More stories

  • in

    The sources of variation for individual prey-to-predator size ratios

    Agashe D, Bolnick DI (2010) Intraspecific genetic variation and competition interact to influence niche expansion. Proc R Soc B Biol Sci 277:2915–2924
    Article  Google Scholar 

    Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958
    PubMed  Article  Google Scholar 

    Benton TG, Ranta E, Kaitala V, Beckerman AP (2001) Maternal effects and the stability of population dynamics in noisy environments. J Anim Ecol 70:590–599
    Article  Google Scholar 

    Bernardo J (1996) Maternal effects in animal ecology. Am Zool 36:83–105
    Article  Google Scholar 

    Boll PK, Leal-Zanchet AM (2016) Preference for different prey allows the coexistence of several land planarians in areas of the Atlantic Forest. Zoology 119:162–168
    PubMed  Article  Google Scholar 

    Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M et al. (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192
    PubMed  PubMed Central  Article  Google Scholar 

    Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD et al. (2003) The ecology of individuals: Incidence and implications of individual specialization. Am Nat 161:1–28
    PubMed  PubMed Central  Article  Google Scholar 

    Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941
    Article  Google Scholar 

    Brose U, Ehnes RB, Rall BC, Vucic-Pestic O, Berlow EL, Scheu S (2008) Foraging theory predicts predator-prey energy fluxes. J Anim Ecol 77:1072–1078
    CAS  PubMed  Article  Google Scholar 

    Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF et al. (2006) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417
    PubMed  Article  PubMed Central  Google Scholar 

    Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789
    Article  Google Scholar 

    Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology:some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35
    Article  Google Scholar 

    Caballero A (2020) Quantitative genetics. Cambridge University Press, Cambridge

    Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Cheverud JM (1996) Development integration and evolution of pleiotropy. Am Zool 36:44–50
    Article  Google Scholar 

    Chevin LM (2013) Genetic constraints on adaptation to a changing environment. Evolution 67:708–721
    PubMed  Article  PubMed Central  Google Scholar 

    Class B, Brommer JE (2020) Can dominance genetic variance be ignored in evolutionary quantitative genetic analyses of wild populations? Evolution 74:1540–1550
    PubMed  Article  PubMed Central  Google Scholar 

    Cockburn A (1991) An introduction to evolutionary ecology. Blackwell Scientific, Oxford
    Google Scholar 

    Cortez MH (2018) Genetic variation determines which feedbacks drive and alter predator–prey eco-evolutionary cycles. Ecol Monogr 88:353–371
    Article  Google Scholar 

    Costa-Pereira R, Araújo MS, Olivier R, da S, Souza FL, Rudolf VHW (2018) Prey limitation drives variation in allometric scaling of predator-prey interactions. Am Nat 192:139–149
    Article  Google Scholar 

    Crnokrak P, Roff DA (1995) Dominance variance: associations with selection and fitness. Heredity 75:530–540
    Article  Google Scholar 

    Cuthbert RN, Wasserman RJ, Dalu T, Kaiser H, Weyl OLF, Dick JTA et al. (2020) Influence of intra‐ and interspecific variation in predator–prey body size ratios on trophic interaction strengths. Ecol Evol 10:5946–5962
    PubMed  PubMed Central  Article  Google Scholar 

    Dey S, Proulx SR, Teotónio H (2016) Adaptation to temporally fluctuating environments by the evolution of maternal effects. PLOS Biol 14:e1002388
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Dufour L (1835) Observations sur la Tarentule (Lycosa Tarantula) avec la figure de cette aranéide. Ann. Sci. Nat. Zool 3:95–108

    Emmerson MC, Raffaelli D (2004) Predator-prey body size, interaction strength and the stability of a real food web. J Anim Ecol 73:399–409
    Article  Google Scholar 

    Fabricius JC (1775) Systema entomologiae, sistens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus, Flensburgi et Lipsiae. In Officina Libraria Kortii, 832 pp

    García LF, Viera C, Pekár S (2018) Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci Nat 105:30
    Article  CAS  Google Scholar 

    Gavín-Centol MP, Kralj-Fišer S, De Mas E, Ruiz-Lupión D, Moya-Laraño J (2017) Feeding regime, adult age and sexual size dimorphism as determinants of pre-copulatory sexual cannibalism in virgin wolf spiders. Behav Ecol Sociobiol 71:10
    Article  Google Scholar 

