2021;16:915–26.
    Google Scholar 
    Du Z, Behrens SF. Tracking de novo protein synthesis in the activated sludge microbiome using BONCAT-FACS. Water Res. 2021;205:117696.CAS 

    Google Scholar 
    Valentini TD, Lucas SK, Binder KA, Cameron LC, Motl JA, Dunitz JM, et al. Bioorthogonal non-canonical amino acid tagging reveals translationally active subpopulations of the cystic fibrosis lung microbiota. Nat Commun. 2020;11:1–11.
    Google Scholar 
    Taguer M, Shapiro BJ, Maurice CF. Translational activity is uncoupled from nucleic acid content in bacterial cells of the human gut microbiota. Gut Microbes. 2021;13:1–15.
    Google Scholar 
    Banahene N, Kavunja HW, Swarts BM. Chemical reporters for bacterial glycans: development and applications. Chem Rev. 2021;122:3336–413. https://doi.org/10.1021/acs.chemrev.1c00729.Article 
    CAS 

    Google Scholar 
    Kavunja HW, Piligian BF, Fiolek TJ, Foley HN, Nathan TO, Swarts BM. A chemical reporter strategy for detecting and identifying O-mycoloylated proteins in Corynebacterium. Chem Commun. 2016;52:13795–8.CAS 

    Google Scholar 
    Demeester KE, Liang H, Jensen MR, Jones ZS, D’Ambrosio EA, Scinto SL, et al. Synthesis of functionalized N-Acetyl Muramic acids to probe bacterial cell wall recycling and biosynthesis. J Am Chem Soc. 2018;140:9458–65. https://doi.org/10.1021/jacs.8b03304.Article 
    CAS 

    Google Scholar 
    Moulton KD, Adewale AP, Carol HA, Mikami SA, Dube DH. Metabolic glycan labeling-based screen to identify bacterial glycosylation genes. ACS Infect Dis. 2020;6:3247–59. https://doi.org/10.1021/acsinfecdis.0c00612.Article 
    CAS 

    Google Scholar 
    Keller LJ, Babin BM, Lakemeyer M, Bogyo M. Activity-based protein profiling in bacteria: Applications for identification of therapeutic targets and characterization of microbial communities. Curr Opin Chem Biol. 2020;54:45–53.CAS 

    Google Scholar 
    Speers AE, Adam GC, Cravatt BF. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc. 2003;125:4686–7. https://doi.org/10.1021/ja034490.Article 
    CAS 

    Google Scholar 
    Krysiak J, Sieber SA. Activity-based protein profiling in bacteria. Methods Mol Biol. 2017;1491:57–74.CAS 

    Google Scholar 
    Jariwala PB, Pellock SJ, Cloer EW, Artola M, Simpson JB, Bhatt AP, et al. Discovering the microbial enzymes driving drug toxicity with activity-based protein profiling. ACS Chem Biol. 2020;15:217–25. https://doi.org/10.1021/acschembio.9b00788.Article 
    CAS 

    Google Scholar 
    Kovalyova Y, Hatzios SK. Activity-based protein profiling at the host-pathogen interface. Curr Top Microbiol Immunol. 2019;420:73–91.CAS 

    Google Scholar 
    Sakoula D, Smith GJ, Frank J, Mesman RJ, Kop LFM, Blom P, et al. Universal activity-based labeling method for ammonia- and alkane-oxidizing bacteria. ISME J. 2021;16:958–71.
    Google Scholar 
    Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2020;19:55–71.
    Google Scholar 
    Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, et al. The plant microbiome: from ecology to reductionism and beyond. 101146/annurev-micro-022620-014327. 2020;74:81–100. https://www.annualreviews.org/doi/abs/10.1146/annurev-micro-022620-014327.Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. Experimental evolution. Trends Ecol Evol. 2012;27:547–60.
    Google Scholar 
    Lenski RE. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 2017;11:2181–94.CAS 

    Google Scholar 
    Rodríguez-Verdugo A. Evolving Interactions and Emergent Functions in Microbial Consortia. mSystems. 2021;6. https://pubmed.ncbi.nlm.nih.gov/34427521/.Pascual-García A, Bonhoeffer S, Bell T. Metabolically cohesive microbial consortia and ecosystem functioning. Philos Trans R Soc B. 2020;375. https://royalsocietypublishing.org/doi/full/10.1098/rstb.2019.0245.Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS 

    Google Scholar 
    Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17:441–8.CAS 

    Google Scholar 
    Vermeersch L, Perez-Samper G, Cerulus B, Jariani A, Gallone B, Voordeckers K, et al. On the duration of the microbial lag phase. Curr Genet. 2019;65:721–7.CAS 

    Google Scholar 
    Solopova A, van Gestel J, Weissing FJ, Bachmann H, Teusink B, Kok J, et al. Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci USA. 2014;111:7427–32.CAS 

    Google Scholar 
    Zhang Z, Du C, de Barsy F, Liem M, Liakopoulos A, van Wezel GP, et al. Antibiotic production in Streptomyces is organized by a division of labor through terminal genomic differentiation. Sci Adv. 2020;6:eaay5781.CAS 

    Google Scholar 
    Mavridou DAI, Gonzalez D, Kim W, West SA, Foster KR. Bacteria use collective behavior to generate diverse combat strategies. Curr Biol. 2018;28:345–355.e4.CAS 

    Google Scholar 
    Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, et al. Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell. 2007;6:2311–22.CAS 

    Google Scholar 
    Zacchetti B, Wösten HAB, Claessen D. Multiscale heterogeneity in filamentous microbes. Biotechnol Adv. 2018;36:2138–49.CAS 

    Google Scholar 
    Bleichrodt R-J, Vinck A, Read ND, Wösten HAB. Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of Aspergillus niger. Fungal Genet Biol. 2015;82:193–200.CAS 

    Google Scholar 
    Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, et al. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a Filamentous Cyanobacterium. MBio. 2015;6. https://journals.asm.org/doi/full/10.1128/mBio.02109-14.Pasulka AL, Thamatrakoln K, Kopf SH, Guan Y, Poulos B, Moradian A, et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ Microbiol. 2018;20:671–92. https://doi.org/10.1111/1462-2920.13996.Article 
    CAS 

