More stories

  • in

    Probing of heavy metals in the feathers of shorebirds of Central Asian Flyway wintering grounds

    1.
    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260. https://doi.org/10.1034/j.1600-0706.2003.12559.x (2003).
    Article  Google Scholar 
    2.
    Sampath, K. Studies on the ecology of shorebirds (Aves: Charadriifonnes) of the Great Vedaranyam Salt Swamp and the Pichavaram Mangroves of India. Ph.D. Thesis, submitted to Annamalai University, South India 202 (1989).

    3.
    Sampath, K. & Krishnamurthy, K. Shorebirds (Charadriiformes) of the Pichavaram Mangroves Tamilnadu, India. Wader Study Group Bull. 58, 24–27 (1990).
    Google Scholar 

    4.
    Balachandran, S. Avian Diversity in Coastal Wetlands of India and their Conservation Needs 155–163 (International Day for biological diversity, Marine biodiversity, 2012).
    Google Scholar 

    5.
    Sandilyan, S. & Kathiresan, K. Decline of mangroves–a threat of heavy metal poisoning in Asia. Ocean Coast. Manag. 102, 161–168 (2014).
    Article  Google Scholar 

    6.
    Pandiyan, J. & Asokan, S. Habitat use pattern of tidal mud and sand flats by shorebirds (Charadriiformes) wintering in southern India. J. Coast. Cons. 20(1), 1–11 (2015).
    Google Scholar 

    7.
    CAF Report. For a Preliminary List of Regional and National Activities That Contribute to Migratory Waterbird and Habitat Conservation in the CAF Region. https://www.cms.int/sites/default/files/document/CAF_action_plan_e_0.pdf (2005).

    8.
    Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. Migratory Shorebirds of the East Asian—Australasian Flyway Population Estimates and Internationally Important Sites (Wetlands International – Oceania, Canberra, 2008).
    Google Scholar 

    9.
    Agoramoorthy, G., Chen, F. A. & Hsu, M. J. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu India. Environ. Pollut 155(2), 320–326 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    10.
    Agoramoorthy, G. & Pandiyan, J. Toxic pollution threatens migratory shorebirds in India. Environ. Sci. Pollut. Res. 23(15), 15771–15772 (2016).
    Article  Google Scholar 

    11.
    Salzano, R. & Angelone, M. Reactivity of urban environments towards legislative actions. The case of Roma (Italy). In E3S Web of Conferences.1, 22003 EDP Sciences (2013).

    12.
    Ullah, K., Hashmi, M. Z. & Malik, R. N. Heavy-metal levels in feathers of cattle egret and their surrounding environment: a case of the Punjab province, Pakistan. Arch. Environ. Contam. Toxicol. 66, 139–153 (2014).
    CAS  PubMed  Article  Google Scholar 

    13.
    Wilson, E. O. Threats to biodiversity. Am Sci. 261, 108–116 (1989).
    Article  Google Scholar 

    14.
    Huettmann, F. & Czech, B. The steady state economy for global shorebird and habitat conservation. Endang. Species Res. 2, 89–92 (2006).
    Article  Google Scholar 

    15.
    Taber, R. D. & Payne, N. F. Wildlife, Conservation, and Human Welfare: A United States and Canadian Perspective (Krieger Publishing Company, Malabar, Florida, 2003).
    Google Scholar 

    16.
    Rogers, D., Piersma, T., Lavaleye, M., Pearson, G. B. & de Goeij, P. Life Along Land’s Edge: Wildlife on the Shores of Roebuck Bay, Broome (Dept. of Conservation and Land Management, Western Kensington, 2003).
    Google Scholar 

    17.
    Custer, C. M., Custer, T. W., Michael, J. A., Alan, D. A. & David, E. W. Trace elements in Lesser Scaup (Aythyaaffinis) from the Mississippi flyway. Ecotoxicology 12, 47–54 (2003).
    CAS  PubMed  Article  Google Scholar 

    18.
    Johansen, P., Asmund, G. & Riget, F. High human exposure to lead through consumption of birds hunted with lead shot. Environ. Pollut. 127, 125–129 (2004).
    CAS  PubMed  Article  Google Scholar 

    19.
    Mansouri, N. E. et al. Research on the suitability of organosolv semi-chemical triticale fibres as reinforcement for recycled HDPE composites. Bio. Resources. 7(4), 5032–5047 (2012).
    Google Scholar 

    20.
    Syed, J. H. & Malik, R. N. Occurrence and source identification of organochlorine pesticides in the surrounding surface soils of the Ittehad Chemical Industries Kalashah Kaku, Pakistan. Environ. Earth Sci. 62(6), 1311–1321 (2011).
    CAS  Article  Google Scholar 

    21.
    Eqani, S. et al. Distribution and risk assessment of organochlorine contaminants in surface water from River Chenab, Pakistan. J. Environ. Monit. 14(6), 1645–1654 (2012).
    CAS  PubMed  Article  Google Scholar 

    22.
    Qadir, A. & Malik, R. N. Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the River Chenab, Pakistan. Biol. Trace Elem. Res. 143, 1524–1540 (2011).
    CAS  PubMed  Article  Google Scholar 

    23.
    Hashmi, H. Z., Malik, R. N. & Shahbaz, M. Heavy metals in eggshells of cattle egret (Bubulcus ibis) and little egret (Egretta garzetta) from the Punjab province, Pakistan. Ecotoxicol Environ. Saf. 89, 158–165 (2013).
    CAS  PubMed  Article  Google Scholar 

    24.
    Shahbaz, M., Khan, S. & Tahir, M. I. The dynamic links between energy consumption, economic growth, financial development and trade in China: fresh evidence from multivariate framework analysis. Energy Econ. 40, 8–21 (2013).
    Article  Google Scholar 

    25.
    Kim, J. & Koo, T. H. Heavy metal concentrations in feathers of Korean shorebirds. Arch. Environ. Contam. Toxicol. 55, 122–128 (2008).
    CAS  PubMed  Article  Google Scholar 

    26.
    Boncompagni, E. et al. Egrets as monitors of trace metal contamination in wetland of Pakistan. Arch. Environ. Contam. Toxicol. 45, 399–406 (2003).
    CAS  PubMed  Article  Google Scholar 

    27.
    Nagajyoti, P. C., Lee, K. D. & Sreekanth, T. V. M. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem. Lett. 8(3), 199–216 (2010).
    CAS  Article  Google Scholar 

    28.
    Jaishankar, M., Mathew, B. B., Shah, M. S., Murthy, K. T. P. & Gowda, S. K. R. Biosorption of few heavy metal ions using agricultural wastes. J. Environ. Pollut. Hum. Health. 2, 1–6 (2014).
    Google Scholar 

    29.
    Deng, H., Zhang, Z., Chang, C. & Wang, Y. Trace metal concentration in Great Tit (Parus major) and Greenfinch (Carduelissinica) at the Western Mountains of Beijing, China. Environ. Poll. 148, 620–626 (2007).
    CAS  Article  Google Scholar 

    30.
    Kim, J. & Koo, T. H. The use of feathers to monitor heavy metal contamination in herons, KOrea. Arch. Environ. Contam. Toxicol. 53, 435–441 (2007).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    31.
    Burger, J. & Gochfeld, M. Effects of lead and exercise on endurance and learning in young herring gulls. Ecotoxicol. Environ. Saf. 57, 136–144 (2004).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Scheifler, R., Coeurdassier, M. & Morilhat, C. Lead concentrations in feathers and blood of common blackbirds (Turdusmerula) and in earthworm inhabiting unpolluted and moderately polluted urban areas. Sci Total Environ. 371, 197–205 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Burger, J. Heavy metals in avian eggshells: another excretion method. J. Ecotoxicol. Environ. Health 41(2), 207–220 (1994).
    CAS  Article  Google Scholar 

    34.
    Furness, R. W. Birds as monitors of environmental change 102–120 (Chapman, New Yok, 1993).
    Google Scholar 

    35.
    Bostan, N., Ashrif, M., Mumtaz, A. S. & Ahmad, I. Diagnosis of heavy metal contamination in agro-ecology of Gujranwala, Pakistan using cattle egret as bioindicator. Ecotoxicology 6, 247–251 (2007).
    Article  CAS  Google Scholar 

    36.
    Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. & Thornton, I. Metal contamination in urban, suburban and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci. Total Environ. 356, 45–61 (2006).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Balachandran, S., Sathiyaselvam, P. & Panda, S. Bird atlas of Chilka (ed. BNHS) 1–326 (BNHS, 2009).

    38.
    Sugathan, R. Observations on Spoon billed Sandpiper (Eurynorhynchus pygmaeus) in its wintering ground at Point Calimere, Thanjavur District, Tamil Nadu. J. Bombay Nat. Hist. Soc. 82(2), 407–409 (1985).
    Google Scholar 

    39.
    Spoon-billed Sandpiper Task Force. News Bull. No 19 (2018).

    40.
    Pandiyan, J. & Jagadheesan, R. Population characteristics of migratory shorebirds in the Point Calimere Wildlife Sanctuary, Tamil Nadu, India. J. Sci. Trans. Environ. Technov. 10(1), 31–36 (2016).
    Google Scholar 

    41.
    Manikannan, R. Diversity of Water birds in the point Calimere wildlife sanctuary, Tamil Nadu, India. Ph.D. thesis submitted to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India 264 (2011)

    42.
    Kathiresan, K. A review of studies on Pichavaram mangrove, southeast India. Hydrobiologia 430(1–3), 185–205 (2000).
    Article  Google Scholar 

    43.
    Godhantaraman, N. Seasonal variations in species composition, abundance, biomass and estimated production rates of tintinnids at tropical estuarine and mangrove waters, Parangipettai, southeast coast of India. J. Mar. Syst. 36, 161–171 (2002).
    Article  Google Scholar 

    44.
    Rajendran, N. & Kathiresan, K. How to increase juvenile shrimps in mangrove waters?. Wetlands Ecol. Manage. 12–3, 179–188 (2004).
    Article  Google Scholar 

    45.
    Nagarajan, R. & Thiyagesan, K. Waterbirds and substrate quality of the Pichavaram wetlands, southern India. Ibis. 138, 710–721 (1996).
    Article  Google Scholar 

    46.
    Burger, J. & Gochfeld, M. Metals in Laysan Albatrosses from Midway Atoll. Arch Environ Contamin. Toxicol. 38, 254–259 (2000).
    CAS  Article  Google Scholar 

    47.
    Dauwe, T., Bervoets, L., Blust, R., Pinxten, R. & Eens, M. Can excrements and feathers of nestling songbirds be used as a biomonitor for heavy metal pollution. Arch. Environ Contam Toxicol. 39, 541–546 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Nyholm, N. E. Y. Monitoring of terrestrial environmental metal pollution by means of free-living insectivorous birds. Ann. Chim. 85, 343–351 (1995).
    CAS  Google Scholar 

    49.
    Kim, J. & Oh, J. M. Monitoring of heavy metal contaminants using feathers of shorebirds Korea. J. Environ. Monit. 14, 651 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    50.
    Dauwe, T. et al. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol. Ind. 1, 227–234 (2002).
    CAS  Article  Google Scholar 

    51.
    Sokal, R. R. & Rohlf, F. I. Biometry: The Principles and Practice of Statistics in Biological Research 1–776 (W.H. Freeman, New York, 2012).
    Google Scholar 

    52.
    Sandilyan, S. Habitat quality and waterbird utilization pattern of Pichavaram wetlands southern India. Ph.D. Thesis, Bharathidasan University, Tiruchirapalli, India 287 (2009)

    53.
    Loska, K. & Wiechuła, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51(8), 723–773 (2003).
    ADS  CAS  PubMed  Article  Google Scholar 

    54.
    Balachandran, S. Avian Diversity in Coastal Wetlands of India and their Conservation Needs. International Day for biological diversity 155–163 (Uttar Pradesh State Biodiversity Board, Lucknow, 2012).
    Google Scholar 

    55.
    Worrall, D. H. Diet of the Dunlin Calidris alpina in the Severn estuary. Bird Study 31(3), 203–212 (1984).
    Article  Google Scholar 

    56.
    Pienkowski, M. W. Aspects of the ecology and behaviour of ringed and grey plovers charadrius hiaticula and pluvialis squatarola, Durham theses, Durham University. Durham E-Theses Online. http://etheses.dur.ac.uk/7868/ (1980).

    57.
    Hayman, P., Marchant, J., Prater, T. & Helm, C. Book for Shorebirds (1986)

    58.
    Higgins, P. J. & Davies, S. J. J. F. (eds) Handbook of Australian, New Zealand and Antarctic Birds Snipe to Pigeons (. Oxford University Press, Oxford, 1996).
    Google Scholar 

    59.
    Ali, S. The Book of Indian Birds 1–326 (Bombay Natural History Society and Oxford University Press, Oxford, Mumbai, 2002).
    Google Scholar 

    60.
    Everaarts, J. M. et al. Copper, zinc and cadmium in benthic organisms from the Java Sea and estuarine and coastal areas around East Java. Netherl. J. Sea Res. 23(4), 415–426 (1989).
    ADS  CAS  Article  Google Scholar 

    61.
    Philips, D. J. H. The common mussels Mytilus edulis as an indicator of pollution by zinc, cadmium, lead, and copper. Effects of environmental variables on uptake of metals. Mar. Biol. 38, 59–69 (1976).
    Article  Google Scholar 

    62.
    Michael, H. Trace metals in the tissues and shells of Tympanotonus Fuscatus var Radula from the Mangrove Swamps of the Bukuma Oil Field, Niger Delta. Eur. J. Sci. Res. 24(4), 468–547 (2008).
    Google Scholar 

    63.
    Howarth, D. M., Hulbert, A. J. & Horning, D. A comparative Study of Heavy Metal Accumulation in Tissues of the Crested Tern, Sterna bergii, Breeding near Industrialized and Non-Industrialized Areas. Austr. Wildl. Res. 8, 665–672 (1981).
    CAS  Article  Google Scholar 

    64.
    Zdziarski, J. M., Mattix, M. & Bush, R. M. Zinc toxicosis in diving ducks. J. Zool. Wildl. Med. 25, 438–445 (1994).
    Google Scholar 

    65.
    Vanderzee, J., Zwart, P. & Schotman, A. J. H. Zinc poisoning in a Nicobar pigeon. J. Zool. Anim. Med. 16, 68–69 (1985).
    Article  Google Scholar 

    66.
    Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. Migratory Shorebirds of the East Asian—Australasian Flyway; Population Estimates and Internationally Important Sites (Wetlands International – Oceania, Canberra, 2008).
    Google Scholar 

    67.
    Balachandaran. International Day for Biological diversity. Marin Diversity. 155–163 (2006).

    68.
    Jerez, S. et al. Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ. Pollut. 159, 2412–2419 (2011).
    CAS  PubMed  Article  Google Scholar 

    69.
    Markowski, M. et al. Avian feathers as bioindicators of the exposure to heavy metal contamination of food. Bull. Environ. Contam. Toxicol. 91, 302–305 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    70.
    Lim, H. C. & Posa, C. Distribution and prey of migratory shorebirds on the northern coastline of Singapore. Raffles Bull. Zool. 62, 701–717 (2014).
    Google Scholar 

    71.
    Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in great knots in tropical Australia fuelling for long-distance flight. Emu. 103(2), 97–103 (2003).
    Article  Google Scholar 

    72.
    Hockey, B. A., & Rayner, M. Comparison of grammar-based and statistical language models trained on the same data. In Proceedings of the AAAI Workshop on Spoken Language Understanding (2005).

