More stories

  • in

    Impacts of streamflow alteration on benthic macroinvertebrates by mini-hydro diversion in Sri Lanka

    1.
    Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19(5–6), 397–441 (2003).
    Article  Google Scholar 
    2.
    Finn, M. A., Boulton, A. J. & Chessman, B. C. Ecological responses to artificial drought in two Australian rivers with differing water extraction. Fund. Appl. Limnol. 175(3), 231–248 (2009).
    Article  Google Scholar 

    3.
    Dewson, Z. S., James, A. B. & Death, R. G. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J. N. Am. Benthol. Soc. 26(3), 401–415 (2007).
    Article  Google Scholar 

    4.
    Poff, N. L. & Zimmerman, J. K. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biol. 55(1), 194–205 (2010).
    Article  Google Scholar 

    5.
    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshwater Biol. 60(2), 410–425 (2015).
    Article  Google Scholar 

    6.
    GOSL. CEB statistical digest, Ceylon electricity Board, Colombo, Sri Lanka (2012).

    7.
    Richter, B. D., Baumgartner, J. V., Wigington, R. & Braun, D. P. How much water does a river need?. Freshwater Biol. 37, 231–249 (1997).
    Article  Google Scholar 

    8.
    Dudgeon, D. Effects of water transfer on aquatic insects in a stream in Hong Kong. Regul. River 7, 369–377 (1992).
    Article  Google Scholar 

    9.
    Petts, G. E. & Bickerton, M. A. Influence of water abstraction on the macroinvertebrate community gradient within a glacial stream: La Borgne d’Arolla, Valais Switzerland. Freshwater Biol. 32, 375–386 (1994).
    Article  Google Scholar 

    10.
    Rader, R. B. & Belish, T. A. Influence of mild to severe flow alterations on invertebrates in three mountain streams. Regul. River 15, 353–363 (1999).
    Article  Google Scholar 

    11.
    Dunbar, M. J. et al. River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshwater Biol. 55(1), 226–242 (2010).
    Article  Google Scholar 

    12.
    Schneider, S. C. & Petrin, Z. Effects of flow regime on benthic algae and macroinvertebrates: a comparison between regulated and unregulated rivers. Sci. Total Environ. 579, 1059–1072 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biol. 55(1), 86–107 (2010).
    Article  Google Scholar 

    14.
    Mueller, M., Pander, J. & Geist, J. The effects of weirs on structural stream habitat and biological communities. J. Appl. Ecol. 48(6), 1450–1461 (2011).
    Article  Google Scholar 

    15.
    Holt, C. R., Pfitzer, D., Scalley, C., Caldwell, B. A. & Batzer, D. P. Macroinvertebrate community responses to annual flow variation from river regulation: an 11-year study. River Res. Appl. 31(7), 798–807 (2015).
    Article  Google Scholar 

    16.
    Krajenbrink, H. J. et al. Macroinvertebrate community responses to river impoundment at multiple spatial scales. Sci. Total Environ. 650, 2648–2656 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Mbaka, J. G. & Wanjiru Mwaniki, M. A global review of the downstream effects of small impoundments on stream habitat conditions and macroinvertebrates. Environ. Rev. 23(3), 257–262 (2015).
    Article  Google Scholar 

    18.
    Anderson, D., Moggridge, H., Warren, P. & Shucksmith, J. The impacts of ‘run-of-river’hydropower on the physical and ecological condition of rivers. Water Environ. J. 29(2), 268–276 (2015).
    Article  Google Scholar 

    19.
    Bilotta, G. S., Burnside, N. G., Turley, M. D., Gray, J. C. & Orr, H. G. The effects of run-of-river hydroelectric power schemes on invertebrate community composition in temperate streams and rivers. Plos One 12(2), e0171634 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Gabbud, C., Robinson, C. T. & Lane, S. N. Summer is in winter: Disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Sci. Total Environ. 650, 2164–2180 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Quadroni, S., Crosa, G., Gentili, G. & Espa, P. Response of stream benthic macroinvertebrates to current water management in Alpine catchments massively developed for hydropower. Sci. Total Environ. 609, 484–496 (2017).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Rosero-López, D., Knighton, J., Lloret, P. & Encalada, A. C. Invertebrate response to impacts of water diversion and flow regulation in high-altitude tropical streams. River Res. Appl. 36(2), 223–233 (2019).
    Article  Google Scholar 

    23.
    Ogbeibu, A. E. & Oribhabor, B. J. Ecological impact of river impoundment using benthic macro-invertebrates as indicators. Water Res. 36(10), 2427–2436 (2002).
    CAS  PubMed  Article  Google Scholar 

    24.
    Álvarez-Cabria, M., Barquín, J. & Juanes, J. A. Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health?. Ecol. Indic. 10(2), 370–379 (2010).
    Article  CAS  Google Scholar 

    25.
    Hart, D. D. & Finelli, C. M. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annu. Rev. Ecol. Syst. 30, 363–395 (1999).
    Article  Google Scholar 

    26.
    Wills, T. C., Baker, E. A., Nuhfer, A. J. & Zorn, T. G. Response of the benthic macroinvertebrate community in a northern Michigan stream to reduced summer stream flows. River Res. Appl. 22(7), 819–836 (2006).
    Article  Google Scholar 

    27.
    James, A. B. W., Dewson, Z. S. & Death, R. G. The influence of flow reduction on macroinvertebrate drift density and distance in three New Zealand streams. J. N. Am. Benthol. Soc. 28, 220–232 (2009).
    Article  Google Scholar 

    28.
    Richter, B. D., Baumgartner, J. V., Braun, D. P. & Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. River 14(4), 329–340 (1998).
    Article  Google Scholar 

    29.
    Shieh, C. L., Guh, Y. R. & Wang, S. Q. The application of range of variability approach to the assessment of a check dam on riverine habitat alteration. Environ. Geol. 52, 427–435 (2007).
    Article  Google Scholar 

    30.
    Yang, P., Yin, X.-A., Yang, Z.-F. & Tang, J. A revised range of variability approach considering the periodicity of hydrological indicators. Hydrol. Process. 28, 6222–6235 (2014).
    ADS  Article  Google Scholar 

    31.
    Yu, C., Yin, X. & Yang, Z. A revised range of variability approach for the comprehensive assessment of the alteration of flow regime. Ecol. Eng. 96, 200–207 (2016).
    Article  Google Scholar 

    32.
    Ge, J., Peng, W., Huang, W., Qu, X. & Singh, S. K. Quantitative assessment of flow regime alteration using a revised range of variability methods. Water 10, 597 (2018).
    Article  Google Scholar 

    33.
    Timpe, K. & Kaplan, D. The changing hydrology of a dammed Amazon. Science Advances 3(11), e1700611 (2017).
    ADS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Smakhtin, V. U. & Weragala, N. An assessment of hydrology and environmental flows in the Walawe river basin, Sri Lanka. Working Paper 103. International Water Management Institute (IWMI), Colombo, Sri Lanka (2005).

    35.
    Mood, A. M., Graybill, F. A. & Boes, P. D. C. Introduction to the Theory of Statistics Vol. 3 (McGraw-Hill, New York, 2005).
    Google Scholar 

    36.
    Zhang, Q., Xu, C. Y., Chen, Y. D. & Yang, T. Spatial assessment of hydrologic alteration across the Pearl River Delta, China, and possible underlying causes. Hydrol. Process. 23(11), 1565–1574 (2009).
    ADS  Article  Google Scholar 

    37.
    Lee, A., Cho, S., Kang, D. K. & Kim, S. Analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration. J. Hydro Environ. Res. 8(3), 234–247 (2014).
    Article  Google Scholar 

    38.
    Stefanidis, K., Panagopoulos, Y., Psomas, A. & Mimikou, M. Assessment of the natural flow regime in a Mediterranean river impacted from irrigated agriculture. Sci. Total Environ. 573, 1492–1502 (2016).
    ADS  CAS  PubMed  Article  Google Scholar 

    39.
    Assahira, C. et al. Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. Forest Ecol. Manag. 396, 113–123 (2017).
    Article  Google Scholar 

    40.
    Ali, R., Kuriqi, A., Abubaker, S. & Kisi, O. Hydrologic alteration at the upper and middle part of the yangtze river, China: towards sustainable water resource management under increasing water exploitation. Sustainability 11(19), 5176 (2019).
    Article  Google Scholar 

    41.
    Carlisle, D. M., Falcone, J., Wolock, D. M., Meador, M. R. & Norris, R. H. Predicting the natural flow regime: models for assessing hydrological alteration in streams. River Res. Appl. 26(2), 118–136 (2010).
    Google Scholar 

    42.
    Maynard, C. M. & Lane, S. N. Reservoir compensation releases: Impact on the macroinvertebrate community of the Derwent River, Northumberland, UK—a longitudinal study. River Res. Appl. 28(6), 692–702 (2012).
    Article  Google Scholar 

    43.
    Salmaso, F. et al. Benthic macroinvertebrates response to water management in a lowland river: effects of hydro-power vs irrigation off-stream diversions. Environ. Monit. Assess. 190(1), 33 (2018).
    Article  CAS  Google Scholar 

    44.
    Power, M. E., Sun, A., Parker, G., Dietrich, W. E. & Wootton, J. T. Hydraulic food-chain models. BioScience 45(3), 159–167 (1995).
    Article  Google Scholar 

    45.
    Jayawardana, J. M. C. K., Gunawardana, W. D. T. M., Udayakumara, E. P. N. & Westbrooke, M. Land use impacts on river health of Uma Oya, Sri Lanka: implications of spatial scales. Environ. Monit. Assess. 189(4), 192 (2017).
    CAS  PubMed  Article  Google Scholar 

    46.
    Weliange, W. S., Leichtfried, M., Amarasinghe, U. S. & Füreder, L. Longitudinal variation of benthic macroinvertebrate communities in two contrasting tropical streams in Sri Lanka. Int. Rev. Hydrobiol. 102(3–4), 70–82 (2017).
    Article  Google Scholar 

    47.
    Benzie, J. A. The colonisation mechanisms of stream benthos in a tropical river (Menik Ganga: Sri Lanka). Hydrobiologia 111(3), 171–179 (1984).
    Article  Google Scholar 

    48.
    Amarathunga, A. D. & Fernando, R. W. Suspended sediment concentration and its impact on aquatic invertebrates in the Gin River, Sri Lanka. Journal of Food and Agriculture 9(1–2), 24–38 (2016).
    Article  Google Scholar 

    49.
    Lancaster, J. & Downes, B. J. Aquatic entomology (OUP, Oxford, 2013).
    Google Scholar 

    50.
    Ramos, V., Formigo, N. & Maia, R. Environmental flows under the WFD implementation. Water Resour. Manag. 32(15), 5115–5149 (2018).
    Article  Google Scholar 

    51.
    Rosero-López, D. et al. Streamlined eco-engineering approach helps define environmental flows for tropical Andean headwaters. Freshwater Biol. 64(7), 1315–1325 (2019).
    Article  Google Scholar 

    52.
    Warfe, D. M., Hardie, S. A., Uytendaal, A. R., Bobbi, C. J. & Barmuta, L. A. The ecology of rivers with contrasting flow regimes: identifying indicators for setting environmental flows. Freshwater Biol. 59(10), 2064–2080 (2014).
    Article  Google Scholar 

    53.
    Wu, M., Chen, A., Zhang, X. & McClain, M. E. A comment on Chinese policies to avoid negative impacts on river ecosystems by hydropower projects. Water 12(3), 869 (2020).
    Article  Google Scholar 

    54.
    Chandrapala, L. Long term trends of rainfall and temperature in Sri Lanka. In Climate Variability and Agriculture (eds Abrol, Y. P. et al.) (Narosa Publishing House, New Delhi, 1996).
    Google Scholar 

    55.
    Halwatura, D. & Najim, M. M. M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Modell. Softw. 46, 155–162 (2013).
    Article  Google Scholar 

    56.
    USEPA (US ENVIRONMENTAL PROTECTION AGENCY). Field and laboratory methods for macroinvertebrate and habitat assessment of low gradient, non-tidal streams. Mid-Atlantic Coastal Streams (MACS) Workgroup, Environmental Services Division, Region 3, USEPA, Wheeling, West Virginia, USA (1997).

    57.
    Turner, A. M. & Trexler, J. C. Sampling aquatic invertebrates from marshes: evaluating the options. J. N. Am. Benthol. Soc. 16(3), 694–709 (1997).
    Article  Google Scholar 

    58.
    Mendis, A. S. & Fernando, C. H. A guide to the fresh water fauna of Ceylon (Sri Lanka) (Weerawardhena S. R. and Fernando C. H., eds), Gestetner, Sri Lanka, 42-126 pp. (1962).

    59.
    Starmühlner, F. Result of the Australian: ceylonese hydrological mission, Part xvii: The freshwater Gastropods of Ceylon. Bull. Fish. Res. St. Sri Lanka (Ceylon) 25(1), 97–181 (1974).
    Google Scholar 

    60.
    APHA. Standard Methods for Examinations of Water and Wastewater, 21st ed. APHA, AWWA and WEF DC, Washington (2005).

    61.
    Clarke, K. R. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation Vol. 2 (PRIMER-E Ltd, Plymouth, 2001).
    Google Scholar 

    62.
    Clarke, K. R. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18, 117–143 (1993).
    Article  Google Scholar 

    63.
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods PRIMER-E (Plymouth, UK, 2008).
    Google Scholar  More

  • in

    Pseudogymnoascus destructans growth in wood, soil and guano substrates

    1.
    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Fisher, M. C., Gow, N. A. R. & Gurr, S. J. Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philos. Trans. R. Soc. B Biol. Sci. 371, 20160332 (2016).
    Article  Google Scholar 

    3.
    Ghosh, P. N., Fisher, M. C. & Bates, K. A. Diagnosing emerging fungal threats: A one health perspective. Front. Genet. 9, 376 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    4.
    Seyedmousavi, S. et al. Aspergillus and aspergilloses in wild and domestic animals: A global health concern with parallels to human disease. Med. Mycol. 53, 765–797 (2015).
    PubMed  Article  Google Scholar 

    5.
    Stephen, C., Lester, S., Black, W., Fyfe, M. & Raverty, S. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 43, 792–794 (2002).
    PubMed  PubMed Central  Google Scholar 

    6.
    Speare, R., Thomas, A. D., O’Shea, P. & Shipton, W. A. Mucor amphibiorum in the toad, Bufo marinus Australia. J. Wildl. Dis. 30, 399–407 (1994).
    CAS  PubMed  Article  Google Scholar 

    7.
    Connolly, J. H. A review of mucormycosis in the platypus (Ornithorhynchus anatinus). Aust. J. Zool. 57, 235–244 (2009).
    Article  Google Scholar 

    8.
    Gust, N. & Griffiths, J. Platypus mucormycosis and its conservation implications. Austral. Mycol. 28, 1–8 (2009).
    Google Scholar 

    9.
    Thiel, R. P., Mech, L. D., Ruth, G. R., Archer, J. R. & Kaufman, L. Blastomycosis in wild wolves. J. Wildl. Dis. 23, 321–323 (1987).
    CAS  PubMed  Article  Google Scholar 

    10.
    Storms, T. N., Victoria L. Clyde, Linda Munson & Edward C. Ramsay. Blastomycosis in nondomestic felids. J. Zool. Wildl. Med. 34, 231–238 (2003).

