More stories

  • in

    Spatial memory predicts home range size and predation risk in pheasants

    Börger, L., Dalziel, B. D. & Fryxell, J. M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 (2008).Article 

    Google Scholar 
    Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346 (1943).Article 

    Google Scholar 
    Darwin, C. On the Origin of Species by Means of Natural Selection (D. Appleton Co., 1859).Merkle, J., Fortin, D. & Morales, J. M. A memory‐based foraging tactic reveals an adaptive mechanism for restricted space use. Ecol. Lett. 17, 924–931 (2014).Article 
    CAS 

    Google Scholar 
    Bordes, F., Morand, S., Kelt, D. A. & Van Vuren, D. H. Home range and parasite diversity in mammals. Am. Nat. 173, 467–474 (2009).Article 

    Google Scholar 
    Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B: Biol. Sci. 365, 2289–2301 (2010).Article 

    Google Scholar 
    Lewis, M. A. & Murray, J. D. Modelling territoriality and wolf-deer interactions. Nature 366, 738–740 (1993).Article 

    Google Scholar 
    Kelt, D. A. & Van Vuren, D. H. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645 (2001).Article 
    CAS 

    Google Scholar 
    Wang, M. & Grimm, V. Home range dynamics and population regulation: an individual-based model of the common shrew Sorex araneus. Ecol. Modell. 205, 397–409 (2007).Article 

    Google Scholar 
    Moorcroft, P. R., Lewis, M. A. & Crabtree, R. L. Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. Proc. R. Soc. B: Biol. Sci. 273, 1651–1659 (2006).Article 

    Google Scholar 
    Powell, R. A. in Research Techniques in Animal Ecology Vol. 65 (eds. Boitani, L. & Fuller, T. K.) 599 (Columbia Univ. Press, 2000).Spencer, W. D. Home ranges and the value of spatial information. J. Mammal. 93, 929–947 (2012).Article 

    Google Scholar 
    Bracis, C., Gurarie, E., Van Moorter, B. & Goodwin, R. A. Memory effects on movement behavior in animal foraging. PLoS ONE 10, e0136057 (2015).Article 

    Google Scholar 
    Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).Article 

    Google Scholar 
    Powell, R. A. & Mitchell, M. S. What is a home range? J. Mammal. 93, 948–958 (2012).Article 

    Google Scholar 
    Stamps, J. Motor learning and the value of familiar space. Am. Nat. 146, 41–58 (1995).Article 

    Google Scholar 
    Gautestad, A. O. & Mysterud, I. Spatial memory, habitat auto-facilitation and the emergence of fractal home range patterns. Ecol. Modell. 221, 2741–2750 (2010).Article 

    Google Scholar 
    Gautestad, A. O. & Mysterud, I. Intrinsic scaling complexity in animal dispersion and abundance. Am. Nat. 165, 44–55 (2005).Article 

    Google Scholar 
    Merkle, J. A., Potts, J. R. & Fortin, D. Energy benefits and emergent space use patterns of an empirically parameterized model of memory‐based patch selection. Oikos 126, 185–196 (2017).Schlägel, U. E. & Lewis, M. A. Detecting effects of spatial memory and dynamic information on animal movement decisions. Methods Ecol. Evolution 5, 1236–1246 (2014).Article 

    Google Scholar 
    Van Moorter, B. et al. Memory keeps you at home: a mechanistic model for home range emergence. Oikos 118, 641–652 (2009).Article 

    Google Scholar 
    Riotte-Lambert, L., Benhamou, S. & Chamaillé-Jammes, S. How memory-based movement leads to nonterritorial spatial segregation. Am. Naturalist 185, E103–E116 (2015).Article 

    Google Scholar 
    Marchand, P. et al. Combining familiarity and landscape features helps break down the barriers between movements and home ranges in a non‐territorial large herbivore. J. Anim. Ecol. 86, 371–383 (2017).Article 

    Google Scholar 
    Gautestad, A. O., Loe, L. E. & Mysterud, A. Inferring spatial memory and spatiotemporal scaling from GPS data: comparing red deer Cervus elaphus movements with simulation models. J. Anim. Ecol. 82, 572–586 (2013).Article 

    Google Scholar 
    Ranc, N., Cagnacci, F. & Moorcroft, P. R. Memory drives the formation of animal home ranges: evidence from a reintroduction. Ecol. Lett. 25, 716–728 (2022).Article 

    Google Scholar 
    Ranc, N., Moorcroft, P. R., Ossi, F. & Cagnacci, F. Experimental evidence of memory-based foraging decisions in a large wild mammal. Proc. Natl Acad. Sci. USA 118, e2014856118 (2021).Article 
    CAS 

    Google Scholar 
    Potts, J. R. & Lewis, M. A. A mathematical approach to territorial pattern formation. Am. Math. Monthly 121, 754–770 (2014).Article 

    Google Scholar 
    Shettleworth, S. J. Cognition, Evolution, and Behavior (Oxford Univ. Press, 2009).van Asselen, M. et al. Brain areas involved in spatial working memory. Neuropsychologia 44, 1185–1194 (2006).Article 

    Google Scholar 
    Paul, C., Magda, G. & Abel, S. Spatial memory: theoretical basis and comparative review on experimental methods in rodents. Behav. Brain Res. 203, 151–164 (2009).Article 

    Google Scholar 
    Boratyński, Z. Energetic constraints on mammalian home-range size. Funct. Ecol. 34, 468–474 (2020).Article 

    Google Scholar 
    Tamburello, N., Côté, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Naturalist 186, 196–211 (2015).Article 

    Google Scholar 
    McNab, B. K. Bioenergetics and the determination of home range size. Am. Naturalist 97, 133–140 (1963).Article 

    Google Scholar 
    McNab, B. K. Food habits, energetics, and the population biology of mammals. Am. Naturalist 116, 106–124 (1980).Article 

    Google Scholar 
    Fokidis, H. B., Risch, T. S. & Glenn, T. C. Reproductive and resource benefits to large female body size in a mammal with female-biased sexual size dimorphism. Anim. Behav. 73, 479–488 (2007).Article 

    Google Scholar 
    Saïd, S. et al. What shapes intra-specific variation in home range size? A case study of female roe deer. Oikos 118, 1299–1306 (2009).Article 

    Google Scholar 
    Schradin, C. et al. Female home range size is regulated by resource distribution and intraspecific competition: a long-term field study. Anim. Behav. 79, 195–203 (2010).Article 

    Google Scholar 
    Dröge, E., Creel, S., Becker, M. S. & M’soka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evolution 1, 1123–1128 (2017).Article 

    Google Scholar 
    Croston, R., Branch, C., Kozlovsky, D., Dukas, R. & Pravosudov, V. Heritability and the evolution of cognitive traits. Behav. Ecol. 26, 1447–1459 (2015).Article 

    Google Scholar 
    Ashton, B. J., Ridley, A. R., Edwards, E. K. & Thornton, A. Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature 554, 364–367 (2018).Article 
    CAS 

    Google Scholar 
    Madden, J. R., Langley, E. J. G., Whiteside, M. A., Beardsworth, C. E. & Van Horik, J. O. The quick are the dead: pheasants that are slow to reverse a learned association survive for longer in the wild. Philos. Trans. R. Soc. B. Biol. Sci. https://doi.org/10.1098/rstb.2017.0297 (2018).Sonnenberg, B. R., Branch, C. L., Pitera, A. M., Bridge, E. & Pravosudov, V. V. Natural selection and spatial cognition in wild food-caching mountain chickadees. Curr. Biol. 29, 670–676 (2019).Article 
    CAS 

    Google Scholar 
    Shaw, R. C., MacKinlay, R. D., Clayton, N. S. & Burns, K. C. Memory performance influences male reproductive success in a wild bird. Curr. Biol. 29, 1498–1502.e3 (2019).Article 
    CAS 

    Google Scholar 
    Gehr, B. et al. Stay home, stay safe—site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).Article 

    Google Scholar 
    Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).Article 
    CAS 

    Google Scholar 
    Willems, E. P. & Hill, R. A. Predator-specific landscapes of fear and resource distribution: effects on spatial range use. Ecology 90, 546–555 (2009).Article 

    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: spatial patterns of risk perception and response. Trends Ecol. Evolution 34, 355–368 (2019).Article 

    Google Scholar 
    Bose, S. et al. Implications of fidelity and philopatry for the population structure of female black-tailed deer. Behav. Ecol. 28, 983–990 (2017).Article 

    Google Scholar 
    Forrester, T. D., Casady, D. S. & Wittmer, H. U. Home sweet home: fitness consequences of site familiarity in female black-tailed deer. Behav. Ecol. Sociobiol. 69, 603–612 (2015).Article 

    Google Scholar 
    Magrath, R. D., Haff, T. M., Fallow, P. M. & Radford, A. N. Eavesdropping on heterospecific alarm calls: from mechanisms to consequences. Biol. Rev. 90, 560–586 (2015).Article 

    Google Scholar 
    Skelhorn, J. & Rowe, C. Cognition and the evolution of camouflage. Proc. R. Soc. B: Biol. Sci. 283, 20152890 (2016).Article 

    Google Scholar 
    Dickinson, A. Associative learning and animal cognition. Philos. Trans. R. Soc. B: Biol. Sci. 367, 2733–2742 (2012).Article 

    Google Scholar 
    Baddeley, A. D. & Lieberman, K. in Exploring Working Memory 206–223 (Routledge, 2017).Olton, D. S. & Samuelson, R. J. Remembrance of places passed: spatial memory in rats. J. Exp. Psychol. Anim. Behav. Process. 2, 97–116 (1976).Article 

    Google Scholar 
    Lashley, K. S. Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain (Univ. Chicago Press, 1929).O’keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).Beardsworth, C. E. et al. Is habitat selection in the wild shaped by individual-level cognitive biases in orientation strategy? Ecol. Lett. 24, 751–760 (2021).Article 