    Google Scholar 
    Berjón-Otero M, Duponchel S, Hackl T, Fischer M. Visualization of giant virus particles using BONCAT labeling and STED microscopy. bioRxiv. 2020;2020.07.14.202192. https://www.biorxiv.org/content/10.1101/2020.07.14.202192v1.Steward KF, Eilers B, Tripet B, Fuchs A, Dorle M, Rawle R, et al. Metabolic implications of using BioOrthogonal Non-Canonical Amino Acid Tagging (BONCAT) for tracking protein synthesis. Front Microbiol. 2020;0:197.
    Google Scholar 
    van Elsland DM, Pujals S, Bakkum T, Bos E, Oikonomeas-Koppasis N, Berlin I, et al. Ultrastructural Imaging of Salmonella–Host interactions using super-resolution correlative light-electron microscopy of bioorthogonal pathogens. ChemBioChem. 2018;19:1766–70. https://doi.org/10.1002/cbic.201800230.Article 
    CAS 

    Google Scholar 
    Michels DE, Lomenick B, Chou T-F, Sweredoski MJ, Pasulka A. Amino acid analog induces stress response in marine Synechococcus. Appl Environ Microbiol. 2021;87:1–18. https://doi.org/10.1128/AEM.00200-21.Article 

    Google Scholar 
    Hong V, Steinmetz NF, Manchester M, Finn MG. Labeling live cells by copper-catalyzed alkyne−azide click chemistry. Bioconjug Chem. 2010;21:1912–6. https://doi.org/10.1021/bc100272z.Article 
    CAS 

    Google Scholar 
    van Geel R, Pruijn G, van Delft F, Boelens W. Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. Bioconjug Chem. 2012;23:392–8.
    Google Scholar 
    Patterson DM, Nazarova LA, Prescher JA. Finding the Right (Bioorthogonal) Chemistry. ACS Chem Biol. 2014;9:592–605. https://doi.org/10.1021/cb400828a.Article 
    CAS 

    Google Scholar 
    Ignacio BJ, Dijkstra J, Garcia NM, Slot EFJ, van Weijsten MJ, Storkebaum E, et al. THRONCAT: Efficient metabolic labeling of newly synthesized proteins using a bioorthogonal threonine analog. bioRxiv. 2022. https://www.biorxiv.org/content/10.1101/2022.03.29.486210v1.Wright MH. Chemical proteomics of host–microbe interactions. Proteomics. 2018;18:1700333. https://doi.org/10.1002/pmic.201700333.Article 
    CAS 

    Google Scholar 
    Yu H, Schomaker J. Recent developments and strategies for mutually orthogonal bioorthogonal reactions. Chembiochem. 2021;22:3254–62.
    Google Scholar 
    Willems LI, Li N, Florea BI, Ruben M, van der Marel GA, Overkleeft HS. Triple bioorthogonal ligation strategy for simultaneous labeling of multiple enzymatic activities. Angew Chemie Int Ed. 2012;51:4431–4. https://doi.org/10.1002/anie.201200923.Article 
    CAS 

    Google Scholar 
    Simon C, Lion C, Spriet C, Baldacci-Cresp F, Hawkins S, Biot C. One, two, three: a bioorthogonal triple labelling strategy for studying the dynamics of plant cell wall formation in vivo. Angew Chemie Int Ed. 2018;57:16665–71. https://doi.org/10.1002/anie.201808493.Article 
    CAS 

    Google Scholar 
    Chio TI, Gu H, Mukherjee K, Tumey LN, Bane SL. Site-specific bioconjugation and multi-bioorthogonal labeling via rapid formation of a boron–nitrogen heterocycle. Bioconjug Chem. 2019;30:1554–64. https://doi.org/10.1021/acs.bioconjchem.9b0024.Article 
    CAS 

    Google Scholar 
    Bakkum T, Heemskerk MT, Bos E, Groenewold M, Oikonomeas-Koppasis N, Walburg KV, et al. Bioorthogonal correlative light-electron microscopy of mycobacterium tuberculosis in macrophages reveals the effect of antituberculosis drugs on subcellular bacterial distribution. ACS Cent Sci. 2020;6:1997–2007. https://doi.org/10.1021/acscentsci.0c00539.Article 
    CAS 

    Google Scholar  More

  • in

    Dynamics of aggregate-associated organic carbon after long-term cropland conversion in a karst region, southwest China

