More stories

  • in

    A predictive timeline of wildlife population collapse

    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 

    Google Scholar 
    Dereniowska, M. & Meinard, Y. The unknownness of biodiversity: its value and ethical significance for conservation action. Biol. Conserv. 260, 109199 (2021).Article 

    Google Scholar 
    Maron, M. et al. Towards a threat assessment framework for ecosystem services. Trends Ecol. Evol. 32, 240–248 (2017).Article 

    Google Scholar 
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).Article 
    CAS 

    Google Scholar 
    Taborsky, B. et al. Towards an evolutionary theory of stress responses. Trends Ecol. Evol. 36, 39–48 (2021).Article 

    Google Scholar 
    van de Leemput, I. A., Dakos, V., Scheffer, M. & van Nes, E. H. Slow recovery from local disturbances as an indicator for loss of ecosystem resilience. Ecosystems 21, 141–152 (2018).Article 

    Google Scholar 
    Fagan, W. F. & Holmes, E. E. Quantifying the extinction vortex. Ecol. Lett. 9, 51–60 (2005).
    Google Scholar 
    Williams, N. F., McRae, L., Freeman, R., Capdevila, P. & Clements, C. F. Scaling the extinction vortex: body size as a predictor of population dynamics close to extinction events. Ecol. Evol. 11, 7069–7079 (2021).Article 

    Google Scholar 
    Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).Article 

    Google Scholar 
    Shaffer, M. L. in Challenges in the Conservation of Biological Resources (eds. Decker, D. J., Krasny, M. E., Goff, G. R., Smith, C. R. & Gross, D. W.) 107–118 (Routledge, 2019).Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article 
    CAS 

    Google Scholar 
    Gardner, T. A. et al. The cost-effectiveness of biodiversity surveys in tropical forests. Ecol. Lett. 11, 139–150 (2008).Article 

    Google Scholar 
    Coulson, T., Mace, G. M., Hudson, E. & Possingham, H. The use and abuse of population viability analysis. Trends Ecol. Evol. 16, 219–221 (2001).Article 
    CAS 

    Google Scholar 
    Clements, C. F., Drake, J. M., Griffiths, J. I. & Ozgul, A. Factors influencing the detectability of early warning signals of population collapse. Am. Nat. 186, 50–58 (2015).Article 

    Google Scholar 
    Patterson, A. C., Strang, A. G. & Abbott, K. C. When and where we can expect to see early warning signals in multispecies systems approaching tipping points: insights from theory. Am. Nat. 198, E12–E26 (2021).Article 

    Google Scholar 
    Vinton, A. C., Gascoigne, S. J. L., Sepil, I. & Salguero-Gómez, R. Plasticity’s role in adaptive evolution depends on environmental change components. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.08.008 (2022).Levin, S. A. The problem of pattern and scale in ecology: the Robert H. MacArthur Award lecture. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).Article 
    CAS 

    Google Scholar 
    Haberle, I., Marn, N., Geček, S. & Klanjšček, T. Dynamic energy budget of endemic and critically endangered bivalve Pinna nobilis: a mechanistic model for informed conservation. Ecol. Model. 434, 109207 (2020).Article 

    Google Scholar 
    Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish. Fish Fish. 11, 149–158 (2010).Article 

    Google Scholar 
    Jennings, S. & Blanchard, J. L. Fish abundance with no fishing: predictions based on macroecological theory. J. Anim. Ecol. 73, 632–642 (2004).Article 

    Google Scholar 
    Valderrama, D. & Fields, K. H. Flawed evidence supporting the metabolic theory of ecology may undermine goals of ecosystem-based fishery management: the case of invasive Indo-Pacific lionfish in the western Atlantic. ICES J. Mar. Sci. 74, 1256–1267 (2017).Article 

    Google Scholar 
    Marshall, D. J. & McQuaid, C. D. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology. Proc. R. Soc. B 278, 281–288 (2011).Article 

    Google Scholar 
    Rombouts, I., Beaugrand, G., Ibaňez, F., Chiba, S. & Legendre, L. Marine copepod diversity patterns and the metabolic theory of ecology. Oecologia 166, 349–355 (2011).Article 

    Google Scholar 
    Allen, A. P. & Gillooly, J. F. The mechanistic basis of the metabolic theory of ecology. Oikos 116, 1073–1077 (2022).Article 

    Google Scholar 
    Lawton, J. H. From physiology to population dynamics and communities. Funct. Ecol. 5, 155–161 (1991).Article 

    Google Scholar 
    Ames, E. M. et al. Striving for population-level conservation: integrating physiology across the biological hierarchy. Conserv. Physiol. 8, coaa019 (2020).Article 

    Google Scholar 
    Berger-Tal, O. et al. Integrating animal behavior and conservation biology: a conceptual framework. Behav. Ecol. 22, 236–239 (2011).Article 

    Google Scholar 
    Baruah, G., Clements, C. F., Guillaume, F. & Ozgul, A. When do shifts in trait dynamics precede population declines? Am. Nat. 193, 633–644 (2019).Article 

    Google Scholar 
    Dakos, V. et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7, e41010 (2012).Article 
    CAS 

    Google Scholar 
    Ward, R. J., Griffiths, R. A., Wilkinson, J. W. & Cornish, N. Optimising monitoring efforts for secretive snakes: a comparison of occupancy and N-mixture models for assessment of population status. Sci. Rep. 7, 18074 (2017).Article 

    Google Scholar 
    Thompson, W. Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (Island Press, 2013).Clements, C. F., Blanchard, J. L., Nash, K. L., Hindell, M. A. & Ozgul, A. Body size shifts and early warning signals precede the historic collapse of whale stocks. Nat. Ecol. Evol. 1, 0188 (2017).Article 

    Google Scholar 
    Burant, J. B., Park, C., Betini, G. S. & Norris, D. R. Early warning indicators of population collapse in a seasonal environment. J. Anim. Ecol. 90, 1538–1549 (2021).Article 

    Google Scholar 
    Tuomainen, U. & Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 86, 640–657 (2011).Article 

    Google Scholar 
    Mazza, V., Dammhahn, M., Lösche, E. & Eccard, J. A. Small mammals in the big city: behavioural adjustments of non-commensal rodents to urban environments. Glob. Change Biol. 26, 6326–6337 (2020).Article 

    Google Scholar 
    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).Article 

    Google Scholar 
    Speakman, J. R., Król, E. & Johnson, M. S. The functional significance of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 77, 900–915 (2004).Article 

    Google Scholar 
    Péron, G. et al. Evidence of reduced individual heterogeneity in adult survival of long-lived species. Evolution 70, 2909–2914 (2016).Article 

    Google Scholar 
    Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224 (2016).Article 

    Google Scholar 
    Kirkwood, T. B. L., Rose, M. R., Harvey, P. H., Partridge, L. & Southwood, S. R. Evolution of senescence: late survival sacrificed for reproduction. Phil. Trans. R. Soc. Lond. B 332, 15–24 (1991).Article 
    CAS 

    Google Scholar 
    Mallela, A. & Hastings, A. The role of stochasticity in noise-induced tipping point cascades: a master equation approach. Bull. Math. Biol. 83, 53 (2021).Article 

    Google Scholar 
    Burthe, S. J. et al. Do early warning indicators consistently predict nonlinear change in long-term ecological data? J. Appl. Ecol. 53, 666–676 (2016).Article 

    Google Scholar 
    Vucetich, J. A. & Waite, T. A. Erosion of heterozygosity in fluctuating populations. Conserv. Biol. 13, 860–868 (1999).Article 

    Google Scholar 
    Kramer, A. M. & Drake, J. M. Experimental demonstration of population extinction due to a predator-driven Allee effect. J. Anim. Ecol. 79, 633–639 (2010).Article 

    Google Scholar 
    Oram, E. & Spitze, K. Depth selection by Daphnia pulex in response to Chaoborus kairomone. Freshw. Biol. 58, 409–415 (2013).Article 

    Google Scholar 
    Trites, A. W. & Donnelly, C. P. The decline of Steller sea lions Eumetopias jubatus in Alaska: a review of the nutritional stress hypothesis. Mammal. Rev. 33, 3–28 (2003).Article 

    Google Scholar 
    Sibly, R. M., Barker, D., Hone, J. & Pagel, M. On the stability of populations of mammals, birds, fish and insects. Ecol. Lett. 10, 970–976 (2007).Article 

    Google Scholar 
    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).Article 

    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).Article 

    Google Scholar 
    Tanner, R. L. & Dowd, W. W. Inter-individual physiological variation in responses to environmental variation and environmental change: integrating across traits and time. Comp. Biochem. Physiol. A 238, 110577 (2019).Article 
    CAS 

    Google Scholar 
    Patrick, S. C., Martin, J. G. A., Ummenhofer, C. C., Corbeau, A. & Weimerskirch, H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. Glob. Change Biol. 27, 4564–4574 (2021).Article 
    CAS 

    Google Scholar 
    Fayet, A. L., Clucas, G. V., Anker‐Nilssen, T., Syposz, M. & Hansen, E. S. Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic puffin. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13442 (2021).Pierce, C. L. Predator avoidance, microhabitat shift, and risk-sensitive foraging in larval dragonflies. Oecologia 77, 81–90 (1988).Article 
    CAS 

    Google Scholar 
    Leibold, M. & Tessier, A. J. Contrasting patterns of body size for Daphnia species that segregate by habitat. Oecologia 86, 342–348 (1991).Article 

    Google Scholar 
    Charmantier, A. & Gienapp, P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol. Appl. 7, 15–28 (2014).Article 

    Google Scholar 
    Kopp, M. & Matuszewski, S. Rapid evolution of quantitative traits: theoretical perspectives. Evol. Appl. 7, 169–191 (2014).Article 

    Google Scholar 
    Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).Article 

    Google Scholar 
    Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).Article 

    Google Scholar 
    Chevin, L.-M., Collins, S. & Lefèvre, F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct. Ecol. 27, 967–979 (2013).Article 

    Google Scholar 
    Ferriere, R. & Legendre, S. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Phil. Trans. R. Soc. B 368, 20120081 (2013).Article 

    Google Scholar 
    Rebecchi, L., Boschetti, C. & Nelson, D. R. Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes. Hydrobiologia 847, 2779–2799 (2020).Article 

    Google Scholar 
    Hansson, B. & Westerberg, L. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 11, 2467–2474 (2002).Article 

    Google Scholar 
    Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 
    CAS 

    Google Scholar 
    McClanahan, T. R. et al. Highly variable taxa-specific coral bleaching responses to thermal stresses. Mar. Ecol. Prog. Ser. 648, 135–151 (2020).Article 

    Google Scholar 
    Reside, A. E. et al. Beyond the model: expert knowledge improves predictions of species’ fates under climate change. Ecol. Appl. 29, e01824 (2019).Article 

    Google Scholar 
    Desjonquères, C., Gifford, T. & Linke, S. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshw. Biol. 65, 7–19 (2020).Article 

    Google Scholar 
    Sequeira, A. M. M. et al. A standardisation framework for bio-logging data to advance ecological research and conservation. Methods Ecol. Evol. 12, 996–1007 (2021).Article 

    Google Scholar 
    Shimada, T. et al. Optimising sample sizes for animal distribution analysis using tracking data. Methods Ecol. Evol. 12, 288–297 (2021).Article 

    Google Scholar 
    Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 196–205 (2021).Article 

    Google Scholar 
    Krause, D. J., Hinke, J. T., Perryman, W. L., Goebel, M. E. & LeRoi, D. J. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE 12, e0187465 (2017).Article 

    Google Scholar 
    Besson, M. et al. Towards the fully automated monitoring of ecological communities. Ecol. Lett. https://doi.org/10.1111/ele.14123 (2022).Article 

    Google Scholar 
    Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 6, 506–519 (2022).Article 

    Google Scholar 
    Ingram, D. J., Ferreira, G. B., Jones, K. E. & Mace, G. M. Targeting conservation actions at species threat response thresholds. Trends Ecol. Evol. 36, 216–226 (2021).Article 

    Google Scholar 
    Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).Article 

    Google Scholar 
    Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).Article 
    CAS 

    Google Scholar 
    Enquist, B. J. et al. in Advances in Ecological Research Vol. 52 (eds Pawar, S. et al.) 249–318 (Academic Press, 2015).Wei, W. W. S. Multivariate Time Series Analysis and Applications (John Wiley & Sons, 2018).Holmes, E. E., Ward, E. J. & Wills, K. MARSS: multivariate autoregressive state-space models for analyzing time-series data. R J. 4, 11–19 (2012).Article 

    Google Scholar 
    Zhu, M., Yamakawa, T. & Sakai, T. Combined use of trawl fishery and research vessel survey data in a multivariate autoregressive state-space (MARSS) model to improve the accuracy of abundance index estimates. Fish. Sci. 84, 437–451 (2018).Article 
    CAS 

    Google Scholar 
    Lai, G., Chang, W.-C., Yang, Y. & Liu, H. Modeling long- and short-term temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval 95–104, https://doi.org/10.1145/3209978.3210006 (ACM, 2018).Bury, T. M. et al. Deep learning for early warning signals of tipping points. Proc. Natl Acad. Sci. USA 118, e2106140118 (2021).Article 
    CAS 

    Google Scholar 
    Lara-Benítez, P., Carranza-García, M. & Riquelme, J. C. An experimental review on deep learning architectures for time series forecasting. Int. J. Neural Syst. 31, 2130001 (2021).Article 

    Google Scholar 
    Guo, Q. et al. Application of deep learning in ecological resource research: theories, methods, and challenges. Sci. China Earth Sci. 63, 1457–1474 (2020).Article 

    Google Scholar 
    Rogers, T. L., Johnson, B. J. & Munch, S. B. Chaos is not rare in natural ecosystems. Nat. Ecol. Evol. 6, 1105–1111 (2022).Article 

    Google Scholar 
    Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Change Biol. 24, 3780–3790 (2018).Article 

    Google Scholar 
    Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Article 

    Google Scholar 
    Koleček, J., Adamík, P. & Reif, J. Shifts in migration phenology under climate change: temperature vs. abundance effects in birds. Clim. Change 159, 177–194 (2020).Article 

    Google Scholar 
    Altermatt, F. et al. Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6, 218–231 (2015).Article 

