1.
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637â669 (2006).
Article Google ScholarÂ
2.
Pecl, G. T. et al. Biodiversity redistribution under climate: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Article CAS Google ScholarÂ
3.
Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883â894 (2008).
CAS Article Google ScholarÂ
4.
Feary, D. A. et al. Latitudinal shift in coral reef fishes: why some species do other do not shift. Fish. Fish. (Oxf.) 15, 593â615 (2013).
Article Google ScholarÂ
5.
Nakamura, Y., Feary, D. A., Kanda, M. & Yamaoka, K. Tropical fishes dominate temperate reef fish communities within western Japan. PLoS ONE 8, e81107 (2013).
Article CAS Google ScholarÂ
6.
Peers, M. J. L., Wehtje, M., Thornton, D. H. & Murray, D. L. Prey switching as a means of enhancing persistence in predators at the trailing southern edge. Glob. Change Biol. 20, 1126â1135 (2014).
Article Google ScholarÂ
7.
Verges, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791â13796 (2016).
CAS Article Google ScholarÂ
8.
Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddo, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719â731 (2009).
Article Google ScholarÂ
9.
Johnson, C. R., Ling, S. D., Ross, J., Shepherd, S. & Miller, K. Establishment of the Long-Spined Sea Urchin (Centrostephanus rodgersii) in Tasmania: First Assessment of Potential Threats to Fisheries. FRDC Final Report, Project No. 2001/044 (School of Zoology & Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, 2005).
10.
Beck, H. J., Feary, D. A., Nakamura, Y. & Booth, D. J. Temperate macroalgae impacts tropical fish recruitment at forefront of range expansion. Coral Reefs 36, 639â651 (2017).
Article Google ScholarÂ
11.
Nagelkerken, I. & Connell, S. D. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc. Natl Acad. Sci. USA 112, 13272â13277 (2015).
CAS Article Google ScholarÂ
12.
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169â172 (2016).
CAS Article Google ScholarÂ
13.
Connell, S. D. et al. The duality of ocean acidification as a resource and a stressor. Ecology 99, 1005â1010 (2018).
Article Google ScholarÂ
14.
Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Russell, B. D. & Connell, S. D. Species interactions drive fish biodiversity loss in a high-CO2 world. Curr. Biol. 27, 2177â2184 (2017).
CAS Article Google ScholarÂ
15.
Sunday, J. M. et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81â85 (2017).
CAS Article Google ScholarÂ
16.
Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Proc. R. Soc. B 368, 20120442 (2013).
Google ScholarÂ
17.
Russell, B. D. et al. Future seagrass beds: can increased productivity lead to increased carbon storage? Mar. Pollut. Bull. 73, 463â469 (2013).
CAS Article Google ScholarÂ
18.
Palacios, S. L. & Zimmerman, R. C. Response of ellgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344, 1â13 (2007).
Article Google ScholarÂ
19.
Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob. Change Biol. 17, 2488â2497 (2011).
Article Google ScholarÂ
20.
Linares, C. et al. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc. R. Soc. B Biol. Sci. 282, 20150587 (2015).
CAS Article Google ScholarÂ
21.
Russell, B. D., Thompson, J. A. I., Falkenberg, L. J. & Connell, S. D. Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob. Change Biol. 15, 2153â2162 (2009).
Article Google ScholarÂ
22.
Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B Biol. Sci. 277, 1409â1415 (2010).
Article Google ScholarÂ
23.
Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156â162 (2011).
Article Google ScholarÂ
24.
Johnson, M. D., Comeau, S., Lantz, C. A. & Smith, J. E. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages. Coral Reefs 36, 1059â1070 (2017).
Article Google ScholarÂ
25.
Kroeker, K. J., Kordas, R. L. & Harley, D. G. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).
Article CAS Google ScholarÂ
26.
Goldenberg, S. U., Nagelkerken, I., Ferreira, C. M., Ullah, H. & Connell, S. D. Boosted food web productivity through ocean acidification collapses under warming. Glob. Change Biol. 23, 4177â4184 (2017).
Article Google ScholarÂ
27.
Wernberg, T., Smale, D. A. & Thomsen, M. S. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob. Change Biol. 18, 1491â1498 (2012).
Article Google ScholarÂ
28.
Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515â14520 (2011).
CAS Article Google ScholarÂ
29.
Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Change 8, 229â233 (2018).
