More stories

  • in

    Brown rats and house mice eavesdrop on each other’s volatile sex pheromone components

    1.
    Wyatt, T. D. Pheromones and Animal Behavior 104 (Cambridge University Press, Cambridge, 2013).
    Google Scholar 
    2.
    Hughes, N. K., Korpimäki, E. & Banks, P. B. The predation risks of interspecific eavesdropping: weasel-vole interactions. Oikos 119, 1210–1216 (2010).
    Article  Google Scholar 

    3.
    Garvey, P. M. et al. Exploiting interspecific olfactory communication to monitor predators. Ecol. Appl. 27, 389–402 (2017).
    PubMed  Article  Google Scholar 

    4.
    Parsons, M. H. et al. Biologically meaningful scents: a framework for understanding predator–prey research across disciplines. Biol. Rev. 93, 98–114 (2018).
    PubMed  Article  Google Scholar 

    5.
    Varner, E., Gries, R., Takács, S., Fan, S. & Gries, G. Identification and field testing of volatile components in the sex attractant pheromone blend of female house mice. J. Chem. Ecol. 45, 18–27 (2019).
    CAS  PubMed  Article  Google Scholar 

    6.
    Takács, S., Gries, R., Zhai, H. & Gries, G. The sex attractant pheromone of male brown rats: identification and field experiment. Angew. Chemie Int. Ed. 55, 6062–6066 (2016).
    Article  CAS  Google Scholar 

    7.
    Din, W. et al. Origin and radiation of the house mouse: clues from nuclear genes. J. Evol. Biol. 9, 519–539 (1996).
    CAS  Article  Google Scholar 

    8.
    Puckett, E. E. et al. Global population divergence and admixture of the brown rat (Rattus norvegicus). Proc. R. Soc. B Biol. Sci. 283, 20161762 (2016).
    Article  Google Scholar 

    9.
    Karli, P. The Norway rat’s killing response to the white mouse: an experimental analysis. Source Behav. 102, 81–103 (1956).
    Google Scholar 

    10.
    Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692–703 (2010).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    11.
    Slotnick, B. Animal cognition and the rat olfactory system. Med. J. Aust. 5, 216–222 (2001).
    CAS  Google Scholar 

    12.
    Hughes, N. K., Price, C. J. & Banks, P. B. Predators are attracted to the olfactory signals of prey. PLoS ONE 5, e13114 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Osada, K., Tashiro, T., Mori, K. & Izumi, H. The identification of attractive volatiles in aged male mouse urine. Chem. Senses 33, 815–823 (2008).
    CAS  PubMed  Article  Google Scholar 

    14.
    Kavaliers, M., Choleris, E. & Pfaff, D. W. Recognition and avoidance of the odors of parasitized conspecifics and predators: differential genomic correlates. Neurosci. Biobehav. Rev. 29, 1347–1359 (2005).
    PubMed  Article  Google Scholar 

    15.
    Hurst, J. L. The complex network of olfactory communication in populations of wild house mice Mus domesticus Rutty: urine marking and investigation within family groups. Anim. Behav. 37, 705–725 (1989).
    Article  Google Scholar 

    16.
    Mossman, C. A. & Drickamer, L. C. Odor preferences of female house mice (Mus domesticus) in seminatural enclosures. J. Comp. Psychol. 110, 131–138 (1996).
    CAS  PubMed  Article  Google Scholar 

    17.
    Jones, R. B. & Nowell, N. W. Aversive and aggression-promoting properties of urine from dominant and subordinate male mice. Anim. Learn. Behav. 1, 207–210 (1973).
    Article  Google Scholar 

    18.
    Barnard, C. J. & Fitzsimons, J. Kin recognition and mate choice in mice: the effects of kinship, familiarity and social interference on intersexual interaction. Anim. Behav. 36, 1078–1090 (1988).
    Article  Google Scholar 

    19.
    He, J., Ma, L., Kim, S., Nakai, J. & Yu, C. R. R. Encoding gender and individual information in the mouse vomeronasal organ. Science 320, 535–538 (2008).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Yang, M. et al. The rat exposure test: a model of mouse defensive behaviors. Physiol. Behav. 81, 465–473 (2004).
    CAS  PubMed  Article  Google Scholar 

    21.
    Amaral, V. C. S., Santos Gomes, K. & Nunes-de-Souza, R. L. Increased corticosterone levels in mice subjected to the rat exposure test. Horm. Behav. 57, 128–133 (2010).
    CAS  PubMed  Article  Google Scholar 

    22.
    Takács, S., Gries, R. & Gries, G. Sex hormones function as sex attractant pheromones in house mice and brown rats. ChemBioChem 18, 1391–1395 (2017).
    PubMed  Article  CAS  Google Scholar 

    23.
    Jemiolo, B., Alberts, J., Sochinski-Wiggins, S., Harvey, S. & Novotny, M. Behavioural and endocrine responses of female mice to synthetic analogues of volatile compounds in male urine. Anim. Behav. 33, 1114–1118 (1985).
    Article  Google Scholar 

    24.
    Novotny, M. et al. Synthetic pheromones that promote inter-male aggression in mice. Proc. Natl. Acad. Sci. USA 82, 2059–2061 (1985).
    ADS  CAS  PubMed  Article  Google Scholar 

    25
    Banks, P. B., Daly, A. & Bytheway, J. P. Predator odours attract other predators, creating an olfactory web of information. Biol. Lett. 12, 20151053 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    26.
    Roitberg, B. D. Chemical communication. In Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds Córdoba-Aguilar, A. et al.) 557–575 (Oxford University Press, Oxford, 2018).
    Google Scholar 

    27
    Vasudevan, A. & Vyas, A. Kairomonal communication in mice is concentration-dependent with a proportional discrimination threshold. F1000Research 2, 195 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    28.
    Danci, A., Schaefer, P. W., Schopf, A. & Gries, G. Species-specific close-range sexual communication systems prevent cross-attraction in three species of Glyptapanteles parasitic wasps (Hymenoptera: Braconidae). Biol. Control 39, 225–231 (2006).
    Article  Google Scholar 

    29
    Wen, X.-L.L., Wen, P., Dahlsjö, C., Sillam-Dussès, D. & Šobotník, J. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey. Proc. R. Soc. B Biol. Sci. 284, 20170121 (2017).
    Article  CAS  Google Scholar 

    30.
    Haynes, K. F. & Yeargan, K. V. Exploitation of intraspecific communication systems: illicit signalers and receivers. Ann. Entomol. Soc. Am 92, 960–970 (1999).
    Article  Google Scholar 

    31.
    Dong, S. et al. Olfactory eavesdropping of predator alarm pheromone by sympatric but not allopatric prey. Anim. Behav. 141, 115–125 (2018).
    Article  Google Scholar 

    32.
    Sbarbati, A. & Osculati, F. Allelochemical communication in vertebrates: kairomones, allomones and synomones. Cells Tissues Organs 183, 206–219 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Apps, P., Rafiq, K. & McNutt, J. W. Do carnivores have a world wide web of interspecific scent signals? in Chemical Signals in Vertebrates (ed. Buesching, C. D.) 182–202 (2019).

    34.
    Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & Mcgregor, I. S. The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci. Biobehav. Rev. 29, 1123–1144 (2005).
    PubMed  Article  Google Scholar 

    35
    Jones, M. E. et al. A nose for death: Integrating trophic and informational networks for conservation and management. Front. Ecol. Evol. 4, 124 (2016).
    Article  Google Scholar 

    36
    McGregor, P. K. Communication networks and eavesdropping in animals. In Encyclopedia of Neuroscience (ed. Larry, R. S.) 1179–1184 (Academic Press, Cambridge, 2009).
    Google Scholar 

    37.
    Peake, T. M. Eavesdropping in communication networks. in Animal Communication Networks (ed. McGregor, P. K.) 13–37 (2005).

    38.
    Tsunoda, M. et al. Identification of an intra- and inter-specific tear protein signal in rodents. Curr. Biol. 28, 1213–1223 (2018).
    CAS  PubMed  Article  Google Scholar 

    39.
    Ardeh, M. J., De Jong, P. W. D., Loomans, A. J. M. & Van Lenteren, J. C. Inter- and intraspecific effects of volatile and nonvolatile sex pheromones on males, mating behavior, and hybridization in Eretmocerus mundus and E. eremicus (Hymenoptera: Aphelinidae). J. Insect Behav. 17, 745–759 (2004).
    Article  Google Scholar 

    40.
    Ylönen, H., Sundell, J., Tiilikainen, R., Eccard, J. A. & Horne, T. Weasels’ (Mustela nivalis nivalis) preference for olfactory cues of the vole (Clethrionomys glareolus). Ecology 84, 1447–1452 (2003).
    Article  Google Scholar 

    41.
    Zhang, Y.-H.H., Liang, H.-C.C., Guo, H.-L.L. & Zhang, J.-X.X. Exaggerated male pheromones in rats may increase predation cost. Curr. Zool. 62, 431–437 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Hughes, N. K., Kelley, J. L. & Banks, P. B. Receiving behaviour is sensitive to risks from eavesdropping predators. Oecologia 160, 609–617 (2009).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    43.
    Koivula, M., Korpimäki, E. & Korpimaki, E. Do scent marks increase predation risk of microtine rodents?. Oikos 95, 275–281 (2001).
    Article  Google Scholar 

    44.
    May, M. D., Bowen, M. T., Mcgregor, I. S. & Timberlake, W. Rubbings deposited by cats elicit defensive behavior in rats. Physiol. Behav. 107, 711–718 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    45.
    Schwende, F. J., Wiesler, D., Jorgenson, J. W., Carmack, M. & Novotny, M. Urinary volatile consituents of the house mouse, Mus musculus, and their endocrine dependency. J. Chem. Ecol. 12, 277–296 (1986).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    46.
    Musso, A. E., Gries, R., Zhai, H., Takács, S. & Gries, G. Effect of male house mouse pheromone components on behavioral responses of mice in laboratory and field experiments. J. Chem. Ecol. 43, 215–224 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Ferrero, D. M. et al. Detection and avoidance of a carnivore odor by prey. PNAS 108, 11235–11240 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Wolff, J. O. Laboratory studies with rodents: facts or artifacts? Bioscience 53, 421 (2003).
    Article  Google Scholar 

    49.
    Calisi, R. M. & Bentley, G. E. Lab and field experiments: are they the same animal? Horm. Behav. 56, 1–10 (2009).
    PubMed  Article  Google Scholar 

    50.
    Kondrakiewicz, K., Kostecki, M., Szadzińska, W. & Knapska, E. Ecological validity of social interaction tests in rats and mice. Genes Brain Behav. 18, 1–14 (2019).
    Article  Google Scholar 

    51.
    de Masi, E., Vilaça, P. & Razzolini, M. T. P. Environmental conditions and rodent infestation in Campo Limpo district, São Paulo municipality, Brazil. Int. J. Environ. Health Res. 19, 1–16 (2009).
    PubMed  Article  Google Scholar 

    52.
    Stryjek, R., Mioduszewska, B., Spaltabaka-Gędek, E. & Juszczak, G. R. Wild norway rats do not avoid predator scents when collecting food in a familiar habitat: a field study. Sci. Rep. 8, 1–11 (2018).
    CAS  Article  Google Scholar 

    53.
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).
    PubMed  Article  Google Scholar 

    54.
    Pérez-Gómez, A. et al. Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr. Biol. 25, 1340–1346 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Isogai, Y. et al. Molecular organization of vomeronasal chemoreception. Nature 478, 241–245 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Bacchini, A., Gaetani, E. & Cavaggioni, A. Pheromone binding proteins of the mouse, Mus musculus. Experientia 48, 419–421 (1992).
    CAS  PubMed  Article  Google Scholar 

    57.
    Novotny, M. V., Ma, W., Wiesler, D. & Žídek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. B Biol. Sci. 266, 2017–2022 (1999).
    CAS  Article  Google Scholar 

    58.
    Hurst, J., Robertson, D., Tolladay, U. & Beynon, R. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297 (1998).
    CAS  PubMed  Article  Google Scholar 

    59.
    Beynon, R. J. & Hurst, J. L. Urinary proteins and the modulation of chemical scents in mice and rats. Peptides 25, 1553–1563 (2004).
    CAS  PubMed  Article  Google Scholar 

    60.
    Caut, S. et al. Rats dying for mice: modelling the competitor release effect. Austral. Ecol. 32, 858–868 (2007).
    Article  Google Scholar 

