More stories

  • in

    Capturing yeast associated with grapes and spontaneous fermentations of the Negro Saurí minority variety from an experimental vineyard near León

    1.
    Csoma, H., Zakany, N., Capece, A., Romano, P. & Sipiczki, M. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: Comparative genotypic and phenotypic analysis. Int. J. Food Microbiol. 140, 239–248. https://doi.org/10.1016/j.ijfoodmicro.2010.03.024 (2010).
    CAS  Article  PubMed  Google Scholar 
    2.
    Di Maio, S. et al. Biodiversity of indigenous Saccharomyces populations from old wineries of South-Eastern Sicily (Italy): Preservation and economic potential. PLoS ONE 7, e30428. https://doi.org/10.1371/journal.pone.0030428 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    3.
    Bokulich, N. A., Ohta, M., Richardson, P. M. & Mills, D. A. Monitoring seasonal changes in winery-resident microbiota. PLoS ONE 8, e66437. https://doi.org/10.1371/journal.pone.0066437 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    4.
    Mas, A., Padilla, B., Esteve-Zarzoso, B. & Beltran, G. Utilización de inóculos mixtos de levaduras autóctonas como herramienta para reproducir la huella microbiológica de la zona. Acenologica. http://www.acenologia.com/cienciaytecnologia/inoculos_mixtos_levaduras_autoctonas_cienc0715.htm (2013).

    5.
    Varela, C. & Borneman, A. R. Yeasts found in vineyards and wineries. Yeast 34, 111–128. https://doi.org/10.1002/yea.3219 (2017).
    CAS  Article  PubMed  Google Scholar 

    6.
    Fleet, G. H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86, 11–22. https://doi.org/10.1016/S0168-1605(03)00245-9 (2003).
    CAS  Article  PubMed  Google Scholar 

    7.
    Mannazzu, I., Clementi, F. & Ciani, M. In Biodiversity and Biotechnology of Wine Yeasts 19–34 (2002).

    8.
    Martini, A., Ciani, M. & Scorzetti, G. Direct enumeration and isolation of wine yeasts from grape surfaces. Am. J. Enol. Vit. 47, 435 (1996).
    Google Scholar 

    9.
    Mortimer, R. & Polsinelli, M. On the origins of wine yeast. Res. Microbiol. 150, 199–204. https://doi.org/10.1016/S0923-2508(99)80036-9 (1999).
    CAS  Article  PubMed  Google Scholar 

    10.
    Ciani, M., Comitini, F., Mannazzu, I. & Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 10, 123–133. https://doi.org/10.1111/j.1567-1364.2009.00579.x (2010).
    CAS  Article  PubMed  Google Scholar 

    11.
    Ribéreau-Gayon, P., Dubourdieu, D., Donéche, B. & Lonvaud, A. The Microbiology of Wine and Vinifications 2nd edn, Vol. 1, 512 (2006).

    12.
    Charoenchai, C., Fleet, G. H., Henschke, P. A. & Todd, B. E. N. T. Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aus. J. Grape Wine Res. 3, 2–8. https://doi.org/10.1111/j.1755-0238.1997.tb00109.x (1997).
    CAS  Article  Google Scholar 

    13.
    Fernández, M. T., Ubeda, J. F. & Briones, A. I. Comparative study of non-Saccharomyces microflora of musts in fermentation, by physiological and molecular methods. FEMS Microbiol. Lett. 173, 223–229. https://doi.org/10.1111/j.1574-6968.1999.tb13506.x (1999).
    Article  Google Scholar 

    14.
    Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A. & Masneuf-Pomarede, I. Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int. J. Food Microbiol. 125, 197–203. https://doi.org/10.1016/j.ijfoodmicro.2008.04.001 (2008).
    CAS  Article  PubMed  Google Scholar 

    15.
    Grangeteau, C. et al. Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation?. Food Microbiol. 50, 70–77. https://doi.org/10.1016/j.fm.2015.03.009 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    16.
    Fleet, G. H. Wine yeasts for the future. FEMS Yeast Res. 8, 979–995. https://doi.org/10.1111/j.1567-1364.2008.00427.x (2008).
    CAS  Article  PubMed  Google Scholar 

    17.
    Canonico, L., Comitini, F., Oro, L. & Ciani, M. Sequential fermentation with selected immobilized non-Saccharomyces yeast for reduction of ethanol content in wine. Front. Microbiol. 7, 278–278. https://doi.org/10.3389/fmicb.2016.00278 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Padilla, B., Gil, J. V. & Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 7, 411–411. https://doi.org/10.3389/fmicb.2016.00411 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    19.
    Esteve-Zarzoso, B., Manzanares, P., Ramön, D. & Quero, A. The role of non-Saccharomyces yeasts in industrial winemaking. Int. Microbiol. 1, 143–148 (1998).
    CAS  PubMed  Google Scholar 

    20.
    Gonzalez, R., Quirós, M. & Morales, P. Yeast respiration of sugars by non-Saccharomyces yeast species: A promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci. Techol. 29, 55–61. https://doi.org/10.1016/j.tifs.2012.06.015 (2013).
    CAS  Article  Google Scholar 

    21.
    Quirós, M., Rojas, V., Gonzalez, R. & Morales, P. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int. J. Food Microbiol. 181, 85–91. https://doi.org/10.1016/j.ijfoodmicro.2014.04.024 (2014).
    CAS  Article  PubMed  Google Scholar 

    22.
    Morales, P., Rojas, V., Quirós, M. & Gonzalez, R. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture. Appl. Microbiol. Biotechnol. 99, 3993–4003. https://doi.org/10.1007/s00253-014-6321-3 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    23.
    Varela, C. et al. Strategies for reducing alcohol concentration in wine. Aus. J. Grape Wine Res. 21, 670–679. https://doi.org/10.1111/ajgw.12187 (2015).
    Article  Google Scholar 

    24.
    Roudil, L. et al. Non-Saccharomyces commercial starter cultures: Scientific trends, recent patents and innovation in the wine sector. Recent Patents Food Nutr. Agric. https://doi.org/10.2174/2212798410666190131103713 (2019).
    Article  Google Scholar 

    25.
    Le Jeune, C., Erny, C., Demuyter, C. & Lollier, M. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol. 23, 709–716. https://doi.org/10.1016/j.fm.2006.02.007 (2006).
    CAS  Article  PubMed  Google Scholar 

    26.
    Versavaud, A., Courcoux, P., Roulland, C., Dulau, L. & Hallet, J. N. Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Appl. Environ. Microbiol. 61, 3521 (1995).
    CAS  Article  Google Scholar 

    27.
    Pérez-Coello, M. S., Briones Pérez, A. I., Ubeda Iranzo, J. F. & Martin Alvarez, P. J. Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from the La Mancha region. Food Microbiol. 16, 563–573. https://doi.org/10.1006/fmic.1999.0272 (1999).
    CAS  Article  Google Scholar 

    28.
    Torriani, S., Zapparoli, G. & Suzzi, G. Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Antonie Van Leeuwenhoek 75, 207–215. https://doi.org/10.1023/A:1001773916407 (1999).
    CAS  Article  PubMed  Google Scholar 

    29.
    Naumov, G. I., Masneuf, I., Naumova, E. S., Aigle, M. & Dubourdieu, D. Association of Saccharomyces bayanus var. uvarum with some French wines: Genetic analysis of yeast populations. Res. Microbiol. 151, 683–691. https://doi.org/10.1016/s0923-2508(00)90131-1 (2000).
    CAS  Article  PubMed  Google Scholar 

    30.
    Redžepović, S., Orlić, S., Sikora, S., Majdak, A. & Pretorius, I. S. Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Letts. Appl. Microbiol. 35, 305–310. https://doi.org/10.1046/j.1472-765X.2002.01181.x (2002).
    Article  Google Scholar 

    31.
    Rementeria, A. et al. Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country, North Spain). Int. J. Food Microbiol. 86, 201–207. https://doi.org/10.1016/S0168-1605(03)00289-7 (2003).
    CAS  Article  PubMed  Google Scholar 

    32.
    Cappello, M. S., Bleve, G., Grieco, F., Dellaglio, F. & Zacheo, G. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard. J. Appl. Microbiol. 97, 1274–1280. https://doi.org/10.1111/j.1365-2672.2004.02412.x (2004).
    CAS  Article  PubMed  Google Scholar 

    33.
    Fay, J. C. & Benavides, J. A. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 1, e5. https://doi.org/10.1371/journal.pgen.0010005 (2005).
    CAS  Article  PubMed Central  Google Scholar 

    34.
    Schuller, D., Alves, H., Dequin, S. & Casal, M. Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol. Ecol. 51, 167–177. https://doi.org/10.1016/j.femsec.2004.08.003 (2005).
    CAS  Article  PubMed  Google Scholar 

    35.
    Viel, A. et al. The geographic distribution of Saccharomyces cerevisiae isolates within three Italian neighboring winemaking regions reveals strong differences in yeast abundance, genetic diversity and industrial strain dissemination. Front. Microbiol. 8, 1595–1595. https://doi.org/10.3389/fmicb.2017.01595 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Sun, Y. et al. Evaluation of Chinese Saccharomyces cerevisiae wine strains from different geographical origins. Am. J. Enol. Vit. 68, 73. https://doi.org/10.5344/ajev.2016.16059 (2017).
    Article  Google Scholar 

    37.
    da Silva, G. A. D., Agustini, B. C., de Mello, L. M. R. & Tonietto, J. Autochthonous yeast populations from different Brazilian geographic indications. BIO Web Conf. 7 (2016).

    38.
    Crosato, G. et al. Genetic variability and physiological traits of Saccharomyces cerevisiae strains isolated from “Vale dos Vinhedos” vineyards reflect agricultural practices and history of this Brazilian wet subtropical area. World J. Microbiol. Biotechnol. 34, 105. https://doi.org/10.1007/s11274-018-2490-z (2018).
    CAS  Article  PubMed  Google Scholar 

    39.
    Chavan, P. et al. Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiol. 26, 801–808. https://doi.org/10.1016/j.fm.2009.05.005 (2009).
    CAS  Article  PubMed  Google Scholar 

    40.
    Kachalkin, A. V., Abdullabekova, D. A., Magomedova, E. S., Magomedov, G. G. & Chernov, I. Y. Yeasts of the vineyards in Dagestan and other regions. Microbiology 84, 425–432. https://doi.org/10.1134/S002626171503008X (2015).
    CAS  Article  Google Scholar 

    41.
    Cordero-Bueso, G., Arroyo, T., Serrano, A. & Valero, E. Remanence and survival of commercial yeast in different ecological niches of the vineyard. FEMS Microbiol. Ecol. 77, 429–437. https://doi.org/10.1111/j.1574-6941.2011.01124.x (2011).
    CAS  Article  PubMed  Google Scholar 

    42.
    Valero, E., Schuller, D., Cambon, B., Casal, M. & Dequin, S. Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study. FEMS Yeast Res. 5, 959–969. https://doi.org/10.1016/j.femsyr.2005.04.007 (2005).
    CAS  Article  PubMed  Google Scholar 

    43.
    Valero, E., Cambon, B., Schuller, D., Casal, M. & Dequin, S. Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res. 7, 317–329. https://doi.org/10.1111/j.1567-1364.2006.00161.x (2007).
    CAS  Article  PubMed  Google Scholar 

    44.
    Blanco, P., Mirás-Avalos, J. M. & Orriols, I. Effect of must characteristics on the diversity of Saccharomyces strains and their prevalence in spontaneous fermentations. J. Appl. Microbiol. 112, 936–944. https://doi.org/10.1111/j.1365-2672.2012.05278.x (2012).
    CAS  Article  PubMed  Google Scholar 

    45.
    Garofalo, C., Tristezza, M., Grieco, F., Spano, G. & Capozzi, V. From grape berries to wine: Population dynamics of cultivable yeasts associated to “Nero di Troia” autochthonous grape cultivar. World J. Microbiol. Biotechnol. 32, 59. https://doi.org/10.1007/s11274-016-2017-4 (2016).
    CAS  Article  PubMed  Google Scholar 

    46.
    Schuller, D. et al. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS ONE 7, e32507. https://doi.org/10.1371/journal.pone.00325 (2012).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Martinez, M. C. & Perez, J. E. The forgotten vineyard of the Asturias Princedom (north of Spain) and ampelographic description of its grapevine cultivars (Vitis vinifera L.). Am. J. Enol. Vit. 51, 370–378 (2000).
    Google Scholar 

    48.
    Yuste, J. et al. Identification of autochthonous grapevine varieties in the germplasm collection at the ITA of “Castilla y León” in Zamadueñas Station, Valladolid. Spain. Spanish J. Agric. Res. https://doi.org/10.5424/sjar/2006041-175 (2006).
    Article  Google Scholar 

    49.
    Cabello, F., Saiz, R. & Muñoz, G. Estudio de variedades españolas minoritarias de vid. Acenologica. http://www.acenologia.com/cienciaytecnologia/variedades_minoritarias_cienc0213.htm (2013).

    50.
    Balda, P. & de Toda, F. M. Variedades minoritarias de vid en La Rioja. Consejería de Agricultura, Ganadería y Medio Ambiente. (2017).

