More stories

  • in

    Daily mapping of Australian Plague Locust abundance

    1.
    Stige, L. C., Chan, K.-S., Zhang, Z., Frank, D. & Stenseth, N. C. Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. Proc. Natl. Acad. Sci. 104, 16188–16193 (2007).
    ADS  CAS  PubMed  Article  Google Scholar 
    2.
    Walker, F. Catalogue of the Specimens of Dermaptera Saltatoria in Collection of the British Museum. Part III. 485–594 (British Museum (Natural History), 1870).

    3.
    Wright, D. E. Analysis of the development of major plagues of the Australian plague locust Chortoicetes terminifera (Walker) using a simulation model. Aust. J. Ecol. 12, 423–437 (1987).
    Article  Google Scholar 

    4.
    Deveson, E. D. & Walker, P. W. Not a one-way trip: Historical distribution data for Australian plague locusts support frequent seasonal exchange migrations. J. Orthoptera Res. 14, 91–105 (2005).
    Article  Google Scholar 

    5.
    Wang, H. Quantitative assessment of Australian plague locust habitats in the inland of eastern Australia using RS and GIS technologies in Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI vol. 9239 92390D (International Society for Optics and Photonics, 2014).

    6.
    Chapuis, M.-P. et al. Challenges to assessing connectivity between massive populations of the Australian plague locust. Proc. R. Soc. B Biol. Sci. 278, 3152–3160 (2011).
    Article  Google Scholar 

    7.
    Murray, D. A. H., Clarke, M. B. & Ronning, D. A. Estimating invertebrate pest losses in six major Australian grain crops. Aust. J. Entomol. 52, 227–241 (2013).
    Article  Google Scholar 

    8.
    Zhang, L., Lecoq, M., Latchininsky, A. & Hunter, D. Locust and grasshopper management. Annu. Rev. Entomol. 64, 15–34 (2019).
    CAS  PubMed  Article  Google Scholar 

    9.
    Adriaansen, C., Woodman, J., Deveson, E. & Drake, V. The Australian Plague Locust: risk and response. Environ. Hazards Risks Disasters Biol https://doi.org/10.1016/B978-0-12-394847-2.00005-X (2016).
    Article  Google Scholar 

    10.
    Farrow, R. A. & Longstaff, B. C. Comparison of the annual rates of increase of locusts in relation to the incidence of plagues. Oikos 2, 207–222 (1986).
    Article  Google Scholar 

    11.
    Wardhaugh, K. G. The effects of temperature and moisture on the inception of diapause in eggs of the Australian plague locust, Chortoicetes terminifera Walker (Orthoptera: Acrididae). Aust. J. Ecol. 5, 187–191 (1980).
    Article  Google Scholar 

    12.
    Wardhaugh, K. G. Diapause strategies in the Australian plague locust (Chortoicetes terminifera Walker). In The evolution of insect life cycles 89–104 (Springer, Berlin, 1986).
    Google Scholar 

    13.
    Clark, D. P. Flights after sunset by the Australian plague locust, Chortoicetes terminifera (Walker) and their significance in dispersal and migration. Aust. J. Zool. 19, 159–176 (1971).
    Article  Google Scholar 

    14.
    Farrow, R. A. Origin and decline of the 1973 plague locust outbreak in central western New South Wales. Aust. J. Zool. 25, 455–489 (1977).
    Article  Google Scholar 

    15.
    Wang, B. et al. Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Sci. Total Environ. 668, 947–957 (2019).
    ADS  CAS  PubMed  Article  Google Scholar 

    16.
    Veran, S. et al. Modeling spatiotemporal dynamics of outbreaking species: influence of environment and migration in a locust. Ecology 96, 737–748 (2015).
    PubMed  Article  Google Scholar 

    17.
    Maywald, G., Kriticos, D., Sutherst, R. & Bottomley, W. DYMEX model builder version 3: user’s guide. (2007).

    18.
    Meynard, C. N. et al. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob. Change Biol. 23, 4739–4749 (2017).
    ADS  Article  Google Scholar 

    19.
    Piou, C. et al. Coupling historical prospection data and a remotely-sensed vegetation index for the preventative control of Desert locusts. Basic Appl. Ecol. 14, 593–604 (2013).
    Article  Google Scholar 

    20.
    Tratalos, J. A., Cheke, R. A., Healey, R. G. & Stenseth, N. C. Desert locust populations, rainfall and climate change: Insights from phenomenological models using gridded monthly data. Clim. Res. 43, 229–239 (2010).
    Article  Google Scholar 

    21.
    Tian, H. et al. Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in China. Proc. Natl. Acad. Sci. 108, 14521–14526 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    22.
    Ehrlén, J. & Morris, W. F. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303–314 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Croft, S., Chauvenet, A. L. & Smith, G. C. A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE 12, e0176339 (2017).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    24.
    Woodman, J. D. High-temperature survival is limited by food availability in first-instar locust nymphs. Aust. J. Zool. 58, 323–330 (2011).
    Article  Google Scholar 

    25.
    Guisan, A., Edwards, T. C. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157, 89–100 (2002).
    Article  Google Scholar 

    26.
    Yee, T. W. & Mitchell, N. D. Generalized additive models in plant ecology. J. Veg. Sci. 2, 587–602 (1991).
    Article  Google Scholar 

    27.
    Bučas, M. et al. Empirical modelling of benthic species distribution, abundance, and diversity in the Baltic Sea: Evaluating the scope for predictive mapping using different modelling approaches. ICES J. Mar. Sci. 70, 1233–1243 (2013).
    Article  Google Scholar 

    28.
    Heersink, D. K. et al. Statistical modeling of a larval mosquito population distribution and abundance in residential Brisbane. J. Pest Sci. 89, 267–279 (2016).
    Article  Google Scholar 

    29.
    Jeffrey, S. J., Carter, J. O., Moodie, K. B. & Beswick, A. R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 16, 309–330 (2001).
    Article  Google Scholar 

    30.
    Tozer, C. R., Kiem, A. S. & Verdon-Kidd, D. C. On the uncertainties associated with using gridded rainfall data as a proxy for observed. Hydrol. Earth Syst. Sci. 16, 1481–1499 (2012).
    ADS  Article  Google Scholar 

    31.
    Gregg, P. Development of the Australian Plague Locust, Chortoicetes terminifera, in relation to weather I. Effects of constant temperature and humidity. Aust. J. Entomol. 22, 247–251 (1983).
    Article  Google Scholar 

    32.
    Pruess, K. P. Day-degree methods for pest management. Environ. Entomol. 12, 613–619 (1983).
    Article  Google Scholar 

    33.
    McVicar, T. R., Briggs, P. R., King, E. A. & Raupach, M. R. A review of predictive modelling from a natural resource management perspective: the role of remote sensing of the terrestrial environment (CSIRO Land and Water CSIRO Earth Observation Centre, Canberra, 2003).
    Google Scholar 

    34.
    Grundy, M. J. et al. Soil and landscape grid of Australia. Soil Res. 53, 835–844 (2015).
    Article  Google Scholar 

    35.
    Cressie, N. & Wikle, C. K. Statistics for spatio-temporal data (John Wiley & Sons, New York, 2015).
    Google Scholar 

    36.
    James, G., Witten, D., Hastie, T. & Tibshirani, R. An introduction to statistical learning (Springer, Berlin, 2013).
    Google Scholar 

    37.
    Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. Gen. 135, 370–384 (1972).
    Article  Google Scholar 

    38.
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
    PubMed  PubMed Central  Article  Google Scholar 

    39.
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer-Verlag, Berlin, 2002). https://doi.org/10.1007/978-0-387-21706-2.
    Google Scholar 

    40.
    Wood, S. N., Goude, Y. & Shaw, S. Generalized additive models for large data sets. J. R. Stat. Soc. Ser. C Appl. Stat. 64, 139–155 (2015).
    MathSciNet  Article  Google Scholar 

    41.
    Clark, D. P. The influence of rainfall on the densities of adult Chortoicetes terminifera (Walker) in central western New South Wales, 1965–73. Aust. J. Zool. 22, 365–386 (1974).
    Article  Google Scholar 

    42.
    Shelford, V. E. The ecology of North America. Ecol. N. Am. 2, 2 (1963).
    Google Scholar 

    43.
    Deveson, E. D. Satellite normalized difference vegetation index data used in managing Australian plague locusts. J. Appl. Remote Sens. 7, 075096 (2013).
    ADS  Article  Google Scholar 

    44.
    Kuhnert, P. M. & Lucchesi, L. Vizumap: An R package for visualizing uncertainty in spatial data (Zenodo, Boca Raton, 2018). https://doi.org/10.5281/zenodo.1479951.
    Google Scholar 

    45.
    Lucchesi, L. R. & Wikle, C. K. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph rotation. Stat 6, 292–302 (2017).
    MathSciNet  Article  Google Scholar 

    46.
    Benfekih, L., Chara, B. & Doumandji-Mitiche, B. Influence of anthropogenic impact on the habitats and swarming risks of Dociostaurus maroccanus and Locusta migratoria (Orthoptera, Acrididae) in the Algerian Sahara and the semi-arid zone. J. Orthoptera Res. 11, 243–250 (2002).
    Article  Google Scholar 

    47.
    Štrumbelj, E. & Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41, 647–665 (2014).
    Article  Google Scholar 

    48.
    Escorihuela, M. J. et al. SMOS based high resolution soil moisture estimates for desert locust preventive management. Remote Sens. Appl. Soc. Environ. 11, 140–150 (2018).
    Google Scholar 

    49.
    Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).
    ADS  Article  Google Scholar 

    50.
    Hu, G. et al. Long-term seasonal forecasting of a major migrant insect pest: the brown planthopper in the Lower Yangtze River Valley. J. Pest Sci. 92, 417–428 (2019).
    Article  Google Scholar  More