    61.
    Campbell-Palmer, R. & Rosell, F. The importance of chemical communication studies to mammalian conservation biology: a review. Biol. Conserv. 144, 1919–1930 (2011).
    Article  Google Scholar 

    62.
    Sparrow, E. E., Parsons, M. H. & Blumstein, D. T. Novel use for a predator scent: preliminary data suggest that wombats avoid recolonising collapsed burrows following application of dingo scent. Aust. J. Zool. 64, 192–197 (2016).
    Article  Google Scholar 

    63.
    Friesen, M. R., Beggs, J. R. & Gaskett, A. C. Sensory-based conservation of seabirds: a review of management strategies and animal behaviours that facilitate success. Biol. Rev. 92, 1769–1784 (2017).
    PubMed  Article  Google Scholar 

    64.
    Campbell-Palmer, R. & Rosell, F. Conservation of the Eurasian beaver Castor fiber: an olfactory perspective. Mamm. Rev. 40, 293–312 (2010).
    Article  Google Scholar 

    65.
    Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).
    ADS  PubMed  Article  CAS  Google Scholar 

    66.
    BirdLife International. State of the world’s birds: taking the pulse of the planet. (2018).

    67.
    Courchamp, F., Langlais, M. & Sugihara, G. Cats protecting birds: modelling the mesopredator release effect. J. Anim. Ecol. 68, 282–292 (1999).
    Article  Google Scholar 

    68.
    MacInnes, C. D. et al. Elimination of rabies from red foxes in eastern Ontario. J. Wildl. Dis. 37, 119–132 (2001).
    CAS  PubMed  Article  Google Scholar 

    69.
    Takács, S. et al. New food baits for trapping house mice, black rats and brown rats. Appl. Anim. Behav. Sci. 200, 130–135 (2017).
    Article  Google Scholar 

    70.
    Safranski, T. J., Lamberson, W. R. & Keisler, D. H. Correlations among three measures of puberty in mice and relationships with estradiol concentration and ovulation. Biol. Reprod. 48, 669–673 (1993).
    CAS  PubMed  Article  Google Scholar 

    71.
    Schneider, J. E., Wysocki, C. J., Nyby, J. & Whitney, G. Determining the sex of neonatal mice (Mus musculus). Behav. Res. Methods Instrum. 10, 105 (1978).
    Article  Google Scholar 

    72.
    Dhakal, P. & Soares, M. J. Single-step PCR-based genetic sex determination of rat tissues and cells. Biotechniques 62, 232–233 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Varner, E, Gries, R. & Gries, G. Attractant blend composition, devices and methods for attracting female mice. US provisional patent application (filed 17 August 2020; Patent App. Serial No. 63/066,716) (2020).

    74.
    R Core Team. R: A language and environment for statistical computing. (2019). More

  • in

    Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations

    1.
    Burgess, S. D., Bowring, S. & Shen, S.-Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).
    Article  Google Scholar 
    2.
    Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490–500 (2009).
    Article  Google Scholar 

    3.
    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).
    Article  Google Scholar 

    4.
    Saunders, A. D. Two LIPs and two Earth-system crises: the impact of the North Atlantic igneous province and the Siberian Traps on the Earth-surface carbon cycle. Geol. Mag. 153, 201–222 (2016).
    Article  Google Scholar 

    5.
    Cui, Y. & Kump, L. R. Global warming and the end-Permian extinction event: proxy and modeling perspectives. Earth Sci. Rev. 149, 5–22 (2015).
    Article  Google Scholar 

    6.
    Sun, Y. et al. Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366–370 (2012).
    Article  Google Scholar 

    7.
    Brand, U. et al. The end-Permian mass extinction: a rapid volcanic CO2 and CH4-climatic catastrophe. Chem. Geol. 323, 121–144 (2012).
    Article  Google Scholar 

    8.
    Winguth, A. M. E., Shields, C. A. & Winguth, C. Transition into a hothouse world at the Permian–Triassic boundary—a model study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 316–327 (2015).
    Article  Google Scholar 

    9.
    Garbelli, C. et al. Neotethys seawater chemistry and temperature at the dawn of the end-Permian mass extinction. Gondwana Res. 35, 272–272 (2016).
    Article  Google Scholar 

    10.
    Wang, W. et al. A high-resolution middle to late Permian paleotemperature curve reconstructed using oxygen isotopes of well-preserved brachiopod shells. Earth Planet. Sci. Lett. 540, 116245 (2020).
    Article  Google Scholar 

    11.
    Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl Acad. Sci. USA 113, 2360–2365 (2016).
    Article  Google Scholar 

    12.
    Elrick, M. et al. Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates. Geology 45, 163–166 (2017).
    Article  Google Scholar 

    13.
    Zhang, F. F. et al. Congruent Permian–Triassic δ238U records at Panthalassic and Tethyan sites: confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. Geology 46, 327–330 (2018).
    Article  Google Scholar 

    14.
    Korte, C. et al. Carbon, sulfur, oxygen and strontium isotope records, organic geochemistry and biostratigraphy across the Permian/Triassic boundary in Abadeh, Iran. Int. J. Earth Sci. 93, 565–581 (2004).
    Google Scholar 

    15.
    Grice, K. et al. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307, 706–709 (2005).
    Article  Google Scholar 

    16.
    Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010).
    Article  Google Scholar 

    17.
    Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232 (2015).
    Article  Google Scholar 

    18.
    Garbelli, C., Angiolini, L. & Shen, S.-Z. Biomineralization and global change: a new perspective for understanding the end-Permian extinction. Geology 45, 19–22 (2017).
    Article  Google Scholar 

    19.
    Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 1551–1554 (2009).
    Article  Google Scholar 

    20.
    Rae, J. W. B. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).
    Article  Google Scholar 

    21.
    Gutjahr, M. et al. Very larger release of mostly volcanic carbon during the Palaeocene–Eocene thermal maximum. Nature 548, 573–577 (2017).
    Article  Google Scholar 

    22.
    Henehan, M. et al. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc. Natl Acad. Sci. USA 116, 22500–22504 (2019).
    Article  Google Scholar 

    23.
    Müller, T. et al. Ocean acidification during the early Toarcian extinction event: Evidence from boron isotopes in brachiopods. Geology https://doi.org/10.1130/G47781.1 (2020).

    24.
    Posenato, R. Survival patterns of microbenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 150–167 (2019).
    Article  Google Scholar 

    25.
    Wallmann, K. et al. Periodic changes in the Cretaceous ocean and climate caused by marine redox see-saw. Nat. Geosci. 12, 456–462 (2019).
    Article  Google Scholar 

    26.
    Retallack, G. J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411, 287–290 (2001).
    Article  Google Scholar 

    27.
    Goddéris, Y. et al. Causal or casual link between the rise of nannoplankton calcification and a tectonically-driven massive decrease in Late Triassic atmospheric CO2? Earth Planet. Sci. Lett. 267, 247–255 (2008).
    Article  Google Scholar 

    28.
    McElwain, J. C., Wagner, P. J. & Hesselbo, S. P. Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in East Greenland. Science 324, 1554–1556 (2009).
    Article  Google Scholar 

    29.
    Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S. & Damste, J. S. S. Molecular fossils from phytoplankton reveal secular (p_{{rm{CO}}_2}) trend over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).

    30.
    Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).
    Article  Google Scholar 

    31.
    Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).
    Article  Google Scholar 

    32.
    Algeo, T. J. et al. Plankton and productivity during the Permian–Triassic boundary crisis: an analysis of organic carbon fluxes. Glob. Planet. Change 105, 52–67 (2013).
    Article  Google Scholar 

    33.
    Saitoh, M. et al. Nitrogen isotope chemostratigraphy across the Permian–Triassic boundary at Chaotian, Sichuan, South China. J. Asian Earth Sci. 93, 113–128 (2014).
    Article  Google Scholar 

    34.
    Sun, Y. D. et al. Ammonium ocean following the end-Permian mass extinction. Earth Planet. Sci. Lett. 518, 211–222 (2019).
    Article  Google Scholar 

    35.
    Shen, J. et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth Sci. Rev. 149, 136–162 (2015).
    Article  Google Scholar 

    36.
    Canfield, D. E. Models of oxic respiration, denitrification and sulfate reduction in zones of coastal upwelling. Geochim. Cosmochim. Acta 70, 5753–5765 (2006).
    Article  Google Scholar 

    37.
    Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).
    Article  Google Scholar 

    38.
    Zeebe, R. & Westbroek, P. A simple model for the CaCO3 saturation state of the ocean: The ‘Strangelove’, the ‘Neritan’, and the ‘Cretan’ Ocean. Geochem. Geophys. Geosyst. 4, 1104 (2003).
    Article  Google Scholar 

    39.
    Vollstaedt, H. et al. The Phanerozoic δ88/86Sr record of seawater: new constraints on past changes in oceanic carbonate fluxes. Geochim. Cosmochim. Acta 128, 249–265 (2014).
    Article  Google Scholar 

    40.
    Silva-Tamayo, J. C. et al. Global perturbation of the marine calcium cycle during the Permian–Triassic transition. Geol. Soc. Am. Bull. 130, 1323–1338 (2018).
    Article  Google Scholar 

    41.
    Woods, A. Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features. Earth Sci. Rev. 137, 6–18 (2014).
    Article  Google Scholar 

    42.
    Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).
    Article  Google Scholar 

    43.
    Song, H. J., Wignall, P. B., Tong, J. N. & Yin, H. F. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).
    Article  Google Scholar 

    44.
    Brayard, A. et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat. Geosci. 4, 693–697 (2011).
    Article  Google Scholar 

    45.
    Martindale, R. C., Foster, W. J. & Velledits, F. The survival, recovery, and diversification of Metazoan reef ecosystems following the end-Permian mass extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 100–115 (2019).
    Article  Google Scholar 

    46.
    Reynard, S. et al. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob. Change Biol. 9, 1660–1668 (2003).
    Article  Google Scholar 

    47.
    Beatty, T. W., Zonneveld, J.-P. & Henderson, C. M. Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for shallow-marine habitable zone. Geology 36, 771–774 (2008).
    Article  Google Scholar 

    48.
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
    Article  Google Scholar 

    49.
    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
    Article  Google Scholar 

    50.
    Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oxygen content during the past five decades. Nature 542, 335–339 (2017).
    Article  Google Scholar 

    51.
    Posenato, R. Marine biotic events in the Lopingian succession and latest Permian extinction in the Southern Alps (Italy). Geol. J. 45, 195–215 (2010).
    Article  Google Scholar 

    52.
    Broglio Loriga, C., Neri, C., Pasini, M. & Posenato, R. in Permian and Permian–Triassic Boundary in the South-Alpine segment of the western Tethys, and Additional Reports (ed. Cassinis, G.) 5–44 (Societa Geologica Italiana, 1988).

