More stories

  • in

    Assembling mitogenome of Himalayan Black Bear (U. t. laniger) from low depth reads and its application in drawing phylogenetic inferences

    1.
    Garshelis, D. & Steinmetz, R. Ursus thibetanus. The IUCN Red List of Threatened Species 2016. https://dx.doi.org/Downloaded on 17 January 2020 (2016).
    2.
    Parter, S. H. The Book of Indian Animal (Bombay Natural History Society and Oxford University Press, India, 1980).
    Google Scholar 

    3.
    Sathyakumar, S. & Choudhury, A. Distribution and status of asiatic black bear in India. J. Bomb. Nat. Hist. Soci. 104, 316–323 (2007).
    Google Scholar 

    4.
    Pocock, R. I. The Fauna of British India, Including Ceylon and Burma, Mammalia Vol. 2 (Taylor and Francis, London, 1941).
    Google Scholar 

    5.
    Sathyakumar, S., Kaul, R., Ashraf, N. V. K., Mookerjee, A. & Menon, V. National Bear Conservation and Welfare Action Plan (Ministry of Environment and Forest, Wildlife Institute of India and Wildlife Trust of India, 2012).
    Google Scholar 

    6.
    Charoo, S.A., Sharma, L.K. & Sathyakumar, S. Asiatic Black Bear—Human Conflicts around Dachigam National Park, Kashmir. Technical Report. Wildlife Institute of India, Dehradun. 29 (2009).

    7.
    Hou, W. R. et al. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis). Int. J. Biol. Sci. 3, 85–90 (2007).
    CAS  Article  Google Scholar 

    8.
    Yu, L. et al. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evol. Biol. 7, 198 (2007).
    Article  Google Scholar 

    9.
    Hwang, D. S. et al. A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). Mitochondrial. DNA 19, 418–429 (2008).
    CAS  PubMed  Google Scholar 

    10.
    Kadariya, R. et al. High genetic diversity and distinct ancient lineage of Asiatic black bears revealed by non-invasive surveys in the Annapurna Conservation Area Nepal. PLoS ONE 13, 0207622 (2018).
    Google Scholar 

    11.
    Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).
    CAS  Article  Google Scholar 

    12.
    Ekblom, R. & Galindo, J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb) 107, 1–15 (2011).
    CAS  Article  Google Scholar 

    13.
    Edwards, S. V., Shultz, A. J. & Campbell-Staton, S. C. Next-generation sequencing and the expanding domain of phylogeography. Folia Zool. 64, 187–206 (2015).
    Article  Google Scholar 

    14.
    Natesh, M. et al. Conservation priorities for endangered Indian tigers through a genomic lens. Sci. Rep. 7, 9614 (2017).
    ADS  Article  Google Scholar 

    15.
    Song, N., Cai, W. & Li, H. Deep-level phylogeny of Cicadomorpha inferred from mitochondrial genomes sequenced by NGS. Sci. Rep. 7, 10429 (2017).
    ADS  Article  Google Scholar 

    16.
    Delisle, I. & Strobeck, C. Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears. Mol. Biol. Evol. 19, 357–361 (2002).
    CAS  Article  Google Scholar 

    17.
    Van Dijk, E., Auger, H., Jaszczyszyn, Y. & Thermes, C. T. years of next-generation sequencing technology. Trends Genet. 30(9), 418–426 (2014).
    Article  Google Scholar 

    18.
    Heather, J. & Chain, B. The sequence of sequencers: the history of sequencing DNA. Genomics 107(1), 1–8 (2016).
    CAS  Article  Google Scholar 

    19.
    Wang, S., Wang, B., Wang, F. & Wu, Z. Complete mitochondrial genome of Gallus domesticus (Galliformes: Phasianidae). Mitochondrial. DNA A DNA Mapp. Seq. Anal. 27(2), 978–979 (2016).
    Article  Google Scholar 

    20.
    Zhou, M., Yu, J., Li, J., Ouyang, B. & Yang, J. The complete mitochondrial genome of Budorcas taxicolor tibetana (Artiodactyla: Bovidae) and comparison with other Caprinae species: Insight into the phylogeny of the genus Budorcas Int. J. Biol. Macromol. 121, 223–232 (2019).
    CAS  Article  Google Scholar 

    21.
    Kamalakkannan, R. et al. The complete mitochondrial genome of Indian gaur, Bos gaurus and its phylogenetic implications. Sci. Rep. 10, 11936. https://doi.org/10.1038/s41598-020-68724-6 (2020).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    22.
    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucleic Acids Res. 41, 129 (2013).
    Article  Google Scholar 

    23.
    Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).
    CAS  Article  Google Scholar 

    24.
    Feng, H., Feng, C., Wang, L. & Huang, Y. Complete mitochondrial genome of the golden takin (Budorcas taxicolor bedfordi). Mitochondrial. DNA 1, 186–188 (2016).
    Article  Google Scholar 

    25.
    Kumar, A. et al. Sequencing and characterization of the complete mitochondrial genome of Mishmi takin (Budorcas taxi color taxicolor) and comparison with the other Caprinae species. Int. J. Biol. Macromol. 137, 87–94 (2019).
    CAS  Article  Google Scholar 

    26.
    Sarvani, R. K. et al. Characterization of the complete mitogenome of Indian Mouse Deer, Moschiola indica (Artiodactyla: Tragulidae) and its evolutionary significance. Sci. Rep. 8, 2697 (2018).
    ADS  Article  Google Scholar 

    27.
    Lan, T. et al. Evolutionary history of enigmatic bears in the Tibetan Plateau-Himalaya region and the identity of the yeti. Proc. R. Soc. B 284, 20171804 (2017).
    Article  Google Scholar 

    28.
    Jiagi, W. et al. Phylogeographic and demographic analysis of the Asian Black Bear (Ursus thibetanus) based on Mitochondrial DNA. PLoS ONE 10, e0136398 (2015).
    Article  Google Scholar 

    29.
    Timmermans, M. J. et al. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 38, e197 (2010).
    CAS  Article  Google Scholar 

    30.
    Cabrera-Brandt, M. A. & Gaitan-Espitia, J. D. Phylogenetic analysis of the complete mitogenome sequence of the raspberry weevil Aegorhinus superciliosus (Coleoptera: Curculionidae), supports monophyly of the tribe Aterpini. Gene 571, 205–211 (2015).
    CAS  Article  Google Scholar 

    31.
    Grant, J. R. & Stothard, P. The CGView Server: a comparative genomics tool for circular 423 genomes. Nucleic Acids Res. 36, 181–184 (2008).
    Article  Google Scholar 

    32.
    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
    CAS  Article  Google Scholar 

    33.
    Perna, N. T. & Kocher, T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41, 353–358 (1995).
    ADS  CAS  Article  Google Scholar 

    34.
    Beier, S., Thiel, T., Munch, T., Scholz, U. & Mascher, M. MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585 (2017).
    CAS  Article  Google Scholar 

    35.
    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 36, 573–580 (1999).
    Article  Google Scholar 

    36.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. Mega X: molecular evolutionary genetics analysis across computing platform. Mol. Biol. Evol. 35, 1547–1549 (2018).
    CAS  Article  Google Scholar 

    37.
    Mattei, E., Pietrosanto, M., Ferree, F. & Citterich, M. H. Web-Beagle: a web server for the alignment of RNA secondary structures. Nuc Acids Res. 43, 493–497 (2015).
    Article  Google Scholar 

    38.
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 1–5 (2018).
    Article  Google Scholar 

    39.
    Nylander, J.A.A. MrModelTest Version 2. Programme Distributed by the Author. Evolutionary Biology Centre, Uppsala University (2004).

    40.
    Wayne, R. K., Van, V. B. & O’Brien, S. J. Molecular distance and divergence time in carnivores and primates. Mol. Biol. Evol. 8, 297–319 (1991).
    CAS  PubMed  Google Scholar 

    41.
    Rambaut, A. FigTree, Version1.4.4. Available at: https://tree.bio.ed.ac.uk/software/figtree/. (2018). More

  • in

    Effects of anthropogenic activities on microplastics in deposit-feeders (Diptera: Chironomidae) in an urban river of Taiwan

    1.
    Arthur, C., Baker, J. & Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. Group 530 (2009).
    2.
    Wagner, M. & Lambert, S. Freshwater Microplastics (Springer International Publishing, Cham, 2018). https://doi.org/10.1007/978-3-319-61615-5.
    Google Scholar 

    3.
    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Zhao, S., Zhu, L. & Li, D. Microplastic in three urban estuaries, China. Environ. Pollut. 206, 597–604 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Kunz, A., Walther, B. A., Löwemark, L. & Lee, Y. C. Distribution and quantity of microplastic on sandy beaches along the northern coast of Taiwan. Mar. Pollut. Bull. 111, 126–135 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, 1–15 (2014).
    Google Scholar 

    8.
    Van Cauwenberghe, L., Vanreusel, A., Mees, J. & Janssen, C. R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499 (2013).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    9.
    Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Futur. 2, 315–320 (2014).
    ADS  Article  Google Scholar 

    10.
    Dris, R. et al. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 12, 592–599 (2015).
    CAS  Article  Google Scholar 

    11.
    Wetherbee, G. A., Baldwin, A. K. & Ranville, J. F. It is raining plastic. U.S. Geological Survey Open-File Report 2019-1048 (2019). https://doi.org/10.3133/ofr20191048.

