Nematode epibionts on skin of the Florida manatee, Trichechus manatus latirostris
1.
Cobb, N. A. Nematodes and their relationships.Yearbook Dept. Agric. 1914, 457â490 (Dept. Agric, Washington DC, 1914).
2.
Blaxter, M. Nematodes: The worm and its relatives. PLoS Biol. 9, 4 (2011).
Article Google ScholarÂ
3.
Kiontke, K. & Fitch, D. H. A. Nematodes. Curr. Biol. 23, 19 (2013).
Article Google ScholarÂ
4.
Sommer, R. J. Pristionchus pacificus. In A Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) (Brill, Netherlands, 2015).
Google ScholarÂ
5.
Beck, C. & Forrester, D. J. Helminths of the Florida manatee, Trichechus manatus latirostris, with a discussion and summary of the parasites of Sirenians. J. Parasitol. 74, 628â637. https://doi.org/10.2307/3282182 (1988).
CAS Article PubMed Google ScholarÂ
6.
FĂŒrst von Lieven, A., Uni, S., Ueda, K., Barbuto, M. & Bain, O. Cutidiplogaster manati n. gen., n. sp. (Nematoda: Diplogastridae) from skin lesions of a West Indian manatee (Sirenia) from the Okinawa Churaumi Aquarium. Nematology. 13, 51â59. https://doi.org/10.1163/138855410X500082 (2011).
Article Google ScholarÂ
7.
Bledsoe, E. L. et al. A comparison of biofouling communities associated with free-ranging and captive Florida manatees (Trichechus manatus latirostris). Mar. Mammal. Sci. 22, 997â1003. https://doi.org/10.1111/j.1748-7692.2006.00053.x (2006).
Article Google ScholarÂ
8.
Kanzaki, N. & Giblin-Davis, R. M. Diplogastrid systematics and phylogeny. In Nematology Monographs & Perspectives 11: Pristionchus pacificusâA Nematode Model for Comparative and Evolutionary Biology (ed. Sommer, R.) 43â76 (Brill, Amsterdam, 2015).
Google ScholarÂ
9.
Abolafia, J. Order Rhabditida: suborder Rhabditina. In Freshwater Nematodes: Ecology and Taxonomy (eds Abebe, E. et al.) 696â721 (CABI Publishing, Wallingford, 2006).
Google ScholarÂ
10.
Kanzaki, N., Ragsdale, E. J. & Giblin-Davis, R. M. Revision of the paraphyletic genus Koerneria Meyl, 1960 and resurrection of two other genera of Diplogastridae (Nematoda). ZooKeys. 442, 17â30. https://doi.org/10.3897/zookeys.442.7459 (2014).
Article Google ScholarÂ
11.
Romeyn, K., Bouwman, L. A. & Admiraal, W. Ecology and cultivation of the herbivorous brackish-water nematode Eudiplogaster pararmatus. Mar. Ecol. Prog. Ser. 12, 145â153 (1983).
ADS Article Google ScholarÂ
12.
Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R. & Manzoor, M. Nematodes associated with palm and sugarcane weevils in South Florida with description of Acrostichus floridensis n. sp. Nematology. 19, 515â531. https://doi.org/10.1163/15685411-00003065 (2017).
Article Google ScholarÂ
13.
Troccoli, A., Oreste, M., Tarasco, E., Fanelli, E. & De Luca, F. Mononchoides macrospiculum n. sp. (Nematoda: Neodiplogaster) and Teratorhabditis synpapillata Sudhaus, 1985 (Nematoda: Rhabditidae): Nematode associates of Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) in Italy. Nematology 17, 953â966. https://doi.org/10.1163/15685411-00002916 (2015).
Article Google ScholarÂ
14.
Steel, H. et al. Mononchoides composticola n. sp. (Nematoda: Diplogastridae) associated with composting processes: Morphological, molecular and autecological characterization. Nematology 13, 347â363. https://doi.org/10.1163/138855410X523023 (2011).
Article Google ScholarÂ
15.
Susoy, V. et al. Large-scale diversification without genetic isolation in nematode symbionts of figs. Sci. Adv. 2, e1501031. https://doi.org/10.1126/sciadv.1501031 (2016).
ADS CAS Article PubMed PubMed Central Google ScholarÂ
16.
Mayer, W. E., Herrmann, M. & Sommer, R. J. Molecular phylogeny of beetle associated diplogastrid nematodes suggests host switching rather than nematode-beetle coevolution. BMC Evol. Biol. 9, 212. https://doi.org/10.1186/1471-2148-9-212 (2009).
CAS Article PubMed PubMed Central Google ScholarÂ
17.
Sudhaus, W. & FĂŒrst von Lieven, A. A phylogenetic classification and catalogue of the Diplogastridae (Secernentea, Nematoda). J. Nematode Morph. Syst. 6, 43â90 (2003).
Google ScholarÂ
18.