    Google Scholar 
    Beermann, A. J. et al. Multiple-stressor effects on stream macroinvertebrate communities: a mesocosm experiment manipulating salinity, fine sediment and flow velocity. Sci. Total Environ. 610–611, 961–971 (2018).Article 

    Google Scholar 
    Clements, C. F. & Ozgul, A. Including trait-based early warning signals helps predict population collapse. Nat. Commun. 7, 10984 (2016).Article 
    CAS 

    Google Scholar 
    Jacquet, C. & Altermatt, F. The ghost of disturbance past: long-term effects of pulse disturbances on community biomass and composition. Proc. R. Soc. B 287, 20200678 (2020).Article 

    Google Scholar 
    Greggor, A. L. et al. Research priorities from animal behaviour for maximising conservation progress. Trends Ecol. Evol. 31, 953–964 (2016).Article 

    Google Scholar 
    Couvillon, M. J., Schürch, R. & Ratnieks, F. L. W. Waggle dance distances as integrative indicators of seasonal foraging challenges. PLoS ONE 9, e93495 (2014).Article 

    Google Scholar 
    Hamilton, C. D., Lydersen, C., Ims, R. A. & Kovacs, K. M. Predictions replaced by facts: a keystone species’ behavioural responses to declining Arctic sea-ice. Biol. Lett. 11, 20150803 (2015).Article 

    Google Scholar 
    Holt, R. E. & Jørgensen, C. Climate change in fish: effects of respiratory constraints on optimal life history and behaviour. Biol. Lett. 11, 20141032 (2015).Article 

    Google Scholar 
    Gauzens, B. et al. Adaptive foraging behaviour increases vulnerability to climate change. Preprint at https://doi.org/10.1101/2021.05.05.442768 (2021).Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15, 2403–2414 (2013).Article 

    Google Scholar 
    Hertel, A. G. et al. Don’t poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).Article 

    Google Scholar 
    Tini, M. et al. Use of space and dispersal ability of a flagship saproxylic insect: a telemetric study of the stag beetle (Lucanus cervus) in a relict lowland forest. Insect Conserv. Divers. 11, 116–129 (2018).Article 

    Google Scholar 
    Kunc, H. P. & Schmidt, R. Species sensitivities to a global pollutant: a meta-analysis on acoustic signals in response to anthropogenic noise. Glob. Change Biol. 27, 675–688 (2021).Article 

    Google Scholar 
    Anestis, A., Lazou, A., Pörtner, H. O. & Michaelidis, B. Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am. J. Physiol. 293, R911–R921 (2007).CAS 

    Google Scholar 
    Pacherres, C. O., Schmidt, G. M. & Richter, C. Autotrophic and heterotrophic responses of the coral Porites lutea to large amplitude internal waves. J. Exp. Biol. 216, 4365–4374 (2013).
    Google Scholar 
    Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).Article 

    Google Scholar 
    Singh, R., Prathibha, P. & Jain, M. Effect of temperature on life-history traits and mating calls of a field cricket, Acanthogryllus asiaticus. J. Therm. Biol. 93, 102740 (2020).Article 

    Google Scholar 
    Pellegrini, A. Y., Romeu, B., Ingram, S. N. & Daura-Jorge, F. G. Boat disturbance affects the acoustic behaviour of dolphins engaged in a rare foraging cooperation with fishers. Anim. Conserv. 24, 613–625 (2021).Article 

    Google Scholar 
    McMahan, M. D. & Grabowski, J. H. Nonconsumptive effects of a range-expanding predator on juvenile lobster (Homarus americanus) population dynamics. Ecosphere 10, e02867 (2019).Article 

    Google Scholar 
    Vilhunen, S., Hirvonen, H. & Laakkonen, M. V.-M. Less is more: social learning of predator recognition requires a low demonstrator to observer ratio in Arctic charr (Salvelinus alpinus). Behav. Ecol. Sociobiol. 57, 275–282 (2005).Article 

    Google Scholar 
    Ortega, Z., Mencía, A. & Pérez-Mellado, V. Rapid acquisition of antipredatory responses to new predators by an insular lizard. Behav. Ecol. Sociobiol. 71, 1 (2017).Article 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B 374, 20180174 (2019).Article 

    Google Scholar 
    Pigeon, G., Ezard, T. H. G., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Fluctuating effects of genetic and plastic changes in body mass on population dynamics in a large herbivore. Ecology 98, 2456–2467 (2017).Article 

    Google Scholar 
    Lomolino, M. V. & Perault, D. R. Body size variation of mammals in a fragmented, temperate rainforest. Conserv. Biol. 21, 1059–1069 (2007).Article 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 

    Google Scholar 
    Thoral, E. et al. Changes in foraging mode caused by a decline in prey size have major bioenergetic consequences for a small pelagic fish. J. Anim. Ecol. 90, 2289–2301 (2021).Article 

    Google Scholar 
    Stirling, I. & Derocher, A. E. Effects of climate warming on polar bears: a review of the evidence. Glob. Change Biol. 18, 2694–2706 (2012).Article 

    Google Scholar 
    Spanbauer, T. L. et al. Body size distributions signal a regime shift in a lake ecosystem. Proc. R. Soc. B 283, 20160249 (2016).Article 

    Google Scholar 
    Bjorndal, K. A. et al. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic. Glob. Change Biol. 23, 4556–4568 (2017).Article 

    Google Scholar 
    Eshun-Wilson, F., Wolf, R., Andersen, T., Hessen, D. O. & Sperfeld, E. UV radiation affects antipredatory defense traits in Daphnia pulex. Ecol. Evol. 10, 14082–14097 (2020).Article 

    Google Scholar 
    Zhang, H., Hollander, J. & Hansson, L.-A. Bi-directional plasticity: rotifer prey adjust spine length to different predator regimes. Sci. Rep. 7, 10254 (2017).Article 

    Google Scholar 
    Simbula, G., Vignoli, L., Carretero, M. A. & Kaliontzopoulou, A. Fluctuating asymmetry as biomarker of pesticides exposure in the Italian wall lizards (Podarcis siculus). Zoology 147, 125928 (2021).Article 

    Google Scholar 
    Leary, R. F. & Allendorf, F. W. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol. Evol. 4, 214–217 (1989).Article 
    CAS 

    Google Scholar 
    Gavrilchuk, K. et al. Trophic niche partitioning among sympatric baleen whale species following the collapse of groundfish stocks in the Northwest Atlantic. Mar. Ecol. Prog. Ser. 497, 285–301 (2014).Article 

    Google Scholar 
    Kershaw, J. L. et al. Declining reproductive success in the Gulf of St. Lawrence’s humpback whales (Megaptera novaeangliae) reflects ecosystem shifts on their feeding grounds. Glob. Change Biol. 27, 1027–1041 (2021).Article 
    CAS 

    Google Scholar 
    Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).Article 

    Google Scholar 
    Obbard, M. E. et al. Re-assessing abundance of Southern Hudson Bay polar bears by aerial survey: effects of climate change at the southern edge of the range. Arct. Sci. 4, 634–655 (2018).Article 

    Google Scholar 
    Hutchings, J. A. The cod that got away. Nature 428, 899–900 (2004).Article 
    CAS 

    Google Scholar 
    Zhang, F. Early warning signals of population productivity regime shifts in global fisheries. Ecol. Indic. 115, 106371 (2020).Article 

    Google Scholar 
    Fulton, G. R. The Bramble Cay melomys: the first mammalian extinction due to human-induced climate change. Pac. Conserv. Biol. 23, 1–3 (2017).Article 

    Google Scholar  More

  • in

    Evaluating sea cucumbers as extractive species for benthic bioremediation in mussel farms

    Avdelas, L. et al. The decline of mussel aquaculture in the European Union: Causes, economic impacts and opportunities. Rev. Aquac. 13, 91–118. https://doi.org/10.1111/raq.12465 (2021).Article 

    Google Scholar 
    Tamburini, E., Turolla, E., Fano, E. A. & Castaldelli, G. Sustainability of Mussel (Mytilus galloprovincialis) farming in the Po River delta, northern Italy, based on a life cycle assessment approach. Sustainability 12, 3814. https://doi.org/10.3390/su12093814 (2020).Article 
    CAS 

    Google Scholar 
    Shumway, S. E. et al. Shellfish aquaculture-In praise of sustainable economies and environments. J. World Aquacult. Soc. 34, 8–10 (2003).
    Google Scholar 
    Musella, M. et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci. Total Environ. 717, 137209. https://doi.org/10.1016/J.SCITOTENV.2020.137209 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Peharda, M., Župan, I., Bavčević, L., Frankić, A. & Klanjšček, T. Growth and condition index of mussel Mytilus galloprovincialis in experimental integrated aquaculture. Aquac. Res. 38, 1714–1720. https://doi.org/10.1111/J.1365-2109.2007.01840.X (2007).Article 

    Google Scholar 
    Sarà, G., Zenone, A. & Tomasello, A. Growth of Mytilus galloprovincialis (Mollusca, bivalvia) close to fish farms: A case of integrated multi-trophic aquaculture within the Tyrrhenian sea. Hydrobiologia 636, 129–136. https://doi.org/10.1007/S10750-009-9942-2/TABLES/4 (2009).Article 

    Google Scholar 
    Danovaro, R., Gambi, C., Luna, G. M. & Mirto, S. Sustainable impact of mussel farming in the Adriatic Sea (Mediterranean Sea): Evidence from biochemical, microbial and meiofaunal indicators. Mar. Pollut. Bull. 49, 325–333. https://doi.org/10.1016/j.marpolbul.2004.02.038 (2004).Article 
    CAS 

    Google Scholar 
    Tancioni, L. et al. Anthropogenic threats to fish of interest in aquaculture: Gonad intersex in a wild population of thinlip grey mullet Liza ramada (Risso, 1827) from a polluted estuary in central Italy. Aquac. Res. 47(5), 1670–1674 (2016).Article 

    Google Scholar 
    Chary, K. et al. Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioremediation and life-cycle impacts. Aquaculture 516, 734621. https://doi.org/10.1016/j.aquaculture.2019.734621 (2020).Article 
    CAS 

    Google Scholar 
    Purcell, S. W., Williamson, D. H. & Ngaluafe, P. Chinese market prices of beche-de-mer: Implications for fisheries and aquaculture. Mar. Policy 91, 58–65. https://doi.org/10.1016/j.marpol.2018.02.005 (2018).Article 

    Google Scholar 
    Morroni, L. et al. Sea cucumber Holothuria polii (Delle Chiaje, 1823) as new model for embryo bioassays in ecotoxicological studies. Chemosphere 240, 124819. https://doi.org/10.1016/j.chemosphere.2019.124819 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Uthicke, S. & Karez, R. Sediment patch selectivity in tropical sea cucumbers (Holothuroidea: Aspidochirotida) analysed with multiple choice experiments. J. Exp. Mar. Biol. Ecol. 236, 69–87. https://doi.org/10.1016/S0022-0981(98)00190-7 (1999).Article 

    Google Scholar 
    MacTavish, T., Stenton-Dozey, J., Vopel, K. & Savage, C. Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS ONE 7, 1–11. https://doi.org/10.1371/journal.pone.0050031 (2012).Article 
    CAS 

    Google Scholar 
    Rakaj, A. et al. Towards sea cucumbers as a new model in embryo-larval bioassays: Holothuria tubulosa as test species for the assessment of marine pollution. Sci. Total Environ. 787, 147593. https://doi.org/10.1016/j.scitotenv.2021.147593 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Purcell, S., Conand, C., Uthicke, S. & Byrne, M. Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol. 54, 367–386. https://doi.org/10.1201/9781315368597-8 (2016).Article 

    Google Scholar 
    Zamora, L. N., Yuan, X., Carton, A. G., Slater, M. J. & Marine, L. Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: Progress, problems, potential and future challenges. Rev. Aquac. 10, 57–74. https://doi.org/10.1111/raq.12147 (2016).Article 

    Google Scholar 
    Slater, M. J. & Carton, A. G. Survivorship and growth of the sea cucumber Australostichopus (Stichopus) mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272, 389–398. https://doi.org/10.1016/j.aquaculture.2007.07.230 (2007).Article 

    Google Scholar 
    Slater, M. J. & Carton, A. G. Effect of sea cucumber (Australostichopus mollis) grazing on coastal sediments impacted by mussel farm deposition. Mar. Pollut. Bull. 58, 1123–1129. https://doi.org/10.1016/j.marpolbul.2009.04.008 (2009).Article 
    CAS 

    Google Scholar 
    Slater, M. J. & Carton, A. G. Sea cucumber habitat differentiation and site retention as determined by intraspecific stable isotope variation. Aquac. Res. 41, 695–702. https://doi.org/10.1111/j.1365-2109.2010.02607.x (2010).Article 
    CAS 

    Google Scholar 
    Stenton-Dozey, J. Finding hidden treasure in aquaculture waste. Water Atmos. 15, 9–11 (2007).
    Google Scholar 
    Slater, M. J., Jeffs, A. G. & Carton, A. G. The use of the waste from green-lipped mussels as a food source for juvenile sea cucumber, Australostichopus mollis. Aquaculture 292, 219–224. https://doi.org/10.1016/j.aquaculture.2009.04.027 (2009).Article 

    Google Scholar 
    Stenton-Dozey, J. & Heath, P. A first for New Zealand: Culturing our endemic sea cucumber for overseas markets. Water Atmos. 17, 20–21 (2009).
    Google Scholar 
    Zamora, L. N. & Jeffs, A. G. Feeding, selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, Australostichopus mollis. Aquaculture 317, 223–228. https://doi.org/10.1016/j.aquaculture.2011.04.011 (2011).Article 

    Google Scholar 
    Zamora, L. N. & Jeffs, A. G. The ability of the deposit-feeding sea cucumber Australostichopus mollis to use natural variation in the biodeposits beneath mussel farms. Aquaculture 326, 116–122. https://doi.org/10.1016/J.AQUACULTURE.2011.11.015 (2012).Article 

    Google Scholar 
    Zamora, L. N. & Jeffs, A. G. A Review of the research on the Australasian Sea Cucumber, Australostichopus mollis (Echinodermata: Holothuroidea) (Hutton 1872), with emphasis on aquaculture. J. Shellfish Res. 32, 613–627. https://doi.org/10.2983/035.032.0301 (2013).Article 