    12.
    Barboza, L. G. A. & Gimenez, B. C. G. Microplastics in the marine environment: Current trends and future perspectives. Mar. Pollut. Bull. 97, 5–12 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Yonkos, L. T., Friedel, E. A., Perez-Reyes, A. C., Ghosal, S. & Arthur, C. D. Microplastics in four estuarine rivers in the chesapeake bay, U.S.A. Environ. Sci. Technol. 48, 14195–14202 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Browne, M. A. et al. Accumulation of microplastic on shorelines woldwide: sources and sinks—Environmental science and technology (ACS Publications). Environ. Sci. Technol. 45, 9175–9179. https://doi.org/10.1021/es201811s (2011).
    ADS  CAS  Article  Google Scholar 

    15.
    Eriksen, M. et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 77, 177–182 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Nel, H. A., Dalu, T. & Wasserman, R. J. Sinks and sources: Assessing microplastic abundance in river sediment and deposit feeders in an Austral temperate urban river system. Sci. Total Environ. 612, 950–956 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Wang, W., Ndungu, A. W., Li, Z. & Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 575, 1369–1374 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    19.
    Klein, S., Worch, E. & Knepper, T. P. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 49, 6070–6076 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 764–768 (2015).
    ADS  Article  CAS  Google Scholar 

    21.
    Browne, M. A., Galloway, T. S. & Thompson, R. C. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 44, 3404–3409 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533 (2019).
    CAS  Article  Google Scholar 

    23.
    Bonanno, G. & Orlando-Bonaca, M. Perspectives on using marine species as bioindicators of plastic pollution. Mar. Pollut. Bull. 137, 209–221 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Akindele, E. O., Ehlers, S. M. & Koop, J. H. E. First empirical study of freshwater microplastics in West Africa using gastropods from Nigeria as bioindicators. Limnologica 78, 125708 (2019).
    CAS  Article  Google Scholar 

    25.
    Su, L. et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 234, 347–355 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Dalu, T. et al. Variation partitioning of benthic diatom community matrices: Effects of multiple variables on benthic diatom communities in an Austral temperate river system. Sci. Total Environ. 601–602, 73–82 (2017).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    27.
    Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. 7, 1–9 (2017).
    Article  CAS  Google Scholar 

    28.
    Silva, C. J. M., Silva, A. L. P., Gravato, C. & Pestana, J. L. T. Ingestion of small-sized and irregularly shaped polyethylene microplastics affect Chironomusriparius life-history traits. Sci. Total Environ. 672, 862–868 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Effects of polyethylene microplastics on the acute toxicity of a synthetic pyrethroid to midge larvae (Chironomustepperi) in synthetic and river water. Sci. Total Environ. 671, 971–975 (2019).
    ADS  CAS  Article  Google Scholar 

    30.
    Windsor, F. M., Tilley, R. M., Tyler, C. R. & Ormerod, S. J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 646, 68–74 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 236, 425–431 (2018).
    CAS  PubMed  Article  Google Scholar 

    32.
    Open Government Data License. National Development Council. https://data.gov.tw/en.

    33.
    Central Weather Bureau Observation Data Inquiry System. https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp.

    34.
    Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 3rd edn. (Kendall/Hunt Pub. Co., Dubuque, 1996).
    Google Scholar 

    35.
    Löder, M. G. J. & Gerdts, G. Methodology used for the detection and identification of microplastics—A critical appraisal. In Marine Anthropogenic Litter (eds Bergmann, M. et al.) 201–227 (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-16510-3_8.
    Google Scholar 

    36.
    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Li, J. et al. Microplastics in mussels along the coastal waters of China. Environ. Pollut. 214, 177–184 (2016).
    CAS  PubMed  Article  Google Scholar 

    38.
    Taiwan Map Store. National Land Surveying and Mapping Center. https://whgis.nlsc.gov.tw/.

    39.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, New York, 2002).
    Google Scholar 

    40.
    Hurvich, C. M. & Tsai, C. L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).
    MathSciNet  MATH  Article  Google Scholar 

    41.
    R Core Team. R: A Language and Environment for Statistical Computing (2018).

    42.
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Article  Google Scholar 

    43.
    Rizopoulos, D. GLMMadaptive: Generalized linear mixed models using adaptive gaussian quadrature (2020).

    44.
    Bartoń, K. MuMIn: Multi-model inference (2019).

    45.
    Lüdecke, D., Makowski, D. & Waggoner, P. performance: Assessment of regression models performance (2019).

    46.
    Lechner, A. et al. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Pollut. 188, 177–181 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Moore, C. J., Lattin, G. L. & Zellers, A. F. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Rev. Gestão Costeira Integr. 11, 65–73 (2011).
    Article  Google Scholar 

    48.
    Lechner, A. & Ramler, D. The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation. Environ. Pollut. 200, 159–160 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    von Schuckmann, K., Brandt, P. & Eden, C. Generation of tropical instability waves in the Atlantic Ocean. J. Geophys. Res. Oceans 113, 539–550 (2008).
    Google Scholar 

    50.
    Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    51.
    Dris, R., Gasperi, J. & Tassin, B. Sources and fate of microplastics in urban areas: A focus on Paris megacity. In Freshwater Microplastics (eds Wagner, M. & Lambert, S.) 69–83 (Springer International Publishing, Cham, 2018).
    Google Scholar 

    52.
    Siegfried, M., Koelmans, A. A., Besseling, E. & Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 127, 249–257 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Enforcement Rule for Sewerage Law. Construction and planning agency ministry of the interior. https://www.cpami.gov.tw/index.php?option=com_content&view=frontpage&Itemid=36 (2007).

    54.
    Su, L. et al. Microplastics in Taihu Lake, China. Environ. Pollut. 216, 711–719 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Mani, T., Hauk, A., Walter, U. & Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 5, 1–7 (2015).
    Article  CAS  Google Scholar 

    56.
    Fischer, E. K., Paglialonga, L., Czech, E. & Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 213, 648–657 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Collignon, A. et al. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 64, 861–864 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Rillig, M. C. Microplastic in terrestrial ecosystems and the soil?. Environ. Sci. Technol. 46, 6453–6454 (2012).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Rech, S. et al. Rivers as a source of marine litter—A study from the SE Pacific. Mar. Pollut. Bull. 82, 66–75 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Habib, R. Z., Thiemann, T. & AlKendi, R. Microplastics and wastewater treatment plants—A review. J. Water. Resour. Prot. 12, 1–35 (2020).
    CAS  Article  Google Scholar 

    61.
    Qi, Y. et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 645, 1048–1056 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Clayton, G. W. et al. Polymer seed coating of early- and late-fall-seeded herbicide-tolerant canola (Brassicanapus L.) cultivars. Can. J. Plant Sci. 84, 971–979 (2004).
    Article  Google Scholar 

    63.
    Nizzetto, L., Futter, M. & Langaas, S. Are agricultural soils dumps for microplastics of urban origin?. Environ. Sci. Technol. 50, 10777–10779 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Ristola, T., Pellinen, J., Ruokolainen, M., Kostamo, A. & Kukkonen, J. V. K. Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomusriparius). Environ. Toxicol. Chem. 18, 756 (1999).
    CAS  Article  Google Scholar 

    65.
    Conrad, O. Module Channel Network and Drainage Basins (2003)

    66.
    Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015).
    ADS  Article  Google Scholar  More

  • in

    Metabarcoding profiling of microbial diversity associated with trout fish farming

    General microbial profile
    For the 16S libraries, the six samples recorded 1,054,909 reads, with a length between 51 to 533 bp and an average of 458. In general, the number of clustered sequences was 652,899 (61.89%), while the number of replicated reads was 140,196 (13.29%). The number of classified sequences was 1,047,271 (99.28%) while only 7,155 sequences exhibited ‘unassigned’ (0.68%). The quality control of classification, in this case, the alignment similarity, was between 75 and 100%, while the majority exceeded 80%. Based on the 16S rRNA dataset, prokaryotic OTU identification pipeline,  > 99% of the detected OTUs belonged to the bacteria domain. A total of 1318 species belonging to 17 phyla were detected in all samples. The most abundant were Proteobacteria (75.57%), Bacteroidetes (14.40%), Actinobacteria (0.94%), Verrucomicrobia (0.62%), and Cyanobacteria (0.25%).
    For the ITS2 libraries, the six samples recorded 2,193,552 reads, the assembled contigs length between 201 and 482 with an average of 292. In general, the number of generated consensus sequences ranged between seven and 47 per sample. In total, 191 (~ 75%) were successfully identified with pairwise identity ranging from 82 to 100%, while 63 sequences (~ 25%) hit an uncultured species (Supplementary Fig. 1). Based on the customized eukaryote OTU identification pipeline, 118 out of 233 were known species, ~ 55% of the identified OTUs belonged to the kingdom Fungi, ~ 33% belonged to the kingdom Plantae, and ~ 12% belonged to the kingdom Animalia. Due to the high diversity among the detected OTUs, fungi were grouped by their major function rather than their taxonomical position. The most represented Fungi group was the plant pathogens (~ 45%), followed by mushrooms/yeasts (~ 28%), volatile producers (~ 11%), fish pathogens (~ 8%), and human pathogens (~ eight%) of the total fungal OTUs (Fig. 1).
    Figure 1

    Microbial diversity detected by the metabarcoding analysis. The relative abundance of identified bacterial OTUs among the six water samples, where top abundant bacterial phyla are written in bold (A). The histogram plot shows the identified eukaryotic groups per domain (Planta, Fungi, or Animalia). The target group in the eukaryotic metabarcoding analysis was the fungal group distributed according to their prominent role and function (BBMerge–accurate paired shotgun read merging via overlap).

