More stories

  • in

    Author Correction: Clustered versus catastrophic global vertebrate declines

    Affiliations

    Department of Biology, McGill University, Montreal, Quebec, Canada
    Brian Leung & Anna L. Hargreaves

    Bieler School of Environment, McGill University, Montreal, Quebec, Canada
    Brian Leung

    Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
    Dan A. Greenberg

    School of Biology and Ecology, University of Maine, Orono, ME, USA
    Brian McGill

    Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
    Brian McGill

    Centre for Biological Diversity, University of St Andrews, St Andrews, UK
    Maria Dornelas

    Indicators and Assessments Unit, Institute of Zoology, Zoological Society of London, London, UK
    Robin Freeman

    Authors
    Brian Leung

    Anna L. Hargreaves

    Dan A. Greenberg

    Brian McGill

    Maria Dornelas

    Robin Freeman

    Corresponding author
    Correspondence to Brian Leung. More

  • in

    Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale

    1.
    Suomalainen, E., Saura, A. & Lokki, J. Cytology and Evolution in Parthenogenesis (CRC Press, 1987).
    2.
    Astaurov, B. L. Experimental alterations of the developmental cytogenetic mechanisms in mulberry silkworms: artificial parthenogenesis, polyploidy, gynogenesis, and androgenesis. Adv. Morphog. 6, 199–257 (1967).
    CAS  PubMed  Article  Google Scholar 

    3.
    Innes, D. J. & Hebert, P. D. N. The origin and genetic basis of obligate parthenogenesis in daphnia pulex. Evolution 42, 1024–1035 (1988).
    PubMed  Article  Google Scholar 

    4.
    Saura, A., Lokki, J. & Suomalainen, E. Origin of polyploidy in parthenogenetic weevils. J. Theor. Biol. 163, 449–456 (1993).
    Article  Google Scholar 

    5.
    Schwander, T., Henry, L. & Crespi, B. J. Molecular evidence for ancient asexuality in timema stick insects. Curr. Biol. 21, 1129–1134 (2011).
    CAS  PubMed  Article  Google Scholar 

    6.
    Birky, C. W. Jr. Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144, 427–437 (1996).
    PubMed  Google Scholar 

    7.
    Mark Welch, D. & Meselson, M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288, 1211–1215 (2000).
    CAS  PubMed  Article  Google Scholar 

    8.
    Jaron, K. S. et al. Genomic features of parthenogenetic animals. J. Hered. https://doi.org/10.1093/jhered/esaa031 (2020).

    9.
    Scholtz, G. et al. Ecology: parthenogenesis in an outsider crayfish. Nature 421, 806 (2003).
    CAS  PubMed  Article  Google Scholar 

    10.
    Lyko, F. The marbled crayfish (Decapoda: Cambaridae) represents an independent new species. Zootaxa 4363, 544–552 (2017).
    PubMed  Article  Google Scholar 

    11.
    Martin, P., Dorn, N. J., Kawai, T., van der Heiden, C. & Scholtz, G. The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contrib. Zool. 79, 107–118 (2010).
    Article  Google Scholar 

    12.
    Vogt, G. et al. The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biol. Open 4, 1583–1594 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Schön, I., Martens, K. & van, Dijk P. Lost Sex. The Evolutionary Biology of Parthenogenesis (Springer, 2009).

    14.
    Martin, P., Kohlmann, K. & Scholtz, G. The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring. Naturwissenschaften 94, 843–846 (2007).
    CAS  PubMed  Article  Google Scholar 

    15.
    Vogt, G. et al. Production of different phenotypes from the same genotype in the same environment by developmental variation. J. Exp. Biol. 211, 510–523 (2008).
    CAS  PubMed  Article  Google Scholar 

    16.
    Vogt, G., Tolley, L. & Scholtz, G. Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean. J. Morphol. 261, 286–311 (2004).
    PubMed  Article  Google Scholar 

    17.
    Kato, M., Hiruta, C. & Tochinai, S. The behavior of chromosomes during parthenogenetic oogenesis in Marmorkrebs Procambarus fallax f. virginalis. Zool. Sci. 33, 426–430 (2016).
    Article  Google Scholar 

    18.
    Gutekunst, J. et al. Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat. Ecol. Evol. 2, 567–573 (2018).
    PubMed  Article  Google Scholar 

    19.
    Chucholl, C. Marbled crayfish gaining ground in Europe: the role of the pet trade as invasion pathway. in Freshwater Crayfish: Global Overview (eds Kawai, T. et al.) 83–114 (CRC Press, 2015).

    20.
    Jones, J. P. G. et al. The perfect invader: a parthenogenic crayfish poses a new threat to Madagascar’s freshwater biodiversity. Biol. Invasions 11, 1475–1482 (2009).
    Article  Google Scholar 

    21.
    Kawai, T. et al. Parthenogenetic alien crayfish (Decapoda: Cambaridae) spreading in Madagascar. J. Crust. Biol. 29, 562–567 (2009).
    Article  Google Scholar 

    22.
    Andriantsoa, R. et al. Ecological plasticity and commercial impact of invasive marbled crayfish populations in Madagascar. BMC Ecol. 19, 8 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Chucholl, C. & Pfeiffer, M. First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817). Aquat. Invasions 5, 405–412 (2010).
    Article  Google Scholar 

    24.
    Lipták, B. et al. Expansion of the marbled crayfish in Slovakia: beginning of an invasion in the Danube catchment? J. Limnol. 75, 305–312 (2016).
    Google Scholar 

    25.
    Novitsky, R. A. & Son, M. O. The first records of Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] (Crustacea, Decapoda, Cambaridae) in Ukraine. Ecol. Montenegrina 5, 44–46 (2016).
    Article  Google Scholar 

    26.
    Patoka, J. et al. Predictions of marbled crayfish establishment in conurbations fulfilled: evidences from the Czech Republic. Biologia 71, 1380–1385 (2016).
    CAS  Article  Google Scholar 

    27.
    Pârvulescu, L. et al. First established population of marbled crayfish Procambarus fallax (Hagen, 1870) f. virginalis (Decapoda, Cambaridae) in Romania. Bioinvasions Rec. 6, 357–362 (2017).
    Article  Google Scholar 

    28.
    Deidun, A. et al. Invasion by non-indigenous freshwater decapods of Malta and Sicily, central Mediterranean Sea. J. Crust. Biol. 38, 748–753 (2018).
    Google Scholar 

    29.
    Ercoli, F., Kaldre, K., Paaver, T. & Gross, R. First record of an established marbled crayfish Procambarus virginalis (Lyko, 2017) population in Estonia. Bioinvasions Rec. 8, 675–683 (2019).
    Article  Google Scholar 