    11.
    Guillot, J., Guérin, C. & Chermette, R. Histoplasmosis in Animals. in Emerging and Epizootic Fungal Infections in Animals (eds. Seyedmousavi, S., de Hoog, G. S., Guillot, J. & Verweij, P. E.) 115–128 (Springer International Publishing, 2018). doi:https://doi.org/10.1007/978-3-319-72093-7_5.

    12.
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    13.
    Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. USA 110, 15325 (2013).

    14.
    Riley, S. Large-scale spatial-transmission models of infectious disease. Science 316, 1298 (2007).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Engering, A., Hogerwerf, L. & Slingenbergh, J. Pathogen–host–environment interplay and disease emergence. Emerg. Microbes Infect. 2, 1–7 (2013).
    Article  CAS  Google Scholar 

    17.
    Shikano, I. & Cory, J. S. Impact of environmental variation on host performance differs with pathogen identity: Implications for host-pathogen interactions in a changing climate. Sci. Rep. 5, 15351 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    Kraay, A. N. M. et al. Fomite-mediated transmission as a sufficient pathway: A comparative analysis across three viral pathogens. BMC Infect. Dis. 18, 540 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Stephens, B. et al. Microbial exchange via fomites and implications for human health. Curr. Pollut. Rep. 5, 198–213 (2019).
    CAS  Article  Google Scholar 

    20.
    Langwig, K. E. et al. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc. Biol. Sci. 282, (2015).

    21.
    Huebschman, J. J. et al. Detection of Pseudogymnoascus destructans during Summer on Wisconsin Bats. J. Wildl. Dis. https://doi.org/10.7589/2018-06-146 (2019).
    Article  PubMed  Google Scholar 

    22.
    Hoyt, J. R. et al. Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proc. Natl. Acad. Sci. USA 117, 7255 (2020).
    ADS  CAS  PubMed  Article  Google Scholar 

    23.
    Foley, J., Clifford, D., Castle, K., Cryan, P. & Osfeld, R. S. Investigating and managing the rapid emergence of white nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 25, 223–231 (2011).
    PubMed  Google Scholar 

    24.
    Blanco, C. M. & Garrie, J. Species specific effects of prescribed burns on bat occupancy in northwest Arkansas. For. Ecol. Manage. 460, 117890 (2020).
    Article  Google Scholar 

    25.
    Gargas, A., Trest, M., Christensen, M., Volk, T. J. & Blehert, D. Geomyces destructans sp. nov. associated with bat white-nose syndrome. Mycotaxon 108, 147–154 (2009).

    26.
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227 (2009).
    CAS  PubMed  Article  Google Scholar 

    27.
    Cryan, P. M. et al. Electrolyte depletion in white-nose syndrome bats. J. Wildl. Dis. 49, 398–402 (2013).
    CAS  PubMed  Article  Google Scholar 

    28.
    Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Biol. Lett. 9, 20130177 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Verant, M. L. et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14, 10 (2014).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    31.
    Turner, G. G., Reeder, D. M. & Coleman, J. T. H. A Five-year assessment of mortality and geographic spread of white-nose syndrome in North American Bats, with a Look at the Future. Update of white-nose syndrome in bats. Bat Res. News 52, 13–27 (2011).

    32.
    Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012).
    PubMed  Article  Google Scholar 

    33.
    Langwig, K. E. et al. Invasion dynamics of white-nose syndrome fungus, midwestern United States. Emerg. Infect. Dis. 21, 1023–1026 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    USFW. U.S. Fish and Wildlife Service. 2019. White-nose syndrome: The devastating disease of hibernating bats in North America. Accessed 1 May 2020. https://www.whitenosesyndrome.org/mmedia-education/white-nose-syndrome-fact-sheet-june-2018. (2019).

    35.
    Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    36.
    Lorch, J. M. et al. Distribution and environmental persistence of the causative agent of white-nose syndrome, geomyces destructans, in bat hibernacula of the Eastern United States. Appl. Environ. Microbiol. 79, 1293–1301 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    37.
    Hoyt, J. R. et al. Long-term persistence of Pseudogymnoascus destructans, the Causative Agent of white-nose syndrome, in the absence of bats. EcoHealth 12, 330–333 (2015).
    PubMed  Article  Google Scholar 

    38.
    Campbell, L. J., Walsh, D., Blehert, D. S. & Lorch, J. M. Long-term survival of Pseudogymnoascus destructans at elevated temperatures. J. Wildl. Dis. 56, 278–287 (2020).
    PubMed  Article  Google Scholar 

    39.
    Urbina, J., Chestnut, T., Schwalm, D., Allen, J. & Levi, T. Experimental evaluation of genomic DNA degradation rates for the pathogen Pseudogymnoascus destructans (Pd) in bat guano. PeerJ 8, e8141 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    40.
    Lorch, J. M. et al. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105, 237–252 (2013).
    CAS  PubMed  Article  Google Scholar 

    41.
    Reynolds, H. T., Ingersoll, T. & Barton, H. A. Modeling the environmental growth of Pseudogymnoascus destructans and its impact on the White-nose syndrome epidemic. J. Wildl. Dis. 51, 318–331 (2015).
    PubMed  Article  Google Scholar 

    42.
    Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. USA 109, 6999 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    43.
    WNS Multiagency decontamination team. https://www.whitenosesyndrome.org/mmedia-education/united-states-national-white-nose-syndrome-decontamination-protocol-april-2016-2. (2018).

    44.
    Verant, M., Bohuski, E., Lorch, J. & Blehert, D. Optimized methods for total nucleic acid extraction and quantification of the bat white-nose syndrome fungus, Pseudogymnoascus destructans, from swab and environmental samples. J. VET Diagn. Invest. 28, 110–118 (2016).
    CAS  PubMed  Article  Google Scholar 

    45.
    Rocke, T. E. et al. Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Sci. Rep. 9, 6788 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    46.
    Zhelyazkova, V. L. et al. Screening and biosecurity for white-nose Fungus Pseudogymnoascus destructans (Ascomycota: Pseudeurotiaceae) in Hawai‘i. Pac. Sci. 73, 357–365 (2019).
    Article  Google Scholar 

    47.
    Muller, L. K. et al. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia 105, 253–259 (2013).
    CAS  PubMed  Article  Google Scholar 

    48.
    Vanderwolf, K. J., Malloch, D. & McAlpine, D. F. Detecting viable Pseudogymnoascus destructans (Ascomycota: Pseudeurotiaceae) from walls of bat hibernacula: Effect of culture media. J. Cave Karst Stud. 78, 158 (2016).
    CAS  Article  Google Scholar 

    49.
    Cheng, T. L. et al. Efficacy of a probiotic bacterium to treat bats affected by the disease white-nose syndrome. J. Appl. Ecol. 54, 701–708 (2017).
    Article  Google Scholar 

    50.
    Micalizzi, E. W., Mack, J. N., White, G. P., Avis, T. J. & Smith, M. L. Microbial inhibitors of the fungus Pseudogymnoascus destructans, the causal agent of white-nose syndrome in bats. PLoS ONE 12, e0179770 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Singh, A., Lasek-Nesselquist, E., Chaturvedi, V. & Chaturvedi, S. Trichoderma polysporum selectively inhibits white-nose syndrome fungal pathogen Pseudogymnoascus destructans amidst soil microbes. Microbiome 6, 139 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    De Mandal, S., Zothansanga, Panda, A. K., Bisht, S. S. & Senthil Kumar, N. First report of bacterial community from a Bat Guano using Illumina next-generation sequencing. Genom. Data 4, 99–101. (2015).

    53.
    Banskar, S., Bhute, S. S., Suryavanshi, M. V., Punekar, S. & Shouche, Y. S. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano. Sci. Rep. 6, 36948 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Newman, M. M., Kloepper, L. N., Duncan, M., McInroy, J. A. & Kloepper, J. W. Variation in bat guano bacterial community composition with depth. Front. Microbiol. 9, 914 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    55.
    Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C. & Garsin, D. A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun. 81, 189 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Graham, C. E., Cruz, M. R., Garsin, D. A. & Lorenz, M. C. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc. Natl. Acad. Sci. USA 114, 4507 (2017).
    CAS  PubMed  Article  Google Scholar 

    57.
    Khan, N. et al. Antifungal activity of bacillus species against fusarium and analysis of the potential mechanisms used in biocontrol. Front. Microbiol. 9, 2363 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    58.
    Kerr, J. R. Bacterial inhibition of fungal growth and pathogenicity. Microb. Ecol. Health Dis. 11, 129–142 (1999).
    Google Scholar 

    59.
    Wheatley, R. E. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81, 357–364 (2002).
    CAS  PubMed  Article  Google Scholar 

    60.
    Cornelison, C. T., Gabriel, K. T., Barlament, C. & Crow, S. A. Inhibition of pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds. Mycopathologia 177, 1–10 (2014).
    CAS  PubMed  Article  Google Scholar 

    61.
    Sussman, A. & Douthit, H. Dormancy in microbial spores. Annu. Rev. Plant Physiol. 24, 311–352 (1973).
    CAS  Article  Google Scholar 

    62.
    Feofilova, E. P., Ivashechkin, A. A., Alekhin, A. I. & Sergeeva, Ya. E. Fungal spores: Dormancy, germination, chemical composition, and role in biotechnology (review). Appl. Biochem. Microbiol. 48, 1–11 (2012).

    63.
    Gasch, A. P. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24, 961–976 (2007).
    CAS  PubMed  Article  Google Scholar 

    64.
    Marroquin, C. M., Lavine, J. O. & Windstam, S. T. Effect of humidity on development of pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. Northeastern Nat. 24, 54–64 (2017).
    Article  Google Scholar 

    65.
    Raudabaugh, D. B. & Miller, A. N. Nutritional capability of and substrate suitability for pseudogymnoascus destructans, the causal agent of bat white-nose syndrome. PLoS ONE 8, e78300 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Gabriel, K. T., Kartforosh, L., Crow, S. A. & Cornelison, C. T. Antimicrobial activity of essential oils against the fungal pathogens ascosphaera apis and pseudogymnoascus destructans. Mycopathologia 183, 921–934 (2018).
    CAS  PubMed  Article  Google Scholar 

    67.
    Boire, N. et al. Potent inhibition of pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, by cold-pressed, terpeneless valencia orange oil. PLoS ONE 11, e0148473 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    68.
    Turbill, C. & Welbergen, J. A. Anticipating white-nose syndrome in the Southern Hemisphere: Widespread conditions favourable to Pseudogymnoascus destructans pose a serious risk to Australia’s bat fauna. Austral. Ecol. 45, 89–96 (2020).
    Article  Google Scholar  More

  • in

    Environmental convergence in facial preferences: a cross-group comparison of Asian Vietnamese, Czech Vietnamese, and Czechs

    1.
    Müllerová, P. Vietnamese DIASPORA in the Czech Republic. Arch. Orient. 66, 121–126 (1998).
    Google Scholar 
    2.
    Kleisner, K., Chvátalová, V. & Flegr, J. Perceived intelligence is associated with measured intelligence in men but not women. PLoS ONE 9, e81237 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Třebický, V., Havlíček, J., Roberts, S. C., Little, A. C. & Kleisner, K. Perceived aggressiveness predicts fighting performance in mixed-martial-arts fighters. Psychol. Sci. 24, 1664–1672 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Linke, L., Saribay, S. A. & Kleisner, K. Perceived trustworthiness is associated with position in a corporate hierarchy. Pers. Individ. Dif. 99, 22–27 (2016).
    Article  Google Scholar 

    5.
    Little, A. C., Třebický, V., Havlíček, J., Roberts, S. C. & Kleisner, K. Human perception of fighting ability: Facial cues predict winners and losers in mixed martial arts fights. Behav. Ecol. 1, 089 (2015).
    Google Scholar 

    6.
    Todorov, A., Olivola, C. Y., Dotsch, R. & Mende-Siedlecki, P. Social attributions from faces: Determinants, consequences, accuracy, and functional significance. Psychology 66, 519 (2015).
    Article  Google Scholar 

    7.
    Schmälzle, R. et al. Visual cues that predict intuitive risk perception in the case of HIV. PLoS ONE 14, e0211770 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Asch, S. E. Forming impressions of personality. J. Abnorm. Soc. Psychol. 41, 258–290 (1946).
    CAS  Article  Google Scholar 

    9.
    Bar, M., Neta, M. & Linz, H. Very first impressions. Emotion 6, 269–278 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    10.
    Willis, J. & Todorov, A. First impressions: Making up your mind after a 100-ms exposure to a face. Psychol. Sci. 17, 592–598 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Bothwell, R. K., Brigham, J. C. & Malpass, R. S. Cross-racial identification. Personal. Soc. Psychol. Bull. 15, 19–25 (1989).
    Article  Google Scholar 

    12.
    Meissner, C. A. & Brigham, J. C. Thirty years of investigating the own-race bias in memory for faces: A meta-analytic review. Psychol. Public Policy Law 7, 3 (2001).
    Article  Google Scholar 

    13.
    Sporer, S. L. Recognizing faces of other ethnic groups: An integration of theories. Psychol. Public Policy Law 7, 36–97 (2001).
    Article  Google Scholar 

    14.
    Hugenberg, K., Young, S. G., Bernstein, M. J. & Sacco, D. F. The categorization-individuation model: An integrative account of the other-race recognition deficit. Psychol. Rev. 117, 1168–1187 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    15.
    Anzures, G. et al. Developmental origins of the other-race effect. Curr. Dir. Psychol. Sci. 22, 173–178 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Suhrke, J. et al. The other-race effect in 3-year-old German and Cameroonian children. Front. Psychol. 5, 198 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Sangrigoli, S. & de Schonen, S. Effect of visual experience on face processing: A developmental study of inversion and non-native effects. Dev. Sci. 7, 74–87 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Scott, L. S. & Monesson, A. The origin of biases in face perception. Psychol. Sci. 20, 676–680 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    19.
    Ma, F., Xu, F. & Luo, X. Children’s and Adults}’ {Judgments of Facial {Trustworthiness}: The {Relationship} to Facial {Attractiveness}. Percept. Mot. Skills 121, 179–198 (2015).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Tanaka, J. W., Kiefer, M. & Bukach, C. M. A holistic account of the own-race effect in face recognition: Evidence from a cross-cultural study. Cognition 93, 1–9 (2004).
    Article  Google Scholar 

    21.
    Webster Michael, A. & MacLeod Donald, I. A. Visual adaptation and face perception. Philos. Trans. R. Soc. B 366, 1702–1725 (2011).
    CAS  Article  Google Scholar 

    22.
    Bukach, C. M., Cottle, J., Ubiwa, J. & Miller, J. Individuation experience predicts other-race effects in holistic processing for both Caucasian and Black participants. Cognition 123, 319–324 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    23.
    Třebický, V. et al. Cross-{cultural} evidence for apparent {racial} outgroup {advantage}: Congruence between perceived {facial} aggressiveness and fighting {success}. Sci. Rep. 8, 9767 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Hebl, M. R., Williams, M. J., Sundermann, J. M., Kell, H. J. & Davies, P. G. Selectively friending: Racial stereotypicality and social rejection. J. Exp. Soc. Psychol. 48, 1329–1335 (2012).
    Article  Google Scholar 

    25.
    Cassidy, K. D., Quinn, K. A. & Humphreys, G. W. The influence of ingroup/outgroup categorization on same- and other-race face processing: The moderating role of inter- versus intra-racial context. J. Exp. Soc. Psychol. 47, 811–817 (2011).
    Article  Google Scholar 