    51.
    Martínez de Toda, F. Veinte nuevas variedades de vid, rescatadas de la desaparición, en la viticultura española y nuevos vinos. Acenologica. http://www.acenologia.com/dossier/dossier135.htm (2013).

    52.
    Arranz, C. et al. Variedades de vid cultivadas en la Sierra de Francia. Importancia, identificación, sinonimias y homonimias. La Semana Vitivinícola 3223, 1414–1420 (2008).
    Google Scholar 

    53.
    Ibáñez, J., Carreño, J., Yuste, J. & Martínez-Zapater, J. M. In Grapevine Breeding Programs for the Wine Industry (ed Reynolds, A.) 183–209 (Woodhead Publishing, 2015).

    54.
    Arranz Hernández, C., Barajas Tola, E., Yuste Bombín, J. & Rubio Cano, J. A. 45–58 (Comunidad de Madrid (España): Ministerio de Agricultura, Alimentación y Medio Ambiente, 2016).

    55.
    Esteve-Zarzoso, B., Belloch, C., Uruburu, F. & Querol, A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bact. 49, 329–337. https://doi.org/10.1099/00207713-49-1-329 (1999).
    CAS  Article  Google Scholar 

    56.
    Madden, T. L., Tatusov, R. L. & Zhang, J. Methods in Enzymology Vol. 266, 131–141 (Academic Press, London, 1996).
    Google Scholar 

    57.
    Legras, J.-L. & Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiol. Lett. 221, 249–255. https://doi.org/10.1016/S0378-1097(03)00205-2 (2003).
    CAS  Article  PubMed  Google Scholar 

    58.
    Ness, F., Lavallée, F., Dubourdieu, D., Aigle, M. & Dulau, L. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62, 89–94. https://doi.org/10.1002/jsfa.2740620113 (1993).
    CAS  Article  Google Scholar 

    59.
    Lebart, L., Morineau, A. & Piron, M. Statistique Exploratoire Multidimensionnelle (Dunod Publishers, Paris, 1995).
    Google Scholar 

    60.
    Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L. & Maggio, R. M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 72, 83–90. https://doi.org/10.1016/j.tifs.2017.12.006 (2018).
    CAS  Article  Google Scholar 

    61.
    Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M. & Perona, I. An extensive comparative study of cluster validity indices. Pattern Recogn. 46, 243–256. https://doi.org/10.1016/j.patcog.2012.07.021 (2013).
    Article  Google Scholar 

    62.
    Orlić, S. et al. Diversity and oenological characterization of indigenous Saccharomyces cerevisiae associated with Žilavka grapes. World J. Microbiol. Biotechnol. 26, 1483–1489. https://doi.org/10.1007/s11274-010-0323-9 (2010).
    Article  Google Scholar 

    63.
    Tristezza, M. et al. Molecular and technological characterization of Saccharomyces cerevisiae strains isolated from natural fermentation of Susumaniello grape must in Apulia, Southern Italy. Int. J. Microbiol. 897428–897428, 2014. https://doi.org/10.1155/2014/897428 (2014).
    CAS  Article  Google Scholar 

    64.
    SchvarczovÁ, E. V. A., ŠtefáNiková, J., Jankura, E. & Kolek, E. Selection of autochthonous Saccharomyces cerevisiae strains for production of typical Pinot Gris wines. J. Food Nutr. Res. 56, 389–397 (2017).
    Google Scholar 

    65.
    Tristezza, M. et al. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 36, 335–342. https://doi.org/10.1016/j.fm.2013.07.001 (2013).
    CAS  Article  PubMed  Google Scholar 

    66.
    Sabate, J., Cano, J., Querol, A. & Guillamon, J. M. Diversity of Saccharomyces strains in wine fermentations: Analysis for two consecutive years. Lett. Appl. Microbiol. 26, 452–455. https://doi.org/10.1046/j.1472-765X.1998.00369.x (1998).
    CAS  Article  PubMed  Google Scholar 

    67.
    Bougreau, M., Ascencio, K., Bugarel, M., Nightingale, K. & Loneragan, G. Yeast species isolated from Texas High Plains vineyards and dynamics during spontaneous fermentations of Tempranillo grapes. PLoS ONE 14, e0216246–e0216246. https://doi.org/10.1371/journal.pone.0216246 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    68.
    Martiniuk, J. T. et al. Impact of commercial strain use on Saccharomyces cerevisiae population structure and dynamics in Pinot Noir vineyards and spontaneous fermentations of a Canadian winery. PLoS ONE 11, e0160259. https://doi.org/10.1371/journal.pone.0160259 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    69.
    Mercado, L., Jubany, S., Gaggero, C., Masuelli, R. W. & Combina, M. Molecular relationships between Saccharomyces cerevisiae strains involved in winemaking from Mendoza, Argentina. Curr. Microbiol. 61, 506–514. https://doi.org/10.1007/s00284-010-9645-y (2010).
    CAS  Article  PubMed  Google Scholar 

    70.
    de Celis, M. et al. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Lett. Appl. Microbiol. 68, 580–588. https://doi.org/10.1111/lam.13155 (2019).
    Article  PubMed  Google Scholar 

    71.
    Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 5, 14233. https://doi.org/10.1038/srep14233 (2015).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    72.
    Álvarez-Pérez, J. M., Garzón-Jimeno, E. & Coque, J. J. R. Population of indigenous yeast strains from Prieto Picudo grapes in different growing areas of Denomination of Origin “Tierra de León”. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 72, 17–26. https://doi.org/10.15835/buasvmcn-hort:11013 (2015).
    Article  Google Scholar 

    73.
    Sabate, J., Cano, J., Esteve-Zarzoso, B. & Guillamón, J. M. Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol. Res. 157, 267–274. https://doi.org/10.1078/0944-5013-00163 (2002).
    CAS  Article  PubMed  Google Scholar 

    74.
    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259. https://doi.org/10.1016/j.ijfoodmicro.2011.11.025 (2012).
    CAS  Article  PubMed  Google Scholar 

    75.
    Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS 111, E139–E148. https://doi.org/10.1073/pnas.1317377110 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    76.
    Russo, P. et al. Pesticide residues and stuck fermentation in Wine: New evidences indicate the urgent need of tailored regulations. Fermentation 5, 23. https://doi.org/10.3390/fermentation5010023 (2019).
    CAS  Article  Google Scholar 

    77.
    Agarbati, A., Canonico, L., Ciani, M. & Comitini, F. The impact of fungicide treatments on yeast biota of Verdicchio and Montepulciano grape varieties. PLoS ONE 14, e0217385. https://doi.org/10.1371/journal.pone.0217385 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    78.
    Kosel, J., Raspor, P. & Čadež, N. Maximum residue limit of fungicides inhibits the viability and growth of desirable non-Saccharomyces wine yeasts. Aust. J. Grape Wine Res. 25, 43–52. https://doi.org/10.1111/ajgw.12364 (2019).
    CAS  Article  Google Scholar 

    79.
    Čadež, N., Zupan, J. & Raspor, P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10, 619–630. https://doi.org/10.1111/j.1567-1364.2010.00635.x (2010).
    CAS  Article  PubMed  Google Scholar 

    80.
    Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).
    CAS  Article  Google Scholar 

    81.
    Killham, K., Lindley, N. D. & Wainwright, M. Inorganic sulfur oxidation by Aureobasidium pullulans. Appl. Environ. Microbiol. 42, 629–631 (1981).
    CAS  Article  Google Scholar 

    82.
    Gadd, G. M. & de Rome, L. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29, 610–617. https://doi.org/10.1007/BF00260993 (1988).
    CAS  Article  Google Scholar 

    83.
    Belda, I. et al. Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Front. Microbiol. 7, 12–12. https://doi.org/10.3389/fmicb.2016.00012 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    84.
    Lin, M.M.-H. et al. Evaluation of indigenous non-Saccharomyces yeasts isolated from a South Australian vineyard for their potential as wine starter cultures. Int. J. Food Microbiol. 312, 108373. https://doi.org/10.1016/j.ijfoodmicro.2019.108373 (2020).
    CAS  Article  PubMed  Google Scholar 

    85.
    Hranilovic, A., Bely, M., Masneuf-Pomarede, I., Jiranek, V. & Albertin, W. The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems. PLoS ONE 12, e0184652. https://doi.org/10.1371/journal.pone.0184652 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    86.
    Hranilovic, A. et al. Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Sci. Rep. 8, 14812. https://doi.org/10.1038/s41598-018-33105-7 (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    87.
    Hu, K., Jin, G.-J., Mei, W.-C., Li, T. & Tao, Y.-S. Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chem. 239, 495–501. https://doi.org/10.1016/j.foodchem.2017.06.151 (2018).
    CAS  Article  PubMed  Google Scholar 

    88.
    Oro, L., Ciani, M. & Comitini, F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J. Appl. Microbiol. 116, 1209–1217. https://doi.org/10.1111/jam.12446 (2014).
    CAS  Article  PubMed  Google Scholar 

    89.
    Contreras, A., Curtin, C. & Varela, C. Yeast population dynamics reveal a potential ‘collaboration’ between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl. Microbiol. Biotechnol. 99, 1885–1895. https://doi.org/10.1007/s00253-014-6193-6 (2015).
    CAS  Article  PubMed  Google Scholar 

    90.
    Benito, S. The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl. Microbiol. Biotechnol. 102, 6775–6790. https://doi.org/10.1007/s00253-018-9117-z (2018).
    CAS  Article  PubMed  Google Scholar 

    91.
    Morata, A. et al. Lachancea thermotolerans applications in wine technology. Fermentation https://doi.org/10.3390/fermentation4030053 (2018).
    Article  Google Scholar 

    92.
    Belda, I. et al. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int. J. Food Microbiol. 223, 1–8. https://doi.org/10.1016/j.ijfoodmicro.2016.02.003 (2016).
    CAS  Article  PubMed  Google Scholar 

    93.
    Jolly, N., Augustyn, O. & Pretorius, I. The role and use of non-Saccharomyces yeasts in wine production. J. Enol. Vitic. 27. https://doi.org/10.21548/27-1-1475 (2006).

    94.
    Capozzi, V., Fragasso, M. & Russo, P. Microbiological safety and the management of microbial resources in artisanal foods and beverages: The need for a transdisciplinary assessment to conciliate actual trends and risks avoidance. Microorganisms 8, 306. https://doi.org/10.3390/microorganisms (2020).
    Article  PubMed Central  Google Scholar 

    95.
    Benito, S. The impact of Torulaspora delbrueckii yeast in winemaking. Appl. Microbiol. Biotechnol. 102, 3081–3094. https://doi.org/10.1007/s00253-018-8849-0 (2018).
    CAS  Article  PubMed  Google Scholar 

    96.
    Attila, K., Ján, M., Eva, I., Margarita, T. & Miroslava, K. Microorganisms of grape berries. In Proc. Latvian Acad. Sciences. Section B. Natural, Exact & Appl. Sci. Vol. 71, 502–508, https://doi.org/10.1515/prolas-2017-0087 (2017).

    97.
    Pretorius, I. S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 16, 675–729. https://doi.org/10.1002/1097-0061(20000615)16:8%3c675::AID-YEA585%3e3.0.CO;2-B (2000).
    CAS  Article  PubMed  Google Scholar 

    98.
    Clavijo, A., Calderón, I. L. & Paneque, P. Diversity of Saccharomyces and non-Saccharomyces yeasts in three red grape varieties cultured in the Serranía de Ronda (Spain) vine-growing region. Int. J. Food Microbiol. 143, 241–245. https://doi.org/10.1016/j.ijfoodmicro.2010.08.010 (2010).
    CAS  Article  PubMed  Google Scholar 

    99.
    Capece, A. et al. Diversity of Saccharomyces cerevisiae strains isolated from two Italian wine-producing regions. Front Microbiol. 7, 1018. https://doi.org/10.3389/fmicb (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    100.
    Santamaría, P. et al. Biodiversity of Saccharomyces cerevisiae yeasts in spontaneous alcoholic fermentations: Typical cellar or zone strains? Advances in Grape and Wine Biotechnology. (ed. Morata, A. & Loira, I.) 1–15 (Intech Open, 2019). https://doi.org/10.5772/intechopen.84870

    101.
    Kurtzman, C., P., & Fell, J. W. The Yeasts, A Taxonomic Study. 4th edn, (Elsevier Science Publishers, 1998).

    102.
    Lõoke, M., Kristjuhan, K. & Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50, 325–328. https://doi.org/10.2144/000113672 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    103.
    Liu, Y., Wang, C., Joseph, C. M. L. & Bisson, L. F. Comparison of two PCR-based genetic fingerprinting methods for assessment of genetic diversity in Saccharomyces strains. Am. J. Enol. Vit. 65, 109. https://doi.org/10.5344/ajev.2013.13056 (2014).
    Article  Google Scholar 

    104.
    Dazy, F. & Le Barzic, J.-F. L’analyse des donnees evolutives: Methodes et applications (Technip Publishers, 1996). More

  • in

    Bacterial microbiota similarity between predators and prey in a blue tit trophic network

    1.
    Hooper LV, Bry L, Falk PG, Gordon JI. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays. 1998;20:336–43.
    CAS  PubMed  Article  Google Scholar 
    2.
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18.
    CAS  Article  Google Scholar 

    3.
    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–93.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–52.
    CAS  Article  Google Scholar 

