Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: A critical review. Environ Sci Technol. 2013;47:2441–56.Article
CAS
Google Scholar
Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv. 2015;1:e1500675.Article
Google Scholar
Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.Article
CAS
Google Scholar
Lee C-S, Fisher NS. Bioaccumulation of methylmercury in a marine copepod. Environ Toxicol Chem. 2017;36:1287–93.Article
CAS
Google Scholar
Parks JM, Johs A, Podar M, Bridou R, Hurt RAJ, Smith SD, et al. The genetic basis for bacterial mercury methylation. Science 2013;339:1332–5.Article
CAS
Google Scholar
McDaniel EA, Peterson BD, Stevens SLR, Tran PQ, Anantharaman K, McMahon KD. Expanded phylogenetic diversity and metabolic flexibility of mercury-methylating microorganisms. mSystems 2020;5:e00299–20.Article
CAS
Google Scholar
Cooper CJ, Zheng K, Rush KW, Johs A, Sanders BC, Pavlopoulos GA, et al. Structure determination of the HgcAB complex using metagenome sequence data: Insights into microbial mercury methylation. Commun Biol. 2020;3:320.Article
CAS
Google Scholar
Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol. 2006;72:7919–21.Article
CAS
Google Scholar
Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, et al. Mercury methylation by novel microorganisms from new environments. Environ Sci Technol. 2013;47:11810–20.Article
CAS
Google Scholar
Capo E, Bravo AG, Soerensen AL, Bertilsson S, Pinhassi J, Feng C, et al. Deltaproteobacteria and Spirochaetes-like bacteria are abundant putative mercury methylators in oxygen-deficient water and marine particles in the Baltic Sea. Front Microbiol. 2020;11:574080.Article
Google Scholar
Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, et al. Microbial mercury methylation in Antarctic sea ice. Nat Microbiol. 2016;1:16127.Article
CAS
Google Scholar
Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV. Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. ISME J. 2019;13:1659–75.Article
CAS
Google Scholar
Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, et al. Determining the reliability of measuring mercury cycling gene abundance with correlations with mercury and methylmercury concentrations. Environ Sci Technol. 2019;53:8649–63.Article
CAS
Google Scholar
Villar E, Cabrol L, Heimburger-Boavida LE. Widespread microbial mercury methylation genes in the global ocean. Environ Microbiol Rep. 2020;12:277–87.Article
CAS
Google Scholar
Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME J. 2021;15:1810–25.Article
CAS
Google Scholar
King JK, Kostka JE, Frischer ME, Saunders FM, Jahnke RA. A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol. 2001;35:2491–6.Article
CAS
Google Scholar
Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments: A critical review of published field and laboratory studies. Environ Sci Technol. 2019;53:4–19.Article
CAS
Google Scholar
Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci China Life Sci. 2022;65:818–29.Article
CAS
Google Scholar
Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun. 2019;10:1822.Article
Google Scholar
Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017;541:353–8.Article
CAS
Google Scholar
Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021;593:553–7.Article
CAS
Google Scholar
Zhang JW, Dong HP, Hou LJ, Liu Y, Ou YF, Zheng YL, et al. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J. 2021;15:1826–43.Article
CAS
Google Scholar
Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci. 2020;63:886–97.Article
CAS
Google Scholar
Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.Article
CAS
Google Scholar
Farag Ibrahim F, Zhao R, Biddle Jennifer F, Atomi H. “Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl Environ Micro. 2021;87:e02584–20.
Google Scholar
Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J. 2017;11:2407–25.Article
Google Scholar
Cai M, Richter-Heitmann T, Yin X, Huang W-C, Yang Y, Zhang C, et al. Ecological features and global distribution of Asgard archaea. Sci Total Environ. 2021;758:143581.Article
CAS
Google Scholar
Zhang C-J, Chen Y-L, Sun Y-H, Pan J, Cai M-W, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Mar Life Sci Tech. 2020;3:252–62.Article
Google Scholar
Dai SS, Yang Z, Tong Y, Chen L, Liu SY, Pan R, et al. Global distribution and environmental drivers of methylmercury production in sediments. J Hazard Mater. 2021;407:124700.Article
CAS
Google Scholar
Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. Sci Total Environ. 2020;714:136827.Article
CAS
Google Scholar
Tsui MTK, Finlay JC, Balogh SJ, Nollet YH. In situ production of methylmercury within a stream channel in northern California. Environ Sci Technol. 2010;44:6998–7004.Article
CAS
Google Scholar
Liu Y, Zhou Z, Pan J, Baker BJ, Gu JD, Li M. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J. 2018;12:1021–31.Article
CAS
Google Scholar
Lei P, Zhong H, Duan D, Pan K. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Sci Total Environ. 2019;680:140–50.Article
CAS
Google Scholar
Beckers F, Rinklebe J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit Rev Env Sci Tec. 2017;47:693–794.Article
CAS
Google Scholar
de Oliveira DC, Correia RR, Marinho CC, Guimaraes JR. Mercury methylation in sediments of a Brazilian mangrove under different vegetation covers and salinities. Chemosphere 2015;127:214–21.Article
Google Scholar