    26.
    Johnson, K. J. & Fredrickson, B. L. We all look the same to Mepositive emotions eliminate the own-race bias in face recognition. Psychol. Sci. 16, 875–881 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    27.
    Bernstein, M. J., Young, S. G. & Hugenberg, K. The cross-category effect: Mere social categorization is sufficient to elicit an own-group bias in face recognition. Psychol. Sci. 18, 706–712 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Hugenberg, K., Miller, J. & Claypool, H. M. Categorization and individuation in the cross-race recognition deficit: Toward a solution to an insidious problem. J. Exp. Soc. Psychol. 43, 334–340 (2007).
    Article  Google Scholar 

    29.
    Little, A. C., Jones, B. C. & DeBruine, L. M. Facial attractiveness: Evolutionary based research. Philos. Trans. R. Soc. B. 366, 1638–1659 (2011).
    Article  Google Scholar 

    30.
    Langlois, J. H. et al. Maxims or myths of beauty? A meta-analytic and theoretical review. Psychol. Bull. 126, 390–423 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Penton-Voak, I. S., Jacobson, A. & Trivers, R. Populational differences in attractiveness judgements of male and female faces: Comparing British and Jamaican samples. Evol. Hum. Behav. 25, 355–370 (2004).
    Article  Google Scholar 

    32.
    Saxton, T. K., Little, A. C., DeBruine, L. M., Jones, B. C. & Roberts, S. C. Adolescents’ preferences for sexual dimorphism are influenced by relative exposure to male and female faces. Pers. Individ. Dif. 47, 864–868 (2009).
    Article  Google Scholar 

    33.
    Badaruddoza, A. A paradox of human mate preferences and natural selection. J. Hum. Ecol. 21, 195–197 (2007).
    Article  Google Scholar 

    34.
    Coetzee, V., Greeff, J. M., Stephen, I. D. & Perrett, D. I. Cross-cultural agreement in facial attractiveness preferences: The role of ethnicity and gender. PLoS ONE 9, e99629 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Hulse, F. S. Selection for skin color among the Japanese. Am. J. Phys. Anthropol. 27, 143–155 (1967).
    Article  Google Scholar 

    36.
    Kleisner, K. et al. African and European perception of African female attractiveness. Evol. Hum. Behav. 38, 744–755 (2017).
    Article  Google Scholar 

    37.
    Kleisner, K., Priplatova, L., Frost, P. & Flegr, J. Trustworthy-looking face meets brown eyes. PLoS ONE 8, e53285 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Zebrowitz, L. A., Montepare, J. M. & Lee, H. K. They don’t all look alike: Individual impressions of other racial groups. J. Pers. Soc. Psychol. 65, 85 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Laeng, B., Mathisen, R. & Johnsen, J. A. Why do blue-eyed men prefer women with the same eye color?. Behav. Ecol. Sociobiol. 61, 371–384 (2007).
    Article  Google Scholar 

    40.
    Gründl, M., Knoll, S., Eisenmann-Klein, M. & Prantl, L. The blue-eyes stereotype: Do eye color, pupil diameter, and scleral color affect attractiveness?. Aesthetic Plast. Surg. 36, 234–240 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    41.
    Langlois, J. H. & Roggman, L. A. Attractive faces are only average. Psychol. Sci. 1, 115–121 (1990).
    Article  Google Scholar 

    42.
    Rhodes, G. & Tremewan, T. Averageness, exaggeration, and facial attractiveness. Psychol. Sci. 7, 105–110 (1996).
    Article  Google Scholar 

    43.
    Rhodes, G. The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 199–226 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Thornhill, R. & Gangestad, S. W. Facial attractiveness. Trends Cogn. Sci. 3, 452–460 (1999).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Rhodes, G. et al. Attractiveness of facial averageness and symmetry in non-western cultures: In search of biologically based standards of beauty. Perception 30, 611–625 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Langlois, J. H., Roggman, L. A. & Musselman, L. What is average and what is not average about attractive faces?. Psychol. Sci. 5, 214–220 (1994).
    Article  Google Scholar 

    47.
    Baudouin, J. Y. & Tiberghien, G. Symmetry, averageness, and feature size in the facial attractiveness of women. Acta Psychol. 117, 313–332 (2004).
    Article  Google Scholar 

    48.
    Perrett, D. I., May, K. A. & Yoshikawa, S. Facial shape and judgements of female attractiveness. Nature 368, 239–242 (1994).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Alley, T. R. & Cunningham, M. R. Averaged faces are attractive, but very attractive faces are not average. Psychol. Sci. 2, 123–125 (1991).
    Article  Google Scholar 

    50.
    Pittenger, J. B. On the difficulty of averaging faces: Comments on Langlois and Roggman. Psychol. Sci. 2, 351–353 (1991).
    Article  Google Scholar 

    51.
    Komori, M., Kawamura, S. & Ishihara, S. Averageness or symmetry: Which is more important for facial attractiveness?. Acta Psychol. 131, 136–142 (2009).
    Article  Google Scholar 

    52.
    Rhodes, G., Sumich, A. & Byatt, G. Are average facial configurations attractive only because of their symmetry?. Psychol. Sci. 10, 52–58 (1999).
    Article  Google Scholar 

    53.
    Scott, L. S., Tanaka, J. W., Sheinberg, D. L. & Curran, T. The role of category learning in the acquisition and retention of perceptual expertise: A behavioral and neurophysiological study. Brain Res. 1210, 204–215 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Komori, M., Kawamura, S. & Ishihara, S. Effect of averageness and sexual dimorphism on the judgment of facial attractiveness. Vis. Res. 49, 862–869 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jones, D. & Hill, K. Criteria of facial attractiveness in five populations. Hum. Nat. 4, 271–296 (1993).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    56.
    Little, A. C., Connely, J., Feinberg, D. R., Jones, B. C. & Roberts, S. C. Human preference for masculinity differs according to context in faces, bodies, voices, and smell. Behav. Ecol. 22, 862–868 (2011).
    Article  Google Scholar 

    57.
    Van den Berghe, P. L. & Frost, P. Skin color preference, sexual dimorphism and sexual selection: A case of gene culture co-evolution?*. Ethn. Racial Stud. 9, 87–113 (1986).
    Article  Google Scholar 

    58.
    Fink, B., Neave, N. & Seydel, H. Male facial appearance signals physical strength to women. Am. J. Hum. Biol. 19, 82–87 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Scheib Joanna, E., Gangestad Steven, W. & Randy, T. Facial attractiveness, symmetry and cues of good genes. Proc. R. Soc. Lond. Ser. B. 266, 1913–1917 (1999).
    Article  Google Scholar 

    60.
    Perrett, D. I. et al. Effects of sexual dimorphism on facial attractiveness. Nature 394, 884–887 (1998).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Penton-Voak, I. S. et al. Menstrual cycle alters face preference [7]. Nature 399, 741–742 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Rhodes, G., Hickford, C. & Jeffery, L. Sex-typicality and attractiveness: Are supermale and superfemale faces super-attractive?. Br. J. Psychol. 91, 125–140 (2000).
    PubMed  Article  PubMed Central  Google Scholar 

    63.
    Kościński, K. Facial attractiveness: General patterns of facial preferences. Anthropol. Rev. 70, 45–79 (2007).
    Article  Google Scholar 

    64.
    Johnston, V. S., Hagel, R., Franklin, M., Fink, B. & Grammer, K. Male facial attractiveness: Evidence for hormone-mediated adaptive design. Evol. Hum. Behav. 22, 251–267 (2001).
    Article  Google Scholar 

    65.
    Scott, I. M. et al. Human preferences for sexually dimorphic faces may be evolutionarily novel. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1409643111 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    66.
    Brooks, R. et al. National income inequality predicts women’s preferences for masculinized faces better than health does. Proc. R. Soc. B 278, 810–812 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    67.
    DeBruine, L. M., Jones, B. C., Little, A. C., Crawford, J. R. & Welling, L. L. M. Further evidence for regional variation in women’s masculinity preferences. Proc. R. Soc. Lond. B. 278, 813–814 (2011).
    Google Scholar 

    68.
    Dunson, D. B., Colombo, B. & Baird, D. D. Changes with age in the level and duration of fertility in the menstrual cycle. Hum. Reprod. 17, 1399–1403 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    69.
    Hassan, M. A. M. & Killick, S. R. Effect of male age on fertility: Evidence for the decline in male fertility with increasing age. Fertil. Steril. 79, 1520–1527 (2003).
    PubMed  Article  PubMed Central  Google Scholar 

    70.
    Buss, D. M. Sex differences in human mate preferences: Evolutionary hypotheses tested in 37 cultures. Behav. Brain Sci. 12, 1–14 (1989).
    Article  Google Scholar 

    71.
    Maestripieri, D., Klimczuk, A. C. E., Traficonte, D. M. & Wilson, M. C. A greater decline in female facial attractiveness during middle age reflects women’s loss of reproductive value. Front. Psychol. 5, 1–6 (2014).
    Article  Google Scholar 

    72.
    McLellan, B. & McKelvie, S. J. Effects of age and gender on perceived facial attractiveness. Can. J. Behav. Sci. Can. Sci. Comport. 25, 135–142 (1993).
    Article  Google Scholar 

    73.
    Bovet, J., Barkat-Defradas, M., Durand, V., Faurie, C. & Raymond, M. Women’s attractiveness is linked to expected age at menopause. J. Evol. Biol. 31, 229–238 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    74.
    Coetzee, V., Perrett, D. I. & Stephen, I. D. Facial adiposity: A cue to health?. Perception 38, 1700–1711 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    75.
    Coetzee, V., Chen, J., Perrett, D. I. & Stephen, I. D. Deciphering faces: Quantifiable visual cues to weight. Perception 39, 51–61 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Schneider, T. M., Hecht, H. & Carbon, C. C. Judging body weight from faces: The height-weight illusion. Perception 41, 121–124 (2012).
    PubMed  Article  PubMed Central  Google Scholar 

    77.
    Grillot, R. L., Simmons, Z. L., Lukaszewski, A. W. & Roney, J. R. Hormonal and morphological predictors of women’s body attractiveness. Evol. Hum. Behav. 35, 176–183 (2014).
    Article  Google Scholar 

    78.
    Hume, D. K. & Montgomerie, R. Facial attractiveness signals different aspects of “quality” in women and men. Evol. Hum. Behav. 22, 93–112 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Tovée, M. J., Swami, V., Furnham, A. & Mangalparsad, R. Changing perceptions of attractiveness as observers are exposed to a different culture. Evol. Hum. Behav. 27, 443–456 (2006).
    Article  Google Scholar 

    80.
    Třebický, V., Fialová, J., Kleisner, K. & Havlíček, J. Focal LENGTH AFFECTS DEPICTED SHAPE AND PERCEPTION OF FACIAL IMAGES. PLoS ONE 11, e0149313 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    81.
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1 (2017).
    Article  Google Scholar 

    82.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar 

    83.
    Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 37 (2012).
    Article  Google Scholar 

    84.
    Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. (2019).

    85.
    Mitteroecker, P., Windhager, S., Müller, G. B. & Schaefer, K. The morphometrics of “masculinity” in human faces. PLoS ONE 10, e0118374 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    86.
    Valenzano, D. R., Mennucci, A., Tartarelli, G. & Cellerino, A. Shape analysis of female facial attractiveness. Vis. Res. 46, 1282–1291 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    87.
    De Haan, M., Pascalis, O. & Johnson, M. H. Specialization of neural mechanisms underlying face recognition in human infants. J. Cogn. Neurosci. 14, 199–209 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    88.
    Kelly, D. J. et al. Development of the other-race effect during infancy: Evidence toward universality?. J. Exp. Child Psychol. 104, 105–114 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    89.
    Krasotkina, A., Götz, A., Höhle, B. & Schwarzer, G. Perceptual narrowing in speech and face recognition: Evidence for intra-individual cross-domain relations. Front. Psychol. 9, 1711 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    90.
    Kelly, D. J. et al. Cross-race preferences for same-race. Infancy 11, 87–95 (2007).
    MathSciNet  PubMed  PubMed Central  Article  Google Scholar 

    91.
    Kleisner, K. et al. How and why patterns of sexual dimorphism in human faces vary across the world.. Infancy https://doi.org/10.31234/osf.io/7vdmb (2020).
    Article  Google Scholar 

    92.
    Hopper, W. J., Finklea, K. M., Winkielman, P. & Huber, D. E. Measuring sexual dimorphism with a race-gender face space. J. Exp. Psychol. Hum. Percept. Perform. 40, 1779–1788 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    93.
    Tan, K. W., Tiddeman, B. & Stephen, I. D. Skin texture and colour predict perceived health in Asian faces. Evol. Hum. Behav. 39, 320–335 (2018).
    Article  Google Scholar  More

  • in

    Assumptions about fence permeability influence density estimates for brown hyaenas across South Africa

    1.
    Brumfield, R. T. & Edwards, S. V. Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61, 346–367 (2007).
    CAS  PubMed  Article  Google Scholar 
    2.
    Machado, A. P., Clément, L., Uva, V., Goudet, J. & Roulin, A. The Rocky Mountains as a dispersal barrier between barn owl (Tyto alba) populations in North America. J. Biogeogr. 45, 1288–1300 (2018).
    Article  Google Scholar 

    3.
    Patton, J. L., Da Silva, M. N. F. & Malcolm, J. R. Gene genealogy and differentiation among arboreal spiny rats (Rodentia: Echimyidae) of the Amazon basin: a test of the riverine barrier hypothesis. Evolution 48, 1314–1323 (1994).
    PubMed  Article  Google Scholar 

    4.
    Trinkel, M. et al. Inbreeding and density-dependent population growth in a small, isolated lion population. Anim. Conserv. 13, 374–382 (2010).
    Article  Google Scholar 

    5.
    Vanak, A. T., Thaker, M. & Slotow, R. Do fences create an edge-effect on the movement patterns of a highly mobile mega-herbivore?. Biol. Conserv. 143, 2631–2637 (2010).
    Article  Google Scholar 

    6.
    Parchizadeh, J. et al. Roads threaten Asiatic cheetahs in Iran. Curr. Biol. 28, R1141–R1142 (2018).
    CAS  PubMed  Article  Google Scholar 

    7.
    Williams, S. T., Collinson, W., Patterson-Abrolat, C., Marneweck, D. G. & Swanepoel, L. H. Using road patrol data to identify factors associated with carnivore roadkill counts. PeerJ 7, e6650 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Hayward, M. W. & Kerley, G. I. H. Fencing for conservation: restriction of evolutionary potential or a riposte to threatening processes?. Biol. Conserv. 142, 1–13 (2009).
    Article  Google Scholar 

    9.
    Taylor, A., Lindsey, P., Davies-Mostert, H. & Goodman, P. An assessment of the economic, social and conservation value of the wildlife ranching industry and its potential to support the green economy in South Africa. 1–163 (The Endangered Wildlife Trust, Johannesburg, South Africa, 2015).