    Google Scholar 
    Rowe, C. & Healy, S. D. Measuring variation in cognition. Behav. Ecol. 25, 1287–1292 (2014).Article 

    Google Scholar 
    Warner, R. E. Use of cover by pheasant broods in east-central Illinois. J. Wildl. Manag. 43, 334 (1979).Article 

    Google Scholar 
    Toledo, S. et al. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. Science 369, 188–193 (2020).Article 
    CAS 

    Google Scholar 
    Weiser, A. W. et al. Characterizing the accuracy of a self-synchronized reverse-GPS wildlife localization system. In Proc. 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2016 1–12 (IEEE, 2016).Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).Article 
    CAS 

    Google Scholar 
    Beardsworth, C. E. et al. Validating ATLAS: a regional-scale high-throughput tracking system. Methods Ecol. Evolution 13, 1990–2004 (2022).Article 

    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evolution 7, 1124–1132 (2016).Article 

    Google Scholar 
    Clutton‐Brock, T. H. & Harvey, P. H. Primates, brains and ecology. J. Zool. 190, 309–323 (1980).Article 

    Google Scholar 
    Avgar, T. et al. Space-use behaviour of woodland caribou based on a cognitive movement model. J. Anim. Ecol. 84, 1059–1070 (2015).Article 

    Google Scholar 
    Laundré, J. W., Hernández, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).Article 

    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton Univ. Press, 2019).Beauchamp, G. Animal Vigilance: Monitoring Predators and Competitors. Animal Vigilance: Monitoring Predators and Competitors (Elsevier, 2015).Langley, E. J. G. et al. Heritability and correlations among learning and inhibitory control traits. Behav. Ecol. 31, 798–806 (2020).Article 

    Google Scholar 
    Chen, J., Zou, Y., Sun, Y.-H. & Ten Cate, C. Problem-solving males become more attractive to female budgerigars. Science 363, 166–167 (2019).Article 
    CAS 

    Google Scholar 
    Vale, R., Evans, D. A. & Branco, T. Rapid spatial learning controls instinctive defensive behavior in mice. Curr. Biol. 27, 1342–1349 (2017).Article 
    CAS 

    Google Scholar 
    Burt de Perera, T. & Guilford, T. Rapid learning of shelter position in an intertidal fish, the shanny Lipophrys pholis L. J. Fish. Biol. 72, 1386–1392 (2008).Article 

    Google Scholar 
    Font, E. Rapid learning of a spatial memory task in a lacertid lizard (Podarcis liolepis). Behav. Procs. 169, 103963 (2019).Article 

    Google Scholar 
    Senar, J. & Pascual, J. Keel and tarsus length may provide a good predictor of avian body size. Ard.-Wageningen 85, 269–274 (1997).
    Google Scholar 
    Lavielle, M. Detection of multiple changes in a sequence of dependent variables. Stoch. Process. Appl. 83, 79–102 (1999).Article 

    Google Scholar 
    Calenge, C. The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Millspaugh, J. J. A Manual for Wildlife Radio Tagging Robert E. Kenward. The Auk 118 (Academic Press, 2001).Gupte, P. R. et al. A guide to pre-processing high-throughput animal tracking data. J. Anim. Ecol. 91, 287–307 (2022).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).Grahn, M., Göransson, G. & Von Schantz, T. Territory acquisition and mating success in pheasants, Phasianus colchicus: an experiment. Anim. Behav. 46, 721–730 (1993).Article 

    Google Scholar 
    Ridley, M. W. & Hill, D. A. Social organization in the pheasant (Phasianus colchicus): harem formation, mate selection and the role of mate guarding. J. Zool. 211, 619–630 (1987).Article 

    Google Scholar 
    Gompper, M. E. & Gittleman, J. L. Home range scaling: intraspecific and comparative trends. Oecologia 87, 343–348 (1991).Article 

    Google Scholar 
    Fisher, R. A. in Breakthroughs in Statistics (eds Kotz, S. & Johnson, N. L.) 66–70 (Springer, 1992).Barton, K. MuMIn: Multi-Model Inference (cran.r-project.org, 2022).Nakagawa, S. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav. Ecol. 15, 1044–1045 (2004).Article 

    Google Scholar 
    Heathcote, R. Data for ‘Spatial memory predicts home range size and predation risk in pheasants’ nature ecology and evolution. Mendeley Data https://doi.org/10.17632/m89226xg6p.1 (2022). More

  • in

    Increasing body-size variation in many downsizing North American mammals and birds

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Zheng, S., Hu, J., Ma, Z., Lindenmayer, D. & Liu, J. Increases in intraspecific body size variation are common amongst North American mammals and birds between 1880 and 2020. Nat. Ecol. Evol., https://doi.org/10.1038/s41559-022-01967-w (2023). More

  • in

    Increases in intraspecific body size variation are common among North American mammals and birds between 1880 and 2020

    Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).Article 
    CAS 

    Google Scholar 
    Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 

    Google Scholar 
    Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 809–814 (2020).Article 

    Google Scholar 
    Gardner, J. L., Heinsohn, R. & Joseph, L. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. B 276, 3845–3852 (2009).Article 

    Google Scholar 
    Bergmann C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse (Göttinger Studien, 1847).Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954 (2009).Article 
    CAS 

    Google Scholar 
    van Gils, J. A. et al. Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352, 819–821 (2016).Article 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).Article 

    Google Scholar 
    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).Article 

    Google Scholar 
    Enquist, B. J. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv. Ecol. Res 52, 249–318 (2015).Article 

    Google Scholar 
    González-Suárez, M. & Revilla, E. Variability in life-history and ecological traits is a buffer against extinction in mammals. Ecol. Lett. 16, 242–251 (2013).Article 

    Google Scholar 
    Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).Article 

    Google Scholar 
    Brady, S. P. et al. Causes of maladaptation. Evol. Appl. 12, 1229–1242 (2019).Article 

    Google Scholar 
    Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: mechanisms and consequences. Trends Ecol. Evol. 32, 346–355 (2017).Article 

    Google Scholar 
    Campbell-Staton, S. C. et al. Ivory poaching and the rapid evolution of tusklessness in African elephants. Science 374, 483–487 (2021).Article 
    CAS 

    Google Scholar 
    Thompson M. J., Capilla-Lasheras P., Dominoni D. M., Réale D. & Charmantier A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol. Evol. 37, 171–182 (2022).Starrfelt, J. & Kokko, H. Bet-hedging—a triple trade-off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).Article 

    Google Scholar 
    Heino, M., Díaz Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).Article 

    Google Scholar 
    Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).Article 

    Google Scholar 
    Hantak, M. M., McLean, B. S., Li, D. & Guralnick, R. P. Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Commun. Biol. 4, 972 (2021).Article 

    Google Scholar 
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Bergmann’s rule and body size in mammals. Am. Nat. 161, 821–825 (2003).Article 

    Google Scholar 
    Riddell, E. A., Odom, J. P., Damm, J. D. & Sears, M. W. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Sci. Adv. 4, eaar5471 (2018).Article 

    Google Scholar 
    Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).Article 

    Google Scholar 
    Yang, J. et al. Large underestimation of intraspecific trait variation and its improvements. Front. Plant Sci. 11, 53 (2020).Article 

    Google Scholar 
    Olsen, E. M. et al. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428, 932–935 (2004).Article 
    CAS 

    Google Scholar 
    Antonson, N. D., Rubenstein, D. R., Hauber, M. E. & Botero, C. A. Ecological uncertainty favours the diversification of host use in avian brood parasites. Nat. Commun. 11, 4185 (2020).Article 

    Google Scholar 
    Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).Article 

    Google Scholar 
    Edeline, E. et al. Harvest-induced disruptive selection increases variance in fitness-related traits. Proc. R. Soc. B 276, 4163–4171 (2009).Article 

    Google Scholar 
    Hays, G. C. et al. Changes in mean body size in an expanding population of a threatened species. Proc. R Soc. B https://doi.org/10.1098/rspb.2022.0696 (2022).Halfwerk, W. et al. Adaptive changes in sexual signalling in response to urbanization. Nat. Ecol. Evol. 3, 374–380 (2019).Article 

    Google Scholar 
    Fernández-Chacón, A. et al. Protected areas buffer against harvest selection and rebuild phenotypic complexity. Ecol. Appl. 30, e02108 (2020).Article 

    Google Scholar 
    Sánchez-Tójar, A., Moran, N. P., O’Dea, R. E., Reinhold, K. & Nakagawa, S. Illustrating the importance of meta-analysing variances alongside means in ecology and evolution. J. Evol. Biol. 33, 1216–1223 (2020).Article 

    Google Scholar 
    Reed, T. E., Waples, R. S., Schindler, D. E., Hard, J. J. & Kinnison, M. T. Phenotypic plasticity and population viability: the importance of environmental predictability. Proc. R. Soc. B 277, 3391–3400 (2010).Article 

    Google Scholar 
    Klump, B. C. et al. Innovation and geographic spread of a complex foraging culture in an urban parrot. Science 373, 456–460 (2021).Article 
    CAS 

    Google Scholar 
    Bosse, M. et al. Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 358, 365–368 (2017).Article 
    CAS 

    Google Scholar 
    Singer, M. C. & Parmesan, C. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018).Article 
    CAS 

    Google Scholar 
    Usui, R., Sheeran, L. K., Asbury, A. M. & Blackson, M. Impacts of the COVID-19 pandemic on mammals at tourism destinations: a systematic review. Mamm. Rev. 51, 492–507 (2021).Article 

    Google Scholar 
    Meineke, E. K. & Daru, B. H. Bias assessments to expand research harnessing biological collections. Trends Ecol. Evol. 36, 1071–1082 (2021).Article 

    Google Scholar 
    The IUCN Red List of Threatened Species. Version 2021-2 (IUCN, accessed November 2021); https://www.iucnredlist.orgBoyd, R. J. et al. ROBITT: a tool for assessing the risk-of-bias in studies of temporal trends in ecology. Methods Ecol. Evol. 13, 1497–1507 (2022).Article 

