More stories

  • in

    Wetland hydroperiod predicts community structure, but not the magnitude of cross-community congruence

    1.
    Vellend, M. The Theory of Ecological Communities (MPB-57). The Theory of Ecological Communities (Princeton University Press, Princeton, 2016). https://doi.org/10.1515/9781400883790.
    2.
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Article  Google Scholar 

    3.
    Pearson, D. E., Ortega, Y. K., Eren, Ö. & Hierro, J. L. Community assembly theory as a framework for biological invasions. Trends Ecol. Evol. 33, 313–325 (2018).
    PubMed  Article  Google Scholar 

    4.
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).
    PubMed  Article  Google Scholar 

    5.
    Duan, M. et al. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles. Sci. Rep. 6, 23511 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Uboni, C. et al. Exploring cross-taxon congruence between carabid beetles (Coleoptera: Carabidae) and vascular plants in sites invaded by Ailanthus altissima versus non-invaded sites: The explicative power of biotic and abiotic factors. Ecol. Indic. 103, 145–155 (2019).
    Article  Google Scholar 

    7.
    Robertson, M. & Avilés, L. Rain, predators and vegetation lushness may structure web-building spider communities along precipitation gradients. Ecol. Entomol. 44, 217–226 (2019).
    Article  Google Scholar 

    8.
    Vleminckx, J. et al. Coordinated community structure among trees, fungi and invertebrate groups in Amazonian rainforests. Sci. Rep. 9, 11337 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Maestre, F. T. et al. Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philos. Trans. R. Soc. B 365, 2057–2070 (2010).
    Article  Google Scholar 

    10.
    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).
    PubMed  Article  Google Scholar 

    11.
    Scherrer, D. et al. Disentangling the processes driving plant assemblages in mountain grasslands across spatial scales and environmental gradients. J. Ecol. 107, 265–278 (2019).
    Article  Google Scholar 

    12.
    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27, 337–363 (1996).
    Article  Google Scholar 

    13.
    Chamberlain, D. E., Cannon, A. R. & Toms, M. P. Associations of garden birds with gradients in garden habitat and local habitat. Ecography 27, 589–600 (2004).
    Article  Google Scholar 

    14.
    Pennings, S. C. & Silliman, B. R. Linking biogeography and community ecology: Latitudinal variation in plant–herbivore interaction strength. Ecology 86, 2310–2319 (2005).
    Article  Google Scholar 

    15.
    Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions?. Ecol. Lett. 17, 881–890 (2014).
    PubMed  Article  Google Scholar 

    16.
    Kissling, W. D. et al. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. J. Biogeogr. 39, 2163–2178 (2012).
    Article  Google Scholar 

    17.
    Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. https://doi.org/10.1111/ele.13277 (2019).
    Article  PubMed  Google Scholar 

    18.
    Thompson, J. N. Variation in interspecific interactions. Annu. Rev. Ecol. Syst. 19, 65–87 (1988).
    Article  Google Scholar 

    19.
    Bar-Massada, A. & Belmaker, J. Non-stationarity in the co-occurrence patterns of species across environmental gradients. J. Ecol. 105, 391–399 (2017).
    Article  Google Scholar 

    20.
    Hengeveld, R. Biogeographical ecology. J. Biogeogr. 21, 341–351 (1994).
    Article  Google Scholar 

    21.
    Osborne, P. E., Foody, G. M. & Suárez-Seoane, S. Non-stationarity and local approaches to modelling the distributions of wildlife. Divers. Distrib. 13, 313–323 (2007).
    Article  Google Scholar 

    22.
    Clark, N. J., Wells, K. & Lindberg, O. Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology 99, 1277–1283 (2018).
    PubMed  Article  Google Scholar 

    23.
    Bryant, J. P., Chapin, F. S. & Klein, D. R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357 (1981).
    Article  Google Scholar 

    24.
    Post, D. M., Palkovacs, E. P., Schielke, E. G. & Dodson, S. I. Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89, 2019–2032 (2008).
    PubMed  Article  Google Scholar 

    25.
    Agrawal, A. A., Lau, J. A. & Hambäck, P. A. Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q. Rev. Biol. 81, 349–376 (2006).
    PubMed  Article  Google Scholar 

    26.
    Lisboa, F. J. G. et al. Much beyond Mantel: Bringing procrustes association metric to the plant and soil ecologist’s toolbox. PLoS ONE 9, e101238 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Kraft, A. J., Robinson, D. T., Evans, I. S. & Rooney, R. C. Concordance in wetland physicochemical conditions, vegetation, and surrounding land cover is robust to data extraction approach. PLoS ONE 14, e0216343 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Toranza, C. & Arim, M. Cross-taxon congruence and environmental conditions. BMC Ecol. 10, 18 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Rooney, R. C. & Bayley, S. E. Community congruence of plants, invertebrates and birds in natural and constructed shallow open-water wetlands: Do we need to monitor multiple assemblages?. Ecol. Indic. 20, 42–50 (2012).
    Article  Google Scholar 

    30.
    Larsen, S., Mancini, L., Pace, G., Scalici, M. & Tancioni, L. Weak concordance between fish and macroinvertebrates in Mediterranean streams. PLoS ONE 7, e51115 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Heino, J., Paavola, R., Virtanen, R. & Muotka, T. Searching for biodiversity indicators in running waters: Do bryophytes, macroinvertebrates, and fish show congruent diversity patterns?. Biodivers. Conserv. 14, 415–428 (2005).
    Article  Google Scholar 

    32.
    Corte, G. N. et al. Cross-taxon congruence in benthic communities: Searching for surrogates in marine sediments. Ecol. Indic. 78, 173–182 (2017).
    Article  Google Scholar 

    33.
    Cracraft, J. & Prum, R. O. Pattern and processes of diversification: Speciation and historical congruence in some Neotropical birds. Evolution 42, 603–620 (1988).
    PubMed  Article  Google Scholar 

    34.
    Moritz, C. et al. Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proc. R. Soc. Lond. Ser. B. 268, 1875–1881 (2001).
    CAS  Article  Google Scholar 

    35.
    Rooney, R. C. & Azeria, E. T. The strength of cross-taxon congruence in species composition varies with the size of regional species pools and the intensity of human disturbance. J. Biogeogr. 42, 439–451 (2014).
    Article  Google Scholar 

    36.
    Daniel, J., Gleason, J. E., Cottenie, K. & Rooney, R. C. Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering. Oikos 128, 1158–1169 (2019).
    Article  Google Scholar 

    37.
    Gleason, J. E. & Rooney, R. C. Pond permanence is a key determinant of aquatic macroinvertebrate community structure in wetlands. Freshw. Biol. 63, 264–277 (2018).
    Article  Google Scholar 

    38.
    Clark, J. S., Campbell, J. H., Grizzle, H., Acosta-Martìnez, V. & Zak, J. C. Soil microbial community response to drought and precipitation variability in the chihuahuan desert. Microb. Ecol. 57, 248–260 (2009).
    PubMed  Article  Google Scholar 

    39.
    Brock, M. A., Nielsen, D. L., Shiel, R. J., Green, J. D. & Langley, J. D. Drought and aquatic community resilience: The role of eggs and seeds in sediments of temporary wetlands. Freshw. Biol. https://doi.org/10.1046/j.1365-2427.2003.01083.x (2003).
    Article  Google Scholar 

    40.
    Stewart, R. E. & Kantrud, H. A. Classification of Natural Ponds and Lakes in the Glaciated Prairie Region. Bureau of Sport Fisheries and Wildlife Resource Publication 92, vol. 554 (1971).

    41.
    Euliss, N. H. et al. The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands 24, 448–458 (2004).
    Article  Google Scholar 

    42.
    Wright, H. E. J. Quaternary history of Minnesota. In Geology of Minnesota: A Centennial (eds Sims, P. K. & Morey, G.) 515–546 (Minnesota Geological Survey University of Minnesota, Minnesota, 1972).
    Google Scholar 

    43.
    Sauchyn, D. J., Barrow, E. M., Hopkinson, R. F. & Leavitt, P. R. Aridity on the Canadian plains. Géogr. Phys. Quat. 56, 247–259 (2004).
    Google Scholar 

    44.
    Downing, D. J. & Pettapiece, W. W. Natural Regions and Subregions of Alberta. https://www.albertaparks.ca/media/2942026/nrsrcomplete_may_06.pdf (2006).

    45.
    Government of Alberta. Alberta Merged Wetland Inventory. (2014).

    46.
    Anderson, D. L. & Rooney, R. C. Differences exist in bird communities using restored and natural wetlands in the Parkland region, Alberta, Canada. Restor. Ecol. 27, 1495–1507 (2019).
    Article  Google Scholar 

    47.
    Meyer, M. D., Davis, C. A. & Bidwell, J. R. Assessment of two methods for sampling invertebrates in shallow vegetated wetlands. Wetlands 33, 1063–1073 (2013).
    Article  Google Scholar 

    48.
    Gleason, J. E. & Rooney, R. C. Aquatic macroinvertebrates are poor indicators of agricultural activity in northern prairie pothole wetlands. Ecol. Indic. 81, 333–339 (2017).
    Article  Google Scholar 

    49.
    Clifford, H. F. Aquatic Invertebrates of Alberta (University of Alberta Press, Edmonton, 1991).
    Google Scholar 

    50.
    Merrit, R. W., Cummins, K. W. & Berg, M. B. An Introduction to the Aquatic Insects of North America (Kendall Hunt Publishing Company, Dubuque, 2008).
    Google Scholar 

    51.
    Environment Canada. CABIN Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. 36 (2014).

    52.
    Bolding, M. T., Kraft, A. J., Robinson, D. T. & Rooney, R. C. Improvements in multi-metric index development using a whole-index approach. Ecol. Indic. 113, 106191 (2020).
    Article  Google Scholar 

    53.
    Meyers, N. Use of Water Isotope Tracers to Characterize the Hydrology of Prairie Wetlands in Alberta (University of Waterloo, Waterloo, 2018).
    Google Scholar 

    54.
    Peres-Neto, P. R. & Jackson, D. A. How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the Mantel test. Oecologia 129, 169–178 (2001).
    ADS  PubMed  Article  Google Scholar 

    55.
    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).
    Article  Google Scholar 

    56.
    Dijksterhuis, G. B. & Gower, J. C. The interpretation of generalized procrustes analysis and allied methods. Food Qual. Prefer. https://doi.org/10.1016/0950-3293(91)90027-C (1991).
    Article  Google Scholar 

    57.
    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.4–2 (2017).

    58.
    Broadbooks, W. J. & Elmore, P. B. A Monte Carlo study of the sampling distribution of the congruence coefficient. Educ. Psychol. Meas. 47, 1–11 (1987).
    Article  Google Scholar 

    59.
    Fife, D. fifer: A Biostatisticians Toolbox for Various Activities, Including Plotting, Data Cleanup, and Data Analysis. R package version 1.1. https://CRAN.R-project.org/package=fifer. (2017).