Article Google ScholarÂ
30.
Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513â515 (2015).
Article Google ScholarÂ
31.
Widdicombe, S., Dupont, S. & Thorndyke, M. Laboratory Experiments and Benthic Mesocosm Studies. Guide for Best Practices in Ocean Acidification Research and Data Reporting (EPOCA, 2008).
32.
Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).
CAS Article Google ScholarÂ
33.
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37â42 (2003).
CAS Article Google ScholarÂ
34.
Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the worldâs marine ecosystems. Science 328, 1523â1528 (2010).
CAS Article Google ScholarÂ
35.
Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225â6245 (2013).
Article Google ScholarÂ
36.
Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Phil. Trans. R. Soc. B 370, 20130269 (2015).
Article Google ScholarÂ
37.
Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acidâbase and ion-regulatory abilities. Mar. Pollut. Bull. 73, 470â484 (2013).
CAS Article Google ScholarÂ
38.
Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L. & Beretta, G. Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102â114 (2007).
Article Google ScholarÂ
39.
Nagelkerken, I., Russell, B. D., Gillanders, B. M. & Connell, S. D. Ocean acidification alters fish populations indirectly through habitat modification. Nat. Clim. Change 6, 89â93 (2016).
CAS Article Google ScholarÂ
40.
Hall-Spencer, J. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96â99 (2008).
CAS Article Google ScholarÂ
41.
Kroeker, K., Gambi, M. C. & Micheli, F. Community dynamics and ecosystem simplification in a high-CO2 ocean. Proc. Natl Acad. Sci. USA 110, 12721â12726 (2013).
CAS Article Google ScholarÂ
42.
Enochs, I. C. et al. Shift from coral to macroalgae dominance on volcanically acidified reef. Nat. Clim. Change 5, 1083â1088 (2015).
CAS Article Google ScholarÂ
43.
Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271â279 (2009).
Article Google ScholarÂ
44.
Perry, A. L., Low, O. L., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912â1915 (2005).
CAS Article Google ScholarÂ
45.
Steneck, R. S. Herbivory on coral reefs: a synthesis. In Proc. 6th International Coral Reef Symposium. Vol. 1, 37â49 (1988).
46.
Purcell, S. W. & Bellwood, D. R. A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). Environ. Biol. Fishes 37, 139â159 (1993).
Article Google ScholarÂ
47.
Curley, B. G., Gillanders, B. M. & Kingsford, M. J. Spatial and habitat related patterns of temperate reef fish assemblages: implications for the design of marine protected areas. Mar. Freshw. Res. 53, 1197â1210 (2002).
Article Google ScholarÂ
48.
Coen, L. D., Luckenbach, M. W. & Breitburg, D. L. The role of oyster reef as essential fish habitat: a review of current knowledge and some new perspectives. Am. Fish. Soc. Symp. 22, 438â454 (1999).
Google ScholarÂ
49.
Lenihan, H. S. et al. Cascading of habitat degradation: oyster reefs invaded by refugee fishes escaping stress. Ecol. Appl. 11, 764â782 (2001).
Article Google ScholarÂ
50.
Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629â637 (2001).
CAS Article Google ScholarÂ
51.
Thomas, Y., Cassou, C., Gernez, P. & Pouvreau, S. Oysters as sentinels of climatic variability and climatic change in coastal ecosystems. Environ. Res. Lett. 13, 104009 (2018).
Article Google ScholarÂ
52.
Alleway, H. K. & Connell, S. D. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory. Conserv. Biol. 29, 795â804 (2015).
Article Google ScholarÂ
53.
Filbee-Dexter, K. & Wernberg, T. Rise of turfs: a new battlefront for globally declining kelp forests. BioScience 168, 64â76 (2018).
Article Google ScholarÂ
54.
OâBrien, J. M. & Scheibling, R. E. Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts. Mar. Ecol. Prog. Ser. 599, 1â17 (2018).
Article Google ScholarÂ
55.
Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).
Article Google ScholarÂ
56.
Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70â78 (2016).
Article Google ScholarÂ
57.
Smith, S. M., Fox, R. J., Booth, D. J. & Donelson, J. M. âStick with your kind, or hang with locals?â Implications of shoaling strategy for tropical reef fish on a range-expansion frontline. Glob. Change Biol. 24, 1663â1672 (2018).
Article Google ScholarÂ
58.