    Gebhardt‐Henrich SG, Van Noordwijk AJ (1991) Nestling growth in the great tit I. Heritability estimates under different environmental conditions. J Evol Biol 4:341–362
    Article  Google Scholar 

    Gnatzy W, Otto D (1996) Digger wasp vs. cricket: application of the paralytic venom by the predator and changes in behavioural reactions of the prey after being stung. Naturwissenschaften 83:467–470
    CAS  Article  Google Scholar 

    Grafen A (1988) On the uses of data on lifetime reproductive success. In: Clutton-Brock TH (eds) Reproductive success: studies of individual variation in contrasting breeding systems, University of Chicago Press, Chicago. pp 454–471

    Griffiths D (1980) Foraging costs and relative prey size. Am Nat 116:743–752
    Article  Google Scholar 

    Grinsted L, Schou MF, Settepani V, Holm C, Bird TL, Bilde T (2020) Prey to predator body size ratio in the evolution of cooperative hunting—a social spider test case. Dev Genes Evol 230:173–184
    CAS  PubMed  Article  Google Scholar 

    Groothuis TGG, Schwabl H (2008) Hormone-mediated maternal effects in birds: Mechanisms matter but what do we know of them? Philos Trans R Soc B Biol Sci 363:1647–1661
    CAS  Article  Google Scholar 

    Gustafsson S, Rengefors K, Hansson LA (2005) Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86:2561–2567
    Article  Google Scholar 

    Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33

    Hagstrum DW (1971) Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann Entomol Soc Am 64:757–760
    Article  Google Scholar 

    Hansen TF (2013) Why epistasis is important for selection and adaptation. Evolution 67:3501–3511
    PubMed  Article  Google Scholar 

    Hart SP, Schreiber SJ, Levine JM (2016) How variation between individuals affects species coexistence. Ecol Lett 19:825–838

    Heath DD, Fox CW, Heath JW (1999) Maternal effects on offspring size: variation through early development of Chinook salmon. Evolution 53:1605
    PubMed  Article  Google Scholar 

    Hirvonen H, Ranta E (1996) Prey to predator size ratio influences foraging efficiency of larval Aeshna juncea dragonflies. Oecologia 106:407–415
    PubMed  Article  PubMed Central  Google Scholar 

    Inchausti P, Ginzburg LR (2009) Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator–prey view. Philos Trans R Soc B Biol Sci 364:1117–1124
    Article  Google Scholar 

    Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67
    Article  Google Scholar 

    Jensen K, Mayntz D, Toft S, Raubenheimer D, Simpson SJ (2011) Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim Behav 81:993–999
    Article  Google Scholar 

    Jiang L, Morin PJ (2005) Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity. Am Nat 165:350–363
    PubMed  Article  Google Scholar 

    De Jong G, Imasheva A (2000) Genetic variance in temperature dependent adult size deriving from physiological genetic variation at temperature boundaries. Genetica 110:195–207
    PubMed  Article  Google Scholar 

    Jonsson T, Ebenman B (1998) Effects of predator-prey body size ratios on the stability of food chains. J Theor Biol 193:407–417
    CAS  PubMed  Article  Google Scholar 

    Keightley PD, Kacser H (1987) Dominance, pleiotropy and metabolic structure. Genetics 117:319–329
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Laigle I, Aubin I, Digel C, Brose U, Boulangeat I, Gravel D (2018) Species traits as drivers of food web structure. Oikos 127:316–326
    Article  Google Scholar 

    LaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol Lett 4:64–71
    Article  Google Scholar 

    Lindholm AK, Hunt J, Brooks R (2006) Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae. Biol Lett 2:586–589
    PubMed  PubMed Central  Article  Google Scholar 

    Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland
    Google Scholar 

    Magalhães S, Janssen A, Montserrat M, Sabelis MW (2005) Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proc R Soc B Biol Sci 272:1929–1933
    Article  Google Scholar 

    Matlock RB (2005) Impact of prey size on prey capture success, development rate, and survivorship in Perillus bioculatus (Heteroptera: Pentatomidae), a predator of the Colorado Potato Beetle. Environ Entomol 34:1048–1056
    Article  Google Scholar 

    Maynard DS, Serván CA, Capitán JA, Allesina S (2019) Phenotypic variability promotes diversity and stability in competitive communities. Ecol Lett 22:1776–1786
    PubMed  Article  Google Scholar 