    Effects of cropland conversion on OC pool in bulk soilCropland restoration identified as an efficient ecological project to promote soil C sequestration in karst erosion areas28,30. The conversion from MS to FG resulted in the total soil OC content and stock across 0–30 cm layers increasing by 46.12% and 43.73% respectively. The result was highly coincident with previous studies observed at 0–10 cm layer, which reported that FG cultivation replaced from MS cultivation could remarkably increase soil OC pool in karst region, Southwest China28. In our study, the lower OC content and stock in MS may be partially attributed to the non-returned crop residues and increased exposure of deep soil OM to oxygen under tillage disturbance, resulting in decreased soil OC accumulation through reducing the input of OM and accelerating OM decomposition28,30,37,38. Nevertheless, the conversion from MS to FG can increase the soil OC pool by increasing inputs from crops. For detail, laregly aboverground crops are harvested and removed from the fields each every year for economic production, there is thus a lack of aboverground OC input. Therefore, the root biomass became the main source of OM inputs, and even slight changes in biomass can substantially alter soil C level39. In the present study, the root biomass in FG field was approximately 6 times that in MS field (110.06 ± 17.24 kg hm−2 averagely) (Table S2). Consequently, the higher root biomass in FG are responsible for the corresponding higher C storage of fine root in FG, which is supported by the fact that higher amount of C were stored in the fine roots of FG field compared with that of MS field (Table S2). In fact, several studies have demonstrated that cultivation of perennial grasses is efficient in stimulating soil OC accumulation owing to its great amount of fine roots and underground biomass33,40. Soil disturbance (such as tillage) is one of the main causes of soil C depletion in agricultural systems, and increased tillage practice can result in greater soil C loss41,42,43. Therefore, the frequent tillage conducted in MS field resulted in lower levels of OC than that in FG field under minimal tillage disturbance.Impacts of cropland conversion on soil aggregates structure and stabilitySoil structure plays an important role in soil environment and quality, which is strongly characterized by soil aggregates and their stability43,44. In our study, soil macro-aggregates dominated the largest portion of total soil while meso-aggregates and micro-aggregates were only accounted for a small portion, indicating that cropland conversion could facilitated the formation of macro-aggregates (Table 2). These findings are in line with other studies, wherein that macro-aggregates occupied the major portion of total soil following farmland or vegetation restoration19,30. Tillage disturbance often disrupts aggregates by bringing subsurface soil to the surface, which can readily promote soil C turnover and hinder macro-aggregate formation45. Conversely, minimal tillage experienced and greater accumulation of root residues resulted in higher C accumulation in the FG field. Furthermore, fine roots improved the soil aggregate stability via the interaction with mycorrhizal fungi, which produced exudates and binding agents and promoted the formation of soil aggregates46,47. Therefore, higher inputs of root residue in the soil could enhance the capacity of aggregate re-formation. In fact, these can be supported by the higher value of root biomass and its C stock in the FG field. In addition, forage grass cultivation can enhance the formation of large and stable soil aggregates by fine roots and fungal hyphae through the production of exudates and binding agents, such as humic compounds, polymers and roots48,49. Thus, few tillage disturbance and higher inputs of root biomass in FG field resulted in soil aggregation enhanced, especially macro-aggregates.Soil aggregate stability can also be characterized by the values of MWD and GMD. Higher MWD or GMD values indicate greater aggregate stability due to more agglomerate ability. The value of MWD in the current study varied from 1.36 to 1.96, which was classified as “stable” by LeBissonnais’ categorization of aggregate stability50.Regardless of soil depth, the FG field had the greatest MWD and GMD values, indicating that its soil aggregates were more stable than those of the other three cropland use types. We may thus draw the conclusion that FG cropland conversion can improve the stability of aggregates based on MWD and GMD.Changes in OC stocks associated –aggregates following cropland conversionCropland use change generally affects soil C sequestration through changing OM inputs and decomposition19. Our study revealed that aggregate-associated OC was significantly higher in FG field than in MS field. These increases were mainly attributed to the new C derived from root residues inputs and decreased losses of OC associated-aggregate by C mineralization in FG soil49. Generally, tillage can breakdown large aggregates into small aggregates, and thus decrease the formation of soil macro-aggregates41,42. Thus, the lower OC content and stock associated-aggregate in MS field can be attributed to the OC loss resulting from soil erosion, and OM input reduction with tillage disturbance8,30,45.In this study, the effects of cropland conversion on OC content associated-aggregate fractions occurred in the top 20 cm soil layers. In the karst region, approximate 57–89% of crop roots are concentrated in the surface soil layer, which directly affects OM inputs from underground root residues51,52. Meanwhile, tillage practices also happened on top 20 cm soil layer6,28,29. As a result, in soils below 20 cm, little or no tillage disturbance and limited OM inputs resulted in fewer or no distinctly changing levels of OC content associated with aggregate following cropland use change.Cropland use change not only affected the OC stocks in bulk soil, but also affected the OC stocks associated-aggregates (Table 1). The difference of sensitivity of OC associated-aggregate to cropland use change may affect its contribution to bulk soil OC accumulation30,38. In our study, the macro-aggregate fraction was the most important contributor to total OC stock increase, followed by meso-aggregate and micro-aggregate (Fig. 4). This is primarily due to the higher amount and OC content of macro-aggregates. Overall all cropland use types, the OC stock associated with macro-aggregate in FG field was higher than that in other three cropland types regardless of soil depth (Fig. 4). For instance, OC stocks within macro-aggregate accounted for about 85.40%, 77.72% and 97.55% of total soil OC stock at 0–10 cm, 10–20 cm and 20–30 cm, respectively, under the conversion from MS to FG. Thus, the accumulation pattern of bulk soil OC stocks could closely related with changes of OC stocks associated with macro-aggregate under cropland use change.The physical protection of OC in aggregates is regarded as one of the main mechanisms for soil OC accumulation through diminishing soil OC degradation and preventing its interaction with mineral particles53,54. In the present study, OC stock in bulk soil correlated substantially with the OC content-associated aggregate following cropland conversion (Fig. 5). Further analysised revealed that OC stocks in bulk soil was significantly correlated to OC stock associated with macro-aggregate (R2 = 0.83, p  More

  • in

    Forest edges increase pollinator network robustness to extinction with declining area

    Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 2902 (2021).Article 
    CAS 

    Google Scholar 
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).Article 

    Google Scholar 
    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).Article 

    Google Scholar 
    Rybicki, J., Abrego, N. & Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 23, 506–517 (2020).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).Article 
    CAS 

    Google Scholar 
    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).Article 

    Google Scholar 
    Didham, R. K. Ecological consequences of habitat fragmentation. In Encyclopedia of Life Sciences (ed Jansson, R.), 61, 1–39 (Wiley, UK2010).Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).Article 
    CAS 

    Google Scholar 
    Spiesman, B. J. & Inouye, B. D. Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology 94, 2688–2696 (2013).Article 

    Google Scholar 
    Aizen, M. A. et al. The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation. Ecol. Lett. 19, 29–36 (2016).Article 

    Google Scholar 
    Emer, C. et al. Seed-dispersal interactions in fragmented landscapes-a metanetwork approach. Ecol. Lett. 21, 484–493 (2018).Article 

    Google Scholar 
    Fortuna, M. A. & Bascompte, J. Habitat loss and the structure of plant-animal mutualistic networks. Ecol. Lett. 9, 278–283 (2006).Article 

    Google Scholar 
    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).Article 

    Google Scholar 
    Glenn R. Matlack & John A. Litvaitis. Forest edges. In Maintaining Biodiversity in Forest Ecosystems (ed Hunter, M.) 6, 210–233 (Cambridge Univ. Press, 1999).Hadley, A. S. & Betts, M. G. The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol. Rev. 87, 526–544 (2012).Article 

    Google Scholar 
    Ibanez, I., Katz, D. S. W., Peltier, D., Wolf, S. M. & Barrie, B. T. C. Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. J. Ecol. 102, 882–895 (2014).Article 

    Google Scholar 
    Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & Hutyra, L. R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12, 7181 (2021).Article 
    CAS 

    Google Scholar 
    Martinez-Ramos, M., Alvarez-Buylla, E. & Sarukhan, J. Tree demography and gap dynamics in a tropical rain forest. Ecology 70, 555–558 (1989).Article 

    Google Scholar 
    Yamamoto, S. I. Forest gap dynamics and tree regeneration. J. For. Res. 5, 223–229 (2000).Article 

    Google Scholar 
    Schnitzer, S. A. & Carson, W. P. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82, 913–919 (2001).Article 

    Google Scholar 
    Kricher, J. A Shifting Mosaic: Rain Forest Development and Dynamics. In Tropical Ecology 6, 188–226 (Princeton Univ. Press, 2011).Gayer, C. et al. Flowering fields, organic farming and edge habitats promote diversity of plants and arthropods on arable land. J. Appl. Ecol. 58, 1155–1166 (2021).Article 

    Google Scholar 
    Bailey, S. et al. Distance from forest edge affects bee pollinators in oilseed rape fields. Ecol. Evol. 4, 370–380 (2014).Article 

    Google Scholar 
    Thebault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).Article 
    CAS 

