Brown rats and house mice eavesdrop on each other’s volatile sex pheromone components
1.
Wyatt, T. D. Pheromones and Animal Behavior 104 (Cambridge University Press, Cambridge, 2013).
Google Scholar
2.
Hughes, N. K., Korpimäki, E. & Banks, P. B. The predation risks of interspecific eavesdropping: weasel-vole interactions. Oikos 119, 1210–1216 (2010).
Article Google Scholar
3.
Garvey, P. M. et al. Exploiting interspecific olfactory communication to monitor predators. Ecol. Appl. 27, 389–402 (2017).
PubMed Article Google Scholar
4.
Parsons, M. H. et al. Biologically meaningful scents: a framework for understanding predator–prey research across disciplines. Biol. Rev. 93, 98–114 (2018).
PubMed Article Google Scholar
5.
Varner, E., Gries, R., Takács, S., Fan, S. & Gries, G. Identification and field testing of volatile components in the sex attractant pheromone blend of female house mice. J. Chem. Ecol. 45, 18–27 (2019).
CAS PubMed Article Google Scholar
6.
Takács, S., Gries, R., Zhai, H. & Gries, G. The sex attractant pheromone of male brown rats: identification and field experiment. Angew. Chemie Int. Ed. 55, 6062–6066 (2016).
Article CAS Google Scholar
7.
Din, W. et al. Origin and radiation of the house mouse: clues from nuclear genes. J. Evol. Biol. 9, 519–539 (1996).
CAS Article Google Scholar
8.
Puckett, E. E. et al. Global population divergence and admixture of the brown rat (Rattus norvegicus). Proc. R. Soc. B Biol. Sci. 283, 20161762 (2016).
Article Google Scholar
9.
Karli, P. The Norway rat’s killing response to the white mouse: an experimental analysis. Source Behav. 102, 81–103 (1956).
Google Scholar
10.
Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692–703 (2010).
CAS PubMed PubMed Central Article Google Scholar
11.
Slotnick, B. Animal cognition and the rat olfactory system. Med. J. Aust. 5, 216–222 (2001).
CAS Google Scholar
12.
Hughes, N. K., Price, C. J. & Banks, P. B. Predators are attracted to the olfactory signals of prey. PLoS ONE 5, e13114 (2010).
ADS PubMed PubMed Central Article CAS Google Scholar
13.
Osada, K., Tashiro, T., Mori, K. & Izumi, H. The identification of attractive volatiles in aged male mouse urine. Chem. Senses 33, 815–823 (2008).
CAS PubMed Article Google Scholar
14.
Kavaliers, M., Choleris, E. & Pfaff, D. W. Recognition and avoidance of the odors of parasitized conspecifics and predators: differential genomic correlates. Neurosci. Biobehav. Rev. 29, 1347–1359 (2005).
PubMed Article Google Scholar
15.
Hurst, J. L. The complex network of olfactory communication in populations of wild house mice Mus domesticus Rutty: urine marking and investigation within family groups. Anim. Behav. 37, 705–725 (1989).
Article Google Scholar
16.
Mossman, C. A. & Drickamer, L. C. Odor preferences of female house mice (Mus domesticus) in seminatural enclosures. J. Comp. Psychol. 110, 131–138 (1996).
CAS PubMed Article Google Scholar
17.
Jones, R. B. & Nowell, N. W. Aversive and aggression-promoting properties of urine from dominant and subordinate male mice. Anim. Learn. Behav. 1, 207–210 (1973).
Article Google Scholar
18.
Barnard, C. J. & Fitzsimons, J. Kin recognition and mate choice in mice: the effects of kinship, familiarity and social interference on intersexual interaction. Anim. Behav. 36, 1078–1090 (1988).
Article Google Scholar
19.
He, J., Ma, L., Kim, S., Nakai, J. & Yu, C. R. R. Encoding gender and individual information in the mouse vomeronasal organ. Science 320, 535–538 (2008).