    10.
    Pekor, A. et al. Fencing Africa’s protected areas: costs, benefits, and management issues. Biol. Conserv. 229, 67–75 (2019).
    Article  Google Scholar 

    11.
    Woodroffe, R., Hedges, S. & Durant, S. M. To fence or not to fence. Science 344, 46–48 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    12.
    Hayward, M. W. & Somers, M. J. An introduction to fencing for conservation. In Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes? (eds Somers, M. J. & Hayward, M.) 1–6 (Springer, Berlin, 2012).
    Google Scholar 

    13.
    Cozzi, G., Broekhuis, F., McNutt, J. W. & Schmid, B. Comparison of the effects of artificial and natural barriers on large African carnivores: implications for interspecific relationships and connectivity. J. Anim. Ecol. 82, 707–715 (2013).
    PubMed  Article  Google Scholar 

    14.
    Kesch, M. K., Bauer, D. T. & Loveridge, A. J. Break on through to the other side: the effectiveness of game fencing to mitigate human—wildlife conflict. Afr. J. Wildl. Res. 45, 76–87 (2015).
    Article  Google Scholar 

    15.
    Pirie, T. J., Thomas, R. L. & Fellowes, M. D. Game fence presence and permeability influences the local movement and distribution of South African mammals. Afr. Zool. 52, 217–227 (2017).
    Article  Google Scholar 

    16.
    Lindsey, P. A., Masterson, C. L., Beck, A. L. & Romañach, S. Ecological, social, and financial issues related to fencing as a conservation tool in Africa. In Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes? (eds Somers, M. J. & Hayward, M.) 215–234 (Springer, Berlin, 2012).
    Google Scholar 

    17.
    Connolly, T. A., Day, T. D. & King, C. M. Estimating the potential for reinvasion by mammalian pests through pest-exclusion fencing. Wildl. Res. 36, 410–421 (2009).
    Article  Google Scholar 

    18.
    Kesch, K. M., Bauer, D. T. & Loveridge, A. J. Undermining game fences: who is digging holes in Kalahari sands?. Afr. J. Ecol. 52, 144–150 (2013).
    Article  Google Scholar 

    19.
    Edwards, S., Noack, J., Heyns, L. & Rodenwoldt, D. Evidence of a high-density brown hyena population within an enclosed reserve: the role of fenced systems in conservation. Mammmal Res. 64, 519–527 (2019).
    Article  Google Scholar 

    20.
    Kent, V. T. & Hill, R. A. The importance of farmland for the conservation of brown hyaena, Parahyaena brunnea. Oryx 47, 431–440 (2013).
    Article  Google Scholar 

    21.
    Welch, R. J. & Parker, D. M. Brown hyaena population explosion: rapid population growth in a small, fenced system. Wildl. Res. 43, 178–187 (2016).
    Article  Google Scholar 

    22.
    Rogan, M. S. et al. The influence of movement on the occupancy–density relationship at small spatial scales. Ecosphere 10, e02807 (2019).
    Article  Google Scholar 

    23.
    Efford, M. G. & Fewster, R. M. Estimating population size by spatially explicit capture–recapture. Oikos 122, 918–928 (2013).
    Article  Google Scholar 

    24.
    Noack, J., Heyns, L., Rodenwoldt, D. & Edwards, S. Leopard density estimation within an enclosed reserve, Namibia using spatially explicit capture-recapture models. Animals 9, 724 (2019).
    Article  Google Scholar 

    25.
    Balme, G. et al. Big cats at large: Density, structure, and spatio-temporal patterns of a leopard population free of anthropogenic mortality. Popul. Ecol. 61, 256–267 (2019).
    Article  Google Scholar 

    26.
    Noss, A. J. et al. Comparison of density estimation methods for mammal populations with camera traps in the Kaa-Iya del Gran Chaco landscape. Anim. Conserv. 15, 527–535 (2012).
    Article  Google Scholar 

    27.
    Foster, R. J. & Harmsen, B. J. A critique of density estimation from camera-trap data. J. Wildl. Manag. 76, 224–236 (2012).
    Article  Google Scholar 

    28.
    Wiesel, I. Parahyaena brunnea. The IUCN Red List of Threatened Species 2015: e.T10276A82344448., Available from http://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T10276A82344448.en [Accessed 1 March 2020] (2015).

    29.
    Yarnell, R. et al. A conservation assessment of Parahyaena brunnea. In The Red List of Mammals of South Africa, Swaziland and Lesotho (eds Child, M. F. et al.) (South African National Biodiversity Institute and Endangered Wildlife Trust, Midrand, 2016).
    Google Scholar 

    30.
    QGIS Development Team. QGIS Geographic Information System version 3.10.10. Open Source Geospatial Foundation Project (Available from http://qgis.org) (2020).

    31.
    Natural Earth.Available from http://www.naturalearthdata.com [Accessed Feb 01 2020] (2020).

    32.
    Thorn, M., Scott, D. M., Green, M., Bateman, P. W. & Cameron, E. Z. Estimating brown hyaena occupancy using baited camera traps. Afr. J. Wildl. Res. 39, 1–10 (2009).
    Article  Google Scholar 

    33.
    Yarnell, R. W. et al. The influence of large predators on the feeding ecology of two African mesocarnivores: the black-backed jackal and the brown hyaena. Afr. J. Wildl. Res. 43, 155–166 (2013).
    Article  Google Scholar 

    34.
    Falkena, H. B. & van Hoven, W. Bulls, bears and lions: game ranch profitability in southern Africa (The South Africa Financial Sector Forum, Midrand, 2000).
    Google Scholar 

    35.
    Thorn, M., Green, M., Bateman, P. W., Waite, S. & Scott, D. M. Brown hyaenas on roads: estimating carnivore occupancy and abundance using spatially auto-correlated sign survey replicates. Biol. Conserv. 144, 1799–1807 (2011).
    Article  Google Scholar 

    36.
    Wiesel, I. Predatory and foraging behaviour of brown hyenas (Parahyaena brunnea (Thunberg, 1820)) at cape fur seal (Arctocephalus pusillus pusillus Schreber, 1776) colonies PhD thesis, University of Hamburg, (2006).

    37.
    Brassine, E. & Parker, D. Trapping elusive cats: using intensive camera trapping to estimate the density of a rare African felid. PLoS ONE 10, e0142508 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Ramesh, T., Kalle, R., Rosenlund, H. & Downs, C. T. Low leopard populations in protected areas of Maputaland: a consequence of poaching, habitat condition, abundance of prey, and a top predator. Ecol. Evol. 7, 1964–1973 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Miller, J. R., Pitman, R. T., Mann, G. K., Fuller, A. K. & Balme, G. A. Lions and leopards coexist without spatial, temporal or demographic effects of interspecific competition. J. Anim. Ecol. 87, 1709–1726 (2018).
    PubMed  Article  Google Scholar 

    40.
    Trinkel, M. et al. Translocating lions into an inbred lion population in the Hluhluwe-iMfolozi Park, South Africa. Anim. Conserv. 11, 138–143 (2008).
    Article  Google Scholar 

    41.
    Thompson, S., Avent, T. & Doughty, L. S. Range analysis and terrain preference of adult southern white rhinoceros (Ceratotherium simum) in a South African private game reserve: insights into carrying capacity and future management. PLoS ONE 11, e0161724 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Balme, G. A., Slotow, R. & Hunter, L. T. B. Edge effects and the impact of non-protected areas in carnivore conservation: leopards in the Phinda-Mkhuze Complex, South Africa. Anim. Conserv. 13, 315–323 (2010).
    Article  Google Scholar 

    43.
    Royle, J. A., Chandler, R. B., Sun, C. C. & Fuller, A. K. Integrating resource selection information with spatial capture–recapture. Methods Ecol. Evol. 4, 520–530 (2013).
    Article  Google Scholar 

    44.
    Proffitt, K. M. et al. Integrating resource selection into spatial capture-recapture models for large carnivores. Ecosphere 6, 1–15 (2015).
    Article  Google Scholar 

    45.
    Davies-Mostert, H. T. et al. Long-distance transboundary dispersal of African wild dogs among protected areas in southern Africa. Afr. J. Ecol. 50, 500–506 (2012).
    Article  Google Scholar 

    46.
    Williams, K. S. et al. Utilizing bycatch camera-trap data for broad-scale occupancy and conservation: a case study of the brown hyaena Parahyaena brunnea. Oryx, 1–11, (2020).

    47.
    Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution – Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).
    Article  Google Scholar 

    48.
    Palmer, M. S., Swanson, A., Kosmala, M., Arnold, T. & Packer, C. Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. Afr. J. Ecol. 56, 791–803 (2018).
    Article  Google Scholar 

    49.
    Swanepoel, L. H. et al. A conservation assessment of Panthera pardus. In The Red List of South Africa, Swaziland and Lesotho (eds Child, M. F. et al.) (South African National Biodiversity Institute and Endangered Wildlife Trust, Midrand, 2016).
    Google Scholar 

    50.
    Williams, K. S. Human-brown hyaena relationships and the role of mountainous environments as refuges in a postcolonial landscape PhD thesis, Durham University, (2017).

    51.
    Richmond-Coggan, L. Comparative abundance and ranging behaviour of brown hyaena (Parahyaena brunnea) inside and outside protected areas in South Africa PhD thesis, Nottingham Trent University, (2014).

    52.
    WorldPop.South Africa 100m population, Available from https://www.worldpop.org/doi/https://doi.org/10.5258/SOTON/WP00246. [Accessed 30 May 2020] (2013).

    53.
    Welch, R. J. Population estimates and spatial ecology of brown hyaenas in Kwandwe Private Game Reserve MSc thesis, Rhodes University, (2014).

    54.
    Karanth, K. U., Nichols, J. D. & Samba-Kumar, N. Ch.7: Estimating tiger abundance from camera trap data: field surveys and analytical issues. In Camera traps in animal ecology: methods and analyses (eds O’Connell, A. F. et al.) 97–118 (Springer, Berlin, 2011).
    Google Scholar 

    55.
    Edwards, S. et al. Making the most of by-catch data: assessing the feasibility of utilising non-target camera trap data for occupancy modelling of a large felid. Afr. J. Ecol. 56, 885–894 (2018).
    Article  Google Scholar 

    56.
    Mazzamuto, M. V., Valvo, M. L. & Anile, S. The value of by-catch data: how species-specific surveys can serve non-target species. Eur. J. Wildl. Res. 65, 68 (2019).
    Article  Google Scholar 

    57.
    Sun, C. C., Fuller, A. K. & Royle, J. A. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS ONE 10, e0141634 (2014).
    Article  CAS  Google Scholar 

    58.
    Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. Statistical inference from capture data on closed animal populations. Wildlife Monogr. 62, 3–135 (1978).

    59.
    Kays, R. W. & Slauson, K. M. Ch.5: Remote cameras. In Noninvasive survey methods for carnivores (eds Long, R. A. et al.) 110–140 (Island Press, Washington, 2008).
    Google Scholar 

    60.
    Williams, S. T., Williams, K. S., Lewis, B. P. & Hill, R. A. Population dynamics and threats to an apex predator outside of protected areas: Implications for carnivore management. Roy. Soc. Open. Sci. 4, 1–10 (2017).

    61.
    Mills, M. G. L. The comparative behavioural ecology of the brown hyaena Hyaena brunnea and the spotted hyaena Crocuta crocuta in the southern Kalahari. Koedoe 27, 237–247 (1984).
    Google Scholar 

    62.
    Kent, V. T. The status and conservation potential of carnivores in semi-arid rangelands, Botswana the Ghanzi farmlands: a case study PhD thesis, Durham University, (2011).

    63.
    Satter, C. B. et al. Long-term monitoring of ocelot densities in Belize. J. Wildl. Manag. 83, 283–294 (2019).
    Article  Google Scholar 

    64.
    Jordan, M. J., Barrett, R. H. & Purcell, K. L. Camera trapping estimates of density and survival of fishers Martes pennanti. Wildl. Biol. 17, 266–276 (2011).
    Article  Google Scholar 

    65.
    Efford, M. G. secr: Spatially explicit capture-recapture models. R package version 3.2.1. (Available from http://cran.r-project.org/package=secr) (2019).

    66.
    R Development Core Team. R: A language and environment for statistical computing. Version 3.6.0 (Available from https://www.R-project.org/.) (2019).

    67.
    Bahaa-ed-din, L. et al. Effects of human land-use on Africa’s only forest-dependent felid: The African golden cat Caracal aurata. Biol. Conserv. 199, 1–9 (2016).
    Article  Google Scholar 

    68.
    Loock, D. J., Williams, S. T., Emslie, K. W., Matthews, W. S. & Swanepoel, L. H. High carnivore population density highlights the conservation value of industrialised sites. Sci. Rep-UK 8, 16575 (2018).
    ADS  Article  CAS  Google Scholar 

    69.
    Carter, N. H., Shrestha, B. K., Karki, J. B., Pradhan, N. M. B. & Liu, J. G. Coexistence between wildlife and humans at fine spatial scales. Proc. Natl. Acad. Sci. U.S.A. 109, 15360–15365 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Treves, A., Mwima, P., Plumptre, A. J. & Isoke, S. Camera-trapping forest–woodland wildlife of western Uganda reveals how gregariousness biases estimates of relative abundance and distribution. Biol. Conserv. 143, 521–528 (2010).
    Article  Google Scholar 

    71.
    O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139 (2003).
    Article  Google Scholar 

    72.
    Williams, K. S., Williams, S. T., Fitzgerald, L. E., Sheppard, E. C. & Hill, R. A. Brown hyaena and leopard diets on private land in the Soutpansberg Mountains, South Africa. Afr. J. Ecol. 56, 1021–1027 (2018).
    Article  Google Scholar 

    73.
    Maddock, A. H. Analysis of brown hyena (Hyaena brunnea) scats from the central Karoo, South Africa. J. Zool. 231, 679–683 (1993).
    Article  Google Scholar 

    74.
    Maude, G. The comparative ecology of the brown hyaena (Hyaena brunnea) in Makgadikgadi National Park and a neighbouring community cattle area in Botswana MSc thesis, University of Pretoria, (2005).

    75.
    Harihar, A. & Pandav, B. Influence of connectivity, wild prey and disturbance on occupancy of tigers in the human-dominated western Terai Arc Landscape. PLoS ONE 7, e40105 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    76.
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach 2nd edn. (Springer, Berlin, 2002).
    Google Scholar 

    77.
    Balme, G. A., Hunter, L. T. B. & Slotow, R. Evaluating methods for counting cryptic carnivores. J. Wildl. Manage. 73, 433–441 (2009).
    Article  Google Scholar 

    78.
    Gopalaswamy, A. M. et al. Program SPACECAP: software for estimating animal density using spatially explicit capture-recapture models. Methods Ecol. Evol. 3, 1067–1072 (2012).
    Article  Google Scholar 

    79.
    Williams, S. T. et al. R code and data for estimating brown hyaena density across South Africa. Available from https://figshare.com/s/f958e721d38dff237bab (2020). More

  • in

    Effect of gallic acid on the larvae of Spodoptera litura and its parasitoid Bracon hebetor

    1.
    Adeyemi, M. M. H. The potential of secondary metabolites in plant material as deterents against insect pests: a review. Afr. J. Pure Appl. Chem. 4, 243–246 (2010).
    CAS  Google Scholar 
    2.
    Walling, L. L. The myriad plant response to herbivores. J. Plant Growth Regul. 19, 195–216 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Croteau, R., Kutchan, T. M. & Lewis, N. G. Natural products (Secondary metabolites). In Biochemistry & Molecular Biology of Plants (eds Buchanan, B. B. et al.) 1250–1318 (American Society of Plants Biologists, Rockville, 2000).
    Google Scholar 

    4.
    Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach 2nd edn. (Wiley, Chichester, England, 2002).
    Google Scholar 

    5.
    Pham, A. & Hwang, S. Chemical-based resistance of Brassica oleracea and Rorippa dubia in response to Spodoptera litura attack. J. Appl. Entomol. 144, 201–2011 (2019).
    Article  CAS  Google Scholar 

    6.
    Niemetz, R. & Gross, G. G. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry 66, 2001–2011 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Barbosa, P. et al. Plant allelochemicals and insect parasitoids effects of nicotine on Cotesia congregata (Say) (Hymenoptera:Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera: Ichneumonidae). J. Chem. Ecol. 12, 1319–1328 (1986).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Reitz, S. R. & Trumble, J. T. Effects of linear furanocoumarins on the herbivore Spodoptera exigua and the parasitoid Archytas marmoratus: host quality and parasitoid success. Entomol. Exp. Appl. 84, 9–16 (1997).
    CAS  Article  Google Scholar 

    9.
    Vinson, S. B. & Barbosa, P. Interrelationships of nutritional ecology of parasitoids. In Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates (eds Slansky, F., Jr. & Rodriguez, J. G.) 673–695 (Wiley, New York, 1987).
    Google Scholar 

    10.
    Vinson, S. B. & Iwantsch, G. F. Host Suitability for Insect Parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).
    Article  Google Scholar 

    11.
    Duffey, S. S., Bloem, K. A. & Campbell, B. C. Consequences of sequestration of plant natural products in plant insect-parasitoid interactions. In Interactions of Plant Resistance and Parasitoids and Predators of Insects (eds Boethel, D. J. & Eikenbary, R. D.) 31–60 (Wiley, New York, 1986).
    Google Scholar 

    12.
    Rowell-Rahier, M., Pasteels, J. M. Phenolglucosides and interactions at three trophic levels: Salicaceae herbivores-predators. In Insect Plant Interactions Volume 2. pp. 75–94. Boca Raton, Florida: CRC. (1990).

