1.
Tilman, D. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994).
Article Google Scholar
2.
Matesanz, S., Gimeno, T. E., de la Cruz, M., Escudero, A. & Valladares, F. Competition may explain the fine-scale spatial patterns and genetic structure of two co-occurring plant congeners: Spatial genetic structure of congeneric plants. J. Ecol. 99, 838–848 (2011).
CAS Article Google Scholar
3.
Fridley, J. D., Grime, J. P. & Bilton, M. Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland. J. Ecol. 95, 908–915 (2007).
Article Google Scholar
4.
Baron, E., Richirt, J., Villoutreix, R., Amsellem, L. & Roux, F. The genetics of intra- and interspecific competitive response and effect in a local population of an annual plant species. Funct. Ecol. 29, 1361–1370 (2015).
Article Google Scholar
5.
McGoey, B. V. & Stinchcombe, J. R. Interspecific competition alters natural selection on shade avoidance phenotypes in Impatiens capensis. New Phytol. 183, 880–891 (2009).
PubMed Article PubMed Central Google Scholar
6.
Vellend, M. The Consequences of genetic diversity in competitive communities. Ecology 87, 304–311 (2006).
PubMed Article PubMed Central Google Scholar
7.
Turkington, R. The growth, distribution and neighbours relationships of Trifolium repens in a permanent pasture. VI. Conditioning effects by neighbours. J. Ecol. 77, 734 (1989).
Article Google Scholar
8.
Sultan, E. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44, 363–383 (1995).
Article Google Scholar
9.
Via, S. et al. Adaptive phenotypic plasticity: Consensus and controversy. Trends Ecol. Evol. 10, 212–217 (1995).
CAS PubMed Article PubMed Central Google Scholar
10.
Vermeulen, P. J. On selection for flowering time plasticity in response to density. New Phytol. 205, 429–439 (2015).
PubMed Article PubMed Central Google Scholar
11.
Geber, M. A. & Griffen, L. R. Inheritance and natural selection on functional traits. Int. J. Plant Sci. 164, S21–S42 (2003).
Article Google Scholar
12.
Dudley, S. A. & Schmitt, J. Testing the adaptive plasticity hypothesis: Density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat. 147, 445–465 (1996).
Article Google Scholar
13.
Boege, K. Induced responses to competition and herbivory: Natural selection on multi-trait phenotypic plasticity. Ecology 91, 2628–2637 (2010).
PubMed Article PubMed Central Google Scholar
14.
Munguía-Rosas, M. A., Ollerton, J., Parra-Tabla, V. & De-Nova, J. A. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol. Lett. 14, 511–521 (2011).
PubMed Article PubMed Central Google Scholar
15.
Weis, A., Wadgymar, S., Sekor, M. & Franks, S. The shape of selection: Using alternative fitness functions to test predictions for selection on flowering time. Evol. Ecol. 28, 885–904 (2014).
Article Google Scholar
16.
Juenger, T., Lennartsson, T. & Tuomi, J. The evolution of tolerance to damage in Gentianella campestris: Natural selection and the quantitative genetics of tolerance. Evol. Ecol. 14, 393 (2000).
Article Google Scholar
17.
Kenney, A. M., McKay, J. K., Richards, J. H. & Juenger, T. E. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ13 C), and WUE plasticity to drought in Arabidopsis thaliana. Ecol. Evol. 4, 4505–4521 (2014).
PubMed PubMed Central Article Google Scholar
18.
Leverett, L. D., Iv, G. F. S. & Donohue, K. The fitness benefits of germinating later than neighbors. Am. J. Bot. 105, 20–30 (2018).
PubMed Article PubMed Central Google Scholar
19.
Weinig, C., Johnston, J., German, Z. M. & Demink, L. M. Local and global costs of adaptive plasticity to density in Arabidopsis thaliana. Am. Nat. 167, 826–836 (2006).
CAS PubMed Article PubMed Central Google Scholar
20.
Callahan, H. S. & Pigliucci, M. Shade-Induced plasticity and its ecological significance in wild populations of Arabidopsis thaliana. Ecology 83, 1965–1980 (2002).
Article Google Scholar
21.
Manzano-Piedras, E., Marcer, A., Alonso-Blanco, C. & Picó, F. X. Deciphering the adjustment between environment and life history in annuals: Lessons from a geographically-explicit approach in Arabidopsis thaliana. PLoS ONE 9, e87836 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
22.