    McGlothlin JW, Ketterson ED (2008) Hormone-mediated suites as adaptations and evolutionary constraints. Philos Trans R Soc B Biol Sci 363:1611–1620
    Article  Google Scholar 

    Meigen JW (1830) Systematische Beschreibung der bekannten europaeischen zweifluegeligen Insekten. Schulzische uchhandlung, Hamm

    Merilä J, Kruuk LEB, Sheldon BC (2001) Natural selection on the genetical component of variance in body condition in a wild bird population. J Evol Biol 14:918–929
    Article  Google Scholar 

    Moore MP, Whiteman HH, Martin RA (2019) A mother’s legacy: the strength of maternal effects in animal populations. Ecol Lett 22:1620–1628
    PubMed  Article  PubMed Central  Google Scholar 

    Moskalik B, Uetz GW (2011) Female hunger state affects mate choice of a sexually selected trait in a wolf spider. Anim Behav 81:715–722
    Article  Google Scholar 

    Mousseau TA, Fox CW (1998) Maternal effects as adaptations. Oxford University Press, Oxford

    Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197
    PubMed  Article  PubMed Central  Google Scholar 

    Moya-Larano J (2002) Senescence and food limitation in a slowly ageing spider. Funct Ecol 16:734–741
    Article  Google Scholar 

    Moya-Laraño J (2011) Genetic variation, predator-prey interactions and food web structure. Philos Trans R Soc B Biol Sci 366:1425–1437
    Article  Google Scholar 

    Moya-Larano J, Barrientos JA, Orta-Ocana JM, Bach C, Wise DH (1998) Limitación por la comida en las tarántulas del Cabo de Gata (Almeria). Investig y Gestión del Medio Nat 3:73–77
    Google Scholar 

    Moya-Laraño J, Macías-Ordóñez R, Blanckenhorn WU, Fernández-Montraveta C (2008) Analysing body condition: Mass, volume or density? J Anim Ecol 77:1099–1108
    PubMed  Article  Google Scholar 

    Moya-Laraño J, Orta-Ocaña JM, Barrientos JA, Bach C, Wise DH (2002) Territoriality in a cannibalistic burrowing wolf spider. Ecology 83:356–361
    Article  Google Scholar 

    Moya-Laraño J, Bilbao-Castro JR, Barrionuevo G, Ruiz-Lupión D, Casado LG, Montserrat M et al. (2014) Eco-evolutionary spatial dynamics: rapid evolution and isolation explain food web persistence. In: Moya-Laraño J, Rowntree J & Woodward G (eds) Eco-Evolutionary Dynamics, Adv. Ecol. Res., Elsevier. Vol 50, pp 75–143

    Moya-Laraño J, Verdeny-Vilalta O, Rowntree J, Melguizo-Ruiz N, Montserrat M, Laiolo P et al. (2012) Climate change and eco-evolutionary dynamics in food webs. In: Schoener TW, Moya-Larano J, Rowntree J, & Woodward G Global Change in Multispecies Systems Part 2. Adv. Ecol. Res, Academic Press, Oxford. Vol 45, pp 1–80

    Nakazawa T (2017) Individual interaction data are required in community ecology: a conceptual review of the predator–prey mass ratio and more. Ecol Res 32:5–12
    Article  Google Scholar 

    Nakazawa T, Ushio M, Kondoh M (2011) Scale dependence of predator-prey mass ratio. In: Belgrano A & Reiss J (eds) The role of body size in multispecies system. Adv. Ecol. Res., Academic Press, Oxford. Vol 45, pp 269–302

    Nentwig W, Wissel C (1986) A comparison of prey lengths among spiders. Oecologia 68:595–600
    PubMed  Article  Google Scholar 

    Otto SB, Rall BC, Brose U (2007) Allometric degree distributions facilitate food-web stability. Nature 450:1226–1229
    CAS  PubMed  Article  Google Scholar 

    Parellada X (1998) Identificació i dades biològiques de tres espècies de taràntules (Araneae: Lycosidae) al Garraf. II Trobades d’estudiosos del Garraf Monogr 26:15–25
    Google Scholar 

    Patel S, Cortez MH, Schreiber SJ (2018) Partitioning the effects of eco-evolutionary feedbacks on community stability. Am Nat 191:381–394
    Article  Google Scholar 

    Persons MH, Rypstra AL (2000) Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology 106:27–35
    Article  Google Scholar 