    13.
    Kester, K. M. & Barbosa, P. Behavioral and ecological constraints imposed by plants on insect parasitoids: implications for biological control. Biol. Control 1, 94–106 (1991).
    Article  Google Scholar 

    14.
    Dhir, B. C., Mohapatra, H. K. & Senapati, B. Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian J. Plant Prot. 20, 215–217 (1992).
    Google Scholar 

    15.
    Armes, N. J., Wightman, J. A., Jadhav, D. R. & Ranga-Rao, G. V. Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pesticide Sci. 50, 240–248 (1997).
    CAS  Article  Google Scholar 

    16.
    Kranthi, K. R., Jadhav, D. R., Wanjari, R. R., Ali, S. S. & Russell, D. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bull. Entomol. Res. 91, 37–46 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Brower, J. H., Smith, L., Vail, P. V. & Flinn, P. W. Biological control. In Integrated Management of Insects in Stored Products (eds Subramanyam, B. & Hagstrum, D. W.) 223–286 (Marcel Dekker Inc, New York, 1996).
    Google Scholar 

    18.
    Reinert, J. A. & King, E. W. Action of Bracon hehetor Say as a parasite of Plodia interpunctella at controlled densities. Ann. Entomol. Soc. Am. 64, 1335–1340 (1971).
    Article  Google Scholar 

    19.
    Press, J. W., Flaherty, B. R. & McDonald, I. C. Survival and reproduction of Bracon hebetor on insecticide-treated Ephestia cautella larvae. J. Georgia Entomol. Soc. 16, 231–234 (1981).
    CAS  Google Scholar 

    20.
    Gerling, D. & Rotary, N. Hypersensitivity, resulting from host-unsuitability, as exemplified by two parasite species attacking Spodoptera littoralis (Lepidoptera: Noctuidae). Entomophaga 18, 391–396 (1973).
    Article  Google Scholar 

    21.
    Selin-Rani, S. et al. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere 165, 257–267 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Ghumare, S. S. & Mukherjee, S. N. Performance of Spodoptera litura (Fabricius) on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect. Indian J. Exp. Biol. 41, 895–899 (2003).
    CAS  PubMed  PubMed Central  Google Scholar 

    23
    Ananthakrishnan, T. N., Gurusubramanian, G. & Gopichandran, R. Influence of chemical profiles of host plant on the infestation diversity of Retithrips syriacus (Mayet). J. Biosci. 7, 483–489 (1991).
    Google Scholar 

    24.
    Bhattacharya, A. K. & Chenchaiah, K. C. Seed coat phenolic compounds of Cajanus cajan as chemical barrier in formulation of artificial diet of Spodoptera litura (F.). Ann. Plant Prot. Sci. 15, 92–96 (2007).
    Google Scholar 

    25.
    Gautam, S., Samiksha, R., Arora, S. & Sohal, S. K. Chemical profiling of polyphenols in extracts from bark of Acacia nilotica (Linn.) and their efficacy against Spodoptera litura (Fab.). Arch. Phytopathol. Plant Prot. 51, 41–53 (2018).
    CAS  Article  Google Scholar 

    26.
    Bernays, E. A., Driver, G. C. & Bilgener, M. Herbivores and plant tannins. Adv. Ecol. Res. 19, 263–302 (1989).
    Article  Google Scholar 

    27.
    Sharma, R. & Sohal, S. K. Oviposition response of melon fruit fly, Bactrocera cucurbitae (Coquillett) to different phenolic compounds. J. Biopest. 9, 46–51 (2016).
    CAS  Google Scholar 

    28.
    Nathan, S. S. & Kalaivani, K. Combined effects of azadirachtin and nucleopolyhedrovirus (SpltNPV) on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) larvae. Biol. Control 39, 96–104 (2006).
    CAS  Article  Google Scholar 

    29.
    Deota, P. T. & Upadhyay, P. R. Biological studies of azadirachtin and its derivatives against polyphagous pest, Spodoptera litura. Nat. Prod. Res. 19, 529–539 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Shu, B. et al. Azadirachtin affects the growth of Spodoptera litura Fabricius by inducing apoptosis in larval midgut. Frontiers Physiol. 9, 137 (2018).
    Article  Google Scholar 

    31.
    De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T. & Tumlinson, J. H. Herbivore-infested plants selectively attract parasitoids. Nature 393, 570–573 (1998).
    ADS  Article  Google Scholar 

    32.
    Camphell, B. C. & Duffey, S. S. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science 205, 700–702 (1979).
    ADS  Article  Google Scholar 

    33.
    Campbell, B. C. & Duffey, S. S. Alleviation of α-tomatine-induced toxicity to the parasitoid, Hyposoter exiguae, by phytosterols in the diet of the host, Heliothis zea. J. Chem. Ecol. 7, 927–946 (1981).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    34.
    Bloem, K. A. & Duffey, S. S. Interactive effect of protein and rutin on larval Heliothis zea and the endoparasitoid Hyposoter exiguae. Entomol. Exp. Appl. 54, 149–161 (1990).
    CAS  Article  Google Scholar 

    35.
    El-Heneidy, A. H., Barbosa, P. & Gross, P. Influence of dietary nicotine on fall armyworm, Spodoptera frugiperda and its parasitoid, the ichneumonid wasp Hyposoter annulipes. Entomol. Exp. Appl. 46, 227–232 (1988).
    CAS  Article  Google Scholar 

    36.
    Reitz, S. R. & Trumble, J. T. Tritrophic interactions among linear furanocoumarins, the Herbivore Trichoplusia ni (Lepidoptera: Noctuidae), and the polyembryonic parasitoid Copidosoma floridanum (Hymenoptera: Encyrtidae). Environ. Entomol. 25, 1391–1397 (1996).
    Article  Google Scholar 

    37.
    Mondy, N. et al. Importance of sterols acquired through host feeding in synovigenic parasitoid oogenesis. J. Insect Physiol. 52, 897–904 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Punia, A., Chauhan, N. S., Kaur, S. & Sohal, S. K. Effect of Ellagic acid on the larvae of Spodoptera litura (Lepidoptera: Noctuidae) and its parasitoid Bracon hebetor (Hymenoptera: Braconidae). J. Asia-Pac. Entomol. 23, 660–665 (2020).
    Article  Google Scholar 

    39.
    Barbosa, P. & Saunders, J. A. Plant allelochemicals: Linkages between herbivores and their natural enemies. Rec. Adv. Phytochem. 19, 107–137 (1985).
    CAS  Google Scholar 

    40.
    Ode, P., Berenbaum, J. R., Zangerl, M. R. & Hardy, I. C. W. Host plant, host plant chemistry and the polyembryonic parasitoid Copidosoma sosares: indirect effects in a tritrophic interaction. Oikos 104, 388–400 (2004).
    CAS  Article  Google Scholar 

    41.
    Narendra, G., Khokhar, S. & Ram, P. Effect of insecticides on some biological parameters of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammtidae). J. Biol. Control 21, 130–134 (2013).
    Google Scholar 

    42.
    Abedi, Z., Saber, M., Gharekhani, G., Mehrvar, A. & Kamita, S. G. Lethal and sublethal effects of azadirachtin and cypermethrin on Habrobracon hebetor (Hymenoptera: Braconidae). J. Econ. Entomol. 107, 638–645 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Radcliffe, E. B. Population responses of green peach aphid in Minnesota on potatoes treated with various insecticides. Proc. N Cent. Branch Entomol. Soc. Am. 27, 103–105 (1972).
    Google Scholar 

    44.
    Flanders, S. E. Environmental resistance to the establishment of parasitic hymenoptera. Ann. Entomol. Soc. Am. 33, 245–253 (1940).
    Article  Google Scholar 

    45.
    Kaplan, I., Carrillo, J., Garvey, M. & Ode, P. J. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. Curr. Opin. Insect Sci. 14, 112–119 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Ayyangar, G. S. G. & Rao, P. J. Changes in haemolymph constituents of Spodoptera litura (Fabr.) under the influence of azadirachtin. Indian J. Entomol. 52, 69–83 (1990).
    Google Scholar 

    47.
    Zibaee, A. & Bandani, A. R. Effects of Artemisia annua L. (Asteracea) on the digestive enzymatic profiles and the cellular immune reactions of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae), against Beauveria bassiana. Bull. Entomol. Res. 100, 185–196 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    48.
    Kalyani, S. S. & Holihosur, R. S. N. Toxic effect of crude aqueous leaf extracts of Clerodendron inerme, on the total haemocyte count of sixth instar larva of Helicoverpa armigera (H). Int. J. Innov. Res. Sci. Technol. 1, 221–224 (2015).
    Google Scholar 

    49.
    Saxena, B. P. & Tikku, K. Effect of plumbagin on haemocytes of Dysdercus koenigii F. Proc. Anim. Sci. 99, 119–124 (1990).
    Article  Google Scholar 

    50.
    Sakihama, Y. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177, 67–80 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Krishnan, N. & Sehnal, F. Compartmentalization of oxidative stress and antioxidant defense in the larval gut of Spodoptera littoralis. Arch. Insect Biochem. Physiol. 63, 1–10 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Lindroth, R. L. Biochemical detoxication: mechanism of differential tiger swallowtail tolerance to phenolic glycosides. Oecologia 81, 219–224 (1989).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Despres, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Terriere, L. C. Induction of detoxication enzymes in insects. Annu. Rev. Entomol. 29, 71–88 (1984).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Li, X. C., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    56.
    Koul, O. G., Singh, R. & Singh, J. Bioefficacy and mode-of-action of Aglaroxin B and Aglaroxin C from Aglaia elaeagmoidea (syn. A. Irox burghiana) against Helicoverpa armigera and Spodoptera litura. Biopesticides Int. 1, 54–64 (2005).
    Google Scholar 

    57.
    Waldbauer, G. P. The Consumption and Utilization of Food by Insects. Adv. Insect Physiol. 5, 229–288 (1968).
    Article  Google Scholar 

    58.
    Tauber, O. E. & Yeager, J. F. On total hemolymph (blood) cell counts of insects I. Orthoptera, odonata, hemiptera, and homoptera. Ann. Entomol. Soc. Am. 28, 229–240 (1935).
    Article  Google Scholar 

    59.
    Arnold, J. W. & Hinks, C. F. Insect haemocytes under light microscopy: techniques. In Insect Haemocyte Development, Forms, Functions and Techniques (ed. Gupta, A. P.) 531–538 (Cambridge University Press, Cambridge, 1979).
    Google Scholar 

    60.
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).
    CAS  Article  Google Scholar  More

  • in

    Application of wood ash leads to strong vertical gradients in soil pH changing prokaryotic community structure in forest top soil

    1.
    Silva, F. C., Cruz, N. C., Tarelho, L. A. C. & Rodrigues, S. M. Use of biomass ash-based materials as soil fertilisers: critical review of the existing regulatory framework. J. Clean Prod. 214, 112–124 (2019).
    Article  Google Scholar 
    2.
    Huotari, N., Tillman-Sutela, E., Moilanen, M. & Laiho, R. Recycling of ash—for the good of the environment?. Forest Ecol. Manag. 348, 226–240 (2015).
    Article  Google Scholar 

    3.
    Ingerslev, M., Skov, S., Sevel, L. & Pedersen, L. B. Element budgets of forest biomass combustion and ash fertilisation—a Danish case-study. Biomass Bioenergy 35, 2697–2704 (2011).
    CAS  Article  Google Scholar 

    4.
    Karltun, E. et al. in Sustainable Use of Forest Biomass for Energy (eds Röser, D., Asikainen, A., Raulund-Rasmussen, K. & Stupak, I.) 79–108 (Springer, Berlin, 2008).

    5.
    Thiffault, E. et al. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environ. Rev. 19, 278–309 (2011).
    Article  CAS  Google Scholar 

    6.
    Aronsson, K. A. & Ekelund, N. G. A. Biological effects of wood ash application to forest and aquatic ecosystems. J. Environ. Qual. 33, 1595–1605 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Reimann, C. et al. Element levels in birch and spruce wood ashes—green energy?. Sci. Total Environ. 393, 191–197 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).
    ADS  CAS  Article  Google Scholar 

    9.
    Rønn, R., Vestergard, M. & Ekelund, F. Interactions between bacteria, protozoa and nematodes in soil. Acta Protozool. 51, 223–235 (2012).
    Google Scholar 

    10.
    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Wall, D. H. et al. Soil Ecology and Ecosystem Services (Oxford University Press, Oxford, 2012).
    Google Scholar 

    12.
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Kaiser, K. et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 6, 33696 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Waldrop, M. P., Balser, T. C. & Firestone, M. K. Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 32, 1837–1846 (2000).
    CAS  Article  Google Scholar 

    15.
    Bang-Andreasen, T. et al. Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Front. Microbiol. 8, 1400 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    16.
    Bååth, E. & Arnebrant, K. Growth-rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil. Biol. Biochem. 26, 995–1001 (1994).
    Article  Google Scholar 

    17.
    Cruz-Paredes, C., Wallander, H., Kjøller, R. & Rousk, J. Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil. Biol. Biochem. 112, 153–164 (2017).
    CAS  Article  Google Scholar 

    18.
    Fritze, H., Perkiömäki, J. & Pennanen, T. Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur. J. Soil Sci. 51, 565–573 (2000).
    CAS  Article  Google Scholar 

    19.
    Frostegård, A., Bååth, E. & Tunlid, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil. Biol. Biochem. 25, 723–730 (1993).
    Article  Google Scholar 

    20.
    Jokinen, H. K., Kiikkilä, O. & Fritze, H. Exploring the mechanisms behind elevated microbial activity after wood ash application. Soil. Biol. Biochem. 38, 2285–2291 (2006).
    CAS  Article  Google Scholar 

    21.
    Noyce, G. L. et al. Soil microbial responses to wood ash addition and forest fire in managed Ontario forests. Appl. Soil Ecol. 107, 368–380 (2016).
    Article  Google Scholar 

    22.
    Perkiömäki, J. & Fritze, H. Short and long-term effects of wood ash on the boreal forest humus microbial community. Soil. Biol. Biochem. 34, 1343–1353 (2002).
    Article  Google Scholar 