Sandring, S., Riihimäki, M.-A., Savolainen, O. & Ågren, J. Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. J. Evol. Biol. 20, 558–567 (2007).
CAS PubMed Article PubMed Central Google Scholar
23.
Weinig, C. Differing selection in alternative competitive environments: Shade-avoidance responses and germination timing. Evolution 54, 124–136 (2000).
CAS PubMed Article PubMed Central Google Scholar
24.
Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
PubMed Article PubMed Central Google Scholar
25.
Pigliucci, M. & Kolodynska, A. Phenotypic plasticity to light intensity in Arabidopsis thaliana: Invariance of reaction norms and phenotypic integration. Evol. Ecol. 16, 27–47 (2002).
Article Google Scholar
26.
Pigliucci, M. & Preston, K. A. Phenotypic Integration. Studying the Ecology and Evolution of Complex Phenotypes (Oxford University Press, Oxford, 2004).
Google Scholar
27.
Schlichting, C. D. Phenotypic integration and environmental change. Bioscience 39, 460–464 (1989).
Article Google Scholar
28.
Brock, M. T. & Weinig, C. Plasticity and environment-specific covariances: An investigation of floral–vegetative and within flower correlations. Evolution 61, 2913–2924 (2007).
PubMed Article PubMed Central Google Scholar
29.
Lind, M. I., Yarlett, K., Reger, J., Carter, M. J. & Beckerman, A. P. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc. R. Soc. B Biol. Sci. 282, 20151651 (2015).
Article Google Scholar
30.
Crespi, B. J. The evolution of maladaptation. Heredity 84, 623 (2000).
PubMed Article Google Scholar
31.
DeWitt, T. J. & Scheiner, S. M. Phenotypic Plasticity: Functional and Conceptual Approaches (Oxford University Press, Oxford, 2004).
Google Scholar
32.
Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).
CAS PubMed Article Google Scholar
33.
Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).
Article Google Scholar
34.
Palacio-López, K., Beckage, B., Scheiner, S. & Molofsky, J. The ubiquity of phenotypic plasticity in plants: A synthesis. Ecol. Evol. 5, 3389–3400 (2015).
PubMed PubMed Central Article Google Scholar
35.
Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).
PubMed Article Google Scholar
36.
Goldberg, D. E. & Barton, A. M. Patterns and consequences of interspecific competition in natural communities: A review of field experiments with plants. Am. Nat. 139, 771–801 (1992).
Article Google Scholar
37.
Van Kleunen, M. & Fischer, M. Constraints on the evolution of adaptive phenotypic plasticity in plants: Research review. New Phytol. 166, 49–60 (2005).
PubMed Article Google Scholar
38.
Stinchcombe, J. R., Dorn, L. A. & Schmitt, J. Flowering time plasticity in Arabidopsis thaliana: A reanalysis of Westerman & Lawrence (1970): Flowering time plasticity in Arabidopsis. J. Evol. Biol. 17, 197–207 (2003).
Article Google Scholar
39.
Scheiner, S. M. & Holt, R. D. The genetics of phenotypic plasticity. X. Variation versus uncertainty: Plasticity, variation, and uncertainty. Ecol. Evol. 2, 751–767 (2012).
PubMed PubMed Central Article Google Scholar
40.
Scheiner, S. M. Bet-hedging as a complex interaction among developmental instability, environmental heterogeneity, dispersal, and life-history strategy. Ecol. Evol. 4, 505–515 (2014).
PubMed PubMed Central Article Google Scholar
41.
DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).
CAS PubMed Article PubMed Central Google Scholar
42.
Dechaine, J. M., Johnston, J. A., Brock, M. T. & Weinig, C. Constraints on the evolution of adaptive plasticity: Costs of plasticity to density are expressed in segregating progenies. New Phytol. 176, 874–882 (2007).
PubMed Article PubMed Central Google Scholar
43.
Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).
CAS PubMed PubMed Central Article Google Scholar
44.
Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B Biol. Sci. 277, 503–511 (2010).
Article Google Scholar
45.
Callahan, H. S., Maughan, H. & Steiner, U. K. Phenotypic plasticity, costs of phenotypes, and costs of plasticity. Ann. N. Y. Acad. Sci. 1133, 44–66 (2008).