    73.
    Mado-Filho, G. M. et al. Heavy metals in benthic organisms from Todosos Santos Bay, Brazil. Braz. J. Biol. 68(1), 95–100 (2008).
    Article  Google Scholar 

    74.
    Flora, G., Deepesh, G. & Archana, T. Toxicity of lead: a review with recent updates. Interdiscip. Toxicol. 5(2), 47–58 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    75.
    Metcheva, R., Yurukova, L., Teodorova, S. & Nikolova, E. The penguin feathers as bioindicator of Antarctic environmental state. Environ. Monit. Assess. 362, 259–265 (2006).
    CAS  Google Scholar 

    76.
    Goss-Custard, J. D. & Jones, R. E. The diets of redshank and curlew. Bird Study 23(3), 233–243 (1976).
    Article  Google Scholar 

    77.
    Dhanakumar, S., Solaraj, G. & Mohanraj, R. Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region India Ecotoxicol. Environ. Saf. 113, 145–151 (2015).
    CAS  Article  Google Scholar 

    78.
    Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E. & Anderson, N. L. Mercury trophic transfer in a eutrophic lake: the importance of habitat-specific foraging. Ecol. Appl. 18, A196–A212 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    79.
    Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E. & Moyle, P. B. Changes in fish diets and food web mercury bioaccumulation induced by an invasive planktivorous fish. Ecol. Appl. 18, A213–A226 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    80.
    Wyn, B., Kidd, K. A., Burgess, N. M. & Curry, R. A. Mercury bio-magnification in the food webs of acidic lakes in Kejimkujik National Park and National Historic Site, Nova Scotia. Can. J. Fish Aquat. Sci. 66, 1532–1545 (2009).
    CAS  Article  Google Scholar 

    81.
    Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst. 29, 543–566 (1998).
    Article  Google Scholar 

    82.
    Wolfe, M., Schwarzbach, S. & Sulaiman, R. A. Effects of Mercury on wildlife: a comprehensive review. Toxicol. Chem. 17, 146–160 (1998).
    CAS  Article  Google Scholar 

    83.
    Eisler, R. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review (No. 11). Fish and Wildlife Service, US Department of the Interior. (1987).

    84.
    Arcas, J. Diet and prey selection of Common Sandpiper Actitis hypoleucos during winter. Int. J. Ornithol. 51(1), 203–213 (2004).
    Google Scholar 

    85.
    Zhang, L., Khaloo, S. S., Kuban, P. & Hauser, P. C. Analysis of electroplating baths by capillary electrophoresis with high voltage contactless conductivity detection. Meas. Sci. Technol. 17(12), 3317 (2006).
    ADS  CAS  Article  Google Scholar 

    86.
    Abdullah, M. et al. Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: a case study from severely contaminated areas. Chemosphere 119, 553–561 (2015).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    87.
    Astorga España, M. S., Rodríguez Rodríguez, E. M. & Díaz Romero, C. Manganese, nickel, selenium and cadmium in molluscs from the Magellan Strait, Chile. Food Addit. Contamin. 21(8), 768–773 (2004).
    Article  CAS  Google Scholar 

    88.
    Dange, S. & Manoj, K. Bioaccumulation of heavy metals in sediment, polychaetes (annelid) worms, mud skipper and mud crab at Purna River Estuary, Navsari, Gujarat, India. Int. J. Curr. Microbiol. Appl. Sci. 4(9), 571–575 (2015).
    CAS  Google Scholar 

    89.
    Honda, K., Lee, D. P. & Tatsukawa, R. Lead poisoning in swans in Japan. Environ. Pollut. 65(3), 209–218 (1990).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    90.
    Youssef, M. & El-Sorogy, A. Environmental assessment of heavy metal contamination in bottom sediments of Al-Kharrar lagoon, Rabigh, Red Sea, Saudi Arabia. Arab. J. Geosci. 9, 474 (2016).
    Article  CAS  Google Scholar 

    91.
    Youssef, M., Madkour, H., Mansour, A., Alharbi, W. & El-Taher, A. Invertebrate shells (mollusca, foraminifera) as pollution indicators, Red Sea Coast, Egypt. J. Afr. Earth Sci. 133, 74–85 (2017).
    ADS  CAS  Article  Google Scholar 

    92.
    Roginski, E. E. & Mertz, W. A biphasic response of rats to cobalt. J. Nutr. 107, 1537–1542 (1977).
    CAS  PubMed  Article  Google Scholar 

    93.
    Catsiki, V. A., Katsilieri, Ch. & Gialamas, V. Chromium distribution in benthic species from a gulf receiving tannery wastes (Gulf of Geras—Lesbos island, Greece). Sci. Total Environ. 145(2), 173–185 (1994).
    ADS  CAS  Article  Google Scholar 

    94.
    Ghani, A. Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egypt. Acad. J. Biol. Sci. 2(1), 9–15 (2011).
    Google Scholar 

    95.
    Hon, M. et al. Speciation study of chromium, copper and nickel in coastal estuarine sediments polluted by domestic and industrial effluents. Mar. Pollut. Bull. 34(11), 949–959 (1997).
    Article  Google Scholar 

    96.
    Burger, J. et al. Mercury, lead, cadmium, arsenic, chromium and selenium in feathers of shorebirds during migrating through Delaware Bay, New Jersey: comparing the 1990s and 2011/2012. Toxics 3, 63–74 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Janssens, E., Dauwe, T., Bervoets, L. & Eens, M. Inter and intraclutch variability in heavy metals in feathers of Great tit nestlings (Parus major) along a pollution gradient. Arch. Environ. Contam. Toxicol. 43, 323–329 (2002).
    CAS  PubMed  Article  Google Scholar 

    98.
    Burger, J. & Gochfeld, M. Metal levels in feathers of 12 species of seabirds from MidwayAtoll in the northern Pacific Ocean. Sci. Total Environ. 257, 37–52 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    99.
    Mullin, D. W., Graham, A., Schoenjahn, M. J. & Walter, G. H. Phylogeography of the are Australian endemic Grey Falcon Falco hypoleucos: implications for conservation. Bird Conserv. Int. 30, 447–455 (2020).
    Article  Google Scholar 

    100.
    Lacerda, L. D., Bidone, E. D., Guimaraes, A. F. & Pfeiffer, W. C. Mercury concentrations in fish from the Itacaiúnas-Parauapebas River system, Carajás region, Amazon. Anais Acad. Bras. Ciênc. 66(3), 373–379 (1994).
    CAS  Google Scholar  More

  • in

    Currently monitored microplastics pose negligible ecological risk to the global ocean

    1.
    Law, K. & Thompson, R. C. Microplastics in the seas—concern is rising about widespread contamination of the marine environment by microplastics. Science (80-.) 345, 144–145 (2014).
    ADS  CAS  Article  Google Scholar 
    2.
    Amaral-Zettler, L. A. et al. The biogeography of the plastisphere: implications for policy. Front. Ecol. Environ. 13, 541–546 (2015).
    Article  Google Scholar 

    3.
    Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. U. S. A. 113, 2430–2435 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    4.
    Della Torre, C. et al. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ. Sci. Technol. 48, 12302–12311 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    5.
    Cole, M. & Galloway, T. S. Ingestion of nanoplastics and microplastics by pacific oyster larvae. Environ. Sci. Technol. 49, 14625–14632 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    6.
    Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M. & Thompson, R. C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42, 5026–5031 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    8.
    Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).
    CAS  PubMed  Article  Google Scholar 

    9.
    Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17 (2015).
    PubMed  Article  CAS  Google Scholar 

    10.
    Green, D. S. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ. Pollut. 216, 95–103 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Lenz, R., Enders, K. & Nielsen, T. G. Microplastic exposure studies should be environmentally realistic. Proc. Natl. Acad. Sci. U. S. A. 113, E4121–E4122 (2016).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Connors, K. A., Dyer, S. D. & Belanger, S. E. Advancing the quality of environmental microplastic research. Environ. Toxicol. Chem. 36, 1697–1703 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    13.
    Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps. Environ. Toxicol. Chem. 37, 2776–2796 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Council, N. R. Risk Assessment in the Federal Government: managing the process. (1983).

    15.
    Suter II, G. W. Ecological Risk Assessment (CRC Press, Boca Raton, 2007).
    Google Scholar 

    16.
    Beiras, R. Marine Pollution. Sources, fate and effects of pollutants in coastal ecosystems. (Elsevier, 2018).

    17.
    Adam, V., Yang, T. & Nowack, B. Toward an ecotoxicological risk assessment of microplastics: comparison of available hazard and exposure data in freshwaters. Environ. Toxicol. Chem. 38, 436–447 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    18.
    US EPA. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. PB85–227049. Environ. Prot. 105 (2010).

    19.
    European Commission. Common Implementation Strategy for the WFD (2000/60.EC), Guidance Document No . 27, Technical Guidance For Deriving Environmental Quality Standards. (2011). https://doi.org/10.2779/43816.

    20.
    de Lucia, G. A. et al. Amount and distribution of neustonic micro-plastic off the western Sardinian coast (Central-Western Mediterranean Sea). Mar. Environ. Res. 100, 10–16 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    21.
    Law, K. L. et al. Plastic accumulation in the North Atlantic subtropical gyre. Science (80-.) 329, 1185–1188 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Goldstein, M. C., Rosenberg, M. & Cheng, L. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol. Lett. 8, 817–820 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Carpenter, E. J. & Smith, K. L. Plastics on the Sargasso sea surface. Science (80-.) 175, 1240–1241 (1972).
    ADS  CAS  Article  Google Scholar 

    24.
    Doyle, M. J., Watson, W., Bowlin, N. M. & Sheavly, S. B. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar. Environ. Res. 71, 41–52 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    25.
    Collignon, A. et al. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 64, 861–864 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Reisser, J. et al. Marine plastic pollution in waters around Australia: Characteristics, concentrations, and pathways. PLoS ONE 8 (2013).

    27.
    Law, K. L. et al. Distribution of surface plastic debris in the eastern Pacific ocean from an 11-year data set. Environ. Sci. Technol. 48, 4732–4738 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Collignon, A., Hecq, J. H., Galgani, F., Collard, F. & Goffart, A. Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Mar. Pollut. Bull. 79, 293–298 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Cózar, A. et al. Plastic accumulation in the mediterranean sea. PLoS ONE 10, 1–12 (2015).
    Article  CAS  Google Scholar 

    30.
    Panti, C. et al. Occurrence, relative abundance and spatial distribution of microplastics and zooplankton NW of Sardinia in the Pelagos Sanctuary Protected Area Mediterranean Sea. Environ. Chem. 12, 618–626 (2015).
    CAS  Article  Google Scholar 

    31.
    Pedrotti, M. L. et al. Changes in the floating plastic pollution of the mediterranean sea in relation to the distance to land. PLoS ONE 11, 1–14 (2016).
    Article  CAS  Google Scholar 

    32.
    Suaria, G. et al. The Mediterranean Plastic Soup: Synthetic polymers in Mediterranean surface waters. Sci. Rep. 6 (2016).

