Ecology
Subterms
More stories
113 Shares199 Views
in EcologyThe sources of variation for individual prey-to-predator size ratios
Agashe D, Bolnick DI (2010) Intraspecific genetic variation and competition interact to influence niche expansion. Proc R Soc B Biol Sci 277:2915–2924
Article Google ScholarAraújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958
PubMed Article Google ScholarBenton TG, Ranta E, Kaitala V, Beckerman AP (2001) Maternal effects and the stability of population dynamics in noisy environments. J Anim Ecol 70:590–599
Article Google ScholarBernardo J (1996) Maternal effects in animal ecology. Am Zool 36:83–105
Article Google ScholarBoll PK, Leal-Zanchet AM (2016) Preference for different prey allows the coexistence of several land planarians in areas of the Atlantic Forest. Zoology 119:162–168
PubMed Article Google ScholarBolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M et al. (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192
PubMed PubMed Central Article Google ScholarBolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD et al. (2003) The ecology of individuals: Incidence and implications of individual specialization. Am Nat 161:1–28
PubMed PubMed Central Article Google ScholarBolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941
Article Google ScholarBrose U, Ehnes RB, Rall BC, Vucic-Pestic O, Berlow EL, Scheu S (2008) Foraging theory predicts predator-prey energy fluxes. J Anim Ecol 77:1072–1078
CAS PubMed Article Google ScholarBrose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF et al. (2006) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417
PubMed Article PubMed Central Google ScholarBrown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789
Article Google ScholarBurnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology:some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35
Article Google ScholarCaballero A (2020) Quantitative genetics. Cambridge University Press, Cambridge
Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625
CAS PubMed Article PubMed Central Google ScholarCheverud JM (1996) Development integration and evolution of pleiotropy. Am Zool 36:44–50
Article Google ScholarChevin LM (2013) Genetic constraints on adaptation to a changing environment. Evolution 67:708–721
PubMed Article PubMed Central Google ScholarClass B, Brommer JE (2020) Can dominance genetic variance be ignored in evolutionary quantitative genetic analyses of wild populations? Evolution 74:1540–1550
PubMed Article PubMed Central Google ScholarCockburn A (1991) An introduction to evolutionary ecology. Blackwell Scientific, Oxford
Google ScholarCortez MH (2018) Genetic variation determines which feedbacks drive and alter predator–prey eco-evolutionary cycles. Ecol Monogr 88:353–371
Article Google ScholarCosta-Pereira R, Araújo MS, Olivier R, da S, Souza FL, Rudolf VHW (2018) Prey limitation drives variation in allometric scaling of predator-prey interactions. Am Nat 192:139–149
Article Google ScholarCrnokrak P, Roff DA (1995) Dominance variance: associations with selection and fitness. Heredity 75:530–540
Article Google ScholarCuthbert RN, Wasserman RJ, Dalu T, Kaiser H, Weyl OLF, Dick JTA et al. (2020) Influence of intra‐ and interspecific variation in predator–prey body size ratios on trophic interaction strengths. Ecol Evol 10:5946–5962
PubMed PubMed Central Article Google ScholarDey S, Proulx SR, Teotónio H (2016) Adaptation to temporally fluctuating environments by the evolution of maternal effects. PLOS Biol 14:e1002388
PubMed PubMed Central Article CAS Google ScholarDufour L (1835) Observations sur la Tarentule (Lycosa Tarantula) avec la figure de cette aranéide. Ann. Sci. Nat. Zool 3:95–108
Emmerson MC, Raffaelli D (2004) Predator-prey body size, interaction strength and the stability of a real food web. J Anim Ecol 73:399–409
Article Google ScholarFabricius JC (1775) Systema entomologiae, sistens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descriptionibus, observationibus, Flensburgi et Lipsiae. In Officina Libraria Kortii, 832 pp
García LF, Viera C, Pekár S (2018) Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci Nat 105:30