ADS PubMed Article Google Scholar
46.
Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).
PubMed Article Google Scholar
47.
Calsbeek, B., Lavergne, S., Patel, M. & Molofsky, J. Comparing the genetic architecture and potential response to selection of invasive and native populations of reed canary grass. Evol. Appl. 4, 726–735 (2011).
PubMed PubMed Central Article Google Scholar
48.
Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
ADS CAS PubMed Article Google Scholar
49.
Agrawal, A. F. & Whitlock, M. C. Environmental duress and epistasis: How does stress affect the strength of selection on new mutations?. Trends Ecol. Evol. 25, 450–458 (2010).
PubMed Article Google Scholar
50.
Arbuthnott, D. & Whitlock, M. C. Environmental stress does not increase the mean strength of selection. J. Evol. Biol. 31, 1599–1606 (2018).
PubMed Article PubMed Central Google Scholar
51.
Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120085 (2013).
Article Google Scholar
52.
Wood, C. W. & Brodie, E. D. Evolutionary response when selection and genetic variation covary across environments. Ecol. Lett. 19, 1189–1200 (2016).
PubMed Article PubMed Central Google Scholar
53.
Rowiński, P. K. & Rogell, B. Environmental stress correlates with increases in both genetic and residual variances: A meta-analysis of animal studies. Evolution 71, 1339–1351 (2017).
PubMed Article CAS PubMed Central Google Scholar
54.
Stanton, M. L., Roy, B. A. & Thiede, D. A. Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. Evolution 54, 93–111 (2000).
CAS PubMed Article PubMed Central Google Scholar
55.
Weigelt, A., Steinlein, T. & Beyschlag, W. Does plant competition intensity rather depend on biomass or on species identity?. Basic Appl. Ecol. 3, 85–94 (2002).
Article Google Scholar
56.
Dostál, P. Plant competitive interactions and invasiveness: Searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011).
PubMed Article PubMed Central Google Scholar
57.
Gaudet, C. L. & Keddy, P. A. A comparative approach to predicting competitive ability from plant traits. Nature 334, 242–243 (1988).
ADS Article Google Scholar
58.
Goldberg, D. E. & Werner, P. A. Equivalence of competitors in plant communities: A null hypothesis and a field experimental approach. Am. J. Bot. 70, 1098–1104 (1983).
Article Google Scholar
59.
Débarre, F. & Gandon, S. Evolution in heterogeneous environments: Between soft and hard selection. Am. Nat. 177, E84–E97 (2011).
PubMed Article PubMed Central Google Scholar
60.
Kelley, J. L., Stinchcombe, J. R., Weinig, C. & Schmitt, J. Soft and hard selection on plant defence traits in Arabidopsis thaliana. Evol. Ecol. Res. 7, 287–302 (2005).
Google Scholar
61.
Austen, E. J., Rowe, L., Stinchcombe, J. R. & Forrest, J. R. K. Explaining the apparent paradox of persistent selection for early flowering. New Phytol. 215, 929–934 (2017).
PubMed Article PubMed Central Google Scholar
62.
Lorts, C. M. & Lasky, J. R. Competition × drought interactions change phenotypic plasticity and the direction of selection on Arabidopsis traits. New Phytol. https://doi.org/10.1111/nph.16593 (2020).
Article PubMed PubMed Central Google Scholar
63.
Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. 104, 1278–1282 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
64.
Forrest, J. R. K. Plant size, sexual selection, and the evolution of protandry in dioecious plants. Am. Nat. 184, 338–351 (2014).
PubMed Article PubMed Central Google Scholar
65.
Wilczek, A. M. et al. Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934 (2009).
ADS CAS PubMed Article PubMed Central Google Scholar
66.
Elzinga, J. A. et al. Time after time: Flowering phenology and biotic interactions. Trends Ecol. Evol. 22, 432–439 (2007).
PubMed Article PubMed Central Google Scholar
67.
Mitchell-Olds, T. Genetic constraints on life-history evolution: Quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana. Evolution 50, 140 (1996).
PubMed Article PubMed Central Google Scholar
68.
Fournier-Level, A. et al. Paths to selection on life history loci in different natural environments across the native range of Arabidopsis thaliana. Mol. Ecol. 22, 3552–3566 (2013).
CAS PubMed Article PubMed Central Google Scholar
69.
