More stories

  • in

    Genetic structure and relatedness of juvenile sicklefin lemon shark (Negaprion acutidens) at Dongsha Island

    Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. Extinction vulnerability in marine populations. Fish Fish. 4, 25–64 (2003).Article 

    Google Scholar 
    Fowler S. L. et al. Sharks, Rays and Chimaeras: The Status of the Chondrichthyan Fishes. IUCN/SSC Shark Specialist Group, Gland, Switzerland and Cambridge, UK (2005).Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).Article 

    Google Scholar 
    Lack M. & Sant G. Illegal, Unreported and Unregulated Shark Catch: A review of current knowledge and action. Department of the Environment, Water, Heritage and the Arts and TRAFFIC, Canberra http://www.traffic.org/fish/ (2008).Rose D.A. An Overview of World Trade in Sharks and Other Cartilaginous Fishes. TRAFFIC International, Cambridge, UK (1996).Lam, V. Y. & Sadovy, M. Y. The sharks of South East Asia–unknown, unmonitored and unmanaged. Fish Fish 12, 51–74 (2011).Article 

    Google Scholar 
    Kessel S.T. Investigation into the behaviour and population dynamics of the lemon shark (Negaprion brevirostris). Cardiff University (United Kingdom) (2010).Morrissey, J. F. & Gruber, S. H. Habitat selection by juvenile lemon sharks Negaprion brevirostris. Environ. Biol. Fishes 38, 311–319 (1993).Article 

    Google Scholar 
    Filmalter, J. D., Dagorn, L. & Cowley, P. D. Spatial behaviour and site fidelity of the sicklefin lemon shark Negaprion acutidens in a remote Indian Ocean atoll. Mari. Biol. 160, 2425–2436 (2013).Article 

    Google Scholar 
    DiBattista, J. D. et al. A genetic assessment of polyandry and breeding site fidelity in lemon sharks. Mol. Ecol. 17, 3337–3351 (2008).Article 

    Google Scholar 
    Wetherbee, B. M., Gruber, S. H. & Rosa, R. S. Movement patterns of juvenile lemon sharks Negaprion brevirostris within Atol das Rocas, Brazil: A nursery characterized by tidal extremes. Mar. Ecol. Prog. Seri. 343, 283–293 (2007).Article 
    ADS 

    Google Scholar 
    Feldheim, K. A. et al. Two decades of genetic profiling yields first evidence of natal philopatry and long-term fidelity to parturition sites in sharks. Mol. Ecol. 23, 110–117 (2014).Article 

    Google Scholar 
    Stevens J. D. et al. Diversity, abundance and habitat utilisation of sharks and rays: Final report to West Australian Marine Science Institute. CSIRO, editor. Hobart (2009).Schultz, J. K. et al. Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion). Mol. Ecol. 17, 5336–5348 (2008).Article 
    CAS 

    Google Scholar 
    Mourier, J., Buray, N., Schultz, J. K., Clua, E. & Planes, S. Genetic network and breeding patterns of a sicklefin lemon shark (Negaprion acutidens) population in the Society Islands, French Polynesia. PLoS ONE 8, e73899 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Speed, C. W. et al. Reef shark movements relative to a coastal marine protected area. Reg. Stud. Mar. Sci. 3, 58–66 (2016).
    Google Scholar 
    Huang, Z. Marine Species and Their Distribution in China’s Seas (Krieger Publishing Company, 2001).
    Google Scholar 
    Chang, C. W., Huang, C. S. & Wang, S. I. Species composition and sizes of fish in the lagoon of dongsha island (Pratas Island), Dongsha Atoll of the South China sea. Platax 2012, 25–32 (2012).
    Google Scholar 
    Pillans, R. D. et al. Long-term acoustic monitoring reveals site fidelity, reproductive migrations, and sex specific differences in habitat use and migratory timing in a large coastal shark (Negaprion acutidens). Front. Mar. Sci. 8, 616633 (2021).Article 

    Google Scholar 
    Daly-Engel, T. S. et al. Global phylogeography with mixed-marker analysis reveals male-mediated dispersal in the endangered scalloped hammerhead shark (Sphyrna lewini). PLoS ONE 7, e29986 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Félix-López, D. G. et al. Possible female philopatry of the smooth hammerhead shark Sphyrna zygaena revealed by genetic structure patterns. J. Fish Biol. 94, 671–679 (2019).Article 

    Google Scholar 
    Nosal, A. P., Caillat, A., Kisfaludy, E. K., Royer, M. A. & Wegner, N. C. Aggregation behavior and seasonal philopatry in male and female leopard sharks Triakis semifasciata along the open coast of southern California, USA. Mar. Ecol. Prog. Ser. 499, 157–175 (2014).Article 
    ADS 

    Google Scholar 
    Jirik, K. E. & Lowe, C. G. An elasmobranch maternity ward: Female round stingrays Urobatis halleri use warm, restored estuarine habitat during gestation. J. Fish. Biol. 80(5), 1227–1245 (2012).Article 
    CAS 

    Google Scholar 
    Jacoby, D. M., Croft, D. P. & Sims, D. W. Social behaviour in sharks and rays: Analysis, patterns and implications for conservation. Fish Fish 13(4), 399–417 (2012).Article 

    Google Scholar 
    Su, S. H., Liu, S. Y. V., Liu, K. M. & Tsai, W. P. Development and characterization of novel microsatellite loci for an endangered hammerhead shark Sphyrna lewini by using shotgun sequencing. Taiwania 65(2), 261–263 (2020).
    Google Scholar 
    Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).Article 
    CAS 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).Article 
    CAS 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14), 1801–1806 (2007).Article 
    CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in excel population genetic software for teaching and research–an update. Bioinformatics 28, 2537–2539 (2012).Article 
    CAS 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. POPPR: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).Article 

    Google Scholar 
    Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ML-Relate: A computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Resour. 6, 576–579 (2006).Article 
    CAS 

    Google Scholar 
    Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).Article 
    CAS 

    Google Scholar 
    Oh, B. Z. et al. Contrasting patterns of residency and space use of coastal sharks within a communal shark nursery. Mar. Freshw. Res. 68, 1501–1517 (2017).Article 

    Google Scholar 
    McClelland J. Genetic Assessment of Breeding Patterns and Population Size of the Sicklefin Lemon Shark Negaprion acutidens in a Tropical Marine Protected Area: Implications for Conservation and Management (Doctoral dissertation, University of York) (2020).Compagno L. J .V. FAO species catalogue Sharks of the world: An annotated and illustrated catalogue of shark species known to date. FAO Fish. Synop. No. 125 Rome 4, 1–655 (1984).Stevens, J. D. Life-history and ecology of sharks at aldabra Atoll. Indian Ocean. Proc R Soc. B 222, 79–106 (1984).ADS 

    Google Scholar 
    Kool, J. T., Moilanen, A. & Treml, E. A. Population connectivity: Recent advances and new perspectives. Landsc. Ecol. 28, 165–185 (2013).Article 

    Google Scholar 
    Ruzzante, D. E. et al. Effective number of breeders, effective population size and their relationship with census size in an iteroparous species Salvelinus fontinalis. Proc. R Soc. B 283, 20152601 (2016).Article 

    Google Scholar 
    Van Wyngaarden, M. et al. Identifying patterns of dispersal, connectivity and selection in the sea scallop, Placopecten magellanicus, using RADseq-derived SNPs. Evol. Appl. 10, 102–117 (2017).Article 

    Google Scholar 
    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red list criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).Article 

    Google Scholar 
    Pazmiño, D. A., Maes, G. E., Simpfendorfer, C. A., Salinas-de-León, P. & van Herwerden, L. Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). Conserv. Genet. 18, 1151–1163 (2017).Article 

    Google Scholar 
    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).Article 

    Google Scholar 
    Dudgeon, C. L. & Ovenden, J. R. The relationship between abundance and genetic effective population size in elasmobranchs: An example from the globally threatened zebra shark Stegostoma fasciatum within its protected range. Conserv. Genet. 16, 1443–1454 (2015).Article 

    Google Scholar 
    Feldheim, K. A., Gruber, S. H. & Ashley, M. V. Population genetic structure of the lemon shark (Negaprion brevirostris) in the western Atlantic: DNA microsatellite variation. Mol. Ecol. 10, 295–303 (2001).Article 
    CAS 

    Google Scholar 
    Feldheim, K. A., Gruber, S. H. & Ashley, M. V. The breeding biology of lemon sharks at a tropical nursery lagoon. Proc. R. Soc. Lond. B 269, 1471–2954 (2002).Article 

    Google Scholar 
    Portnoy, D., McDowell, J. R., Thompson, K., Musick, J. A. & Graves, J. E. Isolation and characterization of five dinucleotide microsatellite loci in the sandbar shark, Carcharhinus plumbeus. Mol. Ecol. Notes 6, 431–433 (2006).Article 
    CAS 

    Google Scholar  More

  • in

    Alma Dal Co (1989–2022)

    A visionary and interdisciplinary scientist who brought a fearless passion to everything she did, inspiring all those around her.
    Alma Dal Co tragically passed away on 14 November 2022 at the age of 33, doing what she loved most — spearfishing near the Italian island of Pantelleria. Alma was a visionary scientist at the beginning of what was promising to become a stellar career. As a physicist turned biologist, Alma wanted to unravel how complexity emerges from simplicity. Despite her young age, she had already made an important impact on the field by showing how the activities of microbial communities emerge from interactions between individual cells. Alma was a warm and caring friend, and a committed and inspiring mentor. She pursued science with fearless passion, creativity, vision and dedication.Alma Dal Co in 2016 in Joshua Tree National Park, California. Photograph by Simon van Vliet.Alma had an exceptionally sharp and creative mind, and an insatiable curiosity. She kept exploring new directions, working on everything from gene-regulatory circuits to microbial communities, to developmental processes. She was the embodiment of a true interdisciplinary scientist, combining state-of-the-art experiments with advanced computational approaches. The unifying theme of her work was to understand how interactions between individuals (be it fish, microorganisms or pancreatic cells) give rise to complex behaviour at higher levels of organization. She strived to derive simple, quantitative rules to explain the complexity that we see around us. Alma believed that science is a team effort: she was generous with her time, and always happy to discuss ideas and share resources. No matter where she went, she quickly connected with people, built formal and informal networks, and fostered collaborations and friendships.Alma was born in Turin and grew up in Venice, in Italy. Her true home, however, was Pantelleria, an Italian island in the Mediterranean Sea off the coast of Sicily. Alma spent her summers in the sea from an early age, developing a deep and lasting bond with it. The sea was not only a place to recharge, but also a source of inspiration: Alma became fascinated by the intricate behaviours of octopuses and schools of fish, creating a lasting sense of wonder about the natural world. Alma’s primary education focused on the humanities, but most of all music. In 2002, she was accepted to the conservatorium in Venice to study the piano. However, her love for the natural world remained and in 2007 she started studying physics in Padua. In 2011, she finished her BSc in physics and a year later her education at the conservatorium. Both a career in music and in science were an option, but Alma chose science and moved to Turin to study the physics of complex systems. Music always remained important in her life, and she played the piano whenever she could.Alma’s transition to biology started in Turin in the laboratory of Michelle Caselle, where she used mathematical models to study gene regulatory networks. She discovered how the regulation of gene expression can reduce stochastic fluctuations and provide robustness to the expression of an organism’s phenotype (A. Dal Co et al. Nucleic Acids Res. 45, 1069–1078; 2017). In 2014, she exchanged the blackboard for the wet lab, and moved to Zurich, Switzerland, to start her PhD with Martin Ackermann at ETH and the aquatic research institute Eawag. Despite the struggles of having to learn hands-on biology without formal training, she was not deterred from pursuing a highly challenging project.Alma developed an innovative approach to gain a mechanistic understanding of how metabolic interactions between individual microbial cells determine the dynamics of spatially structured communities. She quantified the growth of single cells in a synthetic microbial community and developed computational tools to infer their interaction network. She showed that cells in these communities live in a small world: they only interact with few neighbours (A. Dal Co et al. Nat. Ecol. Evol. 4, 366–375; 2020). This short interaction range limits the growth of mutually dependent microorganisms, thereby counteracting the evolution of metabolic specialization. Moreover, Alma developed a mathematical framework to quantitatively predict the dynamics of microbial communities from the molecular properties of the underlying intercellular interactions (S. van Vliet et al. PLoS Comput. Biol. 18, e1009877; 2022). Together, these works have made an important contribution to our understanding of how microbial communities function, and they have inspired numerous follow-up projects, both by Alma herself (for example, A. Dal Co et al. Phil. Trans. R. Soc. B 374, 20190080; 2019) and by others in the field (for example, J. van Gestel et al. Nat. Commun. 12, 2324; 2021).Alma finished her PhD in 2019, winning the ETH medal for an outstanding thesis. She then moved to Harvard to study developmental processes, together with Michael Brenner. She quickly developed a large network of collaborators and designed an innovative project to study pancreatic islet formation. However, COVID-19-related laboratory restrictions brought an early end to these plans, and Alma instead developed a novel computational framework that can be applied to both animal tissues and microbial communities to study how local cell–cell interactions can create spatial structure at the scale of multicellular systems.In September 2021, Alma started an assistant professorship at the University of Lausanne. At the age of 32, she was one of youngest professors ever appointed there. Thanks to her leadership, she quickly assembled a highly interdisciplinary, collaborative and cohesive team of talented young scientists. The group’s research was as varied as Alma’s interests. A major theme was to gain a quantitative understanding of how cell–cell interactions affect the function and structure of microbial communities and other multicellular systems. Her group combines state-of-the art experimental tools such as optogenetics, microfluidics and single-cell imaging, with computational approaches and mathematical modelling to study the dynamics of a wide range of model systems.During her very short career as an assistant professor, Alma was a core member of the Swiss National Research Program on microbiome research (https://nccr-microbiomes.ch); was awarded two major grants; established a large network of collaborators; and was invited to present her work at numerous international meetings. Most importantly, Alma fostered a strong sense of community, both in her group and beyond — creating an open, inclusive and interactive space to discuss science and life.Interacting with Alma was never dull: her passion and energy were infectious and her curiosity and openness a source of inspiration. She always kept you on your toes with her constant stream of pointed questions. But most of all, her easy laugh and positive energy made working with her an extraordinarily joyous experience.With Alma the world has lost a visionary scientist. We are deeply saddened that we will never see what other discoveries she would have made. However, it offers some conciliation to see how profoundly Alma has impacted the people around her, leaving a lasting impression even on those she only briefly met. Her vision, spirit and leadership have profoundly changed many around her and will continue to be a source of inspiration for many years to come. More

  • in

    Long-term spatiotemporal patterns in the number of colonies and honey production in Mexico

    Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 285, 20172140 (2018).Article 

    Google Scholar 
    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).Article 

    Google Scholar 
    Mashilingi, S. K., Zhang, H., Garibaldi, L. A. & An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agr. Ecosyst. Environ. 335, 108003 (2022).Article 

    Google Scholar 
    Stein, K. et al. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso West Africa. Sci. Rep. 7, 17691 (2017).Article 
    ADS 

    Google Scholar 
    Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010).Article 

    Google Scholar 
    Pettis, J. S. & Delaplane, K. S. Coordinated responses to honey bee decline in the USA. Apidologie 41, 256–263 (2010).Article 