    30.
    Charlesworth, B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).
    CAS  PubMed  Article  Google Scholar 

    31.
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).
    CAS  PubMed  Article  Google Scholar 

    32.
    Munoz, J., Chaturvedi, A., De Meester, L. & Weider, L. J. Characterization of genome-wide SNPs for the water flea Daphnia pulicaria generated by genotyping-by-sequencing (GBS). Sci. Rep. 6, 28569 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Flynn, J. M., Chain, F. J., Schoen, D. J. & Cristescu, M. E. Spontaneous mutation accumulation in Daphnia pulex in selection-free vs. competitive environments. Mol. Biol. Evol. 34, 160–173 (2017).
    CAS  PubMed  Article  Google Scholar 

    34.
    Fazalova, V. & Nevado, B. Low spontaneous mutation rate and pleistocene radiation of pea aphids. Mol. Biol. Evol. 37, 2045–2051 (2020).
    CAS  PubMed  Article  Google Scholar 

    35.
    Krebs, C. J. Estimating abundance in animal and plant populations. in Ecological Methodology https://www.zoology.ubc.ca/~krebs/downloads/krebs_chapter_02_2020.pdf (2014).

    36.
    van der Heiden, C. A. & Dorn, N. J. Benefits of adjacent habitat patches to the distribution of a crayfish population in a hydro-dynamic wetland landscape. Aquat. Ecol. 51, 219–233 (2017).
    Article  Google Scholar 

    37.
    Liu, H. et al. Direct determination of the mutation rate in the bumblebee reveals evidence for weak recombination-associated mutation and an approximate rate constancy in insects. Mol. Biol. Evol. 34, 119–130 (2017).
    CAS  PubMed  Article  Google Scholar 

    38.
    Vandel, A. La parthénogenèse géographique. Contribution à l’étude biologique et cytologique de la parthénogenèse naturelle. Bull. Biol. Fr. Belg. 62, 164–281 (1928).
    Google Scholar 

    39.
    Baker, H. G. Characteristics and modes of origin of weeds. in The Genetics of Colonising Species (eds Baker, H. G. & Stebbins, G. L.) 147–172 (Academic Press, 1965).

    40.
    Tilquin, A. & Kokko, H. What does the geography of parthenogenesis teach us about sex? Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150538 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Van Doninck, K., Schon, I., De Bruyn, L. & Martens, K. A general purpose genotype in an ancient asexual. Oecologia 132, 205–212 (2002).
    PubMed  Article  Google Scholar 

    42.
    Van Doninck, K., Schon, I., Martens, K. & Backeljau, T. Clonal diversity in the ancient asexual ostracod Darwinula stevensoni assessed by RAPD-PCR. Heredity 93, 154–160 (2004).
    PubMed  Article  CAS  Google Scholar 

    43.
    Gatzmann, F. et al. The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes. Epigenetics Chromatin 11, 57 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Carneiro, V. C. & Lyko, F. Rapid epigenetic adaptation in animals and its role in invasiveness. Integr. Comp. Biol. 60, 267–274 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Mauvisseau, Q., Tönges, S., Andriantsoa, R., Lyko, F. & Sweet, M. Early detection of an emerging invasive species: eDNA monitoring of a parthenogenetic crayfish in freshwater systems. Manag. Biol. Invasions 10, 461–472 (2019).
    Article  Google Scholar 

    46.
    Andriantsoa, R. et al. Perceived socio-economic impacts of the marbled crayfish invasion in Madagascar. PLoS ONE 15, e0231773 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    48.
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    51.
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
    CAS  Article  Google Scholar 

    53.
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Article  Google Scholar 

    54.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  Google Scholar 

    55.
    Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods–a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).
    CAS  PubMed  Article  Google Scholar 

    56.
    Johnson, K. E. et al. Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an Allee effect. PLoS Biol. 17, e3000399 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Maiakovska, O. & Legrand, C. OlenaMaiakovska/Population_Analysis_MC. Zenodo, https://doi.org/10.5281/zenodo.4110932 (2020). More

  • in

    The effectiveness of national biodiversity investments to protect the wealth of nature

    1.
    Huwyler, F., Kappeli, J., Serafimova, K., Swanson, E. & Tobin, J. Conservation Finance: Moving Beyond Donor Funding Toward an Investor-driven Approach (WWF, Credit Suisse and McKinsey & Company, 2014); http://go.nature.com/2Ka5Y2u
    2.
    Deutz, A. et al. Financing Nature: Closing the Global Biodiversity Financing Gap: Full Report (Paulson Institute, Nature Conservancy and Cornell Atkinson Center for Sustainability, 2020).

    3.
    Halpern, B. et al. Gaps and mismatches between global conservation priorities and spending. Conserv. Biol. 20, 56–64 (2006).
    Article  Google Scholar 

    4.
    James, A., Gaston, K. J. & BalmfordA. Can we afford to conserve biodiversity? BioScience 51, 43–52 (2001).
    Article  Google Scholar 

    5.
    McCarthy, D. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).
    CAS  Article  Google Scholar 

    6.
    Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rates ‘Accelerating’ (IPBES, 2019); http://go.nature.com/2V4ZBN9

    7.
    The Global Risks Report 2020 (WEF, 2020); https://go.nature.com/3ahNfg8

    8.
    IUCN Views on the Preparation, Scope and Content of the Post-2020 Global Biodiversity Framework (IUCN, 2018); https://go.nature.com/2WlW3ti

    9.
    Biodiversity: Finance and the Economic and Business Case for Action (OECD, 2019); https://go.nature.com/3h0F9Kc

    10.
    Parker, C. & Cranford, M. The Little Biodiversity Finance Book. A Guide to Proactive Investment in Natural Capital (Global Canopy Program, 2010); https://go.nature.com/3mwyxUJ

    11.
    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).
    Article  Google Scholar 

    12.
    Kearney, S. G. et al. Estimating the benefit of well-managed protected areas for threatened species conservation. ORYX 54, 276–284 (2020).
    Article  Google Scholar 

    13.
    Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (IIASA, 2020); https://go.nature.com/387GkDq

    14.
    Stepping, K. M. K. & Meijer, K. S. The challenges of assessing the effectiveness of biodiversity-related development aid. Trop. Conserv. Sci. https://doi.org/10.1177/1940082918770995 (2018).

    15.
    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2018).
    Article  Google Scholar 

    16.
    Gallo-Cajiao, E. et al. Crowdfunding biodiversity conservation. Conserv. Biol. 32, 1426–1435 (2018).
    Article  Google Scholar 

    17.
    Parker, C., Cranford, M., Oakes, N. & Leggett, M. The Little Biodiversity Finance Book 3rd edn (Global Canopy Programme, 2012).