    Google Scholar 
    Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012).Article 

    Google Scholar 
    Traveset, A., Castro-Urgal, R., Rotllan-Puig, X. & Lazaro, A. Effects of habitat loss on the plant-flower visitor network structure of a dune community. Oikos 127, 45–55 (2018).Article 

    Google Scholar 
    Rezende, E. L., Lavabre, J. E., Guimaraes, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).Article 
    CAS 

    Google Scholar 
    Staddon, P., Lindo, Z., Crittenden, P. D., Gilbert, F. & Gonzalez, A. Connectivity, non-random extinction and ecosystem function in experimental metacommunities. Ecol. Lett. 13, 543–552 (2010).Article 

    Google Scholar 
    Wardle, D. A., Bardgett, R. D., Callaway, R. M. & Van der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011).Article 
    CAS 

    Google Scholar 
    Sargent, R. D. & Ackerly, D. D. Plant-pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123–130 (2008).Article 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).Article 
    CAS 

    Google Scholar 
    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).Article 

    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    Pawar, S. Why are plant-pollinator networks nested? Science 345, 383–383 (2014).Article 
    CAS 

    Google Scholar 
    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Muller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).Article 

    Google Scholar 
    Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).Article 

    Google Scholar 
    Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant-pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).Article 

    Google Scholar 
    Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol. 31, 219–227 (2016).Article 

    Google Scholar 
    Zhong, L., Didham, R. K., Liu, J., Jin, Y. & Yu, M. Community re-assembly and divergence of woody plant traits in an island-mainland system after more than 50 years of regeneration. Divers. Distrib. 27, 1435–1448 (2021).Article 

    Google Scholar 
    Liu, J. et al. The asymmetric relationships of the distribution of conspecific saplings and adults in forest fragments. J. Plant Ecol. 13, 398–404 (2020).Article 
    CAS 

    Google Scholar 
    Ewers, R. M., Bartlam, S. & Didham, R. K. Altered species interactions at forest edges: contrasting edge effects on bumble bees and their phoretic mite loads in temperate forest remnants. Insect Conserv. Divers. 6, 598–606 (2013).Article 

    Google Scholar 
    Wardhaugh, C. W. The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biol. Rev. Camb. Philos. Soc. 89, 1021–1041 (2015).Article 

    Google Scholar 
    Lowman, M. Life in the treetops – an overview of forest canopy science and its future directions. Plants People Planet 3, 16–21 (2021).Article 

    Google Scholar 
    Nakamura, A. et al. Forests and their canopies: achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451 (2017).Article 

    Google Scholar 
    Lennartsson, T. Extinction thresholds and disrupted plant-pollinator interactions in fragmented plant populations. Ecology 83, 3060–3072 (2002).
    Google Scholar 
    Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M. A. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol. Lett. 9, 968–980 (2006).Article 

    Google Scholar 
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).Article 

    Google Scholar 
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Article 

    Google Scholar 
    Gathmann, A. & Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 71, 757–764 (2002).Article 

    Google Scholar 
    Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Entomol. 42, 1–22 (2011).
    Google Scholar 
    Torné-Noguera, A. et al. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9, e97255 (2014).Article 

    Google Scholar 
    Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).Article 

    Google Scholar 
    Schoereder, J. H. et al. Should we use proportional sampling for species-area studies? J. Biogeogr. 31, 1219–1226 (2004).Article 

    Google Scholar 
    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).Article 

    Google Scholar 
    Devoto, M., Medan, D. & Montaldo, N. H. Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109, 461–472 (2005).Article 

    Google Scholar 
    Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575 (2008).Article 

    Google Scholar 
    Brodie, J. F. et al. Secondary extinctions of biodiversity. Trends Ecol. Evol. 29, 664–672 (2014).Article 

    Google Scholar 
    Vazquez, D. P. & Aizen, M. A. Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85, 1251–1257 (2004).Article 

    Google Scholar 
    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).
    Google Scholar 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).Article 
    CAS 

    Google Scholar 
    Fletcher, R. J. Jr et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).Article 

    Google Scholar 
    Ren, P., Si, X. & Ding, P. Stable species and interactions in plant-pollinator networks deviate from core position in fragmented habitats. Ecography 2022, e06102 (2022).Article 

    Google Scholar 
    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).
    Google Scholar 
    Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).Article 
    CAS 

    Google Scholar 
    Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. Jr, Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).Article 

    Google Scholar 
    Ulrich, W., Almeida-Neto, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).Article 

    Google Scholar 
    Dicks, L. V., Corbet, S. A. & Pywell, R. F. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).Article 

    Google Scholar 
    Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3, 140536 (2016).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020). https://CRAN.R-project.org/package=veganDormann, C. F. et al. bipartite: Visualising Bipartite Networks and Calculating Some (Ecological) Indices. R package version 2.16 (2021). https://CRAN.R-project.org/package=bipartitePocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).Article 
    CAS 

    Google Scholar 
    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).Article 
    CAS 

    Google Scholar 
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).Article 
    CAS 

    Google Scholar 
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Grace, J. B., Scheiner, S. M. & Schoolmaster, D. R. Jr. Structural equation modeling: building and evaluating causal models. In Ecological Statistics: From Principles to Applications (eds Fox, G. A. et al.), 8, 168–199 (Oxford Univ. Press, 2015).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
    Google Scholar 
    Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).Article 

    Google Scholar 
    Murphy, M. semEff: Automatic Calculation of Effects for Piecewise Structural Equation Models. R package version 0.6.0 (2021). https://CRAN.R-project.org/package=semEffDudgeon, P. A comparative investigation of confidence intervals for independent variables in linear regression. Multivar. Behav. Res. 51, 139–153 (2016).Article 

    Google Scholar 
    Gotelli, N. J. & Graves, G. R. Null Models in Ecology (Smithsonian Inst. Press, 1996).Jung, V., Violle, C., Mondy, C., Hoffmann, L. & Muller, S. Intraspecific variability and trait-based community assembly. J. Ecol. 98, 1134–1140 (2010).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Genetic and demographic consequences of range contraction patterns during biological annihilation

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114, E6089–E6096 (2017).ADS 
    CAS 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. PNAS 117, 13596–13602 (2020).ADS 
    CAS 

    Google Scholar 
    Butchart, S. H. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).ADS 
    CAS 

    Google Scholar 
    Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).
    Google Scholar 
    Arenas, M., Ray, N., Currat, M. & Excoffier, L. Consequences of range contractions and range shifts on molecular diversity. Mol. Biol. Evol. 29, 207–218 (2012).CAS 

