Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).Article
CAS
Google Scholar
Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).Article
ADS
CAS
Google Scholar
Pande, S. & Kost, C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25, 349–361 (2017).Article
CAS
Google Scholar
Nadell, C. D., Xavier, J. B. & Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206–224 (2009).Article
CAS
Google Scholar
Fritts, R. K., McCully, A. L. & McKinlay, J. B. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol. Mol. Biol. Rev. 85, 135 (2021).Article
Google Scholar
D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).Article
Google Scholar
Libby, E., Hébert-Dufresne, L., Hosseini, S.-R. & Wagner, A. Syntrophy emerges spontaneously in complex metabolic systems. PLoS Comput. Biol. 15, e1007169 (2019).Article
Google Scholar
Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).Article
CAS
Google Scholar
Zachar, I. Closing the energetics gap. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01839-3 (2022).Article
Google Scholar
Zachar, I. & Boza, G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell. Mol. Life Sci. 77, 3503–3523. https://doi.org/10.1007/s00018-020-03462-6 (2020).Article
CAS
Google Scholar
Zachar, I. & Szathmáry, E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses. Biol. Direct 12, 19. https://doi.org/10.1186/s13062-017-0190-5 (2017).Article
CAS
Google Scholar
Booth, A. & Doolittle, W. F. Eukaryogenesis, how special really?. Proc. Natl. Acad. Sci. 112, 10278–10285 (2015).Article
ADS
CAS
Google Scholar
Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).Article
CAS
Google Scholar
Szathmáry, E. On the propagation of a conceptual error concerning hypercycles and cooperation. J. Syst. Chem. 4, 2208 (2013).Article
Google Scholar
Seth, E. C. & Taga, M. E. Nutrient cross-feeding in the microbial world. Front. Microbiol. 5, 350 (2014).Article
Google Scholar
Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl. Acad. Sci. 116, 15979–15984 (2019).Article
ADS
CAS
Google Scholar
Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial cross-protection mutualism. Proc. Natl. Acad. Sci. 113, 6236–6241 (2016).Article
ADS
CAS
Google Scholar
Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, 45 (2021).Article
Google Scholar
Momeni, B., Xie, L. & Shou, W. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions. Elife 6, 25051 (2017).Article
Google Scholar
Zengler, K. & Zaramela, L. S. The social network of microorganisms: How auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).Article
CAS
Google Scholar
Koschwanez, J. H., Foster, K. R. & Murray, A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011).Article
CAS
Google Scholar
Ciofu, O., Beveridge, T. J., Kadurugamuwa, J., Walther-Rasmussen, J. & Høiby, N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45, 9–13 (2000).Article
CAS
Google Scholar
Xenophontos, C., Harpole, W. S., Küsel, K. & Clark, A. T. Cheating promotes coexistence in a two-species one-substrate culture model. Front. Ecol. Evol. 9, 78006 (2022).Article
Google Scholar
West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).Article
Google Scholar
Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).Article
CAS
Google Scholar
Kümmerli, R. & Brown, S. P. Molecular and regulatory properties of a public good shape the evolution of cooperation. Proc. Natl. Acad. Sci. 107, 18921–18926 (2010).Article
ADS
Google Scholar
Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).Article
ADS
CAS
Google Scholar
Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2019).Article
Google Scholar
van der Meij, A., Worsley, S. F., Hutchings, M. I. & van Wezel, G. P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41, 392–416 (2017).Article
Google Scholar
Kümmerli, R., Schiessl, K. T., Waldvogel, T., McNeill, K. & Ackermann, M. Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol. Lett. 17, 1536–1544 (2014).Article
Google Scholar
Jautzus, T., van Gestel, J. & Kovács, Á. T. Complex extracellular biology drives surface competition in lessigreaterBacillus subtilisless/igreater. Ecol. Lett. 16, 2320–2328. https://doi.org/10.1101/2022.02.28.482363 (2022).Article
CAS
Google Scholar
Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).Article
Google Scholar
Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. 107, 2124–2129 (2010).Article
ADS
CAS
Google Scholar
Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article
Google Scholar
Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).Article
ADS
CAS
Google Scholar
Sorg, R. A. et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol. 14, e2000631 (2016).Article
Google Scholar
Karray, F. et al. Extracellular hydrolytic enzymes produced by halophilic bacteria and archaea isolated from hypersaline lake. Mol. Biol. Rep. 45, 1297–1309 (2018).Article
CAS
Google Scholar
Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).Article
ADS
CAS
Google Scholar
Tarnita, C. E. The ecology and evolution of social behavior in microbes. J. Exp. Biol. 220, 18–24 (2017).Article
Google Scholar
Özkaya, Ö., Xavier, K. B., Dionisio, F. & Balbontn, R. Maintenance of microbial cooperation mediated by public goods in single- and multiple-trait scenarios. J. Bacteriol. 199, 22 (2017).Article
Google Scholar
Yang, D.-D. et al. Fitness and productivity increase with ecotypic diversity among Escherichia coli strains that coevolved in a simple, constant environment. Appl. Environ. Microbiol. 86, 8 (2020).Article
Google Scholar
Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2013).Article
Google Scholar
Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).Article
CAS
Google Scholar
Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl. Acad. Sci. 115, 12000–12004 (2018).Article
ADS
CAS
Google Scholar
Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010).Article
ADS
CAS
Google Scholar
Maddamsetti, R., Lenski, R. E. & Barrick, J. E. Adaptation, clonal interference, and frequency-dependent interactions in a long-term evolution experiment with Escherichia coli. Genetics 200, 619–631 (2015).Article
CAS
Google Scholar
Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102, 127–144 (1998).Article
Google Scholar
Popat, R. et al. Quorum-sensing and cheating in bacterial biofilms. Proc. R. Soc. B 279, 4765–4771 (2012).Article
CAS
Google Scholar
Rainey, P. B. & Rainey, K. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74 (2003).Article
ADS
CAS
Google Scholar
Hardin, G. Tragedy of the commons. Science 162, 1243 (1968).Article
ADS
CAS
Google Scholar
West, S. A., Cooper, G. A., Ghoul, M. B. & Ten Griffin, A. S. recent insights for our understanding of cooperation. Nat. Ecol. Evol. 5, 419–430 (2021).Article
Google Scholar
MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).Article
CAS
Google Scholar
Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl. Acad. Sci. 111, 17941–17946 (2014).Article
ADS
CAS
Google Scholar
Tilman, D. Resource Competition and Community Structure. Monographs in Population Biology, Vol. 17 (Princeton University Press, 1982).