    53.
    Posenato, R. The athyridoids of the transitional beds between Bellerophon and Werfen formations (uppermost Permian, Southern Alps, Italy). Riv. Ital. Paleontol. Soc. 1071, 197–226 (2001).
    Google Scholar 

    54.
    Kearsey, T., Twichett, R. J., Price, G. D. & Grimes, S. T. Isotope excursion and palaeotemperature estimates from the Permian/Triassic boundary in the Southern Alps (Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 29–40 (2009).
    Article  Google Scholar 

    55.
    Muttoni, G. et al. Opening of the neo-Tethys ocean and the Pangea B to Pangea A transformation during the Permian. GeoArabia 14, 17–48 (2009).
    Google Scholar 

    56.
    Reichow, M. K. et al. The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 9–20 (2009).
    Article  Google Scholar 

    57.
    Brand, U., Logan, A., Hiller, N. & Richardson, J. Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography. Chem. Geol. 198, 305–334 (2003).
    Article  Google Scholar 

    58.
    Rollion-Bard, C. et al. Assessing the biomineralisation processes in the shell layers of modern brachiopods from oxygen isotopic composition and elemental ratios: implications for their use as paleoenvironmental proxies. Chem. Geol. 524, 49–66 (2019).
    Article  Google Scholar 

    59.
    Jurikova, H. et al. Boron isotope systematics of cultured brachiopods: response to acidification, vital effects and implications for palaeo-pH reconstruction. Geochim. Cosmochim. Acta 248, 370–386 (2019).
    Article  Google Scholar 

    60.
    Jurikova, H. et al. Incorporation of minor and trace elements into cultured brachiopods: implications for proxy application with new insights from a biomineralisation model. Geochim. Cosmochim. Acta 286, 418–440 (2020).
    Article  Google Scholar 

    61.
    Jurikova, H. et al. Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: zooming into a potential pH-proxy by combining bulk and high-resolution approaches. Chem. Geol. 513, 143–152 (2019).
    Article  Google Scholar 

    62.
    Kasemann, S. A., Schmidt, D. N., Bijima, J. & Foster, G. L. In situ boron isotope analyses in marine carbonates and its application for foraminifera and palaeo-pH. Chem. Geol. 260, 138–147 (2009).
    Article  Google Scholar 

    63.
    Lemarchand, D., Gaillardet, J., Lewin, É. & Allègre, C. J. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408, 951–954 (2000).
    Article  Google Scholar 

    64.
    Joachimski, M. M., Simon, L., van Geldern, R. & Lécuyer, C. Boron isotope geochemistry of Paleozoic brachiopod calcite: implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic. Geochim. Cosmochim. Acta 69, 4035–4044 (2005).
    Article  Google Scholar 

    65.
    Klochko, K., Kaufman, A. J., Wengsheng, Y., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006).
    Article  Google Scholar 

    66.
    Lécuyer, C., Grandjean, P., Reynard, B., Albarède, F. & Telouk, P. 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chem. Geol. 186, 45–55 (2002).
    Article  Google Scholar 

    67.
    Ridgwell, A. A mid Mesozoic revolution in the regulation of ocean chemistry. Mar. Chem. 217, 339–357 (2005).
    Google Scholar 

    68.
    Penman, D. E., Hönisch, B., Rasbury, E. T., Hemming, N. G. & Spero, H. J. Boron, carbon, and oxygen isotopic composition of brachiopod shells: intra-shell variability, controls, and potential as a paleo-pH recorder. Chem. Geol. 340, 32–39 (2013).
    Article  Google Scholar 

    69.
    Garbelli, C., Angiolini, L., Brand, U. & Jadoul, F. Brachiopod fabric, classes and biogeochemistry: implications for the reconstruction and interpretation of seawater carbon-isotope curves and records. Chem. Geol. 371, 60–67 (2014).
    Article  Google Scholar 

    70.
    Khiel, J. T. & Shields, C. A. Climate simulations of the latest Permian: implications for mass extinction. Geology 33, 757–760 (2005).
    Article  Google Scholar 

    71.
    Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A. & Demicco, R. V. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 1086–1088 (2001).
    Article  Google Scholar 

    72.
    Berner, R. A. & Kothavala, Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).
    Article  Google Scholar 

    73.
    Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Godderis, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).
    Article  Google Scholar 

    74.
    Wallmann, K., Schneider, B. & Sarnthein, M. Effects of eustatic sea-level change, ocean dynamics, and nutrient utilization on atmospheric (p_{{rm{CO}}_2}) and seawater composition over the last 130,000 years. Clim. Past 12, 339–375 (2016).
    Article  Google Scholar 

    75.
    Berner, R. A. GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 56–91 (1994).
    Article  Google Scholar  More

  • in

    Improve the roles of nature reserves in conservation of endangered pheasant in a highly urbanized region

    1.
    Bradshaw, C. J. & Brook, B. W. Human population reduction is not a quick fix for environmental problems. Proc. Natl. Acad. Sci. 111, 16610–16615 (2014).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 114, 1601–1606. https://doi.org/10.1073/pnas.1620503114 (2017).
    CAS  Article  PubMed  Google Scholar 

    3.
    Kong, L. et al. Habitat conservation redlines for the giant pandas in China. Biol. Cons. 210, 83–88. https://doi.org/10.1016/j.biocon.2016.03.028 (2017).
    Article  Google Scholar 

    4.
    4Ji, D. in South China Morning Post(2017).

    5.
    5Johnson, I. in New York Times(2015).

    6.
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
    ADS  CAS  PubMed  Article  Google Scholar 

    7.
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).
    ADS  CAS  Article  Google Scholar 

    8.
    Pimm, S. L. & Raven, P. Biodiversity: extinction by numbers. Nature 403, 843–845 (2000).
    ADS  CAS  PubMed  Article  Google Scholar 

    9.
    DeFries, R., Hansen, A., Turner, B., Reid, R. & Liu, J. Land use change around protected areas: management to balance human needs and ecological function. Ecol. Appl. 17, 1031–1038 (2007).
    PubMed  Article  Google Scholar 

    10.
    Juffe-Bignoli, D. et al. Protected planet report 2014 (UNEP-WCMC, Cambridge, 2014).
    Google Scholar 

    11.
    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435 (2018).
    Article  Google Scholar 

    12.
    Achiso, Z. Biodiversity and human livelihoods in protected areas: worldwide perspective—a review. SSR Inst. Int. J. Life Sci. 6, 2565–2578 (2020).
    Article  Google Scholar 

    13.
    Ma, Z. et al. Changes in area and number of nature reserves in China. Conserv. Biol. 33, 1066–1075 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    State Forestry Administration. Wildlife Conservation and Nature Reserve Construction Project [In Chinese]. http://www.forestry.gov.cn/portal/main/s/438/content-32569.html (2001).

    15.
    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change 8, 499 (2018).
    ADS  Article  Google Scholar 

    16.
    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    17.
    Riggio, J., Jacobson, A. P., Hijmans, R. J. & Caro, T. How effective are the protected areas of East Africa?. Glob. Ecol. Conserv. 17, e00573 (2019).
    Article  Google Scholar 

    18.
    Wang, W., Ren, G., He, Y. & Zhu, J. Habitat degradation and conservation status assessment of gallinaceous birds in the Trans-Himalayas, China. J. Wildl. Manag. 72, 1335–1341 (2008).
    Article  Google Scholar 

    19.
    Lei, F. & Lu, T. China Endemic Birds 516–522 (Science Press, Beijing, 2006).
    Google Scholar 

    20.
    20IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (2020).

    21.
    21CITES. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendices I, II and III. https://cites.org/eng/app/appendices.php (2017).

    22.
    Zhang, Z. W., Ding, C. Q., Ding, P. & Zheng, G. M. The current statts and a conservation strategy for species of Gralliformes in China. Chin. Biodivers. 11, 414–421 (2003).
    Google Scholar 

    23.
    Zheng, G. M. & Wang, Q. S. China Red Data Book of Endangered Animals (Aves) (Science Press, Beijing, 1998).
    Google Scholar 

    24.
    Zhang, Z. et al. Distribution and Population Status of Brown-Eared Pheasant in China 91–96 (World Pheasant Association, Hexham, 2002).
    Google Scholar 

    25.
    25Zhang, Z. W., Zhang, G. & Song, J. Population status and conservation strategies of Brown Eared pheasant. In: Proceedings of the 4th Annual Symposium on Birds Across the two side of Taiwan Strait (2000).

    26.
    26Liu, Y. N. Studies on population status and habitat suitablity evalution of Brown Eared pheasants (Crossoptilon mantchuricum) in China. Master degree dissertation thesis, Beijing Normal University (2017).

    27.
    Li, X. & Liu, R. The Brown Eared Pheasant (International Academic Publishers, Bern, 1993).
    Google Scholar 

    28.
    Wang, X. H. & An, C. L. Study of Brown Eared-pheasant population distribution in Xiaowutaishan Nature Reserve. Wildlife 28, 14–16 (2007) [In Chinese].
    Google Scholar 

    29.
    Zhang, G. et al. Scale-dependent wintering habitat selection by brown eared pheasant in Luyashan Nature Reserve of Shanxi, China. Acta Ecol. Sin. 25, 952–957 (2005).
    Google Scholar 

    30.
    Brown, D. et al. Land Use and Land Cover Change (Pacific Northwest National Laboratory (PNNL), Richland, WA, 2014).
    Google Scholar 

    31.
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    32.
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).
    ADS  CAS  Article  Google Scholar 

    34.
    Warren, M. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).
    ADS  CAS  PubMed  Article  Google Scholar 

    35.
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
    ADS  CAS  Article  Google Scholar 

    36.
    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    38.
    Zhou, C., Zhao, Y., Connelly, J. W., Li, J. & Xu, J. Current nature reserve management in China and effective conservation of threatened pheasant species. Wildl. Biol. 1, wlb.00258. https://doi.org/10.2981/wlb.00258 (2017).
    Article  Google Scholar 

    39.
    Zhou, C., Xu, J. & Zhang, Z. Dramatic decline of the vulnerable Reeves’s pheasant Syrmaticus reevesii, endemic to central China. Oryx 49, 529–534 (2015).
    Article  Google Scholar 

    40.
    Dudley, N., Groves, C., Redford, K. H. & Stolton, S. Where now for protected areas? Setting the stage for the 2014 World Parks Congress. Oryx 48, 496–503 (2014).
    Article  Google Scholar 

    41.
    Ervin, J. The three new R’s for protected areas: repurpose, reposition and reinvest’. Parks 19, 75 (2013).
    Article  Google Scholar 

    42.
    Ervin, J. et al. In: CBD Technical Series Vol. 44 5 (Convention on Biological Diversity, 2010).

    43.
    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).
    Article  Google Scholar 

    44.
    Viña, A. & Liu, J. Hidden roles of protected areas in the conservation of biodiversity and ecosystem services. Ecosphere 8, e01864 (2017).
    Article  Google Scholar 

    45.
    Li, D. et al. Habitat selection of breeding brown eared-pheasants (Crossoptilon mantchuricum) in Xiaowutaishan National Nature Reserve, Hebei Province, China. Front. Biol. China 4, 102–110. https://doi.org/10.1007/s11515-008-0090-2 (2008).
    Article  Google Scholar 

    46.
    Song, K. et al. Modeling habitat factors and suitability for the Brown Eared Pheasant (Crossoption mantchuricum) in Baihuashan National Nature Reserve, Beijing. Chin. J. Zool. 51, 363–372 (2016).
    Google Scholar 

    47.
    Li, H. Q., Lian, Z. M. & Chen, C. G. Winter foraging habitat selection of brown-eared pheasant (Crossoptilon mantchuricum) and the common pheasant (Phasianus colchicus) in Huanglong Mountains, Shaanxi Province. Acta Ecol. Sin. 29, 335–340 (2009).
    CAS  Article  Google Scholar 

    48.
    Zhang, G., Zhang, Z., Yang, F. & Li, S. Habitat selection of brown-eared pheasant at the Wulushan National Nature Reserve of Shanxi, China. Scientia Silvae Sinicae 46, 100–103 (2010).
    Google Scholar 

    49.
    Mi, C. R., Huettmann, F. & Guo, Y. M. Obtaining the best possible predictions of habitat selection for wintering Great Bustards in Cangzhou, Hebei Province with rapid machine learning analysis. Chin. Sci. Bull. 59, 4323–4331 (2014).
    Article  Google Scholar 

    50.
    Lu, N., Jing, Y., Lloyd, H. & Sun, Y.-H. Assessing the distributions and potential risks from climate change for the Sichuan Jay (Perisoreus internigrans). The Condor 114, 365–376 (2012).
    Article  Google Scholar 

    51.
    Razgour, O., Hanmer, J. & Jones, G. Using multi-scale modelling to predict habitat suitability for species of conservation concern: the grey long-eared bat as a case study. Biol. Cons. 144, 2922–2930 (2011).
    Article  Google Scholar 

    52.
    Phillips, S. J., Dudík, M. & Schapire, S. E. Maxent software for modeling species niches and distributions (Version 3.4. 1). Tillgänglig från. http://biodiversityinformatics.amnh.org/open_source/maxent (2017).

    53.
    Lu, N., Jia, C.-X., Lloyd, H. & Sun, Y.-H. Species-specific habitat fragmentation assessment, considering the ecological niche requirements and dispersal capability. Biol. Conserv. 152, 102–109 (2012).
    Article  Google Scholar 

    54.
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
    Article  Google Scholar 

    55.
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).
    Article  Google Scholar 

    56.
    Fouquet, A., Ficetola, G. F., Haigh, A. & Gemmell, N. Using ecological niche modelling to infer past, present and future environmental suitability for Leiopelma hochstetteri, an endangered New Zealand native frog. Biol. Cons. 143, 1375–1384 (2010).
    Article  Google Scholar 

    57.
    Hu, J., Hu, H. & Jiang, Z. The impacts of climate change on the wintering distribution of an endangered migratory bird. Oecologia 164, 555–565 (2010).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    58.
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).
    Article  Google Scholar 

    59.
    59Scott, J. M. et al. Gap analysis: a geographic approach to protection of biological diversity. Wildl. Monogr. 3–41 (1993).