    Google Scholar 
    Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).Article 

    Google Scholar 
    Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agr. Ecosyst. Environ. 216, 44–50 (2016).Article 

    Google Scholar 
    Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653 (2021).Article 

    Google Scholar 
    Requier, F. et al. Trends in beekeeping and honey bee colony losses in Latin America. J. Apic. Res. 57, 657–662 (2018).Article 

    Google Scholar 
    Vandame, R. & Palacio, M. A. Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping?. Apidologie 41, 243–255 (2010).Article 

    Google Scholar 
    Antúnez, K., Invernizzi, C., Mendoza, Y., vanEngelsdorp, D. & Zunino, P. Honeybee colony losses in Uruguay during 2013–2014. Apidologie 48, 364–370 (2017).Article 

    Google Scholar 
    Castilhos, D., Bergamo, G. C. & Kastelic, J. P. Honey bee colony losses in Brazil in 2018–2019 / Perdas de colônias de abelhas no Brasil em 2018–2019. Braz. J. Anim. Environ. Res. 4, 5017–5041 (2021).
    Google Scholar 
    Castilhos, D., Bergamo, G. C., Gramacho, K. P. & Gonçalves, L. S. Bee colony losses in Brazil: a 5-year online survey. Apidologie 50, 263–272 (2019).Article 

    Google Scholar 
    Maggi, M. et al. Honeybee health in South America. Apidologie 47, 835–854 (2016).Article 

    Google Scholar 
    SIAP. Sistema de Información Agroalimentaria de Consulta. http://www.agricultura.gob.mx/datos-abiertos/siap (2019).Namdar-Irani, M., Sotomayor, O. & Rodrigues, M. Tendencias estructurales en la agricultura de América Latina: desafíos para las políticas públicas. 45 (2020).Torres-Ruiz, A., Jones, R. W. & Barajas, R. A. Present and Potential use of Bees as Managed Pollinators in Mexico1. Southwestern entomologist (2013).Brodschneider, R. et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 57, 452–457 (2018).Article 

    Google Scholar 
    Gray, A. et al. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. J. Apic. Res. 58, 479–485 (2019).Article 

    Google Scholar 
    Medina-Flores, C. A. et al. Pérdida de colonias de abejas melíferas y factores asociados en el centro-occidente de México en los inviernos del 2016 al 2019. Revista Bio Ciencias 8, 11 (2021).Article 

    Google Scholar 
    vanEngelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invert. Pathol. 103(Supplement), S80–S95 (2010).Hristov, P., Shumkova, R., Palova, N. & Neov, B. Honey bee colony losses: Why are honey bees disappearing?. Sociobiology 68, e5851–e5851 (2021).Article 

    Google Scholar 
    Shanahan, M. Honey bees and industrial agriculture: What researchers are missing, and why it’s a problem. J. Insect Sci. 22, 14 (2022).Article 

    Google Scholar 
    Nearman, A. & vanEngelsdorp, D. Water provisioning increases caged worker bee lifespan and caged worker bees are living half as long as observed 50 years ago. Sci. Rep. 12, 18660. https://doi.org/10.1038/s41598-022-21401-2 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 49, 134–136 (2010).Article 

    Google Scholar 
    Guzmán-Novoa, E., Benítez, A. C., Montaño, L. G. E. & Novoa, G. G. Colonization, impact and control of Africanized honey bees in Mexico. Veterinaria México OA 42, (2011).Becerra-Guzmán, F., Guzmán-Novoa, E., Correa-Benítez, A. & Zozaya-Rubio, A. Length of life, age at first foraging and foraging life of Africanized and European honey bee (Apis mellifera) workers, during conditions of resource abundance. J. Apic. Res. 44, 151–156 (2005).Article 

    Google Scholar 
    Guzman-Novoa, E. & Uribe-Rubio, J. L. Honey production by European, Africanized and hybrid honey bee (Apis mellifera) colonies in Mexico. American bee journal (2004).Guzman-Novoa, E. et al. The Process and Outcome of the Africanization of Honey Bees in Mexico: Lessons and Future Directions. Front. Ecol. Evol. 8, (2020).Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Article 

    Google Scholar 
    Otto, C. R. V., Roth, C. L., Carlson, B. L. & Smart, M. D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. PNAS 113, 10430–10435 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant-pollinator interactions?. Ecol. Lett. 12, 184–195 (2018).Article 

    Google Scholar 
    Cooper, P. D., Schaffer, W. M. & Buchmann, S. L. Temperature Regulation of Honey Bees (Apis Mellifera) Foraging in the Sonoran Desert. J. Exp. Biol. 114, 1–15 (1985).Article 

    Google Scholar 
    Stalidzans, E. et al. Dynamics of weight change and temperature of Apis mellifera (Hymenoptera: Apidae) Colonies in a wintering building with controlled temperature. J. Econ. Entomol. 110, 13–23 (2017).CAS 

    Google Scholar 
    Qu, M., Wan, J. & Hao, X. Analysis of diurnal air temperature range change in the continental United States. Weather Clim. Extremes 4, 86–95 (2014).Article 

    Google Scholar 
    Braganza, K., Karoly, D. J. & Arblaster, J. M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 31, (2004).Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. 118, e2002543117 (2021).Article 
    CAS 

    Google Scholar 
    Abou-Shaara, H. F. The foraging behaviour of honey bees, Apis mellifera: A review. Vet. Med. 59, 1–10 (2014).Article 

    Google Scholar 
    Joshi, N. & Joshi, P. Foraging Behaviour of Apis Spp. on Apple Flowers in a Subtropical Environment. New York Sci. J. 3, (2010).Gounari, S., Proutsos, N. & Goras, G. How does weather impact on beehive productivity in a Mediterranean island? Ital. J. Agrometeorol. 65–81. https://doi.org/10.36253/ijam-1195 (2022).Delgado, D. L., Pérez, M. E., Galindo-Cardona, A., Giray, T. & Restrepo, C. Forecasting the Influence of Climate Change on Agroecosystem Services: Potential Impacts on Honey Yields in a Small-Island Developing State. Psyche J. Entomol. https://www.hindawi.com/journals/psyche/2012/951215/. https://doi.org/10.1155/2012/951215 (2012).Alves, L. H. S., Cassino, P. C. R. & Prezoto, F. Effects of abiotic factors on the foraging activity of Apis mellifera Linnaeus, 1758 in inflorescences of Vernonia polyanthes Less (Asteraceae). Acta Sci. Anim. Sci. 37, 405–409 (2015).Abou-Shaara, H. Expectations about the potential impacts of climate change on Honey Bee Colonies in Egypt. J. Apicult. 31, 157–164 (2016).Article 

    Google Scholar 
    Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Honeybee nutrition is linked to landscape composition. Ecol. Evol. 4, 4195–4206 (2014).Article 

    Google Scholar 
    Michel-Cuello, C. & Aguilar-Rivera, N. Climate change effects on agricultural production systems in México. in Handbook of Climate Change Across the Food Supply Chain (eds. Leal Filho, W., Djekic, I., Smetana, S. & Kovaleva, M.) 335–353 (Springer International Publishing, 2022). https://doi.org/10.1007/978-3-030-87934-1_19.LaFevor, M. C. Spatial and temporal changes in crop species production diversity in Mexico (1980–2020). Agriculture 12, 985 (2022).Article 

    Google Scholar 
    Smart, M. D., Otto, C. R. V. & Lundgren, J. G. Nutritional status of honey bee (Apis mellifera L.) workers across an agricultural land-use gradient. Sci. Rep. 9, 1–10 (2019).Alaux, C., Ducloz, F., Crauser, D. & Conte, Y. L. Diet effects on honeybee immunocompetence. Biol. Lett. rsbl20090986. https://doi.org/10.1098/rsbl.2009.0986 (2010).Dolezal, A. G., Carrillo-Tripp, J., Miller, W. A., Bonning, B. C. & Toth, A. L. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State. PLoS One 11, (2016).Pasquale, G. D. et al. Variations in the Availability of Pollen Resources Affect Honey Bee Health. PLoS ONE 11, e0162818 (2016).Article 

    Google Scholar 
    Kaluza, B. F. et al. Social bees are fitter in more biodiverse environments. Sci Rep 8, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Ricigliano, V. A. et al. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 4894 (2019).Article 
    ADS 

    Google Scholar 
    Clermont, A., Eickermann, M., Kraus, F., Hoffmann, L. & Beyer, M. Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions. Sci. Total Environ. 532, 1–13 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Kuchling, S. et al. Investigating the role of landscape composition on honey bee colony winter mortality: A long-term analysis. Sci. Rep. 8, 1 (2018).Article 
    CAS 

    Google Scholar 
    Dixon, D. J., Zheng, H. & Otto, C. R. V. Land conversion and pesticide use degrade forage areas for honey bees in America’s beekeeping epicenter. PLoS ONE 16, e0251043 (2021).Article 
    CAS 

    Google Scholar 
    Mendoza-Ponce, A., Corona-Núñez, R. O., Galicia, L. & Kraxner, F. Identifying hotspots of land use cover change under socioeconomic and climate change scenarios in Mexico. Ambio 48, 336–349 (2019).Article 

    Google Scholar 
    Magaña, M. et al. Productividad de la apicultura en México y su impacto sobre la rentabilidad. Revista mexicana de ciencias agrícolas 7, 1103–1115 (2016).Article 

    Google Scholar 
    Mitchell, E. a. D. et al. A worldwide survey of neonicotinoids in honey. Science 358, 109–111 (2017).Pacheco, A. P. Identificación de residuos tóxicos en miel de diferentes procedencias en la zona centro del Estado de Veracruz / Identification of toxic residues in honey from different sources in the central zone of the State of Veracruz. CIBA Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias 1, 1–42 (2014).Article 

    Google Scholar 
    Ruiz-Toledo, J. et al. Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern Mexico. Insects 9, 54 (2018).Article 

    Google Scholar 
    Valdovinos-Flores, C., Alcantar-Rosales, V. M., Gaspar-Ramírez, O., Saldaña-Loza, L. M. & Dorantes-Ugalde, J. A. Agricultural pesticide residues in honey and wax combs from Southeastern, Central and Northeastern Mexico. J. Apic. Res. 56, 667–679 (2017).Article 

    Google Scholar 
    Gómez-Escobar, E. et al. Effect of GF-120 (Spinosad) aerial sprays on colonies of the stingless Bee Scaptotrigona mexicana (Hymenoptera: Apidae) and the Honey Bee (Hymenoptera: Apidae). J. Econ. Entomol. 111, 1711–1715 (2018).Article 

    Google Scholar 
    Sánchez, D., Solórzano, E. D. J., Liedo, P. & Vandame, R. Effect of the natural pesticide Spinosad (GF-120 Formulation) on the Foraging behavior of Plebeia moureana (Hymenoptera: Apidae). J. Econ. Entomol. 105, 1234–1237 (2012).Article 

    Google Scholar 
    Cabrera-Marín, N. V., Liedo, P. & Sánchez, D. The Effect of Application Rate of GF-120 (Spinosad) and Malathion on the Mortality of Apis mellifera (Hymenoptera: Apidae) Foragers. J. Econ. Entomol. 109, 515–519 (2016).Article 

    Google Scholar 
    Valdovinos-Núñez, G. R. et al. Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J. Econ. Entomol. 102, 1737–1742 (2009).Article 

    Google Scholar 
    ANADA. Atlas Nacional de las Abejas y Derivados Apícolas. https://atlas-abejas.agricultura.gob.mx/cap2.html#212_Enfermedades_y_Plagas_de_las_Colmenas (2021).Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    Daberkow, S., Korb, P. & Hoff, F. Structure of the U.S. beekeeping industry: 1982–2002. J. Econ. Entomol. 102, 868–886 (2009).Saunders, S. P. et al. Unraveling a century of global change impacts on winter bird distributions in the eastern United States. Glob. Change Biol. 28, 2221–2235 (2022).Article 
    CAS 

    Google Scholar 
    CICESE. Base de datos climatológica nacional (Sistema CLICOM). http://clicom-mex.cicese.mx/ (2018).CONEVAL. Metodología para la medición de pobreza en México | CONEVAL. https://www.coneval.org.mx/Medicion/MP/Paginas/Metodologia.aspx.Wood, S. N. Generalized Additive Models: An Introduction with R, Second Edition. (CRC Press, 2017).Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer-Verlag, 2009).Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2016).Lichstein, J. W., Simons, T. R., Shriner, S. A. & Franzreb, K. E. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72, 445–463 (2002).Article 

    Google Scholar 
    Döke, M. A., Frazier, M. & Grozinger, C. M. Overwintering honey bees: biology and management. Curr. Opin. Insect Sci. 10, 185–193 (2015).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Sour. Softw. 6, 3139 (2021).Article 
    ADS 

    Google Scholar 
    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 1 (2018).Article 

    Google Scholar 
    Furrer, R., Nychka, D., Sain, S. & Nychka, M. D. Title Tools for spatial data. (2012). More

  • in

    Under-ice observations by trawls and multi-frequency acoustics in the Central Arctic Ocean reveals abundance and composition of pelagic fauna

    Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).Article 
    ADS 

    Google Scholar 
    Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Front. Mar. Sci. 7, 983–992 (2020).Article 

    Google Scholar 
    Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change. 10, 983–992 (2020).Article 
    ADS 

    Google Scholar 
    Macias-Fauria, M. & Post, E. Effects of sea ice on Arctic biota: An emerging crisis discipline. Biol. Lett. 14, 20170702 (2018).Article 

    Google Scholar 
    Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).Article 
    ADS 

    Google Scholar 
    Søreide, J. E. et al. Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers. Mar. Biol. Res. 9, 831–850 (2013).Article 

    Google Scholar 
    Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2015, 2 (2015).
    Google Scholar 
    FISCAO. Final Report of the Fifth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean. https://apps-afsc.fisheries.noaa.gov/documents/Arctic_fish_stocks_fifth_meeting/508_Documents/508_Final_report_of_the_505th_FiSCAO_meeting.pdf (2018).David, C. et al. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 39, 981–994 (2016).Article 

    Google Scholar 
    Gradinger, R. Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar. Biol. 133, 745–754 (1999).Article 

    Google Scholar 
    Kosobokova, K. N., Hopcroft, R. R. & Hirche, H.-J. Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodivers. 41, 29–50 (2011).Article 

    Google Scholar 
    Mumm, N. et al. Breaking the ice: Large-scale distribution of mesozooplankton after a decade of Arctic and transpolar cruises. Polar Biol. 20, 189–197 (1998).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. Unexpected fish and squid in the central Arctic deep scattering layer. Sci. Adv. 8, 7536 (2022).Article 

    Google Scholar 
    David, C., Lange, B., Rabe, B. & Flores, H. Community structure of under-ice fauna in the Eurasian central Arctic Ocean in relation to environmental properties of sea-ice habitats. Mar. Ecol. Prog. Ser. 522, 15–32 (2015).Article 
    ADS 

    Google Scholar 
    Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A. & Booth, B. C. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. Part II(44), 1623–1644 (1997).Article 
    ADS 

    Google Scholar 
    Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change. 10, 892–903 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hays, G. C. In Migrations and Dispersal of Marine Organisms. (eds Jones, M. B. et al.) 163–170 (Springer).Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).Article 
    ADS 