Article CAS Google ScholarGavín-Centol MP, Kralj-Fišer S, De Mas E, Ruiz-Lupión D, Moya-Laraño J (2017) Feeding regime, adult age and sexual size dimorphism as determinants of pre-copulatory sexual cannibalism in virgin wolf spiders. Behav Ecol Sociobiol 71:10
Article Google ScholarGebhardt‐Henrich SG, Van Noordwijk AJ (1991) Nestling growth in the great tit I. Heritability estimates under different environmental conditions. J Evol Biol 4:341–362
Article Google ScholarGnatzy W, Otto D (1996) Digger wasp vs. cricket: application of the paralytic venom by the predator and changes in behavioural reactions of the prey after being stung. Naturwissenschaften 83:467–470
CAS Article Google ScholarGrafen A (1988) On the uses of data on lifetime reproductive success. In: Clutton-Brock TH (eds) Reproductive success: studies of individual variation in contrasting breeding systems, University of Chicago Press, Chicago. pp 454–471
Griffiths D (1980) Foraging costs and relative prey size. Am Nat 116:743–752
Article Google ScholarGrinsted L, Schou MF, Settepani V, Holm C, Bird TL, Bilde T (2020) Prey to predator body size ratio in the evolution of cooperative hunting—a social spider test case. Dev Genes Evol 230:173–184
CAS PubMed Article Google ScholarGroothuis TGG, Schwabl H (2008) Hormone-mediated maternal effects in birds: Mechanisms matter but what do we know of them? Philos Trans R Soc B Biol Sci 363:1647–1661
CAS Article Google ScholarGustafsson S, Rengefors K, Hansson LA (2005) Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86:2561–2567
Article Google ScholarHadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33
Hagstrum DW (1971) Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann Entomol Soc Am 64:757–760
Article Google ScholarHansen TF (2013) Why epistasis is important for selection and adaptation. Evolution 67:3501–3511
PubMed Article Google ScholarHart SP, Schreiber SJ, Levine JM (2016) How variation between individuals affects species coexistence. Ecol Lett 19:825–838
Heath DD, Fox CW, Heath JW (1999) Maternal effects on offspring size: variation through early development of Chinook salmon. Evolution 53:1605
PubMed Article Google ScholarHirvonen H, Ranta E (1996) Prey to predator size ratio influences foraging efficiency of larval Aeshna juncea dragonflies. Oecologia 106:407–415
PubMed Article PubMed Central Google ScholarInchausti P, Ginzburg LR (2009) Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator–prey view. Philos Trans R Soc B Biol Sci 364:1117–1124
Article Google ScholarJakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67
Article Google ScholarJensen K, Mayntz D, Toft S, Raubenheimer D, Simpson SJ (2011) Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim Behav 81:993–999
Article Google ScholarJiang L, Morin PJ (2005) Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity. Am Nat 165:350–363
PubMed Article Google ScholarDe Jong G, Imasheva A (2000) Genetic variance in temperature dependent adult size deriving from physiological genetic variation at temperature boundaries. Genetica 110:195–207
PubMed Article Google ScholarJonsson T, Ebenman B (1998) Effects of predator-prey body size ratios on the stability of food chains. J Theor Biol 193:407–417
CAS PubMed Article Google ScholarKeightley PD, Kacser H (1987) Dominance, pleiotropy and metabolic structure. Genetics 117:319–329
CAS PubMed PubMed Central Article Google ScholarLaigle I, Aubin I, Digel C, Brose U, Boulangeat I, Gravel D (2018) Species traits as drivers of food web structure. Oikos 127:316–326
Article Google ScholarLaMontagne JM, McCauley E (2001) Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol Lett 4:64–71
Article Google ScholarLindholm AK, Hunt J, Brooks R (2006) Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae. Biol Lett 2:586–589
PubMed PubMed Central Article Google ScholarLynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland
Google ScholarMagalhães S, Janssen A, Montserrat M, Sabelis MW (2005) Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proc R Soc B Biol Sci 272:1929–1933
Article Google ScholarMatlock RB (2005) Impact of prey size on prey capture success, development rate, and survivorship in Perillus bioculatus (Heteroptera: Pentatomidae), a predator of the Colorado Potato Beetle. Environ Entomol 34:1048–1056
