More stories

  • in

    Heat tolerance in ectotherms scales predictably with body size

    1.
    Smith, J. J., Hasiotis, S. T., Kraus, M. J. & Woody, D. T. Transient dwarfism of soil fauna during the Paleocene–Eocene thermal maximum. Proc. Natl Acad. Sci. USA 106, 17655–17660 (2009).
    CAS  Article  Google Scholar 
    2.
    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).
    Article  Google Scholar 

    3.
    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).
    CAS  Article  Google Scholar 

    4.
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).
    Article  Google Scholar 

    5.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    CAS  Article  Google Scholar 

    6.
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Article  Google Scholar 

    7.
    Martinez del Rio, C. & Karasov, W. H. Body size and temperature: why they matter. Nat. Educ. Knowl. 3, 10 (2010).
    Google Scholar 

    8.
    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).
    Article  Google Scholar 

    9.
    Klockmann, M., Günter, F. & Fischer, K. Heat resistance throughout ontogeny: body size constrains thermal tolerance. Glob. Change Biol. 23, 686–696 (2017).
    Article  Google Scholar 

    10.
    Leiva, F. P., Calosi, P. & Verberk, W. C. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water-and air-breathers. Philos. T. R. Soc. B. 374, 20190035 (2019).
    Article  Google Scholar 

    11.
    Sinclair, B. J., Vernon, P., Klok, C. J. & Chown, S. L. Insects at low temperatures: an ecological perspective. Trends Ecol. Evol. 18, 257–262 (2003).
    Article  Google Scholar 

    12.
    Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).
    Article  Google Scholar 

    13.
    Santos, M., Castañeda, L. E. & Rezende, E. L. Making sense of heat tolerance estimates in ectotherms: lessons from Drosophila. Funct. Ecol. 25, 1169–1180 (2011).
    Article  Google Scholar 

    14.
    Rezende, E. L., Tejedo, M. & Santos, M. Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Funct. Ecol. 25, 111–121 (2011).
    Article  Google Scholar 

    15.
    Strang, T. J. K. A review of published temperatures for the control of pest insects in museums. Coll. Forum 8, 41–67 (1992).
    Google Scholar 

    16.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. Natl Acad. Sci. USA 278, 1823–1830 (2010).
    Google Scholar 

    17.
    Hoffmann, A. A., Chown, S. L. & Clusella–Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).
    Article  Google Scholar 

    18.
    May, R. M. How many species are there on earth? Science 241, 1441–1449 (1988).
    CAS  Article  Google Scholar 

    19.
    Sunday, J. M. et al. Thermal–safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).
    CAS  Article  Google Scholar 

    20.
    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
    CAS  Article  Google Scholar 

    21.
    Kearney, M. R., Gillingham, P. K., Bramer, I., Duffy, J. P. & Maclean, I. M. A method for computing hourly, historical, terrain‐corrected microclimate anywhere on Earth. Methods Ecol. Evol. 11, 38–43 (2020).
    Article  Google Scholar 

    22.
    Rezende, E. L., Bozinovic, F., Szilágyi, A. & Santos, M. Predicting temperature mortality and selection in natural Drosophila populations. Science 369, 1242–1245 (2020).
    CAS  Article  Google Scholar 

    23.
    Glazier, D. S. A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85, 111–138 (2010).
    Article  Google Scholar 

    24.
    Schmid, P. E., Tokeshi, M. & Schmid-Araya, J. M. Relation between population density and body size in stream communities. Science 289, 1557–1560 (2000).
    CAS  Article  Google Scholar 

    25.
    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).
    Article  Google Scholar 

    26.
    Fan, Y. & van den Dool, H. A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res. Atmos. 113, 1–18 (2008).
    Article  Google Scholar 

    27.
    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).
    Article  Google Scholar 

    28.
    Crisp, D. J. Methods for the Study of Marine Benthos 2nd edn (eds Holme, N. A. & McIntyre, A. D) 284–366 (Blackwell, 1984).

    29.
    Reiss, J. & Schmid‐Araya, J. M. Existing in plenty: abundance, biomass and diversity of ciliates and meiofauna in small streams. Freshw. Bol. 53, 652–668 (2008).
    Article  Google Scholar 

    30.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer, 2002).