    5.
    Erny D, de Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    van der Waaij D. The ecology of the human intestine and its consequences for overgrowth by pathogens such as clostridium difficile. Annu Rev Microbiol. 1989;43:69–87.
    PubMed  Article  Google Scholar 

    7.
    Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015;63:1–9.
    PubMed  Article  Google Scholar 

    8.
    Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8:1–10.
    Article  Google Scholar 

    9.
    Scupham AJ, Patton TG, Bent E, Bayles DO. Comparison of the cecal microbiota of domestic and wild turkeys. Micro Ecol. 2008;56:322–31.
    Article  Google Scholar 

    10.
    Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. Cross-species comparisons of host genetic associations with the microbiome. Science. 2016;352:532–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic brown-headed cowbird (Molothrus ater). PeerJ. 2014;2:1–21.
    Article  Google Scholar 

    12.
    Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci. 2019;107:18933–8.
    Article  Google Scholar 

    13.
    Musitelli F, Ambrosini R, Rubolini D, Saino N, Franzetti A, Gandolfi I. Cloacal microbiota of barn swallows from Northern Italy. Ethol Ecol Evol. 2018;30:362–72.
    Article  Google Scholar 

    14.
    Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 neotropical bird species. Front Microbiol. 2015;6:1403.
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Bili M, Cortesero AM, Mougel C, Gauthier JP, Ermel G, Simon JC, et al. Bacterial community diversity harboured by interacting species. PLoS One. 2016;11:1–23.
    Article  CAS  Google Scholar 

    17.
    Sugio A, Dubreuil G, Giron D, Simon J. Plant – insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot. 2015;66:467–78.
    CAS  PubMed  Article  Google Scholar 

    18.
    Hannula SE, Zhu F, Heinen R, Bezemer TM. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat Commun. 2019;10:1–9.
    CAS  Article  Google Scholar 

    19.
    White J, Mirleau P, Danchin E, Mulard H, Hatch SA, Heeb P, et al. Sexually transmitted bacteria affect female cloacal assemblages in a wild bird. Ecol Lett. 2010;13:1515–24.
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Schlechter RO, Miebach M, Remus-Emsermann MNP. Driving factors of epiphytic bacterial communities: a review. J Adv Res. 2019;19:57–65.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Remus-Emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    22.
    Remus-Emsermann MNP, Tecon R, Kowalchuk GA, Leveau JHJ. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 2012;6:756–65.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Rogers TJ, Leppanen C, Brown V, Fordyce JA, LeBude A, Ranney T, et al. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere. 2018;9:1–11.
    Article  Google Scholar 

    24.
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.
    PubMed  PubMed Central  Article  Google Scholar 

    25.
    Laforest-Lapointe I, Messier C, Kembel SW. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome. 2016;4:1–10.
    Article  Google Scholar 

    26.
    Kembel SW, Mueller RC. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany. 2014;92:303–11.
    Article  Google Scholar 

    27.
    Appel MH. The chewing herbivore gut lumen: Physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens. In: Bernays EA (ed.). Insect-plant interactions, 1st ed. 1994. CRC Press, Boca Raton, pp 209–23.

    28.
    Shannon AL, Attwood G, Hopcroft DH, Christeller JT. Characterization of lactic acid bacteria in the larval midgut of the keratinophagous lepidopteran, Hofmannophila pseudospretella. Lett Appl Microbiol. 2001;32:36–41.
    CAS  PubMed  Article  Google Scholar 

    29.
    Kukal O, Dawson TE, Kukal O, Dawson TE. Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia. 1989;79:526–32.
    PubMed  Article  Google Scholar 

    30.
    Vilanova C, Baixeras J, Latorre A, Porcar M. The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front Microbiol. 2016;7:1–8.
    Article  Google Scholar 

    31.
    Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One. 2012;7:1–10.
    Google Scholar 

    32.
    Jones AG, Mason CJ, Felton GW, Hoover K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep. 2019;9:1–11.
    Article  CAS  Google Scholar 

    33.
    Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. Caterpillars lack a resident gut microbiome. PNAS. 2017;114:9641–6.
    CAS  PubMed  Article  Google Scholar 

    34.
    Whitaker MRL, Salzman S, Sanders JG, Kaltenpoth M, Pierce NE. Microbial communities of lycaenid butterflies do not correlate with larval diet. Front Microbiol. 2016;7:1–13.
    Article  Google Scholar 

    35.
    Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One. 2013;8:6–13.
    Google Scholar 

    36.
    Azcárate-García M, Ruiz-Rodríguez M, Díaz-Lora S, Ruiz-Castellano C, Soler JJ. Experimentally broken faecal sacs affect nest bacterial environment, development and survival of spotless starling nestlings. J Avian Biol. 2019;50:1–10.
    Article  Google Scholar 

    37.
    Devaynes A, Antunes A, Bedford A, Ashton P. Progression in the bacterial load during the breeding season in nest boxes occupied by the Blue Tit and its potential impact on hatching or fledging success. J Ornithol. 2018;159:1009–17.
    Article  Google Scholar 

    38.
    Janczyk P, Hall B, Souffrant WB. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poult Sci. 2009;88:2324–32.
    CAS  PubMed  Article  Google Scholar 

    39.
    Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol. 2015;6:1–12.
    Article  Google Scholar 

    40.
    Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 2014;5:108–19.
    PubMed  Article  Google Scholar 

    41.
    Lewis WB, Moore FR, Wang S. Changes in gut microbiota of migratory passerines during stopover after crossing an ecological barrier. Auk. 2017;134:137–45.
    Article  Google Scholar 

    42.
    Kulkarni S, Heeb P. Social and sexual behaviours aid transmission of bacteria in birds. Behav Process. 2007;74:88–92.
    Article  Google Scholar 

    43.
    Dawkins R. The extended phenotype. Oxford: Oxford University Press; 1982.
    Google Scholar 

    44.
    Fisher DN, Haines JA, Boutin S, Dantzer B, Lane JE, Coltman DW, et al. Indirect effects on fitness between individuals that have never met via an extended phenotype. Ecol Lett. 2019;22:697–706.
    PubMed  Article  Google Scholar 

    45.
    Mennerat A, Perret P, Lambrechts MM. Local individual preferences for nest materials in a passerine bird. PLoS One. 2009;4:1–6.
    Article  CAS  Google Scholar 

    46.
    Blondel J, Thomas DW, Charmantier A, Perret P, Bourgault P, Lambrechts MM. A thirty-year study of phenotypic and genetic variation of blue tits in mediterranean habitat mosaics. Bioscience. 2006;56:661–73.
    Article  Google Scholar 

    47.
    Blondel J, Dias PC, Maistre M, Perret P. Habitat heterogeneity and life-history variation of mediterranean blue tits (Parus caeruleus). Auk. 1993;110:511–20.
    Article  Google Scholar 

    48.
    Visser ME, Van Noordwijk AJ, Tinbergen JM, Lessells CM. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc B Biol Sci. 1998;265:1867–70.
    Article  Google Scholar 

    49.
    Stenning M. The Blue Tit, 1st ed. (T. & A. D. Poyser, London, UK. 2018) pp 69–109.

    50.
    Blondel J, Aronson J, Bodiou J-Y, Boeuf G. The mediterranean region: biological diversity in space and time, 2nd ed. 2010. Oxford University Press, Oxford.

    51.
    Charmantier A, Doutrelant C, Dubuc-messier G, Fargevieille A, Szulkin M. Mediterranean blue tits as a case study of local adaptation. Evol Appl. 2016;9:135–52.
    PubMed  Article  Google Scholar 

    52.
    Dubuc-Messier G, Réale D, Perret P, Charmantier A. Environmental heterogeneity and population differences in blue tits personality traits. Behav Ecol. 2017;28:448–59.
    PubMed  Google Scholar 

    53.
    Bańbura J, Blondel J, de Wilde-Lambrechts H, Galan M-J, Maistre M. Nestling diet variation in an insular mediterranean population of blue tits Parus caeruleus: effects of years, territories and individuals. Oecologia. 1994;100:413–20.
    PubMed  Article  Google Scholar 

    54.
    Alda F, Rey I, Doadrio I. An improved method of extracting degraded DNA samples from birds and other species. Ardeola. 2007;54:331–4.
    Google Scholar 

    55.
    Oehm J, Juen A, Nagiller K, Neuhauser S, Traugott M. Molecular scatology: how to improve prey DNA detection success in avian faeces? Mol Ecol Resour. 2011;11:620–8.
    PubMed  Article  Google Scholar 

    56.
    Eriksson P, Mourkas E, González-Acuna D, Olsen B, Ellström P. Evaluation and optimization of microbial DNA extraction from fecal samples of wild Antarctic bird species. Infect Ecol Epidemiol. 2017;7:1–9.
    Google Scholar 

    57.
    Chelius MK, Triplett EW. The diversity of archaea and bacteria in association with the roots of Zea mays L. Micro Ecol. 2001;41:252–63.
    CAS  Article  Google Scholar 

    58.
    Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–3.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Davis NM, Proctor D, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2017;6:1–8.
    Google Scholar 

    61.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:1–11.
    Article  CAS  Google Scholar 

    62.
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 

    63.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. R package version 2.5-7. 2020.

    64.
    Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.
    CAS  PubMed  Article  Google Scholar 

    66.
    Müller T, Ruppel S. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol. 2014;87:2–17.
    PubMed  Article  CAS  Google Scholar 

    67.
    Chaturvedi S, Rego A, Lucas LK, Gompert Z. Sources of variation in the gut microbial community of Lycaeides melissa caterpillars. Sci Rep. 2017;7:1–13.
    Article  CAS  Google Scholar 

    68.
    Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis CK. Measuring the gut microbiome in birds: comparison of faecal and cloacal sampling. Mol Ecol Resour. 2017;18:424–34.
    PubMed  Article  CAS  Google Scholar 

    69.
    Lewis WB, Moore FR, Wang S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J Avian Biol. 2016;47:659–68.
    Article  Google Scholar 

    70.
    Sun CH, Liu H-Y, Zhang Y, Lu C-H. Comparative analysis of the gut microbiota of hornbill and toucan in captivity. Microbiologyopen. 2019;8:1–7.
    CAS  Article  Google Scholar 

    71.
    Teyssier A, Lens L, Matthysen E, White J. Dynamics of gut microbiota diversity during the early development of an avian host: evidence from a cross-foster experiment. Front Microbiol. 2018;9:1–12.
    Article  Google Scholar 

    72.
    Ambrosini R, Corti M, Franzetti A, Caprioli M, Rubolini D, Motta VM, et al. Cloacal microbiomes and ecology of individual barn swallows. FEMS Microbiol Ecol. 2019;95:1–13.
    Article  CAS  Google Scholar 

    73.
    Minard G, Tikhonov G, Ovaskainen O, Saastamoinen M. The microbiome of the Melitaea cinxia butterfly shows marked variation but is only little explained by the traits of the butterfly or its host plant. Environ Microbiol. 2019;21:4253–69.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    74.
    Godoy-Vitorino F, Leal SJ, Díaz WA, Rosales J, Goldfarb KC, García-Amado MA, et al. Differences in crop bacterial community structure between hoatzins from different geographical locations. Res Microbiol. 2012;163:211–20.
    PubMed  Article  Google Scholar 

    75.
    Lucas FS, Heeb P. Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J Avian Biol. 2005;36:510–6.
    Article  Google Scholar  More

  • in

    Predator-induced defence in a dinoflagellate generates benefits without direct costs

    1.
    Llewellyn LE. Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep. 2006;23:200–18.
    CAS  PubMed  Article  Google Scholar 
    2.
    Selander E, Thor P, Toth G, Pavia H. Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proc R Soc B. 2006;273:1673–80.
    CAS  PubMed  Article  Google Scholar 

    3.
    Turner JT, Tester PA. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol Oceanogr. 1997;42:1203–13.
    Article  Google Scholar 

    4.
    Smetacek V. A watery arms race. Nature. 2001;441:745.
    Article  Google Scholar 

    5.
    Xu J, Kiørboe T. Toxic dinoflagellates produce true grazer deterrents. Ecology. 2018;99:2240–9.
    PubMed  Article  Google Scholar 

    6.
    Cusick KD, Widder EA. Bioluminescence and toxicity as driving factors in harmful algal blooms: ecological functions and genetic variability. Harmful Algae. 2020;98:101850.
    CAS  PubMed  Article  Google Scholar 

    7.
    Pančić M, Kiørboe T. Phytoplankton defence mechanisms: traits and trade-offs: defensive traits and trade-offs. Biol Rev. 2018;93:1269–303.
    PubMed  Article  Google Scholar 

    8.
    John EH, Flynn KJ. Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N:P supply ratios on internal toxin and nutrient levels. Eur J Phycol. 2000;35:11–23.
    Google Scholar 

    9.
    Selander E, Cervin G, Pavia H. Effects of nitrate and phosphate on grazer-induced toxin production in Alexandrium minutum. Limnol Oceanogr. 2008;53:523–30.
    CAS  Article  Google Scholar 

    10.
    Blossom HE, Markussen B, Daugbjerg N, Krock B, Norlin A, Hansen PJ. The cost of toxicity in microalgae: direct evidence from the dinoflagellate Alexandrium. Front Microbiol. 2019;10:1065.
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Brown ER, Kubanek J. Harmful alga trades off growth and toxicity in response to cues from dead phytoplankton. Limnol Oceanogr. 2020;65:1723–33.