    60.
    Riitters, K., Wickham, J., O’Neill, R., Jones, K. B. & Smith, E. Global-scale patterns of forest fragmentation. Conservation Ecology 4(2) (2000). More

  • in

    Winter temperatures predominate in spring phenological responses to warming

    1.
    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).
    2.
    Miller-Rushing, A. J. & Primack, R. B. Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89, 332—341 (2008).
    Article  Google Scholar 

    3.
    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
    Article  Google Scholar 

    4.
    Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).
    Article  Google Scholar 

    5.
    Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).
    CAS  Article  Google Scholar 

    6.
    Rutishauser, T., Luterbacher, J., Defila, C., Frank, D. & Wanner, H. Swiss spring plant phenology 2007: extremes, a multi-century perspective, and changes in temperature sensitivity. Geophys. Res. Lett. 35, L05703 (2008).
    Article  Google Scholar 

    7.
    Yu, H. Y., Luedeling, E. & Xu, J. C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).
    CAS  Article  Google Scholar 

    8.
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).
    Article  CAS  Google Scholar 

    9.
    Fu, Y. S. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).
    CAS  Article  Google Scholar 

    10.
    Chuine, I. et al. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break. Glob. Change Biol. 22, 3444–3460 (2016).
    Article  Google Scholar 

    11.
    Harrington, C. A. & Gould, P. J. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Front. Plant Sci. 6, 120 (2015).
    Article  Google Scholar 

    12.
    Zohner, C. M., Benito, B. M., Svenning, J. C. & Renner, S. S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Change 6, 1120–1123 (2016).
    Article  Google Scholar 

    13.
    Basler, D. & Körner, C. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Tree Physiol. 34, 377–388 (2014).
    Article  Google Scholar 

    14.
    Caffarra, A., Donnelly, A., Chuine, I. & Jones, M. B. Modelling the timing of Betula pubescens bud-burst. I. Temperature and photoperiod: a conceptual model. Clim. Res. 46, 147–157 (2011).
    Article  Google Scholar 

    15.
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).
    CAS  Article  Google Scholar 

    16.
    Caffarra, A., Donnelly, A. & Chuine, I. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim. Res. 46, 159–170 (2011).
    Article  Google Scholar 

    17.
    Fraga, H., Pinto, J. G. & Santos, J. A. Climate Change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment. Climatic Change 152, 179–193 (2019).
    Article  Google Scholar 

    18.
    Heide, O. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol. Plant. 88, 531–540 (1993).
    CAS  Article  Google Scholar 

    19.
    Singh, R. K., Svystun, T., AlDahmash, B., Jönsson, A. M. & Bhalerao, R. P. Photoperiod- and temperature-mediated control of phenology in trees—a molecular perspective. New Phytol. 213, 511–524 (2017).
    CAS  Article  Google Scholar 

    20.
    Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8 (2013).
    Article  Google Scholar 

    21.
    Vitasse, Y. & Basler, D. Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments? Tree Physiol. 34, 174–183 (2014).
    Article  Google Scholar 

    22.
    Laube, J. et al. Chilling outweighs photoperiod in preventing precocious spring development. Glob. Change Biol. 20, 170–182 (2014).
    Article  Google Scholar 

    23.
    Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric. For. Meteorol. 165, 73–81 (2012).
    Article  Google Scholar 

    24.
    Caffarra, A. & Donnelly, A. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int. J. Biometeorol. 55, 711–721 (2011).
    Article  Google Scholar 

    25.
    Ohlemüller, R., Gritti, E. S., Sykes, M. T. & Thomas, C. D. Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931–2100. Glob. Ecol. Biogeogr. 15, 395–405 (2006).
    Article  Google Scholar 

    26.
    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
    Article  Google Scholar 

    27.
    Williams, J. W., Jackson, S. T. & Kutzbacht, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).
    CAS  Article  Google Scholar 

    28.
    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    29.
    Xu, Y., Ramanathan, V. & Victor, D. G. Global warming will happen faster than we think. Nature 564, 30–32 (2018).

    30.
    Wolkovich, E. M. et al. Observed Spring Phenology Responses in Experimental Environments (OSPREE) (Knowledge Network for Biocomplexity, 2019); https://doi.org/10.5063/F1CZ35KB

    31.
    Richardson, E. A model for estimating the completion of rest for ‘Redhaven’ and ’Elberta’ peach trees. HortScience 9, 331–332 (1974).
    Google Scholar 

    32.
    Dennis, F. Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 38, 347–350 (2003).
    Article  Google Scholar 

    33.
    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2006).

    34.
    Fu, Y. H. et al. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Glob. Change Biol. 25, 1696–1703 (2019).
    Article  Google Scholar 

    35.
    Bradley, N. L., Leopold, A. C., Ross, J. & Huffaker, W. Phenological changes reflect climate change in Wisconsin. Proc. Natl Acad. Sci. USA 96, 9701–9704 (1999).
    CAS  Article  Google Scholar 

    36.
    Gauzere, J., Lucas, C., Ronce, O., Davi, H. & Chuine, I. Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate. Ecol. Model. 441, 108805 (2019).
    Article  Google Scholar 

    37.
    Heide, O. & Prestrud, A. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 25, 109–114 (2005).
    CAS  Article  Google Scholar 

    38.
    van der Schoot, C., Paul, L. K. & Rinne, P. L. H. The embryonic shoot: a lifeline through winter. J. Exp. Bot. 65, 1699–1712 (2014).
    Article  CAS  Google Scholar 

    39.
    Fishman, S., Erez, A. & Couvillon, G. The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 124, 473–483 (1987).
    Article  Google Scholar 

    40.
    Weinberger, J. H. et al. Chilling requirements of peach varieties. Proc. J. Am. Soc. Hort. Sci. 56, 122–128 (1950).

    41.
    Polgar, C. A., Primack, R. B., Williams, E. H., Stichter, S. & Hitchcock, C. Climate effects on the flight period of Lycaenid butterflies in Massachusetts. Biol. Conserv. 160, 25–31 (2013).
    Article  Google Scholar 

    42.
    Vitasse, Y. Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytol. 198, 149–155 (2013).
    Article  Google Scholar 

    43.
    Laube, J., Sparks, T. H., Estrella, N. & Menzel, A. Does humidity trigger tree phenology? Proposal for an air humidity based framework for bud development in spring. New Phytol. 202, 350–355 (2014).
    Article  Google Scholar 

    44.
    Li, C., Stevens, B. & Marotzke, J. Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett. 42, 8131–8139 (2015).
    Article  Google Scholar 

    45.
    Balling, R. C. J., Michaels, P. J. & Knappenberger, P. C. Analysis of winter and summer warming rates in gridded temperature time series. Clim. Res. 9, 175–181 (1998).
    Article  Google Scholar 

    46.
    Hänninen, H. Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of bud burst phenology. Can. J. Bot. 73, 183–199 (1995).
    Article  Google Scholar 

    47.
    Güsewell, S., Furrer, R., Gehrig, R. & Pietragalla, B. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Glob. Change Biol.23, 5189–5202 (2017).
    Article  Google Scholar 

    48.
    Roberts, A. M., Tansey, C., Smithers, R. J. & Phillimore, A. B. Predicting a change in the order of spring phenology in temperate forests. Glob. Change Biol.21, 2603–2611 (2015).
    Article  Google Scholar 

    49.
    Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269 (2009).
    Article  Google Scholar 

    50.
    Kicinski, M. Publication bias in recent meta-analyses. PLoS ONE 8, e81823 (2013).

    51.
    Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. A meta-analysis of competition in field experiments. Am. Nat. 140, 539–572 (1992).
    Article  Google Scholar 

    52.
    Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).
    Article  Google Scholar 

    53.
    Lin, L. F. & Chu, H. T. Quantifying publication bias in meta-analysis. Biometrics 74, 785–794 (2018).
    Article  Google Scholar 

    54.
    Luedeling, E. & Brown, P. H. A global analysis of the comparability of winter chill models for fruit and nut trees. Int. J. Biometeorol. 55, 411–421 (2011).
    Article  Google Scholar 

    55.
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

    56.
    Luedeling, E. chillR: statistical methods for phenology analysis in temperate fruit trees. R package version 0.70.17 (2019).

    57.
    Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).
    Article  Google Scholar 

    58.
    Livneh, B.et al. A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950–2013. Sci. Data 2, 150042 (2015).

    59.
    Harrington, C. A., Gould, P. J. & St Clair, J. B. Modeling the effects of winter environment on dormancy release of Douglas-fir. For. Ecol. Manag. 259, 798–808 (2010).
    Article  Google Scholar 

    60.
    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://doi.org/10.18637/jss.v076.i01(2017).

    61.
    Stan Development Team. RStan: the R interface to Stan. R package version 2.17.3 (2018).

    62.
    Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2014).

    63.
    Gauzere, J. et al. Integrating interactive effects of chilling and photoperiod in phenological process-based models. A case study with two European tree species: Fagus sylvatica and Quercus petraea. Agric. For. Meteorol. 244, 9–20 (2017).
    Article  Google Scholar 

    64.
    Saikkonen, K. et al. Climate change-driven species’ range shifts filtered by photoperiodism. Nat. Clim. Change 2, 239 (2012).
    Article  Google Scholar 

    65.
    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).
    Article  Google Scholar 

    66.
    Chuine, I., Garcia de Cortazar Atauri, I., Hanninen, H. & Kramer, K. in Phenology: An Integrative Environmental Science (ed. Schwartz M.) 275–293 (Springer, 2013).