Hall, M. C., Dworkin, I., Ungerer, M. C. & Purugganan, M. Genetics of microenvironmental canalization in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 104, 13717–13722 (2007).
ADS CAS PubMed Article PubMed Central Google Scholar
70.
Cho, L.-H., Yoon, J. & An, G. The control of flowering time by environmental factors. Plant J. 90, 708–719 (2017).
CAS PubMed Article PubMed Central Google Scholar
71.
Pérez-Pérez, J. M., Serrano-Cartagena, J. & Micol, J. L. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics 162, 24 (2002).
Google Scholar
72.
Samis, K. E., Stinchcombe, J. R. & Murren, C. J. Population climatic history predicts phenotypic responses in novel environments for Arabidopsis thaliana in North America. Am. J. Bot. 106, 1068–1080 (2019).
PubMed PubMed Central Google Scholar
73.
Taylor, M. A. et al. Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 116, 17890–17899 (2019).
CAS PubMed Article PubMed Central Google Scholar
74.
Donohue, K., Messiqua, D., Pyle, E. H., Heschel, M. S. & Schmitt, J. Evidence of adaptive divergence in plasticity: Density- and site-dependent selection on shade-avoidance responses in Impatiens capensis. Evolution 6, 13 (2000).
Google Scholar
75.
Huber, H. et al. Frequency and microenvironmental pattern of selection on plastic shade-avoidance traits in a natural population of Impatiens capensis. Am. Nat. 163, 548–563 (2004).
PubMed Article PubMed Central Google Scholar
76.
Stinchcombe, J. R., Agrawal, A. F., Hohenlohe, P. A., Arnold, S. J. & Blows, M. W. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing?. Evolution 62, 2435–2440 (2008).
PubMed Article PubMed Central Google Scholar
77.
Callahan, H. S., Dhanoolal, N. & Ungerer, M. C. Plasticity genes and plasticity costs: A new approach using an Arabidopsis recombinant inbred population. New Phytol. 166, 129–140 (2005).
CAS PubMed Article PubMed Central Google Scholar
78.
Arnold, P. A., Nicotra, A. B. & Kruuk, L. E. B. Sparse evidence for selection on phenotypic plasticity in response to temperature. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180185 (2019).
Article Google Scholar
79.
Acasuso-Rivero, C., Murren, C. J., Schlichting, C. D. & Steiner, U. K. Adaptive phenotypic plasticity for life-history and less fitness-related traits. Proc. R. Soc. B Biol. Sci. 286, 20190653 (2019).
Article Google Scholar
80.
Crispo, E. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. J. Evol. Biol. 21, 1460–1469 (2008).
CAS PubMed Article PubMed Central Google Scholar
81.
Scheiner, S. M. The genetics of phenotypic plasticity. XII. Temporal and spatial heterogeneity. Ecol. Evol. 3, 4596–4609 (2013).
PubMed PubMed Central Article Google Scholar
82.
Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).
PubMed Article PubMed Central Google Scholar
83.
Fordyce, J. A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383 (2006).
PubMed Article PubMed Central Google Scholar
84.
Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).
ADS CAS PubMed Article PubMed Central Google Scholar
85.
Matesanz, S., Gianoli, E. & Valladares, F. Global change and the evolution of phenotypic plasticity in plants: Global change and plasticity. Ann. N. Y. Acad. Sci. 1206, 35–55 (2010).
ADS PubMed Article PubMed Central Google Scholar
86.
Valladares, F., Gianoli, E. & Gómez, J. M. Ecological limits to plant phenotypic plasticity. New Phytol. 176, 749–763 (2007).
PubMed Article PubMed Central Google Scholar
87.
Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).
Article Google Scholar
88.
Chevin, L.-M. & Hoffmann, A. A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160138 (2017).
Article Google Scholar
89.
Pigliucci, M. Ecology and evolutionary biology of Arabidopsis. Arab. Book 1, e0003 (2002).
Article Google Scholar
90.
Volis, S., Verhoeven, K. J. F., Mendlinger, S. & Ward, D. Phenotypic selection and regulation of reproduction in different environments in wild barley. J. Evol. Biol. 17, 1121–1131 (2004).
CAS PubMed Article PubMed Central Google Scholar
91.
Sgrò, C. M. & Hoffmann, A. A. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248 (2004).