    12.
    Windust AJ, Wright JLC, McLachlan JL. The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-1, on the growth of microalgae. Mar Biol. 1996;126:19–25.
    CAS  Article  Google Scholar 

    13.
    Legrand C, Rengefors K, Fistarol GO, Granéli E. Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia. 2003;42:406–19.
    Article  Google Scholar 

    14.
    John E, Flynn K. Modelling changes in paralytic shellfish toxin content of dinoflagellates in response to nitrogen and phosphorus supply. Mar Ecol Prog Ser. 2002;225:147–60.
    CAS  Article  Google Scholar 

    15.
    Lundholm N, Krock B, John U, Skov J, Cheng J, Pančić M, et al. Induction of domoic acid production in diatoms—types of grazers and diatoms are important. Harmful Algae. 2018;79:64–73.
    CAS  PubMed  Article  Google Scholar 

    16.
    Bergkvist J, Selander E, Pavia H. Induction of toxin production in dinoflagellates: the grazer makes a difference. Oecologia. 2008;156:147–54.
    PubMed  Article  Google Scholar 

    17.
    Griffin JE, Park G, Dam HG. Relative importance of nitrogen sources, algal alarm cues and grazer exposure to toxin production of the marine dinoflagellate Alexandrium catenella. Harmful Algae. 2019;84:181–7.
    CAS  PubMed  Article  Google Scholar 

    18.
    Selander E, Berglund EC, Engström P, Berggren F, Eklund J, Harðardóttir S, et al. Copepods drive large-scale trait-mediated effects in marine plankton. Sci Adv. 2019;5:eaat5096.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    19.
    Rhoades DF. Evolution of plant chemical defense against herbivores. Herbivores: their interaction with secondary plant metabolites. New York: Academic Press;1979. p 1–55.

    20.
    Karban R. The ecology and evolution of induced resistance against herbivores: induced resistance against herbivores. Funct Ecol. 2011;25:339–47.
    Article  Google Scholar 

    21.
    Strauss SY, Rudgers JA, Lau JA, Irwin RE. Direct and ecological costs of resistance to herbivory. TREE. 2002;17:278–85.
    Google Scholar 

    22.
    Agrawal AA. Current trends in the evolutionary ecology of plant defence. Funct Ecol. 2011;25:420–32.
    Article  Google Scholar 

    23.
    Pančić M, Torres RR, Almeda R, Kiørboe T. Silicified cell walls as a defensive trait in diatoms. Proc R Soc B. 2019;286:20190184.
    PubMed  Article  CAS  Google Scholar 

    24.
    Grønning J, Kiørboe T. Diatom defence: grazer induction and cost of shell‐thickening. Funct Ecol. 2020;34:1790–1801.

    25.
    Kiørboe T, Andersen KH. Nutrient affinity, half-saturation constants and the cost of toxin production in dinoflagellates. Ecol Lett. 2019;22:558–60.
    PubMed  Article  Google Scholar 

    26.
    Wang X, Wang Y, Ou L, He X, Chen D. Allocation costs associated with induced defense in Phaeocystis globosa (Prymnesiophyceae): the effects of nutrient availability. Sci Rep. 2015;5:10850.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Zhu X, Wang J, Chen Q, Chen G, Huang Y, Yang Z. Costs and trade-offs of grazer-induced defenses in Scenedesmus under deficient resource. Sci Rep. 2016;6:22594.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Redfield AC. The biological control of chemical factors in the environment. Am Sci. 1958;46:205–21.
    CAS  Google Scholar 

    29.
    Boyer GL, Sullivan JJ, Andersen RJ, Harrison PJ, Taylor FJR. Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis. Mar Biol. 1987;96:123–8.
    CAS  Article  Google Scholar 

    30.
    Leong SCY, Murata A, Nagashima Y, Taguchi S. Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon. 2004;43:407–15.
    CAS  PubMed  Article  Google Scholar 

    31.
    Chakraborty S, Pančić M, Andersen KH, Kiørboe T. The cost of toxin production in phytoplankton: the case of PST producing dinoflagellates. ISME J. 2019;13:64–75.
    CAS  PubMed  Article  Google Scholar 

    32.
    Andersson L. Trends in nutrient and oxygen concentrations in the Skagerrak-Kattegat. J Sea Res. 1996;35:63–71.
    CAS  Article  Google Scholar 

    33.
    Tiselius P, Belgrano A, Andersson L, Lindahl O. Primary productivity in a coastal ecosystem: a trophic perspective on a long-term time series. J Plankton Res. 2016;38:1092–102.
    CAS  Article  Google Scholar 

    34.
    Kiørboe T, Nielsen TG. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol Oceanogr. 1994;39:493–507.
    Article  Google Scholar 

    35.
    Selander E, Kubanek J, Hamberg M, Andersson MX, Cervin G, Pavia H. Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc Natl Acad Sci USA. 2015;112:6395–400.
    CAS  PubMed  Article  Google Scholar 

    36.
    Hansen PJ. The red tide dinoflagellate Alexandrium tamarense: effects on behaviour and growth of a tintinnid ciliate. Mar Ecol Prog Ser. 1989;53:105–16.
    Article  Google Scholar 

    37.
    Berdalet E, Peters F, Koumandou VL, Roldán C, Guadayol Ò, Estrada M. Species-specific physiological response of dinoflagellates to quantified small-scale turbulence 1. J Phycol. 2007;43:965–77.
    Article  Google Scholar 

    38.
    Fischer R, Andersen T, Hillebrand H, Ptacnik R. The exponentially fed batch culture as a reliable alternative to conventional chemostats. Limnol Oceanogr Meth. 2014;12:432–40.
    Article  Google Scholar 

    39.
    Flynn K, Jones KJ, Flynn KJ. Comparisons among species of Alexandrium (Dinophyceae) grown in nitrogen- or phosphorus-limiting batch culture. Mar Biol. 1996;126:9–18.
    CAS  Article  Google Scholar 

    40.
    Brandenburg KM, Wohlrab S, John U, Kremp A, Jerney J, Krock B, et al. Intraspecific trait variation and trade-offs within and across populations of a toxic dinoflagellate. Ecol Lett. 2018;21:1561–71.
    PubMed  Article  Google Scholar 

    41.
    Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35:403–24.
    Article  Google Scholar 

    42.
    Schnetger B, Lehners C. Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III)chloride as a reduction agent. Mar Chem. 2014;160:91–8.
    CAS  Article  Google Scholar 

    43.
    Asp TN, Larsen S, Aune T. Analysis of PSP toxins in Norwegian mussels by a post-column derivatization HPLC method. Toxicon. 2004;43:319–27.
    CAS  PubMed  Article  Google Scholar 

    44.
    Turner A, Tölgyesi L. Determination of Paralytic Shellfish Toxins and Tetrodotoxin in Shellfish using HILIC/MS/MS. Application Note No. 5994-0967EN. [Internet]. 2019. Available from: https://www.agilent.com/en/solutions/food-testing-agriculture/seafood-testing.

    45.
    Franco JM, Fernández P, Reguera B. Toxin profiles of natural populations and cultures of Alexandrium minutum Halim from Galician (Spain) coastal waters. J Appl Phycol. 1994;6:275–9.
    CAS  Article  Google Scholar 

    46.
    Xu J, Hansen PJ, Nielsen LT, Krock B, Tillmann U, Kiørboe T. Distinctly different behavioral responses of a copepod, Temora longicornis, to different strains of toxic dinoflagellates, Alexandrium spp. Harmful Algae. 2017;62:1–9.
    PubMed  Article  Google Scholar 

    47.
    Wood S, Scheipl F. gamm4: Generalized additive mixed models using mgcv and lme4. R package version 0.2-6. [Internet]. 2020. Available from: https://cran.r-project.org/.

    48.
    Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Soft 2017;82:1–26.

    49.
    Wohlrab S, Selander E, John U. Predator cues reduce intraspecific trait variability in a marine dinoflagellate. BMC Ecol. 2017;17:8.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Driscoll WW, Hackett JD, Ferrière R. Eco-evolutionary feedbacks between private and public goods: evidence from toxic algal blooms. Ecol Lett. 2016;19:81–97.
    PubMed  Article  Google Scholar 

    51.
    Flynn K, Franco J, Fernandez P, Reguera B, Zapata M, Wood G, et al. Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen or phosphorus stress. Mar Ecol Prog Ser. 1994;111:99–109.
    CAS  Article  Google Scholar 

    52.
    Tillmann U, John U. Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser. 2002;230:47–58.
    CAS  Article  Google Scholar 

    53.
    Tillmann U, Hansen PJ. Allelopathic effects of Alexandrium tamarense on other algae: evidence from mixed growth experiments. Aquat Micro Ecol. 2009;57:101–12.
    Article  Google Scholar 

    54.
    Teegarden GJ, Campbell RG, Anson DT, Ouellett A, Westman BA, Durbin EG. Copepod feeding response to varying Alexandrium spp. cellular toxicity and cell concentration among natural plankton samples. Harmful Algae. 2008;7:33–44.
    Article  Google Scholar 

    55.
    Peter KH, Sommer U. Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size. Ecol Evol. 2015;5:1011–24.
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Garcia NS, Bonachela JA, Martiny AC. Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine. Synechococcus ISME J. 2016;10:2715–24.
    CAS  PubMed  Article  Google Scholar 

    57.
    Kiørboe T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol. 1993;29:1–72.
    Article  Google Scholar 

    58.
    Lindemann C, Fiksen Ø, Andersen KH, Aksnes DL. Scaling laws in phytoplankton nutrient uptake affinity. Front Microbiol. 2016;3:1–6.
    Google Scholar 

    59.
    Edwards KF, Thomas MK, Klausmeier CA, Litchman E. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol Oceanogr. 2012;57:554–66.
    Article  Google Scholar 

    60.
    Lürling M, Van Donk E. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos. 2000;88:111–8.
    Article  Google Scholar 

    61.
    Selander E, Jakobsen HH, Lombard F, Kiorboe T. Grazer cues induce stealth behavior in marine dinoflagellates. Proc Natl Acad Sci USA. 2011;108:4030–4.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Kiørboe T. A mechanistic approach to plankton ecology. Princeton, NJ: Princeton University Press; 2008. pp. 128–129.

    63.
    Tollrian R, Harvell CD. The ecology and evolution of inducible defenses. Princeton, NJ: Princeton University Press; 1999. pp. 1–383.

    64.
    Leao T, Castelão G, Korobeynikov A, Monroe EA, Podell S, Glukhov E, et al. Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea. Proc Natl Acad Sci USA. 2017;114:3198–203.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Züst T, Agrawal AA. Trade-Offs Between Plant Growth and Defense Against Insect Herbivory: An Emerging Mechanistic Synthesis. Annu Rev Plant Biol. 2017;68:513–34.
    PubMed  Article  CAS  PubMed Central  Google Scholar  More

  • in

    Changes in the large carnivore community structure of the Judean Desert in connection to Holocene human settlement dynamics

    1.
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
    PubMed  Article  CAS  Google Scholar 
    2.
    Dietl, G. P. et al. Conservation paleobiology: Leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).
    ADS  CAS  Article  Google Scholar 

    3.
    Rick, T. C. & Lockwood, R. Integrating paleobiology, archeology, and history to inform biological conservation. Conserv. Biol. 27, 45–54 (2013).
    PubMed  Article  Google Scholar 

    4.
    Dietl, G. P. Brave new world of conservation paleobiology. Front. Ecol. Evol. 4, 21 (2016).
    Article  Google Scholar 

    5.
    Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).
    ADS  PubMed  Article  CAS  Google Scholar 

    6.
    Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).
    ADS  PubMed  Article  CAS  Google Scholar 

    7.
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
    Article  Google Scholar 

    9.
    Faurby, S., Silvestro, D., Werdelin, L. & Antonelli, A. Brain expansion in early hominins predicts carnivore extinctions in East Africa. Ecol. Lett. 23, 537–544 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    10.
    Van Der Kaars, S. et al. Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nat. Commun. 8, 1–7 (2017).
    ADS  Article  CAS  Google Scholar 

    11.
    Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl. Acad. Sci. U. S. A. 111, 14472–14477 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Tsahar, E., Izhaki, I., Lev-Yadun, S. & Bar-Oz, G. Distribution and Extinction Of Ungulates During The Holocene of the Southern Levant. PLoS ONE 4, e5316 (2009).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Boivin, N. L. et al. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. U. S. A. 113, 6388–16396 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Jęodrzejewska, B., Jęodrzejewski, W., Bunevich, A. N., Minkowski, L. & Okarma, H. Population dynamics of Wolves Canis lupus in Bialowieża Primeval Forest (Poland and Belarus) in relation to hunting by humans, 1847–1993. Mamm. Rev. 26, 103–126 (1996).
    Article  Google Scholar 

    15.
    Orbach, M. & Yeshurun, R. The hunters or the hunters: Human and hyena prey choice divergence in the Late Pleistocene Levant. J. Hum. Evol. 102572 (2019).