    Full size image

    Comparative metabarcoding analysis
    Microbial diversity indices
    For the 16S, the average alpha-diversity was estimated for each source; P-source showed a lower alpha-diversity than I-source. For 16S rRNA, the Simpson index values of the P-sources were lower than the I-sources (Fig. 2). Specifically, in samples from location N compared to the rest of the samples (0.86 for N-I and 0.49 for N-P). For B and G locations, D-index was 0.64 (B-I), 0.54 (B-P), 0.79 (G-I), and 0.66 (G-P). Based on sample locations, beta-diversity values of location G were the highest, while location B was the lowest. The G-I showed the highest beta-diversity for inter-location values, followed by N-P, N-I, G-P, B-I, and B-P (Fig. 2). This might indicate that the changes in a pond diversity are contributed by sources other than the inflow-water (e.g., transferred by juvenile fish or fingerlings, or the introduction of fish feeds).
    Figure 2

    Alpha and beta-diversity of identified bacterial communities are estimated according to the Simpson diversity index and Bray Curtis, respectively. The three locations (N, G, and B) from two different sources, the inflow- (I) and pond-water (P), are shown.

    Full size image

    Species occurrences and distributions
    The identified species were detected in all locations (common) or exclusively detected in (a) either I-source or P-source samples, (b) exclusively found in one location regardless of the water source, (c) uniquely recorded in one sample.
    A total of 1318 bacterial species were delimited. In which 1074 species were identified from I-sources, with the highest number was found in B-I (774), followed by N-I (669) and G-I (548). The number of detected species from P-sources was 1006 across the three locations. The highest number of species was found in B-P (882), followed by N-P (553) and G-P (415) locations. The highest number of species was 1081 from location B (321 were unique), followed by 804 species from location N (124 were unique) and 665 species from location G (94 were unique), regardless of the water source (i.e., species detected in one or both samples of each location). Locations N and B had 208 common species, while locations B and G shared 99 species, and locations N and G shared only 19 species. A total of 453 species were common among the three locations, of which 442 were common regardless of the water source.
    Out of the 453 common species, six species were exclusively detected from I-sources samples. Among the 442, the highest number of species was 415 from B-I (19 unique), followed by 399 from N-I (five unique) and 383 from G-I (five unique). Forty-one species were common between N-I and B-I, 25 between B-I and G-I, and 22 between N-I and G-I samples. Three hundred thirty-one species were common among samples N-I, B-I, and G-I. The number of the exclusively detected species in P-sources samples was five from the three locations. Among 442 species, the highest number of species was 424 from B-I (26 unique), followed by 386 from N-I (13 unique) and 346 from G-I (five unique). A total of 62 species were common between N-I and B-I, 30 between B-I and G-I, and five between N-I and G-I samples, while 306 were common among N-I, B-I, and G-I samples (Fig. 3).
    Figure 3

    Venn diagram of shared and uniquely identified OTUs among the three sampling locations (a), where the common OTUs were counted by source (I or P; b). For each source, OTUs were separated by sample locations, respectively (c & d).

    Full size image

    Based on the fungal community, 233 OTUs were detected, 84 were unknown fungi (36%), 31 uncultured fungi with at least one taxonomical rank is known (14%), and 118 species were successfully identified (50%). The detected OTUs in I-sources was 123, with the highest number of OTUs from B-I (79), followed by N-I (37) and G-I (seven). The number of detected OTUs in P-source was 110 from the three locations. The highest number of OTUs was found in B-P (46), followed by N-P (42) and G-P (22) locations. Regardless of the water source, the highest number of OTUs was 125 from location B (24 were unique), followed by 79 OTUs from location N (30 were unique), and 29 OTUs from location G (11 were unique). Locations N and B shared two OTUs, while B and G shared one OTU, and N and G locations shared no OTU. Only one uncultured fungus was shared among the three locations. Between both water sources, based on known and uncultured fungi with at least one taxonomical rank, 20 species were common between the I- and P-sources, 56 species unique for I-sources, and 49 species unique for P-sources. However, none were commonly found among the P-source from the three sample source locations. Fungal OTUs number was following the bacterial OTUs number per sample, reflecting the homogenized overall diversity within each water sample.
    Microbial diversity unique to trout aquaculture water
    Due to the lack of common eukaryotic OTUs among the P-source sites, the following analysis only focused on the prokaryotic species. The six exclusively identified bacterial species from the I-source belonged to three phyla, Proteobacteria, which has four species (Burkholderiaceae bacterium belong to MWH-UniP1 aquatic group, Caulobacteraceae bacterium, Hyphomonadaceae bacterium, and Rhodospirillales bacterium), one from phylum Bacteroidetes (Spirosomaceae bacterium) and one from phylum Firmicutes (Solibacillus sp.). For the P-source samples, the five exclusively species among the three locations belonged to two phyla, Bacteroidetes (Ekhidna sp., Polaribacter sp., and Sphingobacteriaceae bacterium) and Proteobacteria (Thalassotalea sp. and Paraherbaspirillum sp.).
    Among the commonly-shared species, the one-tail distribution student t-test was applied to identify significantly different bacterial species between the two water sources (Table 1). A total of 15 species belonged to two phyla, and 12 families were significantly different between the I- and P-source samples. The phylum Bacteroides (significant at average; p value of 0.001) included eight species: Marinoscillum sp. (Cyclobacteriaceae), Dysgonomonas sp. (Dysgonomonadaceae), Paludibacter sp. (Paludibacteraceae), Saprospiraceae bacterium, Mucilaginibacter and Pedobacter (Sphingobacteriaceae), Lacihabitans (Spirosomaceae), uncultured ST-12K33 (unknown family), and Empedobacter (Weeksellaceae); all of the aforementioned species were less represented in I-source and more represented in P-sources. In the case of the other phylum (Proteobacteria), eight species were found to be significant. Three species: Simplicispira sp. (Burkholderiaceae), Amaricoccus, and Thioclava (Rhodobacteraceae) were up-represented in I-source and while four species: Alicycliphilus and Caenimonas (Burkholderiaceae), Orientia sp. (Rickettsiaceae), and Sphingomonadaceae bacterium were up-represent in P-source.
    Table 1 Significantly differentiated bacteria (p  > 0.05) as determined via a t-test, ordered by classification.
    Full size table

    The species exhibiting the highest overall relative abundance was Simplicispira sp. (0.45), which was up-represented in the I-source, while the uncultured Saprospiraceae bacterium (0.227), Pedobacter sp. (0.164), and uncultured Sphingomonadaceae bacterium (0.213) were up-represented in the P-source.
    All data were analyzed using Pearson-based multiple correlation analysis based on the counts of all the identified species and visualized using heatmaps. Samples-based clustering was estimated for several correlation blocks. The single correlation-block that was detected to cluster the samples by location (i.e., N, B, and G) regardless of their source included nine species. Three correlation-blocks were found to cluster the samples by water source (i.e., I or P) regardless of their location, and these included 16 species, one of which included 11 species (Fig. 4). The correlated species were tested for species-species co-occurrence and visualized as a network. One significant connection was formed among five of the 16 species found to distinguish the water source, but none distinguish the sampling location. The detected species belonged to phylum Proteobacteria, Candidatus Symbiobacter sp., Comamonas sp., and Polaromonas sp. (Burkholderiaceae) and Porphyrobacter sp. (Sphingomonadaceae), and one species belonged to phylum Firmicutes, Lachnospiraceae bacterium in one connected cluster. The 11 species that did not form a network were Beijerinckiaceae bacterium, Bacteriap25, Gracilibacter sp., Malikia sp., Oligoflexus sp., Pelomonas sp., Polycyclovorans sp., Thioclava sp., Thauera sp., uncultured Alpha-proteobacterium, and uncultured Gamma-proteobacterium (JTB255; Fig. 4).
    Figure 4

    source samples from the P-source samples and includes 11 species (A), and the other discriminates the N, B, and G locations regardless of the water source and includes nine species (B).

    Heatmaps based on Person-multiple correlation analysis among the identified bacterial species. Two heatmaps, one was able to discriminate the I-

    Full size image

    Influence of samples locations and distance on microbial diversity
    The flow of water is northeast; accordingly, the flow of water hypothetically runs first from location N, passes through B, and then finally reaches G. Interestingly, it was observed that both N and B locations shared more OTUs than with the G location (Supplementary Fig. 1). Furthermore, N samples have less OTUs than the B and G sites, which raised a question about the influence of the geographic position and distance on the sampled locations. Based on such a hypothesis, a Euclidean geographic distance matrix was estimated to provide a spatial scale for further correlation analysis. A Mantel test was performed to examine the correlation between the geographic distance between the sampled farms and the number of characteristic species in I- and P-source samples. In the case of the inflow-water samples, no significant (p  > 0.05) correlation was observed. In contrast, the characteristic species count for pond-water samples significantly correlated with the distance between the samples (r = 0.969, p  More

  • in

    Quantification of dissolved O2 in bulk aqueous solutions and porous media using NMR relaxometry

    1.
    Seevers, D. O. A nuclear magnetic method for determining the permeability of sandstones. Presented at the SPWLA 7th Annual Logging Symposium, Tulsa, OK, 9–11 May 1966.
    2.
    Timur, A. Effective porosity and permeability of sandstones investigated through nuclear magnetic principles. Log Anal. 10(1), 3 (1969).
    Google Scholar 

    3.
    Coates, G. R., Xiao, L. & Prammer, M. G. NMR Logging Principles and Applications (Halliburton Energy Services, Houston, 1999).
    Google Scholar 