  • in

    Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization

    Ethics statement
    All animal experiments were performed at the Max F. Perutz Laboratories of the University of Vienna, Austria. All experiments were discussed and approved by the University of Veterinary Medicine, Vienna, Austria, and conducted in accordance with protocols approved by the Federal Ministry for Education, Science and Research of the Republic of Austria under the license number BMWF-66.006/0001-WF/V/3b/2016. Animals were randomized for interventions but researchers processing the samples and analyzing the data were aware which intervention group corresponded to which cohort of animals.
    Mouse colon incubations
    Three adult (6-8 weeks old) C57BL/6N mice bred at the Max F. Perutz Laboratories, University of Vienna, under SPF conditions were sacrificed per experiment, and their colon was harvested anaerobically (85% N2, 10% CO2, 5% H2) in an anaerobic tent (Coy Laboratory Products, USA). Contents from each colon were suspended in 7.8 mL of 50% D2O-containing PBS and homogenized by vortexing. Similar conditions have been successfully applied in the past to monitor activity of individual cells in gut communities without causing major changes in the activity of individual community members34. The homogenate was left to settle for 10 min, and the supernatant was then distributed into glass vials and supplemented with different concentrations of mucosal sugar monosaccharides, glucose, mucin or nothing (no-amendment control) (all amendment chemicals were from Sigma-Aldrich, except D(+)-galactose which was purchased from Carl Roth GmbH) (Fig. 1a,c). After incubation for 6 h at 37 °C, glycerol was added (to achieve a final concentration of 20% (v/v) of glycerol in the microcosms) and the vials were crimp-sealed with rubber stoppers and stored at −80 °C until further processing. Prior to glycerol addition, subsamples of the biomass were collected, pelleted and supernatants stored at −80 °C for HILIC LC-MS/MS measurements. Pellets were washed with PBS to remove D2O and were fixed in 3% formaldehyde for 2 h at 4 °C and stored in 50% PBS/50% ethanol solution at −20 °C until further use. A total of three biological replicates were established using starting material pooled from three animals each (experiments MonoA, MonoB and MonoC). For the MonoA and MonoB experiments, microcosms were established for all the different concentrations of monosaccharides tested (Fig. 1c), while for MonoC only the highest concentrations of monosaccharides tested in incubations MonoA and MonoB were supplemented. Note that analysis of mucin-amended sorted fractions has been published elsewhere35. Since mucin contains all the monosaccharides included in this study, it constitutes an important control, and therefore we processed the sequencing data from mucin sorts in parallel with our samples and included it in our analyses (Fig. 2).
    Mass spectrometric analysis of mucosal monossaccharides
    Hydrophilic interaction chromatography (HILIC) LC-MS/MS was used for the measurement of mucosal monosaccharides in microcosm supernatants. Frozen samples were thawed at room temperature and centrifuged for 10 min at 18.000 × g and 4 °C. Supernatants were then diluted 1:50 with acetonitrile:water (1:1; v/v) and a volume of 3 µl was injected onto the chromatographic column. The UHPLC system (UltiMate 3000, Thermo Scientific) was coupled to a triple quadrupole mass spectrometer (TSQ Vantage, Thermo Scientific) by an electrospray ionization interface. Hydrophilic interaction chromatographic separation was realized on a Luna aminopropyl column (3 µm, 150 × 2 mm; Phenomenex, Torrance, CA) at a flow rate of 0.25 ml/min. Eluent A consisted of 95% water and 5% acetonitrile with 20 mM ammonium acetate and 40 mM ammonium hydroxide as additives and eluent B of 95% acetonitrile and 5% water. A multi-step gradient was optimized as follows: 100% B until minute 2, then linearly decreased to 80% B until minute 20 and further to 0% B until minute 25. The column was kept at 0% B for 4 min before it was equilibrated for 5 min at the initial conditions. The column temperature was maintained at 40 °C. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode. Electrospray ionization (ESI) was optimized as follows: spray voltage 2800 V (positive mode) and 3000 V (negative mode); vaporizer temperature 250 °C; sheath gas pressure 30 Arb; ion sweep gas pressure 2 Arb; auxiliary gas pressure 10 Arb; capillary gas temperature 260 °C. Mass spectrometric parameters were optimized by direct injection and are reported together with the retention times of individual sugars in Supplementary Table 6. Spiking experiments and regular quality control checks were conducted to evaluate and ensure the systems’ proper performance.
    Confocal Raman microspectroscopy and spectral processing of fixed samples
    Formaldehyde-fixed samples were spotted on aluminum-coated slides (Al136; EMF Corporation) and washed by dipping into ice-cold Milli-Q (MQ) water (Millipore) to remove traces of buffer components. Individual cells were observed under a 100×/0.75 NA microscope objective. Single microbial cell spectra were acquired using a LabRAM HR800 confocal Raman microscope (Horiba Jobin-Yvon) equipped with a 532-nm neodymium-yttrium aluminum garnet (Nd:YAG) laser and either 300 grooves/mm diffraction grating. Spectra were acquired in the range of 400–3200 cm−1 for 30 s with 2.18 mW laser power. Raman spectra were background-corrected using the sensitive nonlinear iterative peak algorithm, and afterwards normalized to the sum of its absolute spectral intensity34. For quantification of the degree of D substitution in CH bonds (%CD), the bands assigned to C–D (2040–2,300 cm−1) and C–H (2,800–3,100 cm−1) were calculated using integration of the specified region34.
    Raman-activated cell sorting
    For RACS of D-labeled cells, 100 μl of glycerol-preserved microcosms containing non-fixed cells were pelleted, washed once with MQ water containing 0.3 M glycerol and finally resuspended in 0.5 ml of 0.3 M glycerol in MQ water. Cell sorting was performed in a fully automated manner using a Raman microspectroscope (LabRAM HR800, Horiba Scientific, France) combined with optical tweezers and a polydimethylsiloxane (PDMS) microfluidic sorter. The optical tweezers (1,064 nm Nd:YAG laser at 500 mW) and Raman (532 nm Nd:YAG laser at 45 mW or 80 mW; see below) laser were focused at the same position of the interface between the sample and sheath streams using a single objective (63x, 1.2 NA water-immersion, Zeiss). The in-house software based on the graphical user interface (GUI; written in MATLAB) detected the single-cell capture and its deuterium labeling status by calculating the cell index (PC = I1,620-1,670/Ifluid,1,620-1,670; where I is the integrated intensity between the indicated wavenumbers) and the labeling index (PL = I2040-2300/I1850-1900), respectively. We did not detect a significant change in the C–D peak region (2040–2300 cm−1) due the presence of 0.3 M of glycerol in the sorting fluid (added to minimize the osmotic stress when the sample was re-suspended for the RACS) (Supplementary Fig. 2a). Other spectral regions (e.g., 2700 cm−1) were slightly affected, but the sorting algorithm employed and the parameters described above take these small changes into account: the cell index PC (I1620–1670/Ifluid,1620–1670) used to detect single-cell capture was calculated by comparing the Raman intensity of cells measured in real-time to that of the working fluid measured in the calibration (conducted before the actual sorting). The threshold value for PL (I2040–2300/I1850–1900) was chosen based on the measurement of the control sample (i.e., sample incubated in non-D2O-containing medium). We used two software versions, each of which uses 45 mW (version 1) and 80 mW (version 2) Raman laser powers, respectively. The second version operates with higher power based on the addition of a laser shutter that blocks the Raman laser while the cells are being translocated, reducing the laser-induced damage on the cell. This version allows shorter acquisition times to be employed, and therefore higher throughput of the platform. The laser power for each version was chosen based on visual inspection of captured cells as described35. For the NeuAc and GlcNAc-amendment sorts (version 1, since version 2 was not yet available), PC value was calculated from cell spectra acquired for 2 s at the “capture location”, while the PL value was calculated from spectra obtained with a 5 s exposure time at the “evaluation location”. Fucose, GalNAc, and galactose-supplemented sorts were performed with version 2 of the platform, which in the meantime became available, significantly reducing sorting times. For these sorts both PC and PL values were simultaneously measured at the “capture location” with a 0.3 s exposure time. Only the D-labeled cells were translocated to the ‘evaluation location’ and immediately released. In order to determine the threshold PL above which a cell from the microcosms should be considered D-labeled (and therefore selected and sorted), cells from glucose-supplemented microcosms incubated in the absence or presence of D (0% versus 50% D2O in the microcosms) were run on the platform prior to sorting. The threshold PL number can vary across microcosms due to different microbial compositions and/or physiological status of cells present in the starting material, as well as due to different laser powers employed. Therefore we determined the PL threshold separately for both MonoA and MonoB incubations using both 45 and 80 mW laser power. Nevertheless, we reached a PL threshold of 6.19 for all sets of conditions and incubations tested (Supplementary Fig. 2b). We speculate this was due to the identical conditions used in both incubations and the fact that both communities have a similar microbial composition (Fig. 1e). To test the sorting accuracy of the platform on our samples, the negative control (H2O, glucose-supplemented microcosm) was re-run in the platform and sorted using the adopted threshold (PL = 6.19) (Supplementary Table 1). As expected, no cells were considered labeled by the platform under these conditions. Sorted fractions were nevertheless collected and sequenced as controls.
    Preparation of 16S rRNA gene amplicon libraries and 16S rRNA gene sequence analyses
    DNA extracted from the mouse colon microcosms or from mouse fecal pellets using a phenol-chloroform bead-beating protocol52 was used as a template for PCR. PCR amplification was performed with a two-step barcoding approach53. In the first-step PCR, the 16S rRNA gene of most bacteria was targeted using oligonucleotide primers (Supplementary Table 7) containing head adaptors (5′-GCTATGCGCGAGCTGC-3′) in order to be barcoded in a second step PCR53. Barcode primers consisted of the 16 bp head sequence and a sample-specific 8 bp barcode from a previously published list at the 5′ end. The barcoded amplicons were purified with the ZR-96 DNA Clean-up Kit (Zymo Research, USA) and quantified using the Quant-iT PicoGreen dsDNA Assay (Invitrogen, USA). An equimolar library was constructed by pooling samples, and the resulting library was sent for sequencing on an Illumina MiSeq platform at Microsynth AG (Balgach, Switzerland). Paired-end reads were quality-filtered and processed using QIIME 153,54. Reads were then clustered into operational taxonomic units (OTUs) of 97% sequence identity and screened for chimeras using UPARSE implemented in USEARCH v8.1.186155. OTUs were classified using the RDPclassifier v2.1256 as implemented in Mothur v1.39.557 using the Silva database v13258. Sequencing libraries were rarefied and analyzed using the vegan package (v2.4-3) of the software R (https://www.r-project.org/, R 3.4.0).
    Sequencing of mouse gut isolates
    Bacteroides sp. Isolate FP24 was isolated from YCFA agar plates (DSMZ medium 1611- YCFA MEDIUM (modified)) by plating ten-fold dilution series of a microcosms supplemented with 2 mg/ml of NeuAc (experiment MonoB)). Escherichia sp. isolate FP11 and Anaerotruncus sp. isolate FP23 were isolated from C. difficile minimal medium17 agar plates supplemented with 0.25% NeuAc or 0.25% GlcNAc by plating ten-fold dilution series of a microcosms supplemented with 2 mg/ml of NeuAc (experiment MonoB) or of a microcosms supplemented with 5 mg/ml of GlcNAc (experiment MonoA), respectively. Colonies were re-streak on the same medium plates until complete purity. Pure colonies were grown overnight in 10 mL of BHI medium (Brain heart infusion at 37 g per liter of medium) supplemented with: yeast extract, 5 g; Na2CO3, 42 mg; cysteine, 50 mg; vitamin K1, 1 mg; hemin, 10 µg. DNA was extracted from pelleted biomass using the QIAGEN DNAeasy Tissue and Blood kit (Qiagen, Austin, TX, USA) according to the manufacturer´s instructions. Sequencing libraries were prepared using the NEBNext® Ultra™ II FS DNA kit (Illumina) and sequenced in an Illumina MiSeq platform with 300-bp paired-end sequencing chemistry (Joint Microbiome Facility, University of Vienna and Medical University of Vienna, Austria). Reads were quality trimmed with the bbduk option of BBmap (v 34.00) at phrad score 15. Quality-trimmed reads were assembled with SPAdes (v 3.11.1)59. For isolate FP11, assembled reads were subsequently, iteratively (n = 6) reassembled with SPAdes using contigs of >1 kb from the previous assembly as “trusted contigs” for input and iterating kmers from 11 to 121 in steps of 10. CheckM (v1.0.6) assessment60 of these genomes is summarized in Supplementary Data 1.
    Mini-metagenome sequencing and genomic analyses
    Labeled RACS cells were collected into PCR tubes, lysed and subjected to whole-genome amplification using the Repli-g Single Cell Kit (QIAGEN), according to the manufacturer’s instructions. Shotgun libraries were generated using the amplified DNA from WGA reactions (sorted fractions) or DNA isolated using the phenol-chloroform method (initial microcosms) as a template and Nextera XT (Illumina) reagents. Libraries were sequenced with a HiSeq 3000 (Illumina) in 2 × 150 bp mode at the Biomedical Sequencing Facility, Medical University of Vienna, Austria. The sequence reads were quality trimmed and filtered using BBMap v34.00 (https://sourceforge.net/projects/bbmap/). The remaining reads were assembled de novo using SPAdes 3.11.159 in single-cell mode (k-mer sizes: 21, 35, 55). Binning of the assembled reads into metagenome-assembled genomes (MAGs) was performed with MetaBAT 2 (v2.12.1)61 using the following parameters: minContig 2000, minCV 1.0, minCVSum 1.0, maxP 95%, minS 60, and maxEdges 200. The quality and contamination of all MAGs were checked with CheckM 1.0.660 (Supplementary Data 1). MAGs >200 kb obtained from all samples were compared and de-replicated using dRep 1.4.362. Automatic genome annotation of contigs >2 kb within each de-replicated MAG was performed with RAST 2.063. Taxonomic classification of each MAG was obtained using GTDB-Tk64 (v0.1.3, gtdb.ecogenomic.org/).
    The relative abundance of each MAG on the initial microcosms was calculated based on metagenomic coverage. Filtered reads from each sequenced microcosm were mapped competitively against all retrieved MAGs using BBMap (https://sourceforge.net/projects/bbmap/). Read coverage was normalized by genome size and relative abundances of each genome in each sample were calculated based on the formula: covA = (bpA/gA)/(bpT/gT), where covA is the relative abundance of MAG A on a particular sample, bpA is the number of base pairs from reads matching MAG A, gA is the genome length of MAG A, bpT is the total number of base pairs from reads matching all MAGs recovered from that particular sample and gT is the sum of all MAGs genome lengths.
    For determination of the presence of encoded enzymes for catabolism of mucin monosaccharides among MAGs, predicted protein sequences from recovered MAGs were subject to local BLASTP analyses65, against a custom database. The database was composed of all enzymes involved initial hydrolysis and catabolism of mucosal sugar monosaccharides (Supplementary Data 2), which were previously curated from a total of 395 human gut bacteria15. A strict e-value threshold of 10−50 was used for all BLASTP analyses. During initial setup of the analysis pipeline, functional assignments of proteins that gave positive BLASTP hits were manually verified by examining annotations from RAST 2.0 and by performing BLASTP analyses against the NCBI-nr database (NCBIBlast 2.2.26).
    To verify the enrichment of a selected dataset of mucin-degrading enzymes35 in the assemblies derived from sorted fractions, BLASTX analyses of scaffolds from each fraction as well as from the initial microcosms metagenomes (unsorted) were performed against the selected mucin-degrading enzyme sequences15 (Supplementary Table 3). An e-value threshold of 10−50 was also used for all BLASTX analyses.
    Phylogenomic analyses
    A concatenated marker alignment of 34 single-copy genes was generated for all MAGs using CheckM 1.0.660 and the resulting alignment was used to calculate a tree with the approximate maximum-likelihood algorithm of FastTree 2.1.1066. Phylogenomic trees were visualized and formatted using iTOL v4 (https://itol.embl.de/). In order to identify the closest relative for each MAG, the query MAG and close reference genomes (based on the generated phylogenomic tree) were compared using dRep 1.4.362. Compared genomes with a whole-genome-based average nucleotide identity (ANIm) >99%39 were considered to be the same population genome.
    High-resolution mass spectrometric analyses
    Glycerol-preserved biomass (150 μL) from microcosm incubations was pelleted and suspended in 50 μL of lysis buffer (1% sodium dodecyl sulfate (SDS), 10 mM TRIS base, pH 7.5). Protein lysates were subjected to SDS polyacrylamide gel electrophoresis followed by in-gel tryptic digestion. Proteins were stained with colloidal Coomassie Brilliant Blue G-250 (Roth, Kassel, Germany) and detained with Aqua dest. Whole protein bands were cut into gel pieces and in-gel-digestion with trypsin 30 µL (0.005 µg/µL) was performed overnight. Extracted peptides where dried and resolved in 0.1% formic acid and purified by ZipTip® treatment (EMD Millipore, Billerica, MA, USA).
    In total, 5 µg of peptides were injected into nanoHPLC (UltiMate 3000 RSLCnano, Dionex, Thermo Fisher Scientific), followed by separation on a C18-reverse phase trapping column (C18 PepMap100, 300 µm × 5 mm, particle size 5 µm, nano viper, Thermo Fischer Scientific), followed by separation on a C18-reverse phase analytical column (Acclaim PepMap® 100, 75 µm × 25 cm, particle size 3 µm, nanoViper, Thermo Fischer Scientific). Mass spectrometric analysis of eluted peptides where performed on a Q Exactive HF mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) coupled with a TriVersa NanoMate (Advion, Ltd., Harlow, UK) source in LC chip coupling mode. LC Gradient, ionization mode and mass spectrometry mode were performed as described before67. Briefly, peptide lysate were injected into a Nano-HPLC and trapped in a C18-reverse phase column (Acclaim PepMap® 100, 75 µm × 2 cm, particle size 3 µM, nanoViper, Thermo Fisher) for 5 min. Peptide separation was followed by a two-step gradient in 90 min from 4 to 30% of B (B: 80% acetonitrile, 0.1% formic acid in MS-grade water) and then 30 min from 30 to 55% of B. The temperature of the separation column was set to 35 °C and the flow rate was 0.3 µL/min. The eluted peptides were ionized and measured. The MS was set to a full MS/dd-MS2 mode scan with positive polarity. The full MS scan was adjusted to 120,000 resolution, the automatic gain control (AGC) target of 3 × 106 ions, maximum injection time for MS of 80 s and a scan range of 350 to 1550 m/z. The dd-MS2 scan was set to a resolution of 15,000 with the AGC target of 2 × 105 ions, a maximum injection time for 120 ms, TopN 20, isolation window of 1.6 m/z, scan range of 200 to 2000 m/z and a dynamic exclusion of 30 s.
    Raw data files were converted into mzML files and searched with MS-GF + against a database obtained from microcosm metagenomes composed of 276,284 predicted protein-encoding sequences. The following parameters were used for peptide identification: enzyme specificity was set to trypsin with one missed cleavage allowed using 10 ppm peptide ion tolerance and 0.05 Da MS/MS tolerance. Oxidation (methionine) and carbamidomethylation (cysteine) were selected as modifications. False discovery rates (FDR) were determined with the node Percolator68. Proteins were considered as identified when at least one unique peptide passed a FDR of 5%.
    The MetaProSIP toolshed69 embedded in the Galaxy framework70 (v2.3.2, http://galaxyproject.org/) was used to identify the incorporation of stable isotopes into peptides. MetaProSIP calculates the relative isotope abundance (RIA) on detected isotopic mass traces (m/z tolerance of ±10 ppm, intensity threshold of 1000, and an isotopic trace correlation threshold of 0.7).
    In vitro growth experiments
    A. muciniphila strain Muc (DSM 22959), Ruthenibacterium lactatiformans strain 585-1 (DSM 100348) and Alistipes timonensis strain JC136 (DSM 25383) were obtained from DSMZ. Muribaculum intestinale strain YL27 (DSM 28989) was kindly provided by Prof. Bärbel Stecher (Max-von-Pettenkofer Institute, LMU Munich, Germany). Bacteroides sp. FP24 was isolated from YCFA agar plates (DSMZ medium 1611-YCFA MEDIUM (modified)). All strains were grown in reduced A II medium71 consisting of (per liter of medium): BHI, 18.5 g; yeast extract, 5 g; trypticase soy broth, 15 g; K2HPO4, 2.5 g; hemin, 10 µg; glucose, 0.5 g; Na2CO3, 42 mg; cysteine, 50 mg; menadione, 5 µg; fetal calf serum (complement-inactivated), 3% (vol/vol). For A. muciniphila cultivation, the growth medium was supplemented with 0.025% (w/v) of mucin. C. difficile was grown in BHI medium (37 g per liter of medium) supplemented with: yeast extract, 5 g; Na2CO3, 42 mg; cysteine, 50 mg; vitamin K1, 1 mg; hemin, 10 µg. All strains were grown at 37 °C under anaerobic conditions until stationary phase, and then serially diluted and plated into media agar plates in order to determine the number of viable cells present in 1 ml of stationary phase-culture. For mixed-growth experiments, the culture volume equivalent to 1 × 106 CFU of each strain was pelleted, cells were washed with PBS, mixed in equal proportions and finally resuspended in 100 μl of PBS. This bacterial mixture containing a total of 5 × 106 BacMix cells was then used to inoculate 2.5 ml of A II medium (diluted two fold in 2× PBS) supplemented or not with 0.25% (10 mM) carbon source (0.125% or 4 mM of NeuAc and 0.125% or 6 mM of GlcNAc). After 12 h, the same tube was inoculated with 1 × 106 C. difficile CFU and bacterial growth was followed by measuring the OD at 600 nm every hour until stationary phase. At three distinct points of the C. difficile growth curve—lag (t12, right after C. difficile addition), mid-exponential (t18) and early stationary phase (t21)—a sample aliquot was collected and ten-fold dilutions were plated in a C. difficile selective medium72. This selective medium (CCFA) includes antibiotics such as cycloserine and cefoxitn at concentrations that are inhibitory to most gut organisms, except for C. difficile, allowing to determine total C. difficile counts. A second aliquot was immediately pelleted and the pellet was stored at −80 °C for RNA extraction.
    Quantitative PCR of C. difficile 16S rRNA gene copy number density
    DNA was extracted from 100 mg of mouse fecal pellet using the QIAGEN DNAeasy Tissue and Blood kit (Qiagen, Austin, TX, USA) according to the manufacturer´s instructions, with an additional step of mechanical cell disruption by bead beating (30 s at 6.5 m/s) right after addition of kit lysis buffer AL. Extracted DNA (2 μl) was subjected to quantitative PCR using 0.2 μM of primers specifically targeting the C. difficile 16S rRNA gene73 (Supplementary Table 7) and 1× SYBR green Master Mix (Bio-Rad) in a total reaction volume of 20 μl. Standard curves were generated from DNAs extracted from fecal pellets of SPF (uninfected) mice spiked in with different known numbers of C. difficile cells (102, 103, 104, 105, 106, 107, and 108) as described in Kubota et al., 2014. Amplification and detection were performed using a CFX96™ Real-Time PCR Detection System (Bio-Rad) using the following cycling conditions: 95 °C for 5 min, followed by 40 cycles of 95 °C for 15 s, 56 °C for 20 s, and 72 °C for 30 s. To determine the specificity of PCR reactions, melt curve analysis was carried out after amplification by slow cooling from 95 to 60 °C, with fluorescence collection at 0.3 °C intervals and a hold of 10 s at each decrement. Only assays with amplification efficiencies above 80% were considered for analysis.
    RNA extraction and quantitative real-time PCR
    Total nucleic acids (TNA) were extracted from mouse fecal pellets or from in vitro cultures using a phenol-chloroform bead-beating protocol52. RNA was purified from DNAse-treated TNA fractions using the GeneJET Cleanup and Concentration micro kit (Thermo Fisher Scientific). cDNA was synthesized from 0.5 μg of total RNA with 1 μl of random hexamer oligonucleotide primers. Samples were heated for 5 min at 70 °C. After a slow cooling, 2 μl of deoxynucleoside triphosphates (dNTP; 2.5 mM each), 40 units of recombinant ribonuclease inhibitor (RNaseOUT) and 4 μl of reverse transcription (RT) buffer were added and cDNAs were synthesized for 2 h at 50 °C using 200 units SuperScript™ III Reverse Transcriptase (all reagents used in cDNA synthesis were from Thermo Fisher Scientific). Real-time quantitative PCR was performed in a 20-μl reaction volume containing 2 μl of cDNA, 1x SYBR green Master Mix (Bio-Rad) and 0.2 μM of gene-specific C. difficile primers targeting the following genes: DNA polymerase III PolC-type dnaF74, nanA, nanT17 and nagB (this work; Supplementary Table 7). Amplification and detection were performed as described above. In each sample, the quantity of cDNAs of a gene was normalized to the quantity of cDNAs of the C. difficile DNA polymerase lII gene74 (dnaF). The relative change in gene expression was recorded as the ratio of normalized target concentrations (threshold cycle [ΔΔCT] method75). Fold changes were normalized to in vitro growths in C. difficile minimal medium containing 0.5% glucose17. To determine the specificity of PCR reactions, melt curve analysis was carried out after amplification by slow cooling from 95 to 60 °C, with fluorescence collection at 0.3 °C intervals and a hold of 10 s at each decrement. Only assays with amplification efficiencies above 80% were considered for analysis.
    Murine in vivo adoptive transfer experiments
    Female C57BL/6N 6-8 weeks old mice (n = 33 total) were purchase from Janvier Labs. Animals were kept in isolated, ventilated cages under specific pathogen-free conditions at the animal facility of the Max F. Perutz Laboratories, University of Vienna, Austria, with controlled temperature of 21 ± 1 °C and humidity of 50 ± 10%, in a 12-h light/dark cycle. Mice received a standard diet (V1124-300; Ssniff, Soest, Germany) and autoclaved water ad libitum. Mice were administered antibiotics (0.25 mg/ml clindamycin (Sigma-Aldrich) for six days in drinking water) and subsequently assigned randomly to one of two groups. One day following antibiotic cessation, mice from each group were split into 3 cages (to minimize the cage effect) and each mouse received either 5,000,000 CFU of a 5-bacteria suspension (BacMix, containing equal numbers of A. muciniphila strain Muc (DSM 22959), Ruthenibacterium lactatiformans strain 585-1 (DSM 100348), Alistipes timonensis strain JC136 (DSM 25383), Muribaculum intestinale strain YL27 (DSM 28989), and Bacteroides sp. isolate FP24) or vehicle (PBS) by gavage (Fig. 5a). At the time of BacMix and BacMixC administration, the mouse diet was switched from a standard diet (V1124-300; Ssniff, Soest, Germany) to a isocaloric polysaccharide-deficient chow76 with sucrose but no cellulose or starch (Ssniff, Soest, Germany). For the BacMixC adoptive transfer, each mouse (n = 10 per group) received 5,000,000 CFU of a 3-bacteria suspension (BacMixC, containing equal numbers of Anaerotruncus sp. isolate FP23; Lactobacillus hominis strain DSM 23910 and of Escherichia sp. isolate FP11) or vehicle (PBS) by gavage (Supplementary Fig. 7). One day after BacMix or BacMixC administration, mice were challenged with 1,000,000 CFU of C. difficile strain 630 deltaErm77. A. muciniphila, R. lactatiformans and M. intestinale were grown in reduced A II medium (supplemented with 0.025% mucin for A. muciniphila). Anaerotruncus sp. isolate FP23, A. timonensis and Bacteroides sp. isolate FP24 were grown in PYG (DSMZ medium 104). Lactobacillus hominis and Escherichia sp. isolate FP11 were grown in YCFA medium (DSMZ medium 1611). C. difficile was grown in BHI medium (37 g per liter of medium). All bacteria were grown under anaerobic conditions (5% H2, 10% CO2, rest N2) at 37 °C and resuspended in anaerobic PBS prior to administration to animals. C. difficile titers were quantified in fecal samples obtained from mice 24, 48, 72, and 120 h after infection by overnight cultivation in C. difficile selective agar plates72. Animals were monitored throughout the entire experiment and weight loss was recorded.
    Measurement of mucus thickness and goblet cell volume
    Segments of mouse colon (approximately 10 mm long) were fixed in 2% PFA in phosphate-buffered saline (PBS) for 12 h at 4 °C. Samples were washed with 1× PBS and then stored in 70% ethanol at 4 °C until embedding. For embedding, samples were immersed in 3 changes of xylene for 1 h each, then immersed in 3 changes of molten paraffin wax (Paraplast, Electron Microscopy Sciences) at 56–58 °C for one hour each. Blocks were allowed to harden at room temperature. Sections were cut to 4 μm thickness using a Leica microtome (Leica Microsystems) and were floated on a water bath at 40–45 °C, then transferred to slides, dried, and stored at room temperature. In preparation for staining, slides were de-paraffinized by heating at 60 °C for 30 min followed by immersion in 2 changes of xylene for 5 min each, then in 2 changes of 100% ethanol for 1 minute each, then rehydrated through 80%, and 70% ethanol for 1 minute each. Slides were then dipped in water, drained, air-dried and a drop of Alcian Blue stain (Sigma Aldrich) applied on top. Samples were incubated with Alcian Blue for 20 min at room temperature and then washed in water to remove the excess of stain. Samples were mounted in Vectashield Hardset™ Antifade Mounting Medium (Vector Laboratories) and visualized using a Leica Confocal scanning laser microscope (Leica TCS SP8X, Germany). For measurements of the width of the mucus layer and determination of goblet cell volume per crypt, ImageJ software (https://imagej.nih.gov/ij/, 1.48 v) was used.
    Histology and histopathological scoring
    Mouse colons were flushed with cold PBS to remove all contents, and the entire colon was rolled into Swiss rolls. The tissues were fixed in 2% PFA for 12 h at 4 °C and then washed in 1x PBS and transferred to 70% ethanol until embedding. Swiss rolls were embedded in the same manner as described above for segments of mouse colon. Paraffin-embedded, PFA fixed tissues were sectioned at 4.5 μm. Tissue sections were de-paraffinized and hematoxylin and eosin stained (Mayer’s Hematoxylin, Thermo Scientific; Eosin 1%, Morphisto, Germany). Histopathological analyses were performed using a semi-quantitative scoring system78 that evaluated the severity of crypt damage and cellular infiltration, epithelial erosion and tissue thickening using a severity score from 0 to 3 (0 = intact, 1 = mild, 2 = moderate, 3 = severe), and those scores were multiplied by a score for percent involvement (0 = 0%, 1 = 1–25%, 2 = 26–50%, 3 = 50–100%). A trained and blinded scientist performed the scoring. Representative images were acquired using an Olympus CKX53 microscope and Olympus SC50 camera.
    Quantification of C. difficile toxin TcdB
    Levels of TcdB in mouse colon contents were quantified relative to a standard curve of purified TcdB using an ELISA assay kit (“Separate detection of C. difficile toxins A and B”, TGC Biomics) according to the manufacturer’s instructions. For each mouse, approximately 10 mg of colon content were used in the assay. The limit of detection for the assay in our conditions was determined to be 5.14 ng of TcdB per gram of colon content (Supplementary Fig. 8c). One of the mice from the BacMix group had toxin levels below the detection limit and was therefore excluded from analysis.
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Mechanisms of possible self-limitation in the invasive Asian shore crab Hemigrapsus sanguineus