    Pooni HS, Jinks JL, Jayasekara NEM, Jayasekara NEM (1978) An investigation of gene action and genotype x environment interaction in two crosses of nicotiana rustica by triple test cross and inbred line analysis. Heredity 41:83–92
    Article  Google Scholar 

    Poore AGB, Hill NA (2006) Sources of variation in herbivore preference: among-individual and past diet effects on amphipod host choice. Mar Biol 149:1403–1410
    Article  Google Scholar 

    Roff DA (1997) Evolutionary quantitative genetics. Chapman & Hall, New York

    Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269
    CAS  PubMed  Article  Google Scholar 

    De Roos AM, Persson L, McCauley E (2003) The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol Lett 6:473–487
    Article  Google Scholar 

    Schneider FD, Brose U, Rall BC, Guill C (2016) Animal diversity and ecosystem functioning in dynamic food webs. Nat Commun 7:1–8
    Article  CAS  Google Scholar 

    Schreiber SJ, Bürger R, Bolnick DI (2011) The community effects of phenotypic and genetic variation within a predator population. Ecology 92:1582–1593
    PubMed  Article  Google Scholar 

    Schreiber SJ, Patel S, Terhorst C (2018) Evolution as a coexistence mechanism: does genetic architecture matter? Am Nat 191:407–420
    Article  Google Scholar 

    Sheriff MJ, Krebs CJ, Boonstra R (2010) The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91:2983–2994
    PubMed  Article  Google Scholar 

    Shultz S, Noë R, McGraw WS, Dunbar RIM (2004) A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition. Proc R Soc B Biol Sci 271:725–732
    Article  Google Scholar 

    Singer MC (1986) The definition and measurement of oviposition preference in plant-feeding insects. In: Miller JR, Miller TA (eds) Insect-plant interactions, Springer, New York. pp 65–94

    Stewart FM (1971) Evolution of dimorphism in a predator-prey model. Theor Popul Biol 2:493–506
    CAS  PubMed  Article  Google Scholar 

    Sztepanacz JL, Blows MW (2015) Dominance genetic variance for traits under directional selection in Drosophila serrata. Genetics 200:371–384
    PubMed  PubMed Central  Article  Google Scholar 

    Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493
    Article  Google Scholar 

    Tsai CH, Hsieh CH, Nakazawa T (2016) Predator–prey mass ratio revisited: does preference of relative prey body size depend on individual predator size? Funct Ecol 30:1979–1987
    Article  Google Scholar 

    Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C et al. (2012) The return of the variance: Intraspecific variability in community ecology. Trends Ecol Evol 27:244–252
    PubMed  Article  Google Scholar 

    Walsh MR, Castoe T, Holmes J, Packer M, Biles K, Walsh M et al. (2016) Local adaptation in transgenerational responses to predators. Proc R Soc B Biol Sci 283:20152271
    Article  Google Scholar 

    Wang J, Caballero A, Keightley PD, Hill WG (1998) Bottleneck effect on genetic variance: a theoretical investigation of the role of dominance. Genetics 150:435–447
    CAS  PubMed  PubMed Central  Google Scholar 

    Wilson AJ, Réale D (2006) Ontogeny of additive and maternal genetic effects: lessons from domestic mammals. Am Nat 167:E23–E38.
    PubMed  Article  Google Scholar 

    Wilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA et al. (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26
    PubMed  Article  Google Scholar 

    Wolak ME, Keller LF (2014) Dominance, genetic variance and inbreeding in natural populations. In: Charmantier A, Garant D & Kruuk LE (eds) Quantitative genetics in the wild, Oxford University Press, Oxford. pp 104–127

    Wolf JB, Wade MJ (2016) Evolutionary genetics of maternal effects. Evolution 70:827–839
    PubMed  PubMed Central  Article  Google Scholar 

    Woodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074
    Article  Google Scholar 

    Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos Trans R Soc B Biol Sci 365:2093–2106
    Article  Google Scholar 

    Woodward G, Warren P (2007) Body size and predatory interactions in freshwaters: scaling from individuals to communities. In: Hildrew AG, Raffaelli DG & Edmonds-Brown R (eds) Body size: the structure and function of aquatic ecosystems, Cambridge University Press, Cambridge. pp 98–117

    Ye L, Chang CY, García-Comas C, Gong GC, Hsieh Chao (2013) Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J Anim Ecol 82:1052–1061
    PubMed  Article  PubMed Central  Google Scholar 

    Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424:303–306
    CAS  PubMed  Article  PubMed Central  Google Scholar  More