ADS CAS PubMed PubMed Central Article Google Scholar
20.
Yang, M. et al. The rat exposure test: a model of mouse defensive behaviors. Physiol. Behav. 81, 465–473 (2004).
CAS PubMed Article Google Scholar
21.
Amaral, V. C. S., Santos Gomes, K. & Nunes-de-Souza, R. L. Increased corticosterone levels in mice subjected to the rat exposure test. Horm. Behav. 57, 128–133 (2010).
CAS PubMed Article Google Scholar
22.
Takács, S., Gries, R. & Gries, G. Sex hormones function as sex attractant pheromones in house mice and brown rats. ChemBioChem 18, 1391–1395 (2017).
PubMed Article CAS Google Scholar
23.
Jemiolo, B., Alberts, J., Sochinski-Wiggins, S., Harvey, S. & Novotny, M. Behavioural and endocrine responses of female mice to synthetic analogues of volatile compounds in male urine. Anim. Behav. 33, 1114–1118 (1985).
Article Google Scholar
24.
Novotny, M. et al. Synthetic pheromones that promote inter-male aggression in mice. Proc. Natl. Acad. Sci. USA 82, 2059–2061 (1985).
ADS CAS PubMed Article Google Scholar
25
Banks, P. B., Daly, A. & Bytheway, J. P. Predator odours attract other predators, creating an olfactory web of information. Biol. Lett. 12, 20151053 (2016).
PubMed PubMed Central Article Google Scholar
26.
Roitberg, B. D. Chemical communication. In Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds Córdoba-Aguilar, A. et al.) 557–575 (Oxford University Press, Oxford, 2018).
Google Scholar
27
Vasudevan, A. & Vyas, A. Kairomonal communication in mice is concentration-dependent with a proportional discrimination threshold. F1000Research 2, 195 (2013).
PubMed PubMed Central Article Google Scholar
28.
Danci, A., Schaefer, P. W., Schopf, A. & Gries, G. Species-specific close-range sexual communication systems prevent cross-attraction in three species of Glyptapanteles parasitic wasps (Hymenoptera: Braconidae). Biol. Control 39, 225–231 (2006).
Article Google Scholar
29
Wen, X.-L.L., Wen, P., Dahlsjö, C., Sillam-Dussès, D. & Šobotník, J. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey. Proc. R. Soc. B Biol. Sci. 284, 20170121 (2017).
Article CAS Google Scholar
30.
Haynes, K. F. & Yeargan, K. V. Exploitation of intraspecific communication systems: illicit signalers and receivers. Ann. Entomol. Soc. Am 92, 960–970 (1999).
Article Google Scholar
31.
Dong, S. et al. Olfactory eavesdropping of predator alarm pheromone by sympatric but not allopatric prey. Anim. Behav. 141, 115–125 (2018).
Article Google Scholar
32.
Sbarbati, A. & Osculati, F. Allelochemical communication in vertebrates: kairomones, allomones and synomones. Cells Tissues Organs 183, 206–219 (2006).
CAS PubMed Article PubMed Central Google Scholar
33.
Apps, P., Rafiq, K. & McNutt, J. W. Do carnivores have a world wide web of interspecific scent signals? in Chemical Signals in Vertebrates (ed. Buesching, C. D.) 182–202 (2019).
34.
Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & Mcgregor, I. S. The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci. Biobehav. Rev. 29, 1123–1144 (2005).
PubMed Article Google Scholar
35
Jones, M. E. et al. A nose for death: Integrating trophic and informational networks for conservation and management. Front. Ecol. Evol. 4, 124 (2016).
Article Google Scholar
36
McGregor, P. K. Communication networks and eavesdropping in animals. In Encyclopedia of Neuroscience (ed. Larry, R. S.) 1179–1184 (Academic Press, Cambridge, 2009).
Google Scholar
37.
Peake, T. M. Eavesdropping in communication networks. in Animal Communication Networks (ed. McGregor, P. K.) 13–37 (2005).