Article Google ScholarMaynard DS, Serván CA, Capitán JA, Allesina S (2019) Phenotypic variability promotes diversity and stability in competitive communities. Ecol Lett 22:1776–1786
PubMed Article Google ScholarMcGlothlin JW, Ketterson ED (2008) Hormone-mediated suites as adaptations and evolutionary constraints. Philos Trans R Soc B Biol Sci 363:1611–1620
Article Google ScholarMeigen JW (1830) Systematische Beschreibung der bekannten europaeischen zweifluegeligen Insekten. Schulzische uchhandlung, Hamm
Merilä J, Kruuk LEB, Sheldon BC (2001) Natural selection on the genetical component of variance in body condition in a wild bird population. J Evol Biol 14:918–929
Article Google ScholarMoore MP, Whiteman HH, Martin RA (2019) A mother’s legacy: the strength of maternal effects in animal populations. Ecol Lett 22:1620–1628
PubMed Article PubMed Central Google ScholarMoskalik B, Uetz GW (2011) Female hunger state affects mate choice of a sexually selected trait in a wolf spider. Anim Behav 81:715–722
Article Google ScholarMousseau TA, Fox CW (1998) Maternal effects as adaptations. Oxford University Press, Oxford
Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197
PubMed Article PubMed Central Google ScholarMoya-Larano J (2002) Senescence and food limitation in a slowly ageing spider. Funct Ecol 16:734–741
Article Google ScholarMoya-Laraño J (2011) Genetic variation, predator-prey interactions and food web structure. Philos Trans R Soc B Biol Sci 366:1425–1437
Article Google ScholarMoya-Larano J, Barrientos JA, Orta-Ocana JM, Bach C, Wise DH (1998) Limitación por la comida en las tarántulas del Cabo de Gata (Almeria). Investig y Gestión del Medio Nat 3:73–77
Google ScholarMoya-Laraño J, Macías-Ordóñez R, Blanckenhorn WU, Fernández-Montraveta C (2008) Analysing body condition: Mass, volume or density? J Anim Ecol 77:1099–1108
PubMed Article Google ScholarMoya-Laraño J, Orta-Ocaña JM, Barrientos JA, Bach C, Wise DH (2002) Territoriality in a cannibalistic burrowing wolf spider. Ecology 83:356–361
Article Google ScholarMoya-Laraño J, Bilbao-Castro JR, Barrionuevo G, Ruiz-Lupión D, Casado LG, Montserrat M et al. (2014) Eco-evolutionary spatial dynamics: rapid evolution and isolation explain food web persistence. In: Moya-Laraño J, Rowntree J & Woodward G (eds) Eco-Evolutionary Dynamics, Adv. Ecol. Res., Elsevier. Vol 50, pp 75–143
Moya-Laraño J, Verdeny-Vilalta O, Rowntree J, Melguizo-Ruiz N, Montserrat M, Laiolo P et al. (2012) Climate change and eco-evolutionary dynamics in food webs. In: Schoener TW, Moya-Larano J, Rowntree J, & Woodward G Global Change in Multispecies Systems Part 2. Adv. Ecol. Res, Academic Press, Oxford. Vol 45, pp 1–80
Nakazawa T (2017) Individual interaction data are required in community ecology: a conceptual review of the predator–prey mass ratio and more. Ecol Res 32:5–12
Article Google ScholarNakazawa T, Ushio M, Kondoh M (2011) Scale dependence of predator-prey mass ratio. In: Belgrano A & Reiss J (eds) The role of body size in multispecies system. Adv. Ecol. Res., Academic Press, Oxford. Vol 45, pp 269–302
Nentwig W, Wissel C (1986) A comparison of prey lengths among spiders. Oecologia 68:595–600
PubMed Article Google ScholarOtto SB, Rall BC, Brose U (2007) Allometric degree distributions facilitate food-web stability. Nature 450:1226–1229
CAS PubMed Article Google ScholarParellada X (1998) Identificació i dades biològiques de tres espècies de taràntules (Araneae: Lycosidae) al Garraf. II Trobades d’estudiosos del Garraf Monogr 26:15–25
Google ScholarPatel S, Cortez MH, Schreiber SJ (2018) Partitioning the effects of eco-evolutionary feedbacks on community stability. Am Nat 191:381–394
Article Google ScholarPersons MH, Rypstra AL (2000) Preference for chemical cues associated with recent prey in the wolf spider Hogna helluo (Araneae: Lycosidae). Ethology 106:27–35
Article Google ScholarPooni HS, Jinks JL, Jayasekara NEM, Jayasekara NEM (1978) An investigation of gene action and genotype x environment interaction in two crosses of nicotiana rustica by triple test cross and inbred line analysis. Heredity 41:83–92