    23.
    Vestergård, M. et al. The relative importance of the bacterial pathway and soil inorganic nitrogen increase across an extreme wood-ash application gradient. GBC Bioenergy 10, 320–334 (2018).
    Google Scholar 

    24.
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).
    PubMed  Article  PubMed Central  Google Scholar 

    26.
    Demeyer, A., Nkana, J. C. V. & Verloo, M. G. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour. Technol. 77, 287–295 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Maresca, A., Hyks, J. & Astrup, T. F. Recirculation of biomass ashes onto forest soils: ash composition, mineralogy and leaching properties. Waste Manag. 70, 127–138 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
    PubMed  Article  PubMed Central  Google Scholar 

    29.
    Nemergut, D. R., Cleveland, C. C., Wieder, W. R., Washenberger, C. L. & Townsend, A. R. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil. Biol. Biochem. 42, 2153–2160 (2010).
    CAS  Article  Google Scholar 

    30.
    Philippot, L. et al. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8, 523–529 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).
    ADS  Article  Google Scholar 

    32.
    Gömöryová, E., Pichler, V., Tóthová, S. & Gömöry, D. Changes of chemical and biological properties of distinct forest floor layers after wood ash application in a Norway spruce stand. Forests 7, 108 (2016).
    Article  Google Scholar 

    33.
    Hansen, M., Bang-Andreasen, T., Sørensen, H. & Ingerslev, M. Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. For. Ecol. Manag. 406, 274–280 (2017).
    Article  Google Scholar 

    34.
    Blume, E. et al. Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil. Ecol. 20, 171–181 (2002).
    Article  Google Scholar 

    35.
    Ekelund, F., Rønn, R. & Christensen, S. Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol. Biochem. 33, 475–481 (2001).
    CAS  Article  Google Scholar 

    36.
    Fierer, N., Schimel, J. P. & Holden, P. A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176 (2003).
    CAS  Article  Google Scholar 

    37.
    Drew, M. C. Comparison of effects of a localized supply of phosphate, nitrate, ammonium and potassium on growth of seminal root system, and shoot, in Barley. New Phytol. 75, 479–490 (1975).
    CAS  Article  Google Scholar 

    38.
    Hutchings, M. J. & John, E. A. The effects of environmental heterogeneity on root growth and root/shoot partitioning. Ann. Bot. 94, 1–8 (2004).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Brunner, I., Zimmermann, S., Zingg, A. & Blaser, P. Wood-ash recycling affects forest soil and tree fine-root chemistry and reverses soil acidification. Plant Soil. 267, 61–71 (2004).
    CAS  Article  Google Scholar 

    40.
    Saarsalmi, A., Smolander, A., Moilanen, M. & Kukkola, M. Wood ash in boreal, low-productive pine stands on upland and peatland sites: long-term effects on stand growth and soil properties. For. Ecol. Manag. 327, 86–95 (2014).
    Article  Google Scholar 

    41.
    Lanzén, A. et al. The community structures of prokaryotes and fungi in mountain pasture soils are highly correlated and primarily influenced by pH. Front. Microbiol. 6, 321 (2015).
    Article  Google Scholar 

    42.
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Bang-Andreasen, T., Schostag, M., Prieme, A., Elberling, B. & Jacobsen, C. S. Potential microbial contamination during sampling of permafrost soil assessed by tracers. Sci. Rep. 7, 43338 (2017).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Saarsalmi, A., Kukkola, M., Moilanen, M. & Arola, M. Long-term effects of ash and N fertilization on stand growth, tree nutrient status and soil chemistry in a Scots pine stand. For. Ecol. Manag. 235, 116–128 (2006).
    Article  Google Scholar 

    45.
    Zimmermann, S. & Frey, B. Soil respiration and microbial properties in an acid forest soil: effects of wood ash. Soil Biol. Biochem. 34, 1727–1737 (2002).
    CAS  Article  Google Scholar 

    46.
    Bååth, E. Adaptation of soil bacterial communities to prevailing pH in different soils. Fems Microbiol. Ecol. 19, 227–237 (1996).
    ADS  Article  Google Scholar 

    47.
    Madigan, M. T., Martinko, J. M., Dunlap, P. V. & Clark, D. P. Brock Biology of Microorganisms 14th edn. (Pearson, Boston, 2014).
    Google Scholar 

    48.
    Rosso, L., Lobry, J. R., Bajard, S. & Flandrois, J. P. Convenient model to describe the combined effects of temperature and pH on microbial-growth. Appl. Environ. Microb. 61, 610–616 (1995).
    CAS  Article  Google Scholar 

    49.
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).
    PubMed  PubMed Central  Google Scholar 

    50.
    Kim, J. M. et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J. Microbiol. 54, 838–845 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Ochecova, P., Tlustos, P., Szakova, J., Mercl, F. & Maciak, M. Changes in nutrient plant availability in loam and sandy clay loam soils after wood fly and bottom ash amendment. Agron. J. 108, 487–497 (2016).
    CAS  Article  Google Scholar 

    52.
    Pitman, R. M. Wood ash use in forestry—a review of the environmental impacts. Forestry 79, 563–588 (2006).
    Article  Google Scholar 

    53.
    Cederlund, H. et al. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl. Soil Ecol. 84, 62–68 (2014).
    Article  Google Scholar 

    54.
    Cleveland, C. C., Nemergut, D. R., Schmidt, S. K. & Townsend, A. R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82, 229–240 (2007).
    CAS  Article  Google Scholar 

    55.
    Padmanabhan, P. et al. Respiration of C-13-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of C-13-labeled soil DNA. Appl. Environ. Microbiol. 69, 1614–1622 (2003).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Lladó, S. & Baldrian, P. Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments. PLoS ONE 12, e0171638 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    57.
    Starke, R. et al. Bacteria dominate the short-term assimilation of plant-derived N in soil. Soil Biol. Biochem. 96, 30–38 (2016).
    CAS  Article  Google Scholar 

    58.
    Teng, Y., Wang, X. M., Li, L. N., Li, Z. G. & Luo, Y. M. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front. Plant Sci. 6, 32 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    59.
    Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Hansen, M., Saarsalmi, A. & Peltre, C. Changes in SOM composition and stability to microbial degradation over time in response to wood chip ash fertilisation. Soil Biol. Biochem. 99, 179–186 (2016).
    CAS  Article  Google Scholar 

    61.
    Reid, C. & Watmough, S. A. Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Can. J. For. Res. 44, 867–885 (2014).
    CAS  Article  Google Scholar 

    62.
    Levy-Booth, D. J. et al. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39, 2977–2991 (2007).
    CAS  Article  Google Scholar 

    63.
    Nielsen, K. M., Johnsen, P. J., Bensasson, D. & Daffonchio, D. Release and persistence of extracellular DNA in the environment. Environ. Biosaf. Res. 6, 37–53 (2007).
    CAS  Article  Google Scholar 

    64.
    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 1–6 (2017).
    Article  CAS  Google Scholar 

    65.
    Carvalhais, L. C., Dennis, P. G., Tyson, G. W. & Schenk, P. M. Application of metatranscriptomics to soil environments. J. Microbiol. Methods 91, 246–251 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Urich, T. et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3, e2527 (2008).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Bang-Andreasen, T. et al. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol. Ecol. 96, 1–13 (2019).
    Google Scholar 

    68.
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
    CAS  Article  Google Scholar  More

  • in

    Effects of a bacteria-produced algicide on non-target marine invertebrate species