    18.
    Arlaud, M. et al. in Towards a Sustainable Bioeconomy: Principles, Challenges and Perspectives (eds Filho, W. L. et al.) Ch. 5 (Springer, 2018); https://doi.org/10.1007/978-3-319-73028-8_5

    19.
    Rawat, U. S. & Agarwal, N. K. Biodiversity: concept, threats and conservation. Environ. Conserv. J. 16, 19–28 (2015).
    Article  Google Scholar 

    20.
    Gorobets, A. Wild fauna conservation: IUCN-CITES match is required. Ecol. Indic. 112, 106091 (2020).
    Article  Google Scholar 

    21.
    Rodrigues, A. S. L. et al. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).
    Article  Google Scholar 

    22.
    Rao, M., Naro-Maciel, E. & Sterling, E. Protected Areas and Biodiversity Conservation II: Management and Effectiveness (Network of Conservation Educators and Practitioners, 2009).

    23.
    Adams, V. M., Iacona, G. D. & Possingham, H. P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2, 404–411 (2019).
    Article  Google Scholar 

    24.
    BIOFIN The Biodiversity Finance Initiative Workbook 2018 (United Nations Development Programme, 2018).

    25.
    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).
    CAS  Article  Google Scholar 

    26.
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
    Article  Google Scholar 

    27.
    Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl Acad. Sci. USA 105, 9495–9500 (2008).
    CAS  Article  Google Scholar 

    28.
    Turner, W. et al. Global conservation of biodiversity and ecosystem services. BioScience 57, 868–873 (2007).
    Article  Google Scholar 

    29.
    Balmford, A. et al. Economic reasons for conserving wild nature. Science 297, 950–953 (2002).
    CAS  Article  Google Scholar 

    30.
    Hily, E. et al. Assessing the cost-effectiveness of a biodiversity conservation policy: a bio-econometric analysis of Natura 2000 contracts in forests. Ecol. Econ. 119, 197-208 (2015).

    31.
    Ferraro, P. J., McIntosh, C. & Ospina, M. The effectiveness of the US endangered special act: an econometric analysis using matching methods. J. Environ. Econ. Manag. 54, 245–261 (2007).
    Article  Google Scholar 

    32.
    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).
    CAS  Article  Google Scholar 

    33.
    Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).
    CAS  Article  Google Scholar 

    34.
    Richerzhagen, C. et al. Why We Need More and Better Biodiversity Aid Briefing Paper 13 (German Development Institute, 2016); https://go.nature.com/2K0S9Dz

    35.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    36.
    Karousakis, K. Evaluating the Effectiveness of Policy Instruments for Biodiversity: Impact Evaluation, Cost-effectiveness Analysis and Other Approaches Environment Working Paper No.141 (OECD, 2018).

    37.
    Isaza, C., Bofill, W. & Cabrera, H. Cost-effective species conservation: an application to Huemul (Hippocamelus bisulcus) in Chile. Environ. Dev. Econ. 12, 535–551 (2007).
    Article  Google Scholar 

    38.
    Alix-Garcia, J. M., Shapiro, E. N. & Sims, K. R. Forest conservation and slippage: evidence from Mexico’s national payments for ecosystem services program. Land Econ. 88, 613–638 (2012).
    Article  Google Scholar 

    39.
    Bare, M. Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa. Environ. Res. Lett. 10, 125010 (2015).
    Article  Google Scholar 

    40.
    Ferraro, P. J. et al. More strictly protected areas are not necessarily more protective: evidence from Bolivia, Costa Rica, Indonesia, and Thailand. Environ. Res. Lett. 8, 025011 (2013).
    Article  Google Scholar 

    41.
    Lindsey, P. A. et al. More than $1 billion needed annually to secure Africa’s protected areas with lions. Proc. Natl Acad. Sci. USA 115, E10788–E10796 (2018).
    CAS  Article  Google Scholar 

    42.
    Bonham, C. et al. Conservation trust funds, protected area management effectiveness and conservation outcomes: lessons from the global conservation fund. Parks 20, 89–100 (2014).
    Article  Google Scholar 

    43.
    Hein, Lars et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).
    CAS  Article  Google Scholar 

    44.
    Natural Capital Accounting and Valuing Ecosystem Services Project (UN, 2019); http://go.nature.com/2K2jsxn

    45.
    Ecosystem Valuation and Natural Capital Accounting (Gaborone Declaration for Sustainability in Africa, 2012); http://www.gaboronedeclaration.com/nca

    46.
    Climate Public Expenditure and Institutional Review (CPEIR) (UNDP, 2015); https://go.nature.com/2K0C7tp

    47.
    BIOFIN Workbook: Mobilising Resources for Biodiversity and Sustainable Development (UND, 2016); https://go.nature.com/3p1PDMb

    48.
    Shieh, G. Effect size, statistical power, and sample size for assessing interactions between categorical and continuous variables. Br. J. Math. Stat. Psychol. 72, 136–154 (2019).
    Article  Google Scholar 

    49.
    Leon, A. C. & Heo, M. Sample sizes required to detect interactions between two binary fixed-effects in a mixed-effects linear regression model. Comput. Stat. Data Anal. 53, 603–608 (2009).
    Article  Google Scholar 

    50.
    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).
    Article  Google Scholar 

    51.
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).
    CAS  Article  Google Scholar 

    52.
    Luther, D. A. et al. Determinants of bird conservation—action implementation and associated population trends of threatened species. Conserv. Biol. 30, 1338–1346 (2016).
    Article  Google Scholar 

    53.
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).
    CAS  Article  Google Scholar 

    54.
    Brooks, T. M. et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci. Data 3, I60007 (2016).
    Article  Google Scholar 

    55.
    Keith, D. A. et al. Scientific foundations for an IUCN Red List of ecosystems. PLoS ONE 8, e62111 (2013).
    CAS  Article  Google Scholar 

    56.
    Kaufmann, D., Kraay, A. & Mastruzzi, M. The worldwide governance indicators: methodology and analytical issues. Hague J. Rule Law 3, 220–246 (2011).
    Article  Google Scholar 

    57.
    Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle (Academiai Kiado, 1973).