    Google Scholar 
    Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).Article 

    Google Scholar 
    Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. USA 112, 184–189 (2015).Article 
    CAS 

    Google Scholar 
    Niklas, K. J. The scaling of plant and animal body mass, length, and diameter. Evolution 48, 44–54 (1994).Article 
    CAS 

    Google Scholar 
    Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).Article 

    Google Scholar 
    Gaillard, J. M. et al. Generation time: a reliable metric to measure life-history variation among mammalian populations. Am. Nat. 166, 119–123 (2005).Article 

    Google Scholar 
    Postma, E. in Quantitative Genetics in the Wild (eds Charmantier, A. et al.) 16–33 (Oxford Univ. Press, 2014).Jones, K. E. et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Bates D., Mächler M., Bolker B. & Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Ives, A. R., Dinnage, R., Nell, L. A., Helmus, M. & Li, D. phyr: Model based phylogenetic analysis. R package version 1.1.0 https://CRAN.R-project.org/package=phyr (2020).Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).Article 
    CAS 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).Article 
    CAS 

    Google Scholar 
    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).Article 

    Google Scholar 
    Hurlbert, S. H. & Lombardi, C. M. Final collapse of the Neyman–Pearson decision theoretic framework and rise of the neoFisherian. Ann. Zool. Fenn. 46, 311–349 (2009).Article 

    Google Scholar  More

  • in

    Metamorphic aerial robot capable of mid-air shape morphing for rapid perching

    Akçakaya, H. R. et al. Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conserv. Biol. 32, 1128–1138. https://doi.org/10.1111/cobi.13112 (2018).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3 (2022).Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341. https://doi.org/10.1016/j.tree.2018.12.012 (2019).Article 

    Google Scholar 
    Mohan, M. et al. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forestshttps://doi.org/10.3390/f8090340 (2017).Article 

    Google Scholar 
    Dronova, I., Kislik, C., Dinh, Z. & Kelly, M. A review of unoccupied aerial vehicle use in wetland applications: Emerging opportunities in approach, technology, and data. Droneshttps://doi.org/10.3390/drones5020045 (2021).Article 

    Google Scholar 
    Farinha, A. & Lima, P. U. A novel underactuated hand suitable for human-oriented domestic environments. In: Proceedings – 2016 International Conference on Autonomous Robot Systems and Competitions, ICARSC 2016 106–111, https://doi.org/10.1109/ICARSC.2016.21 (2016).Hamaza, S., Georgilas, I., Heredia, G., Ollero, A. & Richardson, T. Design, modeling, and control of an aerial manipulator for placement and retrieval of sensors in the environment. J. Field Robotics 37, 1224–1245. https://doi.org/10.1002/rob.21963 (2020).Article 

    Google Scholar 
    Nakamura, A. et al. Forests and their canopies: Achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451. https://doi.org/10.1016/j.tree.2017.02.020 (2017).Article 

    Google Scholar 
    Hang, K. et al. Perching and resting – A paradigm for UAV maneuvering with modularized landing gears. Sci. Roboticshttps://doi.org/10.1126/scirobotics.aau6637 (2019).Article 

    Google Scholar 
    Danko, T. W., Kellas, A. & Oh, P. Y. Robotic rotorcraft and perch-and-stare: Sensing landing zones and handling obscurants. In ICAR ’05. Proceedings., 12th International Conference on Advanced Robotics, 2005 296–302, https://doi.org/10.1109/ICAR.2005.1507427 (2005).Pauli, J. N., Zachariah Peery, M., Fountain, E. D. & Karasov, W. H. Arboreal folivores limit their energetic output, all the way to slothfulness. Am. Nat. 188, 196–204, https://doi.org/10.1086/687032 (2016).Olson, R. A., Glenn, Z. D., Cliffe, R. N. & Butcher, M. T. Architectural properties of sloth forelimb muscles (Pilosa: Bradypodidae). J. Mamm. Evol. 25, 573–588. https://doi.org/10.1007/s10914-017-9411-z (2018).Article 

    Google Scholar 
    Kovač, M., Germann, J., Hürzeler, C., Siegwart, R. Y. & Floreano, D. A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91. https://doi.org/10.1007/s12213-010-0026-1 (2009).Article 

    Google Scholar 
    Toon, J. ’SlothBot in the Garden’ Demonstrates Hyper-Efficient Conservation Robot.Thomas, J. et al. Aggressive flight with quadrotors for perching on inclined surfaces. J. Mech. Robot. 8, 51007. https://doi.org/10.1115/1.4032250 (2016).Article 

    Google Scholar 
    Daler, L., Klaptocz, A., Briod, A., Sitti, M. & Floreano, D. A perching mechanism for flying robots using a fibre-based adhesive. In 2013 IEEE International Conference on Robotics and Automation, 4433–4438 (IEEE, 2013).Kovač, M., Germann, J., Hürzeler, C., Siegwart, R. Y. & Floreano, D. A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91 (2009).Article 

    Google Scholar 
    Pope, M. T. et al. A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans. Rob. 33, 38–48. https://doi.org/10.1109/TRO.2016.2623346 (2017).Article 

    Google Scholar 
    Lussier Desbiens, A., Asbeck, A. T. & Cutkosky, M. R. Landing, perching and taking off from vertical surfaces. Int. J. Robotics Res. 30, 355–370 (2011).Article 

    Google Scholar 
    Nguyen, H.-N., Siddall, R., Stephens, B., Navarro-Rubio, A. & Kovač, M. A Passively adaptive microspine grapple for robust, controllable perching. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 80–87 (IEEE, 2019).Braithwaite, A., Al Hinai, T., Haas-Heger, M., McFarlane, E. & Kovač, M. Tensile web construction and perching with nano aerial vehicles. In Robotics Research (eds Bicchi, A. & Burgard, W.) (Springer, Cham, 2018).
    Google Scholar 
    Zhang, K., Chermprayong, P., Alhinai, T. M., Siddall, R. & Kovac, M. SpiderMAV: Perching and stabilizing micro aerial vehicles with bio-inspired tensile anchoring systems. In International Conference on Intelligent Robots and Systems (2017).Roderick, W. R. T., Jiang, H., Wang, S., Lentink, D. & Cutkosky, M. R. Bioinspired grippers for natural curved surface perching. In Conference on Biomimetic and Biohybrid Systems, 604–610 (Springer, 2017).Thomas, J., Loianno, G., Daniilidis, K. & Kumar, V. Visual servoing of quadrotors for perching by hanging from cylindrical objects. IEEE Robotics Automation Lett.https://doi.org/10.1109/LRA.2015.2506001 (2016).Article 

    Google Scholar 
    McLaren, A., Fitzgerald, Z., Gao, G. & Liarokapis, M. A passive closing, tendon driven, adaptive robot hand for ultra-fast, aerial grasping and perching. In IEEE International Conference on Intelligent Robots and Systems 5602–5607, https://doi.org/10.1109/IROS40897.2019.8968076 (2019).Zhang, Z., Xie, P. & Ma, O. Bio-inspired trajectory generation for UAV perching. In 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 997–1002 (IEEE, 2013).Doyle, C. E. et al. An avian-inspired passive mechanism for quadrotor perching. IEEE/ASME Trans. Mechatron. 18, 506–517. https://doi.org/10.1109/TMECH.2012.2211081 (2013).Article 

    Google Scholar 
    Erbil, M. A., Prior, S. D. & Keane, A. J. Design optimisation of a reconfigurable perching element for vertical take-off and landing unmanned aerial vehicles. Int. J. Micro Air Veh. 5, 207–228 (2013).Article 

    Google Scholar 
    Chi, W., Low, K. H., Hoon, K. H. & Tang, J. An optimized perching mechanism for autonomous perching with a quadrotor. In IEEE International Conference on Robotics and Automation, 3109–3115, (2014). https://doi.org/10.1109/ICRA.2014.6907306Roderick, W. R. T., Cutkosky, M. R. & Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci. Roboticshttps://doi.org/10.1126/scirobotics.abj7562 (2021).Article 

    Google Scholar 
    Garcia-Rubiales, F. J., Ramon-Soria, P., Arrue, B. C., Ollero, A. Magnetic & detaching system for Modular UAVs with perching capabilities in industrial environments.,. International Workshop on Research. Education and Development on Unmanned Aerial Systems, RED-UAS2019(172–176), 2019. https://doi.org/10.1109/REDUAS47371.2019.8999704 (2019).Bai, L. et al. Design and experiment of a deformable bird-inspired UAV perching mechanism. J. Bionic Eng. 18, 1304–1316. https://doi.org/10.1007/s42235-021-00098-5 (2021).Article 

    Google Scholar 
    Joachimczak, M., Suzuki, R. & Arita, T. Artificial metamorphosis: Evolutionary design of transforming, soft-bodied robots. Artif. Life 22(271–298), 2016. https://doi.org/10.1162/artl_a_00207 (2016).Article 

    Google Scholar 
    Sims, K. Evolving Virtual Creatures. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, 15-22, https://doi.org/10.1145/192161.192167 (Association for Computing Machinery, 1994).Bongard, J. Morphological change in machines accelerates the evolution of robust behavior. Proc. Natl. Acad. Sci. 108, 1234–1239. https://doi.org/10.1073/pnas.1015390108 (2011).Article 
    ADS 

    Google Scholar 
    Truman, J. W. & Riddiford, L. M. The origins of insect metamorphosis. Nature 401, 447–452. https://doi.org/10.1038/46737 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Campbell, N. A. et al. Biology: A Global Approach (Pearson New Your, NY, 2018).
    Google Scholar 
    Dai, J. S. & Rees Jones, J. Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121, 375. https://doi.org/10.1115/1.2829470 (1999).Article 

    Google Scholar 
    Mintchev, S. & Floreano, D. Adaptive morphology: A design principle for multimodal and multifunctional robots. IEEE Robot. Autom. Mag. 23, 42–54 (2016).Article 