    Algicide preparation
    Four batches of algicide were used for experiments, labeled Batch 3, Batch 4–5–6, Batch 7, and Batch 8, following methods used by Grasso27. For each batch, a single colony of Shewanella sp. IRI-160 was transferred from a modified LM medium plate to liquid LM medium for overnight growth, then inoculated into f/2 with 0.05% casamino acids and incubated for 10 days at room temperature with bubbling. Bacteria and other compounds greater than 60 kDa in size were filtered out using a HemoFlow HF80S 60 kDa dialysis cartridge (Fresenius Medical Care, Waltham, MA), creating a batch of sterile filtered exudate referred to as IRI-160AA. Samples of the algicide were diluted with ultrapure water, then total nitrogen (TN) was measured with a TOC-V total organic carbon analyzer equipped with a Total Nitrogen Measuring Unit (Shimadzu Corp., Kyoto, Japan). The algicide has approximately 5.02 mg/L TN. The 24-h EC50 for K. veneficum differed among batches but was always close to 1% (actual EC50s ranged from 0.93% in Batch 4–5–6 to 1.5% in Batch 3), thus a 1% concentration of the algicide was included in all invertebrate assays27. Animals were also exposed to a media control to ensure mortality was due to the algicide.
    Statistical analyses
    For all statistics, data were analyzed using Shapiro–Wilk normality tests and Brown-Forsythe equal variance tests. If they failed either, data were transformed and reanalyzed. If transformed data passed both tests, then analysis proceeded. If neither log or square-root transformed data passed both normality and equal variance tests, then a non-parametric test was run if possible. Specific details on statistical analyses are provided in each section below.
    Copepod mortality
    Mortality experiments followed established methods for determining acute toxicity in aquatic animals30,31,33,49. For A. tonsa adults, we collected animals in Fall of 2018 after sunset near the mouth of the Broadkill River (Delaware, USA) using a plankton net. Cod ends were diluted and maintained in field collected seawater with ambient food at room temperature (~ 20 °C) until use in experiments. Adults were filtered out of the bulk collection with a 500-μm mesh, then sorted for adult females. We transferred one adult female (n = 24 for 40%, 48 for 30%, and 72 for all other concentrations) into each well of a 12-well plate containing 5 mL of test solution; test solutions included a seawater control (0%); algicide mixtures prepared from Batch 3 of the IRI-160AA in 20 psu, 0.2 μm-filtered sea water collected from Indian River Inlet, DE, USA (FSW) (1%, 5%, 10%, 13.5%, 18%, 24%, 30%, and 40% v/v); and a 24% media solution as a media control. The plates were incubated at 25 °C in low-light (~ 2.37 × 1013 photons cm-2 s−1) on a 14:10 h day:night cycle for 48 h. Every 6 h for the first 24 h, and again at 48 h, we counted the number alive and dead.
    For A. tonsa nauplii, adult females and males were placed in two 1 L beakers at room temperature with a 150-μm mesh placed several centimeters off the bottom (to prevent egg cannibalism), a slow bubbler (~ 2 small bubbles s−1), and ambient seawater diluted with 20 psu FSW until the water was mostly clear. Adults were allowed to mate in the beaker for approximately 24 h, after which we removed the mesh, thus removing the adults and leaving behind any nauplii and eggs. After another 24 h, the contents of the beakers were poured through a 20-μm mesh, and we extracted the nauplii and placed them into experimental treatments (0% seawater control, algicide at 1%, 5%, 10%, 13.5%, 18%, 24%, and 30% v/v concentrations, plus a 24% media control; n = 48 animals for all concentrations) following the procedure outlined above for the adult female copepods. This experiment was conducted three times; the first two mortality experiments used Batch 3 of the IRI-160AA, and the third mortality experiment used Batch 8.
    From the data collected, we generated a Probit model50 and obtained a 24-h LC50. Another approach looks at mortality over several time points in order to generate a time series of survival (e.g., Robineau et al.51, Keller et al.52). This also allows the generation of an LC50 at several time points (e.g., 6, 12, 18, and 24 h), which can better inform how a certain animal may survive over time. We used SigmaPlot to generate graphs of survival over time, and R statistical software53 and the R package ecotoxicology54 for generating and graphing the Probit model and running a χ2 test to evaluate the model.
    Crab mortality
    We conducted mortality experiments for the blue crab (Callinectes sapidus) in larval (Z1-stage zoeae) and postlarval (megalopae) stages in a similar manner to mortality experiments with Acartia tonsa. We collected ovigerous female blue crabs during the Summer of 2018 by dip net and drop net at sunset from the Delaware Bay (similar to methods used by Kernehan55) in Cape Henlopen State Park and maintained them in a recirculating water tray containing filtered ambient seawater (~ 30 psu) at room temperature. We staged egg masses every few days55, and females predicted to hatch within ~ 3 days were moved to 7-gallon buckets in a 25 °C incubator containing ~ 30 psu sea water and a bubbler. Zoea larvae (Z1-stage) hatched from these females were kept in large finger bowls with 30 psu sea water at room temperature and were fed lab-reared rotifers (Brachionus rotundiformis, Reed Mariculture). These animals became subjects for mortality and sub-lethal experiments within approximately a day of hatching. Four experiments were conducted; three mortality experiments used Batch 4–5–6 of the IRI-160AA, while the fourth experiment (24 individuals for each concentration) used Batch 7.
    Megalopae were collected by plankton net set on rising tides at night during the Summer and Fall of 2018. They were maintained in large finger bowls at room temperature and fed with Artemia nauplii and went into experiments within a few days of collection. Only megalopae in intermolt based on morphology56 were used in experiments. Megalopae experiments used Batch 3 of the IRI-160AA.
    Both zoeae and megalopae were exposed to 1%, 5%, 10%, 13.5%, 18%, and 24% algicide concentrations, plus a 0% seawater control and a 24% media control (n = 84 animals for the 0% concentration and 60 for all other concentrations for zoeae, and n = 24 animals for megalopae for all concentrations). Animals were incubated at 25 °C under low-light (~ 2.37 × 1013 photons cm-2 s-1) on a 14:10 light:dark cycle for the duration of experiments. We checked on zoeae and megalopae every 6 h for 24 h; megalopae were checked at an additional 48-h time point.
    Oyster mortality
    Oyster larvae (eyed pediveligers of Crassostrea virginica) were provided by University of Maryland’s Horn Point Laboratory. Animals were maintained on a damp coffee filter in a sealed plastic container on ice during transport, then released into room-temperature fingerbowls containing 20 psu water and fed a locally-isolated alga (Storeatula major) at room temperature. Experiments occurred in similar fashion to those conducted on Acartia tonsa and Callinectes sapidus. Larvae were assayed in 12-well plates (n = 36 animals for all concentrations). Animals were exposed to 1%, 5%, 10%, 13.5%, 18%, and 24% algicide concentrations, plus a 0% seawater control, and 24% media control. Animals were incubated at 25 °C under a 14:10 light:dark cycle for the duration of experiments. Survival was evaluated every 6 h for 24 h and again at 48 h. Larvae were additionally examined at the start of the experiment and at the 24- and 48-h time points for an activity assay. These experiments used Batch 3 of the IRI-160AA.
    Wild-type adult C. virginica were collected from the Delaware Bay near the University of Delaware Lewes Campus, while Haskins-disease-resistant strain individuals were collected from aquaculture cages maintained by the Delaware Center for the Inland Bays. On the first day, individuals were cleaned with a wire brush, and divided into two buckets containing approximately 10 L of 20 psu seawater and were fed Isochrysis galbana (~ 100,000 cells L−1). On the second day the water was changed and they were again fed. On the third day, water was changed and animals were not fed. On the fourth day, individuals were removed from the buckets, dried with a paper towel, labeled with permanent marker, and placed in pairs into forty-one 1 L plastic containers containing 1 L of various algicide solutions: 0%, 1%, 5%, 10%, 13.5%, 18%, and 24% (n = 28 for 0%, 22 for 1% and 18%, and 20 for all other concentrations). Individuals were checked every 6 h for 24 h and assessed if they were alive or dead. Closed individuals were assumed to be alive. If open individuals were observed, we gently tapped on the container to see if the individual shut its shell; animals that responded to this stimulus were marked as alive. Only animals that did not respond to repeated stimuli were scored as dead. Proportion surviving was compared across algicide concentration and strain. These experiments all used Batch 8 of the IRI-160AA.
    Copepod sub-lethality
    Respiration
    We conducted respiration experiments on A. tonsa adult females and young nauplii in a 24-well microplate respirometer (Loligo Systems). First, we sorted animals into fingerbowls containing 100 mL of their respective algicide concentrations. After 24 h of algicide exposure, we removed animals via pipette and put one animal into each well of the respirometer plate (200 μL wells for adult females and 80 μL for nauplii) filled with 0.2 μm filtered FSW, then sealed the plate with Parafilm and a weight. Each experiment also had 4 to 6 wells with only FSW to calculate background oxygen consumption. The experiment occurred in darkness within a 25 °C incubator at night and lasted several hours (n = 26–39 animals for adult females, 11–18 for nauplii). Oxygen concentrations in each well were recorded every minute. At the end of the experiment, respiration rates were calculated in R statistical software using the respR package57 over a period of time when the animals were still in independent respiration, and a one-way ANOVA on ranks in SigmaPlot (Systat Software, San Jose, CA) compared treatments. Experiments with adult females used Batch 3 of IRI-160AA, while nauplii experiments used Batch 8.
    Activity
    Experiments determining effects on swimming activity utilized Locomotor Activity Monitors (LAMs; TriKinetics). Three beams of infrared light cross a 3 mL test tube containing an animal and register when the animal crosses the beams. We sorted batches of adult female A. tonsa into fingerbowls containing different algicide treatments. Animals were incubated at 25 °C in low-light conditions (~ 2.37 × 1013 photons cm−2 s−1) for 24 h on a 11:13-h light:dark cycle. Animals were pipetted into plastic test tubes (one animal per tube) containing ~ 3 mL of FSW, which then went into the LAMs (n = 21–36 animals). The experiment lasted 24 h with beam breaks summed at one-minute intervals, allowing the data to be analyzed wholly for the 24-h period as well as across different light phases to account for light:dark mediated activity rhythms. Experiments started in the afternoon and ran overnight, creating an initial light phase (L1), a dark phase (D), and a second light phase (L2). Comparing treatments across the entire time period was done using a one-way ANOVA on ranks, while analyzing the data based on the different light phases was performed via a one-way repeated-measures ANOVA. Additionally, at the end of the LAM activity experiments we collected the individuals and noted mortality. This data was analyzed via a one-way ANOVA on ranks. Copepod activity experiments used Batch 3 of the IRI-160AA. Nauplii were too small to generate a reliable signal in the LAMs and were not used in these experiments.
    Crab sub-lethality
    Respiration
    Respiration experiments followed methods described for A. tonsa above and involved zoeae and megalopae. A one-way ANOVA on ranks was calculated using the data for each life stage. The first four zoeae experiments used Batch 4–5-6 of IRI-160AA, while the last two experiments used Batch 7. Megalopae experiments all used Batch 3.
    Activity
    Activity level experiments followed methods described for A. tonsa above and involved zoeae and megalopae. The 24-h data were analyzed using a one-way ANOVA on square root transformed data for zoeae, and a one-way ANOVA on ranks for megalopae. The data broken down by light phase were analyzed via one-way repeated measures ANOVA on log-transformed data for both zoeae and megalopae. These experiments all used Batch 3 of IRI-160AA.
    At the end of experiments we collected the individuals and noted mortality. This data was analyzed via a one-way ANOVA for zoeae and a one-way ANOVA on ranks for the megalopae.
    Metamorphosis
    We sorted megalopae into finger bowls containing 100 mL of filtered estuary water with different concentrations of the IRI-160AA algicide (0%, 1%, and 17% v/v). After 24-h of exposure, we sorted animals into 12-well plates containing FSW (n = 60 individuals for each treatment). Water was changed daily, and animals were fed freshly hatched Artemia daily. Every 12 h, we counted how many megalopae had molted into first crabs until most had metamorphosed (5.5 days) and used a Kaplan–Meier Survival Analysis with a Gehan-Breslow test to determine if there was a difference in time to metamorphosis (TTM) across treatments. These experiments used Batch 3 of the IRI-160AA.
    Abdomen Pumping and Grooming
    Crabs with egg masses were collected from the Delaware Bay near Lewes, DE and separated into numbered baskets and maintained in a flow-through sea water table. They were fed thawed squid (Loligo opalescens) every day, and eggs were photographed every two to three days under a dissecting scope until they reached ~ 6 days until hatching (i.e., late-stage sensu Tankersley et al.)36. Homogenized egg water (seawater plus homogenized eggs, designated SW + HE, ~ 20 eggs mL−1) was utilized to induce pumping and grooming behavior and made according to Tankersley et al.36.
    Ovigerous females were exposed to several sub-lethal concentrations of algicide combined with the homogenized egg solution and monitored for pumping and grooming behavior. Test solutions were diluted to 1.5 L with filtered 30 psu seawater, and 3.75 mL aliquot of a pre-prepared homogenized egg solution was added to achieve a final concentration of ~ 20 eggs/mL. These experiments used Batch 4–5–6, Batch 7, and Batch 3 of the IRI-160AA.
    Between three and six crabs were tested at a time, and all crabs were staged the day of the experiment to verify that their eggs were no more than six days from hatching. All experiments were performed under dim red light to reduce disturbance. Each crab was tested in every treatment. A crab was placed into a translucent container (20.1 × 16.5 × 11.4 cm) with a given treatment condition and acclimated for 2.5 min. Then, for the following 2.5 min, the number of times the crab pumped its abdomen was recorded. Immediately following the end of the first crab’s measurement period, another crab was placed into the same treatment to begin its acclimation period. Each crab was returned to a flowing water table between treatments and remained there for at least twenty minutes before beginning the acclimation period of its next treatment. The treatment series began and ended with 30 psu seawater (SW), and proceeded through an increasing gradient of 0, 7, 11, and 17% IRI-160AA in SW + HE.
    Each measurement period of the pumping experiments was filmed. The videos were reviewed later, and the time the crabs spent grooming their egg masses was recorded.
    A χ2 test was performed for the 24 crabs tested to assess if the proportion of crabs performing the behaviors differed among treatments. A one-way repeated-measures ANOVA (Friedman Repeated Measures Analysis of Variance on Ranks) was used to assess trends in the number of pumps and the time spent grooming. Only crabs that performed the behavior were included in each analysis.
    Oyster sub-lethality
    Respiration
    Respiration on oyster pediveligers following methods described for A. tonsa nauplii above. Two individuals were placed in each 80 µl well, with rates calculated per individual. Data were analyzed via a one-way ANOVA on Ranks. These experiments all used Batch 3 of IRI-160AA.
    Activity
    Activity experiments on pediveliger larvae were conducted in LAMs and followed similar methods to Acartia tonsa and Callinectes sapidus. The 24-h data was tested via a one-way ANOVA on ranks, while the data broken down by light phase was analyzed via a one-way repeated measures ANOVA. These experiments used Batch 3 of IRI-160AA.
    An additional analysis of pediveliger activity occurred during the mortality experiment by ranking how active each animal appeared to be on a scale of 1 (High Activity, HA, animal was actively swimming), 2 (Medium Activity, MA, animal had its velum extended and cilia active, sometimes scooting across the bottom), 3 (Low Activity, LA, animal was enclosed in its shell but viscera moved when the shell was touched), and 4 (Dead/No Activity, D, animal was completely unresponsive even to repeated stimulation). Ranking occurred at the start of the experiment (where all animals scored as HA), at the 24-h mark, and at the 48-h mark. This assessment was analyzed via a χ2 test for both the 24-h and 48-h data sets. At the end of the LAM experiments, animals were analyzed in the same manner.
    Activity experiments on the wild-type adult C. virginica occurred during the mortality experiments. At each 6-h time point, animals in the containers (0%, 1%, 5%, 10%, 13.5%, 18%, and 24% v/v IRI-160AA treatments) were scored as either Open (O) or Closed (C), and analyzed via a two-way repeated measures ANOVA on the proportion of animals that opened at each time point in each concentration.
    Feeding
    Feeding experiments occurred only on adult C. virginica. Animals and containers from the mortality experiments were rinsed to remove algicide residue, then filled with 1 L of 20 psu seawater and Isochrysis galbana at ~ 100,000 cells L−1, and one animal from each container was returned to it. Five milliliters from each container were removed immediately and in vivo chlorophyll a florescence was measured using a fluorometer (Turner Systems). Air stones were added to the containers to keep the algae in suspension, and lids were added to prevent liquid from bubbling out. After 6 h, another fluorescence reading was taken. Animals were given another 6 h to feed, and a final fluorescence reading was taken at the 12-h time point. Clearance rates (CR) were calculated according to Thessen et al.58 from time zero to six hours (initial rate, 0–6), and from six to twelve hours (end rate, 6–12), and compared across time ranges and treatments and strains using a three-way ANOVA. More

  • in

    Local knowledge as a tool for prospecting wild food plants: experiences in northeastern Brazil

    1.
    Kalle, R. et al. Gaining momentum: Popularization of Epilobium angustifolium as food and recreational tea on the Eastern edge of Europe. Appetite 150, 104638 (2020).
    PubMed  Article  PubMed Central  Google Scholar 
    2.
    FAO. Voluntary Guidelines for the Conservation and Sustainable Use of Crop Wild Relatives and Wild Food Plants. (Food and Agriculture Organization of the United Nations, 2017).

    3.
    Gold, K. & McBurney. Conservation of plant diversity for sustainable diets. in Sustainable diets and biodiversity: directions ad solutions for policy, research and action (eds. Burlingame, B. & Dernini, S.) 30–36 (FAO Headquarters, 2010).

    4.
    Soares, W. L. & de Porto, M. F. Estimating the social cost of pesticide use: An assessment from acute poisoning in Brazil. Ecol. Econ. 68, 2721–2728 (2009).
    Article  Google Scholar 

    5.
    Oliveira, B. P. T. & Ranieri, G. R. Narrativa midiática e difusão sobre Plantas Alimentícias Não Convencionais (PANC): Contribuições para avançar no debate. Cad. Agroecol. 13, 7 (2017).
    Google Scholar 

    6.
    de Assis, J. G. A., Galvão, R. F. M., de Castro, I. R. & de Melo, J. F. Plantas Alimentícias Não Convencionais na Bahia: uma rede em consolidação. Agriculturas 13, 16–20 (2016).
    Google Scholar 

    7.
    Kinupp, V. F. & Lorenzi, H. Plantas Alimentícias não Convencionais no Brasil: Guia de identificação, Aspectos Nutricionais e Receitas Ilustradas. (Instituto Plantarum, 2014).

    8.
    Jacob, M. C. M., de Medeiros, M. F. A. & Albuquerque, U. P. Biodiverse food plants in the semiarid region of Brazil have unknown potential: A systematic review. PLoS ONE 15, e0230936 (2020).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Pieroni, A. Evaluation of the cultural significance of wild food botanicals traditionally consumed in Northwestern tuscany, Italy. J. Ethnobiol. 21, 89–104 (2001).
    Google Scholar 

    10.
    Jacob, M. C. M. & Albuquerque, U. P. Biodiverse food plants: Which gaps do we need to address to promote sustainable diets?. Ethnobiol. Conserv. 9, 1–6 (2020).
    Google Scholar 

    11.
    Berkes, F., Colding, J. & Folke, C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 10, 1251–1262 (2000).
    Article  Google Scholar 

    12.
    Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton University Press, Princeton, 1981).
    Google Scholar 

    13.
    Reyes-García, V. et al. Cultural transmission of ethnobotanical knowledge and skills: An empirical analysis from an Amerindian society. Evol. Hum. Behav. 30, 274–285 (2009).
    Article  Google Scholar 

    14.
    Ladio, A. H. & Lozada, M. Patterns of use and knowledge of wild edible plants in distinct ecological environments: A case study of a Mapuche community from northwestern Patagonia. Biodivers. Conserv. 13, 1153–1173 (2004).
    Article  Google Scholar 

    15.
    Menendez-baceta, G., Pardo-de-santayana, M., Aceituno-mata, L. & Reyes-garcía, V. Trends in wild food plants uses in Gorbeialdea (Basque Country). Appetite 112, 9–16 (2017).
    PubMed  Article  PubMed Central  Google Scholar 

    16.
    Ayantunde, A. A., Briejer, M., Hiernaux, P., Udo, H. M. J. & Tabo, R. Botanical knowledge and its differentiation by age, gender and ethnicity in Southwestern Niger. Hum. Ecol. 36, 881–889 (2008).
    Article  Google Scholar 

    17.
    de Brito, C. C. et al. The use of different indicators for interpreting the local knowledge loss on medical plants. Braz. J. Pharmacogn. 27, 2 (2017).
    Article  Google Scholar 

    18.
    Ghorbani, A., Langenberger, G. & Sauerborn, J. A comparison of the wild food plant use knowledge of ethnic minorities in Naban River Watershed National Nature Reserve, Yunnan SW China. J. Ethnobiol. Ethnomed. 8, 17 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    19.
    Kang, Y., Łuczaj, Ł, Kang, J. & Zhang, S. Wild food plants and wild edible fungi in two valleys of the Qinling Mountains (Shaanxi, central China). J. Ethnobiol. Ethnomed. 9, 26 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    20.
    Nascimento, V. T., Lucena, R. F., Maciel, M. I. & Albuquerque, U. P. Knowledge and use of wild food plants in areas of dry seasonal forests in Brazil. Ecol. Food Nutr. 52, 317–343 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    21.
    Torres-Avilez, W., Medeiros, P. M. D. & Albuquerque, U. P. Effect of gender on the knowledge of medicinal plants: Systematic review and meta-analysis. Evid.-Based Complement. Altern. Med. 2016, 6592363 (2016).
    Article  Google Scholar 

    22.
    Somnasang, P. & Moreno-Black, G. Knowing, gathering and eating: Knowledge and attitudes about wild food in an Isan village in Northeastern Thailand. J. Ethnobiol. 20, 197–216 (2000).
    Google Scholar 

    23.
    Cruz, M. P., Medeiros, P. M., Combariza, I. S., Peroni, N. & Albuquerque, U. P. ‘I eat the manofê so it is not forgotten’: Local perceptions and consumption of native wild edible plants from seasonal dry forests in Brazil. J. Ethnobiol. Ethnomed. 10, 45 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Gomes, D. L., dos Ferreira, R. P. S., da Santos, É. M. C., da Silva, R. R. V. & de Medeiros, P. M. Local criteria for the selection of wild food plants for consumption and sale in Alagoas, Brazil. Ethnobiol. Conserv. 9, 10 (2020).
    Google Scholar 

    25.
    Serrasolses, G. et al. A matter of taste: Local explanations for the consumption of wild food plants in the Catalan pyrenees and the Balearic Islands. Econ. Bot. 70, 176–189 (2016).
    Article  Google Scholar 

    26.
    Balemie, K. & Kebebew, F. Ethnobotanical study of wild edible plants in Derashe and Kucha Districts South Ethiopia. J. Ethnobiol. Ethnomed. 2, 53 (2014).
    Article  Google Scholar 

    27.
    Costa, J. M. S., Melo, Y. N. C. da S. & Navas, R. Agricultura familiar e agroecologia: diversidade na produção do assentamento Dom Helder Câmara. in Gestão dos ambientes nas práticas socioeconômicas (eds. Selva, V. S. F. et al.) 31–37 (Itacaiúnas, 2019).