    60.
    Levine, J. M. Indirect facilitation: Evidence and predictions from a riparian community. Ecology 80, 1762 (1999).
    Article  Google Scholar 

    61.
    Maestre, F. T., Valladares, F. & Reynolds, J. F. Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 93, 748–757 (2005).
    Article  Google Scholar 

    62.
    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Klanderud, K., Vandvik, V. & Goldberg, D. The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE 10, e0130205 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    64.
    Lários, M. C. et al. Evidence of cross-taxon congruence in Neotropical wetlands: Importance of environmental and spatial factors. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2017.09.003 (2017).
    Article  Google Scholar 

    65.
    Casanova, M. T. & Brock, M. A. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities?. Plant Ecol. 147, 237–250 (2000).
    Article  Google Scholar 

    66.
    Murkin, H. R., Murkin, E. J. & Ball, J. P. Avian habitat selection and prairie wetland dynamics: A 10-year experiment. Ecol. Appl. 7, 1144–1159 (1997).
    Article  Google Scholar 

    67.
    Naugle, D. E., Johnson, R. R., Estey, M. E. & Higgins, K. F. A landscape approach to conserving wetland bird habitat in the Prairie Pothole Region of eastern South Dakota. Wetlands 20, 588–604 (2001).
    Article  Google Scholar 

    68.
    Mabidi, A., Bird, M. S. & Perissinotto, R. Distribution and diversity of aquatic macroinvertebrate assemblages in a semi-arid region earmarked for shale gas exploration (Eastern Cape Karoo, South Africa). PLoS ONE 12, e0178559 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Panov, V. E. & Caceres, C. Role of diapause in dispersal of aquatic invertebrates. in Diapause in Aquatic Invertebrates Theory and Human Use 187–195 (Springer, New York, 2007). https://doi.org/10.1007/978-1-4020-5680-2_12.

    70.
    Faist, A. M., Ferrenberg, S. & Collinge, S. K. Banking on the past: Seed banks as a reservoir for rare and native species in restored vernal pools. AoB Plants 5, 1–10 (2013).
    Article  Google Scholar 

    71.
    Reynolds, C. & Cumming, G. S. Seed traits and bird species influence the dispersal parameters of wetland plants. Freshw. Biol. 61, 1157–1170 (2016).
    Article  Google Scholar 

    72.
    Klaassen, M. & Nolet, B. A. The role of herbivorous water birds in aquatic systems through interactions with aquatic macrophytes, with special reference to the Bewick’s Swan: Fennel Pondweed system. Hydrobiologia 584, 205–213 (2007).
    Article  Google Scholar 

    73.
    Kleyheeg, E. et al. Movement patterns of a keystone waterbird species are highly predictable from landscape configuration. Mov. Ecol. 5, 2 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    74.
    DeVlaming, V. & Proctor, V. W. Dispersal of aquatic organisms: viability of seeds recovered from the droppings of captive Killdeer and Mallard Ducks. Am. J. Bot. 55, 20 (2006).
    Article  Google Scholar 

    75.
    Ma, M., Ma, Z. & Du, G. Effects of water level on three wetlands soil seed banks on the Tibetan Plateau. PLoS ONE 9, e101458 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    76.
    Poiani, K. A. & Johnson, W. C. Effect of hydroperiod on seed-bank composition in semipermanent prairie wetlands. Can. J. Bot. 67, 856–864 (1989).
    Article  Google Scholar 

    77.
    Johnson, W. C. et al. Vulnerability of Northern Prairie wetlands to climate change. Bioscience 55, 863 (2005).
    Article  Google Scholar 

    78.
    Voldseth, R. A., Johnson, W. C., Gilmanov, T., Guntenspergen, G. R. & Millett, B. V. Model estimation of land-use effects on water levels of northern Prairie wetlands. Ecol. Appl. 17, 527–540 (2007).
    PubMed  Article  Google Scholar  More

  • in

    Online media reveals a global problem of discarded containers as deadly traps for animals

    1.
    Ravenelle, J. & Nyhus, P. J. Global patterns and trends in human–wildlife conflict compensation. Conserv. Biol. 31, 1247–1256 (2017).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hopewell, J., Dvorak, R. & Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B 364, 2115–2126 (2009).
    CAS  Article  Google Scholar 

    3.
    Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a waste 2.0: A global snapshot of solid waste management to 2050. Urban Development (World Bank, Washington, DC, 2018).

    4.
    Obradović, M., Kalambura, S., Smolec, D. & Jovičić, N. Dumping and illegal transport of hazardous waste, danger of modern society. Coll. Antropol. 38, 793–803 (2014).
    PubMed  PubMed Central  Google Scholar 

    5.
    Kubásek, M. & Hřebíček, J. Crowdsource approach for mapping of illegal dumps in the Czech Republic. Int. J. Spatial Data Infrastruct. Res. 8, 144–157 (2013).
    Google Scholar 

    6.
    Danthurebandara, M., Van Passel, S., Nelen, D., Tielemans, Y., & Van Acker, K. Environmental and socio-economic impacts of landfills. Linnaeus Eco-Tech 2012, 26–28 (2012).

    7.
    Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666. https://doi.org/10.1038/s41598-018-22939-w (2018).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    8.
    Baranová, B., Manko, P. & Jászay, T. Waste dumps as local biodiversity hotspots for soil macrofauna and ground beetles (Coleoptera: Carabidae) in the agricultural landscape. Ecol. Eng. 81, 1–13 (2015).
    Article  Google Scholar 

    9.
    Jagiello, Z., Dylewski, Ł, Tobolka, M. & Aguirre, J. I. Life in a polluted world: A global review of anthropogenic materials in bird nests. Environ. Pollut. 251, 717–722 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Michlewicz, M. & Tryjanowski, P. Anthropogenic waste products as preferred nest sites for Myrmica rubra (L.) (Hymenoptera, Formicidae). J. Hymenopt. Res. 57, 103–114 (2017).
    Article  Google Scholar 

    11.
    Kolenda, K. et al. Deadly trap or sweet home? The case of discarded containers as novelty microhabitats for ants. Glob. Ecol. Conserv. 23, e01064. https://doi.org/10.1016/j.gecco.2020.e01064 (2020).
    Article  Google Scholar 

    12.
    Robertson, B. A., Rehage, J. S. & Sih, A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28, 552–560 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    13.
    Schuyler, Q., Hardesty, B. D., Wilcox, C. & Townsend, K. Global analysis of anthropogenic debris ingestion by sea turtles. Conserv. Biol. 28, 129–139 (2014).
    PubMed  Article  Google Scholar 

    14.
    Roman, L., Schuyler, Q. A., Hardesty, B. D. & Townsend, K. A. Anthropogenic debris ingestion by avifauna in eastern Australia. PLoS One 11, e0158343. https://doi.org/10.1371/journal.pone.0158343 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Zhao, S., Zhu, L. & Li, D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci. Total Environ. 550, 1110–1115 (2016).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    16.
    Lusher, A. L. et al. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The True’s beaked whale Mesoplodon mirus. Environ. Pollut. 199, 185–191 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Foley, C. J., Feiner, Z. S., Malinich, T. D. & Höök, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631, 550–559 (2018).
    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

    18.
    Rideout, B. A. et al. Patterns of mortality in free-ranging California Condors (Gymnogyps californianus). J. Wildl. Dis. 48, 95–112 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Strine, C. T. et al. Mortality of a wild king cobra, Ophiophagus hannah Cantor, 1836 (Serpentes: Elapidae) from Northeast Thailand after ingesting a plastic bag. Asian Herpetol. Res. 5, 284–286 (2014).
    Article  Google Scholar 

    20.
    Ryan, P. G., Dilley, B. J., Ronconi, R. A. & Connan, M. Rapid increase in Asian bottles in the South Atlantic Ocean indicates major debris inputs from ships. Proc. Natl. Acad. Sci. USA. 116, 20892–20897 (2019).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    21.
    Debernardi, P., Patriarca, E., Perrone, A., Cantini, M. & Chiarenzi, B. Small mammals found in discarded bottles in alpine and pre-alpine areas of NW-Italy. Hystrix 9, 51–55 (1997).
    Google Scholar 

    22.
    Davenport, J., Hills, J., Glasspool, A. & Ward, J. Threats to the critically endangered endemic Bermudian skink Eumeces longirostris. Oryx 35, 332–339 (2001).
    Article  Google Scholar 

    23.
    Benedict, R. A. & Billeter, M. C. Discarded bottles as a cause of mortality in small vertebrates. Southeast. Nat. 3, 371–378 (2004).
    Article  Google Scholar 

    24.
    Brannon, M. P. & Bargelt, L. B. Discarded bottles as a mortality threat to shrews and other small mammals in the Southern Appalachian Mountains. J. N. C. Acad. Sci. 129, 126–129 (2013).
    Google Scholar 

    25.
    Morris, P. A. & Harper, J. F. The occurrence of small mammals in discarded bottles. Proc. Zool. Soc. Lond. 145, 148–153 (1965).
    Article  Google Scholar 

    26.
    Hamed, M. K. & Laughlin, T. F. Small-mammal mortality caused by discarded bottles and cans along a US Forest Service road in the Cherokee National Forest. Southeast. Nat. 14, 506–516 (2015).
    Article  Google Scholar 

    27.
    Kolenda, K., Przybył, M., Piłacińska, B. & Rychlik, L. Survey of discarded bottles as an effective method in detection of small mammal diversity. Pol. J. Ecol. 66, 57–63 (2018).
    Article  Google Scholar 

    28.
    Kolenda, K., Kurczaba, K. & Kulesza, M. Littering as a lethal threat to small animals. Przegląd Przyr. 26, 53–62 (2015) (in Polish with English summary).
    Google Scholar 

    29.
    Poeta, G., Romiti, F. & Battisti, C. Discarded bottles in sandy coastal dunes as threat for macro-invertebrate populations: First evidence of a trap effect. Vie Milieu 65, 125–127 (2015).
    Google Scholar 

    30.
    Lavers, J. L., Sharp, P. B., Stuckenbrock, S. & Bond, A. L. Entrapment in plastic debris endangers hermit crabs. J. Hazard. Mater. 387, 121703. https://doi.org/10.1016/j.jhazmat.2019.121703 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Moates, G. Small mammal mortality in discarded bottles and drinks cans—A Norfolk-based field study in a global context. J. Litter Environ. Qual. 2, 5–13 (2018).
    Google Scholar 

    32.
    Castilla, A. M. & Bauwens, D. Observations on the natural history, present status, and conservation of the insular lizard Podarcis hispanica atrata on the Columbretes archipelago, Spain. Biol. Conserv. 58, 69–84 (1991).
    Article  Google Scholar 

    33.
    Di Minin, E., Tenkanen, H. & Toivonen, T. Prospects and challenges for social media data in conservation science. Front. Environ. Sci. 3, 63. https://doi.org/10.3389/fenvs.2015.00063 (2015).
    Article  Google Scholar 

    34.
    Toivonen, T. et al. Social media data for conservation science: A methodological overview. Biol. Conserv. 233, 298–315 (2019).
    Article  Google Scholar 

    35.
    Kaplan, A. M. & Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 53, 59–68 (2010).
    Article  Google Scholar 