    67.
    Stan Development Team Stan User’s Guide v.2.19 (Stan, 2019). More

  • in

    A pioneer calf foetus microbiome

    Experimental design and sample collection
    This study was carried out in accordance with the provisions in the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (7th edition, 2004) and all protocols were approved by the Animal Ethics Committee of La Trobe University. Twelve Angus × Friesian cattle foetuses at 5, 6 and 7 months gestation (n = 4 per age) were collected from Radford Warragul Abattoir, Victoria, Australia. Approximately 35–45 min after cows were slaughtered by abattoir staff, the intact uterus (containing the placenta and foetus) was removed. All sampling was conducted at the abattoir using sterile equipment and procedures. The outside surface of the amniotic sac was rinsed three times with sterilised phosphate-buffered saline (PBS; pH 7.0) to remove excess blood. The amnion was cut using sterile scalpels and amniotic fluid was sampled. The amniotic fluid was suctioned using sterile 50-mL syringes with tubing and the amniotic fluid was transferred immediately into 50-mL tubes. Then, the amniotic sac was opened further, the umbilical cord was cut, and the foetus was removed. The abdomen of the foetus was opened using sterilised equipment and the rostral and caudal ends of each GIT compartment were tied with sterile surgical thread to avoid mixing of the contents. The compartments were then separated between the ties. Each compartment was longitudinally incised along the dorsal line. Tissue samples (~ 2 cm2) of the rumen were taken from the dorsal area and caecal tissue samples were taken from the region 5 cm after the ileocaecal valve. Meconium pellets (~ 100 g) were taken by severing the rectum 5 cm from the anus. The fluid, tissue and meconium samples were collected into sterile 15-mL or 50-mL polypropylene centrifuge tubes. All samples were immediately placed into dry ice for transport. All samples were processed within 6 h of collection to extract gDNA.
    DNA extraction
    Genomic DNA was extracted from 250 mg of ruminal tissue, ruminal fluid, caecal tissue, caecal fluid and meconium. An 8-mL aliquot of amniotic fluid was centrifuged (11,000g, 5 min) to produce sufficient material in the pellet for extraction. DNA was extracted using an Isolate II Genomic DNA kit following the manufacturer’s instructions. Final DNA concentrations and purity were estimated using a P330-Class NanoPhotometer (Implen, München, Germany). All samples were stored at − 80 °C for later analysis.
    16S rRNA library preparation and sequencing
    Libraries were prepared for sequencing on an Illumina MiSeq following the protocol ‘16S Metagenomic Sequencing Library Preparation’ (Part # 15044223 Rev. B; Illumina, San Diego, CA, USA). The locus-specific primers were the universal 16S rRNA primer pairs S-D-Bact-0341-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′) and S-D-Bact-0785-a-A-21 (5′-GACTACHVGGGTATCTAATCC-3′), Archaea349F (5′-GYGCASCAGKCGMGAAW-3′), and Archaea806R (5′-GGACTACVSGGGTATCTAAT-3′), which target the V3–V4 region of the bacterial and archaeal 16S rRNA genes, respectively. Primers had forward (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′) and reverse (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3′) Illumina overhang adaptors merged to the 5′ ends.
    PCR was performed in 25-µL reactions using 5 µL of each forward and reverse primer (10 µM), 12.5 µL 2 × KAPA HiFi HotStart ReadyMix (Kapa Biosystems, Boston, MA, USA) and 2.5 µL of genomic DNA template (5 µL/ng). PCR cycle settings for the amplification of the bacterial and archaeal V3–V4 region were as follows: denaturation at 95 °C for 3 min, followed by 28 (bacterial) or 30 (archaeal) cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C, followed by an extension step at 72 °C for 5 min. To normalise libraries prior to pooling, the DNA content of PCR reactions was quantified using an Agilent D1000 ScreenTape System (Agilent Technologies, CA, USA). Samples were adjusted to the same molarity (4 nM), pooled, and paired-end sequenced (2 × 300 bp) on an Illumina MiSeq platform. The MiSeq run was performed at La Trobe University Genomics Platform (Melbourne, Australia).
    Analysis of sequence data
    Raw, de-multiplexed, fastq files were re-barcoded, joined and quality filtered using the UPARSE clustering pipeline (USEARCH version 9.2.64; https://drive5.com/uparse)46. Paired-end reads were merged such that alignments with > 20 bp difference (i.e. approximately more than 10–14% mismatched) were discarded, and merged reads less than 300 bp in length were discarded. Reads that could not be assembled were discarded. Merged reads were quality filtered by discarding reads with total expected errors > 1.0. ESVs were generated with the “unoise3” command47. Taxonomic assignments were performed using the UTAX algorithm. Reference databases were created using the RDP_trainset_15 dataset, available from the UTAX downloads page (https://drive5.com/usearch/manual/utax_downloads.html). A minimum percentage identity of 90% was required for an ESV to be considered a database match hit. ESVs identified as chloroplasts and mitochondrial DNA were removed from the data. After filtering, the average read number (± SD) for each git compartment was: 4342 ± 1594 reads for the AM , 17,276 ± 17,376 reads for the CF, 6182 ± 3918 reads for the CT, 5732 ± 3262 reads for the Mec, 5630 ± 2234 reads for the RF and 5847 ± 4052 reads for the RT. The rarefying threshold of 1000 reads was chosen to maximise the amount of reads included in the analysis whilst minimize the number of samples excluded from the analysis. A total of three bacterial samples resulted in reads below the rarefication threshold (1000 reads) and were excluded from downstream alpha- and beta-diversity analyses. The samples were: Month_5_Mec-2, Month_6_CF-3 and Month_6_Mec-1. DNA extraction or library preparation was unsuccessful for the following samples: n = 0 (5 months cecum fluid), n = 1 (6 and 7 months rumen tissue, 7 months amniotic fluid), n = 2 (5 months rumen tissue, 6 months amniotic fluid), n = 3 (5 and 6 months cecum tissue, 5 months meconium), the remaining GIT compartments and months were n = 4. Raw fastq files for this project and metadata have been deposited with the NCBI SRA database and can be accessed using Bioproject ID: PRJNA421384 or SRA study ID: SRP126299.
    Bacterial culture from ruminal fluid samples and identification of bacterial isolates
    A 50-mL sample of ruminal fluid was taken from each foetus and maintained under anaerobic conditions (Oxoid AnaeroJar with an AnaeroGen™). A 1-mL aliquot of the ruminal fluid was transferred to anaerobic solid medium and cultured at 37 °C for 48–72 h. The anaerobic solid medium had the following composition (per litre of distilled water): 15 g agar (Oxoid), 10 g peptone (Oxoid), 10 g yeast extract, 8.8 g Oxoid Lab-Lemco beef extract powder, 10 g proteose peptone (Oxoid), 12 g dextrose, 10 g KH2PO4, 12 g NaCl, 20 g soluble starch, 1.2 g l-cysteine hydrochloride and 0.3 g sodium thioglycollate with a pH (at 25 °C) of 7.3 ± 0.1. Colonies were isolated and subcultured 5 times onto new agar media plates, except for the control plates (n = 3) which showed no microbial growth. Colonies were subcultured on fresh media and DNA extracted. The extracts for 5, 6 and 7 months were combined prior to next-generation sequencing of the 16S rRNA genes to characterise the taxonomic structure.
    Quantitative PCR
    Quantitative PCR (qPCR) was used to enumerate total bacterial and archaeal DNA copy number in each sample type (GIT component and amniotic fluid) as an indicator of abundance. The primer pairs bacF (5′-CCATTGTAGCACGTGTGTAGCC-3′) and bacR (5′-CGGCAACGAGCGCAACCC-3′) were used to amplify bacterial 16S rRNA, and Archaea364F (5′-CCTACGGGRBGCAGCAGG-3′) and Archaea1386R (5′-GCGGTGTGTGCAAGGAGC-3′) were used to amplify archaeal 16S rRNA. PCR reactions were run in triplicate on a CFX Connect Real-Time PCR Detection System (Bio-Rad, CA, USA). The total volume of each reaction mix was 20 μL, comprising 10 μL of SensiFAST SYBR Green Master Mix (Bioline), 0.4 μL of each forward and reverse primer (10 µM), sterile DNA-free water, and 7 ng of DNA. Triplicate control samples (no-DNA templates) were included to verify that no contaminating nucleic acid was introduced into the master mix or into samples. Positive controls contained gDNA extracted from laboratory cultured bacteria (E. coli strain DH5α) and archaea (Methanobrevibacter smithii), respectively. Thermocycling conditions were as follows: initial denaturation for 3 min at 94 °C, followed by 40 cycles of 10 s at 94 °C, 30 s at 60 °C. This was followed by a dissociation protocol (increasing 1 °C every 30 s from 60 °C to 98 °C).
    A standard curve was constructed using serial tenfold dilutions from 10−1 to 10−11 of DNA from the bacterium E. coli strain DH5α (Stratagene, CA, USA) or the archaeon M. smithii. Real-time PCR efficiency ranged from 97 to 102%. Copy numbers for each standard curve were calculated based on the following equation: (NA × A × 10−9)/(660 × n), where NA is the Avogadro constant (6.02 × 1023 mol−1), A is the molecular weight of DNA molecules (ng/mol) and n is the length of amplicon (bp).
    Control procedures for sample contamination
    Potential airborne bacteria were passively sampled to determine if there was a detectable contribution of environmental bacteria contaminating the foetal samples. Sampling tubes containing aerobic or anaerobic medium were opened and exposed to the dissection area in the abattoir for the duration of sampling from each foetus. The exposed media were incubated at 37 °C and samples taken at 72 h and at 2, 3 and 4 weeks. DNA was extracted using an Isolate II Genomic DNA kit. Final DNA concentrations and purity were estimated using a P330-Class NanoPhotometer.
    The dissection table and external surfaces of the amniotic sac and intestinal compartments were swabbed to determine if there was a detectable contribution of bacteria contaminating the foetal samples. For each foetus, 9 swabs were taken at six locations using sterile Fisherbrand synthetic-tipped applicator swabs (Thermo Fisher Scientific, MA, USA). The surface of the dissection table (first location) was washed with 70% ethanol and then swabbed prior to dissecting each foetus. The external surface of the amniotic sac (second) was rinsed three times with sterilised PBS to remove excess blood and then swabbed prior to opening the sac. The skin of the foetal abdomen (third) was rinsed three times with sterilised PBS to remove amniotic fluid and then swabbed prior to opening. The external (mesenteric) surfaces of the rumen (fourth), caecum (fifth) and rectum (sixth location) were separately swabbed prior to opening. The 9 swabs for each foetus were tested for the presence of microorganisms, using three swabs for each of the three methods: qPCR, anaerobic culture and aerobic culture. DNA was extracted from three of the swabs using an Isolate II Genomic DNA kit. Final DNA concentrations and purity were estimated using a P330-Class NanoPhotometer. Quantitative PCR was used to more accurately quantify the presence of DNA.
    Anaerobic and aerobic liquid mediums were inoculated from three swabs each. Three swabs were placed into a 2.5-L anaerobic Oxoid AnaeroJar with an AnaeroGen sachet (Thermo Fisher Scientific) and three swabs were placed into aerobic Oxoid Nutrient Broth (Thermo Fisher Scientific). All mediums were incubated at 37 °C for 48–72 h. Monitoring for growth during storage at 4 °C was continued for up to one month. The anaerobic liquid medium had the following composition (per litre of distilled water): 10 g peptone (Oxoid), 10 g yeast extract, 8.8 g Oxoid Lab-Lemco beef extract powder, 10 g proteose peptone (Oxoid), 12 g dextrose, 10 g KH2PO4, 12 g NaCl, 20 g soluble starch, 1.2 g L-cysteine hydrochloride and 0.3 g sodium thioglycollate with a pH (at 25 °C) of 7.3 ± 0.1. The aerobic nutrient broth had the following composition (per litre of distilled water): 10 g Lab-Lemco powder, 10 g peptone and 5 g NaCl, with a pH (at 25 °C) of 7.5 ± 0.2.
    Controls for kit contamination
    Two blank DNA spin columns from two different Isolate II Genomic DNA kits were used as no-template controls to determine if the kits were a source of contamination during DNA extraction and library preparation of samples. The no-template controls were tested using qPCR and Illumina MiSeq next-generation sequencing.
    Statistical analysis of the total community
    The adequacy of the sampling effort to capture the microbial community richness was examined by generating species rarefaction curves and species accumulation plots using the ‘rarecurve’ and ‘specaccum’ functions in the R library vegan (v. 2.3-4)48 using R 3.2.049. Alpha- and beta-diversity analyses were performed on archaeal and bacterial OTU-matrices rarefied to depths of 2000 and 1000 reads, respectively, using the ‘phyloseq’ (v. 1.16-2)50 and ‘vegan’ (v. 2.4-0)48,51 packages in the R programming language (v. 3.3.1)49. Normality and variance homogeneity of the data were tested using the ‘shapiro.test’ and ‘bartlett.test’ functions. As normality and homogeneity of variance assumptions were not met, Kruskal–Wallis tests were carried out using the ‘kruskal.test’ function with Dunn’s test of multiple comparisons used for post hoc testing. The NMDS ordinations were used to visualise differences between communities from different sample types (GIT components and amniotic fluid). Dissimilarity matrices were generated using the weighted and unweighted UniFrac metrics52. Analysis of similarity (ANOSIM) procedures were implemented to test for significant differences in the mean group centroids53. Differential abundance testing of ESVs was performed using the DESeq2 extension available within the ‘phyloseq’ package50,54. Tests were performed by applying model-fitting normalisation to unrarefied ESV tables as recommended by McMurdie and Holmes for each taxonomic rank50. For differential abundance tests only ESVs with high ( > 90%) confidence values for phylum-level taxonomic assignments were considered. All low confidence taxonomic assignment we re-classified as ‘unknown’. Differences were considered significant if Benjamin-Hochberg adjusted p  More

  • in

    Winter movement patterns of a globally endangered avian scavenger in south-western Europe

    1.
    Hansson, L. A. & Akesson, S. Animal Movement Across Scales (Oxford University Press, Oxford, 2014).
    Google Scholar 
    2.
    Dingle, H. & Drake, V. A. What is migration?. Bioscience 57, 113–121 (2007).
    Article  Google Scholar 

    3.
    Chapman, B. B., Brönmark, C., Nilsson, J. Å. & Hansson, L. A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).
    Article  Google Scholar 

    4.
    Newton, I. The Migration Ecology of Birds (Elservier, New York, 2010).
    Google Scholar 

    5.
    Cadahía, L. et al. Advancement of spring arrival in a long-term study of a passerine bird: Sex, age and environmental effects. Oecologia 184, 917–929 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    6.
    Ogonowski, M. S. & Conway, C. J. Migratory decisions in birds: Extent of genetic versus environmental control. Oecologia 161, 199–207 (2009).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360, 668–670 (1992).
    ADS  Article  Google Scholar 

    8.
    Studds, C. E., Kyser, T. K. & Marra, P. P. Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory songbird. Proc. Natl. Acad. Sci. 105, 2929–2933 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    9.
    Dale, C. A. & Leonard, M. L. Reproductive consequences of migration decisions by Ipswich Sparrows (Passerculus sandwichensis princeps). Can. J. Zool. 89, 100–108 (2011).
    Article  Google Scholar 