    58.
    Bozdogan, H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).
    Article  Google Scholar 

    59.
    Angrist, J. D. & Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion (Princeton Univ. Press, 2009); http://go.nature.com/3r5t6zA

    60.
    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data 2nd edn (MIT Press, 2010). More

  • in

    Simulated atmospheric nitrogen deposition inhibited the leaf litter decomposition of Cinnamomum migao H. W. Li in Southwest China

    1.
    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Zhou, X., Zhang, Y. & Downing, A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the gurbantunggut desert, northwestern China. Soil Biol. Biochem. 47, 67–77 (2012).
    CAS  Article  Google Scholar 

    3.
    Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Fang, Y. T., Gundersen, P., Mo, J. M. & Zhu, W. X. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of south China under high air pollution. Biogeosciences 5, 339–352 (2008).
    ADS  CAS  Article  Google Scholar 

    5.
    Hoorens, B., Aerts, R. & Stroetenga, M. Does initial litter chemistry explain litter mixture effects on decomposition?. Oecologia 137, 578–586 (2003).
    ADS  PubMed  Article  Google Scholar 

    6.
    Passarinho, J. A. P., Lamosa, P., Baeta, J. P., Santos, H. & Ricardo, C. P. P. Annual changes in the concentration of minerals and organic compounds of Quercus suber leaves. Physiol. Plantarum 127, 100–110 (2006).
    CAS  Article  Google Scholar 

    7.
    Shen, F. F. et al. Litterfall ecological stoichiometry and soil available nutrients under long-term nitrogen deposition in a Chinese fir plantation. Acta Ecol. Sin. 38, 7477–7487 (2018).
    Google Scholar 

    8.
    Huangfu, C. & Wei, Z. Nitrogen addition drives convergence of leaf litter decomposition rates between Flaveria bidentis and native plant. Plant Ecol. 219, 1355–1368 (2018).
    Article  Google Scholar 

    9.
    Vivanco, L. & Austin, A. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina. Global Change Biol. 17, 1963–1974 (2011).
    ADS  Article  Google Scholar 

    10.
    Li, H., Wei, Z., Huangfu, C., Chen, X. & Yang, D. Litter mixture dominated by leaf litter of the invasive species, Flaveria bidentis, accelerates decomposition and favors nitrogen release. J. Plant Res. 130, 167–180 (2017).
    CAS  PubMed  Article  Google Scholar 

    11.
    Aerts, R. D. C. H. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78, 244–260 (1997).
    Article  Google Scholar 

    12.
    Osono, T. & Takeda, H. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res. 19, 593–602 (2004).
    Article  Google Scholar 

    13.
    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).
    CAS  Article  Google Scholar 

    14.
    García-Palacios, P., Shaw, E. A., Wall, D. H. & Hättenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554–563 (2016).
    PubMed  Article  Google Scholar 

    15.
    Song, C., Liu, D., Yang, G., Song, Y. & Mao, R. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of northeast China. Ecol. Eng. 37, 1578–1582 (2011).
    Article  Google Scholar 

    16.
    Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).
    Article  Google Scholar 

    17.
    Chen, F. et al. Nitrogen deposition effect on forest litter decomposition is interactively regulated by endogenous litter quality and exogenous resource supply. Plant Soil. 437, 413 (2019).
    CAS  Article  Google Scholar 

    18.
    Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest. Environ. Pollut. 250, 143–154 (2019).
    CAS  PubMed  Article  Google Scholar 

    19.
    Hou, S. et al. Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland. New Phytol. 229, 296–307 (2020).
    PubMed  Article  Google Scholar 

    20.
    Yu, Z. et al. Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Biol. Biochem. 90, 188–196 (2015).
    CAS  Article  Google Scholar 

    21.
    Pichon, N. et al. Decomposition disentangled: A test of the multiple mechanisms by which nitrogen enrichment alters litter decomposition. Funct. Ecol. 34, 1485–1496 (2020).
    Article  Google Scholar 

    22.
    Hobbie, S. et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 82, 389–405 (2012).
    Article  Google Scholar 

    23.
    Knops, J., Naeem, S. & Reich, P. The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biol. 13, 1960–1971 (2007).
    ADS  Article  Google Scholar 

    24.
    Prescott, C. E. Does nitrogen availability control rates of litter decomposition in forests?. Plant Soil. 168, 83–88 (1995).
    Article  Google Scholar 

    25.
    Zhou, Y., Wang, L., Chen, Y., Zhang, J. & Liu, Y. Litter stoichiometric traits have stronger impact on humification than environment conditions in an alpine treeline ecotone. Plant Soil 453, 545–560 (2020).
    CAS  Article  Google Scholar 

    26.
    Mooshammer, M. et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech litter. Ecology 93, 770–782 (2012).
    PubMed  Article  Google Scholar 

    27.
    Remy, E. et al. Driving factors behind litter decomposition and nutrient release at temperate forest edges. Ecosystems 24, 755–771 (2017).
    Google Scholar 

    28.
    Zhou, S. et al. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the rainy area of western China. Plant Soil 420, 135–145 (2017).
    CAS  Article  Google Scholar 

    29.
    Cornwell, W. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).
    PubMed  Article  Google Scholar 

    30.
    Norris, M., Avis, P., Reich, P. & Hobbie, S. E. Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant Soil 367, 347–361 (2013).
    CAS  Article  Google Scholar 

    31.
    Berg, B. & McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration 2nd edn. (Springer, Berlin, 2008).
    Google Scholar 

    32.
    Cuchietti, A., Marcotti, E., Gurvich, D. E., Cingolani, A. M. & Harguindeguy, N. P. Leaf litter mixtures and neighbour effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours. Appl. Soil Ecol. 82, 44–51 (2014).
    Article  Google Scholar 

    33.
    Jing, H. & Wang, G. Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the loess plateau of China. For. Ecol. Manag. 476, 118465 (2020).
    Article  Google Scholar 

    34.
    Sun, T., Dong, L., Wang, Z., Lü, X. & Mao, Z. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biol. Biochem. 93, 50–59 (2016).
    CAS  Article  Google Scholar 

    35.
    Carrera, A. L. & Bertiller, M. B. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands. J. Environ. Manag. 114, 505–511 (2013).
    CAS  Article  Google Scholar 

    36.
    Sun, Z. et al. The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil. Agr. For. Meteorol. 197, 103–110 (2014).
    Article  Google Scholar 

    37.
    He, X., Lin, Y., Han, G. & Ma, T. Litterfall interception by understorey vegetation delayed litter decomposition in Cinnamomum camphora plantation forest. Plant Soil 372, 207–219 (2013).
    CAS  Article  Google Scholar 

    38.
    Wang, Q. et al. Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China. Appl. Soil Ecol. 136, 148–157 (2019).
    Article  Google Scholar 

    39.
    Chen, J. et al. Co-stimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biol. 23, 1328–1337 (2016).
    ADS  Article  Google Scholar 

    40.
    Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).
    CAS  Article  Google Scholar 

    41.
    Jing, X. et al. Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem. Appl. Soil Ecol. 107, 205–213 (2016).
    Article  Google Scholar 

    42.
    Jing, X. et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Sci. Total Environ. 607–608, 806–815 (2017).
    ADS  PubMed  Article  CAS  Google Scholar 

    43.
    Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Decomposition of trembling aspen leaf litter under long-term nitrogen and sulfur deposition: effects of litter chemistry and forest floor microbial properties. For. Ecol. Manag. 412, 53–61 (2018).
    Article  Google Scholar 