Kingsbury, K. M., Gillanders, B. M., Booth, D. J., Coni, E. O. C. & Nagelkerken, I. Range-extending coral reef fishes trade-off growth for maintenance of body condition in cooler waters. Sci. Total Environ. 703, 134598 (2019).
Article CAS Google ScholarÂ
59.
Kingsbury, K. M., Gillanders, B. M., Booth, D. J. & Nagelkerken, I. Trophic niche segregation allows range-extending coral reef fishes to co-exist with temperate species under climate change. Glob. Change Biol. 26, 721â733 (2020).
Article Google ScholarÂ
60.
Foo, S. A., Dworjanyn, S. A., Poore, A. G. B. & Byrne, M. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS ONE 7, e42497 (2012).
CAS Article Google ScholarÂ
61.
Kelly, M. W., Padilla-Gamino, J. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrus purpuratus. Glob. Change Biol. 19, 2536â2546 (2013).
Article Google ScholarÂ
62.
Uthicke, S. et al. Little evidence of adaptation potential to ocean acidification at a CO2 vent. Ecol. Evol. 9, 10004â10016 (2019).
Article Google ScholarÂ
63.
Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine âwinnersâ and âlosersâ. J. Exp. Biol. 213, 912â920 (2010).
CAS Article Google ScholarÂ
64.
Siikayuopio, A. I., Mortesen, A., Dale, T. & Foss, A. Effects of carbon dioxide exposure on feed intake and gonad growth in green sea urchin, Stringylicentritus droebachiensis. Aquaculture 266, 97â101 (2007).
Article CAS Google ScholarÂ
65.
Dworjanyn, S. A. & Byrne, M. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Proc. R. Soc. B Biol. Sci. 285, 20172684 (2018).
Article CAS Google ScholarÂ
66.
Miles, H., Widdicombe, S., Spicer, J. I. & Hall-Spencer, J. Effects of anthropogenic seawater acidification on acidâbase balance in the sea urchin Psammechinus miliaris. Mar. Pollut. Bull. 54, 89â96 (2007).
CAS Article Google ScholarÂ
67.
Spicer, J. I., Widdicombe, S., Needham, H. R. & Berge, J. A. Impact of CO2-acidified seawater on the extracellular acidâbase balance of the northern sea urchin Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 407, 19â25 (2011).
CAS Article Google ScholarÂ
68.
Uthicke, S. et al. Echinometra sea urchins acclimatized to elevated pCO2 at volcanic vents outperform those under present-day pCO2 conditions. Glob. Change Biol. 22, 2451â2461 (2016).
Article Google ScholarÂ
69.
Wernberg, T. et al. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett. 13, 685â694 (2010).
Article Google ScholarÂ
70.
Simonson, E. J., Metaxas, A. & Scheibling, R. E. Kelp in hot water: effects of warming seawater temperature on kelp quality as a food source and settlement substrate. Mar. Ecol. Prog. Ser. 537, 105â119 (2015).
CAS Article Google ScholarÂ
71.
Ross, P. M., Parker, L. & Byrne, M. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J. Mar. Sci. 73, 537â549 (2016).
Article Google ScholarÂ
72.
Wong, J. M., Johnson, K. M., Kelly, M. W. & Hofmann, G. E. Transcriptomics reveals transgenerational effects in purple sea urchin embryos: adult acclimation to upwelling conditions alters the response of their progeny to differential pCO2 levels. Mol. Ecol. 27, 1120â1137 (2018).
CAS Article Google ScholarÂ
73.
Clark, M. S. et al. Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris. Sci. Rep. 9, 952 (2019).
Article CAS Google ScholarÂ
74.
Ghedini, G., Russell, B. D. & Connell, S. D. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol. Lett. 18, 182â187 (2015).
Article Google ScholarÂ
75.
Munday, P. L., Rummer, J. L. & Baumann, H. Adaptation and evolutionary responses to high CO2. Fish. Physiol. 37, 369â395 (2019).
Article Google ScholarÂ
76.
Miller, G. M., Watson, S. A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat. Clim. Change 2, 858â861 (2012).
CAS Article Google ScholarÂ
77.
Allan, B. J. M., Miller, G. M., McCormick, M. I., Domenici, P. & Munday, P. L. Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proc. R. Soc. B Biol. Sci. 281, 20132179 (2014).
Article Google ScholarÂ
78.