    10.
    Gilroy, J. J., Gill, J. A., Butchart, S. H. M., Jones, V. R. & Franco, A. M. A. Migratory diversity predicts population declines in birds. Ecol. Lett. 19, 308–317 (2016).
    PubMed  Article  Google Scholar 

    11.
    Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793. https://doi.org/10.1038/ncomms12793 (2016).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among european bird species. Clim. Res. 35, 135–146 (2007).
    Article  Google Scholar 

    13.
    Greig, E. I., Wood, E. M. & Bonter, D. N. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding. Proc. R. Soc. B Biol. Sci. 248, 20170256. https://doi.org/10.1098/rspb.2017.0256 (2017).
    Article  Google Scholar 

    14.
    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. B Biol. Sci. 281, 20132161. https://doi.org/10.1098/rspb.2013.2161 (2013).
    Article  Google Scholar 

    15.
    Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).
    PubMed  Article  Google Scholar 

    16.
    Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 7. https://doi.org/10.1186/s40462-016-0070-0 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    17.
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 6179. https://doi.org/10.1126/science.1242552 (2014).
    CAS  Article  Google Scholar 

    18.
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
    ADS  CAS  PubMed  Article  Google Scholar 

    19.
    Wilmers, C. C. et al. The golden age of bio-logging: How animal-borne sensors are advancing the frontiers of ecology. Ecology 96, 1741–1753 (2015).
    PubMed  Article  Google Scholar 

    20.
    Weimerskirch, H., Delord, K., Guitteaud, A., Phillips, R. A. & Pinet, P. Extreme variation in migration strategies between and within wandering albatross populations during their sabbatical year, and their fitness consequences. Sci. Rep. 5, 1–7. https://doi.org/10.1038/srep08853 (2015).
    CAS  Article  Google Scholar 

    21.
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 6240. https://doi.org/10.1126/science.aaa2478 (2015).
    CAS  Article  Google Scholar 

    22.
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Edelhoff, H., Signer, J. & Balkenhol, N. Path segmentation for beginners: An overview of current methods for detecting changes in animal movement patterns. Mov. Ecol. 4, 21. https://doi.org/10.1186/s40462-016-0086-5 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    24.
    Marzluff, J. M., Millspaugh, J. J., Hurvitz, P. & Handcock, M. S. Relating resources to a probabilistic measure of space use: Forest fragments and Steller’s Jays. Ecology 85, 1411–1427 (2004).
    Article  Google Scholar 

    25.
    Börger, L., Dalziel, B. D. & Fryxell, J. M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 (2008).
    PubMed  Article  Google Scholar 

    26.
    López-López, P., García-Ripollés, C. & Urios, V. Food predictability determines space use of endangered vultures: Implications for management of supplementary feeding. Ecol. Appl. 24, 938–949 (2014).
    PubMed  Article  Google Scholar 

    27.
    van Beest, F. M., Mysterud, A., Loe, L. E. & Milner, J. M. Forage quantity, quality and depletion as scaledependent mechanisms driving habitat selection of a large browsing herbivore. J. Anim. Ecol. 79, 910–922 (2010).
    PubMed  Google Scholar 

    28.
    Edwards, M. A., Nagy, J. A. & Derocher, A. E. Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Anim. Behav. 77, 23–28 (2009).
    Article  Google Scholar 

    29.
    Cagnacci, F. et al. Partial migration in roe deer: Migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos 120, 1790–1802 (2011).
    Article  Google Scholar 

    30.
    Monsarrat, S. et al. How predictability of feeding patches affects home range and foraging habitat selection in AVIAN social scavengers?. PLoS One 8, e53077. https://doi.org/10.1371/journal.pone.0053077 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 1–13. https://doi.org/10.1038/s41598-018-33564-y (2018).
    CAS  Article  Google Scholar 

    32.
    López-López, P., Benavent-Corai, J., García-Ripollés, C. & Urios, V. Scavengers on the move: Behavioural changes in foraging search patterns during the annual cycle. PLoS One 8, e54352. https://doi.org/10.1371/journal.pone.0054352 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    33.
    Devault, T. L., Reinhart, B. D., Brisbin, I. L. & Rhodes, O. E. Flight behavior of Black and Turkey vultures: Implications for reducing bird–aircraft collisions. J. Wildl. Man. 69, 610–608 (2005).
    Article  Google Scholar 

    34.
    Alarcón, P. A. E. & Lambertucci, S. A. A three-decade review of telemetry studies on vultures and condors. Mov. Ecol. 6, 13. https://doi.org/10.1186/s40462-018-0133-5 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    35.
    BirdLife International. IUCN Red List for birds. https://www.birdlife.org (2016).

    36.
    Del Moral, J. C. El alimoche común en España. Población reproductora en 2008 y método de censo.(2009).

    37.
    BirdLife International. European Red List of Birds. Office for Official Publications of the European Countries (2015).

    38.
    Phipps, W. L. et al. Spatial and temporal variability in migration of a soaring raptor across three continents. Front. Ecol. Evol. 7, 323. https://doi.org/10.3389/fevo.2019.00323 (2019).
    Article  Google Scholar 

    39.
    Oppel, S. et al. High juvenile mortality during migration in a declining population of a long-distance migratory raptor. Ibis 157, 545–557 (2015).
    Article  Google Scholar 

    40.
    García-Ripollés, C., López-López, P. & Urios, V. First description of migration and wintering of adult egyptian vultures neophron percnopterus tracked by GPS satellite telemetry. Bird Study 57, 261–265 (2010).
    Article  Google Scholar 

    41.
    SEO/BirdLife. Atlas de las aves en invierno en España 2007–2010. Atlas de las aves en invierno en España 2007–2010 (2012).

    42.
    Di Vittorio, M. et al. Wintering of Egyptian vultures (Neophron percnopterus) in Sicily: New data. Arx. Misc. Zool. 1, 114–116 (2016).
    Article  Google Scholar 

    43.
    Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).
    Article  Google Scholar 

    44.
    Sanz-Aguilar, A., De Pablo, F. & Donázar, J. A. Age-dependent survival of island vs. mainland populations of two avian scavengers: Delving into migration costs. Oecologia 179, 405–414 (2015).
    ADS  PubMed  Article  Google Scholar 

    45.
    Mateo-Tomás, P. & Olea, P. P. Diagnosing the causes of territory abandonment by the Endangered Egyptian vulture Neophron percnopterus: The importance of traditional pastoralism and regional conservation. Oryx. 44, 424–433 (2010).
    Article  Google Scholar 

    46.
    Donázar, J. A. Los Buitres Ibéricos: Biología y Conservación. (Reyero, 1993).

    47.
    Felicísimo Pérez, Á. M. Elaboración del atlas climático de Extremadura mediante un Sistema de Información Geográfica. GeoFocus 1, 17–23 (2001).
    Google Scholar 

    48.
    López-López, P., Maiorano, L., Falcucci, A., Barba, E. & Boitani, L. Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe. Acta Oecol. 37, 399–412 (2011).
    Article  Google Scholar 

    49.
    Traba, J., García De La Morena, E. L., Morales, M. B. & Suárez, F. Determining high value areas for steppe birds in Spain: Hot spots, complementarity and the efficiency of protected areas. Biodivers. Conserv. 16, 3255–3275 (2007).
    Article  Google Scholar 

    50.
    Arrondo, E. et al. Invisible barriers: Differential sanitary regulations constrain vulture movements across country borders. Biol. Conserv. 219, 46–52 (2018).
    Article  Google Scholar 

    51.
    Sergio, F. et al. No effect of satellite tagging on survival, recruitment, longevity, productivity and social dominance of a raptor, and the provisioning and condition of its offspring. J. App. Ecol. 52, 1665–1675 (2015).
    Article  Google Scholar 

    52.
    Finlayson, C. Birds of the Strait of Gibraltar (T. & A. D Poyser, London, 1992).
    Google Scholar 

    53.
    Panuccio, M., Martín, B., Morganti, M., Onrubia, A. & Ferrer, M. Long-term changes in autumn migration dates at the Strait of Gibraltar reflect population trends of soaring birds. Ibis 159, 55–65 (2017).
    Article  Google Scholar 

    54.
    Onrubia, A. Spatial and Temporal Patterns of Soaring Birds Migration Through the Strait of Gibraltar (University of León, Spain, 2015).
    Google Scholar 

    55.
    Zuberogoitia, I., Zabala, J., Martínez, J. A., Martínez, J. E. & Azkona, A. Effect of human activities on Egyptian vulture breeding success. Anim. Conserv. 11, 313–320 (2008).
    Article  Google Scholar 

    56.
    Signer, J. & Balkenhol, N. Reproducible home ranges (rhr): A new, user-friendly R package for analyses of wildlife telemetry data. Wildl. Soc. B. 39, 358–363 (2015).
    Article  Google Scholar 

    57.
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.osgeo.org. Qgisorg (2014).

    58.
    Hooten, M. B., Hanks, E. M., Johnson, D. S. & Alldredge, M. W. Reconciling resource utilization and resource selection functions. J. Anim. Ecol. 86, 1146–1154 (2013).
    Article  Google Scholar 

    59.
    Boyce, M. S. Scale for resource selection functions. Divers. Distrib. 12, 269–276 (2006).
    Article  Google Scholar 

    60.
    R Development Core Team. R: A Language and Environment for Statistical Computing. (2018).

    61.
    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75, 1182–1189 (2006).
    PubMed  Article  Google Scholar 

    62.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).
    Article  Google Scholar 

    63.
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 73–79 (2016).
    Article  Google Scholar 

    64.
    Fox, J. et al. car: Companion to Applied Regression. In: R Package Version 2.0-21 (2018).

    65.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.15-15.https://doi.org/10.1080/00031305.1980.10483031 (2019).

    66.
    Donovan, T. M. et al. Quantifying home range habitat requirements for bobcats (Lynx rufus) in Vermont, USA. Biol. Conserv. 144, 2799–2809 (2011).
    Article  Google Scholar 

    67.
    Eggeman, S. L., Hebblewhite, M., Bohm, H., Whittington, J. & Merrill, E. H. Behavioural flexibility in migratory behaviour in a long-lived large herbivore. J. Anim. Ecol. 85, 785–797 (2016).
    PubMed  Article  Google Scholar 

    68.
    Blanco, G. & Tella, J. L. Temporal, spatial and social segregation of red-billed choughs between two types of communal roost: A role for mating and territory acquisition. Anim. Behav. 59, 1219–1227 (1999).
    Article  Google Scholar 

    69.
    Lambertucci, S. A. & Ruggiero, A. Cliffs used as communal roosts by andean condors protect the birds from weather and predators. PLoS One 8, e67304. https://doi.org/10.1371/journal.pone.0067304 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    70.
    Bijleveld, A. I., Egas, M., van Gils, J. A. & Piersma, T. Beyond the information centre hypothesis: Communal roosting for information on food, predators, travel companions and mates?. Oikos 119, 277–285 (2010).
    Article  Google Scholar 

    71.
    Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 248–258 (2012).
    Google Scholar 

    72.
    Sanz-Aguilar, A., Jovani, R., Melián, C. J., Pradel, R. & Tella, J. L. Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species. Ecology 96, 1650–1660 (2015).
    Article  Google Scholar 

    73.
    Margalida, A., Donázar, J. A., Carrete, M. & Sánchez-Zapata, J. A. Sanitary versus environmental policies: Fitting together two pieces of the puzzle of European vulture conservation. J. Appl. Ecol. 47, 931–935 (2010).
    Article  Google Scholar 

    74.
    Negro, J. J. et al. An unusual source of essential carotenoids. Nature 416, 807–808 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    75.
    Rey Benayas, J. M. & De La Montaña, E. Identifying areas of high-value vertebrate diversity for strengthening conservation. Biol. Conserv. 114, 357–370 (2003).
    Article  Google Scholar 

    76.
    Botha, A. J. et al.Multi-species action plan to conserve African-Eurasian vultures (vulture MsAP). Raptors MOU Technical Publication (2017).