    4.
    Korringa, J., Seevers, D. O. & Torrey, H. C. Theory of spin pumping and relaxation in systems with a low concentration of electron spin resonance centers. Phys. Rev. 127(4), 1143–1150 (1962).
    ADS  CAS  Article  Google Scholar 

    5.
    Kleinberg, R. L., Kenyon, W. E. & Mitra, P. P. Mechanism of NMR relaxation of fluids in rock. J. Magn. Reson. Ser. A 108(2), 206–214 (1994).
    ADS  CAS  Article  Google Scholar 

    6.
    Watson, A. T. & Chang, C. T. P. Characterizing porous media with NMR methods. Prog. Nucl. Magn. Reson. Spectrosc. 31(4), 343–386 (1997).
    CAS  Article  Google Scholar 

    7.
    Godefroy, S., Fleury, M., Deflandre, F. & Korb, J. P. Temperature effect on NMR surface relaxation in rocks for well logging applications. J. Phys. Chem. B 106(43), 11183–11190 (2002).
    CAS  Article  Google Scholar 

    8.
    Glasel, J. A. & Lee, K. H. On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems. J. Am. Chem. Soc. 96(4), 970–978 (1974).
    CAS  Article  Google Scholar 

    9.
    Foley, I., Farooqui, S. A. & Kleinberg, R. L. Effect of paramagnetic ions on NMR relaxation of fluids at solid surfaces. J. Magn. Reson. Ser. A 123(1), 95–104 (1996).
    ADS  CAS  Article  Google Scholar 

    10.
    Mitchell, J., Stark, S. C. & Strange, J. H. Probing surface interactions by combining NMR cryoporometry and NMR relaxometry. J. Phys. D Appl. Phys. 38(12), 1950–1958 (2005).
    ADS  CAS  Article  Google Scholar 

    11.
    Keating, K. & Knight, R. A laboratory study to determine the effect of iron oxides on proton NMR measurements. Geophysics 72(1), E27–E32 (2007).
    ADS  Article  Google Scholar 

    12.
    Saidian, M. & Prasad, M. Effect of mineralogy on porosity, pore size distribution and surface relaxivity on nuclear magnetic resonance characterizations: A case study of Middle Bakken and Three Forks Formations. J. Fuel 161, 197–206 (2015).
    CAS  Article  Google Scholar 

    13.
    Benedekt, G. B. & Purcell, E. M. Nuclear magnetic resonance in liquids under high pressure. J. Chem. Phys. 22(12), 2003–2012 (1954).
    ADS  Article  Google Scholar 

    14.
    Nestle, N., Baumann, T. & Niessner, R. Oxygen determination in oxygen-supersaturated drinking waters by NMR relaxometry. Water Res. 37(14), 3361–3366 (2003).
    CAS  PubMed  Article  Google Scholar 

    15.
    Shikhov, I. & Arns, C. H. Temperature-dependent oxygen effect on NMR D-T2 relaxation-diffusion correlation of n-alkanes. Appl. Magn. Reson. 47(12), 1391–1408 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Horvath, I. T. & Millar, J. M. NMR under high gas pressure. Chem. Rev. 91(7), 13339–21351 (1991).
    Article  Google Scholar 

    17.
    Kamatari, Y. O., Kitahara, R., Yamada, H., Yokoyama, S. & Akasaka, K. High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Methods 34(1), 133–143 (2004).
    CAS  PubMed  Article  Google Scholar 

    18.
    Bezonova, I., Forman-Kay, J. & Prosser, R. S. Molecular oxygen as a paramagnetic NMR probe of protein solvent exposure and topology. Concepts Magn. Reson. Part A 32(4), 239–253 (2008).
    Article  CAS  Google Scholar 

    19.
    Prosser, R. S. & Evanics, F. Paramagnetic effects of dioxygen in solution NMR—studies of membrane immersion depth, protein topology, and protein interactions. In Modern Magnetic Resonance (ed. Webb, G. A.) 475–483 (Springer, Dordrecht, 2008).
    Google Scholar 

    20.
    Erriah, B. & Elliot, S. J. Experimental evidence for the role of paramagnetic oxygen concentration on the decay of long-lived nuclear spin order. R. Soc. Chem. Adv. 9, 23418–23424 (2019).
    CAS  Google Scholar 

    21.
    Debye, P. Polar Molecules (New York, 1945).

    22.
    Chiarotti, G., Cristiani, G. & Giulotto, L. Proton relaxation in pure liquids and in liquids containing paramagnetic gases in solution. Il Nuovo Cimento 1(5), 863–873 (1955).
    Article  Google Scholar 

    23.
    Mirhej, M. E. Proton spin relaxation by paramagnetic molecular oxygen. Can. J. Chem. 43(5), 1130–1138 (1964).
    Article  Google Scholar 

    24.
    Parker, D. S. & Harmon, J. F. Dipolar spin-lattice relaxation in water containing oxygen. Chem. Phys. Lett. 25(4), 505–506 (1974).
    ADS  CAS  Article  Google Scholar 

    25.
    Morriss, C. E. et al. Hydrocarbon saturation and viscosity estimation from NMR logging in the Belridge Diatomite. Log Analyst 38(2), 44–72 (1997).
    MathSciNet  Google Scholar 

    26.
    Lo, S. W., Hirasaki, G. J., House, W. V. & Kobayashi, R. Mixing rules and correlations of NMR relaxation time with viscosity, diffusivity, and gas/oil ratios of methane/hydrocarbon mixtures. SPE J. 7(1), 24–34 (2002).
    CAS  Article  Google Scholar 

    27.
    Mutina, A. R. & Hurlimann, M. D. Effect of oxygen on the NMR relaxation properties of crude oils. Appl. Magn. Reson. 29, 503–516 (2005).
    CAS  Article  Google Scholar 

    28.
    Lawson, C. L. & Hanson, R. J. Solving Least Square Problems (Prentice-Hall, Englewood Cliffs, 1974).
    Google Scholar 

    29.
    Hirasaki, G. J., Lo, S. & Zhang, Y. NMR properties of petroleum reservoir fluids. Magn. Reson. Imaging 21(3–4), 269–277 (2003).
    CAS  PubMed  Article  Google Scholar 

    30.
    Ferrell, F. T. & Himmelblau, D. M. Diffusion coefficients of nitrogen and oxygen in water. J. Chem. Eng. Data 12(1), 111–115 (1967).
    CAS  Article  Google Scholar 

    31.
    Niesar, U., Corongiu, G., Clementi, E. & Bhattacharya, D. K. Molecular dynamics simulations of liquid water using the NCC ab initio potential. J. Phys. Chem. 94(20), 7949–7956 (1991).
    Article  Google Scholar 

    32.
    Martin, D., McKenna, H. & Livina, V. The human physiological impact of global deoxygenation. J. Physiol Sci. 67(1), 97–106 (2017).
    CAS  PubMed  Article  Google Scholar 

    33.
    Majid, A., Saidian, M., Prasad, M. & Koh, C. A. Measurement of water droplets in water-in-oil emulsions using low field nuclear magnetic resonance for gas hydrate slurry application. Can. J. Chem. 93(9), 1007–1013 (2015).
    CAS  Article  Google Scholar 

    34.
    Scardina, P. & Edwards, M. Prediction and measurement of bubble formation in water treatment. J. Environ. Eng. 17(11), 968–973 (2001).
    Article  Google Scholar 

    35.
    Carr, H. & Purcell, E. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94(3), 630–638 (1954).
    ADS  CAS  Article  Google Scholar 

    36.
    Meiboom, S. & Gill, D. Modified spin echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29(8), 668–691 (1958).
    ADS  Article  Google Scholar 

    37.
    Buttler, J. P., Reeds, J. A. & Dawson, S. V. Estimating solution of first kind integral equations with non-negative constraints and optimal smoothing. Siam J. Numer. Anal. 18(3), 381–397 (1981).
    ADS  MathSciNet  Article  Google Scholar 

    38.
    Benson, B. B. & Krause, D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Am. Soc. Limnol. Oceanogr. 29(3), 620–632 (1984).
    ADS  CAS  Article  Google Scholar 

    39.
    Geng, M. & Duan, Z. Prediction of oxygen solubility in pure water and brines up to high temperatures and pressures. Geochim. Cosmochim. Acta 74(2010), 5631–5640 (2010).
    ADS  CAS  Article  Google Scholar  More

  • in

    Oilbirds disperse large seeds at longer distance than extinct megafauna

    1.
    Terborgh, J. et al. Tree recruitment in an empty forest. J. Ecol. 89, 1757–1768 (2008).
    Article  Google Scholar 
    2.
    Stevenson, P. The abundance of large ateline monkeys is positively associated with the diversity of plants regenerating in Neotropical forests. Biotropica 43, 512–519 (2011).
    Article  Google Scholar 

    3.
    Peres, C., Emilio, T., Schietti, J., Desmoulière, S. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113, 892–897 (2016).
    CAS  PubMed  Article  ADS  Google Scholar 

    4.
    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    5.
    Chanthorn, W., Hartig, F., Brockelman, W. Y., Srisang, W., Nathalang, A. & Santon, J. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9 (2019).