    33.
    Isobe, A., Uchiyama-Matsumoto, K., Uchida, K. & Tokai, T. Microplastics in the Southern Ocean. Mar. Pollut. Bull. 114, 623–626 (2017).
    CAS  PubMed  Article  Google Scholar 

    34.
    Cózar, A. et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Sci. Adv. 3, 1–9 (2017).
    Article  CAS  Google Scholar 

    35.
    Jensen, L. H., Motti, C. A., Garm, A. L., Tonin, H. & Kroon, F. J. Sources, distribution and fate of microfibres on the Great Barrier Reef Australia. Sci. Rep. 9, 1–15 (2019).
    Article  CAS  Google Scholar 

    36.
    Mu, J. et al. Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Mar. Pollut. Bull. 143, 58–65 (2019).
    CAS  PubMed  Article  Google Scholar 

    37.
    Poulain, M. et al. Small microplastics as a main contributor to plastic mass balance in the north atlantic subtropical gyre. Environ. Sci. Technol. 53, 1157–1164 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    38.
    Ivar do Sul, J. A., Costa, M. F., Barletta, M. & Cysneiros, F. J. A. Pelagic microplastics around an archipelago of the Equatorial Atlantic. Mar. Pollut. Bull. 75, 305–309 (2013).
    CAS  PubMed  Article  Google Scholar 

    39.
    Desforges, J. P. W., Galbraith, M., Dangerfield, N. & Ross, P. S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 79, 94–99 (2014).
    CAS  PubMed  Article  Google Scholar 

    40.
    Lusher, A. L., Burke, A., O’Connor, I. & Officer, R. Microplastic pollution in the Northeast Atlantic Ocean: Validated and opportunistic sampling. Mar. Pollut. Bull. 88, 325–333 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 1–9 (2015).
    Article  CAS  Google Scholar 

    42.
    Enders, K., Lenz, R., Stedmon, C. A. & Nielsen, T. G. Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 100, 70–81 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Amélineau, F. et al. Microplastic pollution in the Greenland Sea: background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut. 219, 1131–1139 (2016).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    44.
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 1–9 (2019).
    Article  CAS  Google Scholar 

    45.
    Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 11, 1–11 (2020).
    Article  CAS  Google Scholar 

    46.
    Rist, S. et al. Quantification of plankton-sized microplastics in a productive coastal Arctic marine ecosystem. Environ. Pollut. 266, 115248 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. U. S. A. 111, 10239–10244 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Zhao, S., Zhu, L., Wang, T. & Li, D. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution. Mar. Pollut. Bull. 86, 562–568 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    49.
    Yamashita, R. & Tanimura, A. Floating plastic in the Kuroshio Current area, western North Pacific Ocean. Mar. Pollut. Bull. 54, 464–488 (2007).
    Article  CAS  Google Scholar 

    50.
    Kukulka, T., Proskurowski, G., Morét-Ferguson, S., Meyer, D. W. & Law, K. L. The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophys. Res. Lett. 39, 1–6 (2012).
    Article  Google Scholar 

    51.
    Isobe, A., Uchida, K., Tokai, T. & Iwasaki, S. East Asian seas: a hot spot of pelagic microplastics. Mar. Pollut. Bull. 101, 618–623 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Frias, J. P. G. L., Otero, V. & Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95, 89–95 (2014).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    53.
    Gouin, T. et al. Toward the development and application of an environmental risk assessment framework for microplastic. Environ. Toxicol. Chem. 38, 2087–2100 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Erni-Cassola, G., Zadjelovic, V., Gibson, M. I. & Christie-Oleza, J. A. Distribution of plastic polymer types in the marine environment A meta-analysis. J. Hazard. Mater. 369, 691–698 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Jeong, C. B. et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci. Rep. 7, 1–11 (2017).
    ADS  Article  CAS  Google Scholar 

    56.
    Fernández, B. & Albentosa, M. Insights into the uptake, elimination and accumulation of microplastics in mussel. Environ. Pollut. 249, 321–329 (2019).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    57.
    Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop pecten maximus at environmentally realistic concentrations. Environ. Sci. Technol. 52, 14480–14486 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Baumann, L., Schmidt-Posthaus, H., Segner, H. & Wolf, J. C. Comment on ‘uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver’. Environ. Sci. Technol. 50, 12521–12522 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    59.
    González-Pleiter, M. et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci. Nano 6, 1382–1392 (2019).
    Article  Google Scholar 

    60.
    Enfrin, M. et al. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces. J. Hazard. Mater. 384, 121393 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Song, Y. K. et al. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ. Sci. Technol. 48, 9014–9021 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    62.
    Colton, J. B., Knapp, F. D. & Burns, B. R. Plastic particles in surface waters of the Northwestern Atlantic. Science (80-.) 185, 491–497 (1974).
    ADS  Article  Google Scholar 

    63.
    Ryan, P. G. The characteristics and distribution of plastic particles at the sea-surface off the southwestern Cape Province South Africa. Mar. Environ. Res. 25, 249–273 (1988).
    Article  Google Scholar 

    64.
    Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 1–8 (2014).
    Google Scholar 

    65.
    Beer, S., Garm, A., Huwer, B., Dierking, J. & Nielsen, T. G. No increase in marine microplastic concentration over the last three decades—a case study from the Baltic Sea. Sci. Total Environ. 621, 1272–1279 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    Sjollema, S. B., Redondo-Hasselerharm, P., Leslie, H. A., Kraak, M. H. S. & Vethaak, A. D. Do plastic particles affect microalgal photosynthesis and growth?. Aquat. Toxicol. 170, 259–261 (2016).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Gambardella, C. et al. Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels. Mar. Environ. Res. 141, 313–321 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Gardon, T., Reisser, C., Soyez, C., Quillien, V. & Le Moullac, G. Microplastics affect energy balance and gametogenesis in the pearl oyster pinctada margaritifera. Environ. Sci. Technol. 52, 5277–5286 (2018).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Durán, I. & Beiras, R. Acute water quality criteria for polycyclic aromatic hydrocarbons, pesticides, plastic additives, and 4-Nonylphenol in seawater. Environ. Pollut. 224, 384–391 (2017).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    70.
    van Straalen, N. M. & Denneman, C. A. J. Ecotoxicological evaluation of soil quality criteria. Ecotoxicol. Environ. Saf. 18, 241–251 (1989).
    PubMed  Article  Google Scholar 

    71.
    SCHEER. Scientific advice on Guidance document n°27: Technical guidance for deriving environmental quality standards. Scientific Committee on Health, Environmental and Emerging Risks (2017).

    72.
    Pfister, R., Schwarz, K. A., Janczyk, M. & Rick Daleand, J. B. F. Good things peak in pairs: a note on the bimodality coefficient. Front. Psychol. 4, 1–3 (2013).
    Google Scholar 

    73.
    Padfield, D. & Matheson, G. nls.multstart: Robust Non-Linear Regression using AIC Scores. R package version 1.0.0. (2018).

    74.
    Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).
    Article  Google Scholar 

    75.
    R Core Team. R: A language and environment for statistical computing. R fundation, Vienna Austria (2019). More

  • in

    An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health

    1.
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Ellis, E. C., Goldewijk, K. K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
    Google Scholar 

    3.
    Concepción, E. D., Moretti, M., Altermatt, F., Nobis, M. P. & Obrist, M. K. Impacts of urbanisation on biodiversity: the role of species mobility, degree of specialisation and spatial scale. Oikos 124, 1571–1582 (2015).
    Article  Google Scholar 

    4.
    Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).
    PubMed  Article  Google Scholar 

    5.
    Callaghan, C. T. et al. Generalists are the most urban-tolerant of birds: a phylogenetically controlled analysis of ecological and life history traits using a novel continuous measure of bird responses to urbanization. Oikos 128, 845–858 (2019).
    Article  Google Scholar 

    6.
    Ducatez, S., Sayol, F., Sol, D. & Lefebvre, L. Are urban vertebrates city specialists, artificial habitat exploiters, or environmental generalists? Integr. Comp. Biol. 58, 929–938 (2018).
    PubMed  Article  Google Scholar 

    7.
    Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).
    Article  Google Scholar 

    8.
    Lyons, J., Mastromonaco, G., Edwards, D. B. & Schulte-Hostedde, A. I. Fat and happy in the city: eastern chipmunks in urban environments. Behav. Ecol. 28, 1464–1471 (2017).
    Article  Google Scholar 

    9.
    Meillère, A. et al. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci. Total Environ. 566–567, 93–101 (2016).
    ADS  PubMed  Article  CAS  Google Scholar 

    10.
    Soto-Calderón, I., Acevedo-Garcés, Y., Álvarez-Cardona, J., Hernandez, C. & García, G. Physiological and parasitological implications of living in a city: the case of the white-footed tamarin (Saguinus leucopus). Am. J. Primatol. 78, (2016).

    11.
    Sillero-Zubiri, C., Sukumar, R. & Treves, A. Living with wildlife: the roots of conflict and the solutions. In Key Topics in Conservation Biology (eds. MacDonald, D. & Service, K.) 255–272 (2006).

    12.
    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Hanning, I. & Diaz-Sanchez, S. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3, 51 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Mockler, B. K., Kwong, W. K., Moran, N. A. & Koch, H. Microbiome structure influences infection by the parasite Crithidia bombi in bumble bees. Appl. Environ. Microbiol. 84, e02335-e2417 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Suzuki, T. A. Links between natural variation in the microbiome and host fitness in wild mammals. Integr. Comp. Biol. 57, 756–769 (2017).
    CAS  PubMed  Article  Google Scholar 

    18.
    Kirchoff, N. S., Udell, M. A. & Sharpton, T. J. The gut microbiome correlates with conspecific aggression in a small population of rescued dogs (Canis familiaris). PeerJ 7, e6103 (2019).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    19.
    Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Teyssier, A. et al. Inside the guts of the city: urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    21.
    Murray, M. H. et al. Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS ONE 15, 1–16 (2020).
    Google Scholar 

    22.
    Phillips, J. N., Berlow, M. & Derryberry, E. P. The effects of landscape urbanization on the gut microbiome: an exploration into the gut of urban and rural white-crowned sparrows. Front. Ecol. Evol. 6, 148 (2018).
    Article  Google Scholar 

    23.
    Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: experimental evidence from a wild passerine. Proc. R. Soc. B Biol. Sci. 287, (2020).

    24.
    Stothart, M. R., Palme, R. & Newman, A. E. M. It’s what’s on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc. R. Soc. B Biol. Sci. 286, (2019).

    25.
    Becker, C. G., Longo, A. V., Haddad, C. F. B. & Zamudio, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. R. Soc. B Biol. Sci. 284, 20170582 (2017).
    Article  Google Scholar 

    26.
    Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).
    Article  Google Scholar 

    27.
    Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5, 14862 (2015).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B Biol. Sci. 286, (2019).

    29.
    Nelson, T. M., Rogers, T. L., Carlini, A. R. & Brown, M. V. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ. Microbiol. 15, 1132–1145 (2013).
    CAS  PubMed  Article  Google Scholar 

    30.
    Wasimuddin, et al. Gut microbiomes of free-ranging and captive Namibian cheetahs: diversity, putative functions and occurrence of potential pathogens. Mol. Ecol. 26, 5515–5527 (2017).
    CAS  PubMed  Article  Google Scholar 

    31.
    Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).
    CAS  PubMed  Article  Google Scholar 

    32.
    Gehrt, S. D. & Riley, S. P. D. Coyotes (Canis latrans). in Urban Carnivores: Ecology, Conflict, and Conservation (eds. Gehrt, S. D., Riley, S. P. D. & Cypher, B. L.) 79–95 (2010).

    33.
    Breck, S. W., Poessel, S. A., Mahoney, P. & Young, J. K. The intrepid urban coyote: a comparison of bold and exploratory behavior in coyotes from urban and rural environments. Sci. Rep. 9, 2104 (2019).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Gier, H. T. Coyotes in Kansas. (1968).

    35.
    Murray, M. H. et al. Greater consumption of protein-poor anthropogenic food by urban relative to rural coyotes increases diet breadth and potential for human-wildlife conflict. Ecography 38, 001–008 (2015).
    Article  Google Scholar 

    36.
    Massolo, A., Liccioli, S., Budke, C. & Klein, C. Echinococcus multilocularis in North America: the great unknown. Parasite 21, 73 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Murray, M. H., Edwards, M. A., Abercrombie, B. & St. Clair, C. C. Poor health is associated with use of anthropogenic resources in an urban carnivore. Proc. R. Soc. B Biol. Sci. 282, 20150009 (2015).

    38.
    Murray, M. H., Hill, J., Whyte, P. & St. Clair, C. C. Urban compost attracts coyotes, contains toxins, and may promote disease in urban-adapted wildlife. Ecohealth 13, 285–292 (2016).

    39.
    Luong, L. T., Chambers, J. L., Moizis, A., Stock, T. & St. Clair, C. Helminth parasites and zoonotic risk associated with urban coyotes (Canis latrans) in Alberta, Canada. J. Helminthol. 94, e25 (2020).

    40.
    Corbin, E. et al. Spleen mass as a measure of immune strength in mammals. Mamm. Rev. 38, 108–115 (2008).
    Article  Google Scholar 

    41.
    Newsome, S. D., Ralls, K., Van Horn Job, C., Fogel, M. L. & Cypher, B. L. Stable isotopes evaluate exploitation of anthropogenic foods by the endangered San Joaquin kit fox (Vulpes macrotis mutica). J. Mammol. 91, 1313–1321 (2010).

    42.
    Huot, J., Poulle, M. & Crate, M. Evaluation of several indices for assessment of coyote (Canis latrans) body composition. Can. J. Zool. 73, 1620–1624 (1995).
    Article  Google Scholar 

    43.
    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2016).
    PubMed  Article  Google Scholar 

    44.
    Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio 9, e01294-e1318 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Conlon, M. A. & Bird, A. R. The impact of diet and lifestyle on gut microbiota and human health. Nutrition 7, 17–44 (2015).
    Google Scholar 

    47.
    Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).
    CAS  PubMed  Article  Google Scholar 

    48.
    Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    49.
    Vieco-Saiz, N. et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 10, 1–17 (2019).
    Article  Google Scholar 

    50.
    Karasov, W. H. & Douglas, A. E. Comparative digestive physiology. Comp. Physiol. 3, 741–783 (2013).
    Google Scholar 

    51.
    Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).
    CAS  PubMed  Article  Google Scholar 

    52.
    AlShawaqfeh, M. K. et al. A dysbiosis index to assess microbial changes in fecal samples of dogs with chronic inflammatory enteropathy. FEMS Microbiol. Ecol. 93, 1–8 (2017).
    Article  CAS  Google Scholar 

    53.
    Beldomenico, P. M. & Begon, M. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol. Evol. 25, 21–27 (2010).
    PubMed  Article  Google Scholar 

    54.
    Newsome, S. D., Garbe, H. M., Wilson, E. C. & Gehrt, S. D. Individual variation in anthropogenic resource use in an urban carnivore. Oecologia 178, 115–128 (2015).
    ADS  PubMed  Article  Google Scholar 

    55.
    Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum – symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Bermingham, E. N., Maclean, P., Thomas, D. G., Cave, N. J. & Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 5, e3019 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Alessandri, G. et al. Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environ. Microbiol. 21, 1331–1343 (2019).
    CAS  PubMed  Article  Google Scholar 

    59.
    Schmidt, M. et al. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PLoS ONE 13, e0201279 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Sandri, M., Dal Monego, S., Conte, G., Sgorlon, S. & Stefanon, B. Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs. BMC Vet. Res. 13, 1–11 (2017).
    Google Scholar 

    61.
    Moon, C. D., Cookson, A. L., Young, W., Maclean, P. H. & Bermingham, E. N. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen 7, e677 (2018).
    Article  Google Scholar 

    62.
    Wu, X. et al. Analysis and comparison of the wolf microbiome under different environmental factors using three different data of next generation sequencing. Sci. Rep. 7, 11332 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    63.
    Wang, B. & Wang, X.-L. Species diversity of fecal microbial flora in Canis lupus familiaris infected with canine parvovirus. Vet. Microbiol. 237, 108390 (2019).
    PubMed  Article  Google Scholar 

    64.
    Chen, L. et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat. Immunol. 18, 541–551 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Martínez, I. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7, 269–280 (2013).
    PubMed  Article  CAS  Google Scholar 

    66.
    Liu, Y. et al. Splenectomy leads to amelioration of altered gut microbiota and metabolome in liver cirrhosis patients. Front. Microbiol. 9, 1–13 (2018).
    Article  Google Scholar 

    67.
    Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P. & French, S. S. Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J. Anim. Ecol. 80, 710–730 (2011).
    PubMed  Article  Google Scholar 

    68.
    Sugden, S. A., St. Clair, C. C. & Stein, L. Y. Individual and site-specific variation in a biogeographical profile of the coyote intestinal microbiota. Microb. Ecol. (2020).