Google Scholar
Ferenci, T. Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol. 24, 209–223 (2016).Article
CAS
Google Scholar
Rozen, D. E., Philippe, N., de Visser, J. A., Lenski, R. E. & Schneider, D. Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecol. Lett. 12, 34–44 (2009).Article
Google Scholar
Brännström, Å., Johansson, J. & von Festenberg, N. The Hitchhiker’s Guide to Adaptive Dynamics. Games 4, 304–328 (2013).Article
MATH
Google Scholar
Ramin, K. I. & Allison, S. D. Bacterial tradeoffs in growth rate and extracellular enzymes. Front. Microbiol. 10, 2956 (2019).Article
Google Scholar
Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).Article
ADS
CAS
Google Scholar
Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).Article
Google Scholar
Libby, E., Kempes, C. & Okie, J. Metabolic compatibility and the rarity of prokaryote endosymbioses. BioRxiv https://doi.org/10.1101/2022.04.14.488272 (2022).Article
Google Scholar
Pauli, B., Oña, L., Hermann, M. & Kost, C. Obligate mutualistic cooperation limits evolvability. Nat. Commun. 13, 27630 (2022).Article
Google Scholar
Oña, L. & Kost, C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol. Lett. 25, 1410–1420 (2022).Article
Google Scholar
Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).Article
Google Scholar
Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. 111, E2149–E2156 (2014).Article
ADS
CAS
Google Scholar
Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).Article
ADS
CAS
Google Scholar
McCutcheon, J. P. The genomics and cell biology of host-beneficial intracellular infections. Annu. Rev. Cell Dev. Biol. 37, 115–142 (2021).Article
CAS
Google Scholar
Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 5 (2016).Article
Google Scholar
Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).Article
CAS
Google Scholar
Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).Article
ADS
CAS
Google Scholar
López-García, P. & Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).Article
Google Scholar
Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).Article
Google Scholar
Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).Article
ADS
CAS
Google Scholar
Zachar, I., Szilágyi, A., Számadó, S. & Szathmáry, E. Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc. Natl. Acad. Sci. USA. 115, E1504–E1510. https://doi.org/10.1073/pnas.1718707115 (2018).Article
ADS
CAS
Google Scholar
Cavalier-Smith, T. & Chao, E.E.-Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma https://doi.org/10.1007/s00709-019-01442-7 (2020).Article
Google Scholar
Searcy, D. G. Nutritional syntrophies and consortia as models for the origin of mitochondria. Symb. Mech. Model Syst. 1, 163–183. https://doi.org/10.1007/0-306-48173-1_10 (2002).Article
Google Scholar
Müller, N., Timmers, P., Plugge, C. M., Stams, A. J. M. & Schink, B. Syntrophy in methanogenic degradation. Endosymb. Methanog. Archaea 1, 153–192. https://doi.org/10.1007/978-3-319-98836-8_9 (2018).Article
Google Scholar
Searcy, D. G. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 13, 229–238 (2003).Article
CAS
Google Scholar
Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).Article
CAS
Google Scholar
Spang, A. et al. Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 14, e1007080 (2018).Article
Google Scholar
Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704 (2018).Article
Google Scholar
Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1 (2019).Article
ADS
CAS
Google Scholar
Jimenez, P. & Scheuring, I. Density-dependent private benefit leads to bacterial mutualism. Evolution 75, 1619–1635. https://doi.org/10.1111/evo.14241 (2021).Article
Google Scholar
Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. 30, 3580-3590.e7 (2020).Article
CAS
Google Scholar
Monaco, H. et al. Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating. Nat. Commun. 13, 3580 (2022).Article
ADS
Google Scholar
Yanni, D., Márquez-Zacarias, P., Yunker, P. J. & Ratcliff, W. C. Drivers of spatial structure in social microbial communities. Curr. Biol. 29, 545–550 (2019).Article
Google Scholar More