PubMed Article PubMed Central Google Scholar
92.
Reger, J., Lind, M. I., Robinson, M. R. & Beckerman, A. P. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evol. 2, 100–107 (2018).
PubMed Article PubMed Central Google Scholar
93.
Gianoli, E. & Palacio-López, K. Phenotypic integration may constrain phenotypic plasticity in plants. Oikos 118, 1924–1928 (2009).
Article Google Scholar
94.
Godoy, O., Valladares, F. & Castro-Díez, P. The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework. New Phytol. 195, 912–922 (2012).
PubMed Article PubMed Central Google Scholar
95.
Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).
CAS PubMed Article PubMed Central Google Scholar
96.
Vasseur, F. et al. Climate as a driver of adaptive variations in ecological strategies in Arabidopsis thaliana. Ann. Bot. https://doi.org/10.1101/404210 (2018).
Article PubMed PubMed Central Google Scholar
97.
Hovick, S. M. & Whitney, K. D. Propagule pressure and genetic diversity enhance colonization by a ruderal species: A multi-generation field experiment. Ecol. Monogr. 89, e01368sa (2019).
Article Google Scholar
98.
Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).
PubMed PubMed Central Article CAS Google Scholar
99.
Roach, D. A. & Wulff, R. D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 18, 209–235 (1987).
Article Google Scholar
100.
McGlothlin, J. W. & Galloway, L. F. The contribution of maternal effects to selection response: An empirical test of competing models. Evolution 68, 549–558 (2014).
PubMed Article PubMed Central Google Scholar
101.
Dechaine, J., Brock, M. & Weinig, C. Maternal environmental effects of competition influence evolutionary potential in rapeseed (Brassica rapa). Evol. Ecol. 29, 77–91 (2015).
Article Google Scholar
102.
Beddows, A. R. Lolium Multiflorum Lam. J. Ecol. 61, 587–600 (1973).
Article Google Scholar
103.
Vilà, M., Gómez, A. & Maron, J. L. Are alien plants more competitive than their native conspecifics? A test using Hypericum perforatum L. Oecologia 137, 211–215 (2003).
ADS PubMed Article PubMed Central Google Scholar
104.
Veiga, R. S. L. et al. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36, 1926–1937 (2013).
PubMed PubMed Central Google Scholar
105.
Scheiner, S. M. & Callahan, H. S. Measuring natural selection on phenotypic plasticity. Evolution 53, 1704–1713 (1999).
PubMed Article PubMed Central Google Scholar
106.
Wender, N. J., Polisetty, C. R. & Donohue, K. Density-dependent processes influencing the evolutionary dynamics of dispersal: A functional analysis of seed dispersal in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 92, 960–971 (2005).
PubMed Article PubMed Central Google Scholar
107.
Brachi, B., Aimé, C., Glorieux, C., Cuguen, J. & Roux, F. Adaptive value of phenological traits in stressful environments: Predictions based on seed production and laboratory natural election. PLoS ONE 7, e32069 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
108.
Li, B., Suzuki, J.-I. & Hara, T. Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana. Oecologia 115, 293–301 (1998).
ADS PubMed Article PubMed Central Google Scholar
109.
Ågren, J., Oakley, C. G., McKay, J. K., Lovell, J. T. & Schemske, D. W. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 110, 21077–21082 (2013).
ADS Article CAS Google Scholar
110.
Sokal, R. R. & James, R. F. Biometry the Principles and Practice of Statistics in Biological Research (W.H. Freeman, New York, 1995).
Google Scholar
111.
Stinchcombe, J. R. et al. Testing for environmentally induced bias in phenotypic estimates of natural selection: Theory and practice. Am. Nat. 160, 13 (2002).
Article Google Scholar
112.
Fischer, E. K., Ghalambor, C. K. & Hoke, K. L. Plasticity and evolution in correlated suites of traits. J. Evol. Biol. 29, 991–1002 (2016).
CAS PubMed Article PubMed Central Google Scholar
113.
Handelsman, C. A., Ruell, E. W., Torres-Dowdall, J. & Ghalambor, C. K. Phenotypic plasticity changes correlations of traits following experimental introductions of Trinidadian guppies (Poecilia reticulata). Integr. Comp. Biol. 54, 794–804 (2014).
PubMed Article PubMed Central Google Scholar More