    16.
    Werdelin, L. & Lewis, M. E. Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. PLoS ONE 8, e57944 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    Albrecht, J. et al. Humans and climate change drove the Holocene decline of the brown bear. Sci. Rep. 7, 10399 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    18.
    Dayan, T. Carnivore diversity in the late quaternary of Israel. Quat. Res. 41, 343–349 (1994).
    Article  Google Scholar 

    19.
    Price, G. J., Louys, J., Faith, J. T., Lorenzen, E. & Westaway, M. C. Big data little help in megafauna mysteries. Nature 558, 23–25 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    21.
    Mittelbach, G. G. & McGill, B. J. Community Ecology (Oxford University Press, Oxford, 2019).
    Google Scholar 

    22.
    Hebblewhite, M. et al. Human activity mediates a trophic cascade caused by wolves. Ecology 86, 2135–2144 (2005).
    Article  Google Scholar 

    23.
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Hoeks, S. et al. Mechanistic insights into the role of large carnivores for ecosystem structure and functioning. Ecography 283, 3 (2020).
    Google Scholar 

    25.
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).
    Article  Google Scholar 

    26.
    Mendelssohn, H. & Yom-Tov, Y. Mammalia of Israel. 476 (Israel Academy of Sciences and Humanities, 1999).

    27.
    Hadas, G. Ancient agricultural irrigation systems in the oasis of Ein Gedi, Dead Sea, Israel. J. Arid Environ. 86, 75–81 (2012).
    ADS  Article  Google Scholar 

    28.
    Bar-Matthews, M., Ayalon, A., Kaufman, A. & Wasserburg, G. J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet. Sci. Lett. 166, 85–95 (1999).
    ADS  CAS  Article  Google Scholar 

    29.
    Litt, T., Ohlwein, C., Neumann, F. H. & Hense, A. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 49, 95–105 (2012).
    ADS  Article  Google Scholar 

    30.
    Vaks, A., Bar-Matthews, M., Ayalon, A. & Matthews, A. Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth Planet. Sci. Lett. 249, 384–399 (2006).
    ADS  CAS  Article  Google Scholar 

    31.
    Frumkin, A. & Elitzur, Y. Historic Dead Sea level fluctuations calibrated with geological and archaeological evidence. Quat. Res. 57, 334–342 (2002).
    Article  Google Scholar 

    32.
    Lisker, S. et al. Late Quaternary environmental and human events at En Gedi, reflected by the geology and archaeology of the Moringa Cave (Dead Sea area, Israel). Quat. Res. 68, 203–212 (2007).
    Article  Google Scholar 

    33.
    Frumkin, A., Langford, B. & Porat, R. The Judean Desert—The major hypogene cave region of the Southern Levant. In Hypogene Karst Regions and Caves of the World (eds Klimchouk, A. et al.) 463–477 (Springer, Berlin, 2017).
    Google Scholar 

    34.
    Frumkin, A., Zaidner, Y., Na’aman, I., Tsatskin, A. & Porat, N. Sagging and collapse sinkholes over hypogenic hydrothermal karst in a carbonate terrain. Geomorphology 229, 45–57 (2015).
    ADS  Article  Google Scholar 

    35.
    Davidovich, U. The Chalcolithic—Early bronze age transition: A view from the Judean Desert Caves, Southern Levant. Paléorient 39, 125–138 (2013).
    Article  Google Scholar 

    36.
    Rick, J. W. Dates as data: An examination of the Peruvian preceramic radiocarbon record. Am. Antiq. 52, 55–73 (1987).
    Article  Google Scholar 

    37.
    Jacobson, A. P. et al. Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4, e1974 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Shamoon, H. & Shapira, I. Limiting factors of Striped Hyaena, Hyaena hyaena, distribution and densities across climatic and geographical gradients (Mammalia: Carnivora). Zool. Middle East 65, 189–200 (2019).
    Article  Google Scholar 

    39.
    Yirga, G. et al. Spotted hyena (Crocuta crocuta) concentrate around urban waste dumps across Tigray, northern Ethiopia. Wildl. Res. 42, 563–569 (2016).
    Article  Google Scholar 

    40.
    Davidovich, U. The Judean Desert during the Chalcolithic, Bronze and Iron Ages (Sixth-First Millennia BC): Desert and Sown Relations in light of Activity Patterns in a Defined Desert Environment (The Hebrew University, Jerusalem, 2014).
    Google Scholar 

    41.
    Geffen, E., Hefner, R., MacDonald, D. W. & Ucko, M. Diet and Foraging Behavior of Blanford’s Foxes, Vulpes cana, Israel. J. Mammal. 73, 395–402 (1992).
    Article  Google Scholar 

    42.
    Tchernov, E. The Middle Paleolithic mammalian sequence and its bearing on the origin of Homo sapiens in the southern Levant. in Investigations in South Levantine Prehistory (eds. Bar-Yosef, 0. & Vandermeersch, B.) 25–42 (BAR, International Series 497, 1989).

    43.
    Garfinkel, Y. et al. Pottery Neolithic Site in the Southern Coastal Plain of Israel, A final report. J. Israel Prehist. Soc. 32, 73–145 (2002).
    Google Scholar 

    44.
    Tichon, J., Rotem, G. & Ward, P. Estimating abundance of striped hyenas (Hyaena hyaena) in the Negev Desert of Israel using camera traps and closed capture–recapture models. Eur. J. Wildl. Res. 63, 5 (2016).
    Article  Google Scholar 

    45.
    Perez, I., Geffen, E. & Mokady, O. Critically Endangered Arabian leopards Panthera pardus nimr in Israel: estimating population parameters using molecular scatology. Oryx 40, 295–301 (2006).
    Article  Google Scholar 

    46.
    Avner, U. et al. Carnivore traps in the Negev and Judaean deserts (Israel): function, location and chronology. in Prédateurs dans tous leurs états: évolution, biodiversité, interactions, mythes, symboles. Actes des XXXIe rencontres internationales d’archéologie et d’histoire d’Antibes, 21–23 octobre 2010 (eds. Brugal, J. P., Gardeisen, A. & Zucker, A.) 253–268 (2011).

    47.
    Hadas, G. Hunting Traps around the Oasis of ʿEn Gedi. Israel Explor. J. 61, 2–11 (2011).
    Google Scholar 

    48.
    Torfstein, A., Goldstein, S. L., Stein, M. & Enzel, Y. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quat. Sci. Rev. 69, 1–7 (2013).
    ADS  Article  Google Scholar 

    49.
    Torfstein, A. et al. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth Planet. Sci. Lett. 412, 235–244 (2015).
    ADS  CAS  Article  Google Scholar 

    50.
    Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R. & Frumkin, A. Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quat. Sci. Rev. 29, 1201–1211 (2010).
    Article  Google Scholar 

    51.
    Frumkin, A. & Comay, O. The last glacial cycle of the southern Levant: Paleoenvironment and chronology of modern humans. J. Hum. Evol. https://doi.org/10.1016/j.jhevol.2019.04.007 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    52.
    Orland, I. J. et al. Seasonal resolution of Eastern Mediterranean climate change since 34ka from a Soreq Cave speleothem. Geochim. Cosmochim. Acta 89, 240–255 (2012).
    ADS  CAS  Article  Google Scholar 

    53.
    Bar-Matthews, M. & Ayalon, A. Speleothems as palaeoclimate indicators, a case study from Soreq Cave located in the Eastern Mediterranean Region, Israel. In Past Climate Variability Through Europe and Africa (eds Battarbee, R. W. et al.) 363–391 (Springer, Berlin, 2004).
    Google Scholar 

    54.
    Frumkin, A., Kadan, G., Enzel, Y. & Eyal, Y. Radiocarbon chronology of the Holocene Dead Sea: Attempting a regional correlation. Radiocarbon 43, 1179–1189 (2001).
    CAS  Article  Google Scholar 

    55.
    Morin, E., Ryb, T., Gavrieli, I. & Enzel, Y. Mean, variance, and trends of Levant precipitation over the past 4500 years from reconstructed Dead Sea levels and stochastic modeling. Quat. Res. 91, 751–767 (2019).
    CAS  Article  Google Scholar 

    56.
    Enzel, Y. et al. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res. 60, 263–273 (2003).
    Article  Google Scholar 

    57.
    Bookman, R., Enzel, Y., Agnon, A. & Stein, M. Late Holocene lake levels of the Dead Sea. GSA Bull. 116, 555–571 (2004).
    Article  Google Scholar 

    58.
    Kagan, E. J., Langgut, D., Boaretto, E., Neumann, F. H. & Stein, M. Dead Sea levels during the Bronze and Iron ages. Radiocarbon 57, 237–252 (2015).
    Article  Google Scholar 

    59.
    Vaks, A. et al. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quat. Res. 59, 182–193 (2003).
    CAS  Article  Google Scholar 

    60.
    Frumkin, A., Ford, D. C. & Schwarcz, H. P. Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quat. Res. 51, 317–327 (1999).
    CAS  Article  Google Scholar 

    61.
    Kolodny, Y., Stein, M. & Machlus, M. Sea-rain-lake relation in the Last Glacial East Mediterranean revealed by δ18O-δ13C in Lake Lisan aragonites. Geochim. Cosmochim. Acta 69, 4045–4060 (2005).
    ADS  CAS  Article  Google Scholar 

    62.
    Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, C. J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).
    ADS  CAS  Article  Google Scholar 

    63.
    Greenbaum, N., Ben-Zvi, A., Haviv, I. & Enzel, Y. The hydrology and paleohydrology of the Dead Sea tributaries. Geol. Soc. Am. Spec. Publ. 401, 63–93 (2006).
    Google Scholar 

    64.
    Enzel, Y. et al. The climatic and physiographic controls of the eastern Mediterranean over the late Pleistocene climates in the southern Levant and its neighboring deserts. Glob. Planet. Change 60, 165–192 (2008).
    ADS  Article  Google Scholar 

    65.
    Petraglia, M. D., Groucutt, H. S., Guagnin, M., Breeze, P. S. & Boivin, N. Human responses to climate and ecosystem change in ancient Arabia. Proc. Natl. Acad. Sci. U. S. A. 117, 8263–8270 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Frumkin, A. Holy Land Atlas: Judean Desert Caves (Magnes Press, Jerusalem, 2015).
    Google Scholar 

    67.
    Klein, E., Davidovich Uri, Porat, R., Ganor, A. & Ullman, M. In the Cave of the Skulls-Again. Biblic. Archaeol. Rev. 43, 18–19 and 57 (2017).

    68.
    Cherkinsky, A. Can we get a good radiocarbon age from “bad bone”? Determining the reliability of radiocarbon age from bioapatite. Radiocarbon 51, 647–655 (2009).
    CAS  Article  Google Scholar 

    69.
    Zazzo, A. & Saliège, J. F. Radiocarbon dating of biological apatites: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 52–61 (2011).
    Article  Google Scholar 

    70.
    Ramsey, C. B. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).
    ADS  Article  Google Scholar 

    71.
    Bevan, A., Crema, E. & Silva, F. rcarbon: Calibration and Analysis of Radiocarbon Dates. R package version 1 (2017). More

  • in

    Impact of synbiotics on gut microbiota during early life: a randomized, double-blind study

    1.
    Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331), 543–547 (2011).
    ADS  CAS  Article  Google Scholar 
    2.
    Huda, M. N. et al. Stool microbiota and vaccine responses of infants. Pediatrics 134(2), e362–372 (2014).
    Article  Google Scholar 

    3.
    Chichlowski, M., De Lartigue, G., German, J. B., Raybould, H. E. & Mills, D. A. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J. Pediatr. Gastroenterol. Nutr. 55(3), 321–332 (2012).
    CAS  Article  Google Scholar 

    4.
    Lewis, Z. T. & Mills, D. A. Differential establishment of bifidobacteria in the breastfed infant Ggut. Nestle Nutr. Inst. Workshop Series. 88, 149–159 (2017).
    Article  Google Scholar 

    5.
    Tannock, G. W., Lee, P. S., Wong, K. H. & Lawley, B. Why don’t all infants have bifidobacteria in their stool?. Front. Microbiol. 7, 834 (2016).
    Article  Google Scholar 

    6.
    Kumar, H. et al. The bifidogenic effect revisited—ecology and health perspectives of bifidobacterial colonization in early life. Microorganisms 8(12), 1855. https://doi.org/10.3390/microorganisms8121855 (2020).