Li R, Xu H, Chai M, Qiu GY. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world’s most rapid urbanized city. Environ Moni Assess. 2016;188:87.Article
Google Scholar
O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ Int. 2019;126:747–61.Article
Google Scholar
Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018;47:116–40.Article
Google Scholar
Capo E, Peterson BD, Kim M, Jones DS, Acinas SG, Amyot M, et al. A consensus protocol for the recovery of mercury methylation genes from metagenomes. Mol Ecol Resour. 2022; https://doi.org/10.1111/1755-0998.13687.Gionfriddo CM, Wymore AM, Jones DS, Wilpiszeski RL, Lynes MM, Christensen GA, et al. An improved hgcAB primer set and direct high-throughput sequencing expand Hg-methylator diversity in nature. Front Microbiol. 2020;11:541554.Article
Google Scholar
Yu R-Q, Barkay T. Chapter two – microbial mercury transformations: Molecules, functions and organisms. Adv Appl Microbiol. 2022;118:31–90.Article
Google Scholar
Chételat J, Richardson MC, MacMillan GA, Amyot M, Poulain AJ. Ratio of methylmercury to dissolved organic carbon in water explains methylmercury bioaccumulation across a latitudinal gradient from north-temperate to arctic lakes. Environ Sci Technol. 2018;52:79–88.Article
Google Scholar
Liu Y-R, Dong J-X, Han L-L, Zheng Y-M, He J-Z. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils. Environ Pollut. 2016;209:53–9.Article
CAS
Google Scholar
Moreau JW, Gionfriddo CM, Krabbenhoft DP, Ogorek JM, DeWild JF, Aiken GR, et al. The effect of natural organic matter on mercury methylation by Desulfobulbus propionicus 1pr3. Front Microbiol. 2015;6:1389.Article
Google Scholar
Chen C-F, Ju Y-R, Chen C-W, Dong C-D. The distribution of methylmercury in estuary and harbor sediments. Sci Total Environ. 2019;691:55–63.Article
CAS
Google Scholar
Bravo AG, Bouchet S, Guédron S, Amouroux D, Dominik J, Zopfi J. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges. Water Res. 2015;80:245–55.Article
CAS
Google Scholar
Wang H, Su J, Zheng T, Yang X. Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem. J Soil Sediment. 2015;15:1212–23.Article
CAS
Google Scholar
Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 2020;577:519–25.Article
CAS
Google Scholar
Zhou J, Riccardi D, Beste A, Smith JC, Parks JM. Mercury methylation by HgcA: Theory supports carbanion transfer to Hg(II). Inorg Chem. 2014;53:772–7.Article
CAS
Google Scholar
Smith Steven D, Bridou R, Johs A, Parks Jerry M, Elias Dwayne A, Hurt Richard A, et al. Site-directed mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. Appl Environ Micro. 2015;81:3205–17.Article
CAS
Google Scholar
Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF. Lokiarchaeon is hydrogen dependent. Nat Microbiol. 2016;1:16034.Article
CAS
Google Scholar
Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM. Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 2011;108:8714.Article
CAS
Google Scholar
Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol. 2008;58:929–36.Article
Google Scholar
Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62:1902–7.Article
CAS
Google Scholar
Dietz R, Sonne C, Basu N, Braune B, O’Hara T, Letcher RJ, et al. What are the toxicological effects of mercury in arctic biota? Sci Total Environ. 2013;443:775–90.Article
CAS
Google Scholar
Gilmour Cynthia C, Bullock Allyson L, McBurney A, Podar M, Elias Dwayne A, Lovley Derek R. Robust mercury methylation across diverse methanogenic archaea. mBio 2018;9:e02403–17.
Google Scholar
Pan J, Chen Y, Wang Y, Zhou Z, Li M. Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6. Micro Ecol. 2019;77:417–28.Article
Google Scholar
Zhang C-J, Pan J, Duan C-H, Wang Y-M, Liu Y, Sun J, et al. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems 2019;4:e00442–19.Article
CAS
Google Scholar
Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.Article
CAS
Google Scholar
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.Article
CAS
Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article
Google Scholar
Zhang C-J, Pan J, Liu Y, Duan C-H, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome. 2020;8:94.Article
CAS
Google Scholar
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.Article
Google Scholar
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.Article
CAS
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article
CAS
Google Scholar
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.Article
CAS
Google Scholar
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019;36:1925–7.
Google Scholar
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article
CAS
Google Scholar
Huerta-Cepas J, Forslund K, Szklarczyk D, Jensen LJ, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.Article
CAS
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37.Article
CAS
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.Article
CAS
Google Scholar
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article
CAS
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.Article
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. Plos ONE. 2010;5:e9490.Article
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.Article
CAS
Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583–9.Article
CAS
Google Scholar
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinforma (Oxf, Engl). 2010;26:841–2.Article
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.Article
CAS
Google Scholar More