    6.
    Davis, M. & Shaw, R. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).
    CAS  PubMed  Article  ADS  Google Scholar 

    7.
    Corlett, R. T. Seed dispersal distances and plant migration potential in tropical East Asia. Biotropica 41, 592–598 (2009).
    Article  Google Scholar 

    8.
    Duque, A., Stevenson, P. & Feeley, K. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc. Natl. Acad. Sci. 112, 10744–10749 (2015).
    CAS  PubMed  Article  ADS  Google Scholar 

    9.
    Howe, H. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).
    Article  Google Scholar 

    10.
    Wright, S. J. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14 (2002).
    PubMed  Article  ADS  Google Scholar 

    11.
    Sugiyama, A., Comita, L., Masaki, T., Condit, R. & Hubbell, S. Resolving the paradox of clumped seed dispersal: Positive density and distance dependence in a bat-dispersed species. Ecology 99, 2583–2591 (2018).
    PubMed  Article  Google Scholar 

    12.
    Bagchi, R. et al. Spatial patterns reveal negative density dependence and habitat associations in tropical trees. Ecology 92, 1723–1729 (2011).
    PubMed  Article  Google Scholar 

    13.
    Clark, J.S. Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204-224 (1998)

    14.
    Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).
    CAS  PubMed  Article  ADS  Google Scholar 

    15.
    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).
    PubMed  Article  Google Scholar 

    16.
    Abedi-Lartey, M., Dechmann, D. K. N., Wikelski, M., Scharf, A. K. & Fahr, J. Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape. Glob. Ecol. Conserv. 7, 12–24 (2016).
    Article  Google Scholar 

    17.
    Baraloto, C., Forget, P. M. & Goldberg, D. E. Seed mass, seedling size and Neotropical tree seedling establishment. J. Ecol. 96, 1156–1166 (2005).
    Article  CAS  Google Scholar 

    18.
    Mack, A. L. An advantage of large seed size: tolerating rather than succumbing to seed predators. Biotropica 30, 604–608 (1998).
    Article  Google Scholar 

    19.
    Peres, C. A., Roosmalen, M. V., Levey, D. J., Silva, W. & Galetti, M. Primate frugivory in two species-rich Neotropical forests: implications for the demography of large-seeded plants in overhunted areas. In Seed dispersal and frugivory: ecology, evolution and conservation (eds. Levey Silva, D. J. W. & Galetti, M.) 407–421 (Wallingford: CAB International, 2002).

    20.
    Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).
    Article  Google Scholar 

    21.
    Doughty, C., Wolf, A. & Malhi, Y. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764 (2013).
    CAS  Article  ADS  Google Scholar 

    22.
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. Camb. Philos. Soc. 93, 845–862 (2018).
    PubMed  Article  Google Scholar 

    23.
    Pires, M., Guimarães, P., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2017).
    Article  Google Scholar 

    24.
    Bosque, C. & Parra, O. Digestive efficiency and rate of food passage in oilbird nestlings. The Condor 94, 557–571 (1992).
    Article  Google Scholar 

    25.
    Rojas-Lizarazo, G. Diet and reproduction in a high mountain oilbird (Steatornis caripensis) colony in Colombia. Ornitol. Colomb. 53–69 (2016).

    26.
    Stevenson, P., Cardona, L., Acosta Rojas, D., Henao Díaz, F. & Cardenas, S. Diet of oilbirds (Steatornis caripensis) in Cueva de los Guácharos National Park (Colombia): Temporal variation in fruit consumption, dispersal and seed morphology. Ornitol. Neotrop. 28, 295–307 (2017).
    Google Scholar 

    27.
    McAtee, W. L. Notes on the food of the Guacharo (Steatornis caripensis). Auk 39, 108–109 (1922).
    Article  Google Scholar 

    28.
    Holland, R. A., Wikelski, M., Kümmeth, F. & Bosque, C. The secret life of oilbirds: New insights into the movement ecology of a unique avian frugivore. PLoS ONE 4, e8264 (2009).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    29.
    Karubian, J. et al. Seed dispersal by Neotropical birds: Emerging patterns and underlying processes. Ornitol. Neotrop. 23, 9–24 (2012).
    Google Scholar 

    30.
    McKey, D. In Coevolution of animals and plants (eds. Gilben, L. E. & Raven, P. H.) 159–191 (University Texas Press, 1975).

    31.
    Cárdenas, S., Cardona, L. M., Echeverry-Galvis, M. & Stevenson, P. R. Movement patterns and habitat preference of oilbirds (Steatornis caripensis) in the southern Andes of Colombia. Avian Cons. Ecol. 15, 5 (2020).
    Google Scholar 

    32.
    Cárdenas, S., Echeverry-Galvis, M. & Stevenson, P. R. Seed dispersal effectiveness by oilbirds (Steatornis caripensis) in the Southern Andes of Colombia. Biotropica. https://doi.org/10.1111/btp.12908 (2020).
    Article  Google Scholar 

    33.
    Anderson, J. T., Nuttle, T., Saldaña Rojas, J. S., Pendergast, T. H. & Flecker, A. S. Extremely long-distance seed dispersal by an overfished Amazonian frugivore. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 278, 3329–3335 (2011).
    Google Scholar 

    34.
    Wood, C. A. The Polynesian fruit pigeon, Globicera pacifica, its food and digestive apparatus. Auk 41, 433–438 (1924).
    Article  Google Scholar 

    35.
    Stocker, G. C. & Irvine, A. K. Seed dispersal by cassowaries (Casuarius casuarius) in North Queensland’s Rainforests. Biotropica 15, 170–176 (1983).
    Article  Google Scholar 

    36.
    Gautier-Hion, A. et al. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65, 324–337 (1985).
    CAS  PubMed  Article  ADS  Google Scholar 

    37.
    Lieberman, D., Lieberman, M. & Martin, C. Notes on seeds in elephant dung from Bia National Park Ghana. Biotropica 19, 365 (1987).
    Article  Google Scholar 

    38.
    Guillotin, M., Dubost, G. & Sabatier, D. Food choice and food competition among the three major primate species of French Guiana. J. Zool. 233, 551–579 (1994).
    Article  Google Scholar 

    39.
    Fragoso, J. M. V. & Huffman, J. M. Seed-dispersal and seedling recruitment patterns by the last Neotropical megafaunal element in Amazonia, the tapir. J. Trop. Ecol. 16, 369–385 (2000).
    Article  Google Scholar 

    40.
    Naranjo, E. Ecology and conservation of Baird’s Tapir in Mexico. Trop. Conserv. Sci. 2, 140–158 (2009).
    Article  Google Scholar 

    41.
    Kitamura, S., Madsri, S. & Poonswad, P. Characteristics of hornbill-dispersed fruits in lowland Dipterocarp forests of southern Thailand. Raffles Bul. Zool. 24, 137–147 (2011).
    Google Scholar 

    42.
    Stevenson, P., Link, A., Onshuus, A., Quiroz, A. & Velasco, M. Estimation of seed shadows generated by Andean woolly monkeys (Lagothrix lagothricha lugens). Int. J. Primatol. 35, 1021–1036 (2014).
    Article  Google Scholar 

    43.
    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Global Ecol. Biogeogr. 24, 1269–1280 (2015).
    Article  Google Scholar 

    44.
    Norconk, M., Grafton, B. & Conklin-Brittain, N. Seed dispersal by Neotropical seed predators. Am. J. Primatol. 45, 103–126 (1998).
    CAS  PubMed  Article  Google Scholar 

    45.
    Lord, J. M. Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecol. 29, 430–436 (2004).
    Article  Google Scholar 

    46.
    Vellend, M., Myers, J., Gardescu, S. & Marks, P. Dispersal of Trillium seeds by deer: Implications for long-distance migration of forest herbs. Ecology 84, 1067–1072 (2003).
    Article  Google Scholar 

    47.
    Baños-Villalba, A. et al. Seed dispersal by macaws shapes the landscape of an Amazonian ecosystem. Sci. Rep. 7 (2017).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    48.
    Jansen, P. et al. Thieving rodent as substitute dispersers of megafaunal seeds. Proc. Natl. Acad. Sci. 109, 12610–12615 (2012).
    CAS  PubMed  Article  ADS  Google Scholar 

    49.
    Blanco, G., Tella, J. L., Hiraldo, F. & Díaz-Luque, J. A. Multiple external seed dispersers challenge the megafaunal syndrome anachronism and the surrogate ecological function of livestock. Front. Ecol. Evol. 7, 328 (2019).
    Article  Google Scholar 

    50.
    Prada, C. & Stevenson, P. Plant composition associated with environmental gradients in tropical montane forests (Cueva de Los Guácharos National Park, Huila, Colombia). Biotropica 48, 568–576 (2016).
    Article  Google Scholar 

    51.
    Bosque, C. & Parra, O. Digestive efficiency and rate of food passage in oilbird nestlings. The Condor 94, 557–571 (1992).
    Article  Google Scholar 

    52.
    Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
    Article  Google Scholar 

    53.
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria 2014).