    1.
    Bowman, W.D., Hacker, S.D., Cain, M.L. Ecology, 4th Edn. (Sinauer Press, 2017).
    2.
    Eggleston, D. B., Lipcius, R. N. & Hines, A. H. Density-dependent predation by blue crabs upon infaunal clam species with contrasting distribution and abundance patterns. Mar. Ecol. Progr. Ser. 85, 55–68 (1992).
    ADS  Article  Google Scholar 

    3.
    Boström-Einarsson, L., Bonin, M. C., Munday, P. L. & Jones, G. P. Strong intraspecific competition and habitat selectivity influence abundance of a coral-dwelling damselfish. J. Exp. Mar. Biol. Ecol. 448, 85–92 (2013).
    Article  Google Scholar 

    4.
    Ruggerone, G.T., Zimmermann, M., Myers, K.W., Nielsen, J.L., & Rogers, D.E. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean. Fish. Oceanogr. 12, 209–219 (2003).

    5.
    Greer, A. L., Briggs, C. J. & Collins, J. P. Testing a key assumption of host-pathogen theory: Density and disease transmission. Oikos 117, 1667–1673 (2008).
    Article  Google Scholar 

    6.
    Turchin, P. Does population ecology have general laws?. Oikos 94, 17–26 (2001).
    Article  Google Scholar 

    7.
    Yenni, G., Adler, P. B. & Ernest, S. M. Strong self-limitation promotes the persistence of rare species. Ecology 93, 456–461 (2012).
    PubMed  Article  Google Scholar 

    8.
    Weis, A. E., Simms, E. L. & Hochberg, M. E. Will plant vigor and tolerance be genetically correlated? Effects of intrinsic growth rate and self-limitation on regrowth. Evol. Ecol. 14, 331–352 (2000).
    Article  Google Scholar 

    9.
    Marino, A., Rodríguez, V. & Pazos, G. Resource-defense polygyny and self-limitation of population density in free-ranging guanacos. Behav. Ecol. 27, 757–765 (2016).
    Article  Google Scholar 

    10.
    Chamaillé-Jammes, S., Fritz, H., Valeix, M., Murindagomo, F. & Clobert, J. Resource variability, aggregation and direct density dependence in an open context: The local regulation of an African elephant population. J. Anim. Ecol. 77, 135–144 (2008).
    PubMed  Article  Google Scholar 

    11.
    Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).
    Article  Google Scholar 

    12.
    Sedinger, J. S., Herzog, M. P., Person, B. T., Kirk, M. T., Obritchkewitch, T., Martin, P. P., & Bosque, C. Large-scale variation in growth of Black Brant goslings related to food availability. Auk 118, 1088–1095 (2001).