    36.
    Perrin, A. Social media usage 2005–2015. (Pew Research Center, Washington, 2015).
    Google Scholar 

    37.
    Jagiello, Z., Dyderski, M. K. & Dylewski, Ł. What can we learn about the behaviour of red and grey squirrels from YouTube? Ecol. Inform. 51, 52–60 (2019).
    Article  Google Scholar 

    38.
    Ruths, D. & Pfeffer, J. Social media for large studies of behavior. Science 346, 1063–1064 (2014).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    39.
    Anderson, A. A. & Huntington, H. E. Social media, science, and attack discourse: How Twitter discussions of climate change use sarcasm and incivility. Sci. Commun. 39, 598–620 (2017).
    Article  Google Scholar 

    40.
    Sorokowski, P., Kowal, M., Zdybek, P. & Oleszkiewicz, A. Are online haters psychopaths? Psychological predictors of online hating behavior. Front. Psychol. 11, 553 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    41.
    Mikula, P., Hadrava, J., Albrecht, T. & Tryjanowski, P. Large-scale assessment of commensalistic–mutualistic associations between African birds and herbivorous mammals using internet photos. PeerJ 6, e4520. https://doi.org/10.7717/peerj.4520 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Daume, S., Albert, M. & Von Gadow, K. Forest monitoring and social media—Complementary data sources for ecosystem surveillance? For. Ecol. Manag. 316, 9–20 (2014).
    Article  Google Scholar 

    43.
    Stafford, R. et al. Eu-social science: The role of internet social networks in the collection of bee biodiversity data. PLoS One 5, e14381. https://doi.org/10.1371/journal.pone.0014381 (2010).
    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

    44.
    van Zanten, B. T. et al. Continental-scale quantification of landscape values using social media data. Proc. Natl. Acad. Sci. 113, 12974–12979 (2016).
    PubMed  Article  ADS  CAS  PubMed Central  Google Scholar 

    45.
    Hausmann, A. et al. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 11, e12343. https://doi.org/10.1111/conl.12343 (2018).
    Article  Google Scholar 

    46.
    Tryjanowski, P. et al. Birds drinking alcohol: Species and relationship with people. A review of information from scientific literature and social media. Animals 10, 270. https://doi.org/10.3390/ani10020270 (2020).
    Article  Google Scholar 

    47.
    Hausmann, A. et al. Assessing global popularity and threats to important bird and biodiversity areas using social media data. Sci. Total Environ. 683, 617–623 (2019).
    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

    48.
    Hetman, M., Kubicka, A. M., Sparks, T. H. & Tryjanowski, P. Road kills of non-human primates: A global view using a different type of data. Mammal Rev. 49, 276–283 (2019).
    Article  Google Scholar 

    49.
    Pace, D. S. et al. An integrated approach for cetacean knowledge and conservation in the central Mediterranean Sea using research and social media data sources. Aquat. Conserv. 29, 1302–1323 (2019).
    Article  Google Scholar 

    50.
    Guinard, É., Julliard, R. & Barbraud, C. Motorways and bird traffic casualties: Carcasses surveys and scavenging bias. Biol. Conserv. 147, 40–51 (2012).
    Article  Google Scholar 

    51.
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development. In Proceedings of the 4th International Symposium on Urban Wildlife Conservation, Tucson, AZ (eds. Shaw, W. W. et al.) 50–55 (2004).

    52.
    Soulsbury, C. D. & White, P. C. Human–wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildlife Res. 42, 541–553 (2016).
    Article  Google Scholar 

    53.
    Brown, T. J., Ham, S. H. & Hughes, M. Picking up litter: An application of theory-based communication to influence tourist behaviour in protected areas. J. Sustain. Tour. 18, 879–900 (2010).
    Article  Google Scholar 

    54.
    Wilson, S. P. & Verlis, K. M. The ugly face of tourism: Marine debris pollution linked to visitation in the southern Great Barrier Reef, Australia. Mar. Pollut. Bull. 117, 239–246 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jakiel, M., Bernatek-Jakiel, A., Gajda, A., Filiks, M. & Pufelska, M. Spatial and temporal distribution of illegal dumping sites in the nature protected area: The Ojców National Park, Poland. J. Environ. Plan. Manag. 62, 286–305 (2019).
    Article  Google Scholar 

    56.
    Ducarme, F., Luque, G. M. & Courchamp, F. What are “charismatic species” for conservation biologists. BioSci. Master Rev. 10, 1–8 (2013).
    Google Scholar 

    57.
    Elfström, M., Zedrosser, A., Støen, O. G. & Swenson, J. E. Ultimate and proximate mechanisms underlying the occurrence of bears close to human settlements: Review and management implications. Mammal Rev. 44, 5–18 (2014).
    Article  Google Scholar 

    58.
    Kumbhojkar, S., Yosef, R., Benedetti, Y. & Morelli, F. Human-leopard (Panthera pardus fusca) co-existence in Jhalana forest reserve, India. Sustainability 11, 3912. https://doi.org/10.3390/su11143912 (2019).
    Article  Google Scholar 

    59.
    IUCN. The IUCN Red List of Threatened Species, http://www.iucnredlist.org (2019).

    60.
    Arrizabalaga, A., González, L. M. & Torre, I. Small mammals in discarded bottles: A new world record. Galemys 28, 63–65 (2016).
    Article  Google Scholar 

    61.
    Chandrasekaran, S. et al. Disposed paper cups and declining bees. Curr. Sci. 101, 1262 (2011).
    Google Scholar 

    62.
    Shine, R. & Koenig, J. Snakes in the garden: An analysis of reptiles “rescued” by community-based wildlife carers. Biol. Conserv. 102, 271–283 (2001).
    Article  Google Scholar 

    63.
    Peris, S. J. Feeding in urban refuse dumps: Ingestion of plastic objects by the White Stork (Ciconia ciconia). Ardeola 50, 81–84 (2003).
    Google Scholar 

    64.
    Mrosovsky, N., Ryan, G. D. & James, M. C. Leatherback turtles: The menace of plastic. Mar. Pollut. Bull. 58, 287–289 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    65.
    Jankowiak, Ł, Malecha, A. W. & Krawczyk, A. J. Garbage in the diet of carnivores in an agricultural area. Eur. J. Ecol. 2, 81–86 (2016).
    Article  Google Scholar 

    66.
    Poeta, G., Eleonora, S., Alicia, T. R. & Battisti, C. Ecological effects of anthropogenic litter on marine mammals: A global review with a “black-list” of impacted taxa. Hystrix 28, 253–264 (2017).
    Google Scholar 

    67.
    Heathcote, G., Hobday, A. J., Spaulding, M., Gard, M. & Irons, G. Citizen reporting of wildlife interactions can improve impact-reduction programs and support wildlife carers. Wildlife Res. 46, 415–428 (2019).
    Article  Google Scholar 

    68.
    Fraser, H., Taylor, N. & Signal, T. Young people empathising with other animals: Reflections on an Australian RSPCA humane education programme. Aotearoa N. Z. Soc. Work 29, 5–16 (2017).
    Article  Google Scholar 

    69.
    Tiplady, C. M., Walsh, D. A. B. & Phillips, C. J. Public response to media coverage of animal cruelty. J. Agric. Environ. Ethics. 26, 869–885 (2013).
    Article  Google Scholar 

    70.
    ElQadi, M. et al. Mapping species distributions with social media geo-tagged images: Case studies of bees and flowering plants in Australia. Ecol. Inform. 39, 23–31 (2017).
    Article  Google Scholar 

    71.
    Siriwat, P. & Nijman, V. Illegal pet trade on social media as an emerging impediment to the conservation of Asian otters species. J. Asia-Pacific Biodivers. 11, 469–475 (2018).
    Article  Google Scholar 

    72.
    Di Minin, E., Fink, C., Hiippala, T. & Tenkanen, H. A framework for investigating illegal wildlife trade on social media with machine learning. Conserv. Biol. 33, 210–213 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    73.
    RSPCA. Plastic litter is a growing threat to animals reveals RSPCA Cymru, https://news.rspca.org.uk/2019/02/05/plastic-litter-is-a-growing-threat-to-animals-reveals-rspca-cymru/ (2019).

    74.
    Schuyler, Q., Hardesty, B. D., Lawson, T. J., Opie, K. & Wilcox, C. Economic incentives reduce plastic inputs to the ocean. Mar. Policy 96, 250–255 (2018).
    Article  Google Scholar 

    75.
    Haarr, M. L., Pantalos, M., Hartviksen, M. K. & Gressetvold, M. Citizen science data indicate a reduction in beach litter in the Lofoten archipelago in the Norwegian Sea. Mar. Pollut. Bull. 153, 111000. https://doi.org/10.1016/j.marpolbul.2020.111000 (2020).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    76.
    Brannon, M. P., Brannon, J. K. & Baird, R. E. Educational applications of small-mammal skeletal remains found in discarded bottles. Southeast. Nat. 16, 4–10 (2017).
    Article  Google Scholar 

    77.
    Wyles, K. J., Pahl, S., Holland, M. & Thompson, R. C. Can beach cleans do more than clean-up litter? Comparing beach cleans to other coastal activities. Environ. Behav. 49, 509–535 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    78.
    Ethnologue 2019. What are the top 200 most spoken languages? http://www.ethnologue.com/guides/ethnologue200 (2019).

    79.
    Lessa, E. P. & Farina, R. A. Reassessment of extinction patterns among the late Pleistocene mammals of South America. Palaeontology 39, 651–662 (1996).
    Google Scholar 

    80.
    Lê, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Article  Google Scholar 

    81.
    Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020). More

  • in

    Effects of anthropogenic activities on microplastics in deposit-feeders (Diptera: Chironomidae) in an urban river of Taiwan

    1.
    Arthur, C., Baker, J. & Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. Group 530 (2009).
    2.
    Wagner, M. & Lambert, S. Freshwater Microplastics (Springer International Publishing, Cham, 2018). https://doi.org/10.1007/978-3-319-61615-5.
    Google Scholar 

    3.
    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Zhao, S., Zhu, L. & Li, D. Microplastic in three urban estuaries, China. Environ. Pollut. 206, 597–604 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Kunz, A., Walther, B. A., Löwemark, L. & Lee, Y. C. Distribution and quantity of microplastic on sandy beaches along the northern coast of Taiwan. Mar. Pollut. Bull. 111, 126–135 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, 1–15 (2014).
    Google Scholar 

    8.
    Van Cauwenberghe, L., Vanreusel, A., Mees, J. & Janssen, C. R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    9.
    Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Futur. 2, 315–320 (2014).
    ADS  Article  Google Scholar 

    10.
    Dris, R. et al. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 12, 592–599 (2015).
    CAS  Article  Google Scholar 

    11.
    Wetherbee, G. A., Baldwin, A. K. & Ranville, J. F. It is raining plastic. U.S. Geological Survey Open-File Report 2019-1048 (2019). https://doi.org/10.3133/ofr20191048.