    31.
    Turkheimer, F. E., Hinz, R. & Cunningham, V. J. On the undecidability among kinetic models: from model selection to model averaging. J. Cereb. Blood Flow. Metab. 23, 490–498 (2003).
    Article  Google Scholar  More

  • in

    How to identify win–win interventions that benefit human health and conservation

    1.
    A Guide to SDG Interactions: from Science to Implementation (International Council for Science, 2017); https://go.nature.com/3o5nOD3
    2.
    IPBES Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

    3.
    Schneider, F. et al. How can science support the 2030 Agenda for Sustainable Development? Four tasks to tackle the normative dimension of sustainability. Sustain. Sci. 14, 1593–1604 (2019).
    Article  Google Scholar 

    4.
    Barbier, E. B. & Burgess, J. C. Sustainable development goal indicators: analyzing trade-offs and complementarities. World Dev. 122, 295–305 (2019).
    Article  Google Scholar 

    5.
    Pradhan, P., Costa, L., Rybski, D., Lucht, W. & Kropp, J. P. A systematic study of Sustainable Development Goal (SDG) interactions. Earth’s Future 5, 1169–1179 (2017).
    Article  Google Scholar 

    6.
    Howe, C., Suich, H., Vira, B. & Mace, G. M. Creating win-wins from trade-offs? Ecosystem services for human well-being: a meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Change 28, 263–275 (2014).
    Article  Google Scholar 

    7.
    Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).
    Article  Google Scholar 

    8.
    Naidoo, R. & Fisher, B. Reset Sustainable Development Goals for a pandemic world. Nature 583, 198–201 (2020).
    CAS  Article  Google Scholar 

    9.
    Nilsson, M. et al. Mapping interactions between the sustainable development goals: lessons learned and ways forward. Sustain. Sci. 13, 1489–1503 (2018).
    Article  Google Scholar 

    10.
    Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. (eds) Nature-based Solutions to Address Global Societal Challenges (IUCN, 2016).

    11.
    Allen, C., Metternicht, G. & Wiedmann, T. Prioritising SDG targets: assessing baselines, gaps and interlinkages. Sustain. Sci. 14, 421–438 (2019).
    Article  Google Scholar 

    12.
    Mayrhofer, J. P. & Gupta, J. The science and politics of co-benefits in climate policy. Environ. Sci. Policy 57, 22–30 (2016).
    Article  Google Scholar 

    13.
    Le Blanc, D. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets (United Nations, Department of Economic and Social Affairs, 2015).

    14.
    Sokolow, S. H. et al. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns. Phil. Trans. R. Soc. B 372, 20160127 (2017).
    Article  Google Scholar 

    15.
    Steinmann, P., Keiser, J., Bos, R., Tanner, M. & Utzinger, J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 6, 411–425 (2006).
    Article  Google Scholar 

    16.
    Sokolow, S. H. et al. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. PLoS Negl. Trop. Dis. 10, e0004794 (2016).
    Article  Google Scholar 

    17.
    Martin, D. A. et al. Land-use history determines ecosystem services and conservation value in tropical agroforestry. Conserv. Lett. 13, e12740 (2020).
    Article  Google Scholar 

    18.
    Medlock, J. M. et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 12, 435–447 (2012).
    Article  Google Scholar 

    19.
    van Riper, C., van Riper, S. G., Goff, M. L. & Laird, M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol. Monogr. 56, 327–344 (1986).
    Article  Google Scholar 

    20.
    Franklin, B. Protection of Towns from Fire. The Pennsylvania Gazette (4 February 1735).

    21.
    Bauch, S. C., Birkenbach, A. M., Pattanayak, S. K. & Sills, E. O. Public health impacts of ecosystem change in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 112, 7414–7419 (2015).
    CAS  Article  Google Scholar 

    22.
    Herrera, D. et al. Upstream watershed condition predicts rural children’s health across 35 developing countries. Nat. Commun. 8, 811 (2017).
    Article  Google Scholar 

    23.
    McShane, T. O. et al. Hard choices: making trade-offs between biodiversity conservation and human well-being. Biol. Conserv. 144, 966–972 (2011).
    Article  Google Scholar 

    24.
    Lengeler, C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000363.pub2 (2004).

    25.
    Price, J., Richardson, M. & Lengeler, C. Insecticide-treated nets for preventing malaria. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000363.pub3 (2018).

    26.
    Short, R., Gurung, R., Rowcliffe, M., Hill, N. & Milner-Gulland, E. J. The use of mosquito nets in fisheries: a global perspective. PLoS ONE 13, e0191519 (2018).
    Article  Google Scholar 

    27.
    Markandya, A. et al. Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204 (2008).
    Article  Google Scholar 

    28.
    Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).
    Article  Google Scholar 

    29.
    Gangoso, L. et al. Reinventing mutualism between humans and wild fauna: insights from vultures as ecosystem services providers. Conserv. Lett. 6, 172–179 (2013).
    Article  Google Scholar 

    30.
    Hampson, K. et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 9, e0003709 (2015).
    Article  Google Scholar 

    31.
    Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).
    CAS  Article  Google Scholar 

    32.
    Breuer, E., Lee, L., De Silva, M. & Lund, C. Using theory of change to design and evaluate public health interventions: a systematic review. Implement. Sci. 11, 63 (2016).
    Article  Google Scholar 

    33.
    Constructing Theories of Change for Ecosystem-Based Adaptation Projects: A Guidance Document (Conservation International, 2013).