    13.
    Marschall, E. A. & Crowder, L. B. Density-dependent survival as a function of size in juvenile salmonids in streams. Can. J. Fish. Aquat. Sci. 52, 136–140 (1995).
    Article  Google Scholar 

    14.
    Zheng, X., Huang, L., Huang, B. & Lin, Y. Factors regulating population dynamics of the amphipod Ampithoe valida in a eutrophic subtropical coastal lagoon. Acta Oceanol. Sin. 32, 56–65 (2013).
    ADS  CAS  Article  Google Scholar 

    15.
    Li, G. Y., & Zhang, Z. Q. Does size matter? Fecundity and longevity of spider mites (Tetranychus urticae) in relation to mating and food availability. Syst. Appl. Acarol.-UK 23, 1796–1808 (2018).

    16.
    Niu, H., Zhao, L. & Sun, J. Phenotypic plasticity of reproductive traits in response to food availability in invasive and native species of nematode. Biol. Inv. 15, 1407–1415 (2013).
    Article  Google Scholar 

    17.
    Cannizzo, Z. J., Lang, S. Q., Benitez-Nelson, B. & Griffen, B. D. An artificial habitat increases the reproductive fitness of a range-shifting species within a newly colonized ecosystem. Sci. Rep. 10, 1–13 (2020).
    Article  CAS  Google Scholar 

    18.
    Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Evol. Syst. 32, 95–126 (2001).
    Article  Google Scholar 

    19.
    Strayer, D. L., D’Antonio, C. M., Essl, F., Fowler, M. S., Geist, J., Hilt, S., & Latzka, A. W. Boom‐bust dynamics in biological invasions: Towards an improved application of the concept. Ecol. Lett. 20, 1337–1350 (2017).

    20.
    Jaćimović, M. et al. Boom-bust like dynamics of invasive black bullhead (Ameiurus melas) in Lake Sava (Serbia). Fish. Manag. Ecol. 26, 153–164 (2019).
    Article  Google Scholar 

    21.
    Alcorlo, P., Geiger, W., & Otero, M. Reproductive biology and life cycle of the invasive crayfish Procambarus clarkii (Crustacea: Decapoda) in diverse aquatic habitats of South-Western Spain: Implications for population control. Fund. Appl. Limnol./Arch. Hydrobiol. 173, 197–212 (2008).

    22.
    Melero, Y., Robinson, E., & Lambin, X. Density-and age-dependent reproduction partially compensates culling efforts of invasive non-native American mink. Biol. Invasions 17, 2645–2657.

    23.
    Yoshida, K., Hoshikawa, K., Wada, T. & Yusa, Y. Patterns of density dependence in growth, reproduction and survival in the invasive freshwater snail Pomacea canaliculata in Japanese rice fields. Freshw. Biol. 58, 2065–2073 (2013).
    Article  Google Scholar 

    24.
    Williams, A. B. & McDermott, J. J. An eastern United States record for the western Indo-Pacific crab, Hemigrapsus sanguineus (Crustacea: Decapoda: Grapsidae). Proc. Biol. Soc. Wash. 103, 108–109 (1990).
    Google Scholar 

    25.
    Breton, G., Faasse, M., Noël, P. & Vincent, T. A new alien crab in Europe: Hemigrapsus sanguineus (Decapoda: Brachyura: Grapsidae). J. Crustacean Biol. 22, 184–189 (2002).
    Article  Google Scholar 

    26.
    Blakeslee, A. M., Kamakura, Y., Onufrey, J., Makino, W., Urabe, J., Park, S., & Miura, O. Reconstructing the invasion history of the Asian shorecrab, Hemigrapsus sanguineus (De Haan 1835) in the Western Atlantic. Mar. Biol. 164, 47 (2017).

    27.
    Lohrer, A. M. & Whitlatch, R. B. Interactions among aliens: Apparent replacement of one exotic species by another. Ecology 83, 719–732 (2002).
    Article  Google Scholar 

    28.
    Kraemer, G. P., Sellberg, M., Gordon, A. & Main, J. Eight-year record of Hemigrapsus sanguineus (Asian shore crab) invasion in western Long Island Sound estuary. Northeast. Nat. 14, 207–224 (2007).
    Article  Google Scholar 

    29.
    Epifanio, C. E. Invasion biology of the Asian shore crab Hemigrapsus sanguineus: A review. J. Exp. Mar. Biol. Ecol. 441, 33–49 (2013).
    Article  Google Scholar 

    30.
    Lord, J. P. & Williams, L. M. Increase in density of genetically diverse invasive Asian shore crab (Hemigrapsus sanguineus) populations in the Gulf of Maine. Biol. Invasions 19, 1153–1168 (2017).
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Brousseau, D. J., Kriksciun, K. & Baglivo, J. A. Fiddler crab burrow usage by the Asian crab, Hemigrapsus sanguineus, in a Long Island Sound salt marsh. Northeast. Nat. 10, 415–420 (2003).
    Article  Google Scholar 

    32.
    O’Connor, N. J. Invasion dynamics on a temperate rocky shore: from early invasion to establishment of a marine invader. Biol. Invasions 16, 73–87 (2014).
    Article  Google Scholar 

    33.
    O’Connor, N. J. Changes in population sizes of Hemigrapsus sanguineus (Asian Shore Crab) and resident crab species in southeastern New England (2010–2016). Northeast. Nat. 25, 197–201 (2018).
    Article  Google Scholar 

    34.
    Schab, C. M., Park, S., Waidner, L. A. & Epifanio, C. E. Return of the native: Historical comparison of invasive and indigenous crab populations near the mouth of Delaware Bay. J. Shellfish Res. 32, 751–758 (2013).
    Article  Google Scholar 

    35.
    Bloch, C. P., Curry, K. D., Fisher-Reid, M. C. & Surasinghe, T. D. Population Decline of the Invasive Asian Shore Crab (Hemigrapsus sanguineus) and Dynamics of Associated Intertidal Invertebrates on Cape Cod, Massachusetts. Northeast. Nat. 26, 772–784 (2019).
    Article  Google Scholar 

    36.
    Kraemer, G. P. Changes in population demography and reproductive output of the invasive Hemigrapsus sanguineus (Asian Shore Crab) in the Long Island Sound from 2005 to 2017. Northeast. Nat. 26, 81–94 (2019).
    Article  Google Scholar 

    37.
    Stentiford, G. D., Bateman, K. S., Dubuffet, A., Chambers, E., & Stone, D. M. Hepatospora eriocheir (Wang and Chen, 2007) gen. et comb. nov. infecting invasive Chinese mitten crabs (Eriocheir sinensis) in Europe. J. Invertebr. Pathol. 108, 156–166 (2011).

    38.
    Bateman, A. W., Buttenschön, A., Erickson, K. D. & Marculis, N. G. Barnacles vs bullies: Modelling biocontrol of the invasive European green crab using a castrating barnacle parasite. Theor. Ecol. 10, 305–318 (2017).
    Article  Google Scholar 

    39.
    Bojko, J., Stebbing, P. D., Dunn, A. M., Bateman, K. S., Clark, F., Kerr, Stewart-Clark, S., Johannesen, Á., & Stentiford, G. D. Green crab Carcinus maenas symbiont profiles along a North Atlantic invasion route. Dis. Aquat. Organ. 128, 147–168 (2018).

    40.
    Jensen, G. C., McDonald, P. S. & Armstrong, D. A. East meets west: competitive interactions between green crab Carcinus maenas, and native and introduced shore crab Hemigrapsus spp. Mar. Ecol. Progr. Ser. 225, 251–262 (2002).
    ADS  Article  Google Scholar 

    41.
    DeRivera, C. E., Ruiz, G. M., Hines, A. H. & Jivoff, P. Biotic resistance to invasion: Native predator limits abundance and distribution of an introduced crab. Ecology 86, 3364–3376 (2005).
    Article  Google Scholar 

    42.
    Kim, A. K. & O’Connor, N. J. Early stages of the Asian shore crab Hemigrapsus sanguineus as potential prey for the striped killifish Fundulus majalis. J. Exp. Mar. Biol. Ecol. 346, 28–35 (2007).
    Article  Google Scholar 

    43.
    Brousseau, D. J., Murphy, A. E., Enriquez, N. P. & Gibbons, K. Foraging by two estuarine fishes, Fundulus heteroclitus and Fundulus majalis, on juvenile Asian shore crabs (Hemigrapsus sanguineus) in Western Long Island Sound. Estuar. Coast. 31, 144–151 (2008).
    Article  Google Scholar 

    44.
    Savaria, M. C. & O’Connor, N. J. Predation of the non-native Asian shore crab Hemigrapsus sanguineus by a native fish species, the cunner (Tautogolabrus adspersus). J. Exp. Mar. Biol. Ecol. 449, 335–339 (2013).
    Article  Google Scholar 

    45.
    Griffen, B. D. & Delaney, D. G. Species invasion shifts the importance of predator dependence. Ecology 88, 3012–3021 (2007).
    PubMed  Article  Google Scholar 

    46.
    Keogh, C. L., Miura, O., Nishimura, T. & Byers, J. E. The double edge to parasite escape: invasive host is less infected but more infectable. Ecology 98, 2241–2247 (2017).
    PubMed  Article  Google Scholar 

    47.
    Kroft, K. L. & Blakeslee, A. M. Comparison of parasite diversity in native panopeid mud crabs and the invasive Asian shore crab in estuaries of northeast North America. Aquat. Invasions 11, 287–301 (2016).
    Article  Google Scholar 

    48.
    Blakeslee, A. M., Keogh, C. L., Byers, J. E., Lafferty, A. M. K. K. D. & Torchin, M. E. Differential escape from parasites by two competing introduced crabs. Mar. Ecol. Progr. Ser. 393, 83–96 (2009).
    ADS  Article  Google Scholar 

    49.
    Lohrer, A. M., Fukui, Y., Wada, K. & Whitlatch, R. B. Structural complexity and vertical zonation of intertidal crabs, with focus on habitat requirements of the invasive Asian shore crab, Hemigrapsus sanguineus (de Haan). J. Exp. Mar. Biol. Ecol. 244, 203–217 (2000).
    Article  Google Scholar 

    50.
    Ledesma, M. E. & O’Connor, N. J. Habitat and diet of the non-native crab Hemigrapsus sanguineus in southeastern New England. Northeast. Nat. 8, 63–78 (2001).
    Article  Google Scholar 

    51.
    Brousseau, D. J. & Goldberg, R. Effect of predation by the invasive crab Hemigrapsus sanguineus on recruiting barnacles Semibalanus balanoides in western Long Island Sound, USA. Mar. Ecol. Progr. Ser. 339, 221–228 (2007).
    ADS  Article  Google Scholar 

    52.
    Brousseau, D. J. & Baglivo, J. A. Laboratory investigations of food selection by the Asian shore crab, Hemigrapsus sanguineus: Algal versus animal preference. J. Crustacean Biol. 25, 130–134 (2005).
    Article  Google Scholar 

    53.
    Griffen, B. D. Linking individual diet variation and fecundity in an omnivorous marine consumer. Oecologia 174, 121–130 (2014).
    ADS  PubMed  Article  Google Scholar 

    54.
    Riley, M. E., Vogel, M. & Griffen, B. D. Fitness-associated consequences of an omnivorous diet for the mangrove tree crab Aratus pisonii. Aquat. Biol. 20, 35–43 (2014).
    Article  Google Scholar 

    55.
    Griffen, B. D. & Norelli, A. P. Spatially variable habitat quality contributes to within-population variation in reproductive success. Ecol. Evol. 5, 1474–1483 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Griffen, B. D. & Riley, M. E. Potential impacts of invasive crabs on one life history strategy of native rock crabs in the Gulf of Maine. Biol. Invasions 17, 2533–2544 (2015).
    Article  Google Scholar 

    57.
    Belgrad, B. A. & Griffen, B. D. The influence of diet composition on fitness of the blue crab, Callinectes sapidus. PLoS ONE 11, e0145481 (2016).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    58.
    Griffen, B. D., Vogel, M., Goulding, L. & Hartman, R. Energetic effects of diet choice by invasive Asian shore crabs: Implications for persistence when prey are scarce. Mar. Ecol. Progr. Ser. 522, 181–192 (2015).
    ADS  Article  Google Scholar 

    59.
    Griffen, B. D. The timing of energy allocation to reproduction in an important group of marine consumers. PLoS ONE 13, e0199043 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    60.
    Guiñez, R., Petraitis, P. S. & Castilla, J. C. Layering, the effective density of mussels and mass-boundary curves. Oikos 110, 186–190 (2005).
    Article  Google Scholar 

    61.
    Bertness, M. D., Gaines, S. D. & Yeh, S. M. Making mountains out of barnacles: The dynamics of acorn barnacle hummocking. Ecology 79, 1382–1394 (1998).
    Article  Google Scholar 

    62.
    Guiñez, R. & Castilla, J. C. An allometric tridimensional model of self-thinning for a gregarious tunicate. Ecology 82, 2331–2341 (2001).
    Article  Google Scholar 

    63.
    Alunno-Bruscia, M., Petraitis, P. S., Bourget, E. & Fréchette, M. Body size–density relationship for Mytilus edulis in an experimental food-regulated situation. Oikos 90, 28–42 (2000).
    Article  Google Scholar 

    64.
    Weller, D. E. A reevaluation of the‐3/2 power rule of plant self‐thinning. Ecol. Monogr. 57, 23–43 (1987).

    65.
    Griffen, B. D. & Byers, J. E. Community impacts of two invasive crabs: the interactive roles of density, prey recruitment, and indirect effects. Biol. Invasions 11, 927–940 (2009).
    Article  Google Scholar 

    66.
    Lohrer, A. M. & Whitlatch, R. B. Relative impacts of two exotic brachyuran species on blue mussel populations in Long Island Sound. Mar. Ecol. Progr. Ser. 227, 135–144 (2002).
    ADS  Article  Google Scholar 

    67.
    Nelson, K. Scheduling of reproduction in relation to molting and growth in malacostracan crustaceans. Crustacean Egg Product. 7, 77–116 (1991).
    Google Scholar 

    68.
    Kibria, G. Studies on molting, molting frequency and growth of shrimp Penaeus monodon fed on natural and compounded diets. Asian Fish. Sci. 6, 203–211 (1993).
    Google Scholar 

    69.
    Petit, H., Nègre-Sadargues, G., Castillo, R. & Trilles, J. P. The effects of dietary astaxanthin on growth and moulting cycle of postlarval stages of the prawn, Penaeus japonicus (Crustacea, Decapoda). Comp. Biochem. Physiol. A Physiol. 117, 539–544 (1997).
    Article  Google Scholar 

    70.
    Clark, R. M., Zera, A. J. & Behmer, S. T. Nutritional physiology of life-history trade-offs: How food protein–carbohydrate content influences life-history traits in the wing-polymorphic cricket Gryllus firmus. J. Exp. Biol. 218, 298–308 (2015).
    PubMed  Article  Google Scholar 

    71.
    Rosa, R., Calado, R., Narciso, L. & Nunes, M. L. Embryogenesis of decapod crustaceans with different life history traits, feeding ecologies and habitats: A fatty acid approach. Mar. Biol. 151, 935–947 (2007).
    Article  Google Scholar 

    72.
    Hines, A. H. Allometric constraints and variables of reproductive effort in brachyuran crabs. Mar. Biol. 69, 309–320 (1982).
    Article  Google Scholar 

    73.
    Sorte, C. J., Davidson, V. E., Franklin, M. C., Benes, K. M., Doellman, M. M., Etter, R. J., & Menge, B. A. Long‐term declines in an intertidal foundation species parallel shifts in community composition. Global Change Biol.23, 341–352 (2017).