    69.
    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Leung, J. M., Graham, A. L. & Knowles, S. C. L. Parasite-microbiota interactions with the vertebrate gut: synthesis through an ecological lens. Front. Microbiol. 9, 843 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Animal behavior and the microbiome. Science 338, 198–199 (2012).
    ADS  CAS  PubMed  Article  Google Scholar 

    72.
    Stewart, R. E. A., Stewart, B. E., Stirling, I. & Street, E. Counts of growth layer groups in cementum and dentine in ringed seals. Mar. Mammal Sci. 12, 383–401 (1996).
    Article  Google Scholar 

    73.
    Linhart, S. B. & Knowlton, F. F. Determining age of coyotes by tooth cementum layers. J. Wildl. Manage. 31, 362–365 (1967).
    Article  Google Scholar 

    74.
    Jahren, A. H. & Kraft, R. A. Carbon and nitrogen stable isotopes in fast food: signatures of corn and confinement. Proc. Natl. Acad. Sci. 105, 17855–17860 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    75.
    Parnell, A. C. simmr: a stable isotope mixing model. (2019).

    76.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    77.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Article  Google Scholar 

    78.
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    79.
    Trachsel, D., Deplazes, P. & Mathis, A. Identification of taeniid eggs in the faeces from carnivores based on multiplex PCR using targets in mitochondrial DNA. Parasitology 134, 911–920 (2007).
    CAS  PubMed  Article  Google Scholar 

    80.
    R Core Team. R: A language and environment for statistical computing. (2019).

    81.
    Chao, A. et al. Rarefaction and extrapolation of phylogenetic diversity. Methods Ecol. Evol. 6, 380–388 (2015).
    Article  Google Scholar 

    82.
    Kembel, S. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
    CAS  Article  Google Scholar 

    83.
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
    Article  Google Scholar 

    84.
    Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).
    PubMed  Article  Google Scholar 

    85.
    Fernandes, A., Macklaim, J. M., Linn, T., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE 8, e67019 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases

    1.
    Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. A. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40(1), 111–124 (2003).
    Article  Google Scholar 
    2.
    Sutherst, R. W. et al. Pests under global change—meeting your future landlords? In Terrestrial Ecosystems in a Changing World (eds Canadell, J. G. et al.) 211–223 (Springer, Berlin, 2007).
    Google Scholar 

    3.
    Sutherst, R.W., Arthropods as disease vectors in a changing environment. In Ciba Foundation Symposium 175—Environmental Change and Human Health (Wiley, 2007), pp. 124–145.

    4.
    Vogl, G. et al. Modelling the spread of ragweed: Effects of habitat, climate change and diffusion. Eur. Phys. J. Spec. Top. 161, 167–173 (2008).
    Article  Google Scholar 

    5.
    Scherm, H., Climate change: can we predict the impacts on plant pathology and pest management?  Presented at the Annual Meeting of the Canadian-Phytopathological-Society, Montreal, Canada, 2003 (unpublished), pp. 267–273.

    6.
    Kocmankova, E. et al. Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: A novel approach. J. Agric. Sci. 149, 185–195 (2011).
    Article  Google Scholar 

    7.
    Mardulyn, P. et al. Climate change and the spread of vector-borne diseases: Using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy. Mol. Ecol. 22(9), 2456–2466 (2013).
    PubMed  Article  Google Scholar 

    8.
    Ziter, C., Robinson, E. A. & Newman, J. A. Climate change and voltinism in Californian insect pest species: Sensitivity to location, scenario and climate model choice. Glob. Change Biol. 18(9), 2771–2780 (2012).
    ADS  Article  Google Scholar 

    9.
    Estay, S. A., Lima, M. & Labra, F. A. Predicting insect pest status under climate change scenarios: Combining experimental data and population dynamics modelling. J. Appl. Entomol. 113, 491–499 (2009).
    Article  Google Scholar 

    10.
    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).
    ADS  CAS  Article  Google Scholar 

    11.
    Parmesan, C. et al. Empirical perspectives on species borders: From traditional biogeography to global change. Oikos 108(1), 58–75 (2005).
    Article  Google Scholar 

    12.
    Kerdelhue, C. et al. Quaternary history and contemporary patterns in a currently expanding species. BMC Evol. Biol. 9, 5 (2009).
    Article  CAS  Google Scholar 

    13.
    Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperature. Ecol. Appl. 15(6), 2084–2096 (2005).
    Article  Google Scholar 

    14.
    Rahmstorf, S. et al. Recent climate observations compared to projections. Science 316(5825), 709 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 

    15.
    Mann, M. E. & Lees, J. M. Robust estimation of background noise and signal detection in climatic time series. Clim. Change 33(3), 409–445 (1996).
    ADS  Article  Google Scholar 

    16.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Article  Google Scholar 

    17.
    Bloomfield, P. & Nychka, D. Climate spectra and detecting climate change. Clim. Change 21(3), 275–287 (1992).
    ADS  Article  Google Scholar 

    18.
    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193), 353–357 (2008).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2(2), 220–237 (2011).
    Article  Google Scholar 

    20.
    FAOSTAT. Crop Production (Food and Agriculture Organization, Rome, 2015).
    Google Scholar 

    21.
    Nweke, F. I. New Challenges in the Cassava Transformation in Nigeria and Ghana (International Food Policy Research Institute, Washington, 2004).
    Google Scholar 

    22.
    Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327(5967), 812–818 (2010).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    El-Sharkawy, M. A. Cassava biology and physiology. Plant Mol. Biol. 56(4), 481–501 (2004).
    CAS  PubMed  Article  Google Scholar 

    24.
    Jarvis, A., Ramirez-Villegas, J., Herrera Campo, B. & Navarro-Racines, C. Is Cassava the answer to African climate change adaptation?. Trop. Plant Biol. 5(1), 9–29 (2012).
    Article  Google Scholar 

    25.
    Howeler, R., Lutaladio, N. & Thomas, G. Save and Grow: Cassava. A Guide to Sustainable Production Intensification (FAO, Rome, 2013).
    Google Scholar 

    26.
    Alicai, T. et al. Re-emergence of Cassava Brown Streak Disease in Uganda. Plant Dis. 91(1), 24–29 (2007).
    CAS  PubMed  Article  Google Scholar 

    27.
    Colvin, J., Omongo, C. A., Maruthi, M. N., Otim-Nape, G. W. & Thresh, J. M. Dual begomovirus infections and high Bemisia tabaci populations: Two factors driving the spread of a cassava mosaic disease pandemic. Plant. Pathol. 53, 577–584 (2004).
    Article  Google Scholar 

    28.
    Legg, J. P. et al. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res. 186, 61–75 (2014).
    CAS  PubMed  Article  Google Scholar 

    29.
    Thresh, J. et al. African cassava mosaic virus disease: The magnitude of the problem. Afr. J. Root Tuber Crops 2(1/2), 13–19 (1997).
    Google Scholar 

    30.
    Tajebe, L. S. et al. Abundance, diversity and geographic distribution of cassava mosaic disease pandemic-associated Bemisia tabaci in Tanzania. J. Appl. Entomol. 5, 20 (2014).
    Google Scholar 

    31.
    Ndunguru, J. et al. Analyses of twelve new whole genome sequences of Cassava Brown Streak Viruses and Ugandan Cassava Brown Streak Viruses from East Africa: Diversity, supercomputing and evidence for further speciation. PLoS One 10(10), e0139321 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Basavaprabhu, L. P., Legg, J. P., Kanju, E. & Fauquet, C. M. Cassava brown streak disease: A threat to food security in Africa. J. Gen. Virol. 96(5), 956–968 (2015).
    Article  Google Scholar 

    33.
    Jeremiah, S. C. et al. The dynamics and environmental influence on interactions between Cassava Brown Streak Disease and the whitefly,. Phytopathology 105(5), 646–655 (2015).
    CAS  PubMed  Article  Google Scholar 

    34.
    Legg, J., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in East and Central Africa: Epidemiology and management of a regional pandemic. Adv. Virus Res. 67, 355–418 (2006).
    CAS  PubMed  Article  Google Scholar 

    35.
    FAO, Cassava Diseases in central, eastern and southern Africa: Strategic programme framework 2010–2015. (2009).

    36.
    Zhou, X. et al. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78(8), 2101–2111 (1997).
    CAS  PubMed  Article  Google Scholar 

    37.
    Legg, J. P., French, R., Rogan, D., Okao-Okuja, G. & Brown, J. K. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Mol. Ecol. 11(7), 1219–1229 (2002).
    CAS  PubMed  Article  Google Scholar 

    38.
    Garrett, K.A., Thomas-Sharma, S., Forbes, G.A., & Nopsa, J.H., Climate change and plant pathogen invasions. In Invasive Species and Global Climate Change (eds Ziska, L. H., Dukes, J. S.) 22 (2014).

    39.
    Tay, W. T. et al. The trouble with MEAM2: Implications of pseudogenes on species delimitation in the globally invasive Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex. Genome Biol. Evol. 9(10), 2732–2738 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Macfadyen, S. et al. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: A review of the factors determining abundance. Bull. Entomol. Res. 20, 1–18 (2018).
    Google Scholar 

    41.
    Sseruwagi, P., Sserubombwe, W., Legg, J., Ndunguru, J. & Thresh, J. Methods of surveying the incidence and severity of cassava mosaic disease and whitefly vector populations on cassava in Africa: A review. Virus Res. 100(1), 129–142 (2004).
    CAS  PubMed  Article  Google Scholar 

    42.
    Boykin, L. M. et al. Review and guide to a future naming system of African Bemisia tabaci species. Syst. Entomol. 20, 20 (2018).
    Google Scholar 

    43.
    Mugerwa, H. et al. African ancestry of New World, Bemisia tabaci-whitefly species. Sci. Rep. 8(1), 2734 (2018).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    44.
    Boykin, L. M., Armstrong, K. F., Kubatko, L. & De Barro, P. J. Species delimitation and global biosecurity. Evol. Bioinform. 8(2), 1–37 (2011).
    Google Scholar 

    45.
    De Barro, P. J., Liu, S.-S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19 (2011).
    PubMed  Article  CAS  Google Scholar 

    46.
    Boykin, L. M. Bemisia tabaci nomenclature: Lessons learned. Pest Manag. Sci. 70(10), 1454–1459 (2014).
    CAS  PubMed  Article  Google Scholar 

    47.
    Kalyebi, A. et al. African cassava whitefly, Bemisia tabaci, cassava colonization preferences and control implications. PLoS One 13(10), e0204862 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Herrera Campo, B., Hyman, G. & Bellotti, A. Threats to cassava production: Known and potential geographic distribution of four key biotic constraints. Food Secur. 3(3), 329–345 (2011).
    Article  Google Scholar 

    49.
    Webber, B. L. et al. Modelling horses for novel climate courses: Insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. Div. Distrib. 17(5), 978–1000 (2011).
    Article  Google Scholar 

    50.
    Sutherst, R. W. & Bourne, A. S. Modelling non-equilibrium distributions of invasive species: A tale of two modelling paradigms. Biol. Invas. 11(6), 1231–1237 (2009).
    Article  Google Scholar 

    51.
    Ramos, R. S., Kumar, L., Shabani, F. & Picanço, M. C. Mapping global risk levels of Bemisia tabaci in areas of suitability for open field tomato cultivation under current and future climates. PLoS One 13(6), e0198925 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
    Article  Google Scholar 

    53.
    Kriticos, D. J. et al. CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases (CSIRO, Canberra, 2015).
    Google Scholar 

    54.
    Sutherst, R. W. & Maywald, G. F. A computerised system for matching climates in ecology. Agric. Ecosyst. Environ. 13, 281–299 (1985).
    Article  Google Scholar 

    55.
    Yonow, T., Hattingh, V. & de Villiers, M. CLIMEX modelling of the potential global distribution of the citrus black spot disease caused by Guignardia citricarpa and the risk posed to Europe. Crop Prot. 44, 18–28 (2013).
    Article  Google Scholar 

    56.
    Ireland, K. B., Hardy, G. E. S. J. & Kriticos, D. J. Combining inferential and deductive approaches to estimate the potential geographical range of the invasive plant pathogen, Phytophthora ramorum. PLoS One 8, 5 (2013).
    Google Scholar 

    57.
    Kriticos, D. J. et al. The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity. J. Pest Sci. 20, 20 (2017).
    Google Scholar 

    58.
    Macfadyen, S. & Kriticos, D. J. Modelling the geographical range of a species with a variable life-history. PLoS One 7(7), e40313 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Yonow, T. & Sutherst, R. W. The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Aust. J. Agric. Res. 49, 935–953 (1998).
    Article  Google Scholar 

    60.
    De Villiers, M. et al. The potential distribution of Bactrocera dorsalis: Considering phenology and irrigation patterns. Bull. Entomol. Res. 106, 19–33 (2016).
    PubMed  Article  Google Scholar 

    61.
    De Villiers, M., Hattingh, V. & Kriticos, D. J. Combining field phenological observations with distribution data to model the potential range distribution of the fruit fly Ceratitis rosa Karsch (Diptera: Tephritidae). Bull. Entomol. Res. 103, 60–73 (2012).
    PubMed  Article  Google Scholar 

    62.
    Zalucki, M. P. & Furlong, M. J. Forecasting Helicoverpa populations in Australia: A comparison of regression based models and a bio-climatic based modelling approach. Insect Sci. 12(1), 45–56 (2005).
    Article  Google Scholar 

    63.
    Zalucki, M. P. & Van Klinken, R. D. Predicting population dynamics of weed biological control agents: Science or gazing into crystal balls?. Aust. J. Entomol. 45, 331–344 (2006).
    Article  Google Scholar 

    64.
    Kriticos, D. J., De Barro, P. J., Yonow, T., Ota, N. & Sutherst, R. W. The potential geographical distribution and phenology of Bemisia tabaci Middle East Asia Minor 1, considering irrigation and glasshouse production. Bull. Entomol. Res. 110(5), 567–576 (2020).
    CAS  PubMed  Article  Google Scholar 

    65.
    Kriticos, D. J. et al. CliMond: Global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3, 53–64 (2012).
    Article  Google Scholar 

    66.
    Hutchinson, G.E., Presented at the Cold Spring Symposium on Quantitative Biology, Yale University, New Haven, Connecticutt, USA, 1957 (unpublished).