    Google Scholar 
    Banks, S. C. et al. How does ecological disturbance influence genetic diversity?. Trends Ecol. Evol. 28, 670–679 (2013).
    Google Scholar 
    Branco, C., Ray, N., Currat, M. & Arenas, M. Influence of Paleolithic range contraction, admixture and long-distance dispersal on genetic gradients of modern humans in Asia. Mol. Ecol. 29, 2150–2159 (2020).
    Google Scholar 
    Lomolino, M. V. & Channell, R. Splendid isolation: Patterns of geographic range collapse in endangered mammals. J. Mammal. 76(2), 335–347 (1995).
    Google Scholar 
    Lomolino, M. V. & Channell, R. Range collapse, re-introductions, and biogeographic guidelines for conservation. Conserv. Biol. 12, 481–484 (1998).
    Google Scholar 
    Channell, R. & Lomolino, M. V. Dynamic biogeography and conservation of endangered species. Nature 403, 84–86 (2000).ADS 
    CAS 

    Google Scholar 
    Channell, R. & Lomolino, M. V. Trajectories to extinction: Spatial dynamics of the contraction of geographical ranges. J. Biogeogr. 27, 169–179 (2000).
    Google Scholar 
    Laliberte, A. S. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54, 123–138 (2004).
    Google Scholar 
    Donald, P. F. & Greenwood, J. J. Spatial patterns of range contraction in British breeding birds. Ibis 143, 593–601 (2001).
    Google Scholar 
    Boakes, E. H., Isaac, N. J., Fuller, R. A., Mace, G. M. & McGowan, P. J. Examining the relationship between local extinction risk and position in range. Conserv. Biol. 32, 229–239 (2018).
    Google Scholar 
    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. PNAS 101(42), 15261–15264 (2004).ADS 
    CAS 

    Google Scholar 
    Hoelzel, A. R. et al. Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks. J. Hered. 84, 443–449 (1993).CAS 

    Google Scholar 
    Amos, W. & Balmford, A. When does conservation genetics matter?. Heredity 87, 257–265 (2001).CAS 

    Google Scholar 
    Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).
    Google Scholar 
    Carvalho, C. D. S. et al. Habitat loss does not always entail negative genetic consequences. Front. Genet. 10, 1101 (2019).CAS 

    Google Scholar 
    Wheeler, B. A., Prosen, E., Mathis, A. & Wilkinson, R. F. Population declines of a long-lived salamander: A 20+-year study of hellbenders, Cryptobranchus alleganiensis. Biol. Cons. 109, 151–156 (2003).
    Google Scholar 
    Walkup, D. K., Leavitt, D. J. & Fitzgerald, L. A. Effects of habitat fragmentation on population structure of dune-dwelling lizards. Ecosphere 8, e01729 (2017).
    Google Scholar 
    Mikle, N., Graves, T. A., Kovach, R., Kendall, K. C. & Macleod, A. C. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore. Proc. R. Soc. B Biol. Sci. 283, 20161467 (2016).
    Google Scholar 
    DeWoody, J. A., Harder, A. M., Mathur, S. & Willoughby, J. R. The long-standing significance of genetic diversity in conservation. Mol. Ecol. 30(17), 4147–4154 (2021).
    Google Scholar 
    Kardos, M., Armstrong, E. E., Fitzpatrick, S. W. & Funk, W. C. The crucial role of genome-wide genetic variation in conservation. PNAS 118(48), e210462118 (2021).
    Google Scholar 
    García-Dorado, A. & Caballero, A. Neutral genetic diversity as a useful tool for conservation biology. Conserv. Genet. 22, 541–545 (2021).
    Google Scholar 
    Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).CAS 

    Google Scholar 
    Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).CAS 

    Google Scholar 
    Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W. & Ralph, P. L. Tree-sequence recording in SLiM opens new horizons forward-time simulation of whole genomes. Mol. Ecol. Resour. 19, 552–566 (2018).
    Google Scholar 
    Kelleher, J., Thornton, K. R., Ashander, J. & Ralph, P. L. Efficient pedigree recording for fast population genetics simulation. PLoS Comput. Biol. 14, e1006581 (2018).ADS 

    Google Scholar 
    Haller, B. C. & Messer, P. W. SLiM 3: Forward genetic simulations beyond the Wright–Fisher model. Mol. Biol. Evol. 36, 632–637 (2019).CAS 

    Google Scholar 
    Rodríguez, J. P. Range contraction in declining North American bird populations. Ecol. Appl. 12, 238–248 (2002).
    Google Scholar 
    Fisher, D. O. Trajectories from extinction: where are missing mammals rediscovered?. Glob. Ecol. Biogeogr. 20, 415–425 (2011).
    Google Scholar 
    Lino, A., Fonseca, C., Rojas, D., Fischer, E. & Pereira, M. J. R. A meta-analysis of the effects of habitat loss and fragmentation on genetic diversity in mammals. Mamm. Biol. 94, 69–76 (2019).
    Google Scholar 
    Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: Phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16, 977–992 (2007).CAS 

    Google Scholar 
    Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS 

    Google Scholar 
    Wilkins, J. F. & Wakeley, J. The coalescent in a continuous, finite, linear population. Genetics 161, 873–888 (2002).
    Google Scholar 
    Ringbauer, H., Coop, G. & Barton, N. H. Inferring recent demography from isolation by distance of long shared sequence blocks. Genetics 205, 1335–1351 (2017).
    Google Scholar 
    Bradburd, G. S. & Ralph, P. L. Spatial population genetics: It’s about time. Annu. Rev. Ecol. Evol. Syst. 50, 427–429 (2019).
    Google Scholar 
    Barton, N. H., Etheridge, A. M., Kelleher, J. & Véber, A. Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks. Theor. Popul. Biol. 87, 105–119 (2013).CAS 
    MATH 

    Google Scholar 
    Aguillon, S. M. et al. Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet. 13, e1006911 (2017).
    Google Scholar 
    Blanco-Pastor, J. L., Fernández-Mazuecos, M. & Vargas, P. Past and future demographic dynamics of alpine species: Limited genetic consequences despite dramatic range contraction in a plant from the Spanish Sierra Nevada. Mol. Ecol. 22, 4177–4195 (2013).CAS 

    Google Scholar 
    Chen, N. et al. Allele frequency dynamics in a pedigreed natural population. PNAS 116, 2158–2164 (2019).ADS 
    CAS 

    Google Scholar 
    Exposito-Alonso, M., Booker, T. A., Czech, L., Fukami, T., Gillespie, L., Hateley, S. et al. Quantifying the scale of genetic diversity extinction in the Anthropocene. bioRxiv (2021).Keller, I. & Largiadèr, C. R. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc. R. Soc. B Biol. Sci. 270, 417–423 (2003).CAS 