    12.
    Barboza, L. G. A. & Gimenez, B. C. G. Microplastics in the marine environment: Current trends and future perspectives. Mar. Pollut. Bull. 97, 5–12 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Yonkos, L. T., Friedel, E. A., Perez-Reyes, A. C., Ghosal, S. & Arthur, C. D. Microplastics in four estuarine rivers in the chesapeake bay, U.S.A. Environ. Sci. Technol. 48, 14195–14202 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Browne, M. A. et al. Accumulation of microplastic on shorelines woldwide: sources and sinks—Environmental science and technology (ACS Publications). Environ. Sci. Technol. 45, 9175–9179. https://doi.org/10.1021/es201811s (2011).
    ADS  CAS  Article  Google Scholar 

    15.
    Eriksen, M. et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 77, 177–182 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Nel, H. A., Dalu, T. & Wasserman, R. J. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Sci. Total Environ. 612, 950–956 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Wang, W., Ndungu, A. W., Li, Z. & Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 575, 1369–1374 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Klein, S., Worch, E. & Knepper, T. P. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 49, 6070–6076 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 764–768 (2015).
    ADS  Article  CAS  Google Scholar 

    21.
    Browne, M. A., Galloway, T. S. & Thompson, R. C. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 44, 3404–3409 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533 (2019).
    CAS  Article  Google Scholar 

    23.
    Bonanno, G. & Orlando-Bonaca, M. Perspectives on using marine species as bioindicators of plastic pollution. Mar. Pollut. Bull. 137, 209–221 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Akindele, E. O., Ehlers, S. M. & Koop, J. H. E. First empirical study of freshwater microplastics in West Africa using gastropods from Nigeria as bioindicators. Limnologica 78, 125708 (2019).
    CAS  Article  Google Scholar 

    25.
    Su, L. et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 234, 347–355 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Dalu, T. et al. Variation partitioning of benthic diatom community matrices: Effects of multiple variables on benthic diatom communities in an Austral temperate river system. Sci. Total Environ. 601–602, 73–82 (2017).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    27.
    Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. 7, 1–9 (2017).
    Article  CAS  Google Scholar 

    28.
    Silva, C. J. M., Silva, A. L. P., Gravato, C. & Pestana, J. L. T. Ingestion of small-sized and irregularly shaped polyethylene microplastics affect Chironomusriparius life-history traits. Sci. Total Environ. 672, 862–868 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Effects of polyethylene microplastics on the acute toxicity of a synthetic pyrethroid to midge larvae (Chironomustepperi) in synthetic and river water. Sci. Total Environ. 671, 971–975 (2019).
    ADS  CAS  Article  Google Scholar 

    30.
    Windsor, F. M., Tilley, R. M., Tyler, C. R. & Ormerod, S. J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 646, 68–74 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 236, 425–431 (2018).
    CAS  PubMed  Article  Google Scholar 

    32.
    Open Government Data License. National Development Council. https://data.gov.tw/en.

    33.
    Central Weather Bureau Observation Data Inquiry System. https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp.

    34.
    Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 3rd edn. (Kendall/Hunt Pub. Co., Dubuque, 1996).
    Google Scholar 

    35.
    Löder, M. G. J. & Gerdts, G. Methodology used for the detection and identification of microplastics—A critical appraisal. In Marine Anthropogenic Litter (eds Bergmann, M. et al.) 201–227 (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-16510-3_8.
    Google Scholar 

    36.
    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Li, J. et al. Microplastics in mussels along the coastal waters of China. Environ. Pollut. 214, 177–184 (2016).
    CAS  PubMed  Article  Google Scholar 

    38.
    Taiwan Map Store. National Land Surveying and Mapping Center. https://whgis.nlsc.gov.tw/.

    39.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, New York, 2002).
    Google Scholar 

    40.
    Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).
    MathSciNet  MATH  Article  Google Scholar 

    41.
    R Core Team. R: A Language and Environment for Statistical Computing (2018).

    42.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    43.
    Rizopoulos, D. GLMMadaptive: Generalized linear mixed models using adaptive gaussian quadrature (2020).

    44.
    Bartoń, K. MuMIn: Multi-model inference (2019).

    45.
    Lüdecke, D., Makowski, D. & Waggoner, P. performance: Assessment of regression models performance (2019).

    46.
    Lechner, A. et al. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Pollut. 188, 177–181 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Moore, C. J., Lattin, G. L. & Zellers, A. F. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Rev. Gestão Costeira Integr. 11, 65–73 (2011).
    Article  Google Scholar 

    48.
    Lechner, A. & Ramler, D. The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation. Environ. Pollut. 200, 159–160 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    von Schuckmann, K., Brandt, P. & Eden, C. Generation of tropical instability waves in the Atlantic Ocean. J. Geophys. Res. Oceans 113, 539–550 (2008).
    Google Scholar 

    50.
    Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Dris, R., Gasperi, J. & Tassin, B. Sources and fate of microplastics in urban areas: A focus on Paris megacity. In Freshwater Microplastics (eds Wagner, M. & Lambert, S.) 69–83 (Springer International Publishing, Cham, 2018).
    Google Scholar 

    52.
    Siegfried, M., Koelmans, A. A., Besseling, E. & Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 127, 249–257 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Enforcement Rule for Sewerage Law. Construction and planning agency ministry of the interior. https://www.cpami.gov.tw/index.php?option=com_content&view=frontpage&Itemid=36 (2007).

    54.
    Su, L. et al. Microplastics in Taihu Lake, China. Environ. Pollut. 216, 711–719 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Mani, T., Hauk, A., Walter, U. & Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 5, 1–7 (2015).
    Article  CAS  Google Scholar 

    56.
    Fischer, E. K., Paglialonga, L., Czech, E. & Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 213, 648–657 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Collignon, A. et al. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 64, 861–864 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Rillig, M. C. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46, 6453–6454 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Rech, S. et al. Rivers as a source of marine litter—A study from the SE Pacific. Mar. Pollut. Bull. 82, 66–75 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Habib, R. Z., Thiemann, T. & AlKendi, R. Microplastics and wastewater treatment plants—A review. J. Water. Resour. Prot. 12, 1–35 (2020).
    CAS  Article  Google Scholar 

    61.
    Qi, Y. et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645, 1048–1056 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Clayton, G. W. et al. Polymer seed coating of early- and late-fall-seeded herbicide-tolerant canola (Brassicanapus L.) cultivars. Can. J. Plant Sci. 84, 971–979 (2004).
    Article  Google Scholar 

    63.
    Nizzetto, L., Futter, M. & Langaas, S. Are agricultural soils dumps for microplastics of urban origin?. Environ. Sci. Technol. 50, 10777–10779 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Ristola, T., Pellinen, J., Ruokolainen, M., Kostamo, A. & Kukkonen, J. V. K. Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomusriparius). Environ. Toxicol. Chem. 18, 756 (1999).
    CAS  Article  Google Scholar 

    65.
    Conrad, O. Module Channel Network and Drainage Basins (2003)

    66.
    Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015).
    ADS  Article  Google Scholar  More

  • in

    Metabarcoding profiling of microbial diversity associated with trout fish farming

    General microbial profile
    For the 16S libraries, the six samples recorded 1,054,909 reads, with a length between 51 to 533 bp and an average of 458. In general, the number of clustered sequences was 652,899 (61.89%), while the number of replicated reads was 140,196 (13.29%). The number of classified sequences was 1,047,271 (99.28%) while only 7,155 sequences exhibited ‘unassigned’ (0.68%). The quality control of classification, in this case, the alignment similarity, was between 75 and 100%, while the majority exceeded 80%. Based on the 16S rRNA dataset, prokaryotic OTU identification pipeline,  > 99% of the detected OTUs belonged to the bacteria domain. A total of 1318 species belonging to 17 phyla were detected in all samples. The most abundant were Proteobacteria (75.57%), Bacteroidetes (14.40%), Actinobacteria (0.94%), Verrucomicrobia (0.62%), and Cyanobacteria (0.25%).
    For the ITS2 libraries, the six samples recorded 2,193,552 reads, the assembled contigs length between 201 and 482 with an average of 292. In general, the number of generated consensus sequences ranged between seven and 47 per sample. In total, 191 (~ 75%) were successfully identified with pairwise identity ranging from 82 to 100%, while 63 sequences (~ 25%) hit an uncultured species (Supplementary Fig. 1). Based on the customized eukaryote OTU identification pipeline, 118 out of 233 were known species, ~ 55% of the identified OTUs belonged to the kingdom Fungi, ~ 33% belonged to the kingdom Plantae, and ~ 12% belonged to the kingdom Animalia. Due to the high diversity among the detected OTUs, fungi were grouped by their major function rather than their taxonomical position. The most represented Fungi group was the plant pathogens (~ 45%), followed by mushrooms/yeasts (~ 28%), volatile producers (~ 11%), fish pathogens (~ 8%), and human pathogens (~ eight%) of the total fungal OTUs (Fig. 1).
    Figure 1

    Microbial diversity detected by the metabarcoding analysis. The relative abundance of identified bacterial OTUs among the six water samples, where top abundant bacterial phyla are written in bold (A). The histogram plot shows the identified eukaryotic groups per domain (Planta, Fungi, or Animalia). The target group in the eukaryotic metabarcoding analysis was the fungal group distributed according to their prominent role and function (BBMerge–accurate paired shotgun read merging via overlap).

    Full size image

    Comparative metabarcoding analysis
    Microbial diversity indices
    For the 16S, the average alpha-diversity was estimated for each source; P-source showed a lower alpha-diversity than I-source. For 16S rRNA, the Simpson index values of the P-sources were lower than the I-sources (Fig. 2). Specifically, in samples from location N compared to the rest of the samples (0.86 for N-I and 0.49 for N-P). For B and G locations, D-index was 0.64 (B-I), 0.54 (B-P), 0.79 (G-I), and 0.66 (G-P). Based on sample locations, beta-diversity values of location G were the highest, while location B was the lowest. The G-I showed the highest beta-diversity for inter-location values, followed by N-P, N-I, G-P, B-I, and B-P (Fig. 2). This might indicate that the changes in a pond diversity are contributed by sources other than the inflow-water (e.g., transferred by juvenile fish or fingerlings, or the introduction of fish feeds).
    Figure 2

    Alpha and beta-diversity of identified bacterial communities are estimated according to the Simpson diversity index and Bray Curtis, respectively. The three locations (N, G, and B) from two different sources, the inflow- (I) and pond-water (P), are shown.

    Full size image

    Species occurrences and distributions
    The identified species were detected in all locations (common) or exclusively detected in (a) either I-source or P-source samples, (b) exclusively found in one location regardless of the water source, (c) uniquely recorded in one sample.
    A total of 1318 bacterial species were delimited. In which 1074 species were identified from I-sources, with the highest number was found in B-I (774), followed by N-I (669) and G-I (548). The number of detected species from P-sources was 1006 across the three locations. The highest number of species was found in B-P (882), followed by N-P (553) and G-P (415) locations. The highest number of species was 1081 from location B (321 were unique), followed by 804 species from location N (124 were unique) and 665 species from location G (94 were unique), regardless of the water source (i.e., species detected in one or both samples of each location). Locations N and B had 208 common species, while locations B and G shared 99 species, and locations N and G shared only 19 species. A total of 453 species were common among the three locations, of which 442 were common regardless of the water source.
    Out of the 453 common species, six species were exclusively detected from I-sources samples. Among the 442, the highest number of species was 415 from B-I (19 unique), followed by 399 from N-I (five unique) and 383 from G-I (five unique). Forty-one species were common between N-I and B-I, 25 between B-I and G-I, and 22 between N-I and G-I samples. Three hundred thirty-one species were common among samples N-I, B-I, and G-I. The number of the exclusively detected species in P-sources samples was five from the three locations. Among 442 species, the highest number of species was 424 from B-I (26 unique), followed by 386 from N-I (13 unique) and 346 from G-I (five unique). A total of 62 species were common between N-I and B-I, 30 between B-I and G-I, and five between N-I and G-I samples, while 306 were common among N-I, B-I, and G-I samples (Fig. 3).
    Figure 3

    Venn diagram of shared and uniquely identified OTUs among the three sampling locations (a), where the common OTUs were counted by source (I or P; b). For each source, OTUs were separated by sample locations, respectively (c & d).