Halvorsen, K. M. & Keith, E. O. Immunosuppression cascade in the Florida manatee (Trichechus manatus latirostris). Aquat. Mamm. 34, 412â419. https://doi.org/10.1578/AM.34.4.2008.412 (2008).
Article Google ScholarÂ
19.
Palopoli, M. F. et al. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages. Proc. Natl. Acad. Sci. USA 112, 15958â15963. https://doi.org/10.1073/pnas.1512609112 (2015).
ADS CAS Article PubMed Google ScholarÂ
20.
Ingels, J., Valdes, Y. & Pontes, L. P. Meiofauna life on loggerhead sea turtles-diversely structured abundance and biodiversity hotspots that challenge the meiofauna paradox. Diversity. 12(5), 203 (2020).
Article Google ScholarÂ
21.
Kanzaki, N., Giblin-Davis, R. M., Gonzalez, R., Wood, L. A. & Kaufman, P. E. Sudhausia floridensis n. sp. (Diplogastridae) isolated from Onthophagus tuberculifrons (Scarabaeidae) from Florida, USA. Nematology. 19, 575â586. https://doi.org/10.1163/15685411-00003071 (2017).
Article Google ScholarÂ
22.
Giblin-Davis, R. M. et al. Stomatal ultrastructure, molecular phylogeny, and description of Parasitodiplogaster laevigata n. sp. (Nematoda: Diplogastridae), a parasite of fig wasps. J. Nematol. 38, 137â149 (2006).
CAS PubMed PubMed Central Google ScholarÂ
23.
Kanzaki, N., Giblin-Davis, R. M., Ye, W., Herre, E. A. & Center, B. J. Parasitodiplogaster species associated with Pharmacosycea figs in Panama. Nematology. 16, 607â619. https://doi.org/10.1163/15685411-00002791 (2014).
Article Google ScholarÂ
24.
Shih, P.-Y. et al. Newly identified nematodes from Mono Lake exhibit extreme arsenic resistance. Curr. Biol. 29, 3339â3344. https://doi.org/10.1016/j.cub.2019.08.024 (2019).
CAS Article PubMed Google ScholarÂ
25.
Bonde, R. K. et al. Biomedical health assessments of the Florida manatee in Crystal RiverâProviding opportunities for training during the capture, handling, and processing of this endangered aquatic mammal. J. Mar. Anim. Ecol. 5, 17â28 (2012).
Google ScholarÂ
26.
Yoder, M. et al. DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8, 367â376. https://doi.org/10.1163/156854106778493448 (2006).
CAS Article Google ScholarÂ
27.
Kikuchi, T., Aikawa, T., Oeda, Y., Karim, N. & Kanzaki, N. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology 99, 1365â1369. https://doi.org/10.1094/PHYTO-99-12-1365 (2009).
CAS Article PubMed Google ScholarÂ
28.
Tanaka, R., Kikuchi, T., Aikawa, T. & Kanzaki, N. Simple and quick methods for nematode DNA preparation. Appl. Entomol. Zool. 47, 291â294. https://doi.org/10.1007/s13355-012-0115-9 (2012).
CAS Article Google ScholarÂ
29.
Ye, W., Giblin-Davis, R. M., Braasch, H., Morris, K. & Thomas, W. K. Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 43, 1185â1197. https://doi.org/10.1016/j.ympev.2007.02.006 (2007).
CAS Article PubMed Google ScholarÂ
30.
Holterman, M. et al. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 23, 1792â1800. https://doi.org/10.1093/molbev/msl044 (2006).
CAS Article PubMed Google ScholarÂ
31.
Slos, D., Couvreur, M. & Bert, W. Hidden diversity in mushrooms explored: A new nematode species, Neodiplogaster unguispiculata sp. n. (Rhabditida, Diplogastridae), with a key to the species of Neodiplogaster. Zool. Anz. 276, 71â85. https://doi.org/10.1016/j.jcz.2018.07.004 (2018).
Article Google ScholarÂ
32.
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059â3066. https://doi.org/10.1093/nar/gkf436 (2002).
CAS Article PubMed PubMed Central Google ScholarÂ
33.
Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22âW28. https://doi.org/10.1093/nar/gkt389 (2013).
Article PubMed PubMed Central Google ScholarÂ
34.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547â1549. https://doi.org/10.1093/molbev/msy096 (2018).
CAS Article PubMed PubMed Central Google ScholarÂ
35.
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754â755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).
CAS Article Google ScholarÂ
36.
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large modelspace. Syst. Biol. 61, 539â542. https://doi.org/10.1093/sysbio/sys029 (2012).
Article PubMed PubMed Central Google ScholarÂ
37.
Kanzaki, N., Ekino, T., Ide, T., Masuya, H. & Degawa, Y. Three new species of parasitaphelenchids, Parasitaphelenchus frontalis n. sp., P. costati n. sp., and Bursaphelenchus hirsutae n. sp. (Nematoda: Aphelenchoididae), isolated from bark beetles from Japan. Nematology 20, 957â1005. https://doi.org/10.1163/15685411-00003189 (2018).
Article Google Scholar More
