Pteropods make thinner shells in the upwelling region of the California Current Ecosystem
1.
Gruber, N. et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).
ADS CAS PubMed Article PubMed Central Google Scholar
2.
Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
ADS Article Google Scholar
3.
Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).
ADS CAS PubMed Article PubMed Central Google Scholar
4.
Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).
ADS CAS PubMed Article Google Scholar
5.
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
PubMed Article PubMed Central Google Scholar
6.
Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).
ADS CAS PubMed Article Google Scholar
7.
Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
ADS CAS PubMed Article Google Scholar
8.
Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160, 2207–2245 (2013).
CAS Article Google Scholar
9.
Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
ADS Article Google Scholar
10.
Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).
ADS CAS Article Google Scholar
11.
Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
12.
Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2, 276–280 (2009).
ADS CAS Article Google Scholar
13.
Bednaršek, N. et al. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5, 881–885 (2012).
ADS Article CAS Google Scholar
14.
Bednaršek, N. et al. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc. R. Soc. B Biol. Sci. 281, 20140123 (2014).
Article CAS Google Scholar
15.
Manno, C. et al. Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean. Earth-Sci. Rev. 169, 132–145 (2017).
ADS CAS Article Google Scholar
16.
Lischka, S., Büdenbender, J., Boxhammer, T. & Riebesell, U. Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: Mortality, shell degradation, and shell growth. Biogeosciences 8, 919–932 (2011).
ADS CAS Article Google Scholar
17.
Bednaršek, N. et al. Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast. Sci. Rep. 7, 1–12 (2017).
Article CAS Google Scholar
18.
Comeau, S. et al. Impact of aragonite saturation state changes on migratory pteropods. Proc. R. Soc. B Biol. Sci. 279, 732–738 (2011).
Article Google Scholar
19.
Moya, A. et al. Near-future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod Heliconoides inflatus. Glob. Change Biol. 22, 3888–3900 (2016).
ADS Article Google Scholar
20.
Maas, A., Lawson, G. L., Bergan, A. J. & Tarrant, A. M. Exposure to CO2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa. J. Exp. Biol. 221, 164400 (2018).
Article Google Scholar
21.
Johnson, K. M. & Hofman, G. E. A transcriptome resource for the Antarctic pteropod Limacina helicina antarctica. Mar. Genom. 28, 25–28 (2016).
Article Google Scholar
22.
Feely, R. A. et al. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci. 183, 260–270 (2016).
ADS CAS Article Google Scholar
23.
Bednaršek, N. et al. El Niño-related thermal stress coupled with ocean acidification negatively impacts cellular to population-level responses in pteropods along the California Current System with implications for increased bioenergetic costs. Front. Mar. Sci. 5, 486 (2018).
Article Google Scholar
24.
Peck, V. L., Tarling, G. A., Manno, C., Harper, E. M. & Tynan, E. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification. Deep-Sea Res. II 127, 53–56 (2016).
Article Google Scholar
25.
Peck, V. L., Oakes, R. L., Harper, E. M., Manno, C. & Tarling, G. A. Pteropods counter mechanical damage and dissolution through extensive shell repair. Nat. Commun. 9, 264 (2018).
ADS PubMed PubMed Central Article CAS Google Scholar
26.
Howes, E. L., Eagle, R. A., Gattuso, J.-P. & Bijma, J. Comparison of Mediterranean pteropod shell biometrics and ultrastructure from historical (1910 and 1921) and present day (2012) samples provides baseline for monitoring effects of global change. PLoS ONE 1, 1–23 (2017).
Google Scholar
27.
Oakes, R. L. & Sessa, J. A. Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin. Biogeosciences 7, 1975–1990 (2020).
ADS Article Google Scholar
28.
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).
ADS CAS PubMed Article Google Scholar
29.
Alin, S. R., et al. Dissolved inorganic carbon, total alkalinity, pH on total scale, and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship Ronald H. Brown in the U.S. West Coast California Current System from 2016-05-08 to 2016-06-06 (NCEI Accession 0169412). Version 1.1. NOAA National Centers for Environmental Information dataset (2017). https://doi.org/10.7289/V5V40SHG.
30.
Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).
CAS PubMed PubMed Central Article Google Scholar
31.
Wang, K., Hunt, B. P. V., Liang, C., Pauly, D. & Pakhomov, E. A. Reassessment of the life cycle of the pteropod Limacina helicina from a high resolution interannual time series in the temperate North Pacific. ICES J. Mar. Sci. 74, 1906–1920 (2017).
Article Google Scholar
32.