    Google Scholar 
    Zamora, L. N. & Jeffs, A. G. Macronutrient selection, absorption and energy budget of juveniles of the Australasian sea cucumber, Australostichopus mollis, feeding on mussel biodeposits at different temperatures. Aquac. Nutr. 21, 162–172. https://doi.org/10.1111/ANU.12144 (2015).Article 
    CAS 

    Google Scholar 
    Chatzivasileiou, D. et al. An IMTA in Greece: Co-culture of fish, bivalves, and holothurians. J. Mar. Sci. Eng. 10, 776. https://doi.org/10.3390/jmse10060776 (2022).Article 

    Google Scholar 
    Rakaj, A. et al. Spawning and rearing of Holothuria tubulosa: A new candidate for aquaculture in the Mediterranean region. Aquac. Res. 49, 557–568. https://doi.org/10.1111/are.13487 (2018).Article 
    CAS 

    Google Scholar 
    Rakaj, A., Fianchini, A., Boncagni, P., Scardi, M. & Cataudella, S. Artificial reproduction of Holothuria polii: A new candidate for aquaculture. Aquaculture 498, 444–453. https://doi.org/10.1016/j.aquaculture.2018.08.060 (2019).Article 

    Google Scholar 
    González-Wangüemert, M., Aydin, M. & Conand, C. Assessment of sea cucumber populations from the Aegean Sea (Turkey): First insights to sustainable management of new fisheries. Ocean Coast. Manag. 92, 87–94. https://doi.org/10.1016/J.OCECOAMAN.2014.02.014 (2014).Article 

    Google Scholar 
    González-Wangüemert, M., Valente, S. & Aydin, M. Effects of fishery protection on biometry and genetic structure of two target sea cucumber species from the Mediterranean Sea. Hydrobiologia 743, 65–74. https://doi.org/10.1007/s10750-014-2006-2 (2015).Article 

    Google Scholar 
    González-Wangüemert, M., Domínguez-Godino, J. A. & Cánovas, F. The fast development of sea cucumber fisheries in the Mediterranean and NE Atlantic waters: From a new marine resource to its over-exploitation. Ocean Coast. Manag. 151, 165–177. https://doi.org/10.1016/j.ocecoaman.2017.10.002 (2018).Article 

    Google Scholar 
    González-Wangüemert, M. & Godino, J. Sea cucumbers as new marine resource in Europe. Front. Mar. Sci. 3, 112 (2016).
    Google Scholar 
    Domínguez-Godino, J. A., Slater, M. J., Hannon, C. & González-Wangüermert, M. A new species for sea cucumber ranching and aquaculture: Breeding and rearing of Holothuria arguinensis. Aquaculture 438, 122–128. https://doi.org/10.1016/J.AQUACULTURE.2015.01.004 (2015).Article 

    Google Scholar 
    Günay, D., Emiroğlu, D., Tolon, T., Özden, O. & Saygi, H. Growth and survival rate of Juvenile Sea Cucumbers (Holothuria tubulosa, Gmelin, 1788) at Various Temperatures. Turk. J. Fish. Aquat. Sci. 15, 533–541. https://doi.org/10.4194/1303-2712-v15_2_41 (2015).Article 

    Google Scholar 
    Tolon, T. Effect of salinity on growth and survival of the juvenile sea cucumbers Holothuria tubulosa (Gmelin, 1788) and Holothuria poli (Delle Chiaje, 1923). Fresenius Environ. Bull. 26, 3930–3935 (2017).CAS 

    Google Scholar 
    Tolon, T., Emiroğlu, D., Günay, D. & Hancı, B. Effect of stocking density on growth performance of juvenile sea cucumber Holothuria tubulosa (Gmelin, 1788). Aquac. Res. 48, 4124–4131. https://doi.org/10.1111/are.13232 (2017).Article 

    Google Scholar 
    Tolon, M. T., Emiroglu, D., Gunay, D. & Ozgul, A. Sea cucumber (Holothuria tubulosa Gmelin, 1790) culture under marine fish net cages for potential use in integrated multi-trophic aquaculture (IMTA). Indian J. Geol. Mar. Sci. 46, 749–756 (2017).
    Google Scholar 
    Neofitou, N. et al. Contribution of sea cucumber Holothuria tubulosa on organic load reduction from fish farming operation. Aquaculture 501, 97–103. https://doi.org/10.1016/j.aquaculture.2018.10.071 (2019).Article 

    Google Scholar 
    Sadoul, B. et al. Aquaculture Is Holothuria tubulosa the golden goose of ecological aquaculture in the Mediterranean Sea? Aquaculture 554, 738149. https://doi.org/10.1016/j.aquaculture.2022.738149 (2022).Article 
    CAS 

    Google Scholar 
    Cutajar, K. et al. Culturing the sea cucumber Holothuria poli in open-water integrated multi-trophic aquaculture at a coastal Mediterranean fish farm. Aquaculture 550, 737881. https://doi.org/10.1016/j.aquaculture.2021.737881 (2022).Article 
    CAS 

    Google Scholar 
    Grosso, L. et al. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 534, 736268. https://doi.org/10.1016/J.AQUACULTURE.2020.736268 (2021).Article 
    CAS 

    Google Scholar 
    González-Wangüemert, M., Valente, S., Henriques, F., Domínguez-Godino, J. A. & Serrão, E. A. Setting preliminary biometric baselines for new target sea cucumbers species of the NE Atlantic and Mediterranean fisheries. Fish. Res. 179, 57–66. https://doi.org/10.1016/J.FISHRES.2016.02.008 (2016).Article 

    Google Scholar 
    Aydin, M. Biometry, density and the biomass of the commercial sea cucumber population of the Aegean Sea. Turk. J. Fish. Aquat. Sci 19, 463–474. https://doi.org/10.4194/1303-2712-v19_6_02 (2018).Article 

    Google Scholar 
    Whitlock, M. C. & Schluter, D. Analisi Statistica dei Dati Biologici, Zanichelli (2010)Hammer, O. & Harper, D. A. T. PAST PAleontological STatistics Version 3 Reference Manual (University of Oslo, 2013).Zhou, Y. et al. Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture 256, 510–520. https://doi.org/10.1016/j.aquaculture.2006.02.005 (2006).Article 

    Google Scholar 
    Pensa, D. et al. Population status, distribution and trophic implications of Pinna nobilis along the South-eastern Italian coast. Npj Biodivers. https://doi.org/10.21203/rs.3.rs-1425249/v1 (2022).Article 

    Google Scholar 
    Francour, P. Predation on holothurians: A literature review. Invert. Bio. 116, 52–60. https://doi.org/10.2307/3226924 (1997).Article 

    Google Scholar 
    Mecheta, A. & Mezali, K. A biometric study to determine the economic and nutritional value of sea cucumbers (Holothuroidea: Echinodermata) collected from Algeria’s shallow water areas. Beche-de-mer Inf. Bull. 39, 65–70 (2019).
    Google Scholar 
    Sun, J., Hamel, J. F., Gianasi, B. L., Graham, M. & Mercier, A. Growth, health and biochemical composition of the sea cucumber Cucumaria frondosa after multi-year holding in effluent waters of land-based salmon culture. Aquac. Environ. Interact. 12, 139–151. https://doi.org/10.3354/aei00356 (2020).Article 

    Google Scholar 
    Boncagni, P., Rakaj, A., Fianchini, A. & Vizzini, S. Preferential assimilation of seagrass detritus by two coexisting Mediterranean sea cucumbers: Holothuria polii and Holothuria tubulosa. Estuar. Coast. Shelf Sci. 231, 106464. https://doi.org/10.1016/j.ecss.2019.106464 (2019).Article 
    CAS 

    Google Scholar 
    Rakaj, A., and Fianchini, A. Mediterranean sea cucumbers—Biology, ecology, and exploitation, Chapter. In The World of Sea Cucumbers Challenges, Advances, and Innovations (Mercier, A., Hamel, J.-F, Suhrbier, A. & Pearce, C.) (2023)Massin, C. & Jangoux, M. Observations écologiques sur Holothuria tubulosa, Holothuria poli et Holothuria forskali (Echinodermata, Holothuroidea) et comportement alimentaire de H. tubulosa. Référ. Cah. Biol. Mar. 17, 45–59 (1976).
    Google Scholar 
    Coulon, P. & Jangoux, M. Feeding rate and sediment reworking by the holothuroid Holothuria tubulosa (Echinodermata) in a Mediterranean seagrass bed off Ischia Island, Italy. Mar. Ecol. Progr. Ser. 92, 201–204 (1993).Article 
    ADS 

    Google Scholar 
    Belbachir, N., Mezali, K. & Soualili, D. L. Selective feeding behaviour in some aspidochirotid holothurians (Echinodermata: Holothuroidea) at Stidia, Mostaganem Province, Algeria (2014).Grosso, L. et al. Trophic requirements of the sea urchin Paracentrotus lividus varies at different life stages: comprehension of species ecology and implications for effective feeding formulations. Front. Mar. Sci. 9, 865450. https://doi.org/10.3389/fmars.2022.865450 (2022).Article 

    Google Scholar 
    Sun, Z. L., Gao, Q. F., Dong, S. L., Shin, P. K. & Wang, F. Estimates of carbon turnover rates in the sea cucumber Apostichopus japonicus (Selenka) using stable isotope analysis: The role of metabolism and growth. Mar. Ecol. Prog. Ser. 457, 101–112. https://doi.org/10.3354/meps09760 (2012).Article 
    ADS 

    Google Scholar 
    Yuan, X. T. et al. Effects of aestivation on the energy budget of sea cucumber Apostichopus japonicus (Selenka) (Echinaodermata: Holothuroidea). Acta. Ecol. Sin. 27, 3155−3161. https://doi.org/10.1016/S1872-2032(07)60070-5 (2007).Article 

    Google Scholar 
    Liu, Y., Dong, S. L., Tian, X. L., Wang, F. & Gao, Q. F. Effects ofdietary sea mud and yellow soil on growth and energybudget of the sea cucumber Apostichopus japonicas (Selenka). Aquaculture 286, 266–270. https://doi.org/10.1016/j.aquaculture.2008.09.029 (2009).Article 

    Google Scholar 
    Brown, N. P. & Eddy, S. D. Echinoderm Aquaculture (Wiley, 2015).Book 

    Google Scholar 
    Qiu, T., Zhang, L., Zhang, T., Bai, Y. & Yang, H. Effect of culture methods on individual variation in the growth of sea cucumber Apostichopus japonicus within a cohort and family. Chin. J. Oceanol. Limnol. 32, 737–742. https://doi.org/10.1007/S00343-014-3131-5 (2014).Article 
    ADS 

    Google Scholar 
    Zappes, I. A. et al. New data on Weddell seal (Leptonychotes weddellii) colonies: A genetic analysis of a top predator from the Ross Sea, Antarctica. PLoS ONE 12, 0182922. https://doi.org/10.1371/journal.pone.0182922 (2017).Article 
    CAS 

    Google Scholar 
    Paltzat, D. L., Pearce, C. M., Barnes, P. A. & McKinley, R. S. Growth and production of California sea cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters (Crassostrea gigas Thunberg). Aquaculture 275, 124–137. https://doi.org/10.1016/j.aquaculture.2007.12.014 (2008).Article 

    Google Scholar 
    Dong, S. et al. Intra-specific effects of sea cucumber (Apostichopus japonicus) with reference to stocking density and body size. Aquac. Res. 41, 1170–1178. https://doi.org/10.1111/J.1365-2109.2009.02404.X (2010).Article 

    Google Scholar 
    Pei, S., Dong, S., Wang, F., Gao, Q. & Tian, X. Effects of stocking density and body physical contact on growth of sea cucumber, Apostichopus japonicus. Aquac. Res. 45, 629–636. https://doi.org/10.1111/ARE.12004 (2014).Article 

    Google Scholar 
    Xia, B., Ren, Y., Wang, J., Sun, Y. & Zhang, Z. Effects of feeding frequency and density on growth, energy budget and physiological performance of sea cucumber Apostichopus japonicus (Selenka). Aquaculture 466, 26–32. https://doi.org/10.1016/J.AQUACULTURE.2016.09.039 (2017).Article 

    Google Scholar 
    Domínguez-Godino, J. A. & González-Wangüemert, M. Does space matter? Optimizing stocking density of Holothuria arguinensis and Holothuria mammata. Aquac. Res. 49, 3107–3115. https://doi.org/10.1111/are.13773 (2018).Article 

    Google Scholar 
    Rugnini, L., Rossi, C., Antonaroli, S., Rakaj, A. & Bruno, L. The influence of light and nutrient starvation on morphology, biomass and lipid content in seven strains of green microalgae as a source of biodiesel. Microorganisms 8, 1254. https://doi.org/10.3390/microorganisms8081254 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    Green roofs and pollinators, useful green spots for some wild bee species (Hymenoptera: Anthophila), but not so much for hoverflies (Diptera: Syrphidae)

    Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 109, 16083–16088. https://doi.org/10.1073/pnas.1211658109 (2012).Article 
    ADS 

    Google Scholar 
    Faeth, S. H., Bang, C. & Saari, S. Urban biodiversity: Patterns and mechanisms. Ann. N. Y. Acad. Sci. 1223, 69–81. https://doi.org/10.1111/j.1749-6632.2010.05925.x (2011).Article 
    ADS 

    Google Scholar 
    Elmqvist, T., Zipperer, W. & Güneralp, B. Urbanisation, habitat loss, biodiversity decline: Solution pathways to break the cycle. In Routledge Handbook of Urbanisation and Global Environmental Change (eds Seta, K. et al.) 139–151 (Routledge, 2016).
    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).Article 
    CAS 

    Google Scholar 
    Wagner, D., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Biological sciences 118, e2023989118. https://doi.org/10.1073/pnas.2023989118 (2021).Article 
    CAS 

    Google Scholar 
    Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 6229. https://doi.org/10.1126/science.1255957 (2015).Article 
    CAS 

    Google Scholar 
    Ollerton, J. (2021) Pollinators & pollination: nature and society. Pelagic publishing.IPBES (2016). The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. potts, S.G., Imperatriz-Fonseca, V.L and Ngo, H.T. (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. 552 pages.Mallinger, R. E. & Gratton, C. Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator dependent crop. J. Appl. Ecol. 52, 323–330 (2015).Article 