    74.
    Goedknegt, M. A., Havermans, J., Waser, A. M., Luttikhuizen, P. C., Velilla, E., Camphuysen, K. C., & Thieltges, D. W. Cross-species comparison of parasite richness, prevalence, and intensity in a native compared to two invasive brachyuran crabs. Aquat. Invasions12, 201–212 (2017).

    75.
    Latham, A. & Poulin, R. Field evidence of the impact of two acanthocephalan parasites on the mortality of three species of New Zealand shore crabs (Brachyura). Mar. Biol. 141, 1131–1139 (2002).
    Article  Google Scholar 

    76.
    Latham, A. D. M. & Poulin, R. Effect of acanthocephalan parasites on hiding behaviour in two species of shore crabs. J. Helminthol. 76, 323–326 (2002).
    CAS  PubMed  Article  Google Scholar 

    77.
    Griffen, B. D., van den Akker, D., NiNuzzo, E. R., Anderson, L. III, & Vernier, A. Comparing methods for predicting the impacts of invasive species (in press).

    78.
    Tyrrell, M.C., & Harris, L.G. Potential impact of the introduced Asian shore crab, Hemigrapsus sanguineus, in northern New England: Diet, feeding preferences, and overlap with the green crab, Carcinus maenas. in Marine Bioinvasions: Proceedings of the First National Conference, Cambridge, MA, 24–27 January 1999 (pp. 208–220). (MIT Sea Grant College Program, 2000).

    79.
    Spilmont, N., Gothland, M. & Seuront, L. Exogenous control of the feeding activity in the invasive Asian shore crab Hemigrapsus sanguineus (De Haan, 1835). Aquat. Invasions 10, 327–332 (2015).
    Article  Google Scholar 

    80.
    McDermott, J. J. The western Pacific brachyuran Hemigrapsus sanguineus (Grapsidae) in its new habitat along the Atlantic coast of the United States: reproduction. J. Crustacean Biol. 18, 308–316 (1998).
    Article  Google Scholar 

    81.
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2019). https://www.R-project.org/.

    82.
    Griffen, B. D. & Mosblack, H. Predicting diet and consumption rate differences between and within species using gut ecomorphology. J. Anim. Ecol. 80, 854–863 (2011).
    PubMed  Article  Google Scholar 

    83.
    Wolcott, D. L. & O’Connor, N. J. Herbivory in crabs: Adaptations and ecological considerations. Am. Zool. 32, 370–381 (1992).
    Article  Google Scholar 

    84.
    Mattson, W. J. Jr. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Evol. Syst. 11, 119–161 (1980).
    Article  Google Scholar 

    85.
    Griffen, B. D., Cannizzo, Z. J. & Gül, M. R. Ecological and evolutionary implications of allometric growth in stomach size of brachyuran crabs. PLoS ONE 13, e0207416 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    86.
    Gül, M. R. & Griffen, B. D. Diet, energy storage, and reproductive condition in a bioindicator species across beaches with different levels of human disturbance. Ecol. Indic. 117, 106636 (2020).
    Article  Google Scholar 

    87.
    Vogt, G. Functional cytology of the hepatopancreas of decapod crustaceans. J. Morphol. 280, 1405–1444 (2019).
    CAS  PubMed  Google Scholar 

    88.
    Kyomo, J. Analysis of the relationship between gonads and hepatopancreas in males and females of the crab Sesarma intermedia, with reference to resource use and reproduction. Mar. Biol. 97, 87–93 (1988).
    Article  Google Scholar 

    89.
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., Smith, G. M. Zero-truncated and zero-inflated models for count data. in Mixed Effects Models and Extensions in Ecology with R 261–293. (Springer, New York, 2009).

    90.
    Mente, E. Effect of ration level on individual food consumption, growth and protein synthesis in the shore crab Carcinus maenas. In Nutrition, Physiology and Metabolism of Crustaceans 53–67 (Science Publishers, Enfield, 2003).
    Google Scholar  More

  • in

    Extracellular heme recycling and sharing across species by novel mycomembrane vesicles of a Gram-positive bacterium

    1.
    Faust K, Raes J, Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.
    CAS  PubMed  Article  Google Scholar 
    2.
    Phelan VV, Liu WT, Pogliano K, Dorrestein PC. Microbial metabolic exchange—the chemotype-to-phenotype link. Nat Chem Biol. 2011;8:26–35.
    PubMed  Article  CAS  Google Scholar 

    3.
    Natale P, Brüser T, Driessen AJM. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane: Distinct translocases and mechanisms. Biochim Biophys Acta. 2007;1778:1735–56.
    PubMed  Article  CAS  Google Scholar 

    4.
    Holland IB. The extraordinary diversity of bacterial protein secretion mechanisms. Meth Mol Biol. 2010;619:1–20.
    CAS  Article  Google Scholar 

    5.
    Guerrero-Mandujano A, Hernández-Cortez C, Ibarra JA, Castro-Escarpulli G. The outer membrane vesicles: Secretion system type zero. Traffic. 2017;18:425–32.
    CAS  PubMed  Article  Google Scholar 

    6.
    Orench‐Rivera N, Kuehn MJ. Environmentally controlled bacterial vesicle‐mediated export. Cell Microbiol. 2016;18:1525–36.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    7.
    Kim JH, Lee J, Park J, Gho YS, editors. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol. 2015;40:97–104.

    8.
    Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13:605–19.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gram‐negative bacteria is a novel envelope stress response. Mol Microbiol. 2007;63:545–58.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Arntzen MO, Varnai A, Mackie RI, Eijsink VGH, Pope PB. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ Microbiol. 2017;19:2701–14.
    CAS  PubMed  Article  Google Scholar 

    11.
    Nordstrom T, Blom AM, Tan TT, Forsgren A, Riesbeck K. Ionic binding of C3 to the human pathogen Moraxella catarrhalis is a unique mechanism for combating innate immunity. J Immunol. 2005;175:3628–36.
    PubMed  Article  Google Scholar 

    12.
    Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade B, Nielsen KM. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microb. 2014;80:3469–83.
    Article  CAS  Google Scholar 

    13.
    Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature. 2005;437:422–5.
    CAS  PubMed  Article  Google Scholar 

    14.
    Toyofuku M, Morinaga K, Hashimoto Y, Uhl J, Shimamura H, Inaba H, et al. Membrane vesicle-mediated bacterial communication. ISME J. 2017;11:1504–9.
    PubMed  PubMed Central  Article  Google Scholar 

    15.
    Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, et al. Gram‐positive bacteria produce membrane vesicles: proteomics‐based characterization of Staphylococcus aureus‐derived membrane vesicles. Proteomics. 2009;9:5425–36.
    CAS  PubMed  Article  Google Scholar 

    16.
    Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Investig. 2011;121:1471–83.
    PubMed  Article  CAS  Google Scholar 

    17.
    Prados-Rosales R, Brown L, Casadevall A, Montalvo-Quiros S, Luque-Garcia JL. Isolation and identification of membrane vesicle-associated proteins in Gram-positive bacteria and mycobacteria. MethodsX. 2014;1:124–9.
    PubMed  PubMed Central  Article  Google Scholar 

    18.
    White DW, Elliott SR, Odean E, Bemis LT, Tischler AD. Mycobacterium tuberculosis Pst/SenX3-RegX3 regulates membrane vesicle production independently of ESX-5 activity. mBio. 2018;9:e00778–18.
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. PNAS. 2008;105:3963–7.
    CAS  PubMed  Article  Google Scholar 

    20.
    Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15:500–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1:482–501.
    CAS  PubMed  Article  Google Scholar 

    22.
    Wandersman C, Delepelaire P. Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol. 2004;58:611–47.
    CAS  PubMed  Article  Google Scholar 

    23.
    Morel FM, Price N. The biogeochemical cycles of trace metals in the oceans. Science. 2003;300:944–7.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC, et al. Community proteomics of a natural microbial biofilm. Science. 2005;308:1915–20.
    CAS  PubMed  Article  Google Scholar 

    25.
    Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, et al. Extracellular polymeric substances from Shewanella sp. HRCR‐1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol. 2011;13:1018–31.
    CAS  PubMed  Article  Google Scholar 

    26.
    Vong L, Laës A, Blain S. Determination of iron–porphyrin-like complexes at nanomolar levels in seawater. Anal Chim Acta. 2007;588:237–44.
    CAS  PubMed  Article  Google Scholar 

    27.
    Létoffé S, Nato F, Goldberg ME, Wandersman C. Interactions of HasA, a bacterial haemophore, with haemoglobin and with its outer membrane receptor HasR. Mol Microbiol. 1999;33:546–55.
    PubMed  Article  Google Scholar 

    28.
    Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys. 2009;481:1–15.
    CAS  PubMed  Article  Google Scholar 

    29.
    Pilpa RM, Robson SA, Villareal VA, Wong ML, Phillips M, Clubb RT. Functionally distinct NEAT (NEAr Transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin. J Biol Chem. 2009;284:1166–76.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    30.
    Gat O, Zaide G, Inbar I, Grosfeld H, Chitlaru T, Levy H, et al. Characterization of Bacillus anthracis iron‐regulated surface determinant (Isd) proteins containing NEAT domains. Mol Microbiol. 2008;70:983–99.
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Choby JE, Skaar EP. Heme synthesis and acquisition in bacterial pathogens. J Mol Biol. 2016;428:3408–28.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    32.
    Allen CE, Schmitt MP. HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J Bacteriol. 2009;191:2638–48.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    33.
    Allen CE, Schmitt MP. Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J Bacteriol. 2011;193:5374–85.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    34.
    Duckworth AW, Grant S, Grant WD, Jones BE, Meijer D. Dietzia natronolimnaios sp. nov., a new member of the genus Dietzia isolated from an East African soda lake. Extremophiles. 1998;2:359–66.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Mayilraj S, Suresh K, Kroppenstedt R, Saini H. Dietzia kunjamensis sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol. 2006;56:1667–71.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Li J, Chen C, Zhao G-Z, Klenk H-P, Pukall R, Zhang Y-Q, et al. Description of Dietzia lutea sp. nov., isolated from a desert soil in Egypt. Syst Appl Microbiol. 2009;32:118–23.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Fang H, Qin X-Y, Zhang K-D, Nie Y, Wu X-L. Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline-and salt-tolerant Dietzia sp. DQ12-45-1b. Appl Microbiol Biotechnol. 2018;102:3765–77.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Wang X-B, Chi C-Q, Nie Y, Tang Y-Q, Tan Y, Wu G, et al. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour Technol. 2011;102:7755–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    39.
    Rédei GP M9 Bacterial Minimal Medium. In: Rédei GP, editors. Encyclopedia of genetics, genomics, proteomics and informatics, 3rd edn. Dordrecht: Springer Group; 2008. pp. 484–6.

    40.
    Van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods. 2007;4:147–52.
    PubMed  Article  CAS  Google Scholar 

    41.
    Liang J, Jiangyang J, Nie Y, Wu X. Regulation of the alkane hydroxylase CYP153 gene in a Gram-positive alkane-degrading bacterium, Dietzia sp. strain DQ12-45-1b. Appl Environ Microbiol. 2016;82:608–19.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Lu S, Nie Y, Tang Y-Q, Xiong G, Wu X-L. A critical combination of operating parameters can significantly increase the electrotransformation efficiency of a Gram-positive Dietzia strain. J Microbiol Methods. 2014;103:144–51.
    CAS  PubMed  Article  Google Scholar 

    43.
    Szvetnik A, Bihari Z, Szabo Z, Kelemen O, Kiss I. Genetic manipulation tools for Dietzia spp. J Appl Microbiol. 2010;109:1845–52.
    CAS  PubMed  Google Scholar 

    44.
    Deininger PL. Molecular cloning: a laboratory manual. Anal Biochem. 1990;186:182–3.
    Article  Google Scholar 

    45.
    McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ. Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol. 2006;188:5385–92.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Prados-Rosales R, Weinrick BC, Pique DG, Jacobs WR Jr, Casadevall A, Rodriguez GM. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J Bacteriol. 2014;196:1250–6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    47.
    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Biochem Cell Biol. 1959;37:911–7.
    CAS  Google Scholar 

    48.
    Keddie RM, Cure GL. The cell wall composition and distribution of free mycolic acids in named strains of coryneform bacteria and in isolates from various natural sources. J Appl Microbiol. 1977;42:229–52.
    CAS  Google Scholar 

    49.
    Liu Y, Zhang Q, Hu M, Yu K, Fu J, Zhou F, et al. Proteomic analyses of intracellular Salmonella enterica serovar Typhimurium reveal extensive bacterial adaptations to infected host epithelial cells. Infect Immun. 2015;83:2897–906.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Calderoncelis F, Encinar JR, Sanzmedel A. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Mass Spectrom Rev. 2018;37:715–37.
    CAS  Article  Google Scholar 

    51.
    Liang J-L, Gao Y, He Z, Nie Y, Wang M, JiangYang J-H, et al. Crystal structure of TetR family repressor AlkX from Dietzia sp. strain DQ12-45-1b implicated in biodegradation of n-alkanes. Appl Environ Microbiol. 2017;83:e01447–17.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    52.
    Tashiro Y, Hasegawa Y, Shintani M, Takaki K, Ohkuma M, Kimbara K, et al. Interaction of bacterial membrane vesicles with specific species and their potential for delivery to target cells. Front Microbiol. 2017;8:571.
    PubMed  PubMed Central  Article  Google Scholar 

    53.
    Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2014;43:D222–D6.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    55.
    Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–15.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    56.
    Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis. 2008;88:526–44.
    CAS  PubMed  Article  Google Scholar 

    57.
    Daffé M, Quémard A, Marrakchi H. Mycolic acids: from chemistry to biology. In: Geiger O, editors. Biogenesis of fatty acids, lipids and membranes. Cham: Springer; 2017. p. 1–36.