    34.
    de Wit, L. A. et al. Estimating burdens of neglected tropical zoonotic diseases on islands with introduced mammals. Am. J. Trop. Med. Hyg. 96, 749–757 (2017).
    Google Scholar 

    35.
    Morand, S. et al. Global parasite and Rattus rodent invasions: the consequences for rodent-borne diseases. Integr. Zool. 10, 409–423 (2015).
    Article  Google Scholar 

    36.
    Duron, Q., Shiels, A. B. & Vidal, E. Control of invasive rats on islands and priorities for future action. Conserv. Biol. 31, 761–771 (2017).
    Article  Google Scholar 

    37.
    Vanderwerf, E. A. Importance of nest predation by alien rodents and avian poxvirus in conservation of Oahu elepaio. J. Wildl. Manag. 73, 737–746 (2009).
    Article  Google Scholar 

    38.
    Pender, R. J., Shiels, A. B., Bialic-Murphy, L. & Mosher, S. M. Large-scale rodent control reduces pre- and post-dispersal seed predation of the endangered Hawaiian lobeliad, Cyanea superba subsp. superba (Campanulaceae). Biol. Invasions 15, 213–223 (2013).
    Article  Google Scholar 

    39.
    Hoare, J. M. & Hare, K. M. The impact of brodifacoum on non-target wildlife: gaps in knowledge. N. Z. J. Ecol. 30, 157–167 (2006).
    Google Scholar 

    40.
    DataBank (The World Bank, 2020); https://databank.worldbank.org/home.aspx

    41.
    Progress on Drinking Water and Sanitation: 2012 Update (World Health Organization and UNICEF, 2012); https://go.nature.com/2HOJFOR More

  • in

    Negative to positive shifts in diversity effects on soil nitrogen over time

    1.
    Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur. Biogeochemistry 13, 87–115 (1991).
    Article  Google Scholar 
    2.
    Yuan, Z. Y. & Chen, H. Y. H. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc. R. Soc. Lond. B 279, 3796–3802 (2012).
    CAS  Google Scholar 

    3.
    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).
    Article  Google Scholar 

    4.
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
    CAS  Article  Google Scholar 

    5.
    Marschner, H. Marschner’s Mineral Nutrition of Higher Plants 3rd edn (Academic Press, 2012).

    6.
    Niklaus, P. A., Wardle, D. A. & Tate, K. R. Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils. Plant Soil 282, 83–98 (2006).
    CAS  Article  Google Scholar 

    7.
    Li, Z. et al. Microbes drive global soil nitrogen mineralization and availability. Glob. Change Biol. 25, 1078–1088 (2019).
    Article  Google Scholar 

    8.
    Oelmann, Y. et al. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003869 (2011).

    9.
    Cong, W. F. et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163–1170 (2014).
    CAS  Article  Google Scholar 

    10.
    Mueller, K. E., Hobbie, S. E., Tilman, D. & Reich, P. B. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment. Glob. Change Biol. 19, 1249–1261 (2013).
    Article  Google Scholar 

    11.
    von Felten, S. et al. Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness. Ecology 90, 1389–1399 (2009).
    Article  Google Scholar 

    12.
    Le Roux, X. et al. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands. PLoS ONE https://doi.org/10.1371/journal.pone.0061069 (2013).

    13.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    CAS  Article  Google Scholar 

    14.
    Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).
    CAS  Article  Google Scholar 

    15.
    Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).
    Article  Google Scholar 

    16.
    McKane, R. B. et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68–71 (2002).
    CAS  Article  Google Scholar 

    17.
    Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere https://doi.org/10.1002/ecs2.1619 (2016).