    Google Scholar 
    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. U.S.A. 99, 16812–16816 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).Article 

    Google Scholar 
    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Matteson, K. C., Ascher, J. S. & Langellotto, G. A. Bee richness and abundance in New York City urban gardens. Ann. Entomol. Soc. Am. 101(1), 140–150. https://doi.org/10.1603/0013-8746(2008)101[140:BRAAIN]2.0.CO;2 (2008).Article 

    Google Scholar 
    Carré, G. et al. Landscape context and habitat type as drivers of bee diversity in European annual crops. Agr. Ecosyst. Environ. 133(1–2), 40–47. https://doi.org/10.1016/j.agee.2009.05.001 (2009).Article 

    Google Scholar 
    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Ann. Rev. Entomol. 53, 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454 (2008).Article 
    CAS 

    Google Scholar 
    Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS One 6(8), e23459. https://doi.org/10.1371/journal.pone.0023459 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Deguines, N., Julliard, R., De Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanisation. Ecol. Evol. 6(7), 1967–1976. https://doi.org/10.1002/ece3.2009 (2016).Article 

    Google Scholar 
    Larsson, M. Higher pollinator effectiveness by specialist than generalist flower-visitors of unspecialized Knautia arvensis (Dipsacaceae). Oecologia 146(3), 394–403. https://doi.org/10.1007/s00442-005-0217-y (2005).Article 
    ADS 

    Google Scholar 
    Pataki, D. E. et al. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 9, 27–36. https://doi.org/10.1890/090220 (2011).Article 

    Google Scholar 
    Mentens, J., Raes, D. & Hermy, M. Green roofs as a tool for solving rainwater runoff problems in the urbanized 21st century?. Landscape Urban Plann. 77, 217–226. https://doi.org/10.1016/j.landurbplan.2005.02.010 (2006).Article 

    Google Scholar 
    Oberndorfer, E. et al. Green roofs as urban ecosystems: Ecological structures, functions and services. Bioscience 57, 823–834. https://doi.org/10.1641/B571005 (2007).Article 

    Google Scholar 
    Braaker, S., Ghazoul, J., Obrist, M. K. & Moretti, M. Habitat connectivity shapes urban arthropod communities: The key role of green roofs. Ecology 95, 1010–1021. https://doi.org/10.1890/13-0705.1 (2014).Article 
    CAS 

    Google Scholar 
    Colla, S. R., Willis, E. & Packer, I. Can green roofs provide habitat for urban bees (Hymenoptera: Apidae)?. Cities and the Environment 2(1), 1–12 (2009).Article 

    Google Scholar 
    Tonietto, R., Fant, J., Ascher, J., Ellis, K. & Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 103, 102–108 (2011).Article 

    Google Scholar 
    Ksiazek, K., Fant, J. & Skogen, K. An asssement of pollen limitation on Chicago green roofs. Landsc. Urban Plan. 107, 401–408 (2012).Article 

    Google Scholar 
    MacIvor, J. S. Building height matters: Nesting activity of bees and wasps on vegetated roofs. Israel J. Ecol. Evol. 62, 88–96. https://doi.org/10.1080/15659801.2015.1052635 (2015).Article 

    Google Scholar 
    Kratschmer, S., Kriechbaum, M. & Pachinger, B. Buzzing on top: Linking wild bee diversity, abundance and traits with green roof qualities. Urban Ecosyst. 21, 429–441 (2018).Article 

    Google Scholar 
    MacIvor, J. S., Ruttan, R. & Salehi, B. Exotics on exotics: Pollen analysis of urban bees visiting Sedum on a green roof. Urban Ecosyst. 18, 419–430 (2014).Article 

    Google Scholar 
    Matteson, K. C. & Langellotto, G. A. Determinates of inner city butterfly and bee species richness. Urban Ecosyst. 13, 333–347. https://doi.org/10.1007/s11252-010-0122-y (2010).Article 

    Google Scholar 
    Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along a gradient of urbanisation. PLoS One 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).Article 
    ADS 

    Google Scholar 
    Baldock, K.C.R, et al. (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B. https://doi.org/10.1098/rspb.2014.2849Theodorou, P. et al. Urban fragmentation leads to lower floral diversity, with knock-on impacts on bee biodiversity. Sci. Rep. 10, 21756. https://doi.org/10.1038/s41598-020-78736-x (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Lowenstein, D.M., Matteson, K.C., Xiao, I., Silva, A.M. and Minor, E.S (2014) Humans, bees, and pollination services in the city: The case of Chicago, IL (USA). Biodiversity Conservation 1–18. https://doi.org/10.1007/s10531-014-0752-0Winfree, R., Bartomeus, I. & Cariveau, D. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. 42, 1–22 (2011).Article 

    Google Scholar 
    Cariveau, D. P. & Winfree, R. Causes of variation in wild bee responses to anthropogenic drivers. Curr. Opin. Insect. Sci. 10, 104–109. https://doi.org/10.1016/j.cois.2015.05.004 (2015).Article 

    Google Scholar 
    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373. https://doi.org/10.1038/s41559-018-0769-y (2019).Article 

    Google Scholar 
    Li, W. C. & Yeung, K. K. A. A comprehensive study of green roof performance from environmental perspective. Int. J. Sustain. Built Environ. 3, 127–134 (2021).Article 

    Google Scholar 
    Turner, M., Baker, W. L., Peterson, C. J. & Peet, R. K. Factors influencing succession: Lessons from large, infrequent natural disturbances. Ecosystems 1, 511–523. https://doi.org/10.1007/s100219900047 (1998).Article 

    Google Scholar 
    Molineux, C. J., Connop, S. P. & Gange, A. C. Manipulating soil microbial communities in extensive green roof substrates. Sci. Total Environ. 493, 632–638. https://doi.org/10.1016/j.scitotenv.2014.06.045 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Macivor, S. & Ksiazek, K. Invertebrates on green roofs. Ecol. Stud. Anal. Synthes. 223, 333–355. https://doi.org/10.1007/978-3-319-14983-7_14 (2015).Article 

    Google Scholar 
    Madre, F., Vergnes, A., Machon, N. & Clergeau, P. A comparison of 3 types of green roof as habitats for arthropods. Ecol. Eng. 57, 109–117. https://doi.org/10.1016/j.ecoleng.2013.04.029 (2013).Article 

    Google Scholar 
    Lee, L. H. & Lin, J. C. Green roof performance towards good habitat for butterflies in the compact city. Int. J. Biol. 7, 103. https://doi.org/10.5539/ijb.v7n2p103 (2015).Article 
    CAS 

    Google Scholar 
    Preston, F. W. The canonical distribution of commonness and rarity: Part I. Ecology 43(2), 185–215. https://doi.org/10.2307/1931976 (1962).Article 

    Google Scholar 
    Orford, K. A., Murray, P. J., Vaughan, I. P. & Memmott, J. Modest enhancements to conventional grassland diversity improve the provision of pollination services. J. Appl. Ecol. 53, 906–915. https://doi.org/10.1111/1365-2664.12608 (2016).Article 

    Google Scholar 
    Brenneisen, S. The Natural Roof (NADA): Research Project Report on the Use of Extensive Green Roofs by Wild Bees (University of Wädenswil, 2005).
    Google Scholar 
    Jacobs, J., Berg, M., Beenaerts, N. & Artois, T. Biodiversity of Collembola on green roofs: A case study of three cities in Belgium. Ecol. Eng. 177, 106572. https://doi.org/10.1016/j.ecoleng.2022.106572 (2022).Article 

    Google Scholar 
    McKinney, M.L., Sisco, N.D. (2018) Systematic variation in roof spontaneous vegetation: residential “low rise” versus commercial “high rise” buildings. Urban Nature SI, 73–88.Rotheray, G.E., & Gilbert, S.F. (2011) The natural history of hoverflies. Tresaith, UK: Forrest TextBenvenuti, S. Wildflower green roofs for urban landscaping, ecological sustainability and biodiversity. Landsc. Urban Plan. 124, 151–161. https://doi.org/10.1016/j.landurbplan.2014.01.004 (2014).Article 

    Google Scholar 
    Schneider, F. Beitrag zur Kenntnis der Generationsverhaltnisse und Diapause rauberischer Schwebfliegen (Syrphldae, Dipt.). Mittl. Schweiz Ent Ges 21, 249–285 (1948).
    Google Scholar 
    Rader, R., Edwards, W., Westcott, D. A., Cunningham, S. A. & Howlett, B. G. Pollen transport differs among bees and flies in a human-modified landscape. Divers. Distrib. 17, 519–529. https://doi.org/10.1111/j.1472-4642.2011.00757.x (2011).Article 

    Google Scholar 
    Burgio, G. & Sommaggio, D. Syrphids as landscape bioindicators in Italian agroecosystems. Agr. Ecosyst. Environ. 120, 416–422 (2007).Article 

    Google Scholar 
    Doyle, T. et al. Pollination by hoverflies in the Anthropocene. Proc. R. Soc. B 287, 20200508. https://doi.org/10.1098/rspb.2020.0508 (2020).Article 

    Google Scholar 
    Persson, A. S., Ekroos, J., Olssona, P. & Smith, H. G. Wild bees and hoverflies respond differently to urbanisation, human population density and urban form. Landsc. Urban Plann. 204, 103901. https://doi.org/10.1016/j.landurbplan.2020.103901 (2020).Article 

    Google Scholar 
    Verboven, H., Uyttenbroeck, R., Brys, R. & Hermy, M. Different responses of bees and hoverflies to land use in an urban–rural gradient show the importance of the nature of the rural land use. Landsc. Urban Plan. 126, 31–41. https://doi.org/10.1016/j.landurbplan.2014.02.017 (2014).Article 

    Google Scholar 
    Schönrogge, K. et al. Host propagation permits extreme local adaptation in a social parasite of ants. Ecol. Lett. 9, 1032–1040 (2006).Article 

    Google Scholar 
    Schweiger, O. et al. Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe. Oikos 116, 461–472 (2007).Article 

    Google Scholar 
    KMI: Koninklijk Meteorologisch Instituut (2022) Analyse van het jaar 2020 en 2021. Available from https://www.meteobelgie.be/klimatologie/waarnemingen-en-analyses/jaar-2020/2274-jaa-2020 (2020) https://www.meteobelgie.be/klimatologie/waarnemingen-en-analyses/jaar-2021/2291-analyse-van-het-jaar-2021 (2021). Accessed on 12/05/2022.Shrestha, M. et al. Fluorescent pan traps affect the capture rate of insect orders in different ways. Insects 10(2), 40. https://doi.org/10.3390/insects10020040 (2019).Article 

    Google Scholar 
    Cooper, R., & Whitmore, R.C. (1990) Arthropod sampling methods in ornithology, Avian Foraging: theory, methodology, and applications. Studies in Avian Biology 13, Cooper Ornithological Society, California.Oberprieler, S. K., Andersen, A. & Braby, M. F. Invertebrate by-catch from vertebrate pitfall rraps can be useful for documenting patterns of invertebrate diversity. J. Insect. Conserv. 23(3), 547–554. https://doi.org/10.1007/s10841-019-00143-z (2019).Article 

    Google Scholar 
    Skvarla, M. J., Larson, J. L. & Dowling, A. P. G. Pitfalls and preservatives: A review. J. Entomol. Soc. Ontario 145, 15–43 (2014).
    Google Scholar 
    Michez, D., Rasmont, P., Terzo, M. and Vereecken, N.J. (2019) Bees of Europe. Hymenoptera of Europe 1. N.A.P Editions.Williams, P.H., et al. (2012): Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syste. Biodiversity. https://doi.org/10.1080/14772000.2012.66457Falck, S., & Lewington, R (2020) Bijen veldgids voor Nederland en Vlaanderen. Tirion.Koster, A. (2022) De Nederlandse wilde bijen en hun planten. http://www.denederlandsebijen.nl/. Accessed on 21/4/2022.Speight, M.C.D. & Sarthou, J.P. (2013) StN keys for the identification of adult European Syrphidae (Diptera) 2013/Clés StN pour la détermination des adultes des Syrphidae Européens (Diptères) 2013. Syrph the Net, the database of European Syrphidae, Vol. 74, 133pp, Syrph the Net publications, Dublin.Roback, P., Legler, J. (2021) Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R. Taylor & Francis Group, LLC.R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Oksanen, J., et al. (2014) Vegan: community ecology package. R Package 280.Bengtsson, H. (2017). matrixStats: Functions that Apply to Rows and Columns of Matrices (and to Vectors). R Package Version 0.52.2.Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015) Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.Wickham, H., François, R., Henry, L. and Müller, K. (2022). dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr.Venables, W.N., & Ripley, B.D. (2002) Modern Applied Statistics with S, 4th ed. Springer, New York. ISBN 0–387–95457–0. https://www.stats.ox.ac.uk/pub/MASS4/.Ricotta, C. & Moretti, M. CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia 167(1), 181–188 (2011).Article 
    ADS 

    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585(7826), 551–556. https://doi.org/10.1038/s41586-020-2705-y (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Drossart, M., et al. (2019) Belgian red list of Bees. Belgian Science Policy (BRAIN-be – (Belgian Research Action through Interdisciplinary Networks). Mons: Presse universitaire de l’Université de Mons.Fahrig, L. Why do several small patches hold more species than few large patches?. Glob. Ecol. Biogeogr. 29, 615–628. https://doi.org/10.1111/geb.13059 (2020).Article 

    Google Scholar 
    Ayers, A. C. & Rehan, S. M. Supporting bees in cities: how bees are influenced by local and landscape features. Insects 12, 128. https://doi.org/10.3390/insects12020128 (2021).Article 

    Google Scholar 
    Domínguez, M. V. S., González, E., Fabián, D., Salvo, A. & Fenoglio, M. S. Arthropod diversity and ecological processes on green roofs in a semi-rural area of Argentina: Similarity to neighbor ground habitats and landscape effects. Landscape and Urban Planning 199, (2020).Castagneyrol, B. & Jactel, H. Unravelling plant- animal diversity relationships: A meta-regression analysis. Ecology 93(9), 2115–2124 (2012).Article 