    Google Scholar 
    Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Gjøsæter, H., Wiebe, P. H., Knutsen, T. & Ingvaldsen, R. B. Evidence of Diel vertical migration of mesopelagic sound-scattering organisms in the Arctic. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Knutsen, T., Wiebe, P. H., Gjøsæter, H., Ingvaldsen, R. B. & Lien, G. High latitude epipelagic and mesopelagic scattering layers—a reference for future arctic ecosystem change. Front. Mar. Sci. 2017, 4 (2017).
    Google Scholar 
    Priou, P. et al. Dense mesopelagic sound scattering layer and vertical segregation of pelagic organisms at the Arctic-Atlantic gateway during the midnight sun. Prog. Oceanogr. 196, 102611 (2021).Article 

    Google Scholar 
    Snoeijs-Leijonmalm, P. et al. A deep scattering layer under the North Pole pack ice. Prog. Oceanogr. 194, 102560 (2021).Article 

    Google Scholar 
    St-John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: Perspectives from the mesopelagic community. Front. Mar. Sci. 2016, 3 (2016).
    Google Scholar 
    Fransson, A. et al. Joint cruise 2-2 2021: Cruise report. The Nansen Legacy Report Series, 30/2022. https://doi.org/10.7557/nlrs.6413 (2022).Rudels, B. et al. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci. 9, 147–169 (2013).Article 
    ADS 

    Google Scholar 
    Krumpen, T. et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 9, 5459 (2019).Article 
    ADS 

    Google Scholar 
    Aagaard, K. A synthesis of the Arctic Ocean circulation. Rapp. P.-V. Rcun. Cons. int. Explor. Mer. 188, 11–22 (1989).
    Google Scholar 
    Perez-Hernandez, M. D. et al. The Atlantic Water boundary current north of Svalbard in late summer. J. Geophys. Res. 122, 2269–2290 (2017).Article 
    ADS 

    Google Scholar 
    Våge, K. et al. The Atlantic Water boundary current in the Nansen Basin: Transport and mechanisms of lateral exchange. J. Geophys. Res. 121, 6946–6960 (2016).Article 
    ADS 

    Google Scholar 
    Crews, L., Sundfjord, A., Albretsen, J. & Hattermann, T. Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard. J. Geophys. Res. 123, 201–215 (2018).Article 
    ADS 

    Google Scholar 
    Kolås, E. H., Koenig, Z., Fer, I., Nilsen, F. & Marnela, M. Structure and Transport of Atlantic Water North of Svalbard From Observations in Summer and Fall 2018. J. Geophys. Res. 125, 6174 (2020).Article 

    Google Scholar 
    Basedow, S. L. et al. Seasonal variation in transport of zooplankton into the arctic basin through the atlantic gateway. Fram Strait. Front. Mar. Sci. 2018, 5 (2018).
    Google Scholar 
    Vernet, M., Carstensen, J., Reigstad, M. & Svensen, C. Editorial: Carbon bridge to the Arctic. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).Article 
    ADS 

    Google Scholar 
    Wassmann, P., Slagstad, D. & Ellingsen, I. Advection of mesozooplankton into the northern svalbard shelf region. Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Auel, H. Egg size and reproductive adaptations among Arctic deep-sea copepods (Calanoida, Paraeuchaeta). Helgol. Mar. Res. 58, 147–153 (2004).Article 
    ADS 

    Google Scholar 
    Gluchowska, M. et al. Zooplankton in Svalbard fjords on the Atlantic-Arctic boundary. Polar Biol. 39, 1785–1802 (2016).Article 

    Google Scholar 
    Wang, Y.-G., Tseng, L.-C., Lin, M. & Hwang, J.-S. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin. Arctic Ocean. Plos One. 14, e0219319 (2019).Article 
    CAS 

    Google Scholar 
    Gislason, A. & Silva, T. Abundance, composition, and development of zooplankton in the Subarctic Iceland Sea in 2006, 2007, and 2008. ICES J. Mar. Sci. 69, 1263–1276 (2012).Article 

    Google Scholar 
    Zhukova, N. G., Nesterova, V. N., Prokopchuk, I. P. & Rudneva, G. B. Winter distribution of euphausiids (Euphausiacea) in the Barents Sea (2000–2005). Deep-Sea Res. Part II(56), 1959–1967 (2009).Article 
    ADS 

    Google Scholar 
    Dalpadado, P. & Skjoldal, H. R. Abundance, maturity and growth of the krill species Thysanoessa inermis and T. longicaudata in the Barents Sea. Mar. Ecol. Prog. Ser. 144, 175–183 (1996).Article 
    ADS 

    Google Scholar 
    Koszteyn, J., Timofeev, S., Węsławski, J. M. & Malinga, B. Size structure of Themisto abyssorum Boeck and Themisto libellula (Mandt) populations in European Arctic seas. Polar Biol. 15, 85–92 (1995).Article 

    Google Scholar 
    Dalpadado, P., Borkner, N., Bogstad, B. & Mehl, S. Distribution of Themisto (Amphipoda) spp. in the Barents Sea and predator-prey interactions. ICES J. Mar. Sci. 58, 876–895 (2001).Article 

    Google Scholar 
    Macnaughton, M. O., Thormar, J. & Berge, J. Sympagic amphipods in the Arctic pack ice: Redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959). Polar Biol. 30, 1013–1025 (2007).Article 

    Google Scholar 
    Kraft, A., Graeve, M., Janssen, D., Greenacre, M. & Falk-Petersen, S. Arctic pelagic amphipods: Lipid dynamics and life strategy. J. Plankton Res. 37, 790–807 (2015).Article 
    CAS 

    Google Scholar 
    Kreibich, T., Hagen, W. & Saborowski, R. Food utilization of two pelagic crustaceans in the Greenland Sea: Meganyctiphanes norvegica (Euphausiacea) and Hymenodora glacialis (Decapoda, Caridea). Mar. Ecol. Prog. Ser. 413, 105–115 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619 (2018).Article 

    Google Scholar 
    Grigor, J. J., Søreide, J. E. & Varpe, Ø. Seasonal ecology and life-history strategy of the high-latitude predatory zooplankter Parasagitta elegans. Mar. Ecol. Prog. Ser. 499, 77–88 (2014).Article 
    ADS 

    Google Scholar 
    Maclennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    Gjøsæter, H. & Ushakov, N. G. Acoustic estimates of the Barents Sea Arctic cod Stock (Boreogadus saida). Forage Fishes in Marine Ecosystems. Alaska Sea Grant Collage Program, University of Alaska Fairbanks 97:01, 485–504 (1997).Raskoff, K. A., Hopcroft, R. R., Kosobokova, K. N., Purcell, J. E. & Youngbluth, M. Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep-Sea Res. Part II(57), 111–126 (2010).Article 
    ADS 

    Google Scholar 
    Bluhm, B. A. et al. The Pan-Arctic continental slope: Sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. 2020, 7 (2020).
    Google Scholar 
    Hop, H. et al. Pelagic ecosystem characteristics across the atlantic water boundary current from Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014). Front. Mar. Sci. 2019, 6 (2019).
    Google Scholar 
    Mumm, N. Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, during summer. Polar Biol. 13, 451–461 (1993).Article 

    Google Scholar 
    Ona, E. & Nielsen, J. Acoustic detection of the Greenland shark (Somniosus microcephalus) using multifrequency split beam echosounder in Svalbard waters. Prog. Oceanogr. 206, 102842 (2022).Article 

    Google Scholar 
    Gjøsæter, H., Ingvaldsen, R. & Christiansen, J. S. Acoustic scattering layers reveal a faunal connection across the Fram Strait. Prog. Oceanogr. 185, 102348 (2020).Article 

    Google Scholar 
    Ingvaldsen, R. B., Gjosaeter, H., Ona, E. & Michalsen, K. Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biol. 40, 2105–2111 (2017).Article 

    Google Scholar 
    Chawarski, J., Klevjer, T. A., Coté, D. & Geoffroy, M. Evidence of temperature control on mesopelagic fish and zooplankton communities at high latitudes. Front. Mar. Sci. 2022, 9 (2022).
    Google Scholar 
    Chernova, N. V. Catching of Greenland halibut Reinhardtius hippoglossoides (Pleuronectidae) on the shelf edge of the Laptev and East Siberian Seas. J. Ichthyol. 57, 219–227 (2017).Article 

    Google Scholar 
    Benzik, A. N., Budanova, L. K. & Orlov, A. M. Hard life in cold waters: Size distribution and gonads show that Greenland halibut temporarily inhabit the Siberian Arctic. Water Biol. Secur. 1, 100037 (2022).Article 

    Google Scholar 
    Olsen, L. M. et al. A red tide in the pack ice of the Arctic Ocean. Sci. Rep. 9, 9536 (2019).Article 
    ADS 

    Google Scholar 
    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).Article 
    ADS 

    Google Scholar 
    Drivdal, M. et al. Connections to the deep: Deep vertical migrations, an important part of the life cycle of Apherusa glacialis, an arctic ice-associated amphipod. Front. Mar. Sci. 2021, 8 (2021).
    Google Scholar 
    Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000 (2015).Article 
    ADS 

    Google Scholar 
    Popova, E. E., Yool, A., Aksenov, Y. & Coward, A. C. Role of advection in Arctic Ocean lower trophic dynamics: A modeling perspective. J. Geophys. Res. 118, 1571–1586 (2013).Article 
    ADS 

    Google Scholar 
    Saunders, R. A., Ingvarsdóttir, A., Rasmussen, J., Hay, S. J. & Brierley, A. S. Regional variation in distribution pattern, population structure and growth rates of Meganyctiphanes norvegica and Thysanoessa longicaudata in the Irminger Sea, North Atlantic. Prog. Oceanogr. 72, 313–342 (2007).Article 
    ADS 

    Google Scholar 
    Tarling, G. A. et al. Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs. Ambio 51, 333–344 (2022).Article 

    Google Scholar 
    Purcell, J. E., Juhl, A. R., Manko, M. K. & Aumack, C. F. Overwintering of gelatinous zooplankton in the coastal Arctic Ocean. Mar. Ecol. Prog. Ser. 591, 281–286 (2018).Article 
    ADS 

    Google Scholar 
    Purcell, J. E., Hopcroft, R. R., Kosobokova, K. N. & Whitledge, T. E. Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep-Sea Res. Part II(57), 127–135 (2010).Article 
    ADS 

    Google Scholar 
    Solvang, H. K. et al. Distribution of rorquals and Atlantic cod in relation to their prey in the Norwegian high Arctic. Polar Biol. 44, 761–782 (2021).Article 

    Google Scholar 
    Ingvaldsen, R. B. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2, 874–889 (2021).Article 
    ADS 

    Google Scholar 
    Flores, H. et al. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean. Deep-Sea Res. Part II(58), 1948–1961 (2011).Article 
    ADS 

    Google Scholar 
    Godø, O. R., Valdemarsen, J. W. & Engås, A. Comparison of efficiency of standard and experimental juvenile gadoid sampling trawls. ICES Mar. Sci. Symp. 196, 196–201 (1993).
    Google Scholar 
    Klevjer, T. et al. Micronekton biomass distribution, improved estimates across four north Atlantic basins. Deep-Sea Res. Part II. 180, 104691 (2020).Article 

    Google Scholar 
    Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968 (2010).Article 

    Google Scholar 
    Foote, K. G. Maintaining precision calibrations with optimal copper spheres. J. Acoust. Soc. Am. 73, 1054–1063 (1983).Article 
    ADS 

    Google Scholar 
    Korneliussen, R. J. et al. Acoustic identification of marine species using a feature library. Methods Oceanogr. 17, 187–205 (2016).Article 

    Google Scholar 
    Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere. 13, 49–78 (2019).Article 
    ADS 

    Google Scholar 
    Firing, E., Ramada, J. & Caldwell, P. Processing ADCP Data with the CODAS Software System Version 3.1. Joint Institute for Marine and Atmospheric Research University of Hawaii. http://currents.soest.hawaii.edu/docs/adcp_doc/index.html (1995).Padman, L. & Erofeeva, S. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 31, 256 (2004).Article 

    Google Scholar  More

  • in

    Organic amendment treatments for antimicrobial resistance and mobile element genes risk reduction in soil-crop systems

    D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461. https://doi.org/10.1038/nature10388 (2011).Article 
    ADS 

    Google Scholar 
    Cytryn, E. The soil resistome: The anthropogenic, the native, and the unknown. Soil Biol. Biochem. 63, 18–23. https://doi.org/10.1016/j.soilbio.2013.03.017 (2013).Article 

    Google Scholar 
    Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0 (2016).Article 

    Google Scholar 
    Regulation (EC) No 1831/2003 of the European parliament and of the council of 22 September 2003 on additives for use in animal nutrition.European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions: A farm to fork strategy for a fair, healthy and environmentally-friendly food system COM/2020/381 Final, (2020).Kumar, K. C., Gupta, S. C., Chander, Y. & Singh, A. K. Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron. 87, 1–54. https://doi.org/10.1016/S0065-2113(05)87001-4 (2005).Article 

    Google Scholar 
    Chee-Sanford, J. C. et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual. 38, 1086–1108. https://doi.org/10.2134/jeq2008.0128 (2009).Article 

    Google Scholar 
    Heuer, H., Schmitt, H. & Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14, 236–243. https://doi.org/10.1016/j.mib.2011.04.009 (2011).Article 

    Google Scholar 
    Epelde, L. et al. Characterization of composted organic amendments for agricultural use. Front. Sustain. Food Syst. 2, 44. https://doi.org/10.3389/fsufs.2018.00044 (2018).Article 

    Google Scholar 
    Youngquist, C. P., Mitchell, S. M. & Cogger, C. G. Fate of antibiotics and antibiotic resistance during digestion and composting: A review. J. Environ. Qual. 45, 537–545. https://doi.org/10.2134/jeq2015.05.0256 (2016).Article 

    Google Scholar 
    Ma, X., Xue, X., González-Mejía, A., Garland, J. & Cashdollar, J. Sustainable water systems for the city of tomorrow: A conceptual framework. Sustainability 7, 12071–12105. https://doi.org/10.3390/su70912071 (2015).Article 

    Google Scholar 
    Wang, Y. et al. Degradation of antibiotic resistance genes and mobile gene elements in dairy manure anerobic digestion. PLoS ONE 16, e0254836. https://doi.org/10.1371/journal.pone.0254836 (2021).Article 

    Google Scholar 
    Thanomsub, B. et al. Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J. Gen. Appl. Microbiol. 48, 193–199. https://doi.org/10.2323/jgam.48.193 (2002).Article 

    Google Scholar 
    Sousa, J. M. et al. Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. J. Hazard. Mater. 323, 434–441. https://doi.org/10.1016/j.jhazmat.2016.03.096 (2017).Article 

    Google Scholar 
    Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W. & Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439–451. https://doi.org/10.1007/s11104-011-0948-y (2011).Article 

    Google Scholar 
    Jeffery, S. et al. The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy 7, 1–13. https://doi.org/10.1111/gcbb.12132 (2015).Article 

    Google Scholar 
    Krasucka, P. et al. Engineered biochar: A sustainable solution for the removal of antibiotics from water. Chem. Eng. J. 405, 126926. https://doi.org/10.1016/j.cej.2020.126926 (2021).Article 