Article Google ScholarPoore AGB, Hill NA (2006) Sources of variation in herbivore preference: among-individual and past diet effects on amphipod host choice. Mar Biol 149:1403–1410
Article Google ScholarRoff DA (1997) Evolutionary quantitative genetics. Chapman & Hall, New York
Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269
CAS PubMed Article Google ScholarDe Roos AM, Persson L, McCauley E (2003) The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecol Lett 6:473–487
Article Google ScholarSchneider FD, Brose U, Rall BC, Guill C (2016) Animal diversity and ecosystem functioning in dynamic food webs. Nat Commun 7:1–8
Article CAS Google ScholarSchreiber SJ, Bürger R, Bolnick DI (2011) The community effects of phenotypic and genetic variation within a predator population. Ecology 92:1582–1593
PubMed Article Google ScholarSchreiber SJ, Patel S, Terhorst C (2018) Evolution as a coexistence mechanism: does genetic architecture matter? Am Nat 191:407–420
Article Google ScholarSheriff MJ, Krebs CJ, Boonstra R (2010) The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology 91:2983–2994
PubMed Article Google ScholarShultz S, Noë R, McGraw WS, Dunbar RIM (2004) A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition. Proc R Soc B Biol Sci 271:725–732
Article Google ScholarSinger MC (1986) The definition and measurement of oviposition preference in plant-feeding insects. In: Miller JR, Miller TA (eds) Insect-plant interactions, Springer, New York. pp 65–94
Stewart FM (1971) Evolution of dimorphism in a predator-prey model. Theor Popul Biol 2:493–506
CAS PubMed Article Google ScholarSztepanacz JL, Blows MW (2015) Dominance genetic variance for traits under directional selection in Drosophila serrata. Genetics 200:371–384
PubMed PubMed Central Article Google ScholarTilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493
Article Google ScholarTsai CH, Hsieh CH, Nakazawa T (2016) Predator–prey mass ratio revisited: does preference of relative prey body size depend on individual predator size? Funct Ecol 30:1979–1987
Article Google ScholarViolle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C et al. (2012) The return of the variance: Intraspecific variability in community ecology. Trends Ecol Evol 27:244–252
PubMed Article Google ScholarWalsh MR, Castoe T, Holmes J, Packer M, Biles K, Walsh M et al. (2016) Local adaptation in transgenerational responses to predators. Proc R Soc B Biol Sci 283:20152271
Article Google ScholarWang J, Caballero A, Keightley PD, Hill WG (1998) Bottleneck effect on genetic variance: a theoretical investigation of the role of dominance. Genetics 150:435–447
CAS PubMed PubMed Central Google ScholarWilson AJ, Réale D (2006) Ontogeny of additive and maternal genetic effects: lessons from domestic mammals. Am Nat 167:E23–E38.
PubMed Article Google ScholarWilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA et al. (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26
PubMed Article Google ScholarWolak ME, Keller LF (2014) Dominance, genetic variance and inbreeding in natural populations. In: Charmantier A, Garant D & Kruuk LE (eds) Quantitative genetics in the wild, Oxford University Press, Oxford. pp 104–127
Wolf JB, Wade MJ (2016) Evolutionary genetics of maternal effects. Evolution 70:827–839
PubMed PubMed Central Article Google ScholarWoodward G, Hildrew AG (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Anim Ecol 71:1063–1074
Article Google ScholarWoodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos Trans R Soc B Biol Sci 365:2093–2106
Article Google ScholarWoodward G, Warren P (2007) Body size and predatory interactions in freshwaters: scaling from individuals to communities. In: Hildrew AG, Raffaelli DG & Edmonds-Brown R (eds) Body size: the structure and function of aquatic ecosystems, Cambridge University Press, Cambridge. pp 98–117
Ye L, Chang CY, García-Comas C, Gong GC, Hsieh Chao (2013) Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J Anim Ecol 82:1052–1061
PubMed Article PubMed Central Google ScholarYoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424:303–306
CAS PubMed Article PubMed Central Google Scholar More