    Google Scholar 
    Harrison, T., Gibbs, J. & Winfree, R. Phylogenetic homogenization of bee communities across ecoregions. Glob. Ecol. Biogeogr. 27, 1457–1466. https://doi.org/10.1111/geb.12822 (2018).Article 

    Google Scholar 
    Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanisation is driving pollinator diversity and pollination, a systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).Article 

    Google Scholar 
    Martins, K. T., Gonzalez, A. & Lechowicz, M. J. Patterns of pollinator turnover and increasing diversity associated with urban habitats. Urban Ecosyst. 20, 1359–1371 (2017).Article 

    Google Scholar 
    Bucholz, S. & Egerer, M. Functional ecology of wild bees in cities: Towards a better understanding of trait-urbanisation relationships. Biodiver. Conserv. 29, 2779–2801 (2020).Article 

    Google Scholar 
    Hernandez, J. L., Frankie, G. W. & Thorp, R. W. Ecology of urban bees : A review of current knowledge and directions for future study. Cities Environ. 2, 1–15 (2009).Article 

    Google Scholar 
    Cane, J. H. Bees, pollination, and the challenges of sprawl. In Nature in fragments: The legacy of sprawl (eds Johnson, E. A. & Klemens, M. W.) 109–124 (Columbia University Press, 2005).Chapter 

    Google Scholar 
    Koch, K. Wilde bijensoorten in een stedelijke omgeving: Stad Antwerpen. Antenna 4, 8–12 (2014).
    Google Scholar 
    Soper, J. & Beggs, J. Assessing the impact of an introduced bee, Anthidium manicatum, on pollinator communities in New Zealand. NZ J. Bot. 51(3), 213–228. https://doi.org/10.1080/0028825X.2013.793202 (2013).Article 

    Google Scholar 
    Bennet, D.G., Kelly, D., & Clemens, J. (2018). Food plants and foraging distances for the native bee Lasioglossum sordidum in Christchurch Botanic Gardens. New Zealand J. Ecol. 42(1), 40–47. https://doi.org/10.20417/nzjecol.42.1Vanormelingen, P., Remer, M., & D’Haeseleer, J. (2021) Wilde bijen en bebouwing: meer verliezers dan winnaars? Themanummer bijen in de stad en dorp, Hymenovaria, maart 2021.Rader, R. et al. Alternative pollinator taxa are equally efficient but not as effective as the honey-bee in a mass flowering crop. J. Appl. Ecol. 46(5), 1080–1087. https://doi.org/10.1111/j.1365-2664.2009.01700.x (2009).Article 

    Google Scholar 
    Garantonakis, N. et al. Comparing the pollination services of honey bees and wild bees in a watermelon field. Sci. Hortic. 204, 138–144. https://doi.org/10.1016/j.scienta.2016.04.006 (2016).Article 

    Google Scholar 
    Foldesi, R., Howlett, B. G., Grass, I. & Batary, P. Larger pollinators deposit more pollen on stigmas across multiple plant species – A meta-analysis. J. Appl. Ecol. 58(4), 699–707. https://doi.org/10.1111/1365-2664.13798 (2021).Article 

    Google Scholar 
    Howlett, et al. (2011). Can insect body pollen counts be used to estimate pollen deposition on pak choi stigmas? New Zealand Plant Protection 64, 25–31. https://doi.org/10.30843/nzpp.2011.64.5951Nelson, W., Barry Donovan, L. E. & Howlett, B. Lasioglossum bees – the forgotten pollinators. J. Apic. Res. https://doi.org/10.1080/00218839.2022.2028966 (2022).Article 

    Google Scholar 
    Passaseo, A., Pétremand, G., Rochefort, S. & Castella, E. Pollinators emerging from extensive green roofs: Wild bees (Hymenoptera: Antophila) and hoverflies (Diptera: Syrphidae) in Geneva (Switzerland). Urban Ecosyst. 23, 1079–1086. https://doi.org/10.1007/s11252-020-00973-9 (2020).Article 

    Google Scholar 
    Odanaka, K. A. & Rehan, S. M. Impact indicators: Effects of land use management on functional trait and phylogenetic diversity of wild bees. Agric. Ecosyst. Environ. 286, 106663 (2019).Article 

    Google Scholar 
    Wilson, C. J. & Jamieson, M. A. The effects of urbanisation on bee communities depends on floral resource availability and bee functional traits. PLoS ONE 14(12), e0225852. https://doi.org/10.1371/journal.pone.0225852 (2019).Article 
    CAS 

    Google Scholar 
    Osborne, J. L. et al. Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J. Appl. Ecol. 45, 784–792. https://doi.org/10.1111/j.1365-2664.2007.01359.x (2007).Article 

    Google Scholar 
    Glaum, P., Simao, M. C., Vaidya, C., Fitch, G. & Lulinao, B. Big city Bombus: Using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development. R Soc Open Sci. 4, 170156. https://doi.org/10.1098/rsos.170156 (2017) (PMID: 28573023).Article 
    ADS 

    Google Scholar 
    Rasmont, P. et al. Climatic risk and distribution atlas of European bumblebees. Biorisk 10, 1–246 (2015).Article 

    Google Scholar 
    Roger, N. et al. Impact of pollen resources drift on common bumblebees in NW Europe. Glob. Change Biol. 23, 68–76 (2017).Article 
    ADS 

    Google Scholar 
    Frankie, G. W. et al. Ecological patterns of bees and their host ornamental flowers in two northern California cities. J. Kansas Entomol. Soc. 78, 227–246 (2005).Article 

    Google Scholar 
    Lerman, S. B. & Milam, J. Bee fauna and floral abundance within lawn-dominated suburban yards in Springfield, MA. Ann. Entomol. Soc. Am. 109, 713–723 (2016).Article 
    CAS 

    Google Scholar 
    Braaker, S., Obrist, M. K., Ghazoul, J. & Moretti, M. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs. J. Anim. Ecol. 86, 521–531. https://doi.org/10.1111/1365-2656.12648 (2017).Article 

    Google Scholar 
    Passaseo, A., Rochefort, S., Pétremand, G., & Castella, E. (2021) Pollinators on green roofs: Diversity and trait analysis of wild bees (Hymenoptera: Anthophila) and Hoverflies (Diptera: Syrphidae) in an urban area (Geneva, Switzerland). Cities and the Environment (CATE) https://doi.org/10.15365/cate.2021.140201Hennig, E. & Ghazoul, J. Pollinating animals in the urban environment. Urban Ecosyst. 15, 149–166. https://doi.org/10.1007/s11252-011-0202-7 (2012).Article 

    Google Scholar 
    Mecke R. (1996) Die fauna begrünter dächer: Ökologische untersuchung verschiedener dachflächer im Hamburger stadtgebiet. University of Hamburg, Diploma dissertation.Bevk, D. The diversity of pollinators on green roofs. Acta Entomol. Slovenica 29(1), 5–14 (2021).
    Google Scholar 
    Speight, M.C.D. (2011) Species accounts of European Syrphidae (Diptera), Glasgow 2011. Syrph the Net, the database of European Syrphidae, vol. 65, 285 pp., Syrph the Net publications, Dublin.Wotton, K. R. et al. Mass seasonal migrations of hoverflies provide extensive pollination and crop protection services. Curr. Biol. 29, 2167–2173 (2019).Article 
    CAS 

    Google Scholar 
    Boyer, K. J., Fragoso, F. P., Mabin, M. E. D. & Brunet, J. Netting and pan traps fail to identify the pollinator guild of an agricultural crop. Nat. Res. Sci. Rep. 10, 13819. https://doi.org/10.1038/s41598-020-70518-9 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    A comparative analysis of urban forests for storm-water management

    Rahman, M. A. et al. Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban For. Urban Green. 38, 22–32. https://doi.org/10.1016/j.ufug.2018.11.002 (2019).Article 

    Google Scholar 
    Zölch, T., Henze, L., Keilholz, P. & Pauleit, S. Regulating urban surface runoff through nature-based solutions – An assessment at the micro-scale. Environ. Res. 157, 135–144. https://doi.org/10.1016/j.envres.2017.05.023 (2017).Article 
    CAS 

    Google Scholar 
    Barron, O. V., Barr, A. D. & Donn, M. J. Effect of urbanisation on the water balance of a catchment with shallow groundwater. J. Hydrol. 485, 162–176. https://doi.org/10.1016/j.jhydrol.2012.04.027 (2013).Article 
    ADS 

    Google Scholar 
    Rosenzweig, B. R. et al. The value of urban flood modeling. Earth’s Future 9, e2020EF001739. https://doi.org/10.1029/2020EF001739 (2021).Article 
    ADS 

    Google Scholar 
    Pauleit, S., Fryd, O., Backhaus, A. & Jensen, M. B. In Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 1–29 (Springer, 2020).
    Google Scholar 
    Rahman, M. A. et al. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 (2020).Article 

    Google Scholar 
    Ziter, C. D., Pedersen, E. J., Kucharik, C. J. & Turner, M. G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 116, 7575–7580. https://doi.org/10.1073/pnas.1817561116 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Waldrop, M. M. News feature: The quest for the sustainable city. Proc. Natl. Acad. Sci. 116, 17134–17138. https://doi.org/10.1073/pnas.1912802116 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Cleugh, H. A., Bui, E., Simon, D., Xu, J. & Mitchell, V. G. The Impact of Suburban Design on Water Use and Microclimate (2005).Chan, F. K. S. et al. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 76, 772–778. https://doi.org/10.1016/j.landusepol.2018.03.005 (2018).Article 

    Google Scholar 
    Morgan, R. P. C. Soil Erosion and Conservation (Wiley, 2005).
    Google Scholar 
    Xu, C. et al. Surface runoff in urban areas: The role of residential cover and urban growth form. J. Clean. Prod. 262, 121421. https://doi.org/10.1016/j.jclepro.2020.121421 (2020).Article 

    Google Scholar 
    Ostoić, S. K. & van den Bosch, C. C. K. Exploring global scientific discourses on urban forestry. Urban For. Urban Green. 14, 129–138. https://doi.org/10.1016/j.ufug.2015.01.001 (2015).Article 

    Google Scholar 
    Rahman, M. A. et al. Tree cooling effects and human thermal comfort under contrasting species and sites. Agric. For. Meteorol. 287, 107947. https://doi.org/10.1016/j.agrformet.2020.107947 (2020).Article 
    ADS 

    Google Scholar 
    Rötzer, T., Rahman, M. A., Moser-Reischl, A., Pauleit, S. & Pretzsch, H. Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Sci. Total Environ. 676, 651–664. https://doi.org/10.1016/j.scitotenv.2019.04.235 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Grote, R. et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550. https://doi.org/10.1002/fee.1426 (2016).Article 

    Google Scholar 
    Pace, R. et al. A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. Int. J. Biometeorol. 65, 277–289. https://doi.org/10.1007/s00484-020-02030-8 (2021).Article 
    ADS 

    Google Scholar 
    Kuehler, E., Hathaway, J. & Tirpak, A. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology https://doi.org/10.1002/eco.1813 (2017).Article 

    Google Scholar 
    Rahman, M. A., Moser, A., Gold, A., Rötzer, T. & Pauleit, S. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci. Total Environ. 633, 100–111. https://doi.org/10.1016/j.scitotenv.2018.03.168 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Rahman, M. A., Smith, J. G., Stringer, P. & Ennos, A. R. Effect of rooting conditions on the growth and cooling ability of Pyrus calleryana. Urban For. Urban Green. 10, 185–192. https://doi.org/10.1016/j.ufug.2011.05.003 (2011).Article 

    Google Scholar 
    Schellekens, J., Scatena, F. N., Bruijnzeel, L. A. & Wickel, A. J. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico. J. Hydrol. 225, 168–184. https://doi.org/10.1016/S0022-1694(99)00157-2 (1999).Article 
    ADS 

    Google Scholar 
    Guevara-Escobar, A., González-Sosa, E., Véliz-Chávez, C., Ventura-Ramos, E. & Ramos-Salinas, M. Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area. J. Hydrol. 333, 532–541. https://doi.org/10.1016/j.jhydrol.2006.09.017 (2007).Article 
    ADS 

    Google Scholar 
    Xiao, Q. F. & McPherson, E. G. Surface water storage capacity of twenty tree species in Davis, California. J. Environ. Qual. 45, 188–198. https://doi.org/10.2134/jeq2015.02.0092 (2016).Article 
    CAS 

    Google Scholar 
    Xiao, Q. F., McPherson, E. G., Ustin, S. L. & Grismer, M. E. A new approach to modeling tree rainfall interception. J. Geophys. Res. Atmos. 105, 29173–29188. https://doi.org/10.1029/2000jd900343 (2000).Article 
    ADS 

    Google Scholar 
    Carlyle-Moses, D. E. & Gash, J. H. C. In Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions (eds Levia, D. F. et al.) 407–423 (Springer, 2011).Chapter 

    Google Scholar 
    Hirano, T. et al. The difference in the short-term runoff characteristic between the coniferous catchment and the deciduous catchment: The effects of storm size on storm generation processes of small forested catchment. J. Jpn. Soc. Hydrol. Water Resour. 22, 24–39. https://doi.org/10.3178/jjshwr.22.24 (2009).Article 

    Google Scholar 
    Chandler, K. R. & Chappell, N. A. Influence of individual oak (Quercus robur) trees on saturated hydraulic conductivity. For. Ecol. Manage. 256, 1222–1229. https://doi.org/10.1016/j.foreco.2008.06.033 (2008).Article 

    Google Scholar 
    Stewart, I. D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 31, 200–217. https://doi.org/10.1002/joc.2141 (2011).Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214. https://doi.org/10.1038/sdata.2018.214 (2018).Article 

    Google Scholar 
    Moreno-de las Heras, M., Nicolau, J. M., Merino-Martín, L. & Wilcox, B. P. Plot-scale effects on runoff and erosion along a slope degradation gradient. Water Resour. Res. 46, W04503. https://doi.org/10.1029/2009WR007875 (2010).Article 
    ADS 

    Google Scholar 
    Wu, L., Peng, M., Qiao, S. & Ma, X.-Y. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil. Environ. Sci. Pollut. Res. 25, 3480–3487. https://doi.org/10.1007/s11356-017-0713-8 (2018).Article 