    Google Scholar 
    Ken, D. S. & Sinha, A. Recent developments in surface modification of Nano zero-valent iron (nZVI): remediation, toxicity and environmental impacts. Environ. Nanotechnol. Monit. Manag. 14, 100344. https://doi.org/10.1016/j.enmm.2020.100344 (2020).Article 

    Google Scholar 
    Zhao, X. et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266. https://doi.org/10.1016/j.watres.2016.05.019 (2016).Article 

    Google Scholar 
    Diao, M. & Yao, M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 43, 5243–5251. https://doi.org/10.1016/j.watres.2009.08.051 (2009).Article 

    Google Scholar 
    Shi, C. J., Wei, J., Jin, Y., Kniel, K. E. & Chiu, P. C. Removal of viruses and bacteriophages from drinking water using zero-valent iron. Sep. Purif. Technol. 84, 72–78. https://doi.org/10.1016/j.seppur.2011.06.036 (2012).Article 

    Google Scholar 
    Anza, M., Salazar, O., Epelde, L., Alkorta, I. & Garbisu, C. The application of nanoscale zero-valent iron promotes soil remediation while negatively affecting soil microbial biomass and activity. Front. Environ. Sci. 7, 19. https://doi.org/10.3389/fenvs.2019.00019 (2019).Article 

    Google Scholar 
    FAOSTAT. Mushrooms and truffles, production quantity (tons). https://www.tilasto.com/en/topic/geography-and-agriculture/crop/mushrooms-and-truffles/mushrooms-and-truffles-production-quantity/spain, (2020).Polat, E., Uzun, H., Topçuo, B., Önal, K. & Onus, A. N. Effects of spent mushroom compost on quality and productivity of cucumber (Cucumis sativus L.) grown in greenhouses. Afr. J. Biotechnol. 8, 176–180 (2009).
    Google Scholar 
    Fazaeli, H. & Masoodi, A. R. T. Spent wheat straw compost of Agaricus bisporus mushroom as ruminant feed. Asian-Australas. J. Anim. Sci. 19, 845–851. https://doi.org/10.5713/ajas.2006.845 (2006).Article 

    Google Scholar 
    Phan, C. W. & Sabaratnam, V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 96, 863–873. https://doi.org/10.1007/s00253-012-4446-9 (2012).Article 

    Google Scholar 
    Lau, K. L., Tsang, Y. Y. & Chiu, S. W. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52, 1539–1546. https://doi.org/10.1016/S0045-6535(03)00493-4 (2003).Article 
    ADS 

    Google Scholar 
    Mayans, B. et al. An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate. Environ. Sci. Pollut. Res. Int. 28, 7032–7042. https://doi.org/10.1007/s11356-020-11078-3 (2021).Article 

    Google Scholar 
    Congilosi, J. L. & Aga, D. S. Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. J. Hazard. Mater. 405, 123634. https://doi.org/10.1016/j.jhazmat.2020.123634 (2021).Article 

    Google Scholar 
    Oliver, J. P. et al. Invited review: fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J. Dairy Sci. 103, 1051–1071. https://doi.org/10.3168/jds.2019-16778 (2020).Article 

    Google Scholar 
    Beneragama, N. et al. Survival of multidrug-resistant bacteria in thermophilic and mesophilic anaerobic co-digestion of dairy manure and waste milk. Anim. Sci. J. 84, 426–433. https://doi.org/10.1111/asj.12017 (2013).Article 

    Google Scholar 
    Sun, W., Qian, X., Gu, J., Wang, X. J. & Duan, M. L. Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure. Sci. Rep. 6, 30237. https://doi.org/10.1038/srep30237 (2016).Article 
    ADS 

    Google Scholar 
    Sun, W., Gu, J., Wang, X., Qian, X. & Peng, H. Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure. Bioresour. Technol. 274, 287–295. https://doi.org/10.1016/j.biortech.2018.09.013 (2019).Article 

    Google Scholar 
    Zou, Y., Xiao, Y., Wang, H., Fang, T. & Dong, P. New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. J. Hazard. Mater. 384, 121433. https://doi.org/10.1016/j.jhazmat.2019.121433 (2020).Article 

    Google Scholar 
    Agga, G. E., Kasumba, J., Loughrin, J. H. & Conte, E. D. Anaerobic digestion of tetracycline spiked livestock manure and poultry litter increased the abundances of antibiotic and heavy metal resistance genes. Front Microbiol. 11, 614424. https://doi.org/10.3389/fmicb.2020.614424 (2020).Article 

    Google Scholar 
    Jauregi, L., Epelde, L., González, A., Lavín, J. L. & Garbisu, C. Reduction of the resistome risk from cow slurry and manure microbiomes to soil and vegetable microbiomes. Environ. Microbiol. 23, 7643–7660. https://doi.org/10.1111/1462-2920.15842 (2021).Article 

    Google Scholar 
    Zhang, Z. et al. Assessment of global health risk of antibiotic resistance genes. Nat Commun 13, 1553. https://doi.org/10.1038/s41467-022-29283-8 (2022).Article 
    ADS 

    Google Scholar 
    He, Y. et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 3, 4. https://doi.org/10.1038/s41545-020-0051-0 (2020).Article 

    Google Scholar 
    Cui, E., Wu, Y., Zuo, Y. & Chen, H. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. Bioresour. Technol. 203, 11–17. https://doi.org/10.1016/j.biortech.2015.12.030 (2016).Article 

    Google Scholar 
    Fu, Y., Zhang, A., Guo, T., Zhu, Y. & Shao, Y. Biochar and hyperthermophiles as additives accelerate the removal of antibiotic resistance genes and mobile genetic elements during composting. Materials (Basel) 14, 5428. https://doi.org/10.3390/ma14185428 (2021).Article 
    ADS 

    Google Scholar 
    Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616. https://doi.org/10.1038/nature13377 (2014).Article 
    ADS 

    Google Scholar 
    Li, H. et al. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicol. Environ. Saf. 140, 1–6. https://doi.org/10.1016/j.ecoenv.2017.01.007 (2017).Article 
    ADS 

    Google Scholar 
    Bondarenko, O., Ivask, A., Käkinen, A. & Kahru, A. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 169, 81–89. https://doi.org/10.1016/j.envpol.2012.05.009 (2012).Article 

    Google Scholar 
    Wang, X. et al. Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes. NanoImpact 10, 61–67. https://doi.org/10.1016/j.impact.2017.11.006 (2018).Article 
    ADS 

    Google Scholar 
    Qiu, X., Zhou, G. & Wang, H. Nanoscale zero-valent iron inhibits the horizontal gene transfer of antibiotic resistance genes in chicken manure compost. J. Hazard. Mater. 422, 126883. https://doi.org/10.1016/j.jhazmat.2021.126883 (2022).Article 

    Google Scholar 
    Zeng, T., Wilson, C. J. & Mitch, W. A. Effect of chemical oxidation on the sorption tendency of dissolved organic matter to a model hydrophobic surface. Environ. Sci. Technol. 48, 5118–5126. https://doi.org/10.1021/es405257b (2014).Article 
    ADS 

    Google Scholar 
    Pak, G. et al. Comparison of antibiotic resistance removal efficiencies using ozone disinfection under different pH and suspended solids and humic substance concentrations. Environ. Sci. Technol. 50, 7590–7600. https://doi.org/10.1021/acs.est.6b01340 (2016).Article 
    ADS 

    Google Scholar 
    Zhuang, Y. et al. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environ. Sci. Pollut. Res. Int. 22, 7037–7044. https://doi.org/10.1007/s11356-014-3919-z (2015).Article 

    Google Scholar 
    Park, S., Rana, A., Sung, W. & Munir, M. Competitiveness of quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) technologies, with a particular focus on detection of antibiotic resistance genes (ARGs). Appl. Microbiol. 1, 426–444. https://doi.org/10.3390/applmicrobiol1030028 (2021).Article 

    Google Scholar 
    European Medicines Agency. European surveillance of veterinary antimicrobial consumption, (2020). Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018 (EMA/24309/2020).Heuer, H. et al. The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1β group without any accessory genes. Microbiology (Reading) 150, 3591–3599. https://doi.org/10.1099/mic.0.27304-0 (2004).Article 

    Google Scholar 
    World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th Revision (WHO, Geneva, Switzerland, 2019).Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl Acad. Sci. U. S. A. 110, 3435–3440. https://doi.org/10.1073/pnas.1222743110 (2013).Article 
    ADS 

    Google Scholar 
    Guo, T. et al. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Sci. Total Environ. 635, 995–1003. https://doi.org/10.1016/j.scitotenv.2018.04.194 (2018).Article 
    ADS 

    Google Scholar 
    Nõlvak, H. et al. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Sci. Total Environ. 562, 678–689. https://doi.org/10.1016/j.scitotenv.2016.04.035 (2016).Article 
    ADS 

    Google Scholar 
    Chen, Q. L. et al. Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L.. Soil Biol. Biochem. 119, 74–82. https://doi.org/10.1016/j.soilbio.2018.01.015 (2018).Article 

    Google Scholar 
    Zhu, B., Chen, Q., Chen, S. & Zhu, Y. G. Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced?. Environ. Int. 98, 152–159. https://doi.org/10.1016/j.envint.2016.11.001 (2017) .Article 

    Google Scholar 
    Métodos, M. A. P. A. Oficiales de análisis de suelos y Aguas Para riego. Minist. Agric. Pesca Aliment. Métodos Oficiales Anal. III (1994).Muziasari, W. I. et al. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol. Ecol. 92, fiw052. https://doi.org/10.1093/femsec/fiw052 (2016).Article 

    Google Scholar 
    Muurinen, J. et al. Influence of manure application on the environmental resistome under Finnish agricultural practice with restricted antibiotic use. Environ. Sci. Technol. 51, 5989–5999. https://doi.org/10.1021/acs.est.7b00551 (2017).Article 
    ADS 

    Google Scholar 
    Muziasari, W. I. et al. The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below Baltic Sea fish farms. Front. Microbiol. 7, 2137. https://doi.org/10.3389/fmicb.2016.02137 (2017).Article 

    Google Scholar 
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).Article 

    Google Scholar 
    Ovreås, L., Forney, L., Daae, F. L. & Torsvik, V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373. https://doi.org/10.1128/aem.63.9.3367-3373.1997 (1997) .Article 
    ADS 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).Article 

    Google Scholar 
    Lanzén, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep. 6, 28257. https://doi.org/10.1038/srep28257 (2016).Article 
    ADS 

    Google Scholar 
    Pinna, N. K., Dutta, A., Monzoorul, H. M. & Mande, S. S. Can targeting non-contiguous V-regions with paired-end sequencing improve 16S rRNA-based taxonomic resolution of microbiomes?: An in silico evaluation. Front. Genet. 10, 653. https://doi.org/10.3389/fgene.2019.00653 (2019).Article 

    Google Scholar 
    Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).Article 

    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-e216. https://doi.org/10.1128/mSystems.00191-16 (2017).Article 

    Google Scholar 
    Yang, Y., Li, B., Zou, S., Fang, H. H. P. & Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62, 97–106. https://doi.org/10.1016/j.watres.2014.05.019 (2014).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 
    MATH 

    Google Scholar 
    de Mendiburu, F. Agricolae: Statistical procedures for agricultural research. R package version 1.3-3. https://CRAN.R-project.org/package=agricolae (2020).Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633 (2019).Article 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community ecology package. R Package Version 2.3-1. (2015). More

  • in

    Evolution of snow algae, from cosmopolitans to endemics, revealed by DNA analysis of ancient ice