    44.
    Huang, X. et al. Autotoxicity hinders the natural regeneration of Cinnamomum migao H W. Li in southwest China. Forests 10, 919 (2019).
    Article  Google Scholar 

    45.
    Feng, H., Xue, L. & Chen, H. Responses of decomposition of green leaves and leaf litter to stand density, N and P additions in Acacia auriculaeformis stands. Eur. J. For. Res. 137, 819–830 (2018).
    Article  Google Scholar 

    46.
    Diepen, L. V. et al. Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay. Ecosphere 6, t205 (2015).
    Article  Google Scholar 

    47.
    Zechmeister-Boltenstern, S. et al. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 85, 133–155 (2015).
    Article  Google Scholar 

    48.
    Hobbie, S. E. Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology 89, 2633–2644 (2008).
    PubMed  Article  Google Scholar 

    49.
    Hobbie, S. Interactions between litter lignin and nitrogenitter lignin and soil nitrogen availability during leaf litter decomposition in a hawaiian montane forest. Ecosystems 3, 484–494 (2000).
    CAS  Article  Google Scholar 

    50.
    Zhang, J. et al. Effect of nitrogen and phosphorus addition on litter decomposition and nutrients release in a tropical forest. Plant Soil 454, 139–153 (2020).
    CAS  Article  Google Scholar 

    51.
    Apolinário, V. et al. Litter decomposition of signalgrass grazed with different stocking rates and nitrogen fertilizer levels. Agron. J. 106, 1–6 (2014).
    Article  Google Scholar 

    52.
    Takeda, H. Decomposition Processes of Litter Along a Latitudinal Gradient (Springer, Dordrecht, 1998).
    Google Scholar 

    53.
    Torreta, N. K. & Takeda, H. Carbon and nitrogen dynamics of decomposing leaf litter in a tropical hill evergreen forest. Eur. J. Soil Biol. 35, 57–63 (1999).
    CAS  Article  Google Scholar 

    54.
    Song, Y., Song, C., Ren, J., Zhang, X. & Jiang, L. Nitrogen input increases Deyeuxia angustifolia litter decomposition and enzyme activities in a marshland ecosystem in Sanjiang plain, northeast China. Wetlands. 39, 549–557 (2019).
    Article  Google Scholar 

    55.
    Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Xia, M. A. T. A. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition. Ecosystems 21, 1–14 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Chen, F., Feng, X. & Liang, C. Endogenous versus exogenous nutrient affects C, N, and P dynamics in decomposing litters in mid-subtropical forests of China. Ecol. Res. 27, 923–932 (2012).
    CAS  Article  Google Scholar 

    58.
    Zhou, Z., Wang, C., Zheng, M., Jiang, L. & Luo, Y. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol. Biochem. 115, 433–441 (2017).
    CAS  Article  Google Scholar 

    59.
    He, X. et al. Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol. Res. 27, 273 (2011).
    ADS  Article  Google Scholar 

    60.
    Berg, B. R. & Laskowski, R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover, Advances in Ecological Research Vol. 38 (Academic Press, Waltham, 2006).
    Google Scholar 

    61.
    Hall, S., Huang, W., Timokhin, V. & Hammel, K. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology 101, e03113 (2020).
    PubMed  Article  Google Scholar 

    62.
    Tu, L. et al. Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS ONE 9, e88752 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Zhou, X. & Zhang, Y. Temporal dynamics of soil oxidative enzyme activity across a simulated gradient of nitrogen deposition in the gurbantunggut desert, northwestern China. Geoderma 213, 261–267 (2014).
    ADS  CAS  Article  Google Scholar 

    64.
    Hao, C. et al. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLoS ONE 8, e84101 (2013).
    ADS  Article  Google Scholar 

    65.
    Cameron, K. C., Di, H. J. & Moir, J. Nitrogen losses from the soil/plant system: a review. Ann. Appl. Biol. 162, 145–173 (2013).
    CAS  Article  Google Scholar 

    66.
    Waldrop, M. P., Zak, D. R., Sinsabaugh, R. L., Gallo, M. & Lauber, C. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol. Appl. 14, 1172–1177 (2004).
    Article  Google Scholar 

    67.
    Freedman, Z. B., Upchurch, R. A., Zak, D. R. & Cline, L. C. Anthropogenic N deposition slows decay by favoring bacterial metabolism: Insights from metagenomic analyses. Front. Microbiol. 7, 259 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).
    CAS  PubMed  Article  Google Scholar 

    69.
    Weand, M. P., Arthur, M. A., Lovett, G. M., McCulley, R. L. & Weathers, K. C. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol. Biochem. 42, 2161–2173 (2010).
    CAS  Article  Google Scholar 

    70.
    Wang, C. et al. Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest. Ecol. Res. 26, 505–513 (2011).
    CAS  Article  Google Scholar 

    71.
    Feng, H., Xue, L. & Chen, H. Responses of decomposition of green leaves and leaf litter to stand density, N and P additions in Acacia auriculaeformis stands. Eur. J. Forest Res. 137, 819 (2018).
    Article  Google Scholar 

    72.
    Frey, S. D., Knorr, M., Parrent, J. L. & Simpson, R. T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196, 159–171 (2004).
    Article  Google Scholar 

    73.
    Zheng, Z. et al. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. For. Ecol. Manag. 400, 123–128 (2017).
    Article  Google Scholar 

    74.
    Mo, J. et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Change Biol. 14, 403–412 (2008).
    ADS  Article  Google Scholar 

    75.
    Liu, G., Jiang, N. & Zhang, L. D. Soil Physical and Chemical Analysis and Description of Soil Profiles (Standards Press of China, Beijing, 1996).
    Google Scholar 

    76.
    Bao, S. D. Soil and Agricultural Chemistry Analysis 3rd edn. (China Agricultural Press, Beijing, 2013).
    Google Scholar 

    77.
    Allen, S. E. Chemical analysis of Ecological Materials, 2nd edn, Vol. 13 (Blackwell Scientific Publications, Oxford, 1989).
    Google Scholar 

    78.
    Rowland, A. P. & Roberts, J. D. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Commun. Soil Sci. Plan. 25, 269–277 (1994).
    CAS  Article  Google Scholar 

    79.
    Olson, J. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).
    Article  Google Scholar 

    80.
    Bockheim, J., Jepsen, E. A. & Heisey, D. M. Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in northwestern Wisconsin. Can. J. For. Res. 21, 803–812 (1991).
    CAS  Article  Google Scholar  More

  • in

    Analysis of global human gut metagenomes shows that metabolic resilience potential for short-chain fatty acid production is strongly influenced by lifestyle