    Google Scholar 
    Rutter, A. J., Kershaw, K. A., Robins, P. C. & Morton, A. J. A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol. 9, 367–384. https://doi.org/10.1016/0002-1571(71)90034-3 (1971).Article 

    Google Scholar 
    Gash, J. H. C. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 105, 43–55. https://doi.org/10.1002/qj.49710544304 (1979).Article 
    ADS 

    Google Scholar 
    Véliz-Chávez, C., Mastachi-Loza, C. A., Gonzalez-Sosa, E., Becerril-Pia, R. & Ramos-Salinas, N. M. Canopy storage implications on interception loss modeling. Am. J. Plant Sci. 05, 3032–3048. https://doi.org/10.4236/ajps.2014.520320 (2014).Article 

    Google Scholar 
    Fan, J., Oestergaard, K. T., Guyot, A. & Lockington, D. A. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia. J. Hydrol. 515, 156–165. https://doi.org/10.1016/j.jhydrol.2014.04.066 (2014).Article 
    ADS 

    Google Scholar 
    Ghimire, C. P., Bruijnzeel, L. A., Lubczynski, M. W. & Bonell, M. Rainfall interception by natural and planted forests in the Middle Mountains of Central Nepal. J. Hydrol. 475, 270–280. https://doi.org/10.1016/j.jhydrol.2012.09.051 (2012).Article 
    ADS 

    Google Scholar 
    Pereira, F. L. et al. Modelling interception loss from evergreen oak Mediterranean savannas: Application of a tree-based modelling approach. Agric. For. Meteorol. 149, 680–688. https://doi.org/10.1016/j.agrformet.2008.10.014 (2009).Article 
    ADS 

    Google Scholar 
    Pypker, T. G., Bond, B. J., Link, T. E., Marks, D. & Unsworth, M. H. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agric. For. Meteorol. 130, 113–129. https://doi.org/10.1016/j.agrformet.2005.03.003 (2005).Article 
    ADS 

    Google Scholar 
    Ringgaard, R., Herbst, M. & Friborg, T. Partitioning forest evapotranspiration: Interception evaporation and the impact of canopy structure, local and regional advection. J. Hydrol. 517, 677–690. https://doi.org/10.1016/j.jhydrol.2014.06.007 (2014).Article 
    ADS 

    Google Scholar 
    Price, A. G. & Carlyle-Moses, D. E. Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada. Agric. For. Meteorol. 119, 69–85. https://doi.org/10.1016/S0168-1923(03)00117-5 (2003).Article 
    ADS 

    Google Scholar 
    Fathizadeh, O., Hosseini, S. M., Zimmermann, A., Keim, R. F. & Darvishi Boloorani, A. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci. Total Environ. 601–602, 1824–1837. https://doi.org/10.1016/j.scitotenv.2017.05.233 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Livesley, S. J., Baudinette, B. & Glover, D. Rainfall interception and stem flow by eucalypt street trees—the impacts of canopy density and bark type. Urban For. Urban Green. 13, 192–197. https://doi.org/10.1016/j.ufug.2013.09.001 (2014).Article 

    Google Scholar 
    Xiao, Q. & McPherson, E. G. Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst. 6, 291–302. https://doi.org/10.1023/B:UECO.0000004828.05143.67 (2002).Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer (4.4), 2020).Team, R. C. (R Foundation for Statistical Computing, 2020).García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. PNAS 115, 8400–8405. https://doi.org/10.1073/pnas.1800425115 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. PNAS 117, 1573–1579. https://doi.org/10.1073/pnas.1910023117 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    El Kateb, H., Zhang, H., Zhang, P. & Mosandl, R. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. CATENA 105, 1–10. https://doi.org/10.1016/j.catena.2012.12.012 (2013).Article 

    Google Scholar 
    Oliveira, P. T. S. et al. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrol. Earth Syst. Sci. 19, 2899–2910. https://doi.org/10.5194/hess-19-2899-2015 (2014).Article 
    ADS 

    Google Scholar 
    Hümann, M. et al. Identification of runoff processes – The impact of different forest types and soil properties on runoff formation and floods. J. Hydrol. 409, 637–649. https://doi.org/10.1016/j.jhydrol.2011.08.067 (2011).Article 
    ADS 

    Google Scholar 
    Sun, D. et al. Soil erosion and water retention varies with plantation type and age. For. Ecol. Manage. 422, 1–10. https://doi.org/10.1016/j.foreco.2018.03.048 (2018).Article 

    Google Scholar 
    Jost, G., Schume, H., Hager, H., Markart, G. & Kohl, B. A hillslope scale comparison of tree species influence on soil moisture dynamics and runoff processes during intense rainfall. J. Hydrol. 420–421, 112–124. https://doi.org/10.1016/j.jhydrol.2011.11.057 (2012).Article 

    Google Scholar 
    Sadeghi, S. M. M., Attarod, P., Van Stan, J. T. & Pypker, T. G. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran. Sci. Total Environ. 568, 845–855. https://doi.org/10.1016/j.scitotenv.2016.06.048 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Pretzsch, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. https://doi.org/10.1038/s41598-017-14831-w (2017).Article 

    Google Scholar 
    Rahman, M. A., Moser, A., Rötzer, T. & Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 232, 443–456. https://doi.org/10.1016/j.agrformet.2016.10.006 (2017).Article 
    ADS 

    Google Scholar 
    Nytch, C. J., Meléndez-Ackerman, E. J., Pérez, M. E. & Ortiz-Zayas, J. R. Rainfall interception by six urban trees in San Juan, Puerto Rico. Urban Ecosyst. 22, 103–115. https://doi.org/10.1007/s11252-018-0768-4 (2018).Article 

    Google Scholar 
    Rahman, M. A. et al. Comparative analysis of shade and underlying surfaces on cooling effect. Urban For. Urban Green. 63, 127223. https://doi.org/10.1016/j.ufug.2021.127223 (2021).Article 

    Google Scholar 
    Chen, L., Zhang, Z. & Ewers, B. E. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. PLoS One https://doi.org/10.1371/journal.pone.0047882 (2012).Article 

    Google Scholar 
    Moser-Reischl, A., Rahman, M. A., Pauleit, S., Pretzsch, H. & Rötzer, T. Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landsc. Urban Plan. 183, 88–99. https://doi.org/10.1016/j.landurbplan.2018.11.004 (2019).Article 

    Google Scholar 
    Hao, M. et al. Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests. Sci. Rep. 9, 8372. https://doi.org/10.1038/s41598-019-44921-w (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Peters, E. B., McFadden, J. P. & Montgomery, R. A. Biological and environmental controls on tree transpiration in a suburban landscape. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009jg001266 (2010).Article 

    Google Scholar 
    Komatsu, H., Kume, T. & Otsuki, K. Increasing annual runoff—broadleaf or coniferous forests?. Hydrol. Process. 25, 302–318. https://doi.org/10.1002/hyp.7898 (2011).Article 
    ADS 

    Google Scholar 
    Li, X. et al. Process-based rainfall interception by small trees in Northern China: The effect of rainfall traits and crown structure characteristics. Agric. For. Meteorol. 218–219, 65–73. https://doi.org/10.1016/j.agrformet.2015.11.017 (2016).Article 
    ADS 

    Google Scholar 
    Lukaszkiewicz, J. & Kosmala, M. Determining the age of streetside trees with diameter at breast height-based multifactorial model. Arboricult. Urban For. 34, 137–143. https://doi.org/10.48044/jauf.2008.018 (2008).Article 

    Google Scholar 
    Buttle, J. M. & Farnsworth, A. G. Measurement and modeling of canopy water partitioning in a reforested landscape: The Ganaraska Forest, southern Ontario, Canada. J. Hydrol. 466–467, 103–114. https://doi.org/10.1016/j.jhydrol.2012.08.021 (2012).Article 

    Google Scholar 
    Yang, B., Lee, D. K., Heo, H. K. & Biging, G. The effects of tree characteristics on rainfall interception in urban areas. Landsc. Ecol. Eng. 15, 289–296. https://doi.org/10.1007/s11355-019-00383-w (2019).Article 
    CAS 

    Google Scholar 
    Klamerus-Iwan, A. & Witek, W. Variability in the Wettability and Water Storage Capacity of Common Oak Leaves (Quercus robur L). Water 10, 695. https://doi.org/10.3390/w10060695 (2018).Article 
    CAS 

    Google Scholar 
    Van Stan, J. T., Siegert, C. M., Levia, D. F. & Scheick, C. E. Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics. Agric. For. Meteorol. 151, 1277–1286. https://doi.org/10.1016/j.agrformet.2011.05.008 (2011).Article 
    ADS 

    Google Scholar 
    Selbig, W. R. et al. Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy. Sci. Total Environ. 806, 151296. https://doi.org/10.1016/j.scitotenv.2021.151296 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Centre for Watershed Protection. Review of the Available Literature and Data on the Runoff and Pollutant Removal Capabilities of Urban Trees (Center for Watershed Protection, 2017).
    Google Scholar 
    Berland, A. et al. The role of trees in urban stormwater management. Landsc. Urban Plan. 162, 167–177. https://doi.org/10.1016/j.landurbplan.2017.02.017 (2017).Article 

    Google Scholar 
    Pauleit, S. Urban street tree plantings: Indentifying the key requirements. Proc. Inst. Civ. Eng. Municipal Eng. 156, 43–50. https://doi.org/10.1680/muen.2003.156.1.43 (2003).Article 

    Google Scholar 
    Weller, M. Tree Inventory Data of Central European Cities—Studies on the Composition and Structure of Urban Tree Populations and Derivation of Ecosystem Services. MSC thesis, Technical University of Munich, Germany (2021). More

  • in

    Household energy-saving behavior, its consumption, and life satisfaction in 37 countries