    Classification of snow algae in the ice core based on ITS2 sequencesWe used high-throughput sequencing to obtain DNA sequences of algae from 19 layers of an ice core drilled on a glacier in central Asia, dated from present time to 8000 years ago (Fig. 1 and Table S1). In total, 17,016 unique sequences (phylotypes) for the fast-evolving algal nuclear rDNA internal transcribed spacer 2 (ITS2) region were determined in the ice core, from which 290 OTUs were defined with ≥98% nt sequence identity among all OTUs.The ITS2 sequences were classified at the species level according to the genetic species concept based on secondary structural differences in the ITS2 region, which correlate with the boundaries of most biological species [38]. The ITS2 sequences from ice core samples were classified into 24 subgroups consisting of 17 chlorophycean, 5 trebouxiophycean, and 2 ulvophycean groups based on their secondary structures and BLASTn results (Fig. S1 and Tables S3–S4). The 17 subgroups of Chlorophyceae were subdivided into 10 subgroups of the Chloromonadinia clade, 1 subgroup of the Monadinia clade (recently treated as the genus Microglena [54]), 3 subgroups of the Reinhardtinia clade, 2 subgroups of the Stephanosphaerinia clade, and 1 subgroup corresponding to an unnamed group (which is related to Ploeotila sp. CCCryo 086-99) (for the clade names, see [55]). Although the Chloromonadinia clade contains several snow species belonging to Chloromonas or Chlainomonas, the 10 subgroups of the Chloromonadinia clade were considered to be Chloromonas. The 5 trebouxiophycean subgroups were composed of 2 subgroups of the Chlorella group, 1 subgroup of the Raphidonema group, 1 subgroup of the Trebouxia group, and 1 subgroup of the Neocystis group. The 2 subgroups of Ulvophyceae were closely related to the genus Chamaetrichon and Planophila, respectively. It is noted that Sanguina (‘Chlamydomonas’-snow group B [6]), Ancylonema, and Mesotaenium, which are snow algal genera found throughout the world [56, 57], were not detected in the ice core samples (Tables S3–S4).Global distribution of the Raphidonema groupTo understand the process by which snow algae form geographically specific population structures and how they migrate globally across the glaciers and snow fields, it is necessary to focus on the microbial species that inhabit the global cryosphere. Previous work elucidated that the Raphidonema group and ‘Chlamydomonas’-snow group B (Sanguina) are the cosmopolitans at both poles [6], but the latter was not detected in ice core samples examined in this study. Therefore, to elucidate the evolutionary history of the Raphidonema group, we further analyzed the ITS2 sequences obtained from the ice core sample as well as the glacier-surface samples from both poles [6] and from the mid-latitudes (samples from 10 sites, obtained in this study) (hereafter, surface samples; Table S2). Members of the Raphidonema group were detected in the older (deep core) layers of the ice core and at the glacier surface of central Asia (Fig. S1 and Tables S3–S4), as well as in the red snow samples from both poles [6]. In central Asia, the Raphidonema group was found in the Russian, Chinese, and Kyrgyz samples but was not detected in the Japanese and Tajik samples (Fig. S1 and Tables S3–S4). Combining these sequences yielded 893,649 reads and 22,389 unique sequences for subsequent detailed analysis (Tables S5–S6). The taxonomic composition of the Raphidonema communities differed among the mid-latitude, ice core, Arctic, and Antarctic samples as determined by PERMANOVA (Table S7). Most of the unique sequences in the Raphidonema group were consistent with an endemic distribution (Tables S8–S10). An average of 77% of the unique sequences of the Raphidonema group were endemic to a specific region (mid-latitude, 96%; Antarctic, 66%; Arctic, 79%), accounting for 40% of the total sequencing reads (mid-latitude, 77%; Antarctic, 74%; Arctic, 22%) (Fig. 2a, b and Tables S9–S10). This result suggested that most of the unique sequences are endemic, indicating that their dispersal has been limited to their respective regions [58,59,60,61].Fig. 2: Distribution types of the Raphidonema group obtained from each region and the ice core based on ITS2 unique sequences.Proportions of unique sequence and number of sequencing reads are shown. a Unique sequences from surface snow and ice-core samples. b Number of sequencing reads from surface snow and ice core samples. c Unique sequences from the indicated locations within the ice core. d Number of sequencing reads of the unique sequences from the indicated locations within the ice core.Full size imageNext, we analyzed the global distribution of the cosmopolitan phylotypes of the Raphidonema group, because a previous study analyzed their distribution only at the poles [6]. Only a limited number of unique sequences were distributed in all regions (mid-latitude, 1.4%; Antarctic, 5.6%; Arctic, 3.1%), accounting for a large proportion of the sequencing reads in polar regions but for only a small proportion in the mid-latitudes (mid-latitude, 2.8%; Antarctic, 20%; Arctic, 55%) (Figs. 2a, b, S2–S3, and Tables S9–S10). The distribution types of the Raphidonema group obtained from each region and the ice core were similar between the USEARCH and DADA2 analyses (Figs. 2, S4). In addition, we note that in ancient samples, post-mortem nt substitutions, such as cytosine to thymine, accumulate over many years of deposition [62], and these are not included in the DADA2 error model, which leads to the elimination of minor sequences in the DADA2 analysis. Therefore, we based our analysis on the results of the USEARCH unique sequences. These results suggested that only a few snow algae in the Raphidonema group were detected in samples from the mid-latitude regions.Snow algae of the Raphidonema group were detected in different ice core layers, corresponding to different time periods. The ice core records revealed that the distribution types of the Raphidonema group have not changed significantly for the last 8000 years, with p = 0.1924 based on a PERMANOVA between the newer (1800–2001 AD) and the older (6000–8000 years before present) layers (Fig. 2c, d). In ice core samples, 77% of the unique sequences of the Raphidonema group were detected only in the ice core samples, accounting for 23% of the total sequencing reads (Fig. S5). Although some of these unique sequences may be artifacts of the post-mortem nt substitution or sequencing errors, because we conducted sequence quality filtering and removed the majority of artifact sequences by removing the singleton clusters, most of the unique sequences in the ice core are not likely to be artifacts, but they could represent endemic phylotypes (Figs. 2a, b, S5).The cosmopolitan phylotypes were detected over a broad period as represented by ice core samples. They were present in approximately similar ratios in the newer and older layers (Fig. 2c, d). The cosmopolitan phylotypes were relatively abundant in the ice core samples (average, 4.0%; range, 0.2–13%), accounting for 13% (0.9–81% in the samples) of the total sequencing reads (Figs. 2c, d and S5).Microevolution of cosmopolitan and endemic phylotypesWe analyzed the evolutionary relationship between cosmopolitan and endemic phylotypes of the Raphidonema group among all snow surface and ice core samples. In total, 22,389 unique sequences of the Raphidonema group were clustered into 170 OTUs that were defined with ≥98% nt sequence identity among sequences within OTUs. The OTU sequences were subdivided into five subgroups (Groups A–E) based on phylogenetic analysis (Figs. S6–S11 and Tables S11–S12). Based on a previous study [63], Groups A–C and Group E were assigned to R. sempervirens and R. nivale, respectively, but Group D was not consistent with any species examined in that study (Fig. S6).The phylotypes were categorized into three subsets: the cosmopolitan phylotypes found at both poles and the mid-latitude regions; the multi-region phylotypes found in any two of the Antarctic, Arctic, and mid-latitude regions; and the endemic phylotypes found in only one of the three regions. Cosmopolitan phylotypes were found in Groups A, B, and C and accounted for 64.6% of the unique sequences. We then analyzed the dispersal of the three groups in detail.MJ networks [47] for the ITS2 sequences in each subgroup revealed that the cosmopolitan phylotypes were located at the center of the networks in Groups A and C that contained any types (endemics, multi-regions, and cosmopolitans) of the phylotypes, whereas the endemic phylotypes were considered to be derived from the cosmopolitan phylotypes (Figs. 3 and S12–S13). Moreover, the outgroup phylotypes were directly connected to the cosmopolitan phylotypes. These findings clearly showed that the cosmopolitan phylotypes were ancestral, whereas the endemic phylotypes were derived. In contrast, there were remarkable differences in the shape of the networks between Group B and the others (Groups A and C). In Group B, the Antarctic endemic phylotypes formed a distinct clade, and multi-region phylotypes seemed to be recently derived from this clade. In addition, the Arctic endemic phylotypes formed another distinct clade. These two Group-B clades split directly from a cosmopolitan phylotype (5.3% of the total sequencing reads). For Groups A and C, however, major portions of the total sequencing reads belonged to cosmopolitan phylotypes in Groups A (48.2%) and C (62.4%), and the endemic and multi-region phylotypes were directly connected to these major cosmopolitan phylotypes in a radial manner—the so-called “star-like” pattern [64]. These contrasting network shapes seem to have been formed as a consequence of the unique evolution of each of these groups. We also found that sequences from ice cores did not represent a basal position (Figs. 3 and S12–S13). This is because the haplotypes found in the modern samples have existed from times earlier than the ice core ages, due to the very small mutation numbers expected to have occurred since the ice core ages. Therefore, detected ice core ages were not included in the molecular evolution calculations of our demographic model. However, the phylogenetic networks themselves do not provide information on the evolutionary time scale. Hence, the ice core samples provide further direct evidence that Raphidonema, especially cosmopolitans belonging to this genus, persistently grew on snow and ice at least during the Holocene, and their ITS2 sequences have not changed over the last 8000 years.Fig. 3: Phylogenetic relationships among phylotypes of the Raphidonema groups.Phylotype networks for ITS2 sequences within Groups A (a), B (b), and C (c) of the Raphidonema group that include the cosmopolitan phylotypes in this study. The median-joining method was used. Circles indicate phylotypes; the size of each circle is proportional to the number of unique sequences. Each notch on the edges represents a mutation. Phylotypes are colored according to geographic region. The arrow represents the phylotype in the outgroup (see Fig. S6).Full size imageReferring to “ancestral” phylotypes as those having a longer history than other, more recently derived phylotypes, it is possible that individuals not closely related can share the same ancestral phylotype. In such cases, if genetically far-related individuals from various geographical regions share the same ancestral phylotype, they appear to be “cosmopolitan” (Fig. S14a). In order to distinguish between these “apparent cosmopolitans”, and “true cosmopolitans” that migrate globally, it is necessary to show that the cosmopolitan and endemic phylotypes have distinct demographic histories rather than being part of a continuous population sharing certain demographic dynamics (Fig. S14). Because phylotype networks are not useful for quantifying the rate(s) of microevolution, we used the coalescent model to quantify phylotype demographics [65]. As numerous phylotypes must be analyzed with this approach, we concentrated on statistical inference based on pairwise comparisons of phylotypes, for which the likelihood can be determined in a practical manner (see Materials and Methods). Histograms for the number of mismatched sites between two phylotypes chosen from a set of phylotypes, which will be called the pairwise mismatch distribution, are shown in Figs. 4 and S15. For Groups A and C, the distribution among cosmopolitans, multi-regions, and endemics was unimodal, in which the modes align from left to right with the order cosmopolitans, multi-regions, and endemics. Rogers and Harpending [48] noted that this “wave” propagation results from the expansion in size of a population, which leads to large mismatches, and the mode shifts to the right (see Fig. 2 of [48]). As time passes, the mode shifts to the left and eventually returns to the origin, i.e., representing a population that has not undergone an expansion event. Rogers and Harpending obtained an approximate solution for the wave and fitted the solution to human mitochondrial sequence data. We improved upon their method based on the coalescent model (see Materials and Methods) and applied it to the ITS2 sequence data for snow algae.Fig. 4: Mismatch distribution based on the number of pairwise differences in each distribution type in Raphidonema groups.The lines represent the observed number of pairwise differences in each distribution type (cosmopolitan, multi-region, endemic) within the Raphidonema Groups A (a), B (b) and C (c). Calculations were performed for all distribution types of Raphidonema Groups A and C, for which various cosmopolitan phylotypes were detected. On the other hand, calculations for only multi-region and endemic phylotypes were performed for Raphidonema group B, because no variation was found in cosmopolitan phylotypes.Full size imageFor Group A, when we fit the single demographic model to all phylotypes, the log-likelihood was –414,487. In contrast, when we fit the demographic model to each subset, that is, cosmopolitans, multi-regions, and endemics, separately, the log-likelihood was –341,964. Because the latter is larger than the former, we fit the model to each subset of phylotypes separately. For Group C, when we fit the demographic model to the cosmopolitans, multi-regions, and endemics separately, the log-likelihood was –142,106, which is larger than the log-likelihood, –218,080, when we fit the single demographic model to all phylotypes. In contrast to Groups A and C then, we fit the single demographic model to all phylotypes of Group B because the log-likelihood, –196,070, was larger than the log-likelihood, –220,145, when we fit the demographic model to the cosmopolitans, multi-regions, and endemics separately. These results suggested that cosmopolitans, multi-regions, and endemics experienced different demographic histories in Groups A and C, whereas they had the same demographic history in Group B (Table S13). These results indicate the cosmopolitans in Group A and C are true cosmopolitans, whereas the those in Group B can be regarded as an apparent cosmopolitan.The ML estimates of (tau = 2ut_0), (theta _0 = 2N_0u), and (theta _1 = 2N_1u) are shown in Table S13 with standard deviation values. The population expanded t years ago, with the size before and after the expansion being represented by N0 and N1, respectively. The mutation rate (u) was assumed to be 7.9 × 10–8/ sequence/generation, and the generation interval was assumed to be 24 days (Materials and Methods). In Group A, for the cosmopolitans, the estimates of t, N0, and N1 were (33.8/(2 times 7.9) times 10^8 times {textstyle{{24} over {365}}} = 1.4 times 10^7) years, ((0.108 – 0.010)/(2 times 7.9) times 10^8 = (6.8 – 0.63) times 10^5), and ((0.217)/(2 times 7.9) times 10^8 = 1.4 times 10^6), respectively. In the same way, we computed estimates of t, N0, and N1 of other phylotypes and other groups (Table S14). For the endemics, the respective values were 9.2 × 106 years, 80, and 2.1 × 107, and the values were 4.6 × 106 years, 139, and 1.5 × 107 for the multi-regions. Taking into account the minimum and maximum ranges of the mutation rates per generation as well as the generation intervals, t for cosmopolitans was 3.6 × 106–4.0 × 107 years ago, and t for endemics was 2.3 × 106–2.6 × 107 years ago (Table S14). These results suggested that the cosmopolitans existed at least 1.4 × 107 years ago, and the endemics were derived from the cosmopolitans 9.2 × 106 years ago. The size of the endemics expanded 2.6 × 105-fold, which may have resulted from extensive dispersal. The multi-regions tended to mimic the endemics. Note that our demographic model was simplified to avoid overparameterization. In reality, considering the branching patterns of the MJ network, it is plausible that the endemic phylotypes have been repetitively and continuously derived from the cosmopolitans in multiple lineages—from 9.2 × 106 years ago to the present. In the same way, as for Group C, our results suggested that the cosmopolitan population expanded 3.9-fold ~3.2 × 106 years ago, and the endemics were derived from the cosmopolitans 1.9 × 105 years ago. The size of the endemics expanded 59-fold. In contrast to the phylotypes of Groups A and C, those of Group B experienced no significant expansion (Supplementary Results). In Groups A and C, the derived endemics (and multi-regions) expanded greatly as compared with the ancestral cosmopolitans (Table S14). These extraordinary expansions constitute evidence for local adaptation by the endemic/multi-region populations. In contrast, there was no evidence of local adaptation in Group B. The mismatch distribution of the entire Group B (multi-regions + endemics) showed a multimodal pattern (Fig. 4), which is present in the populations with stable sizes for a long period. When the populations finally reach equilibrium, the mismatch distributions show the exponential distribution [48]. Based on our ML estimates (Table S14), the historical population of Group B has been stable. More

  • in

    Predicting cascading extinctions and efficient restoration strategies in plant–pollinator networks via generalized positive feedback loops

    The Campbell et al. model provides an excellent framework to identify species whose extinction leads to community collapse and species whose reintroduction can restore the community (see Fig. 2 for an illustration of these processes). Our first objective, finding the effect of species extinction on the rest of the species in an established community, is achievable using the concept of Logical Domain of Influence (LDOI)41; the LDOI represents the influence of a (set of) fixed node state(s) on the rest of the components in a system. In this section we first present our proposed method to calculate the LDOI for the Boolean threshold functions governing the Campbell et al. model of plant–pollinator community assembly. Then we verify that the simplified logical functions preserve the LDOI and hence can be implemented to further analyze the effect of extinction in plant–pollinator networks. Next, we address one of the main questions that motivated this study: Can stable motif driver set analysis facilitate the identification of keystone species? We discuss the identification of the driver sets of inactive stable motifs and motif groups and present the results of stabilizing these sets to measure the magnitude of the effect of species extinction on the communities. Lastly we discuss possible prevention and mitigation measures based on the knowledge acquired from driver sets of stable motifs and motif groups.Figure 2Illustration of species extinction and restoration in a hypothetical 6-species community. (a) The interaction network (on the left), and the maximal richness community possible for this network (the community with the most established species). Nodes highlighted with green represent established species. (b) The initial extinction of two species, po_1 and po_2 (left) and the community that results after cascading extinctions (right). Nodes highlighted with grey represent extinct species. (c) An intervention to restore pl_2 (left), which induces the restoration of further species, finally leading to a restored community with all the species present (right). The nodes highlighted with teal represent the restored species.Full size imageLDOI in the Boolean threshold modelThe LDOI concept was originally defined on Boolean functions expressed in a disjunctive prime form. Here we extend it to Boolean threshold functions. We implemented it as a breadth first search on the interaction network, as exemplified in Fig. 3. Assume that we want to find the LDOI of a (set of) node(s) (S_0={n_1,dots ,n_N}) and their specific fixed state (Q(S_0)={sigma _{n_1},dots ,sigma _{n_N}}). Starting from the set (S_0), the next set of nodes (S_1) that can acquire a fixed state due to the influence of (Q(S_0)) consists of the nodes that have an incoming edge from the nodes in the set (S_0) in the interaction network. The nodes in set (S_1) are the subject of the first search level. For each node (n_i in S_0) and (n^prime _i in S_1) we assume a “worst case scenario” (i.e., maximal opposition of the effect of (n_i) on (n^prime _i) from other regulators) to find the possible sufficiency relationships between the two. There are five cases:

    1.

    If (n_i) is a positive regulator of (n^prime _i), then (sigma _{n_i}=1) is a candidate for being sufficient for (sigma _{n^prime _i}=1). We assume that all other positive regulators of (n^prime _i) that have an unknown state (i.e., are not in (Q(S_0))) are inactive and all negative regulators of (n^prime _i) that have an unknown state are active. If (sum _j W_{ij} > 0) under this assumption, then the active state of (n_i) is sufficient to activate (n^prime _i). The virtual node (n^prime _i) that corresponds to (sigma _{n^prime _i}=1) is added to LDOI((Q(S_0))).

    2.