    7.
    Bryant, K. & McDonald, L. C. Clostridium difficile infections in children. Pediatr. Infect. Dis. J. 28(2), 145–146 (2019).
    Article  Google Scholar 

    8.
    Lee, S. H., Gong, Y. N. & Ryoo, E. Clostridium difficile colonization and/or infection during infancy and the risk of childhood allergic diseases. Korean J. Pediatr. 60(5), 145–150 (2017).
    Article  Google Scholar 

    9.
    Shamir, R. The benefits of breast feeding. Nestle Nutr. Inst. Workshop Series. 86, 67–76 (2016).
    Article  Google Scholar 

    10.
    Turck, D. et al. Breastfeeding: Health benefits for child and mother. Arch. Pediatr. Organe Off. Soc. Francaise Pediatr. 20, S29-48 (2013).
    Google Scholar 

    11.
    Martin, R. et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 143(6), 754–758 (2003).
    CAS  Article  Google Scholar 

    12.
    Perez, P. F. et al. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells?. Pediatrics 119(3), e724-732 (2007).
    Article  Google Scholar 

    13.
    Fernandez, L. et al. The microbiota of human milk in healthy women. Cell Mol. Biol. 59(1), 31–42 (2013).
    CAS  PubMed  Google Scholar 

    14.
    Heikkila, M. P. & Saris, P. E. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 95(3), 471–478 (2003).
    CAS  Article  Google Scholar 

    15.
    Damaceno, Q. S. et al. Evaluation of potential probiotics isolated from human milk and colostrum. Probiot. Antimicrob. Proteins. 9(4), 371–379 (2017).
    Article  Google Scholar 

    16.
    Boix-Amoros, A., Collado, M. C. & Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front. Microbiol. 7, 492 (2016).
    Article  Google Scholar 

    17.
    Collado, M. C., Delgado, S., Maldonado, A. & Rodriguez, J. M. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett. Appl. Microbiol. 48(5), 523–528 (2009).
    CAS  Article  Google Scholar 

    18.
    Martin, R. et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 75(4), 965–969 (2009).
    CAS  Article  Google Scholar 

    19.
    Qian, L., Song, H. & Cai, W. Determination of Bifidobacterium and Lactobacillus in breast milk of healthy women by digital PCR. Beneficial Microb. 7(4), 559–569 (2016).
    CAS  Article  Google Scholar 

    20.
    Soto, A. et al. Lactobacilli and bifidobacteria in human breast milk: Influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 59(1), 78–88 (2014).
    Article  Google Scholar 

    21.
    Sugahara, H., Odamaki, T., Hashikura, N., Abe, F. & Xiao, J. Z. Differences in folate production by bifidobacteria of different origins. Biosci. Microb. Food Health. 34(4), 87–93 (2015).
    CAS  Article  Google Scholar 

    22.
    Odamaki, T. et al. Comparative genomics revealed genetic diversity and species/strain-level differences in carbohydrate metabolism of three probiotic bifidobacterial species. Int. J. Genom. 2015, 567809 (2015).
    Google Scholar 

    23.
    Kolida, S. & Gibson, G. R. Synbiotics in health and disease. Ann. Rev. Food Sci. Technol. 2, 373–393 (2011).
    Article  Google Scholar 

    24.
    Gurry, T. Synbiotic approaches to human health and well-being. Microb. Biotechnol. 10(5), 1070–1073 (2017).
    Article  Google Scholar 

    25.
    Chua, M. C. et al. Effect of synbiotic on the gut microbiota of cesarean delivered infants: A randomized, double-blind, multicenter study. J. Pediatr. Gastroenterol. Nutr. 65(1), 102–106 (2017).
    Article  Google Scholar 

    26.
    van Aa, L. B. et al. Effect of a new synbiotic mixture on atopic dermatitis in infants: A randomized-controlled trial. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 40(5), 795–804 (2010).
    Google Scholar 

    27.
    Ouwehand, A. C. A review of dose–responses of probiotics in human studies. Beneficial Microb. 8(2), 143–151 (2017).
    CAS  Article  Google Scholar 

    28.
    Bakker-Zierikzee, A. M. et al. Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br. J. Nutr. 94(5), 783–790 (2005).
    CAS  Article  Google Scholar 

    29.
    Haarman, M. & Knol, J. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71(5), 2318–2324 (2005).
    CAS  Article  Google Scholar 

    30.
    Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2(3), 269–277. https://doi.org/10.1111/j.2041-210X.2010.00078.x (2011).
    Article  Google Scholar 

    31.
    O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).
    Article  Google Scholar 

    32.
    Turroni, F., Ribbera, A., Foroni, E., van Sinderen, D. & Ventura, M. Human gut microbiota and bifidobacteria: From composition to functionality. Antonie Van Leeuwenhoek 94(1), 35–50 (2008).
    Article  Google Scholar 

    33.
    Hidalgo-Cantabrana, C. et al. Bifidobacteria and their health-promoting effects. Microbiol. Spectrum. https://doi.org/10.1128/microbiolspec.BAD-0010-2016 (2017).
    Article  Google Scholar 

    34.
    Underwood, M. A. et al. A comparison of two probiotic strains of bifidobacteria in premature infants. J. Pediatr. 163(6), 1585–1591.e1589 (2013).
    CAS  Article  Google Scholar 

    35.
    Bridgman, S. L. et al. Fecal short-chain fatty acid variations by breastfeeding status in infants at 4 months: Differences in relative versus absolute concentrations. Front. Nutr. 4, 11. https://doi.org/10.3389/fnut.2017.00011 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    36.
    Wopereis, H. et al. Intestinal microbiota in infants at high risk for allergy: Effects of prebiotics and role in eczema development. J. Allergy Clin. Immunol. 141(4), 1334–1342.e5 (2017).
    Article  Google Scholar 

    37.
    Tunc, V. T., Camurdan, A. D., Ilhan, M. N., Sahin, F. & Beyazova, U. Factors associated with defecation patterns in 0–24-month-old children. Eur. J. Pediatr. 167(12), 1357–1362 (2008).
    Article  Google Scholar 

    38.
    Infante, D. D., Segarra, O. O., Redecillas, S. S., Alvarez, M. M. & Miserachs, M. M. Modification of stool’s water content in constipated infants: management with an adapted infant formula. Nutr. J. 10, 55. https://doi.org/10.1186/1475-2891-10-55 (2011).
    Article  PubMed  PubMed Central  Google Scholar 

    39.
    Valdes-Varela, L., Hernandez-Barranco, A. M., Ruas-Madiedo, P. & Gueimonde, M. Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front. Microbiol. 7, 738 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15(10), 630–638 (2017).
    CAS  Article  Google Scholar 

    41.
    Baglatzi, L. et al. Effect of infant formula containing a low dose of the probiotic Bifidobacterium lactis CNCM I-3446 on immune and gut functions in c-section delivered babies: A pilot study. Clin. Med. Insights. Pediatr. 10, 11–19 (2016).
    CAS  Article  Google Scholar  More

  • in

    Peaks in bat activity at turbines and the implications for mitigating the impact of wind energy developments on bats

    1.
    IRENA. Global Energy Transformation: A Roadmap to 2050 (International Renewable Energy Agency, Abu Dhabi, 2018).
    Google Scholar 
    2.
    Onakpoya, I. J., O’Sullivan, J., Thompson, M. J. & Heneghan, C. J. The effect of wind turbine noise on sleep and quality of life: A systematic review and meta-analysis of observational studies. Environ. Int. 82, 1–9 (2015).
    Article  Google Scholar 

    3.
    Minderman, J., Pendlebury, C. J., Pearce-Higgins, J. W. & Park, K. J. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity. PLoS ONE 7, e41177 (2012).
    ADS  CAS  Article  Google Scholar 

    4.
    Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. IProc. R. Soc. B 284, 20170829 (2017).
    Article  Google Scholar 

    5.
    Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).
    Article  Google Scholar 

    6.
    Frick, W. F. et al. Fatalities at wind turbines may threaten population viability of a migratory bat. Biol. Conserv. 209, 172–177 (2017).
    Article  Google Scholar 

    7.
    Horn, J. W., Arnett, E. B. & Kunz, T. H. Behavioral responses of bats to operating wind turbines. J. Wildl. Manag. 72, 123–132 (2008).
    Article  Google Scholar 

    8.
    Roeleke, M., Blohm, T., Kramer-Schadt, S., Yovel, Y. & Voigt, C. C. Habitat use of bats in relation to wind turbines revealed by GPS tracking. Sci. Rep. 6, 28961 (2016).
    ADS  CAS  Article  Google Scholar 

    9.
    Cryan, P. M. et al. Behavior of bats at wind turbines. Proc. Natl. Acad. Sci. 111, 15126–15131 (2014).
    ADS  CAS  Article  Google Scholar 

    10.
    Rydell, J. et al. Mortality of bats at wind turbines links to nocturnal insect migration?. Eur. J. Wildl. Res. 56, 823–827 (2010).
    Article  Google Scholar 

    11.
    Millon, L., Colin, C., Brescia, F. & Kerbiriou, C. Wind turbines impact bat activity, leading to high losses of habitat use in a biodiversity hotspot. Ecol. Eng. 112, 51–54 (2018).
    Article  Google Scholar 

    12.
    Minderman, J., Gillis, M. H., Daly, H. F. & Park, K. J. Landscape-scale effects of single-and multiple small wind turbines on bat activity. Anim. Conserv. 20(5), 455–462 (2017).
    Article  Google Scholar 

    13.
    Lintott, P. R., Richardson, S. M., Hosken, D. J., Fensome, S. A. & Mathews, F. Ecological impact assessments fail to reduce risk of bat casualties at wind farms. Curr. Biol. 26, R1135–R1136 (2016).
    CAS  Article  Google Scholar 

    14.
    Lintott, P. R. et al. Ecobat: An online resource to facilitate transparent, evidence-based interpretation of bat activity data. Ecol. Evol. 8, 935–941 (2018).
    Article  Google Scholar 

    15.
    Rydell, J. et al. Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica 12, 261–274 (2010).
    Article  Google Scholar 

    16.
    Barré, K., Le Viol, I., Bas, Y., Julliard, R. & Kerbiriou, C. Estimating habitat loss due to wind turbine avoidance by bats: Implications for European siting guidance. Biol. Conserv. 226, 205–214 (2018).
    Article  Google Scholar 

    17.
    Verboom, B. & Huitema, H. The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecol. 12, 117–125 (1997).
    Article  Google Scholar 

    18.
    Roemer, C., Disca, T., Coulon, A. & Bas, Y. Bat flight height monitored from wind masts predicts mortality risk at wind farms. Biol. Conserv. 215, 116–122 (2017).
    Article  Google Scholar 

    19.
    Behr, O. et al. Mitigating bat mortality with turbine-specific curtailment algorithms: A model-based approach. In Wind Energy and Wildlife Interactions 135–160 (Springer, Cham, 2017).
    Google Scholar 

    20.
    Natural England and the Department for Environment, Food & Rural Affairs. Bats: Survey and mitigation for development projects (accessed 12 May 2017, 2015) https://www.gov.uk/guidance/bats-surveys-and-mitigation-for-development-projects.

    21.
    Akerboom, S. et al. A comparison into the application of the EU species protection regulation with respect to renewable energy projects in the Netherlands, United Kingdom, Belgium, Denmark, and Germany. Eur. Energy Environ. Law Rev. 28(4), 144–158 (2019).
    Google Scholar 

    22.
    Mathews, F., Richardson, S. M., Lintott, P. R. & Hosken, D. Understanding the risk to European protected species (bats) at onshore wind turbine sites to inform risk management. Department for Environment Food and Rural Affairs Science and Research Projects. WC00753 Final Report (Phase 2) (2016).

    23.
    Fenton, M., Jacobson, S. & Stone, R. An automatic ultrasonic sensing system for monitoring the activity of some bats. Can. J. Zool. 51, 291–299 (1973).
    Article  Google Scholar 

    24.
    Russ, J. British Bat Calls: A Guide to Species Identification (Pelagic Publishing, Exeter, 2012).
    Google Scholar 

    25.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.org/.

    26.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    27.
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).
    Google Scholar 

    28.
    EUROBATS. Report of the Intersessional Working Group on Wind Turbines and Bat Populations. Doc.EUROBATS.StC9-AC19.12. Heraklion, Greece, 7–10th April 2014.

    29.
    Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616 (2014).
    Article  Google Scholar 

    30.
    Morton, D., Rowland, C., Wood, C., Meek, L., Marston, C., Smith, G., Wadsworth, R. & Simpson, I. Final Report for LCM2007—The new UK land cover map. Countryside Survey Technical Report No 11/07 (2011).