    18.
    Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).
    CAS  Article  Google Scholar 

    19.
    Bessler, H. et al. Nitrogen uptake by grassland communities: contribution of N2 fixation, facilitation, complementarity, and species dominance. Plant Soil 358, 301–322 (2012).
    CAS  Article  Google Scholar 

    20.
    Chen, X. & Chen, H. Y. H. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Glob. Change Biol. 25, 1482–1492 (2019).
    Article  Google Scholar 

    21.
    Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042–2050 (2003).
    Article  Google Scholar 

    22.
    Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).
    Article  Google Scholar 

    23.
    Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95, 167–183 (2020).
    Article  Google Scholar 

    24.
    Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).
    Article  CAS  Google Scholar 

    25.
    Ma, Z. L. & Chen, H. Y. H. Positive species mixture effects on fine root turnover and mortality in natural boreal forests. Soil Biol. Biochem. 121, 130–137 (2018).
    CAS  Article  Google Scholar 

    26.
    Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).
    CAS  Article  Google Scholar 

    27.
    Lange, M. et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. Adv. Ecol. Res. 61, 185–219 (2019).
    Article  Google Scholar 

    28.
    Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. For. Rep. 2, 45–61 (2016).
    Article  CAS  Google Scholar 

    29.
    Hisano, M., Chen, H. Y. H., Searle, E. B. & Reich, P. B. Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol. Lett. 22, 999–1008 (2019).
    Article  Google Scholar 

    30.
    Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).
    Article  Google Scholar 

    31.
    Oram, N. J. et al. Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species. J. Ecol. 106, 265–277 (2018).
    CAS  Article  Google Scholar 

    32.
    Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).
    Article  Google Scholar 

    33.
    Ma, Z. L. & Chen, H. Y. H. Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob. Ecol. Biogeogr. 25, 1387–1396 (2016).
    Article  Google Scholar 

    34.
    Leimer, S. et al. Mechanisms behind plant diversity effects on inorganic and organic N leaching from temperate grassland. Biogeochemistry 131, 339–353 (2016).
    CAS  Article  Google Scholar 

    35.
    van Ruijven, J. & Berendse, F. Diversity–productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700 (2005).
    Article  CAS  Google Scholar 

    36.
    Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).
    CAS  Article  Google Scholar 

    37.
    Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).
    CAS  Article  Google Scholar 

    38.
    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    CAS  Article  Google Scholar 

    39.
    Post, W. M., Pastor, J., Zinke, P. J. & Stangenberger, A. G. Global patterns of soil-nitrogen storage. Nature 317, 613–616 (1985).
    Article  Google Scholar 

    40.
    Fowler, D., Pyle, J. A., Raven, J. A. & Sutton, M. A. The global nitrogen cycle in the twenty-first century: introduction. Phil. Trans. R. Soc. Lond. B https://doi.org/10.1098/rstb.2013.0165 (2013).

    41.
    Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).
    Article  Google Scholar 

    42.
    Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).
    Article  Google Scholar 

    43.
    Groffman, P. M. et al. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol. Biochem. 87, 51–58 (2015).
    CAS  Article  Google Scholar 

    44.
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & The, P. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).
    Article  Google Scholar 

    45.
    Plot Digitizer v.2.0 (Faculty in the Department of Physics at the University of South Alabama, 2020); https://go.nature.com/2Gj5qW0

    46.
    Trabucco, A. & Zomer, R. J. Global Aridity Index (Global-Aridity) and Global Potential Evapo-transpiration (Global-PET) Geospatial Database (CGIAR, 2009); http://www.cgiar-csi.org

    47.
    UNEP World Atlas of Desertification (Edward Arnold Publication, 1997).

    48.
    Chen, H. Y. H. & Brassard, B. W. Intrinsic and extrinsic controls of fine root life span. Crit. Rev. Plant Sci. 32, 151–161 (2013).
    Article  Google Scholar 

    49.
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Article  Google Scholar 

    50.
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).
    CAS  Article  Google Scholar 

    51.
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).
    CAS  Article  Google Scholar 

    52.
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using Eigen and S4. R package v.1.1-23 (2020); https://cran.r-project.org/web/packages/lme4/index.html

    53.
    Cohen, J., Cohen, P., West, S. G. & Alken, L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Routledge, 2013).

    54.
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
    Article  Google Scholar 

    55.
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).
    Article  Google Scholar 

    56.
    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182–1189 (2006).
    Article  Google Scholar 

    57.
    Bartoń, K. MuMIn: multi-model inference. R package v.1.42.1 (2018); https://cran.r-project.org/web/packages/MuMIn/index.html

    58.
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

    59.
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    60.
    Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).

    61.
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
    Article  Google Scholar 

    62.
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
    CAS  Article  Google Scholar 

    63.
    Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.3.3.0 (2020); https://cran.r-project.org/web/packages/DHARMa/index.html

    64.
    Smith, J. L. & Doran, J. W. in Methods for Assessing Soil Quality (eds Doran, J. W. & Jones, A. J.) 169–185 (Soil Science Society of America, 1997).

    65.
    Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).
    Article  Google Scholar 

    66.
    R Core Team R: A Language and Environment for Statistical Computing v.4.0.0 (R Foundation for Statistical Computing, 2020). More