    If (n_i) is a positive regulator of (n^prime _i), then (sigma _{n_i}=0) is a candidate for being sufficient for (sigma _{n^prime _i}=0). We assume all other positive regulators of (n^prime _i) that have an unknown state are active and all negative regulators of (n^prime _i) that have an unknown state are inactive. If (sum _j W_{ij}le 0) under this assumption, then the inactive state of (n_i) is sufficient to deactivate (n^prime _i). The virtual node (sim n^prime _i) that corresponds to (sigma _{n^prime _i}=0) is added to LDOI((Q(S_0))).

    3.

    If (n_i) is a negative regulator of (n^prime _i), then (sigma _{n_i}=1) is a candidate for being sufficient for (sigma _{n^prime _i}=0). We assume all positive regulators of (n^prime _i) that have an unknown state are active and all other negative regulators of (n^prime _i) that that have an unknown state are inactive. If (sum _j W_{ij}le 0) under this assumption, then the active state of (n_i) is sufficient to deactivate (n^prime _i). The virtual node (sim n^prime _i) that corresponds to (sigma _{n^prime _i}=0) is added to LDOI((Q(S_0))).

    4.

    If (n_i) is a negative regulator of (n^prime _i), then (sigma _{n_i}=0) is a candidate for being sufficient for (sigma _{n^prime _i}=1). We assume all positive regulators of (n^prime _i) that have an unknown state are inactive and all other negative regulators of (n^prime _i) that that have an unknown state are active. If (sum _j W_{ij} > 0) under this assumption, then the inactive state of (n_i) is sufficient to activate (n^prime _i). The virtual node (n^prime _i) that corresponds to (sigma _{n^prime _i}=1) is added to the LDOI((Q(S_0))).

    5.

    If none of the past four sufficiency checks are satisfied, the node (n^prime _i) will be visited again in the next search levels.

    The second set of nodes that can be influenced, (S_2), are the nodes that have an incoming edge from the nodes in the set (S_1). The algorithm goes over these nodes in the second search level as described above. This search continues to all the levels of the search algorithm until all nodes are visited (possibly multiple times) and either acquire a fixed state and are added to the LDOI or their state will be left undetermined at the end of the algorithm. In Fig. 3, we illustrate this search to find the LDOI((sim )pl_1). The first search level is (S_1={)po_1, po_3(}); (sim )pl_1 is sufficient to deactivate po_3, but not po_1. As a result, (sim )po_3(in ) LDOI((sim )pl_1). This process continues until all levels are visited and at the end of the algorithm LDOI((sim )pl_1()={sim )po_3, (sim )pl_2, (sim )pl_3, (sim )pl_4, (sim )pl_5, (sim )po_1, (sim )po_2 (}).Figure 3Breadth first search of the interaction network to find the LDOI of a (set of) fixed note state(s) in Boolean threshold functions governing the dynamics of plant–pollinator networks. (a) An interaction network with five plants and 3 pollinators. (b) The breadth first search in the case of starting from the node state (sim )pl_1. The nodes with incoming edges from pl_1 make up (S_1={)po_1, po_3(}). The second sufficiency check is satisfied for node state (sim )po_3, as a result (sim )po_3(in ) LDOI((sim )pl_1). The same process is applied for node po_1, but none of the sufficiency checks are satisfied, so this node will be visited again later. The next level of the search consists of the nodes that have incident edges from (S_1), i.e., (S_2={)pl_2, pl_3, pl_4, pl_5(}). The second sufficiency check is satisfied for all of these nodes and they are all fixed to their inactive state in the LDOI((sim )pl_1). Lastly, we reach (S_3={)po_1, po_2(}). Node po_1 is reached again, and with both its positive regulators fixed to their inactive states the second sufficiency check is satisfied and node po_1 is fixed to its inactive state as well. The same holds for po_2 and hence LDOI((sim )pl_1()={sim )po_3, (sim )pl_2, (sim )pl_3, (sim )pl_4, (sim )pl_5, (sim )po_1, (sim )po_2 (}).Full size imageTo measure the accuracy of the simplification method originally introduced in28, we analyzed logical domains of influence in 6000 networks with 50–70 nodes. These networks are among the largest in our ensembles and have the most complex structures. We randomly selected (sets of) inactive node states, found their LDOIs using the Boolean threshold functions and the simplified Boolean functions, and compared the two resulting LDOIs. We used 8 single node states and 8 combinations of size 2 to 4 for each network. We found that in all cases the LDOI calculated using the simplified Boolean functions matches the LDOI calculated using the Boolean threshold functions.Next, we analyzed (sets of) active node states and their LDOIs in the same ensembles of networks. Similar to the previous analysis, we used 8 single node states and 8 combinations of size 2 to 4 for each network. Our analysis shows that in 77.1% of the cases the LDOI calculated using the simplified Boolean functions matches the LDOI calculated using the Boolean threshold functions. In 22% of the cases the LDOI calculated from the simplified Boolean functions contains the LDOI calculated from the threshold functions, and it also contains extra active node states, overestimating the LDOI by 57.5% on average. These additional members of the LDOI result from the fact that the simplified Boolean functions contain fewer negative regulators than the threshold functions. The guiding principle of the simplification method is that the probability of (H(x)=1) conserves the probability of each node having an active state across all the states it can have. In contrast, the probability of the propagation of the active state is not necessarily preserved and tends to be higher in the simplified Boolean model; thus the LDOI of the active node states is overestimated in some cases.In the rest of the cases (about 1%), the LDOI calculated from the simplified Boolean functions does not fully capture the LDOI calculated from the threshold functions. This again is caused by the sparsification of the negative edges in the simplified Boolean functions. In the threshold functions, the activation of 4 or more negative regulators of a target node combined with one active positive regulator is sufficient to deactivate the target node, i.e., there might be inactive node states in the LDOI of a set of active node states. However, some of these negative regulators drop in the simplified Boolean model and the inactive state of the target node is not necessarily in the LDOI of the set of active node states in the simplified case. This is the rare mechanism by which the simplified model might underestimate the influence of active node states on the rest of the network.In the following section we are interested in analyzing the effect of species extinction on the established community, i.e., we look at the LDOI of (sets of) inactive node states. Observing that the influence of extinction of species is measured correctly in the simplified Boolean models, we conclude that these models can be utilized to further analyze the process of extinction and its ecological implications.Stable motif based identification of species whose loss leads to cascading extinctionsEach stable motif or motif group can have multiple driver sets; stabilization of each driver set leads to the stabilization of the whole motif or motif group. In plant–pollinator interaction networks, the stable motifs either represent a sub-community (when the constituent nodes stabilize in their active states) or the simultaneous extinction of all species in the group (when the constituent nodes stabilize to their inactive states). Stabilization of the nodes in the driver set of an inactive stable motif results in stabilization of all the nodes in the stable motif to their inactive state, i.e., cascading extinction of the constituent species.The knowledge gained from stable motif analysis and the network of functional relationships offers insight into the cascading effect of an extinction that constitutes a driver set of an inactive stable motif. The magnitude of this effect depends on (i) the number of nodes that the inactive stable motif contains and (ii) the number of virtual nodes (including motifs and motif groups) corresponding to inactive species that are logically determined by the stabilization of the inactive stable motif.To investigate the role of stable motifs in the study of species extinction in plant–pollinator networks, we simulated extinctions that drive inactive stable motifs in 6000 networks with the sizes of 50–70 nodes. We considered driver sets of size 1, 2, or 3, and implemented them by fixing the corresponding node(s) to its (their) inactive state. As a point of comparison, we also performed a “control” analysis using the same networks with the same size of initial extinction; however, the candidates of initial extinction are inactive node states that do not drive stable motifs or motif groups. Based on the properties of the drivers of stable motifs, one expects that following the extinction of driver species, cascading extinctions of other species follow, while the same does not necessarily hold for non-driver species. As a result, we expect to observe greater damage to the original community when driver species become extinct.We assume that the “maximal richness community”—the community (attractor) in which the largest number of species managed to establish—is the subject of species extinction. This maximal richness community results from the stabilization of all active stable motifs. All other attractors that have some established species contain a subset of all active stable motifs and thus will contain a subset of the species of the maximal richness community. While for a generic Boolean model with multiple attractors one expects that a perturbed version of the model also has multiple attractors, this specific perturbation of a plant–pollinator model (namely, extinction of species in the maximal richness community) has a single attractor. We prove this by contradiction. Assume there are two separate attractors in the perturbed model, which means that there is at least one node that has opposite states in these two attractors. Note that this bi-stability is the result of the perturbation and not a property of the original system as the maximal richness community (an attractor) is the starting point for the introduced extinction. Specifically, the inactive state of the extinct node has to lead to the stabilization of another node to its active versus inactive states in the two separate attractors. The only case in which the stabilization of an inactive node state can result in the stabilization of an active node state is if there is a negative edge from the former to the latter in the interaction network after simplification. Since the Boolean function in 2 is inhibitor dominant, the negative regulators that remain in the Boolean model must be in their inactive states in the maximal richness attractor. As they are already inactive (extinct), they are not candidates for extinction. The only nodes that are candidates for extinction are the ones that positively regulate other nodes; perturbing the system by fixing these candidates to their inactive states cannot lead to the active state of a target node. In conclusion, bi-stability is not possible.We found the new attractor of the system given the (combination of) inactive node state(s) using the the functions percolate_and_remove_constants() and trap_spaces() from the pyboolnet Python package. We quantify the effects of the initial extinction(s) on the maximal richness attractor by the percentage change in the number of active species, which we call damage percentage. Note that this choice of maximal richness community as the reference and starting point allows us to detect the cascading extinctions following the initial damage.In Fig. 4 the left column plots show the average damage percentage caused by the extinction of 1 (top panel), 2 (middle panel), or 3 (bottom panel) species that represent driver sets of stable motifs and motif groups, while the right column plots illustrate the average damage percentage as a result of the extinction of 1, 2 or 3 species that represent non-driver nodes. Comparing the two columns, one can notice that stabilization of the driver sets of stable motifs and motif groups leads to considerably larger damage to the communities. This is due to the fact that stabilization of driver sets ensures the stabilization of entire inactive stable motifs and motif groups and hence ensures cascading extinctions. Comparing the plots in the left column, we see that the larger the driver sets are, the larger the damage to the community becomes. This is because larger driver sets are more likely to stabilize larger stable motifs and motif groups. This figure illustrates the significance of stable motifs and their driver sets in the study of species extinction in plant–pollinator communities.Figure 4Histogram plots illustrating the average percentage of the damage caused in an established community after the extinction of species. This analysis is performed over 6000 networks with the size of 50–70 nodes. To study the extinction of species we started from the maximal richness community, then we fixed the nodes that correspond to the focal species to the their inactive states. The original extinctions are excluded from the damage percentages. The left column plots show the average damage percentage caused to the maximal richness community by the extinction of a driver set of size 1 (top), 2 (middle), or 3 (bottom) of an inactive stable motif or motif group. For each network, we determined all the relevant driver sets of one stable motif or motif group, we performed the extinction and calculated the resulting damage, then we calculated the average damage percentage over all data points collected for the same network. The right column plots show the average damage percentage caused to the maximal richness community by the extinction of 1 (top), 2 (middle), and 3 (bottom) non-driver, randomly chosen nodes. Each time a randomly selected combination of non-driver nodes were the subject of simultaneous extinction until all combinations are explored and then we calculated the average damage percentage over all data points collected for each network. The number of networks that qualify for each of these 6 categories differ (e.g., some networks have a stable motif with a driver set of size 2 but no stable motif with a driver set of size 3). In the left column 5529, 3212, and 1980 networks and in the right column 5779, 5626, and 5423 networks qualified respectively. The red lines represent the mean value of all the presented data points in each plot.Full size imageIn Fig. 4 left column, the full driver set of one inactive stable motif or motif group was stabilized. However, the species that become extinct might only contain a subset of a driver set of a stable motif or motif group, i.e., they only stabilize a subset of the inactive node states in the stable motif or motif group. We compare the extinction effect caused by the stabilization of a full driver set of four nodes with the effect of the extinction of four nodes that contain a partial driver set in Fig. 5 using the batch of the largest networks in this study, i.e, the batch that contains networks with 30 nodes representing plant species and 40 nodes representing pollinator species. This choice is due to the fact that the existence of stable motifs and motif groups having a driver set of four node states is highly probable in larger networks. As expected, the stabilization of the complete driver set leads to greater damage. Stabilization of the same number of nodes that contain a partial driver set leads to significantly less damage and species loss in the community; the median damage percentage in the case of stabilization of partial driver sets is 22.6% while it is 69.2% in the case of stabilization of the full driver sets. We also note that damage of more than 90% occurs rarely and is only possible when a full driver set is stabilized (see Fig. 5 right plot). This suggests that the motif groups that lead to total extinction tend to have a driver set with more than four nodes; in other words, only the simultaneous extinction of five or more species would lead to total community collapse.Figure 5Histogram plots illustrating the average percentage of the damage caused in an established community after the extinction of species. This analysis is performed over 1000 networks with the size of 70 nodes (30 nodes representing plant species and 40 nodes representing pollinator species). The original extinctions are excluded from the damage percentages. The left plot shows the average damage percentage caused to the maximal richness community by the extinction of 2 species that are a subset of the 4-node driver set of an inactive stable motif or motif group plus 2 randomly selected non-driver species. The right plot shows the damage percentage caused to the maximal richness community by the extinction of 4-node driver sets of the same inactive stable motifs and motif groups. Each time the driver set of one stable motif or motif group was the subject of extinction and we calculated the average damage percentage over all data points collected for each network. 295 networks qualified for this analysis.Full size imageMotif driver set analysis outperforms structural measures in identifying keystone speciesThe literature on ecological networks offers multiple measures that reflect the importance of each species for community stability. One family of such measures is centrality (quantified by the network measures degree centrality and betweenness centrality). Previous studies45,46 have shown that species (nodes) with higher centrality scores are keystone species in ecological communities (i.e., species whose loss would dramatically change or even destroy the community). The nodes with highest in-degree centrality (such as pl_2 in Fig. 6a) represent generalist species that can receive beneficial interactions from multiple sources and survive. The nodes with highest betweenness centrality (such as pl_2 and po_2 in Fig. 6a) represent species that act as connectors and help the community survive. We find that high centrality corresponds to specific patterns in the expanded network: the inactive state of generalist or connector species is often the driver of a cascading extinction. Indeed, stable motif analysis of the expanded network in Fig. 6b confirms that there is an inactive stable motif (highlighted with grey) driven by the minimal set {(sim )pl_2}. The fact that node pl_2 is a stable motif driver means that in the case of the extinction of pl_2 the whole community collapses.To compare the effectiveness of stable motif analysis to the effectiveness of the more studied structural measures to identify keystone species, we performed an analysis similar to the previous section. We compared the magnitude of cascading extinctions in the case of extinction of stable motif driver nodes and of nodes with high values of previously introduced structural importance measures. Specifically, we used node betweenness centrality, node contribution to nestedness47, and mutualistic species rank (MusRank)22 to find crucial species based on their structural properties. For more details on definition and adaptation of these two measures see “Methods”. In this analysis, we used each measure to target species in the simplified Boolean models as follows:

    1.

    Betweenness centrality: The 10% of species with the highest betweenness centrality are chosen to be candidates for extinction.

    2.