38.
Tsunoda, M. et al. Identification of an intra- and inter-specific tear protein signal in rodents. Curr. Biol. 28, 1213–1223 (2018).
CAS PubMed Article Google Scholar
39.
Ardeh, M. J., De Jong, P. W. D., Loomans, A. J. M. & Van Lenteren, J. C. Inter- and intraspecific effects of volatile and nonvolatile sex pheromones on males, mating behavior, and hybridization in Eretmocerus mundus and E. eremicus (Hymenoptera: Aphelinidae). J. Insect Behav. 17, 745–759 (2004).
Article Google Scholar
40.
Ylönen, H., Sundell, J., Tiilikainen, R., Eccard, J. A. & Horne, T. Weasels’ (Mustela nivalis nivalis) preference for olfactory cues of the vole (Clethrionomys glareolus). Ecology 84, 1447–1452 (2003).
Article Google Scholar
41.
Zhang, Y.-H.H., Liang, H.-C.C., Guo, H.-L.L. & Zhang, J.-X.X. Exaggerated male pheromones in rats may increase predation cost. Curr. Zool. 62, 431–437 (2016).
PubMed PubMed Central Article Google Scholar
42.
Hughes, N. K., Kelley, J. L. & Banks, P. B. Receiving behaviour is sensitive to risks from eavesdropping predators. Oecologia 160, 609–617 (2009).
ADS PubMed Article PubMed Central Google Scholar
43.
Koivula, M., Korpimäki, E. & Korpimaki, E. Do scent marks increase predation risk of microtine rodents?. Oikos 95, 275–281 (2001).
Article Google Scholar
44.
May, M. D., Bowen, M. T., Mcgregor, I. S. & Timberlake, W. Rubbings deposited by cats elicit defensive behavior in rats. Physiol. Behav. 107, 711–718 (2012).
CAS PubMed Article PubMed Central Google Scholar
45.
Schwende, F. J., Wiesler, D., Jorgenson, J. W., Carmack, M. & Novotny, M. Urinary volatile consituents of the house mouse, Mus musculus, and their endocrine dependency. J. Chem. Ecol. 12, 277–296 (1986).
CAS PubMed Article PubMed Central Google Scholar
46.
Musso, A. E., Gries, R., Zhai, H., Takács, S. & Gries, G. Effect of male house mouse pheromone components on behavioral responses of mice in laboratory and field experiments. J. Chem. Ecol. 43, 215–224 (2017).
CAS PubMed Article PubMed Central Google Scholar
47.
Ferrero, D. M. et al. Detection and avoidance of a carnivore odor by prey. PNAS 108, 11235–11240 (2011).
ADS CAS PubMed Article PubMed Central Google Scholar
48.
Wolff, J. O. Laboratory studies with rodents: facts or artifacts? Bioscience 53, 421 (2003).
Article Google Scholar
49.
Calisi, R. M. & Bentley, G. E. Lab and field experiments: are they the same animal? Horm. Behav. 56, 1–10 (2009).
PubMed Article Google Scholar
50.
Kondrakiewicz, K., Kostecki, M., Szadzińska, W. & Knapska, E. Ecological validity of social interaction tests in rats and mice. Genes Brain Behav. 18, 1–14 (2019).
Article Google Scholar
51.
de Masi, E., Vilaça, P. & Razzolini, M. T. P. Environmental conditions and rodent infestation in Campo Limpo district, São Paulo municipality, Brazil. Int. J. Environ. Health Res. 19, 1–16 (2009).
PubMed Article Google Scholar
52.
Stryjek, R., Mioduszewska, B., Spaltabaka-Gędek, E. & Juszczak, G. R. Wild norway rats do not avoid predator scents when collecting food in a familiar habitat: a field study. Sci. Rep. 8, 1–11 (2018).
CAS Article Google Scholar
53.
Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).
PubMed Article Google Scholar
54.