    Google Scholar 
    Chan, L. M. et al. Phylogeographic structure of the dunes sagebrush lizard, an endemic habitat specialist. PLoS ONE 15, 0238194 (2020).
    Google Scholar 
    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).
    Google Scholar 
    Cayuela, H. et al. Demographic and genetic approaches to study dispersal in wild animal populations: A methodological review. Mol. Ecol. 27, 3976–4010 (2018).
    Google Scholar 
    Battey, C. J., Ralph, P. L. & Kern, A. D. Space is the place: Effects of continuous spatial structure on analysis of population genetic data. Genetics 215, 193–214 (2020).CAS 

    Google Scholar 
    Stubbs, D. & Swingland, I. R. The ecology of a Mediterranean tortoise (Testudo hermanni): A declining population. Can. J. Zool. 63, 169–180 (1985).
    Google Scholar 
    Channell, R. The conservation value of peripheral populations: The supporting science. in Proceedings of the Species at Risk 2004 Pathways to Recovery Conference. 1–17. (Species at Risk 2004 Pathways to Recovery Conference Organizing Committee, 2004).Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124(2), 255–279 (1984).
    Google Scholar 
    Brown, J. H. Macroecology (University of Chicago Press, 1995).
    Google Scholar 
    Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: Size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27(1), 597–623 (1996).
    Google Scholar 
    Sagarin, R. D. & Gaines, S. D. The ‘abundant centre’distribution: To what extent is it a biogeographical rule?. Ecol. Lett. 5, 137–147 (2002).
    Google Scholar 
    Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).CAS 

    Google Scholar 
    Yackulic, C. B., Sanderson, E. W. & Uriarte, M. Anthropogenic and environmental drivers of modern range loss in large mammals. PNAS 108, 4024–4029 (2011).ADS 
    CAS 

    Google Scholar 
    Fitzgerald L.A., Walkup, D. Chyn, K. Buchholtz, E. Angeli, N. & Parker M. The future for reptiles: Advances and challenges in the Anthropocene. in Encyclopedia of the Anthropocene. (eds. Dellasala, D.A., & Goldstein, M.I.). 163–174 (Elsevier, 2018).Segelbacher, G., Höglund, J. & Storch, I. From connectivity to isolation: Genetic consequences of population fragmentation in capercaillie across Europe. Mol. Ecol. 12, 1773–1780 (2003).CAS 

    Google Scholar 
    Cegelski, C. C., Waits, L. P. & Anderson, N. J. Assessing population structure and gene flow in Montana wolverines (Gulo gulo) using assignment-based approaches. Mol. Ecol. 12, 2907–2918 (2003).CAS 

    Google Scholar 
    Proctor, M. F., McLellan, B. N., Strobeck, C. & Barclay, R. M. Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations. Proc. R. Soc. B Biol. Sci. 272, 2409–2416 (2005).
    Google Scholar 
    Leavitt, D. J. & Fitzgerald, L. A. Disassembly of a dune–dwelling lizard community due to landscape fragmentation. Ecosphere 4, 97 (2013).
    Google Scholar 
    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Google Scholar 
    Rogan, J.E., & Lacher Jr., T.E. Impacts of habitat loss and fragmentation on terrestrial biodiversity. in Reference Modules in Earth Systems and Environmental Sciences. 1–18 (Elsevier, 2018).Hurtado, L. A., Santamaria, C. A. & Fitzgerald, L. A. Conservation genetics of the critically endangered St. Croix ground lizard (Ameiva polops Cope 1863). Conserv. Genet. 13, 665–679 (2012).
    Google Scholar 
    Lawton, J. H. Range, population abundance and conservation. Trends Ecol. Evol. 8, 409–413 (1993).CAS 

    Google Scholar 
    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. B Biol. Sci. 267, 1947–1952 (2000).CAS 

    Google Scholar 
    Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. B Biol. Sci. 275, 1441–1448 (2008).
    Google Scholar 
    Templeton, A. R. Coadaptation and outbreeding depression. in Conservation Biology: The Science of Scarcity and Diversity. (ed. Soulé, M.E.). 105–116 (Sinauer, 1986). Lomolino, M. V. & Smith, G. A. Dynamic biogeography of prairie dog (Cynomys ludovicianus) towns near the edge of their range. J. Mammal. 82, 937–945 (2001).
    Google Scholar 
    Wright, S. Isolation by distance. Genetics 28, 114 (1943).CAS 

    Google Scholar 
    Maruyama, T. Rate of decrease of genetic variability in a two-dimensional continuous population of finite size. Genetics 4(1), 639–651 (1972).
    Google Scholar 
    Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 645, 330–338 (1922).
    Google Scholar 
    Kelleher, J. & EtheridgeMcVean, A. M. G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput. Biol. 12, e1004842 (2016).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2019).Greenstein, B. J. & Pandolfi, J. M. Escaping the heat: Range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 14, 513–528 (2008).ADS 

    Google Scholar 
    Wilcove, D. S. & Terborgh, J. W. Patterns of population decline in birds. Am. Birds 38, 10–13 (1984).
    Google Scholar 
    Gabelli, F. M. et al. Range contraction in the Pampas meadowlark Sturnella defilippii in the southern Pampas grasslands of Argentina. Oryx 38, 164–170 (2004).
    Google Scholar 
    Pomara, L. Y., LeDee, O. E., Martin, K. J. & Zuckerberg, B. Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species. Glob. Change Biol. 20, 2087–2099 (2014).ADS 

    Google Scholar 
    Towns, D. R. & Daugherty, C. H. Patterns of range contractions and extinctions in the New Zealand herpetofauna following human colonisation. N. Z. J. Zool. 21, 325–339 (1994).
    Google Scholar 
    Rudolph, D. C., Burgdorf, S. J., Schaefer, R. R., Conner, R. N. & Maxey, R. W. Status of Pituophis ruthveni (Louisiana pine snake). Southeast. Nat. 5(3), 463–472 (2006).
    Google Scholar 
    Russell, R. W., Lipps, G. J. Jr., Hecnar, S. J. & Haffner, G. D. Persistent organic pollutants in Blanchard’s cricket frogs (Acris crepitans blanchardi) from Ohio. Ohio J. Sci. 102, 119–122 (2002).CAS 

    Google Scholar 
    Fellers, G. M. & Drost, C. A. Disappearance of the Cascades frog Rana cascadae at the southern end of its range, California, USA. Biol. Cons. 65, 177–181 (1993).
    Google Scholar 
    Franco, A. M. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12, 1545–1553 (2006).ADS 