    Node contribution to nestedness: The species with the most interactions tend to contribute the least to the community nestedness. Targeting them most likely leads to a faster community collapse48. As a result, 10% of species with the lowest contribution to network nestedness are chosen to be candidates for extinction. For more details on this measure, please see “Methods”.

    3.

    Pollinator MusRank: The pollinator species with the highest MusRank importance are more likely to interact with multiple plants, so the 10% of pollinator species with the highest importance are chosen to be candidates for extinction. For more details on this measure, please see “Methods”.

    4.

    Plant MusRank: The plant species with the highest MusRank importance are more likely to interact with multiple pollinators, so the 10% of plant species with the highest importance are chosen to be candidates for extinction.

    Figure 7 illustrates the results of this analysis in 6000 networks with 50–70 nodes. In each network the 1-node, 2-node, and 3-node driver sets of inactive stable motifs are identified and made extinct. In the same networks 10% of nodes based on betweenness centrality, node contribution to nestedness, and node MusRank score were chosen to be candidates for extinction. To match the “driver set” data, all choices of 1, 2, or 3 nodes in these sets were explored and the damage was averaged over each extinction size for each network. We observe the cascading extinction and calculate the damage percentage relative to the maximal richness attractor. The plot represents the collective data over all initial simultaneous extinction sizes of 1, 2, and 3 species.Comparing the four methods, one notices that the histograms acquired using stable motif driver sets, node betweenness centrality, and node contribution to nestedness are very similar, showing a peak for the 10–20% bin of the damage, and a long tail that reaches a damage percentage of 80–100%. The MusRank score performs less well in identifying the crucial species. Also, the frequency of the higher damage percentages shows that node contribution to nestedness is the closest to the “driver set” method in identifying nodes whose extinction causes the collapse of the whole community, making it the best structural measure out of the three. Nevertheless, the driver set method finds keystone species that cannot be identified via structural measures, as the corresponding damage percentage histogram has the most prominent tail at the right edge of the panel. Indeed, stable motif driver sets identified 82%, 80%, and 546% more species whose extinction leads to 60% or higher damage to the community when compared to betweenness centrality, node nestedness, and node MusRank score based methods respectively.The reason for the higher effectiveness of driver set analysis is illustrated in Fig. 8 in which the MusRank score and node contribution to nestedness are calculated for two example networks. One can see how these two measures might incorrectly identify less vital species. In the left column of Fig. 8, MusRank identifies the node po_2, highlighted with green, as the most important species. However, this node does not have any outgoing edges; its extinction does not lead to any cascading extinction. The inability of the MusRank score to consider the direction of edges causes such misidentification. In the right column, the three nodes highlighted with yellow have the lowest contributions to network nestedness. The expanded network shows that these three nodes together are not able to cause full community collapse, while the three-node driver set of the inactive stable motif can. Since the nestedness definition depends on the number of mutual interactions, it might fail to identify some of the keystone nodes that are necessary to the stability of the community (for more details on node nestedness see “Methods”).Previously it was shown that identifying the stable motifs and their driver sets can successfully steer the system toward a desired attractor or away from unwanted ones37,38,43. Stable motif analysis of the Boolean model offers insight into the dynamical trajectories of the system; hence control strategies can be developed accordingly. In the next section we use stable motif driver sets to suggest control methods and analyze their efficiency.Figure 6Generalist species in the interaction network and the expanded network. (a) A simplified network consisting of 3 plant and 3 pollinator species. pl_2 is a generalist species, i.e., it has two incoming edges indicating that it can survive on either of its sources of pollination, po_1 or po_2. The expanded network in (b) illustrates that the stabilization of the grey stable motif stabilizes all the nodes to their inactive states, and hence causes full community collapse. (sim )pl_2 is the minimal driver set of the grey stable motif, consistent with the strong damage induced by the loss of a generalist species.Full size imageFigure 7Histogram plots illustrating the performance of driver set analysis versus structural measures in identifying keystone species. The analysis was done on 6000 networks with sizes of 50–70 nodes. The starting point is the maximal richness community, i.e., the attractor in which the most species establish. For each network 1, 2, and 3 node(s) were selected and simultaneously fixed to their inactive states. After the cascading damage the new attractor is compared to the maximal richness attractor to calculate the damage percentage. The structural measures—betweenness centrality, node nestedness contribution, and node MusRank score—were calculated for all nodes in each network; the top 10% according to the relevant ordering were candidates to being fixed to their inactive states. The network IDs were matched, i.e., only the networks that had candidate nodes according to all four measures for each extinction size are included in this plot. The total number of data points is 6360. The red solid lines represent the mean and the black dashed lines represent the median over all data points in each plot.Full size imageFigure 8Networks illustrating examples of when structural measures fail to identify keystone species. In both columns simplified networks consisting of 3 plant and 3 pollinator species are presented. The MusRank is calculated for all the nodes in the network in the left column and denoted in the node labels. The expanded network corresponding to this network is shown below. Node contribution to network nestedness is calculated for all the nodes in the network in the right column and denoted in the node labels. Similarly the expanded network that correspond to it is shown below. Note that these two networks have different edges. In the left column MusRank score identifies node po_2, highlighted with green, as the most important, while the expanded network shows that the extinction of po_2 does not cause any further damage to the community, as this node has no outgoing edges. This is due to the fact that MusRank calculation process fails to consider the directed network and replaces all the directed edges with undirected ones. The MusRank score does not identify po_3 as a crucial species; however, virtual node (sim )po_3, outlined with black in the expanded network is a driver of a stable motif that has all other nodes in its LDOI; the extinction of po_3 leads to full community collapse. In the right column, the nodes highlighted with yellow (pl_2, pl_3, and po_2) have the lowest node contribution to nestedness, which predicts that these nodes are likely crucial to the stability of the community. Analyzing the expanded network, one can see that these three nodes together are not able to drive the inactive stable motif highlighted with teal. The minimal driver set for this stable motif, outlined with black, consists of {(sim )po_1, (sim )po_2, (sim )po_3}; together these nodes drive the inactive stable motif and cause full community collapse. The nestedness-based measure was not able to capture the significance of nodes po2 and po_3.Full size imageDamage mitigation measures and strategies for endangered communitiesThere are two substantial questions related to managing the damage induced by species extinction: (1) How can one prevent the damage as much as possible? (2) Once the damage happens, the reintroduction of which species can restore the community and to what extent? In this section we aim to answer these questions in the context of the Campbell et al. model, implementing stable motif based network control. This analysis can inform agricultural and ecological strategies employed to prevent and mitigate damage.Damage preventionOne of the most important questions in ecology is what strategies to use so that we can prevent and avert extinction damage to the community. In this section we analyze how the knowledge from stable motif analysis and driver sets can be implemented to minimize the effect of extinction of keystone species in case of limited resources. Each attractor of the original system can have multiple control sets; stabilizing the node states in each control set ensures that the system reaches that specific attractor. The same information from the attractor control sets can be implemented to prevent the system from converging into unwanted attractors. Zañudo et al. illustrated that by blocking (not allowing to stabilize) the stable motifs that lead to the unwanted attractors, one can decrease the probability (sometimes to zero) that the system arrives in those attractors38. In order to block an attractor, the control sets of that attractor are identified and the negations of the node states in the control sets are externally imposed. This approach eliminates the undesired attractor; however, new attractors might form that are similar to the eliminated attractor. Campbell et al. showed that in order to avoid such new attractors one needs to block the parent motif, which in this case is the largest strongly connected subgraph of the expanded network that contains the inactive virtual nodes44. Here, we investigate how stable motif blocking based attractor control can identify the species whose preservation would offer the highest benefit in avoiding catastrophic damage to the community. This information would aid the development of management strategies in plant–pollinator communities.To avoid all attractors that lead to some degree of species extinction, one needs to block all the driver sets of all inactive stable motifs and motif groups in a given network. Implementing this in 100 randomly selected networks with 25 plant and 25 pollinator nodes, we found that 45.6% of the species in the maximal richness community need to be kept (prevented from extinction) to ensure the lack of cascading extinctions. Given that management resources are usually limited, active monitoring and conservation of almost half of the species in a community seems costly and impractical. Hence, we set a more feasible goal of identifying and blocking the driver set(s) of the largest inactive stable motif or motif group in each network. The same 100 networks containing 50 nodes are the subject of analysis in this section. The reason for performing the analysis in a relatively limited ensemble is that it involves the identification of all driver sets of the largest inactive stable motif or motif group, which is computationally expensive. For each network, the driver set of the largest inactive stable motif or motif group (which corresponds to the extinction of all the species in that group) is identified and blocked (that is, the corresponding species are not allowed to go extinct). Then the same number of species as in the driver set of that stable motif or motif group are selected and stabilized to their inactive state. We considered all combinations of node extinctions outside the blocked subset, calculated the damage percentage relative to the maximal richness community, and then averaged over all data points for each network. As a control, we repeated the analysis without blocking; the size of the initial extinction is the same as in the previous analysis for consistency.Figure 9 shows the result of the analysis described above for 100 networks. The left box and whiskers plot illustrates the damage percentage relative to the maximal richness community when the blocking feature is activated, while the right box and whiskers plot shows the damage percentage relative to the maximal richness community when the blocking is disabled. The average and median damage percentages are 14.96% and 13.04% respectively when the largest inactive stable motif or motif group was blocked and 24.73% and 20.38% when it was not. This (sim )10% difference in the average between the two sets of results, as well as the fewer cases of high-damage outliers in the left plot, demonstrates that by preventing the extinction of species identified by stable motif analysis, one can prevent catastrophic community damage considerably.To estimate the fraction of species that would need to be monitored to prevent their extinction, we compared the size of the maximal richness attractor and the size of the driver set of the largest stable motif. The maximal richness community represents an average of 32% of the original species pool, approximately 15 out of 50 species. The driver sets of the largest stable motifs had an average size of 2.5 node states over all 100 networks, i.e., about 16.6% of the maximal richness community. In ecological terms, given limited resources, the information gained from stable motif driver sets can help direct the conservation efforts toward the keystone species that play a key role in maintaining the rest of the community in a cost-effective manner.Figure 9Box plots comparing the damage communities face if the largest inactive stable motif or motif group is completely blocked, i.e., all the drivers of this inactive stable motif or motif group are prevented from stabilizing versus if the same stable motif or motif group is allowed to stabilize. This analysis was performed over 100 randomly selected networks that contain 25 plant and 25 pollinator nodes. All the driver sets of an inactive stable motif or motif group are identified. From left to right the box and whiskers plots show the average damage percentage relative to the maximal richness community if the largest inactive stable motif is blocked and the same quantity if the largest stable motif or motif group is not blocked respectively. For the left box and whiskers plot, all combinations of inactive node states except the driver sets are considered, and for the right box and whiskers plot all combinations are explored. Due to the computational complexity caused by combinatorial explosion, this analysis was performed over 100 randomly selected 50-node networks.Full size imageRestoration of a group of speciesAlthough human preservation efforts have been directed toward community conservation, there are many industrial activities that lead to ecosystem degradation. Ecologists are interested in developing restoration strategies to be deployed after a stable community is hit by catastrophic damage to recover biodiversity and the ecosystem functions it provides49. Here we propose that stable motif analysis and the driver sets identified from the expanded network can give insight into restoration measures. While we examined the inactive stable motifs in the study of species extinction, here we focus on the active stable motifs as our goal is to restore as much biodiversity as possible.Several network measures have been proposed to identify the species that if re-introduced would restore the community considerably. Two of the most studied algorithms include maximising functional complementarity (or diversity) and maximising functional redundancy50. The first strategy targets the restoration of the species that provide as many functions to the ecosystem as possible; this approach results in a community that has a maximal number of functions provided by different groups of species. Alternatively, maximising the functional redundancy yields a community in which several species perform the same function. While this resultant community might have a limited number of functions, it is robust. Both of these community restoration approaches have been studied extensively (e.g. see21).We hypothesize that restoring the species that constitute driver sets of active stable motifs can help maximise the number of species post-restoration. Since there is evidence that functional diversity correlates with the number of species in the community51, we compare the post-restoration communities identified by stable motif driving with the functional diversity maximisation approach. As discussed in section LDOI in the Boolean threshold model, the Boolean simplification of the threshold functions leads to an overestimation of the LDOI of active node states (compared to the original threshold functions) in some networks. We evaluate the negative effects of this overestimation by checking the effectiveness of the restored species in the original threshold model.The same 6000 networks we examined in the last section were the subject of this analysis. To create an unbiased initial community, we create the damaged communities by eliminating the same number of species from the maximal richness community as the number that will be restored. We identify the inactive stable motif or motif group with the driver set size of 1, 2, or 3 node states that causes the most damage to the maximal richness community. We then eliminate the species corresponding to this driver set to reach the most damaged community for the given size of the initial extinction. This community is the starting point for two analyses. In the stable motif driving approach we stabilized an active stable motif that has a driver set of the same size as the initial extinction to reach a post-restoration community and calculated the percentage of the extinct species that were restored. In the functional diversity maximization based approach we re-introduced the same number of species selected from the to 10% of species in terms of their contribution to functional diversity.To calculate the functional diversity of a community one needs to (1) define and construct a trait matrix, (2) determine the distance (trait dissimilarity) of pairs of species, (3) perform hierarchical clustering based on the distances to create a dendrogram, and (4) calculate the total branch length of the dendrogram, i.e., the sum of the length of all paths51,52. Petchey et al. argued that resource-use traits among plant and pollinator species can be used to classify the organisms into separate functional groups53 and Devoto et al. proposed the use of the adjacency matrix based on the interaction network as the trait matrix21. In this study we do the same and implement the bipartite adjacency matrix to construct the distance matrix.Since the networks of the Campbell et al. model are directed, we modify the algorithm in that we have two separate adjacency matrices, one denoting the edges incoming to plant species and the other denoting the edges incoming to pollinator species. The hierarchical clustering algorithm is then run on each of these matrices separately, resulting in a dendrogram for each adjacency matrix. If extinction occurs in a community, the functional diversity of the survived community can be determined by calculating the total branch length of the subset of the dendrogram that includes only the survived species. The restoration strategy using this method is to re-introduce the nodes whose branches add the most to the total branch length of this subset, i.e., maximise the functional diversity of the survived community54. For more details see “Methods”.In each network, the percentage of the extinct species that were restored was calculated and averaged over all data points for each restoration size and each network. Figure 10 illustrates the results of this investigation. Applied to the simplified Boolean model, the median restoration percentage in the case of active stable motif driver set method (blue plot) is 80%. The functional diversity maximization strategy to restoration (yellow plot) yields a lower median restoration percentage, 73%, as well as a large number of low-restoration outliers. Although one might argue that identifying beneficial species using the functional diversity maximization strategy works well, the higher percentage of the cases of 80–100% restoration in case of the active stable motif driver set analysis indicates that the latter identifies some of the most effective restorative species that are not identified via the former method. As in a minority of cases the simplified Boolean model overestimates the positive impact of the sustained presence of a species (see section LDOI in the Boolean threshold model), we sought to verify the effectiveness of the predicted restoration candidates in the original threshold model. The blue (respectively, yellow) box and whiskers plot on the right represents the restoration percentages of the same species as in the left blue (respectively, yellow) plot when these species are restored in the threshold model. The median of the right blue plot is 70%, while the median of the right yellow is 63%, preserving the advantage of the stable motif driver sets. We conclude that although the simplified Boolean model overestimates the restoration effectiveness of certain driver sets (visible in the fact that the lower whisker of the blue plot on the right goes well below the lower whisker of the blue plot on the left), stable motif driver sets are more effective in both comparisons.Figure 10Box and whiskers plots illustrating the average percentage of the extinct species that are restored following the stable motif driver set restoration strategy (blue) versus the functional diversity based approach (yellow). This analysis is performed over 6000 networks with sizes of 50–70 nodes. Starting from the maximal richness community, for each network one inactive stable motif with a driver set of 1, 2 or 3 nodes was stabilized to reach a new damaged community. This task was performed until the community with the most extinct species was identified. This is the community we set as the starting point for the restoration process using both methods. The pair on the left represents the two methods applied to the simplified Boolean model. For both methods we identified 1, 2, or 3 influential nodes for community restoration and we calculated the percentage of the extinct species that could be restored. The pair on the right represents restoring the same species identified by each method in the previous analysis in the original threshold model. In all analyses the community restoration percentage was averaged over all combinations of the same size, for each network and each method. The IDs of all networks are matched.Full size imageCommunity restoration via attractor controlAs illustrated in section “Restoration of a group of species”, stable motif analysis identifies promising and cost-effective group restoration strategies. In this section we aim to go further and identify interventions that can maximally restore a community. Previous stable motif based network control methods37,38,55 require a search for the smallest set of node states to control the system once the stable motif stabilization trajectories are identified. This smallest set may not contain a node from each stable motif in the sequence. In this work, however, we know that each stable motif or motif group needs to be controlled individually28 because the stabilization of none of the motifs results in the stabilization of another. As a result, the control set of each attractor is the same as the union of the driver sets of all members in the consistent combination corresponding to that attractor.In this section we examined this attractor control method by setting the communities with 70% or more of the species in the maximal richness community as the target, i.e., the attractors that have 70% of the species in the maximal richness community are assumed to be the desired attractors. We then recorded the size of the minimal control set needed to achieve each of these attractors. Note that stabilizing each of these control sets guarantees that the system reaches the corresponding attractor38.For this section, we analyzed 6000 networks that have 50–70 nodes. Figure 11 represents box-and-whiskers plots of the size of the minimal set of species that need to be restored, where the target community sizes are classified into three groups based on the percentage of the species relative to the maximal richness attractor. One can see that in half of the cases, the restoration of either 1 or 2 species manages to restore more than 70% of the maximal richness community. The largest set has 8 species that need to be restored; however, this data point is an outlier. As illustrated, driver set analysis and stable motif based attractor control can efficiently identify the species that play an influential restorative role and suggest management strategies that are effective at the scale of the whole community. To assess the impact of the LDOI inflation on this result, we used the restoration candidates identified by control sets of the attractors of the Boolean model in the threshold functions of a subset of networks. The results of comparing the restoration percentage is shown in Fig. 14. The first quartile, median and third quartile values are 78.26%, 86.6%, and 100% for the simplified Boolean models and 43.78%, 72.41%, and 85.71% for the threshold model.To further compare the results of restoration obtained from the two models we sorted the species in the order of their contribution to community restoration following a catastrophic damage. We randomly selected 100 of the largest (70-node) networks, which have the highest probability of a discrepancy between the threshold functions and the simplified Boolean model. In 72% of the cases the two rankings matched completely, and in the majority of the remaining cases only one species was misplaced in the simplified Boolean model-based ranking. To conclude, there is a significant advantage to the implementation of the simplified Boolean model and the drawback can be addressed by a follow-up checking on the original threshold functions.Figure 11The number of species that need to be restored to save 70% of more of the species in the maximal richness community. In this analysis 6000 networks with 50–70 nodes were the subject. For each networks all the attractors that have 70% or more of the species in the maximal richness attractor are identified and set to be the target attractors. The control set of these attractors are then classified into three groups based on the percentage as illustrated in the figure. From left to right, the box and whiskers represent the size of the control set of attractors that have 70–80%, 80–90%, and 90–100% of the species in the maximal richness attractor respectively.Full size image More