    28.
    Cavalcanti, B. C., Rocha, R. & Barros, D. A. Desiring the city—the urban imaginary in rural collective settlements in a Brazilian submontane Atlantic forest reserve. Horizontes Antropológicos 3, 217–235 (2007).
    Google Scholar 

    29.
    Lopes, T. V., Cruz, R. R. & Silva, R. J. N. da. Produção agrícola em um assentamento de reforma agrária da zona da mata alagoana: uma análise do uso de agrotóxicos e a alternativa orgânica. in Gestão dos ambientes nas práticas socioeconômicas (eds. Selva, V. S. F. et al.) 88–94 (Itacaiúnas, 2019).

    30.
    Oliveira, J. R. P. M. & Pôrto, K. C. Composição, riqueza e padrões de distribuição das hepáticas (Marchantiophyta) epífitas da Estação Ecológica Murici, AL Brasil. Rev. Bras. Biociências 5, 1041–1043 (2007).
    Google Scholar 

    31.
    IBGE. Manual Técnico da Vegetação Brasileira. (1992).

    32.
    de Campos, L. Z., Albuquerque, U. P., Peroni, N. & Araújo, E. L. Do socioeconomic characteristics explain the knowledge and use of native food plants in semiarid environments in Northeastern Brazil?. J. Arid Environ. 115, 53–61 (2015).
    ADS  Article  Google Scholar 

    33.
    Nascimento, V. T., Pereira, H. C., Silva, A. S., Nunes, A. T. & Medeiros, P. M. Plantas alimentícias espontâneas conhecidas pelos moradores do Vau da Boa Esperança, município de Barreiras, oeste da Bahia, nordeste do Brasil. Ouricuri 5, 86–109 (2015).
    Google Scholar 

    34.
    Bhattarai, S., Chaudhary, R. P. & Taylor, R. S. L. Wild edible plants used by the people of Manang district, central Nepal wild edible. Ecol. Food Nutr. 48, 1–20 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Ladio, A. H. & Lozada, M. Edible wild plant use in a Mapuche community of northwestern Patagonia. Hum. Ecol. 28, 53–71 (2000).
    Article  Google Scholar 

    36.
    Sansanelli, S. & Tassoni, A. Wild food plants traditionally consumed in the area of Bologna (Emilia Romagna region, Italy ). J. Ethnobiol. Ethnomed. 10, 69 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Sousa, D. C. P., Soldati, G. T., Monteiro, J. M., De Sousa Araújo, T. A. & Albuquerque, U. P. Information retrieval during free listing is biased by memory: Evidence from medicinal plants. PLoS ONE 11, e0165838 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Tabuti, J. R. S., Dhillion, S. S. & Lye, K. A. The status of wild food plants in Bulamogi County Uganda. Int. J. Food Sci. Nutr. 55, 485–498 (2004).
    PubMed  Article  CAS  Google Scholar 

    39.
    Hadjichambis, A. C. H. et al. Wild and semi-domesticated food plant consumption in seven circum-Mediterranean areas. Int. J. Food Sci. Nutr. 59, 383–414 (2008).
    PubMed  Article  Google Scholar 

    40.
    Pieroni, A. Gathered wild food plants in the upper valley of the Serchio River (Garfagnana) Central Italy. Econ. Bot. 53, 327–341 (1999).
    Article  Google Scholar 

    41.
    Thakur, D., Sharma, A. & Uniyal, S. K. Why they eat, what they eat: Patterns of wild edible plants consumption in a tribal area of Western Himalaya. J. Ethnobiol. Ethnomed. 13, 70 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Cruz-garcia, G. S. & Price, L. L. Ethnobotanical investigation of ‘wild’ food plants used by rice farmers in Kalasin Northeast Thailand. J. Ethnobiol. Ethnomed. 7, 33 (2011).
    PubMed  PubMed Central  Article  Google Scholar 

    43.
    Ogle, B. M. & Grivetti, L. E. Legacy of the chameleon: Edible wild plants in the kingdom of Swaziland, southern Africa. A cultural, ecological, nutritional study. Part iv—nutritional analysis and conclusions. Ecol. Food Nutr. 17, 41–64 (1985).
    Article  Google Scholar 

    44.
    Price, L. L. Wild plant food in agricultural environments: A study of occurrence, management, and gathering rights in Northeast Thailand. Hum. Organ. 56, 2019–2221 (1997).
    Article  Google Scholar 

    45.
    Ribeiro, J. P. O. et al. Can ecological apparency explain the use of plant species in the semi-arid depression of Northeastern Brazil?. Acta Bot. Brasilica 28, 476–483 (2014).
    Article  Google Scholar 

    46.
    Soldati, G. T., Medeiros, P. M., Duque-Brasil, R., Coelho, F. M. G. & Albuquerque, U. P. How do people select plants for use? Matching the ecological apparency hypothesis with optimal foraging theory. Environ. Dev. Sustain. 19, 2143–2161 (2017).
    Article  Google Scholar 

    47.
    Bezerra, J. E. F., Lederman, I. E., Junior, J. F. da S. & Proença, C. E. B. Araçá. in Frutas Nativas da Região Centro-Oste do Brasil (eds. Vieira, R. F., Costa, T. da S. A., Silva, D. B. da, Ferreira, F. R. & Sano, S. M.) 42–62 (Embrapa Recursos Genéticos e Biotecnologia, 2006). doi:https://doi.org/10.13140/2.1.2141.1206.

    48.
    Peralta-Bohórquezo, A. F. P., Parada, F., Quijano, C. E. & Pino, J. A. Analysis of volatile compounds of sour guava (psidium guineense swartz) fruit. J. Essent. Oil Res. 22, 493–498 (2010).
    Article  Google Scholar 

    49.
    Damiani, C. et al. Characterization of fruits from the savanna: Araça (Psidium guinnensis Sw.) and Marolo (Annona crassiflora Mart.). Cienc. e Tecnol. Aliment. 31, 723–729 (2011).
    Article  Google Scholar 

    50.
    Schmeda-Hirschmann, G., Feresin, G., Tapia, A., Hilgert, N. & Theoduloz, C. Proximate composition and free radical scavenging activity of edible fruits from the Argentinian Yungas. J. Sci. Food Agric. 85, 1357–1364 (2005).
    Article  CAS  Google Scholar 

    51.
    González, A., Ramírez, M. & Sánchez, P. N. Estudio fitoquímico y actividad antibacterial de Psidium guineense Sw (choba) frente a Streptococcus mutans, agente causal de caries dentales. Rev. Cuba. Plantas Med. 10, 11 (2005).
    Google Scholar 

    52.
    Santos, M. A. C., Queiróz, M. A., Bispo, J. S. & Dantas, B. F. Seed germination of Brazilian guava (Psidium guineense Swartz). J. Seed Sci. 37, 214–221 (2015).
    Article  Google Scholar 

    53.
    Keeler, C. Genipa Americana in native tropical medicine. Dermatol. Trop. Ecol. Geogr. 3, 104–107 (1964).
    Google Scholar 

    54.
    Figueiredo, R. W., Maia, G. A., Holanda, L. F. F. & Monteiro, J. C. F. Características físicas e químicas do jenipapo. Pesqui. Agropecuária Bras. 21, 421–428 (1986).
    Google Scholar 

    55.
    Conceição, A. O., Rossi, M. H., Oliveira, F. F., Takser, L. & Lafond, J. Genipa americana (Rubiaceae) fruit extract affects mitogen-activated protein kinase cell pathways in human trophoblast-derived bewo cells: Implications for placental development. J. Med. Food 14, 483–494 (2011).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    56.
    Hamacek, F. R., Moreira, A. V. B., Martino, H. S. D., Ribeiro, S. M. R. & Pinheiro-Santana, H. M. Valor nutricional, caracterização Física e físico-química de jenipapo (Genipa Americana L.) do cerrado de Minas Gerais. Aliment. e Nutr. 24, 73–77 (2013).
    Google Scholar 

    57.
    Omena, C. M. B. et al. Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic Brazilian fruits. Antioxidant, anti-acetylcholinesterase and cytotoxic activities in fruits. Food Res. Int. 49, 334–344 (2012).
    Article  CAS  Google Scholar 

    58.
    Porto, R. G. C. L. et al. Chemical composition and antioxidant activity of Genipa Americana L. (Jenipapo) of the Brazilian Cerrado. J. Agric. Environ. Sci. 3, 51–61 (2014).
    Google Scholar 

    59.
    Dickson, L. et al. Main human urinary metabolites after genipap (Genipa americana L.) juice intake. Nutrients 10, 2 (2018).
    Article  CAS  Google Scholar 

    60.
    Alves, L. F. & Ming, L. C. Chemistry and pharmacology of some plants mentioned in the letter of Pero Vaz de Caminha. Ethnobiol. Conserv. 4, 1–15 (2015).
    Google Scholar 

    61.
    Li, Z. et al. Genipin inhibits the growth of human bladder cancer cells via inactivation of PI3k/AkT signaling. Oncol. Lett. 15, 2619–2624 (2018).
    PubMed  PubMed Central  Google Scholar 

    62.
    Shanmugam, M. K. et al. Potential role of genipin in cancer therapy. Pharmacol. Res. 133, 195–200 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    63.
    Brauch, J. E., Zapata-Porras, S. P., Buchweitz, M., Aschoff, J. K. & Carle, R. Jagua blue derived from Genipa americana L. fruit: A natural alternative to commonly used blue food colorants?. Food Res. Int. 89, 391–398 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    64.
    Souza, A. F., Andrade, A. C. S., Ramos, F. N. & Loureiro, M. B. Ecophysiology and morphology of seed germination of the neotropical lowland tree Genipa americana (Rubiaceae). J. Trop. Ecol. 15, 667–680 (1999).
    Article  Google Scholar 

    65.
    Oliveira, L. M., Oliveira Silva, E., Bruno, R. & Alves, E. U. Periods and dry environments in the seeds quality of Genipa americana L. Semin. Ciencias Agrar. 32, 495–502 (2011).
    Article  Google Scholar 

    66.
    Jackix, E. A., Monteiro, E. B., Raposo, H. F., Vanzela, E. C. & Amaya-Farfán, J. Taioba (xanthosoma sagittifolium) leaves: Nutrient composition and physiological effects on healthy rats. J. Food Sci. 78, 1929–1934 (2013).
    Article  CAS  Google Scholar 

    67.
    Akonor, P. T., Tortoe, C. & Buckman, E. S. Evaluation of cocoyam-wheat composite flour in pastry products based on proximate composition, physicochemical, functional, and sensory properties. J. Culin. Sci. Technol. 16, 52–65 (2018).
    Article  Google Scholar 

    68.
    Falade, K. O. & Okafor, C. A. Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches. Food Hydrocoll. 30, 173–181 (2013).
    Article  CAS  Google Scholar 

    69.
    Falade, K. O. & Okafor, C. A. Physical, functional, and pasting properties of flours from corms of two Cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) cultivars. J. Food Sci. Technol. 52, 3440–3448 (2015).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    70.
    Nishanthini, A. & Mohan, V. R. Antioxidant activites of Xanthosoma sagittifolium Schott using various in vitro assay models. Asian Pac. J. Trop. Biomed. 2, S1701–S1706 (2012).
    Article  Google Scholar 

    71.
    Pinto, N. A. V. D., Fernandes, S. M., Thé, P. M. P. & Carvalho, V. D. Variabilidade da composição centesimal, vitamina C, ferro e cálcio de partes da folha de Taioba (Xanthosoma sagittifolium Schott). Rev. Bras. Agrociência 7, 205–208 (2001).
    Google Scholar 

    72.
    Oliveira, G. L., Andrade, L. H. C. & Oliveira, A. F. M. Xanthosoma sagittifolium and Laportea aestuans: Species used to prevent osteoporosis in Brazilian traditional medicine. Pharm. Biol. 50, 930–932 (2012).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    73.
    Jackix, E. A., Monteiro, E. B., Raposo, H. F. & Amaya-Farfán, J. Cholesterol reducing and bile-acid binding properties of taioba (Xanthosoma sagittifolium) leaf in rats fed a high-fat diet. Food Res. Int. 51, 886–891 (2013).
    Article  CAS  Google Scholar 

    74.
    Arruda, S. F., Souza, E. M. T. & Siqueira, E. M. A. Carotenoids from Malanga (Xanthosoma sagittifolium) leaves protect cells against oxidative stress in rats. Int. J. Vitam. Nutr. Res. 75, 161–168 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    75.
    Chai, W. & Liebman, M. Effect of different cooking methods on vegetable oxalate content. J. Agric. Food Chem. 53, 3027–3030 (2005).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    76.
    de Carvalho, E. F. & Cordeiro, J. A. D. Um método alternativo e eficiente de propagação vegetativa de inhame (Colocasia esculenta (L.) SCHOTT) e de taioba (Xanthosoma sagittifolium (L) SCHOOT). Acta Amaz. 20, 11–18 (1990).
    Article  Google Scholar 

    77.
    Suja, G., John, K. S. & Sundaresan, S. Potential of tannia (Xanthosoma sagittifolium (L.) Schott.) for organic production. J. Root Crop. 35, 36–40 (2009).
    Google Scholar 

    78.
    Ramos-Escudero, F., Santos-Buelga, C., Pérez-Alonso, J. J., Yáñez, J. A. & Dueñas, M. HPLC-DAD-ESI/MS identification of anthocyanins in Dioscorea trifida L. yam tubers (purple sachapapa). Eur. Food Res. Technol. 230, 745–752 (2010).
    Article  CAS  Google Scholar 

    79.
    Bousalem, M. et al. Evidence of diploidy in the wild Amerindian yam, a putative progenitor of the endangered species dioscorea trifida (Dioscoreaceae). Genome 53, 371–383 (2010).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    80.
    Nascimento, W. F., Rodrigues, J. F., Koehler, S., Gepts, P. & Veasey, E. A. Spatially structured genetic diversity of the Amerindian yam (Dioscorea trifida L.) assessed by SSR and ISSR markers in Southern Brazil. Genet. Resour. Crop Evol. 60, 2405–2420 (2013).
    Article  Google Scholar 

    81.
    Rached, L. B., de Vizcarrondo, C. A., Rincón, A. M. & Padilla, F. Evaluación de harinas y almidones de mapuey (Dioscorea trifida), variedades blanco y morado. Arch. Latinoam. Nutr. 56, 2 (2006).
    Google Scholar 

    82.
    Morada, D. E. S. & Yáñez, J. A. Antocianinas, polifenoles, actividad anti-oxidante de sachapapa morada (Dioscorea trifida L.) y evaluación de lipoperoxidación en suero humano. Rev. la Soc. Química del Perú 76, 61–72 (2010).
    Google Scholar 

    83.
    Mollica, J. Q. et al. Anti-inflammatory activity of American yam Dioscorea trifida L.f. in food allergy induced by ovalbumin in mice. J. Funct. Foods 5, 1975–1984 (2013).
    Article  CAS  Google Scholar 

    84.
    Beyerlein, P., Mendes, A. M. S. & Pereira, H. S. Floral phenology, seed germination and hybrid plants of the amerindian yam (Dioscorea trifida). Acta Amaz. 49, 167–172 (2019).
    Article  Google Scholar 

    85.
    N’Danikou, S., Achigan-dako, E. G. & Wong, J. L. G. Eliciting local values of wild edible plants in southern Bénin to identify priority species for conservation. Econ. Bot. 65, 381–395 (2011).
    Article  Google Scholar  More