    Full size image

    Based on the fungal community, 233 OTUs were detected, 84 were unknown fungi (36%), 31 uncultured fungi with at least one taxonomical rank is known (14%), and 118 species were successfully identified (50%). The detected OTUs in I-sources was 123, with the highest number of OTUs from B-I (79), followed by N-I (37) and G-I (seven). The number of detected OTUs in P-source was 110 from the three locations. The highest number of OTUs was found in B-P (46), followed by N-P (42) and G-P (22) locations. Regardless of the water source, the highest number of OTUs was 125 from location B (24 were unique), followed by 79 OTUs from location N (30 were unique), and 29 OTUs from location G (11 were unique). Locations N and B shared two OTUs, while B and G shared one OTU, and N and G locations shared no OTU. Only one uncultured fungus was shared among the three locations. Between both water sources, based on known and uncultured fungi with at least one taxonomical rank, 20 species were common between the I- and P-sources, 56 species unique for I-sources, and 49 species unique for P-sources. However, none were commonly found among the P-source from the three sample source locations. Fungal OTUs number was following the bacterial OTUs number per sample, reflecting the homogenized overall diversity within each water sample.
    Microbial diversity unique to trout aquaculture water
    Due to the lack of common eukaryotic OTUs among the P-source sites, the following analysis only focused on the prokaryotic species. The six exclusively identified bacterial species from the I-source belonged to three phyla, Proteobacteria, which has four species (Burkholderiaceae bacterium belong to MWH-UniP1 aquatic group, Caulobacteraceae bacterium, Hyphomonadaceae bacterium, and Rhodospirillales bacterium), one from phylum Bacteroidetes (Spirosomaceae bacterium) and one from phylum Firmicutes (Solibacillus sp.). For the P-source samples, the five exclusively species among the three locations belonged to two phyla, Bacteroidetes (Ekhidna sp., Polaribacter sp., and Sphingobacteriaceae bacterium) and Proteobacteria (Thalassotalea sp. and Paraherbaspirillum sp.).
    Among the commonly-shared species, the one-tail distribution student t-test was applied to identify significantly different bacterial species between the two water sources (Table 1). A total of 15 species belonged to two phyla, and 12 families were significantly different between the I- and P-source samples. The phylum Bacteroides (significant at average; p value of 0.001) included eight species: Marinoscillum sp. (Cyclobacteriaceae), Dysgonomonas sp. (Dysgonomonadaceae), Paludibacter sp. (Paludibacteraceae), Saprospiraceae bacterium, Mucilaginibacter and Pedobacter (Sphingobacteriaceae), Lacihabitans (Spirosomaceae), uncultured ST-12K33 (unknown family), and Empedobacter (Weeksellaceae); all of the aforementioned species were less represented in I-source and more represented in P-sources. In the case of the other phylum (Proteobacteria), eight species were found to be significant. Three species: Simplicispira sp. (Burkholderiaceae), Amaricoccus, and Thioclava (Rhodobacteraceae) were up-represented in I-source and while four species: Alicycliphilus and Caenimonas (Burkholderiaceae), Orientia sp. (Rickettsiaceae), and Sphingomonadaceae bacterium were up-represent in P-source.
    Table 1 Significantly differentiated bacteria (p  > 0.05) as determined via a t-test, ordered by classification.
    Full size table

    The species exhibiting the highest overall relative abundance was Simplicispira sp. (0.45), which was up-represented in the I-source, while the uncultured Saprospiraceae bacterium (0.227), Pedobacter sp. (0.164), and uncultured Sphingomonadaceae bacterium (0.213) were up-represented in the P-source.
    All data were analyzed using Pearson-based multiple correlation analysis based on the counts of all the identified species and visualized using heatmaps. Samples-based clustering was estimated for several correlation blocks. The single correlation-block that was detected to cluster the samples by location (i.e., N, B, and G) regardless of their source included nine species. Three correlation-blocks were found to cluster the samples by water source (i.e., I or P) regardless of their location, and these included 16 species, one of which included 11 species (Fig. 4). The correlated species were tested for species-species co-occurrence and visualized as a network. One significant connection was formed among five of the 16 species found to distinguish the water source, but none distinguish the sampling location. The detected species belonged to phylum Proteobacteria, Candidatus Symbiobacter sp., Comamonas sp., and Polaromonas sp. (Burkholderiaceae) and Porphyrobacter sp. (Sphingomonadaceae), and one species belonged to phylum Firmicutes, Lachnospiraceae bacterium in one connected cluster. The 11 species that did not form a network were Beijerinckiaceae bacterium, Bacteriap25, Gracilibacter sp., Malikia sp., Oligoflexus sp., Pelomonas sp., Polycyclovorans sp., Thioclava sp., Thauera sp., uncultured Alpha-proteobacterium, and uncultured Gamma-proteobacterium (JTB255; Fig. 4).
    Figure 4

    source samples from the P-source samples and includes 11 species (A), and the other discriminates the N, B, and G locations regardless of the water source and includes nine species (B).

    Heatmaps based on Person-multiple correlation analysis among the identified bacterial species. Two heatmaps, one was able to discriminate the I-

    Full size image

    Influence of samples locations and distance on microbial diversity
    The flow of water is northeast; accordingly, the flow of water hypothetically runs first from location N, passes through B, and then finally reaches G. Interestingly, it was observed that both N and B locations shared more OTUs than with the G location (Supplementary Fig. 1). Furthermore, N samples have less OTUs than the B and G sites, which raised a question about the influence of the geographic position and distance on the sampled locations. Based on such a hypothesis, a Euclidean geographic distance matrix was estimated to provide a spatial scale for further correlation analysis. A Mantel test was performed to examine the correlation between the geographic distance between the sampled farms and the number of characteristic species in I- and P-source samples. In the case of the inflow-water samples, no significant (p  > 0.05) correlation was observed. In contrast, the characteristic species count for pond-water samples significantly correlated with the distance between the samples (r = 0.969, p  More

  • in

    Quantification of dissolved O2 in bulk aqueous solutions and porous media using NMR relaxometry

    1.
    Seevers, D. O. A nuclear magnetic method for determining the permeability of sandstones. Presented at the SPWLA 7th Annual Logging Symposium, Tulsa, OK, 9–11 May 1966.
    2.
    Timur, A. Effective porosity and permeability of sandstones investigated through nuclear magnetic principles. Log Anal. 10(1), 3 (1969).
    Google Scholar 

    3.
    Coates, G. R., Xiao, L. & Prammer, M. G. NMR Logging Principles and Applications (Halliburton Energy Services, Houston, 1999).
    Google Scholar 

    4.
    Korringa, J., Seevers, D. O. & Torrey, H. C. Theory of spin pumping and relaxation in systems with a low concentration of electron spin resonance centers. Phys. Rev. 127(4), 1143–1150 (1962).
    ADS  CAS  Article  Google Scholar 

    5.
    Kleinberg, R. L., Kenyon, W. E. & Mitra, P. P. Mechanism of NMR relaxation of fluids in rock. J. Magn. Reson. Ser. A 108(2), 206–214 (1994).
    ADS  CAS  Article  Google Scholar 

    6.
    Watson, A. T. & Chang, C. T. P. Characterizing porous media with NMR methods. Prog. Nucl. Magn. Reson. Spectrosc. 31(4), 343–386 (1997).
    CAS  Article  Google Scholar 

    7.
    Godefroy, S., Fleury, M., Deflandre, F. & Korb, J. P. Temperature effect on NMR surface relaxation in rocks for well logging applications. J. Phys. Chem. B 106(43), 11183–11190 (2002).
    CAS  Article  Google Scholar 

    8.
    Glasel, J. A. & Lee, K. H. On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems. J. Am. Chem. Soc. 96(4), 970–978 (1974).
    CAS  Article  Google Scholar 

    9.
    Foley, I., Farooqui, S. A. & Kleinberg, R. L. Effect of paramagnetic ions on NMR relaxation of fluids at solid surfaces. J. Magn. Reson. Ser. A 123(1), 95–104 (1996).
    ADS  CAS  Article  Google Scholar 

    10.
    Mitchell, J., Stark, S. C. & Strange, J. H. Probing surface interactions by combining NMR cryoporometry and NMR relaxometry. J. Phys. D Appl. Phys. 38(12), 1950–1958 (2005).
    ADS  CAS  Article  Google Scholar 

    11.
    Keating, K. & Knight, R. A laboratory study to determine the effect of iron oxides on proton NMR measurements. Geophysics 72(1), E27–E32 (2007).
    ADS  Article  Google Scholar 

    12.
    Saidian, M. & Prasad, M. Effect of mineralogy on porosity, pore size distribution and surface relaxivity on nuclear magnetic resonance characterizations: A case study of Middle Bakken and Three Forks Formations. J. Fuel 161, 197–206 (2015).
    CAS  Article  Google Scholar 

    13.
    Benedekt, G. B. & Purcell, E. M. Nuclear magnetic resonance in liquids under high pressure. J. Chem. Phys. 22(12), 2003–2012 (1954).
    ADS  Article  Google Scholar 

    14.
    Nestle, N., Baumann, T. & Niessner, R. Oxygen determination in oxygen-supersaturated drinking waters by NMR relaxometry. Water Res. 37(14), 3361–3366 (2003).
    CAS  PubMed  Article  Google Scholar 

    15.
    Shikhov, I. & Arns, C. H. Temperature-dependent oxygen effect on NMR D-T2 relaxation-diffusion correlation of n-alkanes. Appl. Magn. Reson. 47(12), 1391–1408 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Horvath, I. T. & Millar, J. M. NMR under high gas pressure. Chem. Rev. 91(7), 13339–21351 (1991).
    Article  Google Scholar 

    17.
    Kamatari, Y. O., Kitahara, R., Yamada, H., Yokoyama, S. & Akasaka, K. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Methods 34(1), 133–143 (2004).
    CAS  PubMed  Article  Google Scholar 

    18.
    Bezonova, I., Forman-Kay, J. & Prosser, R. S. Molecular oxygen as a paramagnetic NMR probe of protein solvent exposure and topology. Concepts Magn. Reson. Part A 32(4), 239–253 (2008).
    Article  CAS  Google Scholar 

    19.
    Prosser, R. S. & Evanics, F. Paramagnetic effects of dioxygen in solution NMR—studies of membrane immersion depth, protein topology, and protein interactions. In Modern Magnetic Resonance (ed. Webb, G. A.) 475–483 (Springer, Dordrecht, 2008).
    Google Scholar 