    Our results are consistent with a non-industrial gut harboring a more resilient ecology with respect to SCFA production, while the industrial gut ecology would be vulnerable to disruption of such pathways, yet the pattern is complex and nuanced. The increased gene abundance in non-industrial populations and overall ratio of acetate:butyrate:propionate generally agrees with previous studies of SCFAs5,12. Similarly, the higher genus-level diversity of bacteria encoding acetate, compared to the other SCFAs, is expected and matches studies that have documented the taxa that encode different SCFAs13,17,19. The overall high richness, high diversity at Hill numbers 1 and 2, and high Gini-Simpson indices found in non-industrial populations at the genus level indicates a highly diverse and evenly distributed production of SCFAs. From an ecological perspective, uneven production of SCFA dominated by a few bacteria in industrial gut microbiomes means lower functional diversity and less redundancy, which ultimately leads to an expectation of decreased resilience. In other words, this study finds that industrial gut microbiomes are at a higher risk of reduced SCFA production because SCFA synthesis is dominated by only a few genera. Given the lower resilience, factors that disrupt the gut ecology are expected to have a more extreme consequence to those living an industrial lifestyle.
    While there is an overall trend of increased genus-level functional diversity and redundancy for SCFA production in non-industrial populations, variation exists when examining the SCFAs and populations individually. At the genus-level, the pastoral and rural agricultural populations have increased richness of genera encoding genes involved in acetate and butyrate synthesis, while there is similarity across the different lifestyles for genus richness for propionate encoding taxa. Although hunter-gatherers have similar, or lower, genus richness as industrial populations, they have significantly higher diversity at Hill number orders 1 and 2 and Gini-Simpson indices for butyrate and propionate. Additionally, the pastoralists have a generally similar profile to the industrial populations for acetate and propionate Hill number diversity, as well as similarity to the industrial populations in species PD, which may be linked to this pastoralist group having a diet similar to some industrial populations; namely, a diet high in dairy and red meat consumption, coupled with few dietary sources of plant-derived fibers23. This paints a complex picture. Non-industrial populations have a high diversity of genera encoding butyrate synthesis, and butyrate production is spread more evenly across genera in non-industrial populations than in industrial populations. Hunter-gatherers and rural agriculturalists have significantly greater evenness of propionate production, even though they have fewer number of total genera encoding this SCFA. Finally, the richness and evenness of genera encoding acetate is similar between industrial and non-industrial populations. Ecologically, we would expect the industrial populations to be less resilient for production of butyrate and propionate when faced with a shift in taxonomic composition, while non-industrial populations may be only marginally more resilient for acetate production compared to industrial populations. Intriguingly, SCFA relative abundance does not appear to correlate to resilience profile. Acetate and butyrate are significantly more abundant in non-industrial populations but only butyrate shows much stronger resilience profile for non-industrial populations. Additionally, propionate is slightly more abundant in industrial populations, although not significantly, yet our results indicate greater resilience in non-industrial groups for propionate production. This indicates that measuring only total gene, and/or molar, abundance is not enough to make statements about metabolic processes in the human microbiome; rather, ecological approaches are necessary to understand diversity in functional potential of the human microbiome.
    The increased species-level alpha diversity in industrial populations initially runs counter to the genus-level results but the genus and species level results ultimately yield similar interpretations after accounting for ecology and ascertainment bias, as discussed below. The substantially higher species richness in industrial populations is striking; however, the differences in PD between industrial and non-industrial populations are not nearly as extreme. This means that the high species richness in the industrial populations is driven by species that are closely phylogenetically related. Indeed, we observed SCFA producing genera found at high abundance in industrial populations (Bacteroides and Clostridium) to have up to nine species encoding SCFAs, while highly abundant non-industrial genera only have one or two species. Therefore, what first appears to indicate high species-level ecological resilience in SCFA production in the industrial populations is actually the result of closely related species performing the same function. It follows that closely related species may be prone to changes in abundance or even elimination after certain types of ecosystem shift events. For example, narrow-spectrum antibiotics33 and exposure to various xenobiotic compounds that lead to variable bacterial metabolic responses34 are events that can affect a limited range of bacteria and lead to shifts in microbial abundance and metabolic activity. While this result has ecological implications, it is also likely the result of historical trends of microbiology research. Bacterial taxa at high abundance in non-industrial gut microbiomes have not been a focus of microbiological isolation and species identification until recently; therefore, we expect more species to be identified from non-industrial gut microbiomes in the future35. Additionally, classification of bacteria into distinct genera and species is undergoing a revolution in the genomic era36 meaning that the high number of species classified to Bacteroides and Clostridium may ultimately be reclassified to different genera. Nevertheless, the fact that we observe a large jump in species richness, but only a minor increase in species PD, in the industrial gut microbiomes suggests that the high industrial species richness is driven by closely related species and therefore, results in the same interpretation as the genus richness results: diversity is high in non-industrial populations.
    Ascertainment bias extends to the databases used to identify taxa and genes: fewer genes were identified in non-industrial populations and a smaller proportion of these genes can be linked back to bacteria at every taxonomic level, in non-industrial gut microbiomes. In some cases, such as butyrate synthesis genes, less than 10% of genes are identified to species for non-industrial populations, while over 50% of such identifications were possible for industrial populations. A decreased ability to identify the genus and species encoding SCFA synthesis genes in non-industrial populations means that the ecological metrics underestimate the true ecological diversity of these genes. Moreover, the drop-off in classification from the genus to the species level was significantly greater in non-industrial populations compared to industrial populations. This drop-off means a much lesser ability to identify species compared to genera in non-industrial populations, which helps explain why species diversity was substantially lower in non-industrial populations. Nevertheless, the statistically significant differences observed at the genus-level send a strong signal of the high functional diversity, and potential resilience, of SCFA synthesis genes in non-industrial gut microbiomes.
    The metagenome-wide poor performance in terms of gene identification and classifying SCFA genes to genera and species indicates a bias in reference databases that underrepresents diversity in non-industrial gut microbiomes, which is unsurprising. Bias is expected because the vast majority of human gut microbiome studies have used samples from industrial populations. There is an immense challenge in including non-industrial communities in biomedical research, including recruiting research participants, sustaining longitudinal sampling, building culturally appropriate community relationships, and even securing transport of samples35. This has resulted in comparatively few metagenomic studies of human gut microbiomes from non-industrial settings35. Nevertheless, our data demonstrate the extent of this bias and how it can hinder more in-depth study of human gut microbiome health. Given this sizable ascertainment bias favored industrial populations, the non-industrial populations are likely even more diverse, more resilient, than our databases can sufficiently characterize, making our genus-level results even stronger. Without a serious investment to include such populations, the characterization of microbiomes will remain naive to the ecological breadth of the core, healthy, human gut. Imagine studying forest ecology, with only city parks at your disposal. This has been, overwhelmingly, the analogous practice of human microbiome research.
    The relative lack of microbiome studies with non-industrial populations means an underrepresentation of not only metagenomic data and genome annotation but also fewer opportunities for cultivation and validation of novel species of bacteria. This ultimately leads to an inequality in the depth to which researchers can describe microbiome samples from non-industrial communities, compared to industrial microbiomes, as diverse groups of novel taxa may be grouped into a single group of “unknown” or “unclassified” bacteria35. Similarly, an incomplete picture of microbial functional potential means that genes may be misidentified or even unannotated completely. Unknown taxa and misidentified genes may be playing key roles in ecological and metabolic processes but researchers are unable to confidently identify them, let alone make statements about their importance in a microbial ecology35. Recent human gut microbiome metagenome studies from diverse populations will undoubtedly improve database representation but the number of studies and metagenomic samples from non-industrial populations still pales in comparison to industrial gut microbiomes26,35,37,38.
    Limitations in annotating the full extent of microbial diversity impacts health research. Recently proposed ‘Microbiota Insufficiency Syndrome (MIS)’2 postulates that, while the microbiome has adapted to industrialization, these adaptations are maladaptive to human health. The decreased phylogenetic diversity and loss of specific taxa (e.g. Prevotellaceae, Succinivibrionaceae, and Spirochaetaceae) observed in industrial gut microbiomes may contribute to the increase in non-communicable chronic diseases found at higher prevalence in industrial populations. The root cause of MIS in industrial populations is undoubtedly multifactorial; however, diet is suggested to play a major role2. This syndrome is compelling and we postulate that this insufficiency precisely rests on the stability of functional capacity. Our findings of decreased resilience in industrial populations, as well as species-level diversity driven by a few closely related species, fits in well with MIS. Low resilience in SCFA production may ultimately manifest itself as altered colonocyte function and/or autoimmune disruptions (both symptoms of MIS) due to a decrease in SCFA bioavailability after a group SCFA-producing bacteria were wiped-out during an ecological shift, such as antibiotic or xenobiotic exposure. Similar to MIS, diet is likely to play an important role in SCFA resilience. The non-industrial populations studied in this paper consume much more fiber than industrial populations, on average3,5,14,25,26, and microbial fermentation of dietary fibers is a major source of SCFAs in the human digestive tract39. A diet poor in dietary fiber means less substrate for microbial fermentation and therefore less SCFA production and also higher competition for that fiber, potentially resulting in competitive exclusion and less microbial diversity. Nevertheless, if we are unable to fully characterize and annotate non-industrial gut microbiomes then we will be unable to paint a complete picture of MIS. Currently, we have confidence that there is a wealth of undiscovered resilience in non-industrial gut microbiomes. Once we describe the extent of this diversity/resilience, through increased sampling and focus on partnerships with research institutes in industrializing countries, we will have a more complete picture of MIS and possibly develop therapeutic approaches to combat non-communicable chronic diseases related to the human gut microbiome.
    Improved sampling, metabolic profiling, and annotation will not only improve our understanding of SCFA resilience, but it will also permit more detailed picture microbiome wide resilience. Our work shows the value of focusing on specific SCFA genes, due to their importance in human biology and previously reported variation in SCFA molar abundance between industrial and non-industrial populations31,32; however, future work will undoubtedly add to our findings. One avenue for future work is through analyzing SCFA molar concentrations in fecal samples in a longitudinal setting and comparing these results to predicted SCFA resilience from metagenome panels. Unlike genomic data, where we can infer about SCFA production potential via taxonomic diversity, one-time measures of fecal SCFA molar concentrations will not inform about future resilience because SCFA molar concentrations carry no information about which taxa produce each SCFA. Longitudinal SCFA concentration and metagenomic data from non-industrial populations, or animal models, is necessary to inform about SCFA resilience and production in diverse lifestyles. Another avenue for future work is to focus resilience analysis on other microbiome functions of interest, such as resilience of antibiotic resistance genes and amino acid biosynthetic pathways. These valuable studies would be valuable for comparing microbiome resilience dynamics for different functions, with the caveat that there is sufficient genomic annotation data to yield interpretable results.
    Lack of sample diversity is not unique to human microbiome research, as human genetics research has been grappling with this very issue for decades. In 2009, 96% of individuals included in human genome-wide association studies (GWAS) claimed European ancestry, as compared to 78% in 201940. Thus, while there have been improvements, GWAS clearly fail to reflect the breadth of human diversity. Incorporating diverse populations in human genome and microbiome research has the potential to greatly benefit the scientific community’s understanding of human biology and develop treatments that are based on human diversity rather than European-ancestry genetics and microbiomes. A key component of increasing representation in genetics and microbiome studies is that these studies are designed as partnerships with minority and/or indigenous communities in a manner that builds both trust between the community and researchers, as well as facilitates the ability for the sample donors to exercise their rights on how data are treated and shared41. More