    58.
    Choi D, Kim D, Choi SJ, Lee J, Choi J, Rho S, et al. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics. 2011;11:3424–9.
    CAS  PubMed  Article  Google Scholar 

    59.
    Marchand CH, Salmeron C, Bou Raad R, Meniche X, Chami M, Masi M, et al. Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum. J Bacteriol. 2012;194:587–97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Daffe M, Marrakchi H. Unraveling the structure of the mycobacterial envelope. Microbiol Spectr. 2019;7:1087–95.
    Article  Google Scholar 

    61.
    Nishiuchi Y, Baba T, Yano I. Mycolic acids from Rhodococcus, Gordonia, and Dietzia. J Microbiol Methods. 2000;40:1–9.
    CAS  PubMed  Article  Google Scholar 

    62.
    Collins M, Goodfellow M, Minnikin D. A survey of the structures of mycolic acids in Corynebacterium and related taxa. Microbiology. 1982;128:129–49.
    CAS  Article  Google Scholar 

    63.
    Rath P, Saurel O, Czaplicki G, Tropis M, Daffé M, Ghazi A, et al. Cord factor (trehalose 6, 6′-dimycolate) forms fully stable and non-permeable lipid bilayers required for a functional outer membrane. Biochim Biophys Acta-Biomemb. 2013;1828:2173–81.
    CAS  Article  Google Scholar 

    64.
    Caruana JC, Walper SA. Bacterial membrane vesicles as mediators of microbe – microbe and microbe – host community interactions. Front Microbiol. 2020;11:432.
    PubMed  PubMed Central  Article  Google Scholar 

    65.
    Rich PR, Maréchal A 8.5 electron transfer chains: structures, mechanisms and energy coupling. In: Egelman EH, editor. Comprehensive biophysics. Amsterdam: Elsevier; 2012. p. 72–93.

    66.
    Butaitė E, Baumgartner M, Wyder S, Kümmerli R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun. 2017;8:1–12.
    Article  CAS  Google Scholar 

    67.
    Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol. 2008;190:5672–80.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Sani M, Houben ENG, Geurtsen J, Pierson J, De Punder K, Van Zon M, et al. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog. 2010;6:e1000794.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    69.
    Kramer J, Özkaya Ö, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020;18:152–63.
    CAS  PubMed  Article  Google Scholar 

    70.
    Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol. 2014;24:40–9.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Evidence for signatures of ancient microbial life in paleosols

    1.
    Kehl, M. Quaternary Loesses, Loess-Like Sediments, Soils and Climate Change in Iran (Gebrüder Borntraeger Verlagsbuchhandlung, 2010).
    2.
    Kehl, M., Sarvati, R., Ahmadi, H., Frechen, M. & Skowronek, A. Loess paleosol-sequences along a climatic gradient in Northern Iran. Eiszeitalt. Ggw. 55, 149–173 (2005).
    Google Scholar 

    3.
    Bradley, R. S. Paleoclimatology: Reconstructing Climates of the Quaternary Vol. 68 (Academic Press, Cambridge, 1999).
    Google Scholar 

    4.
    Vlaminck, S. et al. Late Pleistocene dust dynamics and pedogenesis in Southern Eurasia—Detailed insights from the loess profile Toshan (NE Iran). Quat. Sci. Rev. 180, 75–95 (2018).
    ADS  Article  Google Scholar 

    5.
    Schulz, S. et al. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10, 3983–3996 (2013).
    ADS  Article  Google Scholar 

    6.
    Tscherko, D., Rustemeier, J., Richter, A., Wanek, W. & Kandeler, E. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur. J. Soil Sci. 54, 685–696 (2003).
    Article  Google Scholar 

    7.
    Nemergut, D. R. et al. Microbial community succession in an unvegetated, recently deglaciated soil. Microb. Ecol. 53, 110–122 (2007).
    PubMed  Article  Google Scholar 

    8.
    Turner, S. et al. Microbial community dynamics in soil depth profiles over 120,000 years of ecosystem development. Front. Biol. 8, 1–17 (2017).
    Google Scholar 

    9.
    Chaopricha, N. T. & Marín-Spiotta, E. Soil burial contributes to deep soil organic carbon storage. Soil Biol. Biochem. 69, 251–264 (2014).
    CAS  Article  Google Scholar 

    10.
    Shahriari, A. et al. Biomarkers in modern and buried soils of semi-desert and forest ecosystems of northern Iran. Quat. Int. 429, 62–73 (2017).
    Article  Google Scholar 

    11.
    Svirčev, Z. et al. Importance of biological loess crusts for loess formation in semi-arid environments. Quat. Int. 296, 206–215 (2013).
    Article  Google Scholar 

    12.
    Dulić, T. et al. Cyanobacterial diversity and toxicity of biocrusts from the Caspian Lowland loess deposits, North Iran. Quat. Int. 429, 74–85 (2017).
    Article  Google Scholar 

    13.
    Demkina, T. S., Khomutova, T. E., Kashirskaya, N. N., Stretovich, I. V. & Demkin, V. A. Characteristics of microbial communities in steppe paleosols buried under kurgans of the Sarmatian time (I-IV centuries AD). Eurasian Soil Sci. 42, 778–787 (2009).
    ADS  Article  Google Scholar 

    14.
    Khomutova, T. E. et al. An assessment of changes in properties of steppe kurgan paleosoils in relation to prevailing climates over recent millennia. Quat. Res. 67, 328–336 (2007).
    Article  Google Scholar 

    15.
    Thomsen, P. F. & Willerslev, E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
    Article  Google Scholar 

    16.
    Pedersen, M. W. et al. Ancient and modern environmental DNA. Philos. Trans. R. Soc. B 370, 20130383 (2015).
    Article  CAS  Google Scholar 

    17.
    Bálint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Coolen, M. J. L. et al. Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet. Sci. Lett. 223, 225–239 (2004).
    ADS  CAS  Article  Google Scholar 

    19.
    Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317–324 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    20.
    Belle, S. et al. Temporal changes in the contribution of methane-oxidizing bacteria to the biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA. J. Paleolimnol. 52, 215–228 (2014).
    ADS  Article  Google Scholar 

    21.
    Bellemain, E. et al. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ. Microbiol. 15, 1176–1189 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Zhang, D. C., Brouchkov, A., Griva, G., Schinner, F. & Margesin, R. Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology (Basel) 2, 85–106 (2013).
    Google Scholar 

    23.
    Gilichinsky, D. et al. Bacteria in permafrost. In Psychrophiles: From Biodiversity to Biotechnology (eds Margesin, R. et al.) 83–102 (Springer, Berlin, 2008). https://doi.org/10.1007/978-3-540-74335-4_6
    Google Scholar 

    24.
    Willerslev, E. et al. Long-term persistence of bacterial DNA. Curr. Biol. 14, 13–14 (2004).
    Article  CAS  Google Scholar 

    25.
    Vlaminck, S. et al. Loess-soil sequence at Toshan (Northern Iran): insights into late Pleistocene climate change. Quat. Int. 399, 122–135 (2016).
    Article  Google Scholar 

    26.
    Lauer, T. et al. Luminescence-chronology of the loess palaeosol sequence Toshan, Northern Iran: a highly resolved climate archive for the last glacial-interglacial cycle. Quat. Int. 429, 3–12 (2017).
    Article  Google Scholar 

    27.
    Khormali, F. & Kehl, M. Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in Northern Iran. Quat. Int. 234, 109–123 (2011).
    Article  Google Scholar 

    28.
    Khormali, F., Ghergherechi, S., Kehl, M. & Ayoubi, S. Soil formation in loess-derived soils along a subhumid to humid climate gradient, Northeastern Iran. Geoderma 179–180, 113–122 (2012).
    ADS  Article  CAS  Google Scholar 

    29.
    Fierer, N., Schimel, J. P. & Holden, P. A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176 (2003).
    CAS  Article  Google Scholar 

    30.
    Eilers, K. G., Debenport, S., Anderson, S. & Fierer, N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 50, 58–65 (2012).
    CAS  Article  Google Scholar 

    31.
    Helgason, B. L., Konschuh, H. J., Bedard-Haughn, A. & VandenBygaart, A. J. Microbial distribution in an eroded landscape: Buried A horizons support abundant and unique communities. Agric. Ecosyst. Environ. 196, 94–102 (2014).
    Article  Google Scholar 

    32.
    Liu, G. et al. Vertical changes in bacterial community composition down to a depth of 20 m on the degraded Loess Plateau in China. Land Degrad. Dev. 31, 1300–1313.
    Article  Google Scholar 

    33.
    Lauer, T. et al. The Agh Band loess-palaeosol sequence—A terrestrial archive for climatic shifts during the last and penultimate glacial–interglacial cycles in a semiarid region in northern Iran. Quat. Int. 439, 13–30 (2017).
    Article  Google Scholar 

    34.
    Mitzscherling, J. et al. Microbial community composition and abundance after millennia of submarine permafrost warming. Biogeosci. Discuss. 16, 3941–3958 (2019).
    ADS  CAS  Article  Google Scholar 

    35.
    Vuillemin, A., Ariztegui, D., Leavitt, P. R. & Bunting, L. Recording of climate and diagenesis through sedimentary DNA and fossil pigments at Laguna Potrok Aike, Argentina. Biogeosciences 13, 2475–2492 (2016).
    ADS  CAS  Article  Google Scholar 

    36.
    Ciobanu, M.-C. et al. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments. Biogeosciences 9, 3491–3512 (2012).
    ADS  CAS  Article  Google Scholar 

    37.
    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).
    PubMed  Article  CAS  Google Scholar 

    38.
    Drancourt, M. & Raoult, D. Paleomicrobiology: Current issues and perspectives. Nat. Rev. Microbiol. 3, 23–35 (2005).
    CAS  PubMed  Article  Google Scholar 

    39.
    Stevenson, A. et al. Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ. Microbiol. 17, 257–277 (2015).
    PubMed  Article  Google Scholar 

    40.
    Schimel, J. P. Life in dry soils: Effects of drought on soil microbial ommunities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Article  Google Scholar 

    41.
    Lebre, P. H., De Maayer, P. & Cowan, D. A. Xerotolerant bacteria: Surviving through a dry spell. Nat. Rev. Microbiol. 15, 285–296 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    42.
    Joergensen, R. G. & Wichern, F. Alive and kicking: Why dormant soil microorganisms matter. Soil Biol. Biochem. 116, 419–430 (2018).
    CAS  Article  Google Scholar 

    43.
    Aslam, S. N. et al. Soil compartment is a major determinant of the impact of simulated rainfall on desert microbiota. Environ. Microbiol. 18, 5048–5062 (2016).
    CAS  PubMed  Article  Google Scholar 

    44.
    Armstrong, A. et al. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Sci. Rep. 6, 1–8 (2016).
    Article  CAS  Google Scholar 

    45.
    Knief, C. et al. Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert. Glob. Planet. Change 184, 103078 (2020).
    Article  Google Scholar 

    46.
    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 1–16 (2016).
    Google Scholar 

    47.
    Chernov, T. I. et al. Comparative analysis of the structure of buried and surface soils by analysis of microbial DNA. Microbiology 87, 833–841 (2018).
    CAS  Article  Google Scholar 

    48.
    Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C. & Vorholt, J. A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4, 719–728 (2010).
    CAS  PubMed  Article  Google Scholar 

    49.
    Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Glob. Biogeochem. Cycles 20, GB3026 (2006).
    ADS  Article  CAS  Google Scholar 

    50.
    Baldani, J. I. et al. The family Oxalobacteraceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Rosenberg, E. et al.) 919–974 (Springer, Berlin, 2014).
    Google Scholar 

    51.
    Li, J. et al. Phytomonospora endophytica gen. nov., sp. nov., isolated from the roots of Artemisia annua L. Int. J. Syst. Evol. Microbiol. 61, 2967–2973 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    52.
    Eyice, Ö et al. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J. 9, 2336–2348 (2015).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Liu, D., Yang, Y., An, S., Wang, H. & Wang, Y. The biogeographical distribution of soil bacterial communities in the Loess Plateau as revealed by high-throughput sequencing. Front. Microbiol. 9, 2456 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Trujillo, M. E. et al. Pseudonocardia nigra sp. nov., isolated from Atacama desert rock. Int. J. Syst. Evol. Microbiol. 67, 2980–2985 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Mohammadipanah, F. & Wink, J. Actinobacteria from arid and desert habitats: diversity and biological activity. Front. Microbiol. 6, 1541 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Goodfellow, M., Nouioui, I., Sanderson, R., Xie, F. & Bull, A. T. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 111, 1315–1332 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Bull, A. T. et al. High altitude, hyper-arid soils of the Central-Andes harbor mega-diverse communities of actinobacteria. Extremophiles 22, 47–57 (2018).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    Polymenakou, P. N., Mandalakis, M., Stephanou, E. G. & Tselepides, A. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environ. Health Perspect. 116, 292–296 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    59.
    Wang, X. et al. Grain-size distribution of Pleistocene loess deposits in northern Iran and its palaeoclimatic implications. Quat. Int. 429, 41–51 (2017).
    Article  Google Scholar 

    60.
    Spring, S., Kämpfer, P. & Schleifer, K. H. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 51, 1463–1470 (2001).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    61.
    Makhdoumi, A. Bacterial diversity in south coast of Caspian Sea: culture-dependent and culture-independent survey. Casp. J. Environ. Sci. 16, 259–269 (2018).
    Google Scholar 

    62.
    Lindh, M. V. et al. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities. Front. Microbiol. 6, 1–18 (2015).
    Article  Google Scholar 

    63.
    Shifteh Some’e, B., Ezani, A. & Tabari, H. Spatiotemporal trends and change point of precipitation in Iran. Atmos. Res. 113, 1–12 (2012).
    Article  Google Scholar 

    64.
    Mansouri Daneshvar, M. R., Ebrahimi, M. & Nejadsoleymani, H. An overview of climate change in Iran: facts and statistics. Environ. Syst. Res. 8, 7 (2019).
    Article  Google Scholar 

    65.
    Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 1621–1624 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    67.
    Takai, K. & Horikoshi, K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 66, 5066–5072 (2000).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    68.
    Edgar, R. C. & Flyvbjerg, H. Sequence analysis error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    69.
    Maarastawi, S. A., Frindte, K., Linnartz, M. & Knief, C. Crop rotation and straw application impact microbial communities in Italian and Philippine soils and the rhizosphere of Zea mays. Front. Microbiol. 9, 1295 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    70.
    R Core Team. R: A language and environment for statistical computing version 3.2.5. Vienna: R Foundation for Statistical Computing. (2016).