    54.
    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Glob. Ecol. Biogeogr. 24, 1269–1280 (2015).
    Article  Google Scholar 

    55.
    Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (2019). More

  • in

    Important contributions of non-fossil fuel nitrogen oxides emissions

    Global δ15Nw-NO3− observations
    Publications of δ15Nw-NO3− studies were obtained through the databases of the Web of Science (http://isiknowledge.com), Google Scholar (http://scholar.google.com.hk), and Baidu Scholar (http://xueshu.baidu.com) by searching keywords of “nitrogen isotope”, “nitrate”, “rainfall”, and “precipitation”. By the end of December 2018, a total of 128 publications were available (Supplementary Text 1), spanning the sampling time of 1956–2017 (Supplementary Fig. 11). We extracted δ15Nw-NO3− values of individual precipitation samples by using the software of Web Plot Digitizer37.
    There are totally 3483 individual δ15Nw-NO3− data and 222 sampling sites when multiple observations in different sampling years at the same site were counted once only (Fig. 1). There are 56 urban sites, 158 non-urban sites, and eight arctic sites (Fig. 1), in which non-urban sites are mainly situated in rural, mountain, forest, and lake areas. Due to the sparsity of available data before 2000 (Supplementary Fig. 11), we analyzed δ15Nw-NO3− data at major urban and non-urban sites in East Asia, Europe, and North America during 2000–2017 to ensure a better site representation and to reduce the uncertainty caused by inconsistency in sampling time (Fig. 1). To describe spatial differences in δ15Nw-NO3− values between urban and non-urban sites among three regions (totally 214 sites), only site-based mean values during the period of 2000–2017 (totally 169 sites) were used (detailed in Fig. 2). To describe temporal variations of δ15Nw-NO3− values in urban and non-urban areas of each region, respectively (Fig. 3), we counted observation sites by different sampling years, given that δ15Nw-NO3− observations at few sites have been conducted in different sampling years. In this way, there were a total of 206 sites during 2000–2017 (detailed in Fig. 3). In addition, 35%, 29%, and 36% of the δ15Nw-NO3− observations were conducted in warmer, cooler, and the whole year, respectively. The seasonal effects of NOx emissions may not substantially influence the patterns of regional δ15Nw-NO3− variations.
    Differences between δ15Nw-NO3− and δ15Ni-NOx values
    NO is normally insoluble in water, and w-NO3− is scavenged only from the ambient NO2 and the oxidized NOx (i.e., HNO3 and p-NO3−) (Supplementary Fig. 1)32,38,39. Moreover, isotopic effects during the NOx cycles lead to differences between δ15NNOx and δ15NNO2. Therefore, substantial differences exist between the δ15Nw-NO3− and δ15Ni-NOx values in the atmosphere (hereafter denoted as 15∆i-NOx→w-NO3−). In this study, we calculated 15∆i-NOx→w-NO3− values by using the following equation (Eq. (2)):

    $${,}^{15}{Delta}_{{mathrm{i}} – {mathrm{NO}x} to {mathrm{w}} – {mathrm{NO3}} – } = delta ^{15}{mathrm{N}}_{{mathrm{w}} – {mathrm{NO3}} – } – delta ^{15}{mathrm{N}}_{{mathrm{i}} – {mathrm{NO}x}}.$$
    (2)

    Combined Eq. (1) with Eq. (2), we get Eq. (3) to calculate the 15∆i-NOx→w-NO3− values.

    $$ {,}^{15}{Delta}_{{mathrm{i}} – {mathrm{NO}x} to {mathrm{w}} – {mathrm{NO3}}} = delta ^{15}{mathrm{N}}_{{mathrm{w}} – {mathrm{NO3}} – }\ quad- left({delta}^{15}{mathrm{N}}_{{mathrm{NO}x}} times {mathrm{C}}_{{mathrm{NO2}}}/f_{{mathrm{NO2}}} + delta ^{15}{mathrm{N}}_{{mathrm{HNO3}}} times {mathrm{C}}_{{mathrm{HNO3}}} + delta ^{15}{mathrm{N}}_{{mathrm{p}} – {mathrm{NO3}} – } times {mathrm{C}}_{{mathrm{p}} – {mathrm{NO3}}}right)/\ quad left({mathrm{C}}_{{mathrm{NO2}}}/f_{{mathrm{NO2}}} + {mathrm{C}}_{{mathrm{HNO3}}} + {mathrm{C}}_{{mathrm{p}} – {mathrm{NO3}} – }right).$$
    (3)

    To obtain more accurate 15∆i-NOx→w-NO3− values, we estimated the 15∆i-NOx→w-NO3− values in two independent scenarios. In Scenario 1, mean values of global δ15NNOx and fNO2 values, simultaneously observed values of ambient CNO2, CHNO3, Cp-NO3−, δ15NHNO3, δ15Np-NO3−, and δ15Nw-NO3− were used for the calculation in Eq. (3). In Scenario 2, non-synchronously observed values of ambient fNO2, CNO2, CHNO3, Cp-NO3−, δ15NNOx, δ15NHNO3, δ15Np-NO3−, and δ15Nw-NO3− were used for the calculation in Eq. (3). The values and data sources of parameters used for estimating ambient 15∆i-NOx→w-NO3− values are included in Supplementary Table 1. Because data of fNO2 and δ15NNOx are very sparse globally, we used global mean values and considered their SD values into the uncertainty analysis by the Monte Carlo method. Furthermore, because of no significant difference between 15∆i-NOx→w-NO3− values obtained in Scenario 1 (2.1 ± 1.7‰) and Scenario 2 (5.7 ± 3.2‰) (Supplementary Fig. 2), we used a mean value of them (3.9 ± 1.8‰; Supplementary Fig. 2) in the calculations of source contributions (Eqs. (4) and (5)).
    Contributions of dominant fossil fuel and non-fossil fuel NOx sources
    Based on δ15Nw-NO3−, 15∆i-NOx→w-NO3−, and δ15N values of NOx sources, we estimated relative contributions of dominant fossil fuel and non-fossil fuel NOx sources to total NOx emissions by using the isotope mass-balance method. We considered coal combustion (denoted as S1) and vehicle exhausts (S2) as dominant fossil fuel NOx sources, and biomass burning (S3), and microbial N cycles (S4) as dominant non-fossil fuel NOx sources. The major reasons include: (1) these four sources have been considered as dominant sources of total NOx emissions in studies of both emission inventory and deposition modeling2,9,11,13,14,15,19,20,21; (2) they are also the dominant sources influencing δ15N variations of NOx and NO3− in the atmosphere;26,27 (3) their mean δ15N values of NOx emission sources differ significantly (P  More

  • in

    Long rDNA amplicon sequencing of insect-infecting nephridiophagids reveals their affiliation to the Chytridiomycota and a potential to switch between hosts

    1.
    Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63, 31–45 (2018).
    CAS  PubMed  Article  Google Scholar 
    2.
    Stork, N. E., McBroom, J., Gely, C. & Hamilton, A. J. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. U. S. A. 112, 7519–7523 (2015).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    3.
    Lange, C. E. & Lord, J. C. Protistan entomopathogens. In Insect Pathology (eds. Vega, F. E. & Kaya, H. K.) 367–394 (Academic Press, 2012). https://doi.org/10.1016/B978-0-12-384984-7.00010-5.

    4.
    Fabel, P., Radek, R. & Storch, V. A new spore-forming protist, Nephridiophaga blaberi sp. nov., in the Death’s head cockroach Blaberus craniifer. Eur. J. Protistol. 36, 387–395 (2000).
    Article  Google Scholar 

    5.
    Ivanić, M. Die Entwicklungsgeschichte und die parasitäre Zerstörungsarbeit einer in den Zellen der Malpighischen Gefäße der Honigbiene (Apis mellifera) schmarotzenden Haplosporidie Nephridiophaga apis n. g. n. sp.. Cellule 45, 291–324 (1937).
    Google Scholar 

    6.
    Ormières, R. & Manier, J.-F. Observations sur Nephridiophaga forficulae (Léger, 1909). Ann. Parasitol. Hum. Comparée 48, 1–10 (1973).
    Article  Google Scholar 

    7.
    Radek, R., Wellmanns, D. & Wolf, A. Two new species of Nephridiophaga (Zygomycota) in the Malpighian tubules of cockroaches. Parasitol. Res. 109, 473–482 (2011).
    PubMed  Article  Google Scholar 

    8.
    Radek, R. & Herth, W. Ultrastructural investigation of the spore-forming protist Nephridiophaga blattellae in the Malpighian tubules of the German cockroach Blattella germanica. Parasitol. Res. 85, 216–231 (1999).
    CAS  PubMed  Article  Google Scholar 

    9.
    Woolever, P. Life history and electron microscopy of a haplosporidian, Nephridiophaga blattellae (Crawley) n. comb, in the Malphigian tubules of the German Cockroach, Blattella germanica (L.). J. Protozool. 13, 622–642 (1966).
    Article  Google Scholar 

    10.
    Radek, R., Klein, G. & Storch, V. The spore of the unicellular organism Nephridiophaga blattellae: ultrastructure and substances of the spore wall. Acta Protozool. 41, 169–181 (2002).
    Google Scholar 

    11.
    Purrini, K. & Weiser, J. Light and electron microscope studies on a protozoan, Oryctospora alata n. gen., n. sp. (Protista, Coelosporidiidae), parasitizing a natural population of the rhinoceros beetle, Oryctes monoceros Oliv. (Coleoptera, Scarabaeidae). Zool. Beitraege 332, 209–220 (1990).
    Google Scholar 

    12.
    Purrini, K. & Rohde, M. Light and electron microscope studies on two new protists, Coelosporidium schalleri n. sp. and Coelosporidium meloidorum n. sp. (Protista) infecting natural populations of the flea beetle, Podagrica fuscicornis, and flower beetle, Mylabris maculiventris. Zool. Anz. 220, 323–333 (1988).
    Google Scholar 

    13.
    Lange, C. E. Unclassified protists of arthropods: the ultrastructure of Nephridiophaga periplanetae (Lutz & Splendore, 1903) n. comb., and the affinities of the Nephridiophagidae to other protists. J. Eukaryot. Microbiol. 40, 689–700 (1993).
    Article  Google Scholar 

    14.
    Perrin, W. S. Observations on the structure and life-history of Pleistophora periplanetæ, Lutz and Splendore. J. Cell Sci. 49, 615–633 (1906).
    Google Scholar 