    20.
    Erriah, B. & Elliot, S. J. Experimental evidence for the role of paramagnetic oxygen concentration on the decay of long-lived nuclear spin order. R. Soc. Chem. Adv. 9, 23418–23424 (2019).
    CAS  Google Scholar 

    21.
    Debye, P. Polar Molecules (New York, 1945).

    22.
    Chiarotti, G., Cristiani, G. & Giulotto, L. Proton relaxation in pure liquids and in liquids containing paramagnetic gases in solution. Il Nuovo Cimento 1(5), 863–873 (1955).
    Article  Google Scholar 

    23.
    Mirhej, M. E. Proton spin relaxation by paramagnetic molecular oxygen. Can. J. Chem. 43(5), 1130–1138 (1964).
    Article  Google Scholar 

    24.
    Parker, D. S. & Harmon, J. F. Dipolar spin-lattice relaxation in water containing oxygen. Chem. Phys. Lett. 25(4), 505–506 (1974).
    ADS  CAS  Article  Google Scholar 

    25.
    Morriss, C. E. et al. Hydrocarbon saturation and viscosity estimation from NMR logging in the Belridge Diatomite. Log Analyst 38(2), 44–72 (1997).
    MathSciNet  Google Scholar 

    26.
    Lo, S. W., Hirasaki, G. J., House, W. V. & Kobayashi, R. Mixing rules and correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratios of methane/hydrocarbon mixtures. SPE J. 7(1), 24–34 (2002).
    CAS  Article  Google Scholar 

    27.
    Mutina, A. R. & Hurlimann, M. D. Effect of oxygen on the NMR relaxation properties of crude oils. Appl. Magn. Reson. 29, 503–516 (2005).
    CAS  Article  Google Scholar 

    28.
    Lawson, C. L. & Hanson, R. J. Solving Least Square Problems (Prentice-Hall, Englewood Cliffs, 1974).
    Google Scholar 

    29.
    Hirasaki, G. J., Lo, S. & Zhang, Y. NMR properties of petroleum reservoir fluids. Magn. Reson. Imaging 21(3–4), 269–277 (2003).
    CAS  PubMed  Article  Google Scholar 

    30.
    Ferrell, F. T. & Himmelblau, D. M. Diffusion coefficients of nitrogen and oxygen in water. J. Chem. Eng. Data 12(1), 111–115 (1967).
    CAS  Article  Google Scholar 

    31.
    Niesar, U., Corongiu, G., Clementi, E. & Bhattacharya, D. K. Molecular dynamics simulations of liquid water using the NCC ab initio potential. J. Phys. Chem. 94(20), 7949–7956 (1991).
    Article  Google Scholar 

    32.
    Martin, D., McKenna, H. & Livina, V. The human physiological impact of global deoxygenation. J. Physiol Sci. 67(1), 97–106 (2017).
    CAS  PubMed  Article  Google Scholar 

    33.
    Majid, A., Saidian, M., Prasad, M. & Koh, C. A. Measurement of water droplets in water-in-oil emulsions using low field nuclear magnetic resonance for gas hydrate slurry application. Can. J. Chem. 93(9), 1007–1013 (2015).
    CAS  Article  Google Scholar 

    34.
    Scardina, P. & Edwards, M. Prediction and measurement of bubble formation in water treatment. J. Environ. Eng. 17(11), 968–973 (2001).
    Article  Google Scholar 

    35.
    Carr, H. & Purcell, E. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954).
    ADS  CAS  Article  Google Scholar 

    36.
    Meiboom, S. & Gill, D. Modified spin echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 668–691 (1958).
    ADS  Article  Google Scholar 

    37.
    Buttler, J. P., Reeds, J. A. & Dawson, S. V. Estimating solution of first kind integral equations with non-negative constraints and optimal smoothing. Siam J. Numer. Anal. 18(3), 381–397 (1981).
    ADS  MathSciNet  Article  Google Scholar 

    38.
    Benson, B. B. & Krause, D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Am. Soc. Limnol. Oceanogr. 29(3), 620–632 (1984).
    ADS  CAS  Article  Google Scholar 

    39.
    Geng, M. & Duan, Z. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta 74(2010), 5631–5640 (2010).
    ADS  CAS  Article  Google Scholar  More

  • in

    Oilbirds disperse large seeds at longer distance than extinct megafauna

    1.
    Terborgh, J. et al. Tree recruitment in an empty forest. J. Ecol. 89, 1757–1768 (2008).
    Article  Google Scholar 
    2.
    Stevenson, P. The abundance of large ateline monkeys is positively associated with the diversity of plants regenerating in Neotropical forests. Biotropica 43, 512–519 (2011).
    Article  Google Scholar 

    3.
    Peres, C., Emilio, T., Schietti, J., Desmoulière, S. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113, 892–897 (2016).
    CAS  PubMed  Article  ADS  Google Scholar 

    4.
    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    5.
    Chanthorn, W., Hartig, F., Brockelman, W. Y., Srisang, W., Nathalang, A. & Santon, J. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9 (2019).

    6.
    Davis, M. & Shaw, R. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).
    CAS  PubMed  Article  ADS  Google Scholar 

    7.
    Corlett, R. T. Seed dispersal distances and plant migration potential in tropical East Asia. Biotropica 41, 592–598 (2009).
    Article  Google Scholar 

    8.
    Duque, A., Stevenson, P. & Feeley, K. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc. Natl. Acad. Sci. 112, 10744–10749 (2015).
    CAS  PubMed  Article  ADS  Google Scholar 

    9.
    Howe, H. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).
    Article  Google Scholar 

    10.
    Wright, S. J. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14 (2002).
    PubMed  Article  ADS  Google Scholar 

    11.
    Sugiyama, A., Comita, L., Masaki, T., Condit, R. & Hubbell, S. Resolving the paradox of clumped seed dispersal: Positive density and distance dependence in a bat-dispersed species. Ecology 99, 2583–2591 (2018).
    PubMed  Article  Google Scholar 

    12.
    Bagchi, R. et al. Spatial patterns reveal negative density dependence and habitat associations in tropical trees. Ecology 92, 1723–1729 (2011).
    PubMed  Article  Google Scholar 

    13.
    Clark, J.S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204-224 (1998)

    14.
    Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).
    CAS  PubMed  Article  ADS  Google Scholar 

    15.
    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).
    PubMed  Article  Google Scholar 

    16.
    Abedi-Lartey, M., Dechmann, D. K. N., Wikelski, M., Scharf, A. K. & Fahr, J. Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape. Glob. Ecol. Conserv. 7, 12–24 (2016).
    Article  Google Scholar 

    17.
    Baraloto, C., Forget, P. M. & Goldberg, D. E. Seed mass, seedling size and Neotropical tree seedling establishment. J. Ecol. 96, 1156–1166 (2005).
    Article  CAS  Google Scholar 

    18.
    Mack, A. L. An advantage of large seed size: tolerating rather than succumbing to seed predators. Biotropica 30, 604–608 (1998).
    Article  Google Scholar 

    19.
    Peres, C. A., Roosmalen, M. V., Levey, D. J., Silva, W. & Galetti, M. Primate frugivory in two species-rich Neotropical forests: implications for the demography of large-seeded plants in overhunted areas. In Seed dispersal and frugivory: ecology, evolution and conservation (eds. Levey Silva, D. J. W. & Galetti, M.) 407–421 (Wallingford: CAB International, 2002).

    20.
    Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).
    Article  Google Scholar 

    21.
    Doughty, C., Wolf, A. & Malhi, Y. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764 (2013).
    CAS  Article  ADS  Google Scholar 

    22.
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. Camb. Philos. Soc. 93, 845–862 (2018).
    PubMed  Article  Google Scholar 

    23.
    Pires, M., Guimarães, P., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2017).
    Article  Google Scholar 

    24.
    Bosque, C. & Parra, O. Digestive efficiency and rate of food passage in oilbird nestlings. The Condor 94, 557–571 (1992).
    Article  Google Scholar 

    25.
    Rojas-Lizarazo, G. Diet and reproduction in a high mountain oilbird (Steatornis caripensis) colony in Colombia. Ornitol. Colomb. 53–69 (2016).

    26.
    Stevenson, P., Cardona, L., Acosta Rojas, D., Henao Díaz, F. & Cardenas, S. Diet of oilbirds (Steatornis caripensis) in Cueva de los Guácharos National Park (Colombia): Temporal variation in fruit consumption, dispersal and seed morphology. Ornitol. Neotrop. 28, 295–307 (2017).
    Google Scholar 

    27.
    McAtee, W. L. Notes on the food of the Guacharo (Steatornis caripensis). Auk 39, 108–109 (1922).
    Article  Google Scholar 

    28.
    Holland, R. A., Wikelski, M., Kümmeth, F. & Bosque, C. The secret life of oilbirds: New insights into the movement ecology of a unique avian frugivore. PLoS ONE 4, e8264 (2009).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    29.
    Karubian, J. et al. Seed dispersal by Neotropical birds: Emerging patterns and underlying processes. Ornitol. Neotrop. 23, 9–24 (2012).
    Google Scholar 

    30.
    McKey, D. In Coevolution of animals and plants (eds. Gilben, L. E. & Raven, P. H.) 159–191 (University Texas Press, 1975).

    31.
    Cárdenas, S., Cardona, L. M., Echeverry-Galvis, M. & Stevenson, P. R. Movement patterns and habitat preference of oilbirds (Steatornis caripensis) in the southern Andes of Colombia. Avian Cons. Ecol. 15, 5 (2020).
    Google Scholar 

    32.
    Cárdenas, S., Echeverry-Galvis, M. & Stevenson, P. R. Seed dispersal effectiveness by oilbirds (Steatornis caripensis) in the Southern Andes of Colombia. Biotropica. https://doi.org/10.1111/btp.12908 (2020).
    Article  Google Scholar 

    33.
    Anderson, J. T., Nuttle, T., Saldaña Rojas, J. S., Pendergast, T. H. & Flecker, A. S. Extremely long-distance seed dispersal by an overfished Amazonian frugivore. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 278, 3329–3335 (2011).
    Google Scholar 

    34.
    Wood, C. A. The Polynesian fruit pigeon, Globicera pacifica, its food and digestive apparatus. Auk 41, 433–438 (1924).
    Article  Google Scholar 

    35.
    Stocker, G. C. & Irvine, A. K. Seed dispersal by cassowaries (Casuarius casuarius) in North Queensland’s Rainforests. Biotropica 15, 170–176 (1983).
    Article  Google Scholar 

    36.
    Gautier-Hion, A. et al. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65, 324–337 (1985).
    CAS  PubMed  Article  ADS  Google Scholar 

    37.
    Lieberman, D., Lieberman, M. & Martin, C. Notes on seeds in elephant dung from Bia National Park Ghana. Biotropica 19, 365 (1987).
    Article  Google Scholar 

    38.
    Guillotin, M., Dubost, G. & Sabatier, D. Food choice and food competition among the three major primate species of French Guiana. J. Zool. 233, 551–579 (1994).
    Article  Google Scholar 