    67.
    Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: Size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).
    Article  Google Scholar 

    68.
    Peterson, A. T., Soberon, J., Pearson, R. G. & Martinez-Meyer, E. Ecological Niches and Geographic Distributions (Princeton University Press, Princeton, 2011).
    Google Scholar 

    69.
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).
    ADS  CAS  PubMed  Article  Google Scholar 

    70.
    Carter, R. N. & Prince, S. D. Epidemic models used to explain biogeographical distribution limits. Nature 293, 644–645 (1981).
    ADS  Article  Google Scholar 

    71.
    Alicai, T. et al. Expansion of the cassava brown streak pandemic in Uganda revealed by annual field survey data for 2004 to 2017. Sci. Data 6(1), 327 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    72.
    Macfadyen, S. et al. Landscape factors and how they influence whitefly pests in cassava fields across East Africa. Landsc. Ecol. 20, 20 (2020).
    Google Scholar 

    73.
    Shelford, V. E. The Ecology of North America (University of Illinois Press, Urbana, 1963).
    Google Scholar 

    74.
    Shelford, V. E. A comparison of the responses of animals in gradients of environmental factors with particular reference to the method of reaction of representatives of the various groups from protozoa to mammals. Science 48, 225–230 (1918).
    ADS  CAS  PubMed  Article  Google Scholar 

    75.
    Shelford, V. E. & Deere, E. O. The reactions of certain animals to gradients of evaporating power of air: A study in experimental ecology. Biol. Bull. 25, 79–120 (1913).
    Article  Google Scholar 

    76.
    van der Ploeg, R. R., Böhm, W. & Kirkham, M. B. On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci. Soc. Am. J. 63, 1055–1062 (1999).
    Article  Google Scholar 

    77.
    Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25(6), 693–712 (2005).
    Article  Google Scholar 

    78.
    New, M., Hulme, M. & Jones, P. Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Clim. 13(13), 2217–2238 (2000).
    ADS  Article  Google Scholar 

    79.
    Sseruwagi, P. et al. Colonization of non-cassava plant species by cassava whiteflies (Bemisia tabaci) in Uganda. Entomol. Exp. Appl. 119(2), 145–153 (2006).
    CAS  Article  Google Scholar 

    80.
    Otim-Nape, G., Alicai, T. & Thresh, J. Changes in the incidence and severity of cassava mosaic virus disease, varietal diversity and cassava production in Uganda. Ann. Appl. Biol. 138(3), 313–327 (2001).
    Article  Google Scholar 

    81.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).
    Google Scholar 

    82.
    Castle, S., Henneberry, T. & Toscano, N. Suppression of Bemisia tabaci (Homoptera: Aleyrodidae) infestations in cantaloupe and cotton with sprinkler irrigation. Crop Prot. 15(7), 657–663 (1996).
    Article  Google Scholar 

    83.
    Alemandri, V. et al. Three members of the Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex occur sympatrically in Argentine horticultural crops. J. Econ. Entomol. 108(2), 405–413 (2015).
    CAS  PubMed  Article  Google Scholar 

    84.
    Mitchell, J. et al., Detection of climate change and attribution of causes in IPCC 2001: Climate Change 2001. The Climate change Contribution of Working Group I to the Third Assessment Report of the Intergovemmental Panel on Climate Change, edited by J Houghton et al. (2001), Vol. 159.

    85.
    McQuaid, C. F. et al. Spatial dynamics and control of a crop pathogen with mixed-mode transmission. PLoS Comput. Biol. 13(7), e1005654 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    86.
    Fauquet, C. & Fargette, D. African cassava mosaic virus: Etiology, epidemiology and control. Plant Dis. 74(6), 404–411 (1990).
    Article  Google Scholar 

    87.
    Aregbesola, O. Z., Legg, J. P., Sigsgaard, L., Lund, O. S. & Rapisarda, C. Potential impact of climate change on whiteflies and implications for the spread of vectored viruses. J. Pest. Sci. 20, 20 (2018).
    Google Scholar 

    88.
    Hilje, L., Costa, H. S. & Stansly, P. A. Cultural practices for managing Bemisia tabaci and associated viral diseases. Crop Prot. 20(9), 801–812 (2001).
    Article  Google Scholar 

    89.
    Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19(10), 535–544 (2004).
    PubMed  Article  Google Scholar 

    90.
    Chakraborty, S., Tiedemann, A. V. & Teng, P. S. Climate change: Potential impact on plant diseases. Environ. Pollut. 108(3), 317–326 (2000).
    CAS  PubMed  Article  Google Scholar 

    91.
    Jones, R. A. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141(2), 113–130 (2009).
    CAS  PubMed  Article  Google Scholar 

    92.
    Canto, T., Aranda, M. A. & Fereres, A. Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Glob. Change Biol. 15(8), 1884–1894 (2009).
    ADS  Article  Google Scholar 

    93.
    Fargette, D., Jeger, M., Fauquet, C. & Fishpool, L. Analysis of temporal disease progress of African cassava mosaic virus. Phytopathology 84(1), 91–98 (1994).
    Article  Google Scholar 

    94.
    Pardey, P. G. et al. Right-sizing stem rust research. Science 340, 147–148 (2013).
    ADS  CAS  PubMed  Article  Google Scholar 

    95.
    Dodson, B. Porous borders: Gender and migration in Southern Africa. S. Afr. Geogr. J. 82(1), 40–46 (2000).
    Article  Google Scholar 

    96.
    Ikome, F.N., Africa’s international borders as potential sources of conflict and future threats to peace and security (2012). More

  • in

    Multiple forms of hotspots of tetrapod biodiversity and the challenges of open-access data scarcity

    1.
    Gaston, K. J. & Blackburn, T. Pattern and Process in Macroecology (Blackwell Science, London, 2000).
    Google Scholar 
    2.
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227. https://doi.org/10.1038/35012228 (2000).
    CAS  Article  PubMed  Google Scholar 

    3.
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).
    Article  Google Scholar 

    4.
    Lovejoy, T. E. & Hannah, L. E. E. Biodiversity and Climate Change: Transforming the Biosphere (Yale University Press, New Haven, 2019).
    Google Scholar 

    5.
    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96. https://doi.org/10.1038/nature05237 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    6.
    Rodrigues, A. S. L. et al. Spatially explicit trends in the global conservation status of vertebrates. PLoS ONE 9, e113934. https://doi.org/10.1371/journal.pone.0113934 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    7.
    Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    8.
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).
    ADS  CAS  Article  Google Scholar 

    9.
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    10.
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67. https://doi.org/10.1038/nature11148 (2012).
    ADS  CAS  Article  PubMed  Google Scholar 

    11.
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. & Worm, B. How many species are there on earth and in the ocean?. PLoS Biol. 9, e1001127. https://doi.org/10.1371/journal.pbio.1001127 (2011).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61. https://doi.org/10.1126/science.1127609 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    13.
    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253. https://doi.org/10.1038/35012251 (2000).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    14.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. https://doi.org/10.1038/35002501 (2000).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13, 275–280. https://doi.org/10.1016/S0169-5347(98)01363-9 (1998).
    CAS  Article  PubMed  Google Scholar 

    16.
    Myers, N. Biodiversity hotspots revisited. Bioscience 53, 916–917. https://doi.org/10.1641/0006-3568(2003)053[0916:BHR]2.0.CO;2 (2003).
    Article  Google Scholar 

    17.
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots (eds F. Zachos & J. Habel) 3–22 (Springer, Berlin, 2011).

    18.
    Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385. https://doi.org/10.1016/j.biocon.2012.07.015 (2013).
    Article  Google Scholar 

    19.
    Marchese, C. Biodiversity hotspots: a shortcut for a more complicated concept. Glob. Ecol. Conserv. 3, 297–309. https://doi.org/10.1016/j.gecco.2014.12.008 (2015).
    Article  Google Scholar 

    20.
    Crossman, N. D., Bryan, B. A. & Summers, D. M. Identifying priority areas for reducing species vulnerability to climate change. Divers. Distrib. 18, 60–72. https://doi.org/10.1111/j.1472-4642.2011.00851.x (2012).
    Article  Google Scholar 

    21.
    Fagundes, C. K., Vogt, R. C., de Souza, R. A. & De Marco Jr, P. Vulnerability of turtles to deforestation in the Brazilian Amazon: indicating priority areas for conservation. Biol. Conserv. 226, 300–310. https://doi.org/10.1016/j.biocon.2018.08.009 (2018).
    Article  Google Scholar 

    22.
    Trombulak, S. C. in Landscape-scale Conservation Planning (eds Stephen C. Trombulak & Robert F. Baldwin) 303–324 (Springer Netherlands, 2010).

    23.
    Reddy, C. S., Faseela, V. S., Unnikrishnan, A. & Jha, C. S. Earth observation data for assessing biodiversity conservation priorities in South Asia. Biodivers. Conserv. 28, 2197–2219. https://doi.org/10.1007/s10531-018-1681-0 (2019).
    Article  Google Scholar 

    24.
    Schmitt, C. B. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Frank E. Zachos & Jan Christian Habel) 23–42 (Springer Berlin Heidelberg, 2011).

    25.
    Asaad, I., Lundquist, C. J., Erdmann, M. V. & Costello, M. J. Ecological criteria to identify areas for biodiversity conservation. Biol. Conserv. 213, 309–316. https://doi.org/10.1016/j.biocon.2016.10.007 (2017).
    Article  Google Scholar 

    26.
    McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156. https://doi.org/10.1371/journal.pone.0169156 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    27.
    Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23. https://doi.org/10.1111/j.1366-9516.2005.00143.x (2005).
    Article  Google Scholar 

    28.
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400 (2015).
    Article  Google Scholar 

    29.
    Ondei, S., Brook, B. W. & Buettel, J. C. Nature’s untold stories: an overview on the availability and type of on-line data on long-term biodiversity monitoring. Biodivers. Conserv. 27, 2971–2987. https://doi.org/10.1007/s10531-018-1582-2 (2018).
    Article  Google Scholar 

    30.
    Schmeller, D. S. et al. Building capacity in biodiversity monitoring at the global scale. Biodivers. Conserv. 26, 2765–2790. https://doi.org/10.1007/s10531-017-1388-7 (2017).
    Article  Google Scholar 

    31.
    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. B Biol. Sci. 280, 20122649. https://doi.org/10.1098/rspb.2012.2649 (2013).
    Article  Google Scholar 

    32.
    Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682. https://doi.org/10.1038/s41559-017-0332-2 (2017).
    Article  PubMed  Google Scholar 

    33.
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509. https://doi.org/10.1126/science.1194442 (2010).
    ADS  CAS  Article  Google Scholar 

    34.
    Meiri, S. et al. Extinct, obscure or imaginary: the lizard species with the smallest ranges. Divers. Distrib. 24, 262–273. https://doi.org/10.1111/ddi.12678 (2018).
    Article  Google Scholar 

    35.
    Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735. https://doi.org/10.1002/ece3.1303 (2014).
    Article  PubMed  PubMed Central  Google Scholar 

    36.
    Gaston, K. J. Biodiversity-congruence. Prog. Phys. Geogr. 20, 105–112 (1996).
    Article  Google Scholar 

    37.
    Orme, C. D. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019. https://doi.org/10.1038/nature03850 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    38.
    Stark, G., Pincheira-Donoso, D. & Meiri, S. No evidence for the ‘rate-of-living’ theory across the tetrapod tree of life. Glob. Ecol. Biogeogr. 29, 857–884. https://doi.org/10.1111/geb.13069 (2020).
    Article  Google Scholar 

    39.
    Fletcher, R. & Fortin, M. Spatial Ecology and Conservation Modeling (Springer, Berlin, 2018).
    Google Scholar 

    40.
    Zhao, L., Li, J., Liu, H. & Qin, H. Distribution, congruence and hotspots of higher plants in China. Sci. Rep. 6, 19080. https://doi.org/10.1038/srep19080 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    41.
    Soberón, J. & Peterson, T. Biodiversity informatics: managing and applying primary biodiversity data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 689–698. https://doi.org/10.1098/rstb.2003.1439 (2004).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Neves, I. Q., da LuzMathias, M. & Bastos-Silveira, C. Mapping knowledge gaps of Mozambique’s terrestrial mammals. Sci. Rep. 9, 1–14. https://doi.org/10.1038/s41598-019-54590-4 (2019).
    CAS  Article  Google Scholar 

    43.
    Soriano, A. in Ecosystems of the world 8A. Natural grasslands. Introduction and Western Hemisphere (ed R Coupland) 367–407 (Elsevier: Amsterdam, 1991).