    Google Scholar 
    Shah, D. et al. Shape changing robots: Bioinspiration, simulation, and physical realization. Adv. Mater. 33, 2002882 (2021).Article 
    CAS 

    Google Scholar 
    Sareh, S., Siddall, R., Alhinai, T. & Kovac, M. Bio-inspired soft aerial robots: Adaptive morphology for high-performance flight. In Soft Robotics: Trends, Applications and Challenges, 65–74 (Springer, 2017).Derrouaoui, S. H., Bouzid, Y., Guiatni, M. & Dib, I. A comprehensive review on reconfigurable drones: classification characteristics design and control technologies. Unmanned Syst. 10(01), 3–29. https://doi.org/10.1142/S2301385022300013 (2022).Floreano, D. & Wood, R. J. Science, technology and the future of small autonomous drones. Nature 521, 460–466 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Hwang, D., Barron, E. J., Haque, A. B. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robotics 7, eabg2171. https://doi.org/10.1126/scirobotics.abg2171 (2022).Article 

    Google Scholar 
    Siddall, R., Ortega Ancel, A. & Kovač, M. Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface focus 7, 20160085. https://doi.org/10.1098/rsfs.2016.0085 (2017).Article 

    Google Scholar 
    Chen, Y. et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Roboticshttps://doi.org/10.1126/scirobotics.aao5619 (2017).Article 

    Google Scholar 
    Daler, L., Mintchev, S., Stefanini, C. & Floreano, D. A bioinspired multi-modal flying and walking robot. Bioinspiration Biomim.https://doi.org/10.1088/1748-3190/10/1/016005 (2015).Article 

    Google Scholar 
    Kovač, M., Wassim-Hraiz, Fauria, O., Zufferey, J. C. & Floreano, D. The EPFL jumpglider: A hybrid jumping and gliding robot with rigid or folding wings. In 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011 1503–1508, https://doi.org/10.1109/ROBIO.2011.6181502 (2011).Riviere, V., Manecy, A. & Viollet, S. Agile robotic fliers: A morphing-based approach. Soft Roboticshttps://doi.org/10.1089/soro.2017.0120 (2018).Article 

    Google Scholar 
    Bucki, N. & Mueller, M. W. Design and control of a passively morphing quadcopter. In IEEE International Conference on Robotics and Automation, vol. 2019-May, 9116–9122, https://doi.org/10.1109/ICRA.2019.8794373 (2019).Mintchev, S., Daler, L., Eplattenier, G. L., Floreano, D. & Member, S. Foldable and self – deployable pocket sized quadrotor. In Proc. of the IEEE Conference on Robotics and Automation 2190–2195 (2015).Mintchev, S., Shintake, J. & Floreano, D. Bioinspired dual-stiffness origami. Sci. Robotics 0275, 1–8. https://doi.org/10.1126/scirobotics.aau0275 (2018).Article 

    Google Scholar 
    Zhao, M., Kawasaki, K., Anzai, T., Chen, X. & Noda, S. Transformable multirotor with two-dimensional multilinks : Modeling, control, and whole-body aerial manipulation. Int. J. Robot. Res.https://doi.org/10.1177/0278364918801639 (2018).Article 

    Google Scholar 
    Bucki, N., Tang, J. & Mueller, M. W. Design and control of a midair-reconfigurable quadcopter using unactuated hinges. IEEE Trans. Rob.https://doi.org/10.1109/TRO.2022.3193792 (2022).Article 

    Google Scholar 
    Shimoyama, I., Miura, H., Suzuki, K. & Ezura, Y. Insect-like microrobots with external skeletons. IEEE Control Syst. Mag. 13, 37–41. https://doi.org/10.1109/37.184791 (1993).Article 

    Google Scholar 
    Noh, M., Kim, S.-W., An, S., Koh, J.-S. & Cho, K.-J. Flea-inspired catapult mechanism for miniature jumping robots. IEEE Trans. Rob. 28, 1007–1018. https://doi.org/10.1109/tro.2012.2198510 (2012).Article 
    ADS 

    Google Scholar 
    Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R. & Rus, D. An untethered miniature origami robot that self-folds, walks, swims, and degrades. In Proceedings – IEEE International Conference on Robotics and Automation 2015-June, 1490–1496, https://doi.org/10.1109/ICRA.2015.7139386 (2015).Morgan, J., Magleby, S. P. & Howell, L. L. An approach to designing origami-adapted aerospace mechanisms. J. Mech. Des.https://doi.org/10.1115/1.4032973 (2016).Article 

    Google Scholar 
    Liang, X. et al. The AmphiHex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism. In IEEE International Conference on Intelligent Robots and Systems 3667–3672, https://doi.org/10.1109/IROS.2012.6386238 (2012).Polygerinos, P. et al. Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater.https://doi.org/10.1002/adem.201700016 (2017).Article 

    Google Scholar 
    Coyle, S., Majidi, C., LeDuc, P. & Hsia, K. J. Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mech. Lett. 22, 51–59. https://doi.org/10.1016/j.eml.2018.05.003 (2018).Article 

    Google Scholar 
    Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475. https://doi.org/10.1038/nature14543 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robotics 1, eaah3690. https://doi.org/10.1126/scirobotics.aah3690 (2016).Article 

    Google Scholar 
    Boyraz, P., Runge, G. & Raatz, A. An overview of novel actuators for soft robotics. High Throughput 7, 1–21. https://doi.org/10.3390/act7030048 (2018).Article 

    Google Scholar 
    Miriyev, A., Stack, K. & Lipson, H. Soft material for soft actuators. Nat. Commun. 8, 1–8. https://doi.org/10.1038/s41467-017-00685-3 (2017).Article 
    CAS 

    Google Scholar 
    Nguyen, P. H. & Kovač, M. Adopting physical artificial intelligence in soft aerial robots. IOP Conf. Ser.: Mater. Sci. Eng. 1261, 012006. https://doi.org/10.1088/1757-899X/1261/1/012006 (2022).Article 

    Google Scholar 
    Kim, S.-J., Lee, D.-Y., Jung, G.-P. & Cho, K.-J. An origami-inspired, self-locking robotic arm that can be folded flat. Sci. Robotics 3, eaar2915. https://doi.org/10.1126/scirobotics.aar2915 (2018).Article 

    Google Scholar 
    Ruiz, F., Arrue, B. C. & Ollero, A. SOPHIE: Soft and flexible aerial vehicle for physical interaction with the environment. IEEE Robotics Automation Lett. 7, 11086–11093. https://doi.org/10.1109/LRA.2022.3196768 (2022).Article 

    Google Scholar 
    Doshi, N. et al. Model driven design for flexure-based microrobots. In IEEE International Conference on Intelligent Robots and Systems 2015-Decem, 4119–4126, https://doi.org/10.1109/IROS.2015.7353959 (2015).Koh, J.-S., Doshi, N., Wood, R. J., Temel, F. Z. & McClintock, H. The milliDelta: A high-bandwidth, high-precision, millimeter-scale Delta robot. Sci. Robotics 3, eaar3018. https://doi.org/10.1126/scirobotics.aar3018 (2018).Article 

    Google Scholar 
    Backus, S. B., Sustaita, D., Odhner, L. U. & Dollar, A. M. Mechanical analysis of avian feet: Multiarticular muscles in grasping and perching. R. Soc. Open Sci.https://doi.org/10.1098/rsos.140350 (2015).Article 

    Google Scholar 
    Paine, C. E. T. et al. Functional explanations for variation in bark thickness in tropical rain forest trees. Funct. Ecol. 24, 1202–1210. https://doi.org/10.1111/j.1365-2435.2010.01736.x (2010).Article 

    Google Scholar 
    Miriyev, A. & Kovač, M. Skills for physical artificial intelligence. Nat. Mach. Intell. 2, 658–660. https://doi.org/10.1038/s42256-020-00258-y (2020).Article 

    Google Scholar 
    Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. A method for building self-folding machines. Science 345, 644–646. https://doi.org/10.1126/science.1252610 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Siddall, R., Byrnes, G., Full, R. J. & Jusufi, A. Tails stabilize landing of gliding geckos crashing head-first into tree trunks. Commun. Biol. 4, 1–12. https://doi.org/10.1038/s42003-021-02378-6 (2021).Article 
    CAS 

    Google Scholar 
    Feduccia, A. Evidence from claw geometry indicating arboreal habits of Archaeopteryx. Science 259, 790–793. https://doi.org/10.1126/science.259.5096.790 (1993).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Memory pays off

    Burt, W. H. J. Mamm. 24, 346–352 (1943).Article 

    Google Scholar 
    Heathcote, R. J. P. et al. Nature Ecol. Evol. https://doi.org/10.1038/s41559-022-01950-5 (2023).Article 

    Google Scholar 
    Moorcroft, P. R., Lewis, M. A. & Crabtree, R. L. Proc. R. Soc. Lond. B 273, 1651–1659 (2006).
    Google Scholar 
    Moorcroft, P. R. & Barnett, A. Ecology 89, 1112–1119 (2008).Article 

    Google Scholar 
    Hattori, A. & Takuro, S. J. Mar. Biol. Assoc. U.K. 93, 2265–2272 (2013).Article 

    Google Scholar 
    Van Moorter, B. et al. Oikos 118, 641–652 (2009).Article 

    Google Scholar 
    Merkle, J. A., Potts, J. R. & Fortin, D. Oikos 126, https://doi.org/10.1111/oik.03356 (2017).Bracis, C., Gurarie, E., Van Moorter, B. & Goodwin, R. A. PLoS ONE 10, e0136057 (2015).Article 

    Google Scholar 
    Ranc, N., Cagnacci, F. & Moorcroft, P. R. Ecol. Lett. 25, 716–728 (2022).Article 

    Google Scholar 
    Schlägel, U. E. & Lewis, M. A. Methods Ecol. Evol. 5, 1236–1246 (2014).Article 

    Google Scholar 
    Ranc, N., Moorcroft, P. R., Ossi, F. & Cagnacci, F. Proc. Natl Acad. Sci. USA 118, e2014856118 (2021).Article 
    CAS 

    Google Scholar 
    Ranc, N. et al. Sci. Rep. 10, 11946 (2020).Merkle, J. A., Fortin, D. & Morales, J. M. Ecol. Lett. 17, 924–931 (2014).Article 
    CAS 

    Google Scholar 
    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Trends Ecol. Evol. 34, 355–368 (2019).Article 

    Google Scholar 
    Rigoudy, N. L. A. et al. Behav. Ecol. 33, 789–797 (2022).Article 

    Google Scholar 
    Forrester, T. D., Casady, D. S. & Wittmer, H. U. Behav. Ecol. Sociobiol. 69, 603–612 (2015).Article 

    Google Scholar 
    Jesmer, B. R. et al. Science 361, 1023–1025 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Schooling behavior driven complexities in a fear-induced prey–predator system with harvesting under deterministic and stochastic environments

    In a region under consideration, let at any instant (t >0), x and y represent the prey and predator population densities, respectively. The rate of change of each model species density at time t is made on the following assumptions:

    1.