    Google Scholar 
    Stewart, J. A., Wright, D. H. & Heckman, K. A. Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. PLoS ONE 12, e0181834 (2017).
    Google Scholar 
    Rodríguez, A. & Delibes, M. Internal structure and patterns of contraction in the geographic range of the Iberian lynx. Ecography 25, 314–328 (2002).
    Google Scholar 
    Kattan, G. et al. Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx 38(2), 155–163 (2004).
    Google Scholar 
    Jones, S. J., Lima, F. P. & Wethey, D. S. Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J. Biogeogr. 37, 2243–2259 (2010).
    Google Scholar 
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. P. R. Soc. B Biol. Sci. 280, 20122829 (2013).
    Google Scholar  More

  • in

    Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica

    Siegert M, Ross N, Le Brocq A. Recent advances in understanding Antarctic subglacial lakes and hydrology. Philos Trans R Soc A-Math Phys Eng Sci. 2016;374:20140306.
    Google Scholar 
    Fricker H, Scambos T, Bindschadler R, Padman L. An active subglacial water system in West Antarctica mapped from space. Science. 2007;315:1544–8.CAS 

    Google Scholar 
    Livingstone S, Li Y, Rutishauser A, Sanderson R, Winter K, Mikucki J, et al. Subglacial lakes and their changing role in a warming climate. Nat Rev Earth Environ. 2022;3:106–24.
    Google Scholar 
    Tulaczyk S, Mikucki J, Siegfried M, Priscu J, Barcheck C, Beem L, et al. WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann Glaciol. 2014;55:51–8.
    Google Scholar 
    Priscu J, Achberger A, Cahoon J, Christner B, Edwards R, Jones W, et al. A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarctitc Sci. 2013;25:637–47.
    Google Scholar 
    Christner BC, Priscu JC, Achberger AM, Barbante C, Carter SP, Christianson K, et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature. 2014;512:310–3.CAS 

    Google Scholar 
    Michaud A, Dore J, Achberger A, Christner B, Mitchell A, Skidmore M, et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat Geosci. 2017;10:582–6.CAS 

    Google Scholar 
    Achberger A, Christner B, Michaud A, Priscu J, Skidmore M, Vick-Majors T, et al. Microbial community structure of Subglacial Lake Whillans, West Antarctica. Front Microbiol. 2016;7:1457.
    Google Scholar 
    Vick-Majors TJ, Mitchell AC, Achberger AM, Christner BC, Dore JE, Michaud AB, et al. Physiological ecology of microorganisms in Subglacial Lake Whillans. Front Microbiol. 2016;7:1705.
    Google Scholar 
    Vick‐Majors TJ, Michaud AB, Skidmore ML, Turetta C, Barbante C, Christner BC, et al. Biogeochemical connectivity between freshwater ecosystems beneath the West Antarctic Ice Sheet and the Sub‐Ice Marine Environment. Global Biogeochem Cycles. 2020;34:1–17.
    Google Scholar 
    Montross S, Skidmore M, Tranter M, Kivimaki A, Parkes R. A microbial driver of chemical weathering in glaciated systems. Geology. 2013;41:215–8.CAS 

    Google Scholar 
    Gill-Olivas B, Telling J, Tranter M, Skidmore M, Christner B, O’Doherty S, et al. Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica. Commun Earth Environ. 2021;2:1–12.
    Google Scholar 
    Priscu JC, Kalin J, Winans J, Campbell T, Siegfried MR, Skidmore M, et al. Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Ann Glaciol. 2021;62:340–52.
    Google Scholar 
    Fricker H, Scambos T. Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003-2008. J Glaciol. 2009;55:303–15.
    Google Scholar 
    Carter S, Fricker H, Siegfried M. Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica. J Glaciol. 2013;59:1147–62.
    Google Scholar 
    Venturelli RA, Boehman B, Davis C, Hawkings JR, Johnston SE, Gustafson CD, et al. Constraints on the timing and extent of deglacial grounding line retreat in West Antarctica from subglacial sediments. AGU Advances. 2022; (in review).Kingslake J, Scherer R, Albrecht T, Coenen J, Powell R, Reese R, et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature. 2018;558:430–4.CAS 

    Google Scholar 
    Venturelli RA, Siegfried MR, Roush KA, Li W, Burnett J, Zook R, et al. Mid-Holocene Grounding Line Retreat and Readvance at Whillans Ice Stream, West Antarctica. Geophys Res Lett. 2020;47:e2020GL088476.
    Google Scholar 
    Scherer R, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H, Kamb B. Pleistocene collapse of the West Antarctic ice sheet. Science. 1998;281:82–5.CAS 

    Google Scholar 
    Achberger A. Structure and functional potential of microbial communities in Subglacial Lake Whillans and at the Ross Ice Shelf Grounding Zone, West Antarctica: Louisiana State University; 2016.Blythe D, Duling D, Gibson D. Developing a hot-water drill system for the WISSARD project: 2. In situ water production. Ann Glaciol. 2014;55:298–310.
    Google Scholar 
    Burnett J, Rack FR, Blythe D, Swanson P, Duling D, Gibson D, et al. Developing a hot-water drill system for the WISSARD project: 3. Instrumentation and control systems. Ann Glaciol. 2014;55:303–10.
    Google Scholar 
    Rack F, Duling D, Blythe D, Burnett J, Gibson D, Roberts G, et al. Developing a hot-water drill system for the WISSARD project: 1. Basic drill system components and design. Ann Glaciol. 2014;55:285–97.
    Google Scholar 
    Michaud A, Vick-Majors T, Achberger A, Skidmore M, Christner B, Tranter M, et al. Environmentally clean access to Antarctic subglacial aquatic environments. Antarctic Sci. 2020;32:1–12.Kallmeyer J, Smith DC, Spivack AJ, D’Hondt S. New cell extraction procedure applied to deep subsurface sediments. Limnol Oceanogr Methods. 2008;6:236–45.
    Google Scholar 
    Pan D, Morono Y, Inagaki F, Takai K. An improved method for extracting viruses from sediment: detection of far more viruses in the subseafloor than previously reported. Front Microbiol. 2019;10:878.
    Google Scholar 
    Battin T, Wille A, Sattler B, Psenner R. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol. 2001;67:799–807.CAS 

    Google Scholar 
    Klock J-H, Wieland A, Seifert R, Michaelis W. Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Marine Biol. 2007;152:1077–85.CAS 