    39.
    Fragoso, J. M. V. & Huffman, J. M. Seed-dispersal and seedling recruitment patterns by the last Neotropical megafaunal element in Amazonia, the tapir. J. Trop. Ecol. 16, 369–385 (2000).
    Article  Google Scholar 

    40.
    Naranjo, E. Ecology and conservation of Baird’s Tapir in Mexico. Trop. Conserv. Sci. 2, 140–158 (2009).
    Article  Google Scholar 

    41.
    Kitamura, S., Madsri, S. & Poonswad, P. Characteristics of hornbill-dispersed fruits in lowland Dipterocarp forests of southern Thailand. Raffles Bul. Zool. 24, 137–147 (2011).
    Google Scholar 

    42.
    Stevenson, P., Link, A., Onshuus, A., Quiroz, A. & Velasco, M. Estimation of seed shadows generated by Andean woolly monkeys (Lagothrix lagothricha lugens). Int. J. Primatol. 35, 1021–1036 (2014).
    Article  Google Scholar 

    43.
    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Global Ecol. Biogeogr. 24, 1269–1280 (2015).
    Article  Google Scholar 

    44.
    Norconk, M., Grafton, B. & Conklin-Brittain, N. Seed dispersal by Neotropical seed predators. Am. J. Primatol. 45, 103–126 (1998).
    CAS  PubMed  Article  Google Scholar 

    45.
    Lord, J. M. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecol. 29, 430–436 (2004).
    Article  Google Scholar 

    46.
    Vellend, M., Myers, J., Gardescu, S. & Marks, P. Dispersal of Trillium seeds by deer: Implications for long-distance migration of forest herbs. Ecology 84, 1067–1072 (2003).
    Article  Google Scholar 

    47.
    Baños-Villalba, A. et al. Seed dispersal by macaws shapes the landscape of an Amazonian ecosystem. Sci. Rep. 7 (2017).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    48.
    Jansen, P. et al. Thieving rodent as substitute dispersers of megafaunal seeds. Proc. Natl. Acad. Sci. 109, 12610–12615 (2012).
    CAS  PubMed  Article  ADS  Google Scholar 

    49.
    Blanco, G., Tella, J. L., Hiraldo, F. & Díaz-Luque, J. A. Multiple external seed dispersers challenge the megafaunal syndrome anachronism and the surrogate ecological function of livestock. Front. Ecol. Evol. 7, 328 (2019).
    Article  Google Scholar 

    50.
    Prada, C. & Stevenson, P. Plant composition associated with environmental gradients in tropical montane forests (Cueva de Los Guácharos National Park, Huila, Colombia). Biotropica 48, 568–576 (2016).
    Article  Google Scholar 

    51.
    Bosque, C. & Parra, O. Digestive efficiency and rate of food passage in oilbird nestlings. The Condor 94, 557–571 (1992).
    Article  Google Scholar 

    52.
    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
    Article  Google Scholar 

    53.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria 2014).

    54.
    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Glob. Ecol. Biogeogr. 24, 1269–1280 (2015).
    Article  Google Scholar 

    55.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (2019). More

  • in

    Increase maize productivity and water use efficiency through application of potassium silicate under water stress

    1.
    Faostat, F. Available online, http://www.fao.org/faostat/en/#data.QC. Accessed Jan 2018.
    2.
    MAL, R. Ministry of Agricultural and Land Reclamation. Economic Affairs Sector, study of statistics for animal, poultry and fish wealth. Egypt. Minist. Agric. Land Reclam., 18, 145–159 (2008).

    3.
    Al-Keraby, F. Egypt country report. Global Agenda for, 73 (2000).

    4.
    El-Beltagy, A. & Abo-Hadeed, A. The Main Pillars of the National Program for maximizing the Water-Use Efficiency in the Old Land (The Research and Development Council, Ministry of Agriculture and Land Reclamation (MOALR), Giza, Egypt, 2008).
    Google Scholar 

    5.
    Kandil, E. E., Abdelsalam, N. R., Mansour, M. A., Ali, H. M. & Siddiqui, M. H. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 10, 1–11 (2020).
    Article  CAS  Google Scholar 

    6.
    Mohamed, A. E. & Makki, E. K. Wheat response to irrigation scheduling. Univ. Khartoum J. Agric. Sci. (Sudan) 13(1) (2019).

    7.
    Change, I. P. O. C. Climate change 2007: impacts, adaptation and vulnerability. Genebra, Suíça (2001).

    8.
    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).
    ADS  Article  Google Scholar 

    9.
    Tezara, W., Mitchell, V., Driscoll, S. & Lawlor, D. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401, 914–917 (1999).
    ADS  CAS  Article  Google Scholar 

    10.
    Du, N., Guo, W., Zhang, X. & Wang, R. Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress. Acta Physiol. Plant. 32, 839–848 (2010).
    Article  Google Scholar 

    11.
    Gholami, R. & Zahedi, S. M. Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J. Plant Nutr. 42, 2057–2069 (2019).
    CAS  Article  Google Scholar 

    12.
    Zahedi, S. M., Moharrami, F., Sarikhani, S. & Padervand, M. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci. Rep. 10, 1–18 (2020).
    Article  CAS  Google Scholar 

    13.
    Cakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 89, 1–16 (2004).
    Article  Google Scholar 

    14.
    Igbadun, H. E., Tarimo, A. K., Salim, B. A. & Mahoo, H. F. Evaluation of selected crop water production functions for an irrigated maize crop. Agric. Water Manag. 94, 1–10 (2007).
    Article  Google Scholar 

    15.
    Tariq, J. & Usman, K. Regulated deficit irrigation scheduling of maize crop. 2009. Sarhad J. Agric. 25, 441–450 (2009).
    Google Scholar 

    16.
    Singh, L. et al. Efficient techniques to increase water use efficiency under rainfed eco-systems. J. AgriSearch 1, 193–200 (2014).
    Google Scholar 

    17.
    Al-Mansor, A., El-Gindy, A., Hegazi, M., El-Bagoury, K. & Abd El-Hady, S. Effect of surface and subsurface trickle irrigation on yield and water use efficiency of tomato crop under deficit irrigation conditions. Misr J. Agric. Eng. 32, 1021–1040 (2015).
    Article  Google Scholar 

    18.
    Schmidt, R., Zhang, X. & Chalmers, D. Response of photosynthesis and superoxide dismutase to silica applied to creeping bentgrass grown under two fertility levels. J. Plant Nutr. 22, 1763–1773 (1999).
    CAS  Article  Google Scholar 

    19.
    Kandil, E. E., Abdelsalam, N. R., Aziz, A. A. A. E., Ali, H. M. & Siddiqui, M. H. Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. SUGAR TECH 22, 782–791 (2020).
    CAS  Article  Google Scholar 

    20.
    Liang, Y., Sun, W., Si, J. & Römheld, V. Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant. Pathol. 54, 678–685 (2005).
    CAS  Article  Google Scholar 

    21.
    Hattori, T. et al. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant. 123, 459–466 (2005).
    CAS  Article  Google Scholar 

    22.
    Liang, Y., Sun, W., Zhu, Y.-G. & Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147, 422–428 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Maghsoudi, K., Emam, Y. & Ashraf, M. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk. J. Bot. 39, 625–634 (2015).
    CAS  Google Scholar 

    24.
    Ibrahim, H. I., Sallam, A. M. & Shaban, K. A. Impact of irrigation rates and potassium silicate fertilizer on seed production and quality of Fahl Egyptian clover and soil properties under saline conditions. Am.-Eurasian J. Agric. Environ. Sci. 15, 1245–1255 (2015).
    Google Scholar 

    25.
    El-Naggar, M. E. et al. Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials 10, 739 (2020).
    CAS  PubMed Central  Article  Google Scholar 

    26.
    Romero-Aranda, M. R., Jurado, O. & Cuartero, J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 163, 847–855 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Eneji, A. E. et al. Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J. Plant Nutr. 31, 355–365 (2008).
    CAS  Article  Google Scholar 

    28.
    Liu, J., Han, C., Sheng, X., Liu, S. & Qi, X. in Oral Presentation at 5th International Conference on Si Agriculature. 13–18.

    29.
    Ali, A. M., Ibrahim, S. M. & Abou-Amer, I. Water deficit stress mitigation by foliar application of potassium silicate for sugar beet grown in a saline calcareous soil. Egypt. J. Soil Sci. 59, 15–23 (2019).
    Google Scholar 

    30.
    Mosa, W. F., Ali, H. M. & Abdelsalam, N. R. The utilization of tryptophan and glycine amino acids as safe alternatives to chemical fertilizers in apple orchards. Environ. Sci. Pollut. Res., 1–9. https://doi.org/10.1007/s11356-020-10658-7 (2020).

    31.
    Fouda, M. M. et al. Impact of high throughput green synthesized silver nanoparticles on agronomic traits of onion. Int. J. Biol. Macromol. 149, 1304–1317 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Abdelsalam, N. R. et al. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol. 133, 1008–1018 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Janislampi, K. W. Effect of silicon on plant growth and drought stress tolerance (2012).

    34.
    Balakhnina, T. & Borkowska, A. Effects of silicon on plant resistance to environmental stresses. Int. Agrophys. 27, 225–232 (2013).
    CAS  Article  Google Scholar 

    35.
    Gao, L. et al. Nitrogen fertilizer management and maize straw return modulate yield and nitrogen balance in sweet corn. Agronomy 10, 362 (2020).
    CAS  Article  Google Scholar 

    36.
    Page, A., Miller, R. & Keeney, D. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (American Society of Agronomy, Soil Science Society of America, Madison, 1982).
    Google Scholar 

    37.
    Israelsen, D. & Hansen, V. Flow of water into and through soils. In Irrigation Principles and Practices 3rd edn (Willey, New York, 1962). https://doi.org/10.2136/sssaj1963.03615995002700020010x

    38.
    Kjeldahl, C. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem. 22, 366 (1883).
    Article  Google Scholar 

    39.
    AOAC. Official Methods of Analysis (Association of Official Analytical Chemists, Rockville, 1990).
    Google Scholar 

    40.
    Steel, R. G. Pinciples and procedures of statistics a biometrical approach. Report No. 0070610282 (1997).

    41.
    CoStat, V. Cohort software798 light house Ave. PMB320, Monterey, CA93940, and USA. email: info@ cohort. com and Website: http://www.cohort.com. DownloadCoStatPart2. html (2005).