Shimizu, K. et al. Phylogeography of the pelagic snail Limacina helicina (Gastropoda: Thecosomata) in the subarctic western North Pacific. J. Mollus. Stud. 84, 30–37 (2017).
Article Google Scholar
33.
Sromek, L., Lasota, R. & Wolowicz, M. Impact of glaciations on genetic diversity of pelagic mollusks: Antarctic Limacina Antarctica and Arctic Limacina helicina. Mar. Ecol. Prog. Ser. 525, 143–152 (2015).
ADS Article Google Scholar
34.
Hunt, B. et al. Poles apart: the ‘bipolar’ pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic Oceans. PLoS ONE 5, e9835 (2010).
ADS PubMed PubMed Central Article CAS Google Scholar
35.
Bednaršek, N. et al. Systematic review and meta-analysis towards synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming. Front. Mar. Sci. 6, 227 (2019).
Article Google Scholar
36.
Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457 (2008).
ADS CAS PubMed Article PubMed Central Google Scholar
37.
Legaard, K. R. & Thomas, A. C. Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California Current. J. Geophys. Res. 111, C06032 (2006).
ADS Article Google Scholar
38.
Thomsen, J., Casties, I., Pansch, C., Körtzinger, A. & Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: Laboratory and field experiments. Glob. Change Biol. 19, 1017–1027 (2013).
ADS Article Google Scholar
39.
Maas, A. E., Elder, L. E., Dierssen, H. M. & Seibel, B. A. Metabolic response of Antarctic pteropods (Mollusca: Gastropoda) to food deprivation and regional productivity. Mar. Ecol. Prog. Ser. 441, 129–139 (2011).
ADS CAS Article Google Scholar
40.
Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 1–6 (2016).
Article CAS Google Scholar
41.
Thomas, A. C. & Strub, P. T. Interannual variability in phytoplankton pigment distribution during the spring transition along the west-coast of North America. J. Geophys. Res. 94, 18095–18117 (1989).
ADS CAS Article Google Scholar
42.
Bednaršek, N. & Ohman, M. D. Changes in pteropod vertical distribution, abundance and species richness in the California Current System due to ocean acidification. Mar. Ecol. Prog. Ser. 523, 93–103 (2015).
ADS Article CAS Google Scholar
43.
Lalli, C. M. & Gilmer, R. W. Pelagic Snails: The Biology of Holoplanktonic Gastropod Mollusks (Stanford University Press, Stanford, 1989).
Google Scholar
44.
Seibel, B. A., Dymowska, A. & Rosenthal, J. Metabolic temperature compensation and coevolution of locomotory performance in pteropod molluscs. Integr. Comp. Biol. 47, 880–891 (2007).
PubMed Article PubMed Central Google Scholar
45.
Checa, A. G. Physical and biological determinants of the fabrication of molluscan shell microstructures. Front. Mar. Sci. 5, 535 (2018).
Article Google Scholar
46.
Marin, F., Le Roy, N. & Marie, B. The formation and mineralization of mollusk shell. Front. Biosci. 4, 1099–1125 (2012).
Article Google Scholar
47.
Kroeker, K. J., Kordas, R. L. & Harley, C. D. G. Embracing interactions in ocean acidification research: Confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).
PubMed PubMed Central Article CAS Google Scholar
48.
Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).
ADS CAS PubMed Article PubMed Central Google Scholar
49.
Buitenhuis, E. T., Le Quéré, C., Bednaršek, N. & Schiebel, R. Large contribution of pteropods to shallow CaCO3 export. Glob. Biogeochem. Cycles 33, 458–468 (2019).
ADS CAS Article Google Scholar
50.
Mackas, D. L. & Galbraith, M. D. Pteropod time-series from the NE Pacific. ICES J. Mar. Sci. 69, 448–459 (2012).
Article Google Scholar
51.
Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).
CAS Article Google Scholar
52.
Kerney, M. P. & Cameron, R. A. D. A Field Guide to the Land Snails of Britain and North-West Europe (Collins, London, 1979).
Google Scholar
53.
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Article Google Scholar
54.
Oksanen, J., et al. Vegan: Community Ecology Package. R package version 2.5-2 (2018).
55.
Wall-Palmer, D. et al. Biogeography and genetic diversity of the atlantid heteropods. Progr. Oceanogr. 160, 1–25 (2018).
ADS Article Google Scholar
56.
Excoffier, L. & Lischer, H. E. L. Arlequin suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
PubMed Article Google Scholar
57.
Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).
CAS PubMed Article Google Scholar
58.
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–2187 (2016).
CAS PubMed Article Google Scholar
59.
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
CAS PubMed PubMed Central Article Google Scholar More