    71.
    Oksanen, J. et al. Vegan: community ecology package. R package version 2.0-10 (2013). More

  • in

    Widespread Torix Rickettsia in New Zealand amphipods and the use of blocking primers to rescue host COI sequences

    1.
    Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 101, 14812–14817 (2004).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 
    2.
    Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N. & Hickey, D. A. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 23, 167–172 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    3.
    Bucklin, A., Steinke, D. & Blanco-Bercial, L. DNA Barcoding of Marine Metazoa. Ann. Rev. Mar. Sci. 3, 471–508 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    4.
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321 (2003).
    CAS  Article  Google Scholar 

    6.
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    7.
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    8.
    Porter, T. M. & Hajibabaei, M. Over 25 million COI sequences in GenBank and growing. PLoS ONE 13, e0200177 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Buhay, J. E. “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J. Crustac. Biol. 29, 96–110 (2009).
    Article  Google Scholar 

    10.
    Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491 (2008).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Smith, M. A. et al. Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLoS ONE 7, e36514 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Mioduchowska, M., Czyz, M. J., Gołdyn, B., Kur, J. & Sell, J. Instances of erroneous DNA barcoding of metazoan invertebrates: Are universal cox1 gene primers too “universal”?. PLoS ONE 13, e0199609 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    13.
    Parola, P., Paddock, C. D. & Raoult, D. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin. Microbiol. Rev. 18, 719–756 (2005).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Perlman, S. J., Hunter, M. S. & Zchori-Fein, E. The emerging diversity of Rickettsia. Proc. R. Soc. B Biol. Sci. 273, 2097–2106 (2006).
    Article  Google Scholar 

    15.
    Weinert, L. A. The diversity and phylogeny of Rickettsia. in Parasite diversity and diversification: evolutionary ecology meets phylogenetics (eds. Morand, S., Krasnov, B. R. & Littlewood, D. T. J.) 150–181 (Cambridge University Press, 2015). doi:https://doi.org/10.1017/CBO9781139794749.010.

    16.
    Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N. & Jiggins, F. M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 1–15 (2009).
    Article  CAS  Google Scholar 

    17.
    Hajduskova, E. et al. “Candidatus Rickettsia mendelii”, a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic. Ticks Tick. Borne. Dis. 7, 482–486 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    18.
    Binetruy, F., Buysse, M., Barosi, R. & Duron, O. Novel Rickettsiagenotypes in ticks in French Guiana. South America. Sci. Rep. 10, 1 (2020).
    Google Scholar 

    19.
    Kikuchi, Y., Sameshima, S., Kitade, O., Kojima, J. & Fukatsu, T. Novel clade of Rickettsia spp. from leeches. Appl. Environ. Microbiol. 68, 999–1004 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Kikuchi, Y. & Fukatsu, T. Rickettsia infection in natural leech populations. Microb. Ecol. 49, 265–271 (2005).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Galindo, L. J. et al. Combined cultivation and single-cell approaches to the phylogenomics of nucleariid amoebae, close relatives of fungi. Philos Trans R Soc B Biol Sci 374, 2019 (2019).
    Article  CAS  Google Scholar 

    22.
    Küchler, S. M., Kehl, S. & Dettner, K. Characterization and localization of Rickettsia sp in water beetles of genus Deronectes (Coleoptera: Dytiscidae). FEMS Microbiol. Ecol. 68, 201–211 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    23.
    Pilgrim, J. et al. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ. Microbiol. 19, 4238–4255 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Gollas-Galván, T., Avila-Villa, L. A., Martínez-Porchas, M. & Hernandez-Lopez, J. Rickettsia-like organisms from cultured aquatic organisms, with emphasis on necrotizing hepatopancreatitis bacterium affecting penaeid shrimp: An overview on an emergent concern. Rev. Aquac. 6, 2014 (2014).
    Article  Google Scholar 

    25.
    Larsson, R. A rickettsial pathogen of the amphipod Rivulogammarus pulex. J. Invertebr. Pathol. 40, 28–35 (1982).
    Article  Google Scholar 

    26.
    Graf, F. Presence of bacteria in the posterior caecum in the intestinal lumen of the hypogean Crustacean Niphargus virei (Gammaridae: Amphipoda). Can. J. Zool. Can. Zool. 62, 1829–1833 (1984).
    Article  Google Scholar 

    27.
    Messick, G. A., Overstreet, R. M., Nalepa, T. F. & Tyler, S. Prevalence of parasites in amphipods Diporeia spp from Lakes Michigan and Huron. USA. Dis. Aquat. Organ. 59, 159–170 (2004).
    PubMed  Article  PubMed Central  Google Scholar 

    28.
    Winters, A. D., Marsh, T. L., Brenden, T. O. & Faisal, M. Analysis of bacterial communities associated with the benthic amphipod Diporeia in the Laurentian great lakes basin. Can. J. Microbiol. 61, 72–81 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Bojko, J. et al. Parasites, pathogens and commensals in the “low-impact” non-native amphipod host Gammarus roeselii. Paras. Vect. 10, 193 (2017).
    Article  Google Scholar 

    30.
    Park, E., Jorge, F. & Poulin, R. Shared geographic histories and dispersal contribute to congruent phylogenies between amphipods and their microsporidian parasites at regional and global scales. Mol. Ecol. https://doi.org/10.1111/mec.15562 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    31.
    Lagrue, C., Joannes, A., Poulin, R. & Blasco-Costa, I. Genetic structure and host-parasite co-divergence: Evidence for trait-specific local adaptation. Biol. J. Linn. Soc. 118, 344–358 (2016).
    Article  Google Scholar 

    32.
    Řezáč, M., Gasparo, F., Král, J. & Heneberg, P. Integrative taxonomy and evolutionary history of a newly revealed spider Dysdera ninnii complex (Araneae: Dysderidae). Zool. J. Linn. Soc. 172, 764 (2014).
    Article  Google Scholar 

    33.
    Ceccarelli, F. S., Haddad, C. R. & Ramírez, M. J. Endosymbiotic Rickettsiales (Alphaproteobacteria) from the spider genus Amaurobioides (Araneae: Anyphaenidae). J. Arachnol. https://doi.org/10.1636/joa-s-15-009 (2016).
    Article  Google Scholar 

    34.
    Pilgrim, J. et al. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Authorea https://doi.org/10.22541/au.159534851.19125003 (2020).
    Article  Google Scholar 

    35.
    Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples: a case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 12 (2008).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    36.
    Vestheim, H., Deagle, B. E. & Jarman, S. N. Application of blocking oligonucleotides to improve signal-to-noise ratio in a PCR. Methods Mol. Biol. 687, 265–274 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    37.
    Boessenkool, S. et al. Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA. Mol. Ecol. 21, 1806–1815 (2012).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    38.
    Myers, A. A. Dispersal and endemicity in gammaridean Amphipoda. J. Nat. Hist. 27, 901–908 (1993).
    Article  Google Scholar 

    39.
    Duron, O. et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol. Ecol. 23, 2105–2117 (2014).
    PubMed  Article  PubMed Central  Google Scholar 

    40.
    López, J. ÁR., Husemann, M., Schmitt, T., Kramp, K. & Habel, J. C. Mountain barriers and trans-Saharan connections shape the genetic structure of Pimelia darkling beetles (Coleoptera: Tenebrionidae). Biol. J. Linn. Soc. https://doi.org/10.1093/biolinnean/bly053 (2018).
    Article  Google Scholar 

    41.
    Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, 2015 (2015).
    Article  CAS  Google Scholar 

    42.
    Dyková, I., Veverková, M., Fiala, I., Macháčková, B. & Pecková, H. Nuclearia pattersoni sp. n. (Filosea), a new species of amphizoic amoeba isolated from gills of roach (Rutilus rutilus), and its rickettsial endosymbiont. Folia Parasitol. (Praha).50, 161–170 (2003).

    43.
    Wang, H. L. et al. A newly recorded Rickettsia of the Torix group is a recent intruder and an endosymbiont in the whitefly Bemisia tabaci. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14927 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    44.
    Azad, A. F. & Beard, C. B. Rickettsial pathogens and their arthropod vectors. Emerg. Infect. Dis. 4, 179–186 (1998).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    45.
    Raoult, D. et al. A flea-associated Rickettsia pathogenic for humans. Emerg. Infect. Dis. 7, 73–81 (2001).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Castelli, M., Sassera, D. & Petroni, G. Biodiversity of “non-model” Rickettsiales and their association with aquatic organisms. in Rickettsiales: Biology, Molecular Biology, Epidemiology, and Vaccine Development (ed. Thomas, S.) 59–91 (Springer International Publishing, 2016). doi:https://doi.org/10.1007/978-3-319-46859-4_3.

    47.
    Sabaneyeva, E. et al. Host and symbiont intraspecific variability: the case of Paramecium calkinsi and “Candidatus Trichorickettsia mobilis”. Eur. J. Protistol. 62, 79–94 (2018).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    48.
    Schrallhammer, M. et al. “Candidatus Megaira polyxenophila” gen. nov., sp. Nov.: considerations on evolutionary history, host range and shift of early divergent rickettsiae. PLoS ONE 8, 2013 (2013).
    Article  CAS  Google Scholar 

    49.
    MacHtelinckx, T. et al. Microbial community of predatory bugs of the genus Macrolophus (Hemiptera: Miridae). BMC Microbiol. 12, S9 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    50.
    Gerth, M. et al. Green lacewings (Neuroptera: Chrysopidae) are commonly associated with a diversity of rickettsial endosymbionts. Zool. Lett. 3, 51 (2017).
    Article  Google Scholar 

    51.
    Reeves, W. K., Kato, C. Y. & Gilchriest, T. Pathogen screening and bionomics of Lutzomyia apache (Diptera: Psychodidae) in wyoming, USA. J. Am. Mosq. Control Assoc. 24, 444–447 (2008).
    PubMed  Article  PubMed Central  Google Scholar 

    52.
    Noda, H. et al. Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl. Entomol. Zool. 47, 217–225 (2012).
    CAS  Article  Google Scholar 

    53.
    Goodacre, S. L., Martin, O. Y., Thomas, C. F. G. & Hewitt, G. M. Wolbachia and other endosymbiont infections in spiders. Mol. Ecol. 15, 517–527 (2006).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    54.
    Gualtieri, L., Nugnes, F., Nappo, A. G., Gebiola, M. & Bernardo, U. Life inside a gall: closeness does not favour horizontal transmission of Rickettsia between a gall wasp and its parasitoid. FEMS Microbiol. Ecol. 93, 2017 (2017).
    Article  CAS  Google Scholar 

    55.
    Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc. R. Soc. B Biol. Sci. 250, 91–98 (1992).
    ADS  CAS  Article  Google Scholar 

    56.
    White, J. A., Giorgini, M., Strand, M. R. & Pennacchio, F. Arthropod endosymbiosis and evolution. in Arthropod biology and evolution: molecules, development, morphology (eds. Minelli, A., Boxshall, G. & Fusco, G.) 441–477 (Springer, Berlin, Heidelberg, 2013). doi:https://doi.org/10.1007/978-3-642-36160-9_17.

    57.
    Minard, G., Mavingui, P. & Moro, C. V. Diversity and function of bacterial microbiota in the mosquito holobiont. Paras. Vect. 6, 146 (2013).
    Article  Google Scholar 

    58.
    Thompson, J. R., Rivera, H. E., Closek, C. J. & Medina, M. Microbes in the coral holobiont: Partners through evolution, development, and ecological interactions. Front. Cell. Infect. Microbiol. 4, 176 (2014).
    PubMed  PubMed Central  Google Scholar 

    59.
    Siddall, M. E., Fontanella, F. M., Watson, S. C., Kvist, S. & Erséus, C. Barcoding bamboozled by bacteria: Convergence to metazoan mitochondrial primer targets by marine microbes. Syst. Biol. 58, 445–451 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    60.
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 1 (2013).
    Article  CAS  Google Scholar 

    61.
    Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, 1177–1192 (2017).
    Article  CAS  Google Scholar 

    62.
    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 360, 1847–1857 (2005).
    CAS  Article  Google Scholar 

    63.
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    64.
    Thongprem, P., Davison, H. R., Thompson, D. J., Lorenzo-Carballa, M. O. & Hurst, G. D. D. Incidence and diversity of torix Rickettsia-odonata symbioses. Microb. Ecol. https://doi.org/10.1007/s00248-020-01568-9 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    65.
    Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    66.
    R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2011). doi:https://doi.org/10.1007/978-3-540-74686-7.

    67.
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    68.
    Darriba, D., Taboada, G., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 gateway computing environments workshop (GCE) 1–8 (IEEE, 2010). doi:https://doi.org/10.1109/GCE.2010.5676129.