    44.
    Andrade, B. O. et al. Vascular plant species richness and distribution in the Río de la Plata grasslands. Bot. J. Linn. Soc. 188, 6. https://doi.org/10.1093/botlinnean/boy063 (2018).
    Article  Google Scholar 

    45.
    Grela, I. Geografía florística de las especies arbóreas de Uruguay: propuesta para la delimitación de dendrofloras, Universidad de la República. Facultad de Ciencias – PEDECIBA, (2004).

    46.
    Arballo, E. & Cravino, J. Aves del Uruguay, Manual Ornitológico. Editorial Hemisferio Sur, Montevideo 1 (1999).

    47.
    González, E. M. & Martínez-Lanfranco, J. A. in Mamíferos de Uruguay. Guía de campo e introducción a su estudio y conservación 321–327 (Banda Oriental, MNHN y Vida Silvestre Uruguay, 2010).

    48.
    Pincheira-Donoso, D. The untold story on the ecological and phylogenetic complexity of the Uruguayan reptile fauna. Zootaxa 2354, 67–68. https://doi.org/10.11646/zootaxa.2354.1.6 (2010).
    Article  Google Scholar 

    49.
    Núñez, D., Maneyro, R., Langone, J. & de Sa, R. O. Distribución geográfica de la fauna de anfibios del Uruguay. Smithsonian Herpetol. Inf. Serv. https://doi.org/10.5479/si.23317515.134.1 (2004).
    Article  Google Scholar 

    50.
    Grattarola, F. & Rodríguez-Tricot, L. Mammals of Paso Centurión, an area with relicts of Atlantic Forest in Uruguay. Neotrop. Biol. Conserv. 15, 267–283. https://doi.org/10.3897/neotropical.15.e53062 (2020).
    Article  Google Scholar 

    51.
    SISNAP. SNAP Information System. http://www.snap.gub.uy/sisnap (2020).

    52.
    Soutullo, A. & Gudynas, E. How effective is the MERCOSUR’s network of protected areas in representing South America’s ecoregions?. Oryx 40, 112–116. https://doi.org/10.1017/S0030605306000020 (2006).
    Article  Google Scholar 

    53.
    Baldi, G. et al. Nature representation in South American protected areas: country contrasts and conservation priorities. PeerJ 7, e7155. https://doi.org/10.7717/peerj.7155 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Brazeiro, A. Eco-regiones de Uruguay: biodiversidad, presiones y conservación : aportes a la Estrategia Nacional de Biodiversidad. (Facultad de Ciencias, UDELAR, 2015).

    55.
    Canavero, A. et al. Amphibian diversity of Uruguay: Background knowledge, inventory completeness and sampling coverage. Boletín de la Sociedad Zoológica de Uruguay 19, 2–19 (2010).
    Google Scholar 

    56.
    Carreira, S. et al. Diversity of reptiles of Uruguay: knowledge and information gaps. Boletín de la Sociedad Zoológica de Uruguay 21, 9–29 (2012).
    Google Scholar 

    57.
    Soutullo, A., Clavijo, C. & Martínez-Lanfranco, J. Especies prioritarias para la conservación en Uruguay. Vertebrados, moluscos continentales y plantas vasculares. (SNAP/DINAMA/MVOTMA and DICYT/MEC, 2013).

    58.
    Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Biodivers. Data J. https://doi.org/10.3897/BDJ.7.e36226 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    59.
    Grattarola, F. et al. Biodiversidata: A novel dataset for the vascular plant species diversity in Uruguay. Biodivers. Data J. https://doi.org/10.3897/BDJ.8.e56850 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    60.
    Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. 82, 607–645. https://doi.org/10.1111/j.1469-185X.2007.00028.x (2007).
    Article  PubMed  Google Scholar 

    61.
    Luck, G. W. & Smallbone, L. T. in Urban Ecology Ecological Reviews (ed Kevin J. Gaston) 88–119 (Cambridge University Press, Cambridge, 2010).

    62.
    Pardo, I. et al. Spatial congruence between taxonomic, phylogenetic and functional hotspots: true pattern or methodological artefact?. Divers. Distrib. 23, 209–220. https://doi.org/10.1111/ddi.12511 (2017).
    Article  Google Scholar 

    63.
    Peterson, A. T., Asase, A., Canhos, D. A. L., de Souza, S. & Wieczorek, J. Data leakage and loss in biodiversity informatics. Biodivers. Data J. https://doi.org/10.3897/BDJ.6.e26826 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    64.
    Lamoreux, J. F. et al. Global tests of biodiversity concordance and the importance of endemism. Nature 440, 212–214. https://doi.org/10.1038/nature04291 (2006).
    ADS  CAS  Article  PubMed  Google Scholar 

    65.
    Feng, J.-M., Zhang, Z. & Nan, R.-Y. Non-congruence among hotspots based on three common diversity measures in Yunnan, south-west China. Plant Ecol. Divers. 4, 353–361. https://doi.org/10.1080/17550874.2012.697204 (2011).
    Article  Google Scholar 

    66.
    Westgate, M. J., Barton, P. S., Lane, P. W. & Lindenmayer, D. B. Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nat. Commun. 5, 3899. https://doi.org/10.1038/ncomms4899 (2014).
    ADS  CAS  Article  PubMed  Google Scholar 

    67.
    Xu, H. et al. Biodiversity congruence and conservation strategies: a national test. Bioscience 58, 632–639. https://doi.org/10.1641/b580710 (2008).
    Article  Google Scholar 

    68.
    Brazeiro, A. et al. Prioridades Geográficas para la Conservación de la Biodiversidad Terrestre (Resumen Ejecutivo) (Facultad de Ciencias, Universidad de la República, Montevideo, Montevideo, 2008).
    Google Scholar 

    69.
    Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244. https://doi.org/10.1111/ddi.12489 (2016).
    Article  Google Scholar 

    70.
    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384–13389. https://doi.org/10.1073/pnas.0704469104 (2007).
    ADS  CAS  Article  PubMed  Google Scholar 

    71.
    Boakes, E. H., Fuller, R. A., McGowan, P. J. K. & Mace, G. M. Uncertainty in identifying local extinctions: the distribution of missing data and its effects on biodiversity measures. Biol. Lett. https://doi.org/10.1098/rsbl.2015.0824 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    72.
    Stropp, J. et al. Mapping ignorance: 300 years of collecting flowering plants in Africa. Glob. Ecol. Biogeogr. 25, 1085–1096. https://doi.org/10.1111/geb.12468 (2016).
    Article  Google Scholar 

    73.
    Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. Bioscience 65, 637–638. https://doi.org/10.1093/biosci/biv064 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    74.
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435. https://doi.org/10.1111/ele.12189 (2013).
    Article  PubMed  PubMed Central  Google Scholar 

    75.
    Ahrends, A. et al. Funding begets biodiversity. Divers. Distrib. 17, 191–200. https://doi.org/10.1111/j.1472-4642.2010.00737.x (2011).
    Article  Google Scholar 

    76.
    Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. https://doi.org/10.1111/cobi.13589 (2020).
    Article  PubMed  Google Scholar 

    77.
    Cabrera, M. R. & Carreira, S. A new, but probably extinct, species of Cnemidophorus (Squamata, Teiidae) from Uruguay. Herpetol. J. 19, 97–105 (2009).
    Google Scholar 

    78.
    Verrastro, L., Maneyro, R., Da Silva, C. M. & Farias, I. A new species of lizard of the L. wiegmannii group (Iguania: Liolaemidae) from the Uruguayan Savanna. Zootaxa 4294, 443–461. https://doi.org/10.11646/zootaxa.4294.4.4 (2017).
    Article  Google Scholar 

    79.
    Maneyro, R., Arrieta, D. & de Sá, R. O. A new toad (Anura: Bufonidae) from Uruguay. J. Herpetol. 38, 161–165. https://doi.org/10.1670/54-03A (2004).
    Article  Google Scholar 

    80.
    Maneyro, R., Naya, D. E. & Baldo, D. A new species of Melanophryniscus (Anura, Bufonidae) from Uruguay. Iheringia. Série Zoologia 98, 189–192. https://doi.org/10.1590/S0073-47212008000200003 (2008).
    Article  Google Scholar 

    81.
    Rosset, S. D. New Species of Odontophrynus Reinhardt and Lütken 1862 (Anura: Neobatrachia) from Brazil and Uruguay. J. Herpetol. 42, 134–144. https://doi.org/10.1670/07-088R1.1 (2008).
    Article  Google Scholar 

    82.
    Grattarola, F. et al. Primer registro de yaguarundí (Puma yagouaroundi) (Mammalia: Carnivora: Felidae) en Uruguay, con comentarios sobre monitoreo participativo. Boletín de la Sociedad Zoológica del Uruguay 25, 85–91 (2016).
    Google Scholar 

    83.
    Prigioni, C. M., Villalba, J. S., Sappa, A. & González, J. C. Confirmación de la presencia del mono aullador negro (Alouatta caraya) (Mammalia, Primates, Atelidae) en el Uruguay. Acta Zoológica Platense 1 (2018).

    84.
    Canavero, A., Naya, D. & Maneyro, R. Leptodactylus furnarius Sazima & Bokermann, 1978 (Anura: leptodactylidae). Cuadernos de Herpetología 15, 89 (2001).
    Google Scholar 

    85.
    Kwet, A. et al. First record of Hyla albopunctata Spix, 1824 (Anura: Hylidae) in Uruguay, with comments on the advertisement call. Boletín de la Asociación Herpetológica Española 13, 15–19 (2002).
    Google Scholar 

    86.
    Maneyro, R. & Beheregaray, M. First record of Physalaemus cuvieri Fitzinger, 1826 (Anura, Leiuperidae) in Uruguay, with comments on the anuran fauna along the borderline Uruguay-Brazil. Boletín de la Sociedad Zoológica del Uruguay 16, 36–41 (2007).
    Google Scholar 

    87.
    Azpiroz, A. B. & Menéndez, J. L. Three new species and novel distributional data for birds in Uruguay. Bull. Br. Ornithol. Club 128, 38–56 (2008).
    Google Scholar 

    88.
    Hernández, D. et al. Confirmación de la presencia del Tucán Grande Ramphastos toco (Piciformes: Ramphastidae) en Uruguay. Boletín de la Sociedad Zoológica del Uruguay 18, 35–38 (2009).
    Google Scholar 

    89.
    Rodríguez-Cajarville, M., Arballo, E. & Gambarotta, J. First documented records of Eastern Kingbird, Tyrannus tyrannus Linnaeus, 1758 (Aves: Tyrannidae) in Uruguay. Check List 13, 169–172. https://doi.org/10.15560/13.4.169 (2017).
    Article  Google Scholar 

    90.
    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221. https://doi.org/10.1038/ncomms9221 (2015).
    ADS  Article  PubMed  PubMed Central  Google Scholar 

    91.
    Sousa-Baena, M. S., Garcia, L. C. & Peterson, A. T. Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Divers. Distrib. 20, 369–381. https://doi.org/10.1111/ddi.12136 (2014).
    Article  Google Scholar 

    92.
    Faith, D. et al. Bridging the biodiversity data gaps: recommendations to meet users’ data needs. Biodivers. Inf. https://doi.org/10.17161/bi.v8i2.4126 (2013).
    Article  Google Scholar 

    93.
    Grattarola, F. & Pincheira-Donoso, D. Biodiversidata: a collaborative initiative towards open data availability in Uruguay. Biodivers. Inf. Sci. Stand. 3, e37715. https://doi.org/10.3897/biss.3.37715 (2019).
    Article  Google Scholar 

    94.
    Grattarola, F. & Pincheira-Donoso, D. Data-sharing en Uruguay, la visión de los colectores y usuarios de datos. Boletín de la Sociedad Zoológica del Uruguay 28, 1–14. https://doi.org/10.26462/28.1.1 (2019).
    Article  Google Scholar 

    95.
    Griffin, E. in Data Science Landscape. Studies in Big Data Vol. 38 (eds U. Munshi & N. Verma) 183–198 (Springer, 2018).

    96.
    Freeman, B. & Peterson, A. T. Completeness of digital accessible knowledge of the birds of western Africa: priorities for survey. Condor https://doi.org/10.1093/condor/duz035 (2019).
    Article  Google Scholar 

    97.
    Amano, T., Lamming, J. D. L. & Sutherland, W. J. Spatial gaps in blobal biodiversity information and the role of citizen science. Bioscience 66, 393–400. https://doi.org/10.1093/biosci/biw022 (2016).
    Article  Google Scholar 

    98.
    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294. https://doi.org/10.1016/j.biocon.2016.09.004 (2017).
    Article  Google Scholar 

    99.
    Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Zenodo https://doi.org/10.5281/zenodo.3685897 (2019).

    100.
    Grattarola, F. et al. Tetrápodos de Uruguay. Occurrence dataset. GBIF https://doi.org/10.15468/ozcrpu (2020).
    Article  Google Scholar 

    101.
    IUCN. The IUCN Red List of Threatened Species. http://www.iucnredlist.org (2020).

    102.
    Carreira, S. & Maneyro, R. Libro Rojo de los Anfibios y Reptiles del Uruguay. Biología y conservación de los Anfibios y Reptiles en peligro de extinción a nivel nacional. (DINAMA, 2019).

    103.
    Azpiroz, A. B., Jiménez, S. & Alfaro, M. Libro Rojo de las Aves del Uruguay. Biología y conservación de las aves en peligro de extinción a nivel nacional Categorías “Extinto a Nivel Regional”, “En Peligro Crítico” y “En Peligro”. (DINAMA & DINARA, 2017).