Welch, M., Watson, S., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effect of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nat. Clim. Change 4, 1086â1089 (2014).
CAS Article Google ScholarÂ
79.
Rummer, J. L. & Munday, P. L. Climate change and the evolution of reef fishes: past and future. Fish. Fish. (Oxf.) 18, 22â39 (2017).
Article Google ScholarÂ
80.
Connell, S. D. & Irving, A. D. Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J. Biogeogr. 35, 1608â1621 (2008).
Article Google ScholarÂ
81.
Pecorino, D., Lamare, M. D. & Barker, M. F. Growth, morphometrics and size structure of the Diamatidae sea urchin Centrostephanus rodgersii in northern New Zealand. Mar. Freshw. Res. 63, 624â634 (2012).
Article Google ScholarÂ
82.
Brinkman, T. J. & Smith, A. M. E. Effects of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand. Mar. Freshw. Res. 66, 360â370 (2015).
Article Google ScholarÂ
83.
Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 596, 82â90 (2017).
Article CAS Google ScholarÂ
84.
Booth, D. J., Beretta, G. A., Brown, L. & Figueira, W. F. Predicting success of range-expanding coral reef fish in temperate habitats using fish in temperatureâabundance relationships. Front. Mar. Sci. 5, 31 (2018).
Article Google ScholarÂ
85.
Ridgeway, K. R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613 (2007).
Google ScholarÂ
86.
Hobday, A. J. & Pecl, G. T. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415â425 (2013).
Article Google ScholarÂ
87.
Figueira, W. F. & Booth, D. J. Increasing ocean temperatures allow tropical fishes to survive overwinter in temperate waters. Glob. Change Biol. 16, 506â516 (2010).
Article Google ScholarÂ
88.
McLeod, I. et al. Habitat value of Sydney rock oyster (Saccostrea glomerata) reefs on soft sediments. Mar. Freshw. Res. 71, 771â781 (2019).
Article Google ScholarÂ
89.
Gillies, C. L. et al. Australian shellfish ecosystems: past distribution, current status and future direction. PLoS ONE 13, e0190914 (2018).
Article CAS Google ScholarÂ
90.
Minte-Vera, C. V., Moura, R. L. & Francini-Filho, R. B. Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar. Ecol. Prog. Ser. 367, 283â293 (2008).
Article Google ScholarÂ
91.
Fulton, C. J., Noble, M. N., Radford, B., Gallen, C. & Harasti, D. Microhabitat selectivity underpins regional indicators of fish abundance and replenishment. Ecol. Indic. 70, 222â231 (2016).
Article Google ScholarÂ
92.
Choat, J. H. & Clements, K. D. Diet in Odacid and Aplodactylid fishes from Australia and New Zealand. Aust. J. Mar. Freshw. Res. 43, 1451â1459 (1992).
Article Google ScholarÂ
93.
Clements, K. D. & Choat, J. H. Comparison of herbivory in the closely-related marine fish genera Girella and Kyphosus. Mar. Biol. 127, 579â586 (1997).
Article Google ScholarÂ
94.
Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853â866 (2007).
Article Google ScholarÂ
95.
Zarco-Perello, S., Wemberg, T., Langlois, T. J. & Vanderklift, M. A. Tropicalization strengthens consumer pressure on habitat-forming seaweeds. Sci. Rep. 7, 820 (2017).
Article CAS Google ScholarÂ
96.
Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511â525 (2003).
Article Google ScholarÂ
97.
Paliy, O. & Shankar, V. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032â1057 (2016).
CAS Article Google ScholarÂ
98.
Hemingson, C. R. & Bellwood, D. R. Biogeographic patterns in major marine realms: function not taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography 41, 174â182 (2018).
Article Google ScholarÂ
99.
McClanahan, T. R. & Kaunda-Arara, B. Fishery recovery in a coral-reef marine park and its effect on the adjacent fishery. Conserv. Biol. 10, 1187â1199 (1996).
Article Google ScholarÂ
100.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32â46 (2001).
Google ScholarÂ
101.
Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78â82 (2013).
Article Google ScholarÂ
102.
Johnson, C. R. et al. Climate change cascades: shifts in oceanography, speciesâ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17â32 (2011).
Article Google ScholarÂ
103.
Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).
104.
Jax, K. Thresholds, tipping points and limits. In OpenNESS Ecosystem Services Reference Book (eds Potschin, M. & Jax, K.) (2016). More