    77.
    Santangeli, A., Girardello, M., Buechley, E. R., Eklund, J. & Phipps, W. L. Navigating spaces for implementing raptor research and conservation under varying levels of violence and governance in the Global South. Biol. Conserv. 239, 108212. https://doi.org/10.1016/j.biocon.2019.108212 (2019).
    Article  Google Scholar 

    78.
    Sanz-Aguilar, A. et al. Action on multiple fronts, illegal poisoning and wind farm planning, is required to reverse the decline of the Egyptian vulture in southern Spain. Biol. Conserv. 187, 10–18 (2015).
    Article  Google Scholar 

    79.
    Blanco, G., Cortés-Avizanda, A., Frías, Ó., Arrondo, E. & Donázar, J. A. Livestock farming practices modulate vulture diet-disease interactions. Global Ecol. Conserv. 17, e00518. https://doi.org/10.1016/j.gecco.2018.e00518 (2019).
    Article  Google Scholar 

    80.
    Duriez, O. et al. Vultures attacking livestock: A problem of vulture behavioural change or farmers’ perception?. Bird Conserv. Int. 29, 437–453 (2019).
    Article  Google Scholar  More

  • in

    Substrate-dependent fish have shifted less in distribution under climate change

    Our results show that a species’ distribution—measured as change in mean center of biomass and change in northern and southern range extent—depends on the species relationship with oceanographic versus static environmental variables. In the fall, species whose distributions are most influenced by bottom salinity have shifted mean centroids of biomass significantly more than species whose distributions are most influenced by depth or substrate (nonparametric pairwise Wilcoxon test p = 0.00007 and p = 0.0013, Fig. 1a). Species whose distributions are most influenced by bottom temperature have shifted mean centroids of biomass significantly more than species whose distributions are most influenced by depth (nonparametric pairwise Wilcoxon test p = 0.0083, Fig. 1a) and shifted the northern and southern extent of their biomass weighted ranges significantly more than species whose distributions are most influenced by depth and substrate (nonparametric pairwise Wilcoxon test p = 0.00018 and p = 0.014, Fig. 1c and nonparametric pairwise Wilcoxon test p = 0.0038 and p = 0.024, Fig. 1d). Percentage change in biomass weighted range size did not depend on the strongest predictor variable for a species distribution (Fig. 1b). These patterns were not as strong in the spring (see Supplemental Fig. 1).
    Fig. 1: Historic distribution shifts versus the most important predictor variable for a species distribution in the fall.

    Shifts in mean centroid of biomass from first 5 years to last 5 years in kilometers (a), percentage change in biomass range size from first 5 years to last 5 years in meters squared (b). Change in northern (c) and southern (d) extent of the biomass weighted range from first 5 years to last 5 years (n = 93). Brackets and numbers represent p-value. Whiskers represent 1.5* interquartile range. Box represents interquartile range as distance between first and third quartiles. Line represents median, red point represents mean, and black points represent outliers (outside of 1.5*IQR).

    Full size image

    Our results show that in the spring and fall, pelagic species’ distributions are primarily influenced by ocean temperature and depth, while demersal species’ distributions are predominately influenced by ocean temperature and substrate, and benthic species’ distributions are influenced by substrate (Fig. 2).
    Fig. 2: Strongest predictor variable for each species group in the fall.

    Percentage of each species group that had substrate, depth, bottom temperature, and salinity as the strongest predictor variable in terms of deviance explained for the entire time series (n = 93). Results were similar across seasons (see Supplemental Fig. 2).

    Full size image

    Pelagic species have shifted mean center of biomass significantly more over the historic time period compared with benthic species in the fall and significantly more than demersal species in the spring (nonparametric pairwise Wilcoxon test p = 0.039 and p = 0.045, Figs. 3a and 4a). Similarly, pelagic species have expanded their range size significantly more than demersal species and have shifted the northern extent of their range boundary significantly more than demersal species in the spring (nonparametric pairwise Wilcoxon test p = 0.024 and p = 0.028, Fig. 4c, d).
    Fig. 3: Historic distribution shifts for three species types in the fall.

    Fall shifts in southern mean centroid (a), percentage change in range size (b), shifts in northern range boundary (c), and southern range boundary (d) from first 5 years and last 5 years in latitudinal degrees for each species group (n = 93). Brackets and numbers represent p-value. Whiskers represent 1.5* interquartile range. Box represents interquartile range as distance between first and third quartiles. Line represents median, red point represents mean, and black points represent outliers (outside of 1.5*IQR).

    Full size image

    Fig. 4: Historic distribution shifts for three species types in the spring.

    Spring shifts in southern mean centroid (a), percentage change in range size (b), shifts in northern range boundary (c), and southern range boundary (d) from first 5 years and last 5 years in latitudinal degrees for each species group (n = 91). Brackets and numbers represent p-value. Whiskers represent 1.5* interquartile range. Box represents interquartile range as distance between first and third quartiles. Line represents median, red point represents mean, and black points represent outliers (outside of 1.5*IQR).

    Full size image

    These results indicate that benthic species, more influenced by substrate than pelagic species, have retained their historical distributions in response to climate change, while pelagic species have shifted drastically. Exemplars of benthic fish that have retained their distributions include American plaice (Hippoglossoides platessoides), witch flounder (Glyptocephalus cynoglossus), and winter flounder (Pseudopleuronectes americanus) (Fig. 5a). These species distributions are strongly influenced by benthic substrate (Supplemental Data 1 and 2). Exemplars of pelagic fish that have shifted their distributions include rough scad (Trachurus lathami), Atlantic menhaden (Brevoortia tyrannus), and round herring (Etrumeus teres) (Fig. 5b). These species distributions are strongly influenced by bottom temperature and salinity (Supplemental Data 1 and 2).
    Fig. 5: Changes in the biomass weighted mean centroid of species distributions in the Fall.

    Biomass weighted mean centroids were calculated for two time periods: time period 1 (1986–1990) and time period 2 (2014–2018). Benthic species associated with bottom substrate retain their historical distributions (a) whereas pelagic species have shifted distributions (b). Species were selected to show extreme shifts and extreme retentions of distributions, and all shifts can be found in Supplemental Data 1 and 2.

    Full size image

    By linking the historic evidence of species distribution shifts with their relationship with bottom temperature, bottom salinity, and benthic substrate, we have identified a broad generalization on how species with specific life history traits may be influenced by future climate change. Recent work suggests that pelagic species may shift farther under climate change compared with benthic invertebrates14, and recent studies have included sediment type as a constraining variable in projections of future species distributions15. In conjunction with this work, our research highlights that these strong shifts have already occurred historically, and they are influenced by the strength of a pelagic fish species’ relationship with bottom temperature or salinity, compared with benthic species, which are more influenced by substrate. Given the importance of bottom substrate on benthic species distributions, we may see shifts in population dynamics, such as abundance and productivity as temperatures warm instead of geographic shifts in distributions. For, increased ocean warming that may go beyond their preferred thermal envelope is expected in the Northeast LME and Mid Atlantic9. If affinity for substrate type keeps benthic species in regions that become too warm, these species may find themselves in suboptimal conditions and will not be able to relocate as easily as pelagic species.
    Moreover, we examine demersal species that are influenced by both bottom temperature and substrate and have shifted moderately compared to benthic or pelagic species. Research in the North Sea suggests that demersal species are shifting to deeper waters, which may suggest an interaction between bottom temperature and depth that requires further research16. Research in the Northeast LME has linked the shrinking spatial distribution of cusk, a demersal species, to a combination of ocean warming and the ensuing fragmentation of suitable bottom habitat17, suggesting another interaction requiring future examination. As an intermediate case, these species may be the most unpredictable under climate change, and thus fisheries management will have to consider the varying nature of these species’ distribution shifts.
    These results provide historical evidence of pelagic species shifting distributions while benthic species remain more associated with their preferred substrate, which is most likely a result of the functional differences between these types of species. For example, the recruitment success of Atlantic menhaden (Brevoortia tyrannus), a pelagic schooling species we identified to shift historical distributions, is strongly related to ocean temperatures and larger climate dynamics such as the Atlantic Multidecadal Oscillation which influences temperatures and salinity18. The suitable habitat and migration timing of mackerel (Scomber scombrus), a pelagic schooling species, has been linked to changes in ocean temperatures and multidecadal variability19, relying on temperature cues for their seasonal migrations. Research in the North Sea and Baltic Sea suggest that the northward shift of anchovies (Engraulis encrasicolus) and sardines (Sardina pilchardus), two pelagic species, is strongly linked to temperature20. Benthic species, on the other hand, rely on structured biotic habitats, such as marshes, coral reefs, and submerged aquatic vegetation as well as abiotic sediment for their survival21. The importance of abiotic sediment stems from the productivity of these habitats, as they usually contain high levels of detritus, microbes, and microinvertebrates22.
    It is important to identify the limitations of the approaches used in this study. The original species-CPUE data were collected from North Carolina to the Gulf of Maine, meaning we sampled a realized niche of the studied species. In comparison, the fundamental niche of the species may extend beyond our study area, in both the southern and northern directions. This study examined the role of bottom temperature, salinity, depth and substrate on species distributions, but was unable to examine the potential effects of fishing pressure, interspecific interactions, demographic changes, population sizes, or larval dispersal on species distributions and abundance23. While research has demonstrated that simple area-weighted center of distributions can be biased, we attempted to account for this by using several metrics of distribution (area occupied, northern, and southern extents of ranges)24.
    Despite these limitations, we expect our results will be valuable for fisheries managers as they anticipate the likelihood of species distribution shifts in their management areas. While current work has examined the role of temperature in determining species shifts, our work highlights the importance of examining the differential role of other static ecological variables on determining a species likelihood of shifting distributions under climate change. By uncovering the differential effects of certain habitat constraints on pelagic versus demersal and benthic species, we can begin to understand why certain species have shifted dramatically over the last thirty years, while others have retained their historical distributions. These results highlight the need for stock assessments and future species distribution models that include the functional differences among species as well as the environmental variables that constrain their distributions in order to more appropriately understand the potential impacts of climate change on their future distributions. Only then can we understand how future fisheries will be impacted by the ecological effects of climate change. More

  • in

    Long-run bacteria-phage coexistence dynamics under natural habitat conditions in an environmental biotechnology system

    1.
    Bouvier T, del Giorgio PA. Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol. 2007;9:287–97.
    CAS  PubMed  Article  Google Scholar 
    2.
    Brown MR, Baptista JC, Lunn M, Swan DL, Smith SJ, Davenport RJ, et al. Coupled virus – bacteria interactions and ecosystem function in an engineered microbial system. Water Res. 2019;152:264–73.
    CAS  PubMed  Article  Google Scholar 

    3.
    Shapiro OH, Kushmaro A, Brenner A. Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J. 2010;4:327–36.
    PubMed  Article  Google Scholar 

    4.
    Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc B Biol Sci. 2002;269:931–6.
    Article  Google Scholar 

    5.
    Stern A, Sorek R. The phage-host arms race: shaping the evolution of microbes. BioEssays. 2011;33:43–51.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Rostøl JT, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe. 2019;25:184–94.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Paez-Espino D, Sharon I, Morovic W, Stahl B, Thomas BC, Barrangou R, et al. CRISPR immunity drives rapid phage genome evolution in streptococcus thermophilus. MBio. 2015;6:1–9.
    CAS  Article  Google Scholar 

    8.
    Common J, Morley D, Westra ER, Van Houte S. CRISPR-Cas immunity leads to a coevolutionary arms race between Streptococcus thermophilus and lytic phage. Philos Trans R Soc B Biol Sci. 2019;374:20180098.
    CAS  Article  Google Scholar 

    9.
    Flores CO, Valverde S, Weitz JS. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 2013;7:520–32.
    PubMed  Article  Google Scholar 

    10.
    Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13:278–84.
    CAS  PubMed  Article  Google Scholar 

    11.
    Heilmann S, Sneppen K, Krishna S. Coexistence of phage and bacteria on the boundary of self-organized refuges. Proc Natl Acad Sci USA. 2012;109:12828–33.
    CAS  PubMed  Article  Google Scholar 

    12.
    Patterson AG, Jackson SA, Taylor C, Evans GB, Salmond GPC, Przybilski R, et al. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol Cell. 2016;64:1102–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Alseth EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature. 2019;574:549–52.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    14.
    Sousa JAM, de, Rocha EPC. Environmental structure drives resistance to phages and antibiotics during phage therapy and to invading lysogens during colonisation. Sci Rep. 2019;9:1–13.
    Article  CAS  Google Scholar 

    15.
    Scanlan PD. Bacteria–bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. Trends Microbiol. 2017;25:614–23.
    CAS  PubMed  Article  Google Scholar 

    16.
    Dang VT, Sullivan MB. Emerging methods to study bacteriophage infection at the single-cell level. Front Microbiol. 2014;5:724.
    PubMed  PubMed Central  Article  Google Scholar 

    17.
    Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016;40:258–72.
    CAS  PubMed  Article  Google Scholar 