    70.
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
    PubMed  PubMed Central  Article  Google Scholar 

    71.
    Chun, J. Y. et al. Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene. Nucleic Acids Res. 35, e40 (2007).
    PubMed  PubMed Central  Article  CAS  Google Scholar  More

  • in

    Beaver dam capacity of Canada’s boreal plain in response to environmental change

    1.
    Novakowski, N. S. Population dynamics of a beaver population in northern latitudes. Doctoral dissertation, University of Saskatchewan (1965).
    2.
    Naiman, R. J., Johnston, C. A. & Kelley, J. C. Alteration of North American streams by beaver. BioSci. 38, 753–762 (1988).
    Article  Google Scholar 

    3.
    Jenkins, S. H. & Busher, P. E. Castor canadensis. Mamm. Species 120, 1–8 (1979).
    Article  Google Scholar 

    4.
    Kassi, N. An Indigenous perspective on protecting the Canadian boreal zone. Environ. Rev. 27, 422–423 (2019).
    Article  Google Scholar 

    5.
    Randazzo, M. L. & Robidoux, M. A. The costs of local food procurement in a Northern Canadian First Nation community: An affordable strategy to food security?. J. Hunger Environ. Nutr. 14, 662–682 (2019).
    Article  Google Scholar 

    6.
    Willby, N.J., Law, A., Levanoni, O., Foster, G. & Ecke, F. Rewilding wetlands: beaver as agents of within-habitat heterogeneity and the responses of contrasting biota. Phil. Trans. Royal Soc. B. 373, 2017044. https://doi.org/10.1098/rstb.2017.0444 (2018).
    Article  Google Scholar 

    7.
    Rosell, F., Bozser, O., Collen, P. & Parker, H. Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mamm. Rev. 35, 248–276 (2005).
    Article  Google Scholar 

    8.
    Westbrook, C. J., Cooper, D. J. & Butler, D. R. Beaver hydrology and geomorphology. In Treatise on Geomorphology—Ecogeomorphology, (ed. Shroder, J.) 293–306. (Academic Press, San Diego, 2013).
    Google Scholar 

    9.
    Westbrook, C. J., Cooper, D. J. & Baker, B. W. Beaver dams and overbank floods influence groundwater–surface water interactions of a Rocky Mountain riparian area. Water Resour. Res., 42, W06404. https://doi.org/10.1029/2005wr004560 (2006).
    ADS  Article  Google Scholar 

    10.
    Karran, D.J., Westbrook, C.J. & Bedard-Haughn, A. Beaver-mediated water table dynamics in a Rocky Mountain fen. Ecohydrology 11, e1923. https://doi.org/10.1002/eco.1923 (2018).
    Article  Google Scholar 

    11.
    Woo, M. K. & Waddington, J. M. Effects of beaver dams on subarctic wetland hydrology. Arctic 43, 223–230 (1990).
    Article  Google Scholar 

    12.
    Nyssen, J., Pontzeele, J. & Billi, P. Effect of beaver dams on the hydrology of small mountain streams: Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium. J. Hydrol. 402, 92–102 (2011).
    ADS  Article  Google Scholar 

    13.
    Butler, D. R. & Malanson, G. P. The geomorphic influences of beaver dams and failures of beaver dams. Geomorphology 71, 48–60 (2005).
    ADS  Article  Google Scholar 

    14.
    Polvi, L. E. & Wohl, E. The beaver meadow complex revisited—The role of beavers in post-glacial floodplain development. Earth Surf. Proc. Land. 37, 332–346 (2012).
    ADS  Article  Google Scholar 

    15.
    Puttock, A., Graham, H. A., Cunliffe, A. M., Elliott, M. & Brazier, R. E. Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands. Sci. Total Environ. 576, 430–443 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    16.
    Wohl, E., Lininger, K. B. & Scott, D. N. River beads as a conceptual framework for building carbon storage and resilience to extreme climate events into river management. Biogeochemistry 141, 365–383 (2018).
    CAS  Article  Google Scholar 

    17.
    Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Let. 13, 014007. https://doi.org/10.1088/1748-9326/aa9b88 (2018).
    Article  Google Scholar 

    18.
    Ireson, A. M. et al. The changing water cycle: The boreal plains ecozone of western Canada. Wiley Interdiscip. Rev. Water 2, 505–521 (2015).
    Article  Google Scholar 

    19.
    Hood, G. A. & Bayley, S. E. Beaver (Castor canadensis) mitigate the effects of climate on the area of open water in boreal wetlands in western Canada. Biol. Conserv. 141, 556–567 (2008).
    Article  Google Scholar 

    20.
    Dittbrenner, B. J. et al. Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation. PloS ONE 13, e0192538. https://doi.org/10.1371/journal.pone.0192538 (2018).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    21.
    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    22.
    Thompson, I. D. Habitat needs of furbearers in relation to logging in boreal Ontario. For. Chron. 64, 251–261 (1988).
    Article  Google Scholar 

    23.
    Boulanger, Y. et al. Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone. Land. Ecol. 32, 1415–1431 (2017).
    Article  Google Scholar 

    24.
    Hood, G. A., Bayley, S. E. & Olson, W. Effects of prescribed fire on habitat of beaver (Castor canadensis) in Elk Island National Park, Canada. For. Ecol. Manage. 239, 200–209 (2007).
    Article  Google Scholar 

    25.
    Fairfax, E. & Small, E. E. Using remote sensing to assess the impact of beaver damming on riparian evapotranspiration in an arid environment. Ecohydrology 11, e1993 (2018).
    Article  Google Scholar 

    26.
    Creed, I. F., Duinker, P. N., Serran, J. N. & Steenberg, J. W. Managing risks to Canada’s boreal zone: Transdisciplinary thinking in pursuit of sustainability. Environ. Rev. 27, 407–418 (2019).
    Article  Google Scholar 

    27.
    Eaton, B., T. Muhly, J.T. Fisher & S-L. Potential Impacts of Beaver on Oil Sands Reclamation Success—An Analysis of Available Literature. Oil Sands Research and Information Network, University of Alberta, School of Energy and the Environment, Edmonton, Alberta. OSRIN Report No. TR-37. (2013)

    28.
    Tape, K. D., Jones, B. M., Arp, C. D., Nitze, I. & Grosse, G. Tundra be dammed: Beaver colonization of the Arctic. Glob. Change Biol. 24, 4478–4488 (2018).
    ADS  Article  Google Scholar 

    29.
    Jarema, S. I., Samson, J., McGill, B. J. & Humphries, M. M. Variation in abundance across a species’ range predicts climate change responses in the range interior will exceed those at the edge: A case study with North American beaver. Glob. Change Biol. 15, 508–522 (2009).
    ADS  Article  Google Scholar 

    30.
    Smeraldo, S. et al. Species distribution models as a tool to predict range expansion after reintroduction: A case study on Eurasian beavers (Castor fiber). J. Nat. Conserv. 37, 12–20 (2017).
    Article  Google Scholar 

    31.
    Scrafford, M. A., Avgar, T., Abercrombie, B., Tigner, J. & Boyce, M. S. Wolverine habitat selection in response to anthropogenic disturbance in the western Canadian boreal forest. For. Ecol. Manage. 395, 27–36 (2017).
    Article  Google Scholar 

    32.
    Sinkins, P. Ecological and hydrological consequences of beaver activity in Riding Mountain National Park, Manitoba. Masters of Science Thesis, University of Manitoba (2008).

    33.
    Trottier, G. C. Aerial Beaver Censuses in Riding Mountain National Park, 1973–1980. Large Mamm. Syst. Stud. Rep. 11, Canadian Wildlife Service (1980).

    34.
    Macfarlane, W. W. et al. Modeling the capacity of riverscapes to support beaver dams. Geomorphology 277, 72–99 (2017).
    ADS  Article  Google Scholar 

    35.
    Karran, D. J., Westbrook, C. J., Wheaton, J. M., Johnston, C. A. & Bedard-Haughn, A. Rapid surface water volume estimations in beaver ponds. Hydrol. Earth Syst. Sci. 352, 1039–1050. https://doi.org/10.5194/hess-21-1039-2017 (2017).
    ADS  Article  Google Scholar 

    36.
    Wang, G., McClintic, L. F. & Taylor, J. D. Habitat selection by American beaver at multiple spatial scales. Animal Biotel. 7, 10. https://doi.org/10.1186/s40317-019-0172-8 (2019).
    Article  Google Scholar 

    37.
    Touihri, M., Labbé, J., Imbeau, L. & Darveau, M. North American beaver (Castor canadensis Kuhl) key habitat characteristics: Review of the relative effects of geomorphology, food availability and anthropogenic infrastructure. Ecoscience 25, 9–23 (2018).
    Article  Google Scholar 

    38.
    Whitfield, P. H., Shook, K. R. & Pomeroy, J. W. Spatial patterns of temporal changes in Canadian prairie streamflow using an alternative trend assessment approach. J. Hydrol. 582, 124541. https://doi.org/10.1016/j.jhydrol.2020.124541 (2020).
    Article  Google Scholar 

    39.
    Johnston, C. A. & Naiman, R. J. Aquatic patch creation in relation to beaver population trends. Ecology 1, 1617–1621 (1990).
    Article  Google Scholar 

    40.
    Whitfield, C. J., Baulch, H. M., Chun, K. P. & Westbrook, C. J. Beaver-mediated methane emission: The effects of population growth in Eurasia and the Americas. Ambio 44, 7–15 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    41.
    Burchsted, D. & Daniels, M. D. Classification of the alterations of beaver dams to headwater streams in northeastern Connecticut, USA. Geomorphology 205, 36–50 (2014).
    ADS  Article  Google Scholar 

    42.
    Breck, S. W., Wilson, K. R. & Andersen, D. C. Beaver herbivory and its effect on cottonwood trees: Influence of flooding along matched regulated and unregulated rivers. River Res. Appl. 19, 43–58 (2003).
    Article  Google Scholar 

    43.
    Martell, K. A., Foote, A. L. & Cumming, S. G. Riparian disturbance due to beavers (Castor canadensis) in Alberta’s boreal mixedwood forests: Implications for forest management. Ecoscience 13, 164–171 (2006).
    Article  Google Scholar 

    44.
    Hood, G. A. & Bayley, S. E. The effects of high ungulate densities on foraging choices by beaver (Castor canadensis) in the mixed-wood boreal forest. Can. J. Zool. 86, 484–496 (2008).
    Article  Google Scholar 

    45.
    Caners, R. T. & Kenkel, N. C. Forest stand structure and dynamics at Riding Mountain National Park, Manitoba, Canada. Commun. Ecol. 4, 185–204 (2003).
    Article  Google Scholar 

    46.
    Noble, B., Liu, J. & Hackett, P. The contribution of project environmental assessment to assessing and managing cumulative effects: Individually and collectively insignificant?. Environ. Manage. 59, 531–545 (2017).
    ADS  PubMed  Article  PubMed Central  Google Scholar 

    47.
    Thompson, C., Mendoza, C. A. & Devito, K. J. Potential influence of climate change on ecosystems within the Boreal Plains of Alberta. Hydrol. Proc. 31, 2110–2124 (2017).
    Article  Google Scholar 

    48.
    Lapointe St-Pierre, M., Labbé, J., Darveau, M., Imbeau, L. & Mazerolle, M. J. Factors affecting abundance of beaver dams in forested landscapes. Wetlands 37, 941–949 (2017).
    Article  Google Scholar 

    49.
    Hillman, G. R. Flood wave attenuation by a wetland following a beaver dam failure on a second order boreal stream. Wetlands 18, 21–34 (1998).
    Article  Google Scholar 

    50.
    Sallows, T. Beaver abundance—riding mountain dataset. Open Government, Government of Canada. https://open.canada.ca/data/en/dataset/36228fda-d442-4364-9810-cd77c376a851 (2018).

    51.
    Petro, V. M., Taylor, J. D., Sanchez, D. M. & Burnett, K. M. Methods to predict beaver dam occurrence in coastal Oregon. Northw. Sci. 92, 278–289 (2018).
    Article  Google Scholar 

    52.
    Graham, H. A. et al. Modelling Eurasian beaver foraging habitat and dam suitability, for predicting the location and number of dams throughout catchments in Great Britain. Eur. J. Wildlife Res. 66, 42 (2020).
    Article  Google Scholar 

    53.
    Richards, L.K. Elk/moose population dynamics in the Riding Mountain National Park region. Masters Thesis, University of Manitoba (1997).

    54.
    Morrison, A., Westbrook, C. J. & Bedard-Haughn, A. Distribution of Canadian Rocky Mountain wetlands impacted by beaver. Wetlands 35, 95–104 (2015).
    Article  Google Scholar 

    55.
    Devito, K. J. et al. Landscape controls on long-term runoff in subhumid heterogeneous Boreal Plains catchments. Hydrol. Proc. 31, 2737–2751 (2017).
    Article  Google Scholar 

    56.
    Westbrook, C. J., Cooper, D. J. & Anderson, C. B. Alteration of hydrogeomorphic processes by invasive beavers in southern South America. Sci. Total Environ. 574, 183–190 (2017).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    57.
    Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. III. & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).
    ADS  Article  Google Scholar 

    58.
    Walker, D.J. Landscape complexity and vegetation dynamics in Riding Mountain National Park, Canada. Doctoral dissertation, University of Manitoba (2002).

    59.
    Doucet, R. Regeneration silviculture of aspen. For. Chron. 65, 23–27 (1989).
    Article  Google Scholar 

    60.
    McMaster, R. T. & McMaster, N. D. Composition, structure, and dynamics of vegetation in 15 beaver-impacted wetlands in western Massachusetts. Rhodora 103, 293–320 (2001).
    Google Scholar 

    61.
    Green, K. C. & Westbrook, C. J. Changes in riparian area structure, channel hydraulics, and sediment yield following loss of beaver dams. J. Ecosyst. Manage. 10, 68–78 (2009).
    Google Scholar 

    62.
    Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).
    Article  Google Scholar 

    63.
    Dumanski, S., Pomeroy, J. W. & Westbrook, C. J. Hydrological regime changes in a Canadian Prairie basin. Hydrol. Proc. 29, 3893–3904 (2015).
    Article  Google Scholar 

    64.
    Neumayer, M., Teschemacher, S., Schloemer, S., Zahner, V. & Rieger, W. Hydraulic modelling of beaver dams and evaluation of their impacts on flood events. Water 12, 300 (2020).
    Article  Google Scholar 

    65.
    Westbrook, C. J., Ronnquist, A. & Bedard-Haughn, A. Hydrological functioning of a beaver dam sequence and regional dam persistence during an extreme rainstorm. Hydrol. Proc. 34, 3726–3737 (2020).
    Article  Google Scholar 

    66.
    Andersen, D. C. & Shafroth, P. B. Beaver dams, hydrological thresholds, and controlled floods as a management tool in a desert riverine ecosystem, Bill Williams River, Arizona. Ecohydrology 3, 325–338 (2010).
    Article  Google Scholar 

    67.
    Bailey, R. H. Notes on the Vegetation in Riding Mountain National Park Manitoba. Forest Management Institute (1968).

    68.
    Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910 (2010).
    ADS  Article  Google Scholar  More