    Prey population grow logistically in the absence of predator with birth rate r, which is affected by the fear ((f_1)) of predator (when predators are around).

    2.

    There is a reduction in the rate of prey density change due to three types of death, namely, natural death with the rate (d_1), fear related death5 with the level of fear (f_2) and over crowding death with the rate (d_2).

    3.

    Also, the rate of change of prey density decreases due to predation of predator population following a predator-dependent functional response describing both predatory and prey schooling behaviors10. Response function is expressed in functional form describing as (zeta (x, y)=frac{cxy}{1+chxy}), where c denotes the rate of consumption and h represents handling time of predator for one prey.

    4.

    Predator population survive in the system by consuming prey population only. They grow with conversion efficiency (c_1) of prey biomass into predator biomass.

    5.

    Predator population harvested from the system which reduces its rate of density. We consider a nonlinear harvesting term (Michaelis-Menten type) given by, (H(y)=dfrac{qEy}{p_1E+p_2y}). Here, parameters q and E, respectively, represent the catchability rate and harvesting effort. It is easy to observe that (Hrightarrow frac{q}{p_1}y) as (Erightarrow infty) for a fixed value of y. Also, (Hrightarrow frac{q}{p_2}E) as (yrightarrow infty) for a fixed value of E. Therefore, at higher effort levels, (p_1) is proportional to the stock level-catch rate ratio and at higher levels of stock, (p_2) is proportional to the effort level-catch rate ratio.

    6.

    Lastly, we assume that the predator population experience natural as well as over crowding related death with the rates (d_3) and (d_4), respectively.

    Keeping all these above assumptions in mind, we formulate the following prey–predator model:$$begin{aligned} frac{dx}{dt}= & {} frac{rx}{1+f_1y}-(1+f_2y)d_1x-d_2x^2-frac{cxy^2}{1+chxy}nonumber ,\ frac{dy}{dt}= & {} frac{c_1cxy^2}{1+chxy}-d_3y-d_4y^2-frac{qEy}{p_1E+p_2y}. end{aligned}$$
    (1)
    System (1) is to be analyzed with the initial conditions (x(0),y(0) >0). All the model parameters are assumed to be positive constants and their hypothetical values that we used for numerical calculations are as follows:$$begin{aligned}{} & {} r=3.1, f_1=1, f_2=0.4, d_1=0.1, d_2=0.08, c=0.11, h=0.1, c_1=0.5, d_3=0.1,nonumber \{} & {} d_4=0.06, q=0.65, E=0.5, p_1=0.5, p_2=0.65. end{aligned}$$
    (2)
    In Table 1, we have provided system’s equilibria, sufficient conditions of their existence and stability. Mathematically, it is difficult to determine the existence of coexistence (interior) equilibrium point(s) by the given nullclines. So, we visualize it numerically (see Fig. 1). It is apparent from the figure that on increasing the value of E, number of coexistence equilibrium points reduces and after a certain range there is no coexistence equilibrium point.Table 1 Sufficient conditions for the existence and stability of different equilibrium points of system (1).Full size tableFigure 1Nullclines for different values of E. Other parameters are same as in (2).Full size image
    Transcritical bifurcationFrom Table 1, it is clear that the equilibrium (E_0) is stable if (rr^{TB}=d_1=0.1)) then (E_0) becomes unstable and the equilibrium point (E_1) exists and becomes stable.Figure 2Transcritical bifurcation with respect to r. Rest of the parameters are same as in (2).Full size imageHopf bifurcationOne of the most common dynamics in interacting population dynamics is oscillating behavior, which implies that there is a Hopf bifurcation. By local changes in equilibrium properties, Hopf bifurcation describes when a periodic solution appears or disappears. In this section, we study the Hopf bifurcation through the coexistence equilibrium (E^*) with respect to the model parameter E. Discussion for the existence of Hopf bifurcation is as follows:As it is easy to follow, we verify Hopf bifurcation numerically. We have considered the parameters value same as in (2) except (c=0.1) and E. At (E=E^{[HB]}=0.1196559641), the trace of the Jacobian matrix at (E^*(2.618402886, 2.352228027)) is zero and determinant, (Det(J_{E^*})=0.4474794791 >0). The value of (dfrac{d(Tr(J_{E^*}))}{dE}Big |_{E=E^{[HB]}}=-0.02965188514ne 0). Therefore, the transversality condition for Hopf bifurcation is also satisfied at (E=E^{[HB]}). Thus, these results confirm that the system (1) experiences a Hopf bifurcation2 around (E^*(2.618402886, 2.352228027)).Moreover, we obtain Lyapunov number (L_1=-0.04728284756pi More

  • in

    Energetic and behavioral consequences of migration: an empirical evaluation in the context of the full annual cycle

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260. https://doi.org/10.1034/j.1600-0706.2003.12559.x (2003).Article 

    Google Scholar 
    Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24, 664–674. https://doi.org/10.1111/geb.12298 (2015).Article 

    Google Scholar 
    Tatner, P. & Bryant, D. M. Flight cost of a small passerine measured using doubly labeled water: Implications for energetics studies. Auk 103, 169–180. https://doi.org/10.2307/4086976 (1986).Article 

    Google Scholar 
    Boisclair, D. & Leggett, W. C. The importance of activity in bioenergetics models applied to actively foraging fishes. Can. J. Fish. Aquat. Sci. 46, 1859–1867. https://doi.org/10.1139/f89-234 (1989).Article 

    Google Scholar 
    Karasov, W. H. Daily energy expenditure and the cost of activity in mammals. Am. Zool. 32, 238–248. https://doi.org/10.1093/icb/32.2.238 (1992).Article 

    Google Scholar 
    Castro, G., Myers, J. P. & Ricklefs, R. E. Ecology and energetics of sandlerlings migrating to four latitudes. Ecology 73, 833–844. https://doi.org/10.2307/1940161 (1992).Article 

    Google Scholar 
    Fayet, A. L. et al. Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird. Curr. Biol. 27, 3871-3878.e3. https://doi.org/10.1016/j.cub.2017.11.009 (2017).Article 
    CAS 

    Google Scholar 
    Alves, J. A. et al. Costs, benefits, and fitness consequences of different migratory strategies. Ecology 94, 11–17. https://doi.org/10.1890/12-0737.1 (2013).Article 

    Google Scholar 
    Carneiro, C., Gunnarsson, T. G., Méndez, V., Soares, A. M. & Alves, J. A. Linking range wide energetic tradeoffs to breeding performance in a long-distance migrant. Ecography 44, 521–524. https://doi.org/10.1111/ecog.05152 (2021).Article 

    Google Scholar 
    Fort, J. et al. Energetic consequences of contrasting winter migratory strategies in a sympatric Arctic seabird duet. J. Avian Biol. 44, 255–262. https://doi.org/10.1111/j.1600-048X.2012.00128.x (2013).Article 

    Google Scholar 
    Garthe, S. et al. Energy budgets reveal equal benefits of varied migration strategies in northern gannets. Mar. Biol. 159, 1907–1915 (2012).Article 

    Google Scholar 
    Pelletier, D. et al. So far, so good… Similar fitness consequences and overall energetic costs for short and long-distance migrants in a seabird. PLoS One 15, e0230262. https://doi.org/10.1371/journal.pone.0230262 (2020).Article 
    CAS 

    Google Scholar 
    Tinbergen, J. M. & Verhulst, S. A fixed energetic ceiling to parental effort in the great tit?. J. Anim. Ecol. 69, 323–334 (2000).Article 

    Google Scholar 
    Drent, R. H. & Daan, S. The prudent parent: Energetic adjustments in avian breeding 1. Ardea 68, 225–252 (1980).
    Google Scholar 
    Weiner, J. Physiological limits to sustainable energy budgets in birds and mammals: Ecological implications. Trends Ecol. Evol. 7, 384–388 (1992).Article 
    CAS 

    Google Scholar 
    Hammond, K. A. & Diamond, J. Maximal sustained energy budgets in humans and animals. Nature 386, 457–462 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746. https://doi.org/10.1111/j.1365-2656.2010.01689.x (2010).Article 

    Google Scholar 
    Deerenberg, C. et al. Parental energy expenditure in relation to manipulated brood size in the European kestrel. Zool. Anal. Complex Syst. 99, 38–47 (1995).
    Google Scholar 
    Daan, S., Deerenberg, C. & Dijkstra, C. Increased daily work precipitates natural death in the kestrel. J. Anim. Ecol. 65, 539–544. https://doi.org/10.2307/5734 (1996).Article 

    Google Scholar 
    Newton, I. Migration within the annual cycle: Species, sex and age differences. J. Ornithol. 152, 169–185 (2011).Article 