    18.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.
    CAS  PubMed  Article  Google Scholar 

    19.
    McGinn J, Marraffini LA. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat Rev Microbiol. 2019;17:7–12.
    CAS  PubMed  Article  Google Scholar 

    20.
    Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science. 2008;320:1047–50.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Sun CL, Thomas BC, Barrangou R, Banfield JF. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories. ISME J. 2016;10:858–70.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Stern A, Mick E, Tirosh I, Sagy O, Sorek R. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res. 2012;22:1985–94.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    23.
    Emerson JB, Andrade K, Thomas BC, Norman A, Allen EE, Heidelberg KB, et al. Virus-host and CRISPR dynamics in archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea. 2013;2013:370871.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Laanto E, Hoikkala V, Ravantti J, Sundberg LR. Long-term genomic coevolution of host-parasite interaction in the natural environment. Nat Commun. 2017;8:111.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    25.
    Held NL, Herrera A, Quiroz HC, Whitaker RJ. CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS ONE. 2010;5:e12988.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    26.
    Tomida J, Morita Y, Shibayama K, Kikuchi K, Sawa T, Akaike T, et al. Diversity and microevolution of CRISPR loci in Helicobacter cinaedi. PLoS ONE. 2017;12:e0186241.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    27.
    Pauly MD, Bautista MA, Black JA, Whitaker RJ. Diversified local CRISPR-Cas immunity to viruses of Sulfolobus islandicus. Philos Trans R Soc B Biol Sci. 2019;374:20180093.
    CAS  Article  Google Scholar 

    28.
    Richter C, Dy RL, McKenzie RE, Watson BNJ, Taylor C, Chang JT, et al. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 2014;42:8516–26.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Watson BNJ, Vercoe RB, Salmond GPC, Westra ER, Staals RHJ, Fineran PC. Type I-F CRISPR-Cas resistance against virulent phages results in abortive infection and provides population-level immunity. Nat Commun. 2019;10:1–8.
    CAS  Article  Google Scholar 

    30.
    Childs LM, England WE, Young MJ, Weitz JS, Whitaker RJ. CRISPR-induced distributed immunity in microbial populations. PLoS ONE. 2014;9:e101710.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    31.
    Common J, Walker-Sünderhauf D, van Houte S, Westra ER. Diversity in CRISPR-based immunity protects susceptible genotypes by restricting phage spread and evolution. J Evol Biol. 2020;33:1097–108.
    CAS  Article  Google Scholar 

    32.
    Payne P, Geyrhofer L, Barton NH, Bollback JP. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. Elife. 2018;7:e32035.
    PubMed  PubMed Central  Article  Google Scholar 

    33.
    Van Houte S, Ekroth AKE, Broniewski JM, Chabas H, Ashby B, Bondy-Denomy J, et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature. 2016;532:385–8.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    34.
    Chabas H, Lion S, Nicot A, Meaden S, van Houte S, Moineau S, et al. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 2018;16:e2006738.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    35.
    Morley D, Broniewski JM, Westra ER, Buckling A, van Houte S. Host diversity limits the evolution of parasite local adaptation. Mol Ecol. 2017;26:1756–63.
    PubMed  Article  PubMed Central  Google Scholar 

    36.
    Westra ER, Van Houte S, Gandon S, Whitaker R. The ecology and evolution of microbial CRISPR-Cas adaptive immune systems. Philos Trans R Soc B Biol Sci. 2019;374:20190101.
    CAS  Article  Google Scholar 

    37.
    Fernández L, Rodríguez A, García P. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J. 2018;12:1171–9.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Pérez MV, Guerrero LD, Orellana E, Figuerola EL, Erijman L. Time Series Genome-Centric Analysis Unveils Bacterial Response to Operational Disturbance in Activated Sludge. mSystems. 2019;4:e00169–19.
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Goodfellow M, Kumar Y, Maldonado LA. Bergey’s manual of systematics of archaea and bacteria. Hoboken, New Jersey: John Wiley & Sons, Inc; 2015.
    Google Scholar 

    40.
    Drzyzga O. The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol. 2012;38:300–16.
    CAS  PubMed  Article  Google Scholar 

    41.
    Arenskötter M, Bröker D, Steinbüchel A. Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol. 2004;70:3195–204.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    42.
    de los Reyes MF, de los Reyes FL, Hernandez M, Raskin L. Quantification of Gordona amarae strains in foaming activated sludge and anaerobic digester systems with oligonucleotide hybridization probes. Appl Environ Microbiol. 1998;64:2503–12.
    Article  Google Scholar 

    43.
    Kragelund C, Remesova Z, Nielsen JL, Thomsen TR, Eales K, Seviour R, et al. Ecophysiology of mycolic acid-containing Actinobacteria (Mycolata) in activated sludge foams. FEMS Microbiol Ecol. 2007;61:174–84.
    CAS  PubMed  Article  Google Scholar 

    44.
    Russell DA, Hatfull GF. PhagesDB: The actinobacteriophage database. Bioinformatics. 2017;33:784–6.
    CAS  PubMed  Article  Google Scholar 

    45.
    Pope WH, Mavrich TN, Garlena RA, Guerrero-Bustamante CA, Jacobs-Sera D, Montgomery MT, et al. Bacteriophages of Gordonia spp. Display a spectrum of diversity and genetic relationships. mBio. 2017;8:e01069–17.
    PubMed  PubMed Central  Article  Google Scholar 

    46.
    Montgomery MT, Guerrero Bustamante CA, Dedrick RM, Jacobs-Sera D, Hatfull GF. Yet more evidence of collusion: a new viral defense system encoded by Gordonia phage CarolAnn. mBio. 2019;10:e02417–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species, culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe. 2014;9:111–7.
    Google Scholar 

    48.
    Quince C, Delmont TO, Raguideau S, Alneberg J, Darling AE, Collins G, et al. DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol. 2017;18:181.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–51.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics. 2016;17:356.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    51.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    54.
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    55.
    Pope WH, Jacobs-Sera D. Annotation of bacteriophage genome sequences using DNA master: an overview. Methods Mol Biol. 2018;1681:217–29.
    CAS  PubMed  Article  Google Scholar 

    56.
    Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    57.
    Skennerton CT, Imelfort M, Tyson GW. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Res. 2013;41:e105.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    58.
    Rho M, Wu YW, Tang H, Doak TG, Ye Y. Diverse CRISPRs evolving in human microbiomes. PLoS Genet. 2012;8:e1002441.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Keck F, Rimet F, Bouchez A, Franc A. Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol. 2016;6:2774–80.
    PubMed  PubMed Central  Article  Google Scholar 

    61.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    63.
    Lei J, Sun Y. Assemble CRISPRs from metagenomic sequencing data. Bioinformatics. 2016;32:i520–8.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Lam TJ, Ye Y. Long reads reveal the diversification and dynamics of CRISPR reservoir in microbiomes. BMC Genomics. 2019;20:567.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    65.
    Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, et al. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell. 2016;62:137–47.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJJ. CRISPR-Cas: adapting to change. Science. 2017;356:eaal5056.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    67.
    Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature. 2015;520:505–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Ellington MJ, Heinz E, Wailan AM, Dorman MJ, de Goffau M, Cain AK, et al. Contrasting patterns of longitudinal population dynamics and antimicrobial resistance mechanisms in two priority bacterial pathogens over 7 years in a single center. Genome Biol. 2019;20:184.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Jackson SA, Birkholz N, Malone LM, Fineran PC. Imprecise spacer acquisition generates CRISPR-Cas immune diversity through primed adaptation. Cell Host Microbe. 2019;25:250–60.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    70.
    Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190:1390–400.
    CAS  PubMed  Article  Google Scholar 

    71.
    Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci USA. 2011;108:10098–103.
    CAS  PubMed  Article  Google Scholar 

    72.
    Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV. Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. J Bacteriol. 2013;195:3834–44.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    73.
    Lenski RE. Coevolution of bacteria and phage: Are there endless cycles of bacterial defenses and phage counterdefenses? J Theor Biol. 1984;108:319–25.
    CAS  PubMed  Article  Google Scholar 

    74.
    Bull JJ, Christensen KA, Scott C, Jack BR, Crandall CJ, Krone SM. Phage-bacterial dynamics with spatial structure: Self organization around phage sinks can promote increased cell densities. Antibiotics. 2018;7:8.
    PubMed Central  Article  CAS  PubMed  Google Scholar 

    75.
    Hall AR, Scanlan PD, Morgan AD, Buckling A. Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol Lett. 2011;14:635–42.
    PubMed  Article  PubMed Central  Google Scholar 

    76.
    Best A, Ashby B, White A, Bowers R, Buckling A, Koskella B, et al. Host-parasite fluctuating selection in the absence of specificity. Proc R Soc B Biol Sci. 2017;284:20171615.
    Article  Google Scholar 

    77.
    Gómez P, Buckling A. Bacteria-phage antagonistic coevolution in soil. Science. 2011;332:106–9.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    78.
    Ignacio-Espinoza JC, Ahlgren NA, Fuhrman JA. Long-term stability and Red Queen-like strain dynamics in marine viruses. Nat Microbiol. 2020;5:265–71.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    79.
    Lopez Pascua L, Hall AR, Best A, Morgan AD, Boots M, Buckling A. Higher resources decrease fluctuating selection during host-parasite coevolution. Ecol Lett. 2014;17:1380–8.
    PubMed  PubMed Central  Article  Google Scholar 

    80.
    Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes. Nature. 2020;577:327–36.
    CAS  PubMed  Article  Google Scholar 

    81.
    Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S, Hurst GDD. Running with the Red Queen: The role of biotic conflicts in evolution. Proc R Soc B Biol Sci. 2014;281:20141382.
    Article  Google Scholar 

    82.
    Vuono DC, Benecke J, Henkel J, Navidi WC, Cath TY, Munakata-Marr J, et al. Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J. 2015;9:425–35.
    CAS  PubMed  Article  Google Scholar 

    83.
    Kuai L, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification- denitrification system. Appl Environ Microbiol. 1998;64:4500–6.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    84.
    Hosseinidoust Z, Tufenkji N, van de Ven TGM. Formation of biofilms under phage predation: considerations concerning a biofilm increase. Biofouling. 2013;29:457–68.
    CAS  PubMed  Article  Google Scholar 

    85.
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018;359:eaar4120.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    86.
    Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-Offs between competition and defense specialists among unicellular planktonic organisms: the ‘Killing the Winner’ hypothesis revisited. Microbiol Mol Biol Rev. 2010;74:42–57.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    87.
    Tyson GW, Banfield JF. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol. 2008;10:200–7.
    CAS  PubMed  Google Scholar 

    88.
    Weinberger AD, Wolf YI, Lobkovsky AE, Gilmore MS, Koonin EV. Viral diversity threshold for adaptive immunity in prokaryotes. mBio. 2012;3:e00456–12.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    89.
    Cohan FM, Perry EB. A systematics for discovering the fundamental units of bacterial diversity. Curr Biol. 2007;17:R373–86.
    CAS  PubMed  Article  Google Scholar 

    90.
    Bendall ML, Stevens SLR, Chan LK, Malfatti S, Schwientek P, Tremblay J, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.
    PubMed  PubMed Central  Article  Google Scholar 

    91.
    Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40.
    PubMed  Article  Google Scholar 

    92.
    Ayarza JM, Erijman L. Balance of neutral and deterministic components in the dynamics of activated sludge floc assembly. Micro Ecol. 2011;61:486–95.
    Article  Google Scholar 

    93.
    de los Reyes FL. Foam in wastewater treatment facilities. In: Handbook of hydrocarbon and lipid microbiology. Berlin Heidelberg: Springer; 2010. pp. 2401–11.

    94.
    Petrovski S, Seviour RJ, Tillett D. Prevention of Gordonia and Nocardia stabilized foam formation by using bacteriophage GTE7. Appl Environ Microbiol. 2011;77:7864–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    95.
    Liu M, Gill JJ, Young R, Summer EJ. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge. Sci Rep. 2015;5:13754.
    PubMed  PubMed Central  Article  Google Scholar 

    96.
    Curtis TP, Head IM, Graham DW. Peer reviewed: theoretical ecology for engineering biology. Environ Sci Technol. 2003;37:64A–70A.
    PubMed  Article  Google Scholar 

    97.
    Daims H, Taylor MW, Wagner M. Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 2006;24:483–9.
    CAS  PubMed  Article  Google Scholar  More