    15.
    Sprague, V. Recent problems of taxonomy and morphology of Haplosporidia. J. Parasitol. 56, 327–328 (1970).
    Google Scholar 

    16.
    Wylezich, C., Radek, R. & Schlegel, M. Phylogenetische Analyse der 18S rRNA identifiziert den parasitischen Protisten Nephridiophaga blattellae (Nephridiophagidae) als Vertreter der Zygomycota (Fungi). Denisia 13, 435–442 (2004).
    Google Scholar 

    17.
    Radek, R. et al. Morphologic and molecular data help adopting the insect-pathogenic nephridiophagids (Nephridiophagidae) among the early diverging fungal lineages, close to the Chytridiomycota. MycoKeys 25, 31–50 (2017).
    Article  Google Scholar 

    18.
    Evangelista, D. A. et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proc. R. Soc. B Biol. Sci. 286, 20182076 (2019).
    Article  Google Scholar 

    19.
    Baumann, P., Moran, N. A. & Baumann, L. The evolution and genetics of aphid endosymbionts. Bioscience 47, 12–20 (1997).
    Article  Google Scholar 

    20.
    Peek, A. S., Feldman, R. A., Lutz, R. A. & Vrijenhoek, R. C. Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc. Natl. Acad. Sci. U. S. A. 95, 9962–9966 (1998).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    21.
    Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. & Fukatsu, T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLOS Biol. 4, e337 (2006).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Hughes, J., Kennedy, M., Johnson, K. P., Palma, R. L. & Page, R. D. M. Multiple cophylogenetic analyses reveal frequent cospeciation between pelecaniform birds and Pectinopygus lice. Syst. Biol. 56, 232–251 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    23.
    Desai, M. S. et al. Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ. Microbiol. 12, 2120–2132 (2010).
    CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Wijayawardene, N. et al. Outline of fungi and fungus-like taxa. Mycosphere 11, 1060–1456 (2020).
    Article  Google Scholar 

    25.
    Tedersoo, L., Anslan, S., Bahram, M., Kõljalg, U. & Abarenkov, K. Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fungal Divers. 103, 273–293 (2020).
    Article  Google Scholar 

    26.
    Crawley, H. Interrelationships of the Sporozoa. Am. Nat. 39, 607–624 (1905).
    Article  Google Scholar 

    27.
    White, M. M. et al. Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. Mycologia 98, 872–884 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Letcher, P. M., Powell, M. J., Churchill, P. F. & Chambers, J. G. Ultrastructural and molecular phylogenetic delineation of a new order, the Rhizophydiales (Chytridiomycota). Mycol. Res. 110, 898–915 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Van den Wyngaert, S., Rojas-Jimenez, K., Seto, K., Kagami, M. & Grossart, H.-P. Diversity and hidden host specificity of chytrids infecting colonial volvocacean algae. J. Eukaryot. Microbiol. 65, 870–881 (2018).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    30.
    James, T. Y. et al. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98, 860–871 (2006).
    PubMed  Article  Google Scholar 

    31.
    Powell, M. J., Letcher, P. M., Chambers, J. G. & Roychoudhury, S. A new genus and family for the misclassified chytrid, Rhizophlyctis harderi. Mycologia 107, 419–431 (2015).
    PubMed  Article  Google Scholar 

    32.
    Letcher, P. M., Powell, M. J., Lopez, S., Lee, P. A. & McBride, R. C. A new isolate of Amoeboaphelidium protococcarum, and Amoeboaphelidium occidentale, a new species in phylum Aphelida (Opisthosporidia). Mycologia 107, 522–531 (2015).
    PubMed  Article  Google Scholar 

    33.
    Strassert, J. F. H. et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 12, 304–308 (2018).
    CAS  PubMed  Article  Google Scholar 

    34.
    Jamy, M. et al. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol. Ecol. Resour. 20, 429–443 (2020).
    CAS  PubMed  Article  Google Scholar 

    35.
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
    CAS  PubMed  Article  Google Scholar 

    36.
    Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. Phylobayes mpi: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).
    CAS  PubMed  Article  Google Scholar 

    37.
    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
    CAS  PubMed  Article  Google Scholar 

    38.
    Lloyd, D. & Harris, J. C. Giardia: highly evolved parasite or early branching eukaryote?. Trends Microbiol. 10, 122–127 (2002).
    CAS  PubMed  Article  Google Scholar 

    39.
    Burki, F. et al. Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in Rhizaria. Curr. Biol. 23, 1541–1547 (2013).
    CAS  PubMed  Article  Google Scholar 

    40.
    Abbott, C. L. Evolution: hidden at the end of a very long branch. Curr. Biol. 27, R271–R273 (2014).
    Article  CAS  Google Scholar 

    41.
    Keeling, P. J. & Fast, N. M. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56, 93–116 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Mozley-Standridge, S. E., Letcher, P. M., Longcore, J. E., Porter, D. & Simmons, D. R. Cladochytriales—a new order in Chytridiomycota. Mycol. Res. 113, 498–507 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Jerônimo, G. H., Jesus, A. L., Simmons, D. R., James, T. Y. & Pires-Zottarelli, C. L. A. Novel taxa in Cladochytriales (Chytridiomycota): Karlingiella (gen. nov.) and Nowakowskiella crenulata (sp. nov.). Mycologia 111, 506–516 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    44.
    Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol. 18, 1646–1653 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Lepelletier, F. et al. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. Nov.), a chytrid infecting marine dinoflagellates. Protist 165, 230–244 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    46.
    Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Comeau, A. M., Vincent, W. F., Bernier, L. & Lovejoy, C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 6, 30120 (2016).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    48.
    Lefèvre, E., Roussel, B., Amblard, C. & Sime-Ngando, T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3, e2324 (2008).
    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

    49.
    Fisher, M. C., Garner, T. W. J. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).
    CAS  PubMed  Article  Google Scholar 

    50.
    Powell, M. J. & Letcher, P. M. Chytridiomycota, Monoblepharidomycota, and Neocallimastigomycota. In Systematics and Evolution: The Mycota VII Part A (eds. McLaughlin, D. J. & Spatafora, J. W.) 141–175 (Springer, 2014). https://doi.org/10.1007/978-3-642-55318-9.

    51.
    Cali, A., Becnel, J. J. & Takvorian, P. M. Microsporidia. In Handbook of the Protists: Second Edition (eds. Archibald, J. M. et al.) 1559–1618 (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0_27.

    52.
    Powell, M. J. Chytridiomycota. In Handbook of the Protists: Second Edition (eds. Archibald, J. M. et al.) 1523–1558 (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0_18.

    53.
    Schulte, R. D., Makus, C., Hasert, B., Michiels, N. K. & Schulenburg, H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc. Natl. Acad. Sci. U. S. A. 107, 7359–7364 (2010).
    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

    54.
    Ebert, D. Host-parasite coevolution: insights from the Daphnia-parasite model system. Curr. Opin. Microbiol. 11, 290–301 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrasructure Res. 26, 31–43 (1969).
    CAS  Article  Google Scholar 

    56.
    Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Wurzbacher, C. et al. Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 19, 118–127 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Roehr, J. T., Dieterich, C. & Reinert, K. Flexbar 3.0—SIMD and multicore parallelization. Bioinformatics 33, 2941–2942 (2017).
    CAS  PubMed  Article  Google Scholar 

    61.
    Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).
    CAS  PubMed  Article  Google Scholar 

    63.
    Liu, H. & Beckenbach, A. T. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol. Phylogenet. Evol. 1, 41–52 (1992).
    CAS  PubMed  Article  Google Scholar 

    64.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    65.
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    67.
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
    CAS  Article  Google Scholar 

    68.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    70.
    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    71.
    Le, V. S., Dang, C. C. & Le, Q. S. Improved mitochondrial amino acid substitution models for metazoan evolutionary studies. BMC Evol. Biol. 17, 136 (2017).
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Neon-green fluorescence in the desert gecko Pachydactylus rangei caused by iridophores

    1.
    Sparks, J. S. et al. The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS ONE 9, e83259 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 
    2.
    Wucherer, M. F. & Michiels, N. K. A fluorescent chromatophore changes the level of fluorescence in a reef fish. PLoS ONE 7, e37913 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Gruber, D. F. et al. Biofluorescence in catsharks (Scyliorhinidae): fundamental description and relevance for elasmobranch visual ecology. Sci. Rep. 6, 24751 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Gruber, D. F. & Sparks, J. S. First observation of fluorescence in marine turtles. Am. Mus. Novit. 3845, 1–8 (2015).
    Article  Google Scholar 

    5.
    Kohler, A. M., Olson, E. R., Martin, J. G. & Anich, P. S. Ultraviolet fluorescence discovered in New World flying squirrels (Glaucomys). J. Mammal. 100, 21–30 (2019).
    Article  Google Scholar 

    6.
    Jeng, M.-L. Biofluorescence in terrestrial animals, with emphasis on fireflies: a review and field observation in Bioluminescence—Analytical Applications and Basic Biology 1–16 (Hirobumi Suzuki, IntechOpen, 2019).