    Figure 1 presents the average monthly energy expenditure at the household level based on USD across the 37 surveyed nations. The households in Singapore expend the most amount of energy, that is, 748 USD each month on average. The energy consumption appears positively associated with the economic development level; for example, households from high-income countries, including France, Italy, Japan and the US, tend to consume more energy than those from low-income countries (e.g., Kazakhstan, Myanmar, and Mongolia). In India, Indonesia, and Vietnam, households with higher income expend more on energy than rural/slum households. For the energy expenditure to household income ratio, strong trends were not found between developing and developed countries. Notably, middle-income countries (e.g., Greece, Chile, Brazil, Egypt) spend a relatively higher share of total income on energy.Figure 1Average monthly energy expenditure at the household level across the 37 surveyed nations. Data source: Original survey.Full size imageThe relationship between subjective well-being and energy consumption expenditure based on the ordered logit, ordered probit, and OLS models is shown in Table 2, panel A. The LR Chi-Square test and Pseudo R-squared for the ordered logistic regression model and the ordered probit model were applied to measure the goodness of the fit, whereas F-statistics and adjusted R-squared were used for the OLS model. For the validation of the measurement of subjective well-being, life satisfaction and happiness measures were used. Importantly, the results from variated regression models are consistent, indicating a positive relationship between household energy consumption expenditure and the improvement of individuals’ subjective well-being. Regarding the model’s goodness of fit, the LR Chi-Square test with ordered logit and probit models, and the F-statistic in the OLS model are all statistically significant at 0.1%, which validates the regression model. As the consistency of the robustness results is derived from different models, the ordered logit model is applied in Table 2 (Panel B).Table 2 Association between energy consumption expenditure and subjective well-being in high- and non-high-income countries.Full size tableWith the control variables being constant, energy consumption expenditure improves subjective well-being, including life satisfaction and happiness. The coefficients for the relationship of energy consumption with life satisfaction and with happiness are 0.018 and 0.008, respectively, and they are statistically significant at the 1% level; in other words, there is increased energy consumption for people who are satisfied with their lives and are happier. This is because electricity, water, gas, or gasoline are indispensable consumption goods in daily life. The results suggest that when policies lead to a reduction in the consumption of these goods at the household level, the life satisfaction of citizens is likely to decrease. When reducing energy consumption at the household level to reduce the emission of greenhouse gases, the conflicts of interest of individuals in these households (given that they derive life satisfaction from energy consumption) pose a challenge to policymakers; therefore, policymakers should devise strategies to improve both citizens’ living standards and environmental preservation.Referring to the criteria developed by the World Bank, the standard classification of high-income nations and non-high-income nations is as follows. Based on the 2017 gross national income (GNI) per capita, the World Bank List of Economies (June 2018) presented the following criteria for nations to be classified as high-income and non-high-income nations, respectively: a GNI per capita of $12,056 or higher, and less than $12,056. According to this standard of classification, in this study, high-income nations comprise Japan, Singapore, Chile, Australia, the United States, Germany, the United Kingdom, France, Spain, Italy, Sweden, Canada, Netherlands, Greece, Hungary, Poland, and the Czech Republic, whereas non-high-income nations comprise Thailand, Malaysia, Indonesia, Vietnam, Philippines, Mexico, Venezuela, Brazil, Colombia, South Africa, India, Myanmar, Kazakhstan, Mongolia, Egypt, Russia, China, Turkey, Romania, and Sri Lanka.Regarding the comparison of high- and non-high-income countries, energy consumption at the household level is more likely to lead to life satisfaction in non-high-income than in high-income countries. In high-income countries, the coefficients for the relationship of energy consumption with life satisfaction and with happiness are 0.010 and 0.003, respectively; these coefficients are 0.035 and 0.015, respectively, among non-high-income countries. Hence, in both high-income and non-high-income countries, an increase in energy consumption leads to an increase in life satisfaction; nonetheless, energy consumption is more crucial for households in non-high-income countries. Compared to the effect of energy consumption on satisfaction in high-income countries and non-high-income countries, individuals living in less urbanized countries appear more satisfied with energy consumption.Table 3 presents the association between life satisfaction and energy consumption expenditure at the household level in each country by estimating Eq. (2) based on the ordered logit model for each country. There is a positive relationship between energy consumption expenditure and life satisfaction in 27 out of the 37 nations. For example, the coefficient of this relationship is 0.062 in Brazil, and is statistically significant at the 1% level. An increase in energy consumption expenditure positively impacts the life satisfaction of households in Brazil, meaning that individuals with greater energy expenditure tend to be satisfied with their lives. Similar results are found in other countries: Canada, Chile, China, Egypt, France, Germany, Greece, India, Indonesia, Italy, and Japan. As life satisfaction is a proxy of well-being, energy consumption is expected to increase when households can afford more energy to obtain higher life satisfaction. These results indicate that most of the developed and developing countries analyzed face a conflict of interest in addressing individuals’ life satisfaction and environment conservation goals; these countries include China and India that are home to large populations that have a positive desire for energy consumption.Table 3 Relationship between energy expenditure and life satisfaction for each country.Full size tableHowever, the association between life satisfaction and energy consumption expenditure at the household level was non-significant across some countries. In Australia, the coefficient of this association is positive but not statistically significant; hence, an increase in energy expenditure is not completely associated with life satisfaction at the household level here. Similar results are found in the Netherlands, Hungary, Sweden, Singapore, Poland, the Czech Republic, and Colombia. In these countries, energy consumption is at an adequate level, and additional energy consumption does not lead to higher life satisfaction. It may be that households consume an adequate amount of energy with their income and energy price.Tables 4, 5, 6, and 7 display the determinant factors of household energy consumption in 37 nations by estimating the energy demand equation for each country using Eq. (3). The key energy consumption metric is the quantity of energy consumed (e.g., kWh) across the targeted households. Since price information is limited, transforming consumption expenditure into a quantity (e.g., kWh) is problematic. As explained earlier, this study adopted the energy demand equation.Table 4 Household socioeconomic and demographic determinants of household energy consumption expenditure I.Full size tableTable 5 Household socioeconomic and demographic determinants of household energy consumption expenditure II.Full size tableTable 6 Household socioeconomic and demographic determinants of household energy consumption expenditure III.Full size tableTable 7 Household socioeconomic and demographic determinants of household energy consumption expenditure IV.Full size tableThere are positive relationships between energy consumption expenditure at the household level and household income across countries. If the coefficients for household income are positive and statistically significant, this means that energy consumption expenditure at the household level would increase with an increase in household income ensuing from economic development in the country, ceteris paribus. The positive coefficients for the association between energy consumption expenditure and household income range from 0.756 (Japan) to 3.613 (the Philippines) in our sample, indicating that an additional 10,000 USD would lead to an additional energy consumption expenditure at the household level of approximately 17.3% (Japan) – 445% (Mongolia). The number is calculated using the magnitude of the coefficient/energy consumption expenditure. The results also show that homeowners tend to consume more energy than renters in Australia, Brazil, Canada, Chile, China, Colombia, Germany, India, Italy, Japan, Malaysia, Mexico, Russia, the United States, and Vietnam. This indicates that if individuals live in their own houses, the household energy consumption expenditure tends to be higher owing to the wealth effect, as energy is a normal consumption good. Overall, the wealth effect on energy consumption expenditure at the household level is increasing in our sample, and with economic development, energy consumption may increase.The following factors are confirmed to reduce energy consumption at the household level: (1) energy-curtailment behavior regarding electricity, (2) higher education, and (3) age. The energy-saving effect is confirmed in households. In Canada, the coefficient of energy-saving behaviors is -0.642, indicating that households consume 12.5% less energy when they adopt both energy curtailment behavior and non-saving groups (64.2/513). The Canadian household average energy consumption is 513 USD. Similar results are seen in Colombia, Germany, India, Indonesia, Italy, Japan, the Netherlands, Poland, Russia, Turkey, the United Kingdom, and the United States. The magnitude of the effect of energy curtailment behavior ranged from 6.4% (Russia) to 32% (India) less energy consumption expenditure. Hence, energy-saving behaviors have a favorable effect on environmentally preferable outcomes. By contrast, households in Indonesia save electricity as they tend to spend more on purchasing energy.Individuals with higher education tend to save energy in 23 out of the 37 nations. For instance, the coefficient for individuals with university-level education is -2.292 and statistically significant at the 1% level. This suggests that households with individuals who have university-level education have less energy consumption expenditure than households with individuals with junior high school or lower levels of education. Similar results are seen in Brazil, Canada, Chile, Colombia, the Czech Republic, France, Germany, Hungary, India, Indonesia, Japan, Malaysia, the Netherlands, the Philippines, Poland, Russia, Singapore, South Africa, Spain, Sweden, Turkey, the United Kingdom, and the United States. Encouraging households to engage in energy curtailment behaviors and higher educational attainment may lead to environment-friendly outcomes.Surprisingly, purchasing energy-saving household products has a limited effect on reducing energy consumption expenditure at the household level. The coefficients for purchasing energy-saving household products are negative, ranging between -0.044 and -0.763, and are statistically significant in Australia, Canada, the Czech Republic, Italy, and Kazakhstan. Hence, the purchase of these products in these five countries decreases energy expenditure from 2.9% (China) to 14% (Australia). However, the relationship between energy consumption expenditure at the household level and purchasing energy-saving household products is non-significant in the other countries. Moreover, in Poland and Turkey, households that purchase these products consume more energy than those that do not. Therefore, purchasing energy-saving household products has a limited contribution to energy saving at the household level.The findings also show that older individuals tend to have lower energy consumption. The coefficients for the age variable are negative and statistically significant in 30 countries (out of 37). The effect of age on energy consumption expenditure ranges between -0.003 and -0.148, indicating that as the average age of individuals increases by one year, their monthly energy consumption expenditure reduces from 0.3–14.8 USD. This may be because older individuals are more likely to live frugally. More

  • in

    As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network “RootDetector”

    DatasetsImage acquisitionFor this study, we assembled three datasets: one for training of the RootDetector Convolutional Neural Network (Training-Set), one for a performance comparison between humans and RootDetector in segmenting roots in minirhizotron images (Comparison-Set), and one for the validation of the algorithm (Validation-Set). The Training-Set contained 129 images comprised of 17 randomly selected minirhizotron images sampled in a mesocosm experiment (see “Mesocosm sampling” Section), 47 randomly selected minirhizotron images sampled in a field study (see “Field sampling” Section) as well as the 65 minirhizotron images of soy roots published by Wang et al.15. The Comparison-Set contained 25 randomly selected minirhizotron images from the field-study which all were not part of the images included in the Training- and Validation-Sets. The Validation-Set contained 10 randomly selected minirhizotron images from the same field study, which had not been used in the Training-Set. All images were recorded with 2550 ✕ 2273 pixels at 300 dpi with a CI-600 In-Situ Root Imager (CID Bio-Science Inc., Camas, WA, USA) and stored as .tiff files to reduce compression loss. For all training and evaluation purposes we used raw, unprocessed output images from the CI-600.Mesocosm samplingThe mesocosm experiment was established in 2018 on the premises of the Institute for Botany and Landscape Ecology of the University of Greifswald (Fig. S1). It features 108 heavy duty plastic buckets of 100 l each, filled to two thirds of their height with moderately decomposed sedge fen peat. Each mesocosm contained one minirhizotron (inner diameter: 64 mm, outer diameter: 70 mm, length: 650 mm) installed at a 45°angle and capped in order to avoid penetration by light. The mesocosms were planted with varying compositions of plant species that typically occur in north-east German sedge fens (Carex rostrata, Carex acutiformis, Glyceria maxima, Equisetum fluviatile, Juncus inflexus, Mentha aquatica, Acorus calamus and Lycopus europaeus). The mesocosms were subjected to three different water table regimes: stable at soil surface level, stable at 20 cm below soil surface and fluctuating between the two levels every two weeks. The minirhizotrons were scanned weekly at two levels of soil depth (0–20 cm and 15–35 cm) between April 2019 and December 2021, resulting in roughly 9500 minirhizotron images of 216 × 196 mm. Manual quantification of root length would, based on own experience, take approximately three hours per image, resulting in approximately 28,500 h of manual processing for the complete dataset. Specimens planted were identified by author Dr. Blume-Werry, however no voucher specimen were deposited. All methods were carried out in accordance with relevant institutional, national, and international guidelines and legislation.Field samplingThe field study was established as part of the Wetscapes project in 201716. The study sites were located in Mecklenburg-Vorpommern, Germany, in three of the most common wetland types of the region: alder forest, percolation fen and coastal fen (Fig. S2). For each wetland type, a pair of drained versus rewetted study sites was established. A detailed description of the study sites and the experimental setup can be found in Jurasinski et al.16. At each site, 15 minirhizotrons (same diameter as above, length: 1500 mm) were installed at 45° angle along a central boardwalk. The minirhizotrons have been scanned biweekly since April 2018, then monthly since January 2019 at two to four levels of soil depth (0–20 cm, 20–40 cm, 40–60 cm and 60–80 cm), resulting in roughly 12,000 minirhizotron images of 216 × 196 cm, i.e. an estimated 36,000 h of manual processing for the complete dataset. Permission for the study was obtained from the all field owners. Figure 1Overview of the RootDetector system. The main component is a semantic segmentation network based on the U-Net architecture. The root length is estimated by skeletonizing the segmentation output and applying the formula introduced by Kimura et al.17. During training only, a weight map puts more emphasis on fine roots.Full size imageThe CNN RootDetectorImage annotationFor the generation of training data for the CNN, human analysts manually masked all root pixels in the 74 images of the Training-Set using GIMP 2.10.12. The resulting ground truth data are binary, black-and-white images in Portable Network Graphics (.png) format, where white pixels represent root structures and black pixels represent non-root objects and soil (Fig. 2b). All training data were checked and, if required, corrected by an expert (see “Selection of participants” for definition). The Validation-Set was created in the same way but exclusively by experts.Figure 2Example of segmentation and result of skeletonization. A 1000 by 1000 pixel input image (a), the manually annotated ground truth image (b), the RootDetector estimation image (c), the combined representation image (error map, d with green indicating true positives, red indicating false positive, blue indicating false negatives), the skeletonized RootDetector estimation image (e), and the skeletonized ground truth image (f).Full size imageArchitectureRootDetector’s core consists of a Deep Neural Network (DNN) based on the U-Net image segmentation architecture[27]nd is implemented in TensorFlow and Keras frameworks18. Although U-Net was originally developed for biomedical applications, it has since been successfully applied to other domains due to its generic design.RootDetector is built up of four down-sampling blocks, four up-sampling blocks and a final output block (Fig. 1). Every block contains two 3 × 3 convolutional layers, each followed by rectified linear units (ReLU). The last output layer instead utilizes Sigmoid activation. Starting from initial 64 feature channels, this number is doubled in every down-block and the resolution is halved via 2 × 2 max-pooling. Every up-block again doubles the resolution via bilinear interpolation and a 1 × 1 convolution which halves the number of channels. Importantly, after each up-sampling step, the feature map is concatenated with the corresponding feature map from the down-sampling path. This is crucial to preserve fine spatial details.Our modifications from the original architecture include BatchNormalization19 after each convolutional layer which significantly helps to speed up the training process and zero-padding instead of cropping as suggested by Ronneberger, Fischer, & Brox20 to preserve the original image size.In addition to the root segmentation network, we trained a second network to detect foreign objects, specifically the adhesive tape that is used as a light barrier on the aboveground part of the minirhizotrons. We used the same network architecture as above and trained in a supervised fashion with the binary cross-entropy loss. During inference, the result is thresholded (predefined threshold value: 0.5) and used without post-processing.TrainingWe pre-trained RootDetector on the COCO dataset21 to generate a starting point. Although the COCO dataset contains a wide variety of image types and classes not specifically related to minirhizotron images, Majurski et al.22 showed, that for small annotation counts, transfer-learning even from unrelated datasets may improve a CNNs performance by up to 20%. We fine-tuned for our dataset with the Adam optimizer23 for 15 epochs and trained on a total of 129 images from the Training-Set (17 mesocosm images, 47 field-experiment images, 65 soy root images). To enhance the dataset size and reduce over-fitting effects, we performed a series of augmentation operations as described by Shorten & Khoshgoftaar24. In many images, relatively coarse roots ( > 3 mm) occupied a major part of the positive (white) pixel space, which might have caused RootDetector to underestimate fine root details overall. Similarly, negative space (black pixels) between tightly packed, parallel roots was often very small and might have impacted the training process to a lesser extent when compared to large areas with few or no roots (Fig. 2). To mitigate both effects, we multiplied the result of the cross-entropy loss map with a weight map which emphasizes positive–negative transitions. This weight map is generated by applying the following formula to the annotated ground truth images:$$omega left( x right) = 1 – left( {tanh left( {2tilde{x} – 1} right)} right)^{2}$$
    (1)
    where ω(x) is the average pixel value of the annotated weight map in a 5 × 5 neighborhood around pixel x. Ronneberger, Fischer, & Brox20 implemented a similar weight map, however with stronger emphasis on space between objects. As this requires computation of distances between two comparatively large sets of points, we adapted and simplified their formula to be computable in a single 5 × 5 convolution.For the loss function we applied a combination of cross-entropy and Dice loss 25:$${mathcal{L}} = {mathcal{L}}_{CE} + lambda {mathcal{L}}_{Dice} = – frac{1}{N}sumnolimits_{i} {wleft( {x_{i} } right)y_{i} log left( {x_{i} } right) + lambda frac{{2sumnolimits_{i} {x_{i} y_{i} } }}{{sumnolimits_{i} {x_{i}^{2} sumnolimits_{i} {y_{i}^{2} } } }}}$$
    (2)