    104.
    Dale, M. R. & Fortin, M.-J. Spatial Analysis: A Guide for Ecologists (Cambridge University Press, Cambridge, 2014).
    Google Scholar 

    105.
    Grattarola, F. GitHub repository https://github.com/bienflorencia/Multiple-forms-of-hotspots-of-tetrapod-biodiversity (2020).

    106.
    Dutilleul, P., Clifford, P., Richardson, S. & Hemon, D. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49, 305–314. https://doi.org/10.2307/2532625 (1993).
    Article  Google Scholar 

    107.
    Vallejos, R., Osorio, F. & Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables: with Applications in R (Springer, Berlin, 2018).
    Google Scholar 

    108.
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).
    Article  Google Scholar 

    109.
    Chao, A. et al. Quantifying sample completeness and comparing diversities among assemblages. Ecol. Res. 35, 292–314. https://doi.org/10.1111/1440-1703.12102 (2020).
    Article  Google Scholar 

    110.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456. https://doi.org/10.1111/2041-210x.12613 (2016).
    Article  Google Scholar 

    111.
    Kusumoto, B. et al. Global distribution of coral diversity: biodiversity knowledge gradients related to spatial resolution. Ecol. Res. 35, 315–326. https://doi.org/10.1111/1440-1703.12096 (2020).
    Article  Google Scholar 

    112.
    Yang, W., Ma, K. & Kreft, H. Geographical sampling bias in a large distributional database and its effects on species richness–environment models. J. Biogeogr. 40, 1415–1426. https://doi.org/10.1111/jbi.12108 (2013).
    Article  Google Scholar 

    113.
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101. https://doi.org/10.1038/nature09329 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    114.
    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).
    Article  Google Scholar 

    115.
    Oksanen, J. et al. Package ‘vegan’. Community ecology package, version 2 (2013). More

  • in

    Temporal changes in reproductive success and optimal breeding decisions in a long-distance migratory bird

    1.
    Siikamäki, P. Limitation of reproductive success by food availability and timing of breeding in pied flycatchers. Ecology 79, 1789–1796. https://doi.org/10.1890/0012-9658(1998)079[1789:LORSBF]2.0.CO;2 (1998).
    Article  Google Scholar 
    2.
    Post, E., Bøving, P. S., Pedersen, C. & MacArthur, M. A. Synchrony between caribou calving and plant phenology in depredated and non-depredated populations. Can. J. Zool. 81, 1709–1714. https://doi.org/10.1139/z03-172 (2003).
    Article  Google Scholar 

    3.
    Both, C. & Visser, M. E. The effect of climate change on the correlation between avian life-history traits. Glob. Change Biol. 11, 1606–1613. https://doi.org/10.1111/j.1365-2486.2005.01038.x (2005).
    ADS  Article  Google Scholar 

    4.
    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172. https://doi.org/10.1007/s00442-005-0299-6 (2006).
    ADS  Article  PubMed  Google Scholar 

    5.
    Reed, T. E., Jenouvrier, S. & Visser, M. E. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J. Anim. Ecol. 82, 131–144. https://doi.org/10.1111/j.1365-2656.2012.02020.x (2013).
    Article  PubMed  Google Scholar 

    6.
    Rowe, L., Ludwig, D. & Schluter, D. Time condition and the seasonal decline of avian clutch size. Am. Nat. 143, 698–722. https://doi.org/10.1086/285627 (1994).
    Article  Google Scholar 

    7.
    Bêty, J., Gauthier, G. & Giroux, J.-F. Body condition, migration and timing of reproduction in snow geese: a test of the condition-dependent model of optimal clutch size. Am. Nat. 162, 110–121. https://doi.org/10.1086/375680 (2003).
    Article  PubMed  Google Scholar 

    8.
    Drent, R. H., Fox, A. D. & Stahl, J. Travelling to breed. J. Ornithol. 147, 122–134. https://doi.org/10.1007/s10336-006-0066-4 (2006).
    Article  Google Scholar 

    9.
    Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B. 277, 1259–1266. https://doi.org/10.1098/rspb.2009.1525 (2010).
    Article  PubMed  Google Scholar 

    10.
    Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Phil. Trans. R. Soc. B. 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).
    Article  PubMed  Google Scholar 

    11.
    Descamps, S., Bêty, J., Love, O. P. & Gilchrist, H. G. Individual optimization of reproduction in a long-lived migratory bird: a test of the condition-dependent model of laying date and clutch size. Funct. Ecol. 25, 671–681. https://doi.org/10.1111/j.1365-2435.2010.01824.x (2011).
    Article  Google Scholar 

    12.
    Lepage, D., Gauthier, G. & Menu, S. Reproductive consequences of egg-laying decisions in snow geese. J. Anim. Ecol. 69, 414–427. https://doi.org/10.1046/j.1365-2656.2000.00404.x (2000).
    Article  Google Scholar 

    13.
    Jean-Gagnon, F. et al. The impact of sea ice conditions on breeding decisions is modulated by body condition in an arctic partial capital breeder. Oecologia 186, 1–10. https://doi.org/10.1007/s00442-017-4002-5 (2018).
    ADS  Article  PubMed  Google Scholar 

    14.
    Durant, J. M., Hjermann, D. O., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283. https://doi.org/10.3354/cr033271 (2007).
    Article  Google Scholar 

    15.
    Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?. J. Anim. Ecol. 78, 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x (2009).
    Article  PubMed  Google Scholar 

    16.
    Ross, M. V., Alisauskas, R. T., Douglas, D. C. & Kellett, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. Ecology 98, 1869–1883. https://doi.org/10.1002/ecy.1856 (2017).
    Article  PubMed  Google Scholar 

    17.
    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    18.
    Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178. https://doi.org/10.1111/j.1365-294X.2007.03413.x (2008).
    CAS  Article  PubMed  Google Scholar 

    19.
    Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B. 265, 1867–1870. https://doi.org/10.1098/rspb.1998.0514 (1998).
    Article  Google Scholar 

    20.
    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298. https://doi.org/10.1038/35077063 (2001).
    ADS  CAS  Article  PubMed  Google Scholar 

    21.
    Ross, M. V., Alisauskas, R. T., Douglas, D. C., Kellett, D. K. & Drake, K. L. Density-dependent and phenological mismatch effects on growth and survival in lesser snow and Ross’s goslings. J. Avian Biol. 49, e01748. https://doi.org/10.1111/jav.01748 (2018).
    Article  Google Scholar 

    22.
    Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Phil. Trans. R. Soc. B. 368, 20120482–20120482. https://doi.org/10.1098/rstb.2012.0482 (2013).
    Article  PubMed  Google Scholar 

    23.
    Lepage, D., Gauthier, G. & Reed, A. Seasonal variation in growth of greater snow goose goslings: the role of food supply. Oecologia 114, 226–235. https://doi.org/10.1007/s004420050440 (1998).
    ADS  Article  PubMed  Google Scholar 

    24.
    Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob. Change Biol. 21, 4364–4376. https://doi.org/10.1111/gcb.13057 (2015).
    ADS  Article  Google Scholar 

    25.
    Reséndiz-Infante, C., Gauthier, G. & Souchay, G. Consequences of a changing environment on the breeding phenology and reproductive success components in a long-distance migratory bird. Pop. Ecol. 62, 284–296. https://doi.org/10.1002/1438-390X.12046 (2020).
    Article  Google Scholar 

    26.
    Lecomte, N., Careau, V., Gauthier, G. & Giroux, J.-F. Predator behaviour and predation risk in the heterogeneous arctic environment. J. Anim. Ecol. 77, 439–447. https://doi.org/10.1111/j.1365-2656.2008.01354.x (2008).
    Article  PubMed  Google Scholar 

    27.
    Findlay, C. & Cooke, F. Synchrony in the lesser snow goose (Anser caerulescens caerulescens) II. The adaptive value of reproductive synchrony. Evolution 36, 786–799. https://doi.org/10.2307/2407892 (1982).
    Article  PubMed  Google Scholar 

    28.
    Bêty, J., Gauthier, G., Giroux, J.-F. & Korpimäki, E. Are goose nesting success and lemming cycles linked? Interplay between nest density and predators. Oikos 93, 388–400. https://doi.org/10.1034/j.1600-0706.2001.930304.x (2001).
    Article  Google Scholar 

    29.
    Dickey, M.-H., Gauthier, G. & Cadieux, M.-C. Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species. Glob. Change Biol. 14, 1973–1985. https://doi.org/10.1111/j.1365-2486.2008.01622.x (2008).
    ADS  Article  Google Scholar 

    30.
    Juhasz, C.-C., Shipley, B., Gauthier, G., Berteaux, D. & Lecomte, N. Direct and indirect effects of regional and local climatic factors on trophic interactions in the Arctic tundra. J. Anim. Ecol. 89, 704–715. https://doi.org/10.1111/1365-2656.13104 (2019).
    Article  PubMed  Google Scholar 

    31.
    Bêty, J., Gauthier, G., Korpimaki, E. & Giroux, J.-F. Shared predators and indirect trophic interactions: lemming cycles and arctic-nesting geese. J. Anim. Ecol. 71, 88–98. https://doi.org/10.1046/j.0021-8790.2001.00581.x (2002).
    Article  Google Scholar 

    32.
    Iles, D. T., Rockwell, R. F. & Koons, D. N. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. J. Anim. Ecol. 87, 1182–1191. https://doi.org/10.1111/1365-2656.12837 (2018).
    Article  PubMed  Google Scholar 

    33.
    Lohman, M. G. et al. Changes in behavior are unable to disrupt a trophic cascade involving a specialist herbivore and its food plant. Ecol. Evol. 9, 5281–5291. https://doi.org/10.1002/ece3.5118 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    34.
    Aubry, L. M. et al. Climate change, phenology, and habitat degradation: drivers of gosling body condition and juvenile survival in lesser snow geese. Glob. Change Biol. 19, 149–160. https://doi.org/10.1111/gcb.12013 (2013).
    ADS  Article  Google Scholar 

    35.
    Massé, H., Rochefort, L. & Gauthier, G. Carrying capacity of wetland habitats used by breeding greater snow geese. J. Wildl. Manage. 65, 271–281. https://doi.org/10.2307/3802906 (2001).
    Article  Google Scholar 

    36.
    Valéry, L., Cadieux, M.-C. & Gauthier, G. Spatial heterogeneity of primary production as both cause and consequence of foraging patterns of an expanding Greater Snow Goose colony. Ecoscience 17, 9–19. https://doi.org/10.2980/17-1-3279 (2010).
    Article  Google Scholar 

    37.
    Gienapp, P., Postma, E. & Visser, M. E. Why breeding time has not responded to selection for earlier breeding in a songbird population. Evolution 60, 2381–2388. https://doi.org/10.1111/j.0014-3820.2006.tb01872.x (2006).
    Article  PubMed  Google Scholar 

    38.
    Van Wijk, R. E. et al. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos 121, 655–664. https://doi.org/10.1111/j.1600-0706.2011.20083.x (2012).
    Article  Google Scholar 

    39.
    Gauthier, G., Bêty, J. & Hobson, K. A. Are greater snow geese capital breeders? New evidence from a stable-isotope model. Ecology 84, 3250–3264. https://doi.org/10.1890/02-0613 (2003).
    Article  Google Scholar 

    40.
    Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28, 1–7. https://doi.org/10.1016/j.cub.2018.05.077 (2018).
    CAS  Article  Google Scholar 

    41.
    Shutler, D., Clark, R. G., Fehr, C. & Diamond, A. W. Time and recruitment costs as currencies in manipulation studies on the costs of reproduction. Ecology 87, 2938–2946. https://doi.org/10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2 (2006).
    Article  PubMed  Google Scholar 

    42.
    Rockwell, R. F., Cooch, E. G., Thompson, C. B. & Cooke, F. Age and reproductive success in female lesser snow geese: experience, senescence and the cost of philopatry. J. Anim. Ecol. 62, 323–333. https://doi.org/10.2307/5363 (1993).
    Article  Google Scholar 

    43.
    Souchay, G., Gauthier, G. & Pradel, R. To breed or not: a novel approach to estimate breeding propensity and potential trade-offs in an Arctic-nesting species. Ecology 95, 2745–2756. https://doi.org/10.1890/13-1277.1 (2014).
    Article  Google Scholar 

    44.
    Bêty, J., Giroux, J.-F. & Gauthier, G. Individual variation in timing of migration: causes and reproductive consequences in greater snow geese (Anser caerulescens atlanticus). Behav. Ecol. Sociobiol. 57, 1–8. https://doi.org/10.1007/s00265-004-0840-3 (2004).
    Article  Google Scholar 

    45.
    Gauthier, G., Giroux, J.-F., Reed, A., Béchet, A. & Bélanger, L. Interactions between land use habitat use and population increase in greater snow geese: what are the consequences for natural wetlands?. Glob. Change Biol. 11, 856–868. https://doi.org/10.1111/j.1365-2486.2005.00944.x (2005).
    ADS  Article  Google Scholar 

    46.
    Cooke, F., Rockwell, R. F. & Lank, D. B. The Snow Geese of La Perouse Bay. Natural Selection in the Wild (Oxford University Press, Oxford, 1995).
    Google Scholar 

    47.
    Reed, A., Hughes, R. J. & Boyd, H. Patterns of distribution and abundance of greater snow geese on Bylot Island Nunavut Canada 1983–1998. Wildfowl 53, 53–65 (2002).
    Google Scholar 

    48.
    Mainguy, J., Gauthier, G., Giroux, J.-F. & Bêty, J. Gosling growth and survival in relation to brood movements in greater snow geese (Chen caerulescens atlantica). Auk 123, 1077–1089. https://doi.org/10.2307/25150221 (2006).
    Article  Google Scholar 