    31.
    EDINA Digimap Ordnance Survey Service. OS MasterMap Topography Layer (accessed February 2015, 2015). http://edina.ac.uk/digimap. More

  • in

    Optimizing livestock carrying capacity for wild ungulate-livestock coexistence in a Qinghai-Tibet Plateau grassland

    1.
    Chapin, F. S., Folke, C. & Kofinas, G. P. A framework for understanding change. In Principles of Ecosystem Stewardship (eds Folke, C. et al.) (Springer, Berlin, 2009).
    Google Scholar 
    2.
    Ellis, E. C. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).
    Article  Google Scholar 

    3.
    Conover, M. R. Resolving Human–Wildlife Conflicts: The Science of Wildlife Damage Management (Lewis Publishers CRC Press, Boca Raton, 2002).
    Google Scholar 

    4.
    Madhusudan, M. D. Living amidst large wildlife: Livestock and crop depredation by large mammals in the interior villages of Bhadra Tiger Reserve, South India. Environ. Manag. 31, 0466–0475 (2003).
    CAS  Article  Google Scholar 

    5.
    Aryal, A., Brunton, D. H., Ji, W., Barraclough, R. K. & Raubenheimer, D. Human–carnivore conflict: Ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).
    Article  Google Scholar 

    6.
    Bhatnagar, Y. V., Wangchuk, R., Prins, H. H., Van Wieren, S. E. & Mishra, C. Perceived conflicts between pastoralism and conservation of the kiang Equus kiang in the Ladakh trans-Himalaya, India. Environ. Manag. 38, 934–941 (2006).
    Article  Google Scholar 

    7.
    Hernández, F., Corcoran, D., Graells, G., Roos, C. & Downey, M. C. Rancher perspectives of a livestock-wildlife conflict in Southern Chile. Rangelands 39, 56–63 (2017).
    Article  Google Scholar 

    8.
    Michalk, D. L. et al. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 30, 561–573 (2019).
    Article  Google Scholar 

    9.
    Hilker, T., Natsagdorj, E., Waring, R. H., Lyapustin, A. & Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Change Biol. 20, 418–428 (2014).
    ADS  Article  Google Scholar 

    10.
    Zheng, Z., Feng, C., Ye, S., Diao, Z. & Lü, S. Ecological pressures on grassland ecosystems and their conservation strategies in Northern China. Chin. J. Popul. Resourc. Environ. 13, 87–91 (2015).
    Article  Google Scholar 

    11.
    Wen, L. et al. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS ONE 8, e58432 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Krausman, P. R. et al. Livestock grazing, wildlife habitat, and rangeland values. Rangelands 31, 15–19 (2009).
    Article  Google Scholar 

    13.
    Bestelmeyer, B. T., Estell, R. E. & Havstad, K. M. Big questions emerging from a century of rangeland science and management. Rangel. Ecol. Manag. 65, 543–544 (2012).
    Article  Google Scholar 

    14.
    Galt, D., Molinar, F., Navarro, J., Joseph, J. & Holechek, J. L. Grazing capacity and stocking rate. Rangel. Arch. 22, 7–11 (2000).
    Google Scholar 

    15.
    Hobbs, N. T. & Swift, D. M. Estimates of habitat carrying capacity incorporating explicit nutritional constraints. J. Wildl. Manag. 49, 814–822 (1985).
    Article  Google Scholar 

    16.
    Vallentine, J. F. Grazing Management 2nd edn. (Academic Press, New York, 2001).
    Google Scholar 

    17.
    Mckeon, G. M. et al. Climate change impacts on northern Australian rangeland livestock carrying capacity: A review of issues. Rangel. J. 31, 1–29 (2009).
    Article  Google Scholar 

    18.
    Yu, L., Zhou, L., Liu, W. & Zhou, H. Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China. Pedosphere 20, 342–351 (2010).
    Article  Google Scholar 

    19.
    Chen, J. Review of canceling herds and returning to grassland policy in Sanjiangyuan Region in Qinghai Province: Based on survey of Maduo County. Natl. Res. Qinghai 19, 110–115 (2008).
    Google Scholar 

    20.
    Qin, D. Ecological Protection and Sustainable Development of Three-River-Source Area (Science Press, London, 2014).
    Google Scholar 

    21.
    Zhao, L., Li, Q. & Zhao, X. Multi-functionality and management of grassland in the Sanjiangyuan region. Resour. Sci. 42, 78–86 (2020).
    Google Scholar 

    22.
    Olson, D. M. & Dinerstein, E. The Global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 12, 502–515 (1998).
    Article  Google Scholar 

    23.
    Li, J. et al. Global priority conservation areas in the face of 21st century climate change. PLoS ONE 8, 54839 (2013).
    ADS  Article  CAS  Google Scholar 

    24.
    Zhou, H., Zhou, L., Liu, W., Zhao, X. & Lai, D. Causes of grassland degradation and sustainable development of animal husbandry in Maduo County, Qinghai Province. Grassl. China 25, 63–67 (2003).
    Google Scholar 

    25.
    Xu, J., Chen, J., Hu, Y. & Zhao, Z. Research on the status and the dynamic of grassland degradation in Maduo County Qinghai Province. Pratacult. Sci. 28, 359–364 (2011).
    Google Scholar 

    26.
    NDRCC. Three-River-Source National Park Master Plan. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201801/t20180117_962245.html. (National Development and Reform Commission of China, 2018).

    27.
    Fu, M. et al. Functional zoning and space management of three-river-source national park. J. Geog. Sci. 29, 2069–2084 (2019).
    Article  Google Scholar 

    28.
    Sun, J. et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 65, 1405–1414 (2020).
    Article  Google Scholar 

    29.
    Tuanmu, M. et al. Effects of payments for ecosystem services on wildlife habitat recovery. Conserv. Biol. 30, 827–835 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Watzold, F. & Drechsler, M. Spatially uniform versus spatially heterogeneous compensation payments for biodiversity-enhancing land-use measures. Environ. Resour. Econ. 31, 73–93 (2005).
    Article  Google Scholar 

    31.
    Hu, Z., Kong, D. & Jin, L. Grassland eco-compensation: Rate differentiations of “reward for balanced grazing” and its reasons. China Popul. Resour. Environ. 25, 152–159 (2015).
    Google Scholar 

    32.
    Lu, C., Xie, G. & Xiao, Y. Ecological Compensation and the cost of wildlife conservation: Chang Tang Grasslands, Tibet. J. Resour. Ecol. 3, 20–25 (2012).
    Article  Google Scholar 

    33.
    Sitters, J. et al. Herded cattle and wild grazers partition water but share forage resources during dry years in East African savannas. Biol. Cons. 142, 738–750 (2009).
    Article  Google Scholar 

    34.
    Stokely, T. D. & Betts, M. G. Deer-mediated ecosystem service versus disservice depends on forest management intensity. J. Appl. Ecol. 57, 31–42 (2019).
    Article  Google Scholar 

    35.
    Östman, Ö. et al. Estimating competition between wildlife and humans—a case of cormorants and coastal fisheries in the Baltic Sea. PLoS ONE 8, e83763 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Guerra, A. S. Wolves of the Sea: Managing human-wildlife conflict in an increasingly tense ocean. Marine Policy 99, 369–373 (2018).
    Article  Google Scholar 

    37.
    Xin, Y. et al. The evaluation of carrying capacity of grassland in Qinghai. Qinghai Pratacult. 20, 13–22 (2011).
    Google Scholar 

    38.
    Du, J., Wang, G. & Li, Y. Rate and causes of degradation of alpine grassland in the source regions of the Yangtze and Yellow River during the last 45 years. Acta Pratacult. Sin. 24, 5–15 (2015).
    Google Scholar 

    39.
    Yu, L. et al. Using remote sensing and GIS technologies to estimate grass yield and livestock carrying capacity of alpine grasslands in Golog Prefecture, China. Pedosphere 20, 342–351 (2010).
    Article  Google Scholar 

    40.
    Lü, X. et al. Spatio-temporal changes of grassland production based on MODIS NPP in the Three-River Source Region from 2006 to 2015. J. Nat. Resour. 32, 1857–1868 (2017).
    Google Scholar 

    41.
    Knapp, A. K. et al. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl. Acad. Sci. 117, 22249–22255 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Wu, X. et al. Predicting the shift of threatened ungulates’ habitats with climate change in Altun Mountain National Nature Reserve of the Northwestern Qinghai-Tibetan Plateau. Clim. Change 142, 331–344 (2017).
    Article  Google Scholar 

    43.
    Maduo County Local Records Compilation Committee. Maduo County Local Record (Qinghai Ethnic Publishing House, Qinghai, 2011).
    Google Scholar 

    44.
    Kondoh, H., Koizumi, T. & Ikeda, K. A geostatistical approach to spatial density distributions of sika deer (Cervus nippon). J. For. Res. 18, 93–100 (2013).
    Article  Google Scholar 

    45.
    Norris, D. et al. How to not inflate population estimates? Spatial density distribution of white-lipped peccaries in a continuous Atlantic forest. Anim. Conserv. 14, 492–501 (2011).
    Article  Google Scholar 

    46.
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
    Article  Google Scholar 

    47.
    Field, C. B., Randerson, J. T. & Malmström, C. M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 51, 74–88 (1995).
    ADS  Article  Google Scholar 

    48.
    Ali, I., Cawkwell, F., Dwyer, E., Barrett, B. & Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 9, 649–671 (2016).
    Article  Google Scholar 

    49.
    Chen, A. et al. Moisture availability mediates the relationship between terrestrial gross primary production and solar-induced chlorophyll fluorescence: Insights from global-scale variations. Glob. Change Biol. 2, 15373 (2020).
    Article  Google Scholar 

    50.
    Department of Animal Husbandry. Calculation of reasonable rangeland carrying capacity of natural grassland (NY/T635–2015). (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2015).

    51.
    Zhao, F., Lin, G. & Zhao, Z. The analysis of relationship between grassland and livestock based on MODIS vegetation index in Madoi in Qinghai. Heilongjiang Anim. Sci. Vet. Med. 1, 75–77 (2012).
    Google Scholar 

    52.
    Yang, L. et al. Tick-defense grooming patterns of two sympatric Tibetan ungulates. J. Zool. 307, 242–248 (2019).
    Article  Google Scholar  More

  • in

    Legume-rhizobium specificity effect on nodulation, biomass production and partitioning of faba bean (Vicia faba L.)

    1.
    Giller, K. E. et al. N2 Africa: Putting nitrogen fixation to work for smallholder farmers in Africa. In Agrological Intensification of Agricultural Systems in the African Highlands (eds Vanlauwe, B. et al.) 156–174 (Routledge, London, 2013).
    Google Scholar 
    2.
    Goss, M. J., de Varennes, A., Smith, P. S. & Ferguson, J. A. Nitrogen fixation by soybean grown with different levels of mineral nitrogen and fertilizer replacement value for a following crop. Can. J. So. Sci. 82, 139–145 (2002).
    Article  Google Scholar 

    3.
    Abdul-Aziz, A.L. Contribution of rhizobium and phosphorus fertilizer to biological nitrogen fixation and grain yield of soybean in the Tolon District. A Thesis Submitted to the Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, in partial fulfillment of the requirement of the degree of Master of Science in soil science (2013).

    4.
    Argaw, S. Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas spp. effect on soybean (Glycine max L. (Merri)) in Assossa area. J. Agric. Sci. Tech. 14, 213–224 (2012).
    CAS  Google Scholar 

    5.
    Keneni, G. et al. Phenotypic diversity for symbio-agronomic characters in Ethiopia chickpea (Cicer arietinum L.) germplasm accessions. Afr. J. Biotechnol. 11(63), 12634–12651 (2012).
    Google Scholar 

    6.
    Ouma, E. W., Asango, A. M., Maingi, J. & Njeru, M. Elucidating the potential of native rhizobial isolates to improve biological nitrogen fixation and growth of common bean and soybean in smallholder farming systems of Kenya. Int. J. Agron. 2016, 1–7 (2016).
    Article  CAS  Google Scholar 

    7.
    Stajković, O. et al. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom. Biotech. Lett. 16, 5919–5926 (2011).
    Google Scholar 

    8.
    Chen, Y. X. et al. Faba bean (Vicia faba L.) nodulating rhizobia in Panxi, China, are diverse at species, plant growth promoting ability, and symbiosis related gene levels. Front. Microbiol. 9, 1–10 (2018).
    Article  Google Scholar 

    9.
    Saἲdi, S., Chebil, S., Gtari, M. & Mhamdi, R. Characterization of root-nodule bacteria isolated from vicia faba and selection of plant growth promoting isolates. World J. Microbiol. Biotechnol. 29, 1099–1106 (2013).
    Article  CAS  Google Scholar 

    10.
    Workalemahu, W. The effect of indigenous toot nodulating bacteria on nodulation and growth of faba bean (Vicia faba L.) in the low-input agricultural systems of Tigray highlands, northern Ethiopia. Momona Ethiop. J. Sci. 1(2), 30–43 (2009).
    Article  Google Scholar 

    11.
    Sánchez-Cañizares, C. et al. Genomic diversity in the endosymbiotic bacterium Rhizobium leguminosarum. Genes. 9(60), 1–26 (2018).
    Google Scholar 

    12.
    Laguerre, G., Louvrier, P., Allard, M. R. & Amarger, N. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host-legumes. Appl. Environ. Microbiol. 69(4), 2276–2283 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Sachs, J. L., Kembel, S. W., Lau, A. M. & Simms, E. L. In situphylogenetic structure and diversity of wild Bradyrhizobium communities. Appl. Environ. Microbiol. 75, 4727–4735 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Laguerre, G., Depret, G., Bourion, V. & Duc, G. Rhizobium leguminosarumbv. viciae genotypes interact with pea plants in developmental responses of nodules, roots and shoots. New Phytol. 176, 680–690 (2007).
    PubMed  Article  Google Scholar 

    15.
    McKenzie, R. H. et al. Response of peat or rhizobia inoculation and start nitrogen in Alberta. Can. J. Plant Sci. 81, 637–643 (2001).
    Article  Google Scholar 

    16.
    Siczek, A. & Lipiec, J. Impact of faba bean-seed rhizobial inoculation on microbial activity in the rhizosphere soil during growing season. Int. J. Mol. Sci. 17(784), 1–9 (2016).
    Google Scholar 

    17.
    Downie, J. A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol. Rev. 34, 150–170 (2010).
    CAS  PubMed  Article  Google Scholar 

    18.
    Fujita, H., Aoki, S. & Kawaguchi, M. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis. PLoS ONE 9, e93670 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Beltayef, H. et al. Statement of biological nitrogen fixation in snap bean under Mediterranean semi-arid conditions. Bulgarian J. of Agri. Sci. 24(2), 244–251 (2018).
    Google Scholar 