    where x are the predicted pixels, y the corresponding ground truth labels, N the number of pixels in an image and λ a balancing factor which we set to 0.01. This value was derived empirically. The Dice loss is applied per-image to counteract the usually high positive-to-negative pixel imbalance. Since this may produce overly confident outputs and restrict the application of weight maps, we used a relatively low value for λ.Output and post-processingRootDetector generates two types of output. The first type of output are greyscale .png files in which white pixels represent pixels associated with root structures and black pixels represent non-root structures and soil (Fig. 2c). The advantage of .png images is their lossless ad artifact-free compression at relatively small file sizes. RootDetector further skeletonizes the output images and reduces root-structures to single-pixel representations using the skeletonize function of scikit-image v. 0.17.1 (26; Fig. 2e,f). This helps to reduce the impact of large diameter roots or root-like structures such as rhizomes in subsequent analyses and is directly comparable to estimations of root length. The second type of output is a Comma-separated values (.csv) file, with numerical values indicating the number of identified root pixels, the number of root pixels after skeletonization, the number of orthogonal and diagonal connections between pixels after skeletonization and an estimation of the physical combined length of all roots for each processed image. The latter is a metric commonly used in root research as in many species, fine roots provide most vital functions such as nutrient and water transport3. Therefore, the combined length of all roots in a given space puts an emphasis on fine roots as they typically occupy a relatively smaller fraction of the area in a 2D image compared to often much thicker coarse roots. To derive physical length estimates from skeletonized images, RootDetector counts orthogonal- and diagonal connections between pixels of skeletonized images and employs the formula proposed by Kimura et al.17 (Eq. 3).$$L = left[ {N_{d}^{2} + left( {N_{d} + N_{o} /2} right)^{2} } right]^{{1/2}} + N_{o} /2$$
    (3)
    where Nd is the number of diagonally connected and No the number of orthogonally connected skeleton pixels. To compute Nd we convolve the skeletonized image with two 2 × 2 binary kernels, one for top-left-to-bottom-right connections and another for bottom-left-to-top-right connections and count the number of pixels with maximum response in the convolution result. Similarly, No is computed with a 1 × 2 and a 2 × 1 convolutional kernels.Performance comparisonSelection of participantsFor the performance comparison, we selected 10 human analysts and divided them into three groups of different expertise levels in plant physiology and with the usage of digital root measuring tools. The novice group consisted of 3 ecology students (2 bachelor’s, 1 master’s) who had taken or were taking courses in plant physiology but had no prior experience with minirhizotron images or digital root measuring tools. This group represents undergraduate students producing data for a Bachelor thesis or student assistants employed to process data. The advanced group consisted of 3 ecology students (1 bachelor’s, 2 master’s) who had already taken courses in plant physiology and had at least 100 h of experience with minirhizotron images and digital root measuring tools. The expert group consisted of 4 scientists (2 PhD, 2 PhD candidates) who had extensive experience in root science and at least 250 h of experience with digital root measuring tools. All methods were carried out in accordance with relevant institutional, national, and international guidelines and legislation and informed consent was obtained from all participants.Instruction and root tracingAll three groups were instructed by showing them a 60 min live demo of an expert tracing roots in minirhizotron images, during which commonly encountered challenges and pitfalls were thoroughly discussed. Additionally, all participants were provided with a previously generated, in-depth manual containing guidelines on the identification of root structures, the correct operation of the root tracing program and examples of often encountered challenges and suggested solutions. Before working on the Comparison-Set, all participants traced roots in one smaller-size sample image and received feedback from one expert.Image preparation and root tracingBecause the minirhizotron images acquired in the field covered a variety of different substrates, roots of different plant species, variance in image quality, and because tracing roots is very time consuming, we decided to maximize the number of images by tracing roots only in small sections, in order to cover the largest number of cases possible. To do this, we placed a box of 1000 × 1000 pixels (8.47 × 8.47 cm) at a random location in each of the images in the Comparison-Set and instructed participants to trace only roots within that box. Similarly, we provided RootDetector images where the parts of the image outside the rectangle were occluded. All groups used RootSnap! 1.3.2.25 (CID Bio-Science Inc., Camas, WA, USA;27), a vector based tool to manually trace roots in each of the 25 images in the comparison set. We decided on RootSnap! due to our previous good experience with the software and its’ relative ease of use. The combined length of all roots was then exported as a csv file for each person and image and compared to RootDetector’s output of the Kimura root length.ValidationWe tested the accuracy of RootDetector on a set of 10 image segments of 1000 by 1000 pixels cropped from random locations of the 10 images of the Validation-Set. These images were annotated by a human expert without knowledge of the estimations by the algorithm and were exempted from the training process. As commonly applied in binary classification, we use the F1 score as a metric to evaluate the performance RootDetector. F1 is calculated from precision (Eq. 4) and recall (Eq. 5) and represents their harmonic mean (Eq. 6). Ranging from 0 to 1, higher values indicate high classification (segmentation) performance. As one of the 10 image sections contained no roots and thus no F1 Score was calculable, it was excluded from the validation. We calculated the F1 score for each of the nine remaining image sections and averaged the values as a metric for overall segmentation performance.$$Precision;(P) = frac{{tp}}{{tp + fp}}$$
    (4)
    $$Recall;(R) = frac{{tp}}{{tp + fn}}$$
    (5)
    $$F1 = 2*frac{{P*R}}{{P + R}}$$
    (6)
    where P = precision, R = recall, tp = true positives; fp = false positives, fn = false negatives.Statistical analysisWe used R Version 4.1.2 (R Core Team, 2021) for all statistical analyses and R package ggplot2 Version 3.2.128 for visualizations. Pixel identification-performance comparisons were based on least-squares fit and the Pearson method. Root length estimation-performance comparisons between groups of human analysts (novice, advanced, expert) and RootDetector were based on the respective estimates of total root length plotted over the minirhizotron images in increasing order of total root length. Linear models were calculated using the lm function for each group of analysts. To determine significant differences between the groups and the algorithm, 95% CIs as well as 83% CIs were displayed and RootDetector root length outside the 95% CI were considered significantly different from the group estimate at α = 0.0529. The groups of human analysts were considered significantly different if their 83% CIs did not overlap, as the comparison of two 83% CIs approximates an alpha level of 5%30,31.This study is approved by Ethikkommission der Universitätsmedizin Greifswald, University of Greifswald, Germany. More

  • in

    Marine protected areas, marine heatwaves, and the resilience of nearshore fish communities

    Lauchlan, S. S. & Nagelkerken, I. Species range shifts along multistressor mosaics in estuarine environments under future climate. Fish Fish. 21, 32–46 (2020).Article 

    Google Scholar 
    Gao, G., Zhao, X., Jiang, M. & Gao, L. Impacts of marine heatwaves on algal structure and carbon sequestration in conjunction with ocean warming and acidification. Front. Mar. Sci. 8, 758651 (2021).Article 

    Google Scholar 
    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. 112, E4065–E4074 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).Article 

    Google Scholar 
    Morley, J. W. et al. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13, e0196127 (2018).Article 

    Google Scholar 
    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281, 20140846 (2014).Article 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. https://doi.org/10.1126/sciadv.abh0895 (2021).Article 

    Google Scholar 
    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Pessarrodona, A. et al. Tropicalization unlocks novel trophic pathways and enhances secondary productivity in temperate reefs. Funct. Ecol. 36, 659–673 (2022).Article 

    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).Article 
    ADS 

    Google Scholar 
    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).Article 
    ADS 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).Article 
    ADS 

    Google Scholar 
    Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Garrabou, J. et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Change Biol. 28, 5708–5725 (2022).Article 
    CAS 

    Google Scholar 
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).Article 
    ADS 

    Google Scholar 
    Cure, K. et al. Distributional responses to marine heat waves: insights from length frequencies across the geographic range of the endemic reef fish Choerodon rubescens. Mar. Biol. 165, 1 (2018).Article 

    Google Scholar 
    Jacox, M. G., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. A. Predicting the evolution of the 2014–2016 California current system marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00497 (2019).Article 

    Google Scholar 
    Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).Article 
    ADS 

    Google Scholar 
    Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N. & Beas-Luna, R. Spatial variability in the resistance and resilience of giant kelp in southern and baja California to a multiyear heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00413 (2019).Article 

    Google Scholar 
    Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography 29, 273–285 (2016).Article 

    Google Scholar 
    Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 10, 19359 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. 105, 1965–1970 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Thompson, A. R. et al. Putting the Pacific marine heatwave into perspective: The response of larval fish off southern California to unprecedented warming in 2014–2016 relative to the previous 65 years. Glob. Change Biol. 28, 1766–1785 (2022).Article 
    CAS 

    Google Scholar 
    Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, A. E. et al. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4, 62–67 (2014).Article 
    ADS 

    Google Scholar 
    Behrens, M. & Lafferty, K. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).Article 
    ADS 

    Google Scholar 
    Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 5, 371–392 (2013).Article 

    Google Scholar 
    Caselle, J. E., Davis, K. & Marks, L. M. Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecol. Lett. 21, 43–53 (2018).Article 

    Google Scholar 
    Micheli, F. et al. Evidence that marine reserves enhance resilience to climatic impacts. PLoS ONE 7, e40832 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Olds, A. D. et al. Marine reserves help coastal ecosystems cope with extreme weather. Glob. Change Biol. 20, 3050–3058 (2014).Article 
    ADS 

    Google Scholar 
    Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10, 21081 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Cons. 236, 305–314 (2019).Article 

    Google Scholar 
    Kirlin, J. et al. California’s Marine Life Protection Act Initiative: Supporting implementation of legislation establishing a statewide network of marine protected areas. Ocean Coast. Manag. 74, 3–13 (2013).Article 

    Google Scholar 
    Saarman, E. T. et al. An ecological framework for informing permitting decisions on scientific activities in protected areas. PLoS ONE 13, e0199126 (2018).Article 

    Google Scholar 
    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. PNAS 107, 18272–18277 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Wendt, D. E. & Starr, R. M. Collaborative research: An effective way to collect data for stock assessments and evaluate marine protected areas in California. Mar. Coast. Fish. 1, 315–324 (2009).Article 

    Google Scholar 
    Côté, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).Article 

    Google Scholar 
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    Li, L. et al. Subregional differences in groundfish distributional responses to anomalous ocean bottom temperatures in the northeast Pacific. Glob. Change Biol. 25, 2560–2575 (2019).Article 
    ADS 

    Google Scholar 
    Dawson, M. N. Phylogeography in coastal marine animals: A solution from California?. J. Biogeogr. 28, 723–736 (2001).Article 

    Google Scholar 
    Horn, M. H., Allen, L. G. & Lea, R. N. Biogeography. In The Ecology of Marine Fishes: California and Adjacent Waters (ed. Allen, L.) 3–25 (University of California Press, 2006). https://doi.org/10.1525/california/9780520246539.003.0001.Chapter 

    Google Scholar 
    Horn, M. H. & Allen, L. G. A distributional analysis of California coastal marine fishes. J. Biogeogr. 5, 23–42 (1978).Article 

    Google Scholar 
    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).Article 
    ADS 

    Google Scholar 
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B 280, 20122829 (2013).Article 

    Google Scholar 
    O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).Article 

    Google Scholar 
    California Department of Fish and Wildlife. California Sheephead, Bodianus (formerly Semicossyphus) pulcher, Enhanced Status Report. (2021).Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).Article 

    Google Scholar 
    Francour, P., Mangialajo, L. & Pastor, J. Mediterranean marine protected areas and non-indigenous fish spreading. In Fish Invasions of the Mediterranean Sea: Change and Renewal (eds Golani, D. & Appelbaum-Golani, B.) 127–144 (Pensoft Publisher, 2010).
    Google Scholar 
    Couce, E., Ridgwell, A. & Hendy, E. J. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob. Change Biol. 19, 3592–3606 (2013).Article 
    ADS 

    Google Scholar 
    Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).Article 

    Google Scholar 
    Trainer, V. L. et al. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae 91, 101591 (2020).Article 

    Google Scholar 
    Gliwicz, Z. M., Babkiewicz, E., Kumar, R., Kunjiappan, S. & Leniowski, K. Warming increases the number of apparent prey in reaction field volume of zooplanktivorous fish. Limnol. Oceanogr. 63, S30–S43 (2018).Article 
    ADS 

    Google Scholar 
    Nielsen, J. M. et al. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several Northeast Pacific marine ecosystems. Glob. Change Biol. 27, 506–520 (2021).Article 
    ADS 

    Google Scholar 
    du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).Article 
    ADS 

    Google Scholar 
    Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol. 27, 1859–1878 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Oken, K. L., Essington, T. E. & Fu, C. Variability and stability in predation landscapes: A cross-ecosystem comparison on the potential for predator control in temperate marine ecosystems. Fish Fish. 19, 489–501 (2018).Article 

    Google Scholar 
    Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).Article 

    Google Scholar 
    Jacox, M. G. et al. Impacts of the 2015–2016 El Niño on the California current system: Early assessment and comparison to past events. Geophys. Res. Lett. 43, 7072–7080 (2016).Article 
    ADS 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00212 (2019).Article 

    Google Scholar 
    Field, J. C. et al. Spatiotemporal patterns of variability in the abundance and distribution of winter-spawned pelagic juvenile rockfish in the California Current. PLoS ONE 16, e0251638 (2021).Article 
    CAS 

    Google Scholar 
    Schroeder, I. D. et al. Source water variability as a driver of rockfish recruitment in the California current ecosystem: Implications for climate change and fisheries management. Can. J. Fish. Aquat. Sci. 76, 950–960 (2019).Article 
    CAS 

    Google Scholar 
    Echeverria, T. W. Thirty-four species of California rockfishes: Maturity and seasonality of reproduction. Fish. Bull. 85, 229–250 (1987).
    Google Scholar 
    Miller, A. & Sydeman, W. Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Mar. Ecol. Prog. Ser. 281, 207–216 (2004).Article 
    ADS 

    Google Scholar 
    Johnson, K. F. et al. Status of lingcod (Ophiodon elongatus) along the southern U.S. west coast in 2021. 195 p. (2021).Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).Article 

    Google Scholar 
    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the great barrier reef following mass coral bleaching. Nature 560, 92–96 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Starr, R. M. et al. Variation in responses of fishes across multiple reserves within a network of marine protected areas in temperate waters. PLoS ONE 10, e0118502 (2015).Article 

    Google Scholar 
    Ziegler, S. L. et al. External fishing effort regulates positive effects of no-take marine protected areas. Biol. Cons. 269, 109546 (2022).Article 

    Google Scholar 
    Jarvis, E. T. & Lowe, C. G. The effects of barotrauma on the catch-and-release survival of southern California nearshore and shelf rockfish (Scorpaenidae, Sebastes spp.). Can. J. Fish. Aquat. Sci. 65, 1286–1296 (2008).Article 

    Google Scholar 
    Brooks, R. et al. Nearshore Fishes Abundance and Distribution Data, California Collaborative Fisheries Research Program (CCFRP). (2022).García-Reyes, M. & Sydeman, W. J. California multivariate ocean climate indicator (MOCI) and marine ecosystem dynamics. Ecol. Ind. 72, 521–529 (2017).Article 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021).Oksanen, J. et al. vegan: Community Ecology Package. (2020).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2021). More