  • in

    Pteropods make thinner shells in the upwelling region of the California Current Ecosystem

    1.
    Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
    ADS  Article  Google Scholar 

    3.
    Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    6.
    Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160, 2207–2245 (2013).
    CAS  Article  Google Scholar 

    9.
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
    ADS  Article  Google Scholar 

    10.
    Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).
    ADS  CAS  Article  Google Scholar 

    11.
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2, 276–280 (2009).
    ADS  CAS  Article  Google Scholar 

    13.
    Bednaršek, N. et al. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5, 881–885 (2012).
    ADS  Article  CAS  Google Scholar 

    14.
    Bednaršek, N. et al. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B Biol. Sci. 281, 20140123 (2014).
    Article  CAS  Google Scholar 

    15.
    Manno, C. et al. Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean. Earth-Sci. Rev. 169, 132–145 (2017).
    ADS  CAS  Article  Google Scholar 

    16.
    Lischka, S., Büdenbender, J., Boxhammer, T. & Riebesell, U. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: Mortality, shell degradation, and shell growth. Biogeosciences 8, 919–932 (2011).
    ADS  CAS  Article  Google Scholar 

    17.
    Bednaršek, N. et al. Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast. Sci. Rep. 7, 1–12 (2017).
    Article  CAS  Google Scholar 

    18.
    Comeau, S. et al. Impact of aragonite saturation state changes on migratory pteropods. Proc. R. Soc. B Biol. Sci. 279, 732–738 (2011).
    Article  Google Scholar 

    19.
    Moya, A. et al. Near-future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod Heliconoides inflatus. Glob. Change Biol. 22, 3888–3900 (2016).
    ADS  Article  Google Scholar 

    20.
    Maas, A., Lawson, G. L., Bergan, A. J. & Tarrant, A. M. Exposure to CO2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa. J. Exp. Biol. 221, 164400 (2018).
    Article  Google Scholar 