    42.
    Elgamaal, A. A. & Maswada, H. F. Response of three yellow maize hybrids to exogenous salicylic acid under two irrigation intervals. Asian J. Crop Sci. 5, 264–274 (2013).
    Article  Google Scholar 

    43.
    Shi, Q., Zeng, X., Li, M., Tan, X. & Xu, F. Effects of different water management practices on rice growth. Water-Wise Rice Prod. 1, 3–14 (2002).
    Google Scholar 

    44.
    Comas, L. H., Trout, T. J., DeJonge, K. C., Zhang, H. & Gleason, S. M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 212, 433–440 (2019).
    Article  Google Scholar 

    45.
    Song, L., Jin, J. & He, J. Effects of severe water stress on maize growth processes in the field. Sustainability 11, 5086 (2019).
    Article  Google Scholar 

    46.
    Zhang, H. et al. Response of maize yield components to growth stage-based deficit irrigation. Agron. J. 111, 3244–3252 (2019).
    Article  Google Scholar 

    47.
    Shedeed, S. I. Assessing effect of potassium silicate consecutive application on forage maize plants (Zea mays L.). J. Innov. Pharm. Biol. Sci. 5, 119–127 (2018).
    CAS  Article  Google Scholar 

    48.
    Mikhael, B., Awad-Allah, M. & Gewaily, E. Effect of irrigation intervals and silicon sources on the productivity of broadcast-seeded Sakha 107 rice cultivar. J. Plant Prod. 9, 1055–1062 (2018).
    Article  Google Scholar 

    49.
    Ren, J., Guo, J., Xing, X., Qi, G. & Yuan, Z. Preliminary study on yield increase effects and yield increase mechanism of silicate fertilizer on maize. J. Maize Sci. 10, 86–87 (2002).
    Google Scholar 

    50.
    Ahmad, A., Afzal, M., Ahmad, A. & Tahir, M. Effect of foliar application of silicon on yield and quality of rice (Oryza Sativa L). Cercet. Agron. Mold. 46, 21–28 (2013).
    Article  Google Scholar 

    51.
    Pilon, C., Soratto, R. P. & Moreno, L. A. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci. 53, 1605–1614 (2013).
    Article  Google Scholar 

    52.
    Abdeen, S. & Mancy, A. A melioration of water stress effect on sorghum plant growth and water use efficiency by application of potassium silicate and salicylic acid. Bull. Fac. Agric. Cairo Univ. 69, 43–52 (2018)
    Google Scholar 

    53.
    Sepaskhah, A. R. & Khajehabdollahi, M. H. Alternate furrow irrigation with different irrigation intervals for maize (Zea mays L.). Plant Prod. Sci. 8, 592–600 (2005).
    Article  Google Scholar 

    54.
    Artyszak, A. Effect of silicon fertilization on crop yield quantity and quality—a literature review in Europe. Plants 7, 54 (2018).
    CAS  PubMed Central  Article  Google Scholar 

    55.
    Zahedi, S. M., Karimi, M. & Teixeira da Silva, J. A. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 100, 25–31 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Hasanuzzaman, M., Alam, M. M., Nahar, K., Ahamed, K. U. & Fujita, M. Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust. J. Crop Sci. 8, 631 (2014).
    CAS  Google Scholar  More

  • in

    Advanced characterization of biomineralization at plaque layer and inside rice roots amended with iron- and silica-enhanced biochar

    1.
    Normile, D. Reinventing rice to feed the world. Science 321, 330–333 (2008).
    MathSciNet  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants (Academic Press, London, 2012).
    Google Scholar 

    3.
    Vigani, G., Tarantino, D. & Murgia, I. Mitochondrial ferritin is a functional iron-storage protein in cucumber (Cucumis sativus) roots. Front. Plant Sci. 4, 316 (2013).
    PubMed  PubMed Central  Google Scholar 

    4.
    Violante, A., Barberis, E., Pigna, M. & Boero, V. Factors affecting the formation, nature, and properties of iron precipitation products at the soil-root interface. J. Plant Nutr. 26, 1889–1908 (2003).
    CAS  Article  Google Scholar 

    5.
    Pradhan, S. K. et al. Genetic regulation of homeostasis, uptake, bio-fortification and efficiency enhancement of iron in rice. Environ. Exp. Bot. 177, 104066 (2020).
    CAS  Article  Google Scholar 

    6.
    Kilcoyne, S. H., Bentley, P. M., Thongbai, P., Gordon, D. C. & Goodman, B. A. The application of 57Fe Mössbauer spectroscopy in the investigation of iron uptake and translocation in plants. Nucl. Instrum. Meth B 160, 157–166 (2000).
    ADS  CAS  Article  Google Scholar 

    7.
    Zhang, A. et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 139, 469–475 (2010).
    CAS  Article  Google Scholar 

    8.
    Huang, M., Yang, L., Qin, H., Jiang, L. & Zou, Y. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Res. 154, 172–177 (2013).
    Article  Google Scholar 

    9.
    Zhang, A. et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 127, 153–160 (2012).
    Article  Google Scholar 

    10.
    Kim, S. & Dale, B. E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26, 361–375 (2004).
    Article  Google Scholar 

    11.
    Wang, Y., Xiao, X., Xu, Y. & Chen, B. Environmental effects of silicon within Biochar (Sichar) and carbon–silicon coupling mechanisms: A critical review. Environ. Sci. Technol. 53, 13570–13582 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 45, 629 (2007).
    CAS  Article  Google Scholar 

    13.
    Van Zwieten, L. et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235–246 (2009).
    Article  CAS  Google Scholar 

    14.
    Joseph, S. et al. Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 4, 323–343 (2013).
    CAS  Article  Google Scholar 

    15.
    Chew, J. et al. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Sci. Total Environ. 713, 136431 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Irshad, M. K. et al. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. Sci. Total Environ. 717, 137086 (2020).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Zhang, J.-Y. et al. Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.). Environ. Pollut. 260, 113970 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Chen, Z. et al. Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization. Environ. Pollut. 231, 549–559 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Küpper, H., Zhao, F. J. & McGrath, S. P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119, 305–312 (1999).
    PubMed Central  Article  Google Scholar 

    20.
    Blackwell, P. et al. Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere 25, 686–695 (2015).
    CAS  Article  Google Scholar 

    21.
    Rodriguez, N., Menendez, N., Tornero, J., Amils, R. & de la Fuente, V. Internal iron biomineralization in Imperata cylindrica, a perennial grass: Chemical composition, speciation and plant localization. New Phytol. 165, 781–789 (2005).
    CAS  PubMed  Article  Google Scholar 

    22.
    Neumann, D., Nieden, U. Z., Lichtenberger, O. & Leopold, I. How does Armeria maritima tolerate high heavy metal concentrations?. J. Plant Physiol. 146, 704–717 (1995).
    CAS  Article  Google Scholar 

    23.
    Liu, D. H., Adler, K. & Stephan, U. W. Iron-containing particles accumulate in organelles and vacuoles of leaf and root cells in the nicotianamine-free tomato mutantchloronerva. Protoplasma 201, 213–220 (1998).
    CAS  Article  Google Scholar 

    24.
    Alkhatib, R., Alkhatib, B., Abdo, N., Al-Eitan, L. & Creamer, R. Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biol. 19, 253 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Fuente, V. et al. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv. J. Struct. Biol. 193, 23–32 (2016).
    CAS  PubMed  Article  Google Scholar 

    26.
    Graham, U. M. et al. Tissue specific fate of nanomaterials by advanced analytical imaging techniques—A review. Chem. Res. Toxicol. 33, 1145–1162 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Aoki, D. et al. Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci. Rep. 6, 31525 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Martin, R. R. et al. Time of flight secondary ion mass spectrometry studies of the distribution of metals between the soil, rhizosphere and roots of Populus tremuloides Minchx growing in forest soil. Chemosphere 54, 1121–1125 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    29.
    Saito, K. et al. Aluminum localization in the cell walls of the mature xylem of maple tree detected by elemental imaging using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Holzforschung 68, 85–92 (2014).
    CAS  Article  Google Scholar 

    30.
    Hanć, A., Piechalak, A., Tomaszewska, B. & Barałkiewicz, D. Laser ablation inductively coupled plasma mass spectrometry in quantitative analysis and imaging of plant’s thin sections. Int. J. Mass spectrom. 363, 16–22 (2014).
    Article  CAS  Google Scholar 

    31.
    Shi, J., Gras, M. A. & Silk, W. K. Laser ablation ICP-MS reveals patterns of copper differing from zinc in growth zones of cucumber roots. Planta 229, 945–954 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Guizani, C., Haddad, K., Limousy, L. & Jeguirim, M. New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon 119, 519–521 (2017).
    CAS  Article  Google Scholar 

    33.
    Joseph, S. et al. An investigation into the reactions of biochar in soil. Soil Res. 48, 501–515 (2010).
    CAS  Article  Google Scholar 

    34.
    Prendergast-Miller, M. T., Duvall, M. & Sohi, S. P. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 65, 173–185 (2014).
    CAS  Article  Google Scholar 

    35.
    Nielsen, S. et al. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agric. Ecosyst. Environ. 191, 73–82 (2014).
    Article  Google Scholar 

    36.
    Hansel, C. M., Fendorf, S., Sutton, S. & Newville, M. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 35, 3863–3868 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Gloter, A., Zbinden, M., Guyot, F., Gaill, F. & Colliex, C. TEM-EELS study of natural ferrihydrite from geological–biological interactions in hydrothermal systems. Earth Planet. Sci. Lett. 222, 947–957 (2004).
    ADS  CAS  Article  Google Scholar 

    38.
    Rajendran, M. et al. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere 222, 314–322 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Wu, C. et al. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL). Environ. Pollut. 212, 27–33 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    40.
    Linke, R., Schreiner, M., Demortier, G. & Alram, M. Determination of the provenance of medieval silver coins: potential and limitations of X-ray analysis using photons, electrons or protons. X-ray Spectrom. 32, 373–380 (2003).
    ADS  CAS  Article  Google Scholar 

    41.
    Haynes, R. J. A contemporary overview of silicon availability in agricultural soils. J. Plant Nutr. Soil Sci. 177, 831–844 (2014).
    CAS  Article  Google Scholar 

    42.
    Kostic, L. et al. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. Biol. Fertility Soils 51, 289–298 (2014).
    Article  CAS  Google Scholar 

    43.
    Acosta-Martinez, V. & Tabatabai, M. Enzyme activities in a limed agricultural soil. Biol. Fertility Soils 31, 85–91 (2000).
    CAS  Article  Google Scholar 

    44.
    Chan, K., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 46, 437–444 (2008).
    Article  Google Scholar 

    45.
    Khan, N. et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Adv. Agron. 138, 1–96 (2016).
    Article  Google Scholar 

    46.
    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept and review. Soil Biol. Biochem. 83, 184–199 (2015).
    CAS  Article  Google Scholar 

    47.
    Ma, J., Cai, H., He, C., Zhang, W. & Wang, L. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol. 206, 1063–1074 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Wang, Y., Stass, A. & Horst, W. J. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol. 136, 3762–3770 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Wang, P., Lombi, E., Zhao, F.-J. & Kopittke, P. M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 21, 699–712 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Garvie, L. A. & Buseck, P. R. Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature 396, 667–670 (1998).
    ADS  CAS  Article  Google Scholar 

    51.
    Goya, G. F., Berquó, T. S., Fonseca, F. C. & Morales, M. P. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003).
    ADS  CAS  Article  Google Scholar 

    52.
    Yao, C. et al. Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere 25, 703–712 (2015).
    CAS  Article  Google Scholar 

    53.
    Rawal, A. et al. Mineral-biochar composites: Molecular structure and porosity. Environ. Sci. Technol. 50, 7706–7714 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    54.
    Mitchell, D. R. Contamination mitigation strategies for scanning transmission electron microscopy. Micron 73, 36–46 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More