    20.
    Pitkäjärvi, J. et al. Persistence, population dynamics and competitiveness for nodulation of marker gene tagged Rhizobium galegaestrains in field lysimeters in the Boreal climatic zone. FEMS Microbiol. Ecol. 2, 2 (2003).
    Google Scholar 

    21.
    Bouyoucos, G. J. Hydrometer method improvement for making particle size analysis of soils. Agron. J. 54, 179–186 (1962).
    Google Scholar 

    22.
    Black, G. R. & Hertge, K. H. Bulk density. In methods of soil analysis (ed. Klute, A.) 377–382 (SSSA, Madison, Wiscosin, 1986).
    Google Scholar 

    23.
    Carter, M. R. & Gregorich, E. G. Soil Sampling and Methods of Analysis 2nd edn. (Canadian Soil Science Society, Boca Raton, 2008).
    Google Scholar 

    24.
    Mclean, E. O. Aluminum. In Methods of Soil Analysis, Part 2 chemical methods (ed. Black, C. A.) 978–998 (America Sci. Agron, Madison, 1965).
    Google Scholar 

    25.
    van Reeuwijk, L. P. Procedures for Soil Analysis 6th edn. (Technical Paper/International Soil Reference and Information Center, Wageningen, 2002).
    Google Scholar 

    26.
    Jońca, Z. & Lewandowski, W. Verification of measurement capabilities of flame atomic spectrometry for the determination of sodium, potassium, magnesium, and calcium in natural fresh water part I. Comparison of recommended methods. Polish J. Environ. Studies 13(3), 275–280 (2004).
    Google Scholar 

    27.
    Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).
    ADS  CAS  Article  Google Scholar 

    28.
    Bremner, J. M. & Mulvaney, C. S. Nitrogen total in methods of soil analysis. In Chemical and Microbiological Properties (ed. Page, A. L.) (SSSA, Wiscosin, 1982).
    Google Scholar 

    29.
    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA Circ. 939, 1–19 (1954).
    Google Scholar 

    30.
    Vincent, J. M. A manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook No 15 (Blackwell Scientific Publications Ltd, Oxford, 1970).
    Google Scholar 

    31.
    Woomer, P., Bennett, J. & Yost, R. Overcoming inflexibilities in most-probable-number-procedures. Agron. J. 82, 349–353 (1990).
    Article  Google Scholar 

    32.
    Somasegaran, P. & Hoben, H. J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology (Springer Verlag, New York, 1994).
    Google Scholar 

    33.
    Broughton, W. J. & Diworth, M. J. Control of leghemoglobin synthesis in snake beans. Biochem. J. 125, 1075–1080 (1971).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Guene, N. F. D., Diouf, A. & Gueye, M. Nodulation and nitrogen fixation of field grown common bean (Phaseolus vulgaris) as influenced by fungicide seed treatment. Afr. J. Biotechnol. 2(7), 198–201 (2003).
    CAS  Article  Google Scholar 

    35.
    Ondieki, D. K., Nyaboga, E. N., Wagacha, J. M. & Mwaura, F. B. Morphological and genetic diversity of rhizobia nodulating cowpea (Vigna unguiculata L.) from agricultural soils of Lower Eastern Kenya. Int. J. Microbiol. 2017, 1–9 (2017).
    Article  CAS  Google Scholar 

    36.
    Rice, W. A., Clyton, G. W., Lupwayi, N. Z. & Olsen, P. E. Evaluation of coated seeds as a Rhizobium delivery system for field pea. Can. J. Plant Sci. 81(1), 248–249 (2001).
    Google Scholar 

    37.
    Beets, P. N., Pearce, S. H., Oliver, G. R. & Clinton, P. W. Root to shoot rations for deriving below-ground biomass of Pinus radiate standards. New Zealand J. Forestry Sci. 37(2), 267–288 (2007).
    Google Scholar 

    38.
    SAS. SAS/STAT Software Syntax, Version 9.0. SAS Institute, Cary, NC. USA(2010).

    39.
    Raposeiras, R. et al. Rhizobium strains competitiveness on bean nodulation in Cerrado soils. Brasilia 41, 439–447 (2006).
    Google Scholar 

    40.
    Ulzen, J. Optimizing legume-rhizobia symbiosis to enhance legume grain yield in smallholder farming system in Ghana. A thesis submitted to the Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University Science and Technology, Kumasi, in partial fulfillment of the requirements of the degree of doctor of philosophy in soil science(2018).

    41.
    Zengeni, R., Mpepereki, S. & Giller, K. E. Manure and soil properties affect survival and persistence of soybean nodulation rhizobia in smallholder soils of Zimbabwe. Agric. Ecosyst. Environ. Appl. Soil Eco. 32, 232–242 (2006).
    Article  Google Scholar 

    42.
    Jida, M. & Assefa, F. Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from faba bean (Vicia faba L.) growing areas of Ethiopia. Afr. J. Biotechnol. 11, 7483–7493 (2012).
    CAS  Google Scholar 

    43.
    Kawaletz, H., Molder, I., Terwei, P. A. A. & Ammer, S. Z. C. Pot experiments with woody species. A review. Forestry 87, 4 (2014).
    Article  Google Scholar 

    44.
    Farid, M. & Navabi, A. N2 fixation ability of different dry bean genotypes. Can. J. Plant Sci. 95, 1243–1257 (2015).
    CAS  Article  Google Scholar 

    45.
    Nkot, L. N. et al. Abundance of legume nodulating bacteria in soils of diverse land use systems in Cameroon. Univ. J. Plant Sci. 3(5), 97–108 (2015).
    Article  Google Scholar 

    46.
    Solomon, T., Pant, L.M. & Angaw, T. Effects of inoculation by Bradyrhizobium japonicum strains on nodulation, nitrogen fixation, and yield of soybean (Glycine max L. Merill) varieties on Nitosols of Bako, western Ethiopia. International Scholarly Research Network ISRN Agron. 2012, Article ID 261475, Pp. 1–8 (2012).

    47.
    Adamu, A., Hailemariam, A., Assefa, F. & Bekele, E. Studies of Rhizobium inoculation and fertilizer treatment on growth and production of faba bean (Vicia faba L.) in some yield-depleted and yield-sustained regions of Semen Shoa. Ethiopia J. of Sci. 24, 197–211 (2001).
    Google Scholar 

    48.
    Mohammadi, K., Sohrabi, Y., Heidari, G., Khalesro, S. & Majidi, M. Effective factors on biological nitrogen fixation. Afr. J. Agric. Res. 7, 1782–1788 (2012).
    Google Scholar 

    49.
    Raven, J. A. Protein turnover and plant RNA and phosphorus requirement in relation to nitrogen fixation. Plant Sci. 189, 25–35 (2012).
    Article  CAS  Google Scholar 

    50.
    Bello, S. K., Yusuf, A. A. & Cargele, M. Performance of cowpea as influenced by native strain of rhizobia, lime and phosphorus in Samaru, Nigeria. Symbiosis 75, 167–176 (2018).
    CAS  PubMed  Article  Google Scholar 

    51.
    Talaat, N. B. & Abdallah, A. M. Response of faba bean (Vicia faba L.) to dual inoculation with Rhizobium and VA mycorrhiza under different levels of N and P fertilization. J. Appl. Sci. Res. 4, 1092–1102 (2008).
    CAS  Google Scholar 

    52.
    Yoseph, T. & Worku, W. Effect of NP fertilizer rate and Bradyrhizobium inoculation on nodulation, N-uptake and crude protein content of soybean (Glycine Max (L) Merrill), at Jinka. Southern Ethiopia. J. Biol. Agric. Healthcare 4(6), 49–54 (2014).
    Google Scholar 

    53.
    Hungria, M., Campo, R. J. & Mendes, I. C. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol. Fertl. Soils 39, 51–61 (2003).
    Article  CAS  Google Scholar 

    54.
    Kellman, A.W. Rhizobium inoculation, cultivar and management effects on the growth, development and yield of common bean (Phaseolus vulgaris L.). A PhD thesis, Lincoln University, New Zealand(2008).

    55.
    Voisin, A. S., Salon, C. & Warembourg, F. R. Seasonal patterns of 13C partitioning between shoot and nodulated roots of N2-or nitrate fed- Pisum sativum (L). Ann. Bot. 91, 539–546 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Graham, P. H., Hungria, M. & Tlusty, B. Breeding for better nitrogen fixation in grain legumes: Where do the rhizobia fit in?. Crop Manag https://doi.org/10.1094/CM-2004-0301-02-RV (2004).
    Article  Google Scholar 

    57.
    Minalku, A., Gebrekidan, H. & Assefa, F. Symbiotic effectiveness and characterization of Rhizobium strains of faba bean (Vicia faba L.) collected from eastern and western Hararghe highlands of Ethiopia. Ethiopian J. Nat. Resour 11(2), 223–244 (2009).
    Google Scholar 

    58.
    Sindhu, S., Dua, S., Verma, M. K. & Khandewal, A. Growth promotion of legumes by inoculation of rhizosphere bacteria. In Microbes for Legume Improvement (eds Khan, M. S. et al.) (Springer-Verlag, Wien, 2010).
    Google Scholar 

    59.
    Hemissi, I. et al. Effects of some Rhizobium strains on chickpea growth and biological control of Rhizoctonia solani. Afr. J. Micro. Res. 5(25), 4080–4090 (2011).
    CAS  Google Scholar 

    60.
    Zahran, H. H. Rhizobia from Wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol. 91, 143–153 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Zahir, Z. A., Arshad, M. & Frankenberger, J. R. Plant growth promoting Rhizobacteria: Applications and perspectives in agriculture. J. Adv. Agron. 81, 97–16 (2004).
    CAS  Article  Google Scholar 

    62.
    Thilakarathna, M. S. et al. Evaluating the effectiveness of Rhizobium inoculants and micronutrients as technologies for Nepalese common bean smallholder farmers in the real-world context of highly variable hillside environments and indigenous farming practices. Agriculture 9(20), 1–17 (2019).
    Google Scholar 

    63.
    Tena, W., Wolde-Meskel, E. & Walley, F. Symbiotic efficiency of native and exotic Rhizobium strains nodulating lentil (Lens culinaris Medik) in soils of southern Ethiopia. Agronomy 6, 1–11 (2016).
    Article  CAS  Google Scholar 

    64.
    Cakmakci, R., Donmez, M. F. & Erdogan, U. The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk. J. Agr. For. 31, 189–199 (2007).
    CAS  Google Scholar 

    65.
    Kyei-Boahen, S., Giroux, C. & Walley, F. L. Fall vs Springrhizobial inoculation of chickpea. Can. J. Plant Sci. 85, 893–896 (2005).
    Article  Google Scholar 

    66.
    Oğutcu, H., Algur, O. F., Elkoca, E. & Kantar, F. The determination of symbiotic effectiveness of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum. Turkey J. Agric. Forestry 32, 241–248 (2008).
    Google Scholar 

    67.
    Korir, H., Mungai, N. W., Thuita, M., Hamba, Y. & Masso, G. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci. 8, 141 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    van de Werf, A. & Negal, O. S. Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: Opinion. Plant Soil 185, 21–32 (1996).
    Article  Google Scholar 

    69.
    Koevoets, I. T., Venema, J. H., Elzegna, J. T. M. & Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 7, 1335 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    Ferreira, P. A. A., Bomfeti, C. A., Soares, B. L. & Moreira, F. M. S. Efficient nitrogen-fixing Rhizobium strains isolated from Amazonian soils are highly tolerant to acidity and aluminum. World J. Microbiol. Biotechnol. 28(5), 1947–1959 (2012).
    Article  CAS  Google Scholar 

    71.
    Kawaka, F., Dida, M.M., Peter, A., Opala, P.A., Ombori, O., Maingi, J., Osoro, N., Muthini, M., Amoding, A., Mukaminega, D. & Muoma, J. Symbiotic efficiency of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in soils of western Kenya. International Scholarly Research Notices (2014).

    72.
    Guo, Y. J., Ni, Y. & Huang, J. G. Effects of Rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop. Grassl. 44, 109–114 (2010).
    Google Scholar 

    73.
    Gicharu, G. K., Gitonga, N. M., Boga, H., Cheruiyot, R. C. & Maingi, J. M. Effect of inoculating selected climbing bean cultivars with different rhizobia strains on nitrogen fixation. Int. J. Microbiol. Res. 1(2), 25–31 (2013).
    Google Scholar 

    74.
    Mothapo, N. V. et al. Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth) genotypes with resident soil rhizobia. Biol. Fertil. Soils. 49(7), 871–879 (2013).
    Article  Google Scholar 

    75.
    Oono, R. & Denison, R. F. Comparing symbiotic efficiency between swollen versus non-swollen RhizobialBacteriods. Plant Physiol. 154, 1541–1548 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Sharma, S., Upadhyay, R. G. & Sharma, C. R. Effect of Rhizobium inoculation and nitrogen on growth, dry matter accumulation and yield of black gram (Vigna mungo). Legume Res. 23(1), 64–66 (2000).
    Google Scholar 

    77.
    Kantar, F., Elkoca, E., Ögütcü, H. & Algur, Ö. F. Chickpea yields in relation to Rhizobium inoculation from wild chickpea at high altitudes. J. Agron. Crop Sci. 189, 291–297 (2003).
    Article  Google Scholar  More