    Google Scholar 
    Wingfield, J. C. Organization of vertebrate annual cycles: Implications for control mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 425–441. https://doi.org/10.1098/rstb.2007.2149 (2008).Article 

    Google Scholar 
    Barta, Z. et al. Optimal moult strategies in migratory birds. Philos. Trans. R. Soc. B Biol. Sci. 363, 211–229. https://doi.org/10.1098/rstb.2007.2136 (2008).Article 

    Google Scholar 
    Wingfield, J. C. Flexibility in annual cycles of birds: Implications for endocrine control mechanisms. J. Ornithol. 146, 291–304. https://doi.org/10.1007/s10336-005-0002-z (2005).Article 

    Google Scholar 
    Bryant, D. M. Energy expenditure in wild birds. Proc. Nutr. Soc. 56, 1025–1039. https://doi.org/10.1079/PNS19970107 (1997).Article 
    CAS 

    Google Scholar 
    Lustick, S. Energy requirements of molt in cowbirds. Auk 87, 742–746. https://doi.org/10.2307/4083708 (1970).Article 

    Google Scholar 
    Murphy, M. E. & King, J. R. Energy and nutrient use during moult by white-crowned sparrows Zonotrichia leucophrys gambelii. Ornis Scand. (Scand. J. Ornithol.) 23, 304–313. https://doi.org/10.2307/3676654 (1992).Article 

    Google Scholar 
    Lindström, Å., Visser, G. H. & Daan, S. The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol. Zool. 66, 490–510. https://doi.org/10.1086/physzool.66.4.30163805 (1993).Article 

    Google Scholar 
    Buttemer, W. A., Nicol, S. C. & Sharman, A. Thermoenergetics of pre-moulting and moulting kookaburras (Dacelo novaeguineae): They’re laughing. J. Comp. Physiol. B. 173, 223–230 (2003).Article 
    CAS 

    Google Scholar 
    Hedenström, A. & Sunada, S. On the aerodynamics of moult gaps in birds. J. Exp. Biol. 202, 67–76. https://doi.org/10.1242/jeb.202.1.67 (1999).Article 

    Google Scholar 
    Cherel, Y., Quillfeldt, P., Delord, K. & Weimerskirch, H. Combination of at-sea activity, geolocation and feather stable isotopes documents where and when seabirds molt. Front. Ecol. Evol. 4, 3. https://doi.org/10.3389/fevo.2016.00003 (2016).Article 

    Google Scholar 
    Rohwer, S., Butler, L. K., Froehlich, D. R., Greenberg, R. & Marra pp., Ecology and demography of east–west differences in molt scheduling of Neotropical migrant passerines. In Birds of Two Worlds: The Ecology and Evolution of Migration (eds Greenberg, R. & Marra, P. P.) 87–105 (Johns Hopkins University Press, 2005).
    Google Scholar 
    Norris, D. R., Marra, P. P., Kyser, T. K., Sherry, T. W. & Ratcliffe, L. M. Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc. R. Soc. Lond. B Biol. Sci. 271, 59–64. https://doi.org/10.1098/rspb.2003.2569 (2004).Article 

    Google Scholar 
    Ramenofsky, M. & Wingfield, J. C. Behavioral and physiological conflicts in migrants: The transition between migration and breeding. J. Ornithol. 147, 135 (2006).Article 

    Google Scholar 
    Kiat, Y., Izhaki, I. & Sapir, N. The effects of long-distance migration on the evolution of moult strategies in Western-Palearctic passerines. Biol. Rev. 94, 700–720. https://doi.org/10.1111/brv.12474 (2019).Article 

    Google Scholar 
    Newton, I. The Migration Ecology of Birds (Academic Press, 2008).
    Google Scholar 
    Klaassen, R. H. G., Ens, B. J., Shamoun-Baranes, J., Exo, K.-M. & Bairlein, F. Migration strategy of a flight generalist, the Lesser Black-backed Gull Larus fuscus. Behav. Ecol. 23, 58–68. https://doi.org/10.1093/beheco/arr150 (2012).Article 

    Google Scholar 
    Martín-Vélez, V. et al. Functional connectivity network between terrestrial and aquatic habitats by a generalist waterbird, and implications for biovectoring. Sci. Total Environ. 705, 135886. https://doi.org/10.1016/j.scitotenv.2019.135886 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Baert, J. M. et al. High-resolution GPS tracking reveals sex differences in migratory behaviour and stopover habitat use in the Lesser Black-backed Gull Larus fuscus. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-23605-x (2018).Article 
    CAS 

    Google Scholar 
    Spelt, A. et al. Habitat use of urban-nesting lesser black-backed gulls during the breeding season. Sci. Rep. 9, 1–11. https://doi.org/10.1038/s41598-019-46890-6 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Tyson, C., Shamoun-Baranes, J., Van Loon, E. E., Camphuysen, K. & Hintzen, N. T. Individual specialization on fishery discards by lesser black-backed gulls (Larus fuscus). ICES J. Mar. Sci. 72, 1882–1891. https://doi.org/10.1093/icesjms/fsv021 (2015).Article 

    Google Scholar 
    Shamoun-Baranes, J., Burant, J. B., Loon, E. E., Bouten, W. & Camphuysen, C. J. Short distance migrants travel as far as long distance migrants in lesser black-backed gulls Larus fuscus. J. Avian Biol. 48, 49–57. https://doi.org/10.1111/jav.01229 (2017).Article 

    Google Scholar 
    Brown, J. M. et al. Long-distance migrants vary migratory behaviour as much as short-distance migrants: An individual-level comparison from a seabird species with diverse migration strategies. J. Anim. Ecol. 90, 1058–1070. https://doi.org/10.1111/1365-2656.13431 (2021).Article 

    Google Scholar 
    Brown, J. M., Bouten, W., Camphuysen, K. C. J., Nolet, B. A. & Shamoun-Baranes, J. Acceleration as a proxy for energy expenditure in a facultative-soaring bird: Comparing dynamic body acceleration and time-energy budgets to heart rate. Funct. Ecol. 36, 1627–1638. https://doi.org/10.1111/1365-2435.14055 (2022).Article 

    Google Scholar 
    Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: Explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236. https://doi.org/10.1111/ecog.03531 (2019).Article 

    Google Scholar 
    Levin, S. A. The problem of pattern and scale in ecology: The Robert H MacArthur award lecture. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    Shepard, E. L. et al. Energy landscapes shape animal movement ecology. Am. Nat. 182, 298–312. https://doi.org/10.1086/671257 (2013).Article 

    Google Scholar 
    Sage, E., Bouten, W., Hoekstra, B., Camphuysen, K. C. & Shamoun-Baranes, J. Orographic lift shapes flight routes of gulls in virtually flat landscapes. Sci. Rep. 9, 1–10. https://doi.org/10.1038/s41598-019-46017-x (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, 2019).Book 

    Google Scholar 
    Piersma, T. Why marathon migrants get away with high metabolic ceilings: Towards an ecology of physiological restraint. J. Exp. Biol. 214, 295–302. https://doi.org/10.1242/jeb.046748 (2011).Article 

    Google Scholar 
    Shamoun-Baranes, J., Bouten, W., Camphuysen, C. J. & Baaij, E. Riding the tide: Intriguing observations of gulls resting at sea during breeding. Ibis 153, 411–415. https://doi.org/10.1111/j.1474-919X.2010.01096.x (2011).Article 

    Google Scholar 
    Kavelaars, M. M. et al. Simultaneous GPS-tracking of parents reveals a similar parental investment within pairs, but no immediate co-adjustment on a trip-to-trip basis. Mov. Ecol. 9, 42. https://doi.org/10.1186/s40462-021-00279-1 (2021).Article 

    Google Scholar 
    Humphreys, E. M., Wanless, S. & Bryant, D. M. Elevated metabolic costs while resting on water in a surface feeder: The Black-legged Kittiwake Rissa tridactyla. Ibis 149, 106–111. https://doi.org/10.1111/j.1474-919X.2006.00618.x (2007).Article 

    Google Scholar 
    Lustick, S., Battersby, B. & Kelty, M. Behavioral thermoregulation: Orientation toward the sun in herring gulls. Science 200, 81–83. https://doi.org/10.1126/science.635577 (1978).Article 
    ADS 

    Google Scholar 
    Green, J. A., Boyd, I. L., Woakes, A. J., Green, C. J. & Butler, P. J. Do seasonal changes in metabolic rate facilitate changes in diving behaviour?. J. Exp. Biol. 208, 2581–2593. https://doi.org/10.1242/jeb.01679 (2005).Article 
    CAS 

    Google Scholar 
    Green, J. A. et al. An increase in minimum metabolic rate and not activity explains field metabolic rate changes in a breeding seabird. J. Exp. Biol. 216, 1726–1735. https://doi.org/10.1242/jeb.085092 (2013).Article 
    CAS 

    Google Scholar 
    White, C. R., Grémillet, D., Green, J. A., Martin, G. R. & Butler, P. J. Metabolic rate throughout the annual cycle reveals the demands of an Arctic existence in Great Cormorants. Ecology 92, 475–486 (2011).Article 

    Google Scholar 
    Guillemette, M. & Butler, P. J. Seasonal variation in energy expenditure is not related to activity level or water temperature in a large diving bird. J. Exp. Biol. 215, 3161–3168. https://doi.org/10.1242/jeb.061119 (2012).Article 

    Google Scholar 
    Dunn, R. E., Wanless, S., Daunt, F., Harris, M. P. & Green, J. A. A year in the life of a North Atlantic seabird: Behavioural and energetic adjustments during the annual cycle. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-62842-x (2020).Article 
    CAS 

    Google Scholar 
    Camphuysen, C. J. Lesser Black-backed gulls nesting at Texel. Final report (Royal Netherlands Institute for Sea Research, 2011).
    Google Scholar 
    Camphuysen, C. J., Shamoun-Baranes, J., van Loon, E. E. & Bouten, W. Sexually distinct foraging strategies in an omnivorous seabird. Mar. Biol. 162, 1417–1428. https://doi.org/10.1007/s00227-015-2678-9 (2015).Article 