  • in

    Half a century of rising extinction risk of coral reef sharks and rays

    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: what are we missing? PLoS One. 6, e25026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011).Article 
    CAS 

    Google Scholar 
    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited. 130 pp. (World Resources Institute, Washington, D.C., 2011).Hicks, C. C., Graham, N. A. J., Maire, E. & Robinson, J. P. W. Secure local aquatic food systems in the face of declining coral reefs. One Earth. 4, 1214–1216 (2021).Article 
    ADS 

    Google Scholar 
    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. PNAS 115, E6116–E6125 (2018).Article 
    CAS 

    Google Scholar 
    Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth. 4, 1278–1285 (2021).Article 
    ADS 

    Google Scholar 
    Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).Article 
    CAS 

    Google Scholar 
    Sherman, C. S., Heupel, M. R., Moore, S. K., Chin, A. & Simpfendorfer, C. A. When sharks are away rays will play: effects of top predator removal in coral reef ecosystems. Mar. Ecol. Prog. Ser. 641, 145–157 (2020).Article 
    ADS 

    Google Scholar 
    Ruppert, J. L. W., Travers, M. J., Smith, L. L., Fortin, M.-J. & Meekan, M. G. Caught in the middle: combined Impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS One. 8, e74648 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Last, P. R. et al. Rays of the World. (CSIRO Publishing, 2016).Ebert, D. A., Dando, M. & Fowler, S. Sharks of the World. 2nd edn, 608 (Princeton University Press, 2021).Heupel, M. R., Lédée, E. J. I. & Simpfendorer, C. A. Telemetry reveals spatial separation of co-occurring reef sharks. Mar. Ecol. Prog. Ser. 589, 179–192 (2018).Article 
    ADS 

    Google Scholar 
    Heupel, M. R., Papastamatiou, Y. P., Espinoza, M., Green, M. E. & Simpfendorfer, C. A. Reef shark science – key questions and future directions. Front. Mar. Sci. 6, 12 (2019).Article 

    Google Scholar 
    Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. Commun. Biol. 1, 223 (2018).Article 

    Google Scholar 
    Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. P. Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B. 285, 20172456 (2018).Article 

    Google Scholar 
    Heithaus, M. R., Wirsing, A. J. & Dill, L. M. The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar. Freshw. Res. 63, 1039–1050 (2012).Article 

    Google Scholar 
    Peel, L. R. et al. Stable isotope analyses reveal unique trophic role of reef manta rays (Mobula alfredi) at a remote coral reef. R. Soc. Open Sci. 6, 190599 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    O’Shea, O. R., Thums, M., van Keulen, M. & Meekan, M. Bioturbation by stingrays at Ningaloo Reef, Western Australia. Mar. Freshw. Res. 63, 189–197 (2012).Article 

    Google Scholar 
    Takeuchi, S. & Tamaki, A. Assessment of benthic disturbance associated with stingray foraging for ghost shrimp by aerial survey over an intertidal sandflat. Continental Shelf Res. 84, 139–157 (2014).Article 
    ADS 

    Google Scholar 
    Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A. & Dill, L. M. Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? J. Anim. Ecol. 82, 1192–1202 (2013).Article 

    Google Scholar 
    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. TRENDS Ecol. Evolution. 23, 194–201 (2008).Article 

    Google Scholar 
    Ward-Paige, C. A. et al. Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human presence. PLoS One. 5, e11968 (2010).Article 
    ADS 

    Google Scholar 
    Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning. PLoS One. 9, e106885 (2014).Article 
    ADS 

    Google Scholar 
    Graham, N. A., Spalding, M. D. & Sheppard, C. R. Reef shark declines in remote atolls highlight the need for multi-faceted conservation action. Aquat. Conserv.: Mar. Freshw. Ecosyst. 20, 543–548 (2010).Article 

    Google Scholar 
    Nadon, M. O. et al. Re-creating missing population baselines for Pacific reef sharks. Conserv. Biol. 26, 493–503 (2012).Article 

    Google Scholar 
    MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 1–15 (2021).Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 246, 108459 (2020).Article 

    Google Scholar 
    Yan, H. F. et al. Overfishing and habitat loss drives range contraction of iconic marine fishes to near extinction. Science Adv. 7, eabb6026, (2021).Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. B 360, 255–268 (2005).Article 
    CAS 

    Google Scholar 
    Sherman, C. S. et al. Taeniura lymma. The IUCN Red List of Threatened Species, eT116850766A116851089 (2021). 10.2305/IUCN.UK.2021-1.RLTS.T116850766A116851089.enPacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Cardeñosa, D. et al. Small fins, large trade: a snapshot of the species composition of low-value shark fins in the Hong Kong markets. Anim. Conserv. 23, 203–211 (2019).Article 

    Google Scholar 
    Haque, A. B. & Spaet, J. L. Y. Trade in threatened elasmobranchs in the Bay of Bengal, Bangladesh. Fish. Res. 243, 106059 (2021).Article 

    Google Scholar 
    Alcala, A. C. & Russ, G. R. A direct test of the effects of protective management on abundance and yield of tropical marine resources. ICES J. Mar. Sci. 47, 40–47 (1990).Article 

    Google Scholar 
    Serrano, A. et al. Effects of anti-trawling artificial reefs on ecological indicators of inner shelf fish and invertebrate communities in the Cantabrian Sea (southern Bay of Biscay). J. Mar. Biol. Assoc. U. Kingd. 91, 623–633 (2011).Article 

    Google Scholar 
    Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evolution. 7, 1136–1145 (2016).Article 

    Google Scholar 
    McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial megafauna. Curr. Biol. 26, 1–7 (2016).Article 

    Google Scholar 
    Tamburello, N., Cote, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Naturalist 186, 196–211 (2015).Article 

    Google Scholar 
    Dulvy, N. K. et al. Challenges and priorities in shark and ray conservation. Curr. Biol. 27, R565–R572 (2017).Article 
    CAS 

    Google Scholar 
    Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Ecol. Evolution. 1, 1–6 (2017).
    Google Scholar 
    Pauly, D., Zeller, D. & Palomares, M. L. D. Sea Around Us Concepts, Design and Data, (2021).Simpfendorfer, C. A. & Dulvy, N. K. Bright spots of sustainable shark fishing. Curr. Biol. 27, R83–R102 (2017).Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish. Fish. 21, 269–289 (2019).Article 

    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).Article 
    CAS 

    Google Scholar 
    Enright, S. R., Meneses-Orellana, R. & Keith, I. The Eastern Tropical Pacific Marine Corridor (CMAR): The emergence of a voluntary regional cooperation mechanism for the conservation and sustainable use of marine biodiversity within a fragmented regional ocean governance landscape. Front. Mar. Sci. 8, 674825 (2021).Article 

    Google Scholar 
    Chin, A., Kyne, P. M., Walker, T. I. & McAuley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia’s Great Barrier Reef. Glob. Change Biol. 16, 1936–1953 (2010).Article 
    ADS 

    Google Scholar 
    Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30, 480–489 (2020).Article 
    CAS 

    Google Scholar 
    Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).Article 

    Google Scholar 
    Mizrahi, M. I., Diedrich, A., Weeks, R. & Pressey, R. L. A systematic review of the socioeconomic factors that influence how marine protected areas impact on ecosystems and livelihoods. Soc. Nat. Resour. 32, 4–20 (2019).Article 

    Google Scholar 
    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 1148 (Bonn, Germany, 2019).Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Hanh, T. T. H. & Boonstra, W. J. What prevents small-scale fishing and aquaculture households from engaging in alternative livelihoods? A case study in the Tam Giang lagoon, Viet Nam. Ocean Coast. Manag. 182, 104943 (2019).Article 

    Google Scholar 
    Ahmed, N., Troell, M., Allison, E. H. & Muir, J. F. Prawn postlarvae fishing in coastal Bangladesh: challenges for sustainable livelihoods. Mar. Policy. 34, 218–227 (2010).Article 

    Google Scholar 
    Prasetyo, A. P. et al. Shark and ray trade in and out of Indonesia: addressing knowledge gaps on the path to sustainability. Mar. Policy. 133, 104714 (2021).Article 

    Google Scholar 
    McClanahan, T., Polunin, N. & Done, T. Ecological states and the resilience of coral reefs. Conserv. Ecol. 6, 18 (2002).
    Google Scholar 
    Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).Article 
    CAS 

    Google Scholar 
    Cinner, J. E. et al. Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Glob. Environ. Change. 22, 12–20 (2012).Article 
    ADS 

    Google Scholar 
    Víe, J.-C., Hilton-Taylor, C. & Stuart, S. N. Wildlife in a Changing World – An analysis of the 2008 IUCN Red List of Threatened Species. 180 (Gland, Switzerland, 2009).Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).Article 

    Google Scholar 
    Sherley, R. B. et al. Estimating IUCN Red List population reduction: JARA – A decision-support tool applied to pelagic sharks. Conserv. Lett. 13, e12688 (2019).
    Google Scholar 
    IUCN Red List. Threats Classification Scheme (Version 3.2), (2021).Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).Article 

    Google Scholar 
    Moore, A. Chiloscyllium arabicum. The IUCN Red List of Threatened Species 2017, e.T161426A109902537 (2017). 10.2305/IUCN.UK.2017-2.RLTS.T161426A109902537.enSadovy de Mitcheson, Y. J. et al. Valuable but vulnerable: Over-fishing and under-management continue to threaten groupers so what now? Mar. Policy. 116, 103909 (2020).Article 

    Google Scholar 
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).Regression Models for Ordinal Data v. 2019.12.10 (CRAN, 2019).Econometric Tools for Performance and Risk Analysis v. 2.0.4 (2020).Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 5, 754–767 (2015).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods Res. 33, 261–304 (2004).Article 
    MathSciNet 

    Google Scholar 
    Plots Coefficients from Fitted Models v. 1.2.8 (2022).Fisheries and Aquaculture Software. FishStatJ – Software for Fishery and Aquaculture Statistical Time Series., (2020).Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).Article 
    ADS 

    Google Scholar 
    NASA Ocean Biology (OB.DAAC). Mean annual sea surface chlorophyll-a concentration for the period 2009-2013 (composite dataset created by UNEP-WCMC). Data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua Ocean Colour website (NASA OB.DAAC, Greenbelt, MD, USA), (2014).General Bathymetric Chart of the Oceans. GEBCO_2014 Grid. version 20150318. www.gebco.net (2015).XGBoost: A Scalable Tree Boosting System v. 1.4.1.1 (In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM, 2016).Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).Article 
    CAS 

    Google Scholar 
    ArcGIS Pro 2.7.0 (Environmental Systems Research Institute) (2020).Ferreira, L. C. & Simpfendorer, C. Galeocerdo cuvier. The IUCN Red List of Threatened Species 2019, e.T39378A2913541 (2019).Beta Regression v. 3.1-4 (2021).Butchart, S. H. et al. Improvements to the Red List Index. PLoS ONE. 2, e140 (2007).Article 
    ADS 

    Google Scholar 
    Sherman, C. S. et al. Half a century of rising extinction risk of coral reef sharks and rays, sammsherman27/CoralReefSharkRayIUCN: Data and Code Used in Sherman et al. Half a century of rising extinction risk of coral reef sharks and rays v1.0.0. https://doi.org/10.5281/zenodo.7267904 (2022). More