    7.
    Evtukh, G. Fluorescence among Fraterculinae subfamily. Pyccкий opнитoлoгичecкий жypнaл 28, 2134–2142 (2019).
    Google Scholar 

    8.
    Wilkinson, B. P., Johns, M. E. & Warzybok, P. Fluorescent ornamentation in the Rhinoceros Auklet Cerorhinca monocerata. Ibis 161, 694–698 (2019).
    Article  Google Scholar 

    9.
    Arnold, K., Owens, I. P. & Marshall, N. J. Fluorescent signalling in parrots. Science 295, 92 (2002).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Barreira, A., Lagorio, M. G., Lijtmaer, D., Lougheed, S. & Tubaro, P. Fluorescent and ultraviolet sexual dichromatism in the blue-winged parrotlet. J. Zool. 288, 135–142 (2012).
    Article  Google Scholar 

    11.
    Goutte, S. et al. Intense bone fluorescence reveals hidden patterns in pumpkin toadlets. Sci. Rep. 9, 1–8 (2019).
    CAS  Article  Google Scholar 

    12.
    Taboada, C., Brunetti, A. E., Alexandre, C., Lagorio, M. G. & Faivovich, J. Fluorescent frogs: a herpetological perspective. S. Am. J. Herpetol. 12, 1–13 (2017).
    Article  Google Scholar 

    13.
    Taboada, C. et al. Naturally occurring fluorescence in frogs. Proc. Nat. Acad. Sci. USA 114, 3672–3677 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Deschepper, P., Jonckheere, B. & Matthys, J. A light in the dark: the discovery of another fluorescent frog in the Costa Rican rainforests. Wilderness Environ. Med. 29, 4212134–2142422 (2018).
    Google Scholar 

    15.
    Lamb, J. Y. & Davis, M. P. Salamanders and other amphibians are aglow with biofluorescence. Sci. Rep. 10, 1–7 (2020).
    Article  CAS  Google Scholar 

    16.
    Thompson, M. E., Saporito, R., Ruiz-Valderrama, D. H., Medina-Rangel, G. F. & Donnelly, M. A. A field-based survey of fluorescence in tropical tree frogs using an LED UV-B flashlight. Herpetol. Notes 12, 987–990 (2019).
    Google Scholar 

    17.
    Gray, R. J. Biofluorescent lateral patterning on the Mossy Bushfrog (Philautus macroscelis): the first report of biofluorescence in a rhacophorid frog. Herpetol. Notes 12, 363–364 (2019).
    Google Scholar 

    18.
    Munoz, D. Plethodon cinereus (Eastern Red-backed Salamander) Fluorescence. Herpetol. Rev. 49, 512–513 (2018).
    Google Scholar 

    19.
    Tah, M.M.T.-M., Puan, C. L., Chuang, M.-F., Othman, S. N. & Borzée, A. First record of ultraviolet fluorescence in Bent-toed Gecko Cyrtodactylus quadrivirgatus (Gekkonidae: Sauria). Herpetol. Notes 13, 211–212 (2020).
    Google Scholar 

    20.
    Sloggett, J. J. Field observations of putative bone-based fluorescence in a gecko. Curr. Zool. 64, 319–320 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    21.
    Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Maitland, D. & Hart, A. A fluorescent vertebrate: the Iberian Worm-lizard Blanus cinereus (Amphisbaenidae). Herpetol. Rev. 39, 50 (2008).
    Google Scholar 

    23.
    Andrews, K., Reed, S. M. & Masta, S. E. Spiders fluoresce variably across many taxa. Biol. Lett. 3, 265–267 (2007).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Macel, M.-L. et al. Sea as a color palette: the ecology and evolution of fluorescence. Zool. Lett. 6, 1–11 (2020).
    Article  Google Scholar 

    25.
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Kloock, C. T., Kubli, A. & Reynolds, R. Ultraviolet light detection: a function of scorpion fluorescence. J. Arachnol. 38, 441–445 (2010).
    Article  Google Scholar 

    27.
    Haddock, S. H. & Dunn, C. W. Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Gandía-Herrero, F., García-Carmona, F. & Escribano, J. Botany: floral fluorescence effect. Nature 437, 334 (2005).
    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

    29.
    Mazel, C., Cronin, T., Caldwell, R. & Marshall, N. Fluorescent enhancement of signaling in a mantis shrimp. Science 303, 51 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    30.
    Lim, M. L., Land, M. F. & Li, D. Sex-specific UV and fluorescence signals in jumping spiders. Science 315, 481 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Kloock, C. T. A comparison of fluorescence in two sympatric scorpion species. J. Photochem. Photobiol. B 91, 132–136 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Michiels, N. K. et al. Red fluorescence in reef fish: a novel signalling mechanism?. BMC Ecol. 8, 1–16 (2008).
    Article  Google Scholar 

    33.
    Gerlach, T., Sprenger, D. & Michiels, N. K. Fairy wrasses perceive and respond to their deep red fluorescent coloration. Proc. R. Soc. B 281, 20140787 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    34.
    Lagorio, M. G., Cordon, G. B. & Iriel, A. Reviewing the relevance of fluorescence in biological systems. Photochem. Photobiol. Sci. 14, 1538–1559 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Bachman, C. H. & Ellis, E. H. Fluorescence of bone. Nature 206, 1328–1331 (1965).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Rebouças, R. et al. Is the conspicuous dorsal coloration of the Atlantic forest pumpkin toadlets aposematic?. Salamandra 55, 39–47 (2019).
    Google Scholar 

    37.
    Werner, Y. L. Ecological comments on some gekkonid lizards of the Namib Desert, South West Africa. Modoqua 1977, 157–169 (1977).
    Google Scholar 

    38.
    Russell, A. & Bauer, A. Substrate excavation in the Namibian web-footed gecko, Palmatogecko rangei Andersson 1908, and its ecological significance. Trop. Zool. 3, 197–207 (1990).
    Article  Google Scholar 

    39.
    Vitt, L. J. & Caldwell, J. P. Herpetology: An Introductory Biology of Amphibians and Reptiles 776 (Academic Press, London, 2013).
    Google Scholar 

    40.
    Schmidt, W. J. Die Chromatophoren der Reptilienhaut. Arch. Mikrosk. Anat. 90, 98–259 (1918).
    Article  Google Scholar 

    41.
    Szydłowski, P., Madej, J. P. & Mazurkiewicz-Kania, M. Histology and ultrastructure of the integumental chromatophores in tokay gecko (Gekko gecko) (Linnaeus, 1758) skin. Zoomorphology 136, 233–240 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Saenko, S. V., Teyssier, J., Van Der Marel, D. & Milinkovitch, M. C. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biol. 11, 105 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    43.
    Teyssier, J., Saenko, S. V., Van Der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Avallone, B., Tizzano, M., Cerciello, R., Buglione, M. & Fulgione, D. Gross anatomy and ultrastructure of Moorish Gecko, Tarentola mauritanica skin. Tissue Cell 51, 62–67 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Morrison, R. L., Sherbrooke, W. C. & Frost-Mason, S. K. Temperature-sensitive, physiologically active iridophores in the lizard Urosaurus ornatus: an ultrastructural analysis of color change. Copeia 1996, 804–812 (1996).
    Article  Google Scholar 

    46.
    Polewski, K., Zinger, D., Trunk, J., Monteleone, D. C. & Sutherland, J. C. Fluorescence of matrix isolated guanine and 7-methylguanine. J. Photochem. Photobiol. B 24, 169–177 (1994).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Turrisi, R. et al. Stokes shift/emission efficiency trade-off in donor–acceptor perylenemonoimides for luminescent solar concentrators. J. Mater. Chem. A 3, 8045–8054 (2015).
    CAS  Article  Google Scholar 

    48.
    Suzuki, K. et al. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Szydłowski, P., Madej, J. P. & Mazurkiewicz-Kania, M. Ultrastructure and distribution of chromatophores in the skin of the leopard gecko (Eublepharis macularius). Acta Zool. 97, 370–375 (2016).
    Article  Google Scholar 

    50.
    Hibbitts, T. J., Pianka, E. R., Huey, R. B. & Whiting, M. J. Ecology of the common barking gecko (Ptenopus garrulus) in southern Africa. J. Herpetol. 39, 509–515 (2005).
    Article  Google Scholar 

    51.
    Olivier, J. Spatial distribution of fog in the Namib. J. Arid Environ. 29, 129–138 (1995).
    ADS  Article  Google Scholar 

    52.
    Gottlieb, T. R., Eckardt, F. D., Venter, Z. S. & Cramer, M. D. The contribution of fog to water and nutrient supply to Arthraerua leubnitziae in the central Namib Desert, Namibia. J. Arid Environ. 161, 35–46. https://doi.org/10.1016/j.jaridenv.2018.11.002 (2019).
    ADS  Article  Google Scholar 

    53.
    Prötzel, D. D. Palmatogecko—ein sozialer Gecko?. Reptilia 107, 4–5 (2014).
    Google Scholar 

    54.
    Nørgaard, T., Henschel, J. R. & Wehner, R. The night-time temporal window of locomotor activity in the Namib Desert long-distance wandering spider, Leucorchestris arenicola. J. Comp. Physiol. A 192, 365–372 (2006).
    Article  Google Scholar 

    55.
    Roth, L. S. & Kelber, A. Nocturnal colour vision in geckos. Proc. R. Soc. B 271, 485–487 (2004).
    Article  Google Scholar 

    56.
    Pinto, B. J., Nielsen, S. V. & Gamble, T. Transcriptomic data support a nocturnal bottleneck in the ancestor of gecko lizards. Mol. Phylogenet. Evol. 141, 106639 (2019).
    PubMed  Article  PubMed Central  Google Scholar 

    57.
    Iriel, A. & Lagorio, M. G. Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling. Photochem. Photobiol. Sci. 9, 342–348 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Spurr, A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    Richardson, K., Jarett, L. & Finke, E. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–323 (1960).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208 (1963).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).
    Article  Google Scholar 

    62.
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).

    63.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, Berlin, 2016).
    Google Scholar  More