    Google Scholar 
    Dunn, R. E., White, C. R. & Green, J. A. A model to estimate seabird field metabolic rates. Biol. Lett. 14, 20180190. https://doi.org/10.1098/rsbl.2018.0190 (2018).Article 

    Google Scholar 
    Catry, P., Dias, M. P., Phillips, R. A. & Granadeiro, J. P. Carry-over effects from breeding modulate the annual cycle of a long-distance migrant: An experimental demonstration. Ecology 94, 1230–1235. https://doi.org/10.1890/12-2177.1 (2013).Article 

    Google Scholar 
    Gutowsky, S. E. et al. Daily activity budgets reveal a quasi-flightless stage during non-breeding in Hawaiian albatrosses. Mov. Ecol. 2, 23. https://doi.org/10.1186/s40462-014-0023-4 (2014).Article 

    Google Scholar 
    Harris, M. P. Ecological adaptations of moult in some British gulls. Bird Study 18, 113–118 (1971).Article 

    Google Scholar 
    Verbeek, N. A. Timing of primary moult in adult herring gulls and lesser black-backed gulls. J. Ornithol. 118, 87–92 (1977).Article 

    Google Scholar 
    Sorensen, M. C., Hipfner, J. M., Kyser, T. K. & Norris, D. R. Carry-over effects in a Pacific seabird: Stable isotope evidence that pre-breeding diet quality influences reproductive success. J. Anim. Ecol. 78, 460–467. https://doi.org/10.1111/j.1365-2656.2008.01492.x (2009).Article 

    Google Scholar 
    Lok, T., Overdijk, O., Tinbergen, J. M. & Piersma, T. The paradox of spoonbill migration: Most birds travel to where survival rates are lowest. Anim. Behav. 82, 837–844 (2011).Article 

    Google Scholar 
    Reneerkens, J. et al. Low fitness at low latitudes: Wintering in the tropics increases migratory delays and mortality rates in an Arctic breeding shorebird. J. Anim. Ecol. 89, 691–703. https://doi.org/10.1111/1365-2656.13118 (2020).Article 

    Google Scholar 
    Bouten, W., Baaij, E. W., Shamoun-Baranes, J. & Camphuysen, K. C. A flexible GPS tracking system for studying bird behaviour at multiple scales. J. Ornithol. 154, 571–580. https://doi.org/10.1007/s10336-012-0908-1 (2013).Article 

    Google Scholar 
    Thaxter, C. B. et al. A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas. Ring. Migr. 29, 65–76. https://doi.org/10.1080/03078698.2014.995546 (2014).Article 

    Google Scholar 
    Shamoun-Baranes, J., Bouten, W., van Loon, E. E., Meijer, C. & Camphuysen, C. J. Flap or soar? How a flight generalist responds to its aerial environment. Philos. Trans. R. Soc. B 371, 20150395. https://doi.org/10.1098/rstb.2015.0395 (2016).Article 

    Google Scholar 
    Buchhorn, M., Smets, B., Bertels, L., Lesiv, M., Masiliunas, D., Linlin, L., Herold, M. & Fritz S. Copernicus Global Land Service: Land Cover 100m: Collection 3: epoch 2016–2019: Globe (2020).Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. J. Anim. Ecol. 89, 161–172. https://doi.org/10.1111/1365-2656.13040 (2019).Article 

    Google Scholar 
    Cartar, R. V. & Morrison, R. G. Estimating metabolic costs for homeotherms from weather data and morphology: An example using calidridine sandpipers. Can. J. Zool. 75, 94–101 (1997).Article 

    Google Scholar 
    Baveco, J. M., Kuipers, H. & Nolet, B. A. A large-scale multi-species spatial depletion model for overwintering waterfowl. Ecol. Model. 222, 3773–3784 (2011).Article 

    Google Scholar 
    Hersbach H et al. ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47 (2018).Bevan, R. M., Butler, P. J., Woakes, A. J. & Prince, P. A. The energy expenditure of free-ranging black-browed albatrosses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 350, 119–131. https://doi.org/10.1098/rstb.1995.0146 (1995).Article 
    ADS 

    Google Scholar 
    Bevan, R. M. & Butler, P. J. The effects of temperature on the oxygen consumption, heart rate and deep body temperature during diving in the tufted duck Aythya fuligula. J. Exp. Biol. 163, 139–151. https://doi.org/10.1242/jeb.163.1.139 (1992).Article 

    Google Scholar 
    Stahel, C. D. & Nicol, S. C. Temperature regulation in the little penguin, Eudyptula minor, in air and water. J. Comp. Physiol. 148, 93–100 (1982).Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Wood, S. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation (2021).Zuur, A. F. Beginner’s Guide to Spatial, Temporal, and Spatial-Temporal Ecological Data Analysis with R-INLA (Highland Statistics Ltd., 2017).
    Google Scholar 
    Brown, J. M., Bouten, W., Camphuysen, K., Nolet, B. A. & Shamoun-Baranes, J. Z. Data and code archive for ‘Energetic and behavioral consequences of migration: An empirical evaluation in the context of the full annual cycle’. https://doi.org/10.21942/uva.21583926.v1 (2022).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (Springer, 2016).South, A. rworldmap: Mapping Global Data. http://cran.r-project.org/web/packages/rworldmap (2016).Natural Earth. V 1.4.0. Free vector and raster map data at 1:10m, 1:50m, and 1:110m scales. https://www.naturalearthdata.com/downloads/. More

  • in

    Allelochemical run-off from the invasive terrestrial plant Impatiens glandulifera decreases defensibility in Daphnia

    Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).Article 
    CAS 

    Google Scholar 
    Dugatkin, L. A. & Godin, J. G. J. Prey approaching predators: A cost-benefit perspective. Ann. Zool. Fennici 29, 233–252 (1992).
    Google Scholar 
    Portalier, S. M. J., Fussmann, G. F., Loreau, M. & Cherif, M. The mechanics of predator–prey interactions: First principles of physics predict predator–prey size ratios. Funct. Ecol. 33, 323–334 (2019).Article 

    Google Scholar 
    Achrai, B., Bar-On, B. & Wagner, H. D. Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues. Bioinsp. Biomim. 10, 016009 (2015).Article 
    CAS 

    Google Scholar 
    Stankowich, T. & Campbell, L. A. Living in the danger zone: Exposure to predators and the evolution of spines and body armor in mammals. Evolution 70, 1501–1511 (2016).Article 

    Google Scholar 
    Tollrian, R. & Harvell, C. D. The ecology and evolution of inducible defenses. Q. Rev. Biol. 65, 323–340 (1990).Article 

    Google Scholar 
    Nordlund, D. A. & Lewis, W. J. Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J. Chem. Ecol. 2, 211–220 (1976).Article 

    Google Scholar 
    Poulin, R. X. et al. Chemical encoding of risk perception and predator detection among estuarine invertebrates. Proc. Natl. Acad. Sci. USA 115, 662–667 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Tollrian, R. & Dodson, S. I. Inducible defenses in Cladocera: Constraints, costs, and multipredator environments. Ecol. Evol. Inducible Defenses 177, 177–202 (1999).Article 

    Google Scholar 
    Von Elert, E. & Loose, C. J. Predator-induced diel vertical migration in Daphnia: Enrichment and preliminary chemical characterization of a kairomone exuded by fish. J. Chem. Ecol. 22, 885–895 (1996).Article 

    Google Scholar 
    Barry, M. J. Effects of endosulfan on Chaoborus-induced life-history shifts and morphological defenses in Daphnia pulex. J. Plankton Res. 22, 1705–1718 (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Riessen, H. P. & Gilbert, J. J. Divergent developmental patterns of induced morphological defenses in rotifers and Daphnia: Ecological and evolutionary context. Limnol. Oceanogr. 64, 541–557 (2019).Article 
    ADS 

    Google Scholar 
    Sperfeld, E., Nilssen, J. P., Rinehart, S., Schwenk, K. & Hessen, D. O. Ecology of predator-induced morphological defense traits in Daphnia longispina (Cladocera, Arthropoda). Oecologia 192, 687–698 (2020).Article 
    ADS 

    Google Scholar 
    Tollrian, R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: Morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15, 1309–1318 (1993).Article 

    Google Scholar 
    Laforsch, C. & Tollrian, R. Inducible defenses in multipredator environments: Cyclomorphosis in Daphnia cucullata. Ecology 85, 2302–2311 (2004).Article 

    Google Scholar 
    Petrusek, A., Tollrian, R., Schwenk, K., Haas, A. & Laforsch, C. A ‘crown of thorns’ is an inducible defense that protects Daphnia against an ancient predator. Proc. Natl. Acad. Sci. USA 106, 2248–2252 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Engel, K. & Tollrian, R. Inducible defences as key adaptations for the successful invasion of Daphnia lumholtzi in North America?. Proc. R. Soc. B Biol. Sci. 276, 1865–1873 (2009).Article 

    Google Scholar 
    Barry, M. J. & Bayly, I. A. E. Further studies on predator induction of crests in australian Daphnia and the effects of crests on predation. Mar. Freshw. Res. 36, 519–535 (1985).
    Google Scholar 
    Rabus, M. & Laforsch, C. Growing large and bulky in the presence of the enemy: Daphnia magna gradually switches the mode of inducible morphological defences. Funct. Ecol. 25, 1137–1143 (2011).Article 

    Google Scholar 
    Herzog, Q. & Laforsch, C. Modality matters for the expression of inducible defenses: Introducing a concept of predator modality. BMC Biol. 11, 113 (2013).Article 