    49.
    Menu, S., Gauthier, G. & Reed, A. Survival of juvenile greater snow geese immediately after banding. J. Field Ornithol. 72, 282–290. https://doi.org/10.1648/0273-8570-72.2.282 (2001).
    Article  Google Scholar 

    50.
    Schubert, C. A. & Cooke, F. Egg-laying intervals in the lesser snow goose. Wilson Bull. 105, 414–426 (1993).
    Google Scholar  More

  • in

    Publisher Correction: Social value shift in favour of biodiversity conservation in the United States

    Affiliations

    Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO, USA
    Michael J. Manfredo, Tara L. Teel & Richard E. W. Berl

    School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
    Jeremy T. Bruskotter

    Department of Psychology, University of Michigan, Ann Arbor, MI, USA
    Shinobu Kitayama

    Authors
    Michael J. Manfredo

    Tara L. Teel

    Richard E. W. Berl

    Jeremy T. Bruskotter

    Shinobu Kitayama

    Corresponding author
    Correspondence to Michael J. Manfredo. More

  • in

    Soil fungal and bacterial communities in southern boreal forests of the Greater Khingan Mountains and their relationship with soil properties

    1.
    Gattinger, A., Palojärvi, A. & Schloter, M. Soil microbial communities and related Functions. in Perspectives for agroecosystem management (eds. Schröder P., Pfadenhauer J. & Munch J. C.) 279–292 (Elsevier, 2008).
    2.
    Renella, G. et al. Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol. Biochem. 36, 443–451 (2004).
    CAS  Article  Google Scholar 

    3.
    Ros, M., Pascual, J. A., Garcia, C., Hernandez, M. T. & Insam, H. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem. 38, 3443–3452 (2006).
    CAS  Article  Google Scholar 

    4.
    Krishnan, A., Alias, S. A., Wong, C. M. V. L., Pang, K. & Convey, P. Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol. 34, 1535–1542 (2011).
    Article  Google Scholar 

    5.
    Bronson, K. F. et al. Carbon and nitrogen pools of southern high plains cropland and grassland soils. Soil Sci. Soc. Am. J. 68, 1695 (2004).
    ADS  CAS  Article  Google Scholar 

    6.
    Liu, S. et al. Estimation of plot-level soil carbon stocks in China’s forests using intensive soil sampling. Geoderma 348, 107–114 (2019).
    ADS  CAS  Article  Google Scholar 

    7.
    Kapusta, P., Sobczyk, A., Rożen, A. & Weiner, J. Species diversity and spatial distribution of enchytraeid communities in forest soils: effects of habitat characteristics and heavy metal contamination. Appl. Soil Ecol. 23, 187–198 (2003).
    Article  Google Scholar 

    8.
    Romanowicz, K. J. et al. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture. FEMS Microbiol. Ecol. 92, w149 (2016).
    Article  CAS  Google Scholar 

    9.
    Ilstedt, U. & Singh, S. Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biol. Biochem. 37, 1407–1410 (2005).
    CAS  Article  Google Scholar 

    10.
    Liu, L., Gundersen, P., Zhang, T. & Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 44, 31–38 (2012).
    Article  CAS  Google Scholar 

    11.
    Turner, B. L. & Wright, S. J. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117, 115–130 (2014).
    CAS  Article  Google Scholar 

    12.
    Allison, S. D., Hanson, C. A. & Treseder, K. K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol. Biochem. 39, 1878–1887 (2007).
    CAS  Article  Google Scholar 

    13.
    Gadd, G. M. Microorganisms in soils: roles in genesis and functions. Soil Biology. 3, 325–356 (2005).
    CAS  Article  Google Scholar 

    14.
    Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).
    ADS  Article  Google Scholar 

    15.
    Pietri, J. A. & Brookes, P. C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 40, 1856–1861 (2008).
    Article  CAS  Google Scholar 

    16.
    Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J. & Averill, C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth. 2, 349–360 (2020).
    Article  Google Scholar 

    17.
    Schulte-Uebbing, L. & de Vries, W. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: A meta-analysis. Global Change Biol. 24, e416–e431 (2018).
    Article  Google Scholar 

    18.
    Juday, G. P. Taiga. (2019) Available at: https://www.britannica.com/science/taiga (Accessed: October 15, 2020.

    19.
    Hu, L. et al. Spatiotemporal dynamics in vegetation GPP over the Great Khingan Mountains using GLASS products from 1982 to 2015. Remote Sens. Basel. 10, 488 (2018).
    ADS  Article  Google Scholar 

    20.
    Jiang, H., Apps, M. J., Peng, C., Zhang, Y. & Liu, J. Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecol. Manag. 169, 65–82 (2002).
    Article  Google Scholar 

    21.
    Tang, H. et al. Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China. Remote Sens.-Basel. 7, 11914–11932 (2015).

    22.
    Greene, D. F. et al. A review of the regeneration dynamics of North American boreal forest tree species. Can. J. Forest Res. 29, 824–839 (1999).
    ADS  Article  Google Scholar 

    23.
    Yuan, Z. Y. & Chen, H. Y. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit. Rev. Plant Sci. 29, 204–221 (2010).
    CAS  Article  Google Scholar 

    24.
    Sanderson, L. A., McLaughlin, J. A. & Antunes, P. M. The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry 85, 329–340 (2012).
    Article  Google Scholar 

    25.
    Kreutzweiser, D. P., Hazlett, P. W. & Gunn, J. M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: a review. Environ. Rev. 16, 157–179 (2008).
    CAS  Article  Google Scholar 

    26.
    Dhar, A. et al. Plant community development following reclamation of oil sands mine sites in the boreal forest: a review. Environ. Rev. 26, 286–298 (2018).
    Article  Google Scholar 

    27.
    Simard, D. G., Fyles, J. W., Paré, D. & Nguyen, T. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 81, 229–237 (2001).
    CAS  Article  Google Scholar 

    28.
    Ohtonen, R. & Väre, H. Vegetation composition determines microbial activities in a boreal forest soil. Microb. Ecol. 36, 328–335 (1998).
    CAS  PubMed  Article  Google Scholar 

    29.
    Nilsson, M., Wardle, D. A. & Dahlberg, A. Effects of plant litter species composition and diversity on the boreal forest plant-soil system. Oikos 86, 16–26 (1999).
    Article  Google Scholar 

    30.
    Dimitriu, P. A. & Grayston, S. J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59, 563–573 (2010).
    PubMed  Article  Google Scholar 

    31.
    Buckley, D. H. & Schmidt, T. M. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol. 5, 441–452 (2003).
    PubMed  Article  Google Scholar 

    32.
    Jangid, K. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol. Biochem. 43, 2184–2193 (2011).
    CAS  Article  Google Scholar 

    33.
    Wal, A. V. D. et al. Fungal biomass development in a chronosequence of land abandonment. Soil Biol. Biochem. 38, 51–60 (2006).
    Article  CAS  Google Scholar 

    34.
    Fu, X. et al. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Sci. Total Environ. 502, 280–286 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    35.
    Kalinina, O. et al. Self-restoration of post-agrogenic chernozems of Russia: soil development, carbon stocks, and dynamics of carbon pools. Geoderma 162, 196–206 (2011).
    ADS  CAS  Article  Google Scholar 

    36.
    Gao, Y. et al. Influence of forest type on dark-spored myxomycete community in subtropical forest soil, China. Soil Biol. Biochem. 138, 107606 (2019).
    CAS  Article  Google Scholar 

    37.
    Sheng, Y. et al. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. MicrobiologyOpen. 8, e874 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Vatani, L., Hosseini, S. M., Sarjaz, M. R. & Alavi, S. J. Tree species effects on albedo, soil carbon and nitrogen stocks in a temperate forest in Iran. Aus. J. For. Sci. 136, 283–310 (2019).
    Google Scholar 

    39.
    Bauhus, J., Paré, D. & Co Té, L. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol. Biochem. . 30, 1077–1089 (1998).

    40.
    Dukunde, A., Schneider, D., Schmidt, M., Veldkamp, E. & Daniel, R. Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front. Microbiol. 10, 1–17 (2019).
    Article  Google Scholar 

    41.
    Tajik, S., Ayoubi, S., Khajehali, J. & Shataee, S. Effects of tree species composition on soil properties and invertebrates in a deciduous forest. Arab. J. Geosci. 12, 368 (2019).
    Article  CAS  Google Scholar 

    42.
    Stingl, U. & Giovannoni, S. J. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).
    ADS  PubMed  Article  CAS  Google Scholar 

    43.
    Danger, M., Daufresne, T., Lucas, F., Pissard, S. & Lacroix, G. Does Liebig’s law of the minimum scale up from species to communities?. Oikos 117, 1741–1751 (2008).
    Article  Google Scholar 

    44.
    Sakurai, M., Suzuki, K., Onodera, M., Shinano, T. & Osaki, M. Analysis of bacterial communities in soil by PCR–DGGE targeting protease genes. Soil Biol. Biochem. 39, 2777–2784 (2007).
    CAS  Article  Google Scholar 

    45.
    Wang, Y. et al. Carbon input manipulations affecting microbial carbon metabolism in temperate forest soils—a comparative study between broadleaf and coniferous plantations. Geoderma 355, 113914 (2019).
    ADS  CAS  Article  Google Scholar 

    46.
    Wan, X. et al. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil. 387, 103–116 (2015).
    CAS  Article  Google Scholar 

    47.
    Amtmann, A., Troufflard, S. & Armengaud, P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plantarum. 133, 582–691 (2008).
    Article  CAS  Google Scholar 

    48.
    Pettigrew, W. T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plantarum. 133, 670–681 (2008).
    CAS  Article  Google Scholar 

    49.
    Markewitz, D. & Richter, D. D. Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem. Forest Ecol. Manag. 130, 109–129 (2000).
    Article  Google Scholar 

    50.
    Tripler, C. E., Kaushal, S. S. & Likens, G. E. Patterns in potassium dynamics in forest ecosystems. Ecol. Lett. 9, 451–466 (2006).
    PubMed  Article  Google Scholar 

    51.
    Mori, T. et al. Testing potassium limitation on soil microbial activity in a sub-tropical forest. J. For. Res. 30, 2341–2347 (2019).
    CAS  Article  Google Scholar 

    52.
    Vuong, T. M. D., Zeng, J. Y. & Man, X. L. Spatial distribution andmonthly dynamics of soil carbon/nitrogen and hydrolases in Pinus sylvestris var. mongolica Litv. natural forest. Scientia Silvae Sinicae. 56, 40–47 (2020).

    53.
    Zeng, J. et al. An investigation into whether effect of tree species on soil microbial community is related with deciduous property or leaf shape. CATENA 195, 104699 (2020).
    Article  Google Scholar 

    54.
    Wu, Y. et al. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Appl. Soil Ecol. 43, 234–240 (2009).
    Article  Google Scholar 

    55.
    Washburn, C. & Arthur, M. A. Spatial variability in soil nutrient availability in an oak-pine forest: Potential effects of tree species. Can. J. For. Res. 33, 2321–2330 (2003).
    Article  Google Scholar 

    56.
    Azeez, J. O. Recycling organic waste in managed tropical forest ecosystems: effects of arboreal litter types on soil chemical properties in Abeokuta, southwestern Nigeria. J. For. Res. 30, 1903–1911 (2019).
    CAS  Article  Google Scholar 

    57.
    Ha, T. Effectiveness of the Vietnamese Good Agricultural Practice (VietGAP) on Plant Growth and Quality of Choy Sum (Brassica rapa var. parachinensis) in Northern Vietnam. Aceh International Journal of Science and Technology. 3, 80–87 (2014).

    58.
    Jia, Z. et al. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients 7, 6924–6937 (2015).
    Article  CAS  Google Scholar 

    59.
    Zhang, Y., Sui, B., Shen, H. & Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: a comparison of random forest models with different predictors. Comput. Electron. Agric. 160, 23–30 (2019).
    Article  Google Scholar 

    60.
    Sun, H. et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ. 673, 502–510 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    61.
    Ye, C. et al. Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Sci. Total Environ. 664, (2019).

    62.
    Li, J., Zhou, L. & Lin, W. Calla lily intercropping in rubber tree plantations changes the nutrient content, microbial abundance, and enzyme activity of both rhizosphere and non-rhizosphere soil and calla lily growth. Ind. Crop. Prod. (2019).

    63.
    Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fert. Soils. 6, 68–72 (1988).
    CAS  Article  Google Scholar 

    64.
    Ladd, J. N. & Butler, J. H. A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4, 19–30 (1972).
    CAS  Article  Google Scholar 

    65.
    Ross, D. J. & Roberts, H. S. Enzyme activities and oxygen uptakes of soils under pasture in temperature and rainfall sequences. Eur. J. Soil Sci. 21, 368–381 (1970).
    CAS  Article  Google Scholar 

    66.
    Sharma, N., Bhalla, T. C. & Bhatt, A. K. Partial purification and characterization of extracellular cellulase from a strain of Trichoderma viride isolated from forest soil. Folia Microbiol. 36, 353–359 (1991).
    CAS  Article  Google Scholar 

    67.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).
    CAS  Article  Google Scholar 

    70.
    Schloss, P. D. et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 75, 7537–7541 (2009).
    CAS  Article  Google Scholar 

    71.
    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 1–7 (2011).
    CAS  Article  Google Scholar 

    72.
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
    Google Scholar 

    73.
    Oksanen, J. et al. Package “vegan”. Commun. Ecol. Package, Version 2, 1–295 (2013).
    Google Scholar 

    74.
    Box, J. F. Guinness, Gosset, Fisher, and small samples. Stat. Sci. 2, 45–52 (1987).
    MathSciNet  MATH  Article  Google Scholar 

    75.
    Holland, S. M. Principal Components Analysis (PCA) 30602–32501 (Department of Geology, University of Georgia, Athens, GA, 2008).
    Google Scholar 

    76.
    Vu, V. Q. ggbiplot: A ggplot2 based biplot. R package. 342, (2011).

    77.
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Article  Google Scholar 

    78.
    Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
    CAS  PubMed  PubMed Central  Article  Google Scholar  More