    21.
    Johnson, K. M. & Hofman, G. E. A transcriptome resource for the Antarctic pteropod Limacina helicina antarctica. Mar. Genom. 28, 25–28 (2016).
    Article  Google Scholar 

    22.
    Feely, R. A. et al. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci. 183, 260–270 (2016).
    ADS  CAS  Article  Google Scholar 

    23.
    Bednaršek, N. et al. El Niño-related thermal stress coupled with ocean acidification negatively impacts cellular to population-level responses in pteropods along the California Current System with implications for increased bioenergetic costs. Front. Mar. Sci. 5, 486 (2018).
    Article  Google Scholar 

    24.
    Peck, V. L., Tarling, G. A., Manno, C., Harper, E. M. & Tynan, E. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep-Sea Res. II 127, 53–56 (2016).
    Article  Google Scholar 

    25.
    Peck, V. L., Oakes, R. L., Harper, E. M., Manno, C. & Tarling, G. A. Pteropods counter mechanical damage and dissolution through extensive shell repair. Nat. Commun. 9, 264 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Howes, E. L., Eagle, R. A., Gattuso, J.-P. & Bijma, J. Comparison of Mediterranean pteropod shell biometrics and ultrastructure from historical (1910 and 1921) and present day (2012) samples provides baseline for monitoring effects of global change. PLoS ONE 1, 1–23 (2017).
    Google Scholar 

    27.
    Oakes, R. L. & Sessa, J. A. Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin. Biogeosciences 7, 1975–1990 (2020).
    ADS  Article  Google Scholar 

    28.
    Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Alin, S. R., et al. Dissolved inorganic carbon, total alkalinity, pH on total scale, and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship Ronald H. Brown in the U.S. West Coast California Current System from 2016-05-08 to 2016-06-06 (NCEI Accession 0169412). Version 1.1. NOAA National Centers for Environmental Information dataset (2017). https://doi.org/10.7289/V5V40SHG.

    30.
    Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Wang, K., Hunt, B. P. V., Liang, C., Pauly, D. & Pakhomov, E. A. Reassessment of the life cycle of the pteropod Limacina helicina from a high resolution interannual time series in the temperate North Pacific. ICES J. Mar. Sci. 74, 1906–1920 (2017).
    Article  Google Scholar 

    32.
    Shimizu, K. et al. Phylogeography of the pelagic snail Limacina helicina (Gastropoda: Thecosomata) in the subarctic western North Pacific. J. Mollus. Stud. 84, 30–37 (2017).
    Article  Google Scholar 

    33.
    Sromek, L., Lasota, R. & Wolowicz, M. Impact of glaciations on genetic diversity of pelagic mollusks: Antarctic Limacina Antarctica and Arctic Limacina helicina. Mar. Ecol. Prog. Ser. 525, 143–152 (2015).
    ADS  Article  Google Scholar 

    34.
    Hunt, B. et al. Poles apart: the ‘bipolar’ pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic Oceans. PLoS ONE 5, e9835 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Bednaršek, N. et al. Systematic review and meta-analysis towards synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming. Front. Mar. Sci. 6, 227 (2019).
    Article  Google Scholar 

    36.
    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Legaard, K. R. & Thomas, A. C. Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California Current. J. Geophys. Res. 111, C06032 (2006).
    ADS  Article  Google Scholar 

    38.
    Thomsen, J., Casties, I., Pansch, C., Körtzinger, A. & Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: Laboratory and field experiments. Glob. Change Biol. 19, 1017–1027 (2013).
    ADS  Article  Google Scholar 

    39.
    Maas, A. E., Elder, L. E., Dierssen, H. M. & Seibel, B. A. Metabolic response of Antarctic pteropods (Mollusca: Gastropoda) to food deprivation and regional productivity. Mar. Ecol. Prog. Ser. 441, 129–139 (2011).
    ADS  CAS  Article  Google Scholar 

    40.
    Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 1–6 (2016).
    Article  CAS  Google Scholar 

    41.
    Thomas, A. C. & Strub, P. T. Interannual variability in phytoplankton pigment distribution during the spring transition along the west-coast of North America. J. Geophys. Res. 94, 18095–18117 (1989).
    ADS  CAS  Article  Google Scholar 

    42.
    Bednaršek, N. & Ohman, M. D. Changes in pteropod vertical distribution, abundance and species richness in the California Current System due to ocean acidification. Mar. Ecol. Prog. Ser. 523, 93–103 (2015).
    ADS  Article  CAS  Google Scholar 

    43.
    Lalli, C. M. & Gilmer, R. W. Pelagic Snails: The Biology of Holoplanktonic Gastropod Mollusks (Stanford University Press, Stanford, 1989).
    Google Scholar 

    44.
    Seibel, B. A., Dymowska, A. & Rosenthal, J. Metabolic temperature compensation and coevolution of locomotory performance in pteropod molluscs. Integr. Comp. Biol. 47, 880–891 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Checa, A. G. Physical and biological determinants of the fabrication of molluscan shell microstructures. Front. Mar. Sci. 5, 535 (2018).
    Article  Google Scholar 

    46.
    Marin, F., Le Roy, N. & Marie, B. The formation and mineralization of mollusk shell. Front. Biosci. 4, 1099–1125 (2012).
    Article  Google Scholar 

    47.
    Kroeker, K. J., Kordas, R. L. & Harley, C. D. G. Embracing interactions in ocean acidification research: Confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Buitenhuis, E. T., Le Quéré, C., Bednaršek, N. & Schiebel, R. Large contribution of pteropods to shallow CaCO3 export. Glob. Biogeochem. Cycles 33, 458–468 (2019).
    ADS  CAS  Article  Google Scholar 

    50.
    Mackas, D. L. & Galbraith, M. D. Pteropod time-series from the NE Pacific. ICES J. Mar. Sci. 69, 448–459 (2012).
    Article  Google Scholar 

    51.
    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).
    CAS  Article  Google Scholar 

    52.
    Kerney, M. P. & Cameron, R. A. D. A Field Guide to the Land Snails of Britain and North-West Europe (Collins, London, 1979).
    Google Scholar 

    53.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    54.
    Oksanen, J., et al. Vegan: Community Ecology Package. R package version 2.5-2 (2018).

    55.
    Wall-Palmer, D. et al. Biogeography and genetic diversity of the atlantid heteropods. Progr. Oceanogr. 160, 1–25 (2018).
    ADS  Article  Google Scholar 

    56.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
    PubMed  Article  Google Scholar 

    57.
    Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).
    CAS  PubMed  Article  Google Scholar 

    58.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–2187 (2016).
    CAS  PubMed  Article  Google Scholar 

    59.
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More