Pérez-Gómez, A. et al. Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr. Biol. 25, 1340–1346 (2015).
PubMed PubMed Central Article CAS Google Scholar
55.
Isogai, Y. et al. Molecular organization of vomeronasal chemoreception. Nature 478, 241–245 (2011).
ADS CAS PubMed PubMed Central Article Google Scholar
56.
Bacchini, A., Gaetani, E. & Cavaggioni, A. Pheromone binding proteins of the mouse, Mus musculus. Experientia 48, 419–421 (1992).
CAS PubMed Article Google Scholar
57.
Novotny, M. V., Ma, W., Wiesler, D. & Žídek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. B Biol. Sci. 266, 2017–2022 (1999).
CAS Article Google Scholar
58.
Hurst, J., Robertson, D., Tolladay, U. & Beynon, R. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297 (1998).
CAS PubMed Article Google Scholar
59.
Beynon, R. J. & Hurst, J. L. Urinary proteins and the modulation of chemical scents in mice and rats. Peptides 25, 1553–1563 (2004).
CAS PubMed Article Google Scholar
60.
Caut, S. et al. Rats dying for mice: modelling the competitor release effect. Austral. Ecol. 32, 858–868 (2007).
Article Google Scholar
61.
Campbell-Palmer, R. & Rosell, F. The importance of chemical communication studies to mammalian conservation biology: a review. Biol. Conserv. 144, 1919–1930 (2011).
Article Google Scholar
62.
Sparrow, E. E., Parsons, M. H. & Blumstein, D. T. Novel use for a predator scent: preliminary data suggest that wombats avoid recolonising collapsed burrows following application of dingo scent. Aust. J. Zool. 64, 192–197 (2016).
Article Google Scholar
63.
Friesen, M. R., Beggs, J. R. & Gaskett, A. C. Sensory-based conservation of seabirds: a review of management strategies and animal behaviours that facilitate success. Biol. Rev. 92, 1769–1784 (2017).
PubMed Article Google Scholar
64.
Campbell-Palmer, R. & Rosell, F. Conservation of the Eurasian beaver Castor fiber: an olfactory perspective. Mamm. Rev. 40, 293–312 (2010).
Article Google Scholar
65.
Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).
ADS PubMed Article CAS Google Scholar
66.
BirdLife International. State of the world’s birds: taking the pulse of the planet. (2018).
67.
Courchamp, F., Langlais, M. & Sugihara, G. Cats protecting birds: modelling the mesopredator release effect. J. Anim. Ecol. 68, 282–292 (1999).
Article Google Scholar
68.
MacInnes, C. D. et al. Elimination of rabies from red foxes in eastern Ontario. J. Wildl. Dis. 37, 119–132 (2001).
CAS PubMed Article Google Scholar
69.
Takács, S. et al. New food baits for trapping house mice, black rats and brown rats. Appl. Anim. Behav. Sci. 200, 130–135 (2017).
Article Google Scholar
70.
Safranski, T. J., Lamberson, W. R. & Keisler, D. H. Correlations among three measures of puberty in mice and relationships with estradiol concentration and ovulation. Biol. Reprod. 48, 669–673 (1993).
CAS PubMed Article Google Scholar
71.
Schneider, J. E., Wysocki, C. J., Nyby, J. & Whitney, G. Determining the sex of neonatal mice (Mus musculus). Behav. Res. Methods Instrum. 10, 105 (1978).
Article Google Scholar
72.
Dhakal, P. & Soares, M. J. Single-step PCR-based genetic sex determination of rat tissues and cells. Biotechniques 62, 232–233 (2017).
CAS PubMed PubMed Central Article Google Scholar
73.
Varner, E, Gries, R. & Gries, G. Attractant blend composition, devices and methods for attracting female mice. US provisional patent application (filed 17 August 2020; Patent App. Serial No. 63/066,716) (2020).
74.
R Core Team. R: A language and environment for statistical computing. (2019). More