    Google Scholar 
    Miyatake T, Moerdijk-Poortvliet T, Stal L, Boschker H. Tracing carbon flow from microphytobenthos to major bacterial groups in an intertidal marine sediment by using an in situ C-13 pulse-chase method. Limnol Oceanogr. 2014;59:1275–87.CAS 

    Google Scholar 
    Albalasmeh A, Berhe A, Ghezzehei T. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers. 2013;97:253–61.CAS 

    Google Scholar 
    Lerotic M, Mak R, Wirick S, Meirer F, Jacobsen C. MANTiS: a program for the analysis of X-ray spectromicroscopy data. J Synchrotron Radiat. 2014;21:1206–12.CAS 

    Google Scholar 
    Bonneville S, Delpomdor F, Preat A, Chevalier C, Araki T, Kazemian M, et al. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci Adv. 2020;6:eaax7599.CAS 

    Google Scholar 
    Le Guillou C, Bernard S, De la Pena F, Le Brech Y. XANES-based quantification of carbon functional group concentrations. Anal Chem. 2018;90:8379–86.
    Google Scholar 
    Solomon D, Lehmann J, Kinyangi J, Liang B, Heymann K, Dathe L, et al. Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference organic compounds. Soil Sci Soc Am J. 2009;73:1817–30.CAS 

    Google Scholar 
    Michaud A, Skidmore M, Mitchell A, Vick-Majors T, Barbante C, Turetta C, et al. Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology. 2016;44:347–50.CAS 

    Google Scholar 
    Raiswell R, Hawkings J, Eisenousy A, Death R, Tranter M, Wadham J. Iron in glacial systems: speciation, reactivity, freezing behavior, and alteration during transport. Front Earth Sci. 2018;6:222.
    Google Scholar 
    Hyacinthe C, Bonneville S, Van Cappellen P. Reactive iron(III) in sediments: Chemical versus microbial extractions. Geochimica Et Cosmochimica Acta. 2006;70:4166–80.CAS 

    Google Scholar 
    Raiswell R, Benning L, Tranter M, Tulaczyk S. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem Trans. 2008;9:7.
    Google Scholar 
    Raiswell R, Vu H, Brinza L, Benning L. The determination of labile Fe in ferrihydrite by ascorbic acid extraction: Methodology, dissolution kinetics and loss of solubility with age and de-watering. Chem Geol. 2010;278:70–9.CAS 

    Google Scholar 
    Fossing H, Jorgensen B. Measurement of bacterial sulfate reduction in sediments—evaluation of a single-step chromium reduction method. Biogeochemistry. 1989;8:205–22.CAS 

    Google Scholar 
    Cline J. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr. 1969;14:454.CAS 

    Google Scholar 
    Kallmeyer J, Ferdelman T, Weber A, Fossing H, Jorgensen B. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnol Oceanogr Methods. 2004;2:171–80.
    Google Scholar 
    Roy H, Weber H, Tarpgaard I, Ferdelman T, Jorgensen B. Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive S-35 tracer. Limnol Oceanogr Methods. 2014;12:196–211.
    Google Scholar 
    Caporaso J, Lauber C, Walters W, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 

    Google Scholar 
    Button DK, Robertson BR. Determination of DNA content of aquatic bacteria by flow cytometry. Appl Environ Microbiol. 2001;67:1636–45.CAS 

    Google Scholar 
    Michaud AB, Priscu JC, the Salsa Science Team. Sediment oxygen consumption in Antarctic subglacial environments. Limnology and Oceanography. 2022. (In Review).Siegfried MR, Venturelli RA, Patterson MO, Arnuk W, Campbell TD, Gustafson CD, et al. The life and death of a subglacial lake in West Antarctica. Geology. 2023; in press; https://doi.org/10.1130/G50995.1.Vyse S, Herzschuh U, Pfalz G, Pestryakova L, Diekmann B, Nowaczyk N, et al. Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene: combining hydroacoustic profiling and down-core analyses. Biogeosciences. 2021;18:4791–816.CAS 

    Google Scholar 
    Oliva-Urcia B, Moreno A, Leunda M, Valero-Garces B, Gonzalez-Samperiz P, Gil-Romera G, et al. Last deglaciation and Holocene environmental change at high altitude in the Pyrenees: the geochemical and paleomagnetic record from Marbor, Lake (N Spain). J Paleolimnol. 2018;59:349–71.
    Google Scholar 
    Davis C. Ecology of subglacial lake microbial communities in West Antarctica: University of Florida; 2022.Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, et al. Bacteria beneath the West Antarctic ice sheet. Environ Microbiol. 2009;11:609–15.CAS 

    Google Scholar 
    Boyd E, Hamilton T, Havig J, Skidmore M, Shock E. Chemolithotrophic Primary Production in a Subglacial Ecosystem. Appl Environ Microbiol. 2014;80:6146–53.
    Google Scholar 
    Sattley WM, Madigan MT. Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol. 2006;72:5562–8.CAS 

    Google Scholar 
    Dieser M, Broemsen E, Cameron KA, King GM, Achberger A, Choquette K, et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J. 2014;8:2305–16.CAS 

    Google Scholar 
    Vaclavkova S, Schultz-Jensen N, Jacobsen O, Elberling B, Aamand J. Nitrate-controlled anaerobic oxidation of pyrite by thiobacillus cultures. Geomicrobiol J. 2015;32:412–9.CAS 

    Google Scholar 
    Gustafson C, Key K, Siegfried M, Winberry J, Fricker H, Venturelli R, et al. A dynamic saline groundwater system mapped beneath an Antarctic ice stream. Science. 2022;376:640–4.CAS 

    Google Scholar 
    Priscu JC, Tulaczyk S, Studinger M, Kennicutt M, Christner BC, Foreman CM. Antarctic subglacial water: origin, evolution and ecology. Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems Oxford University Press, Oxford. 2008:119–35.Whitman W, Coleman D, Wiebe W. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 1998;95:6578–83.CAS 

    Google Scholar 
    Scherer R. Quaternary and tertiary microfossils from beneath Ice Stream-B—evidence for a dynamic West Antarctic ice-sheet history. Global Planet Change. 1991;90:395–412.
    Google Scholar 
    Haran T, Bohlander J, Scambos T, Painter T, Fahnestock M. MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map, Version 2. 2021; Boulder, Colorado USA NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/4ZL43A4619AF.Mouginot J, Rignot E, Scheuchl B. Continent‐Wide Interferometric SAR Phase Mapping of Antarctic Ice Velocity. Geophysical Research Letters. 2019;46:9710–8. https://doi.org/10.1029/2019GL083826.Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Ligtenberg SRM, van den Broeke MR, et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature. 2013;502:89–92. https://doi.org/10.1038/nature12567. More