    Google Scholar 
    Riessen, H. P. et al. Changes in water chemistry can disable plankton prey defenses. Proc. Natl. Acad. Sci. USA 109, 15377–15382 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Tollrian, R., Duggen, S., Weiss, L. C., Laforsch, C. & Kopp, M. Density-dependent adjustment of inducible defenses. Sci. Rep. 5, 12736 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Weiss, L. C. et al. Rising pCO2 in freshwater ecosystems has the potential to negatively affect predator-induced defenses in Daphnia. Curr. Biol. 28, 327-332.e3 (2018).Article 
    CAS 

    Google Scholar 
    Hanazato, T. Pesticide effects on freshwater zooplankton: An ecological perspective. Environ. Pollut. 112, 1–10 (2001).Article 
    CAS 

    Google Scholar 
    Coors, A. & DeMeester, L. Erratum: Synergistic, antagonistic and additive effects of multiple stressors: Predation threat, parasitism and pesticide exposure in Daphnia magna. J. Appl. Ecol. 46, 1138 (2009).
    Google Scholar 
    Schriever, C. A., von der Ohe, P. C. & Liess, M. Estimating pesticide runoff in small streams. Chemosphere 68, 2161–2171 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Lobstein, A. et al. Quantitative determination of naphthoquinones of Impatiens species. Phytochem. Anal. 12, 202–205 (2001).Article 
    CAS 

    Google Scholar 
    Kisielius, V. et al. The invasive butterbur contaminates stream and seepage water in groundwater wells with toxic pyrrolizidine alkaloids. Sci. Rep. 10, 19784 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Yoneyama, K. & Natsume, M. 4.13 Allelochemicals for Plant—Plant and Plant—Microbe Interactions. Interactions (Elsevier Inc., 2010).Griffiths, M. R., Strobel, B. W., Hama, J. R. & Cedergreen, N. Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environ. Sci. Eur. 33, 10 (2021).Article 
    CAS 

    Google Scholar 
    Callaway, R. M. & Ridenour, W. M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2, 436–443 (2004).Article 

    Google Scholar 
    Beerling, D. J. & Perrins, J. M. Impatiens glandulifera Royle (Impatiens Roylei Walp.). J. Ecol. 81, 367–382 (1993).Article 

    Google Scholar 
    Roy, B., Popay, A.I., Champion, P.D., James, T.K. & Rahman, A. An Illustrated Guide to Common Weeds of New Zealand. 2nd Edn. (New Zealand Plant Protection Society, 2004). Ruckli, R., Hesse, K., Glauser, G., Rusterholz, H. P. & Baur, B. Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera. J. Chem. Ecol. 40, 371–378 (2014).Article 
    CAS 

    Google Scholar 
    Gruntman, M., Pehl, A. K., Joshi, S. & Tielbörger, K. Competitive dominance of the invasive plant Impatiens glandulifera: Using competitive effect and response with a vigorous neighbour. Biol. Invasions 16, 141–151 (2014).Article 

    Google Scholar 
    Bieberich, J. et al. Species- and developmental stage-specific effects of allelopathy and competition of invasive Impatiens glandulifera on cooccurring plants. PLoS ONE 13, e0205843 (2018).Article 

    Google Scholar 
    Wright, D. A., Dawson, R., Cutler, S. J., Cutler, H. G. & Orano-Dawson, C. E. Screening of natural product biocides for control of non-indigenous species. Environ. Technol. 28, 309–319 (2007).Article 
    CAS 

    Google Scholar 
    Kayashima, T., Mori, M., Yoshida, H., Mizushina, Y. & Matsubara, K. 1,4-naphthoquinone is a potent inhibitor of human cancer cell growth and angiogenesis. Cancer Lett. 278, 34–40 (2009).Article 
    CAS 

    Google Scholar 
    Jentzsch, J. et al. New antiparasitic bis-naphthoquinone derivatives. Chem. Biodivers. 17, e1900597 (2020).Article 
    CAS 

    Google Scholar 
    Mitchell, M. J., Brescia, A. I., Smith, S. L. & Morgan, E. D. Effects of the compounds 2-methoxynaphthoquinone, 2-propoxynaphthoquinone, and 2-isopropoxynaphthoquinone on ecdysone 20-monooxygenase activity. Arch. Insect Biochem. Physiol. 66, 45–52 (2007).Article 
    CAS 

    Google Scholar 
    Westfall, B. A., Russell, R. L. & Auyong, T. K. Depressant agent from walnut hulls. Science 134, 1617 (1961).Article 
    ADS 
    CAS 

    Google Scholar 
    Diller, J. G. P. et al. The Beauty is a beast: Does leachate from the invasive terrestrial plant Impatiens glandulifera affect aquatic food webs?. Ecol. Evol. 12, e8781 (2022).Article 

    Google Scholar 
    Elendt, B. P. Selenium deficiency in Crustacea—an ultrastructural approach to antennal damage in Daphnia magna Straus. Protoplasma 154, 25–33 (1990).Article 
    CAS 

    Google Scholar 
    Ebert, D. The trade-off between offspring size and number in Daphnia magna: The influence of genetic, environmental and maternal effects. Arch. Fur Hydrobiol. 90, 453–473 (1993).
    Google Scholar 
    Trotter, B., Ramsperger, A. F. R. M., Raab, P., Haberstroh, J. & Laforsch, C. Plastic waste interferes with chemical communication in aquatic ecosystems. Sci. Rep. 9, 5889 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Laforsch, C., Beccara, L. & Tollrian, R. Inducible defenses: The relevance of chemical alarm cues in Daphnia. Limnol. Oceanogr. 51, 1466–1472 (2006).Article 
    ADS 

    Google Scholar 
    Miner, B. E., de Meester, L., Pfrender, M. E., Lampert, W. & Hairston, N. G. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc. R. Soc. B Biol. Sci. 279, 1873–1882 (2012).Article 

    Google Scholar 
    Altshuler, I. et al. An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integr. Comp. Biol. 51, 623–633 (2011).Article 
    CAS 

    Google Scholar 
    Diel, P., Kiene, M., Martin-Creuzburg, D. & Laforsch, C. Knowing the enemy: Inducible defences in freshwater zooplankton. Diversity 12, 147 (2020).Article 
    CAS 

    Google Scholar 
    Pestana, J. L. T., Loureiro, S., Baird, D. J. & Soares, A. M. V. M. Pesticide exposure and inducible antipredator responses in the zooplankton grazer, Daphnia magna Straus. Chemosphere 78, 241–248 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Grant, J. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. 26, 201–218 (1981).Article 
    ADS 

    Google Scholar 
    Dodson, S. I. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55, 605–613 (1974).Article 

    Google Scholar 
    Klotz, L. O., Hou, X. & Jacob, C. 1,4-naphthoquinones: From oxidative damage to cellular and inter-cellular signaling. Molecules 19, 14902–14918 (2014).Article 

    Google Scholar 
    Subramoniam, T. Crustacean ecdysteriods in reproduction and embryogenesis. Comp. Biochem. C Physiol. Pharmacol. Toxicol. Endocrinol. 125, 135–156 (2000).Article 
    CAS 

    Google Scholar 
    De Coen, W. M. & Janssen, C. R. The missing biomarker link: Relationships between effects on the cellular energy allocation biomarker of toxicant-stressed Daphnia magna and corresponding population characteristics. Environ. Toxicol. Chem. 22, 1632–1641 (2003).Article 

    Google Scholar 
    Palma, P. et al. Effects of atrazine and endosulfan sulphate on the ecdysteroid system of Daphnia magna. Chemosphere 74, 676–681 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Mount, D. I. & Norberg, T. J. A seven-day life cycle Cladoceran toxicity test. Environ. Toxicol. Chem. 3, 425–434 (1984).Article 
    CAS 

    Google Scholar 
    Elnabarawy, M. T., Welter, A. N. & Robideau, R. R. Relative sensitivity of three daphnid species to selected organic and inorganic chemicals. Environ. Toxicol. Chem. 5, 393–398 (1986).Article 
    CAS 

    Google Scholar 
    Jaikumar, G., Baas, J., Brun, N. R., Vijver, M. G. & Bosker, T. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. Environ. Pollut. 239, 733–740 (2018).Article 
    CAS 

    Google Scholar 
    Gama-Flores, J. L., Salas, M. E. H., Sarma, S. S. S. & Nandini, S. Demographic responses of Cladocerans (Cladocera) in relation to different concentrations of humic substances. J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst. Environ. Eng. 54, 1311–1317 (2019).CAS 

    Google Scholar 
    Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldana, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).Article 

    Google Scholar 
    Hunt, R. J. & Swift, M. Predation by larval damselflies on Cladocerans. J. Freshw. Ecol. 25, 345–351 (2010).Article 

    Google Scholar 
    Riessen, H. P. & Trevett-Smith, J. B. Turning inducible defenses on and off: Adaptive responses of Daphnia to a gape-limited predator. Ecology 90, 3455–3469 (2009).Article 

    Google Scholar 
    Pijanowska, J. Cyclomorphosis in Daphnia: An adaptation to avoid invertebrate predation. Hydrobiologia 198, 41–50 (1990).Article 

    Google Scholar 
    Gu, L. et al. Coping with antagonistic predation risks: Predator-dependent unique responses are dominant in Ceriodaphnia cornuta. Mol. Ecol. 31, 3951–3962 (2022).Article 
    CAS 

    Google Scholar 
    Jeziorski, A. et al. The jellification of north temperate lakes. Proc. R. Soc. B Biol. Sci. 2014, 282 (2014).
    Google Scholar 
    Ponti, B., Piscia, R., Bettinetti, R. & Manca, M. Long-term adaptation of Daphnia to toxic environment in Lake Orta: The effects of short-term exposure to copper and acidification. J. Limnol. 69, 217–224 (2010).Article 

    Google Scholar 
    Wright, D. A., Mitchelmore, C. L., Dawson, R. & Cutler, H. G. The influence of water quality on the toxicity and degradation of juglone (5-hydroxy 1,4-naphthoquinone). Environ. Technol. 28, 1091–1101 (2007).Article 
    CAS 

    Google Scholar  More