Plasticity in nest site choice behavior in response to hydric conditions in a reptile
1.
Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998).
CAS PubMed Article PubMed Central Google Scholar
2.
Hagan, H. R. A brief analysis of viviparity in insects. J. N. Y. Entomol. Soc. 56, 63–68 (1948).
Google Scholar
3.
Resetarits, W. J. Jr. Oviposition site choice and life history evolution. Am. Zool. 36, 205–215 (1996).
Article Google Scholar
4.
Schwarzkopf, L. & Andrews, R. M. Are moms manipulative or just selfish? Evaluating the “maternal manipulation hypothesis” and implications for life-history studies of reptiles. Herpetologica 68, 147–159 (2012).
Article Google Scholar
5.
Bernardo, J. Maternal effects in animal ecology. Am. Zool. 36, 83–105 (1996).
Article Google Scholar
6.
Réale, D. & Roff, D. A. Quantitative genetics of oviposition behaviour and interactions among oviposition traits in the sand cricket. Anim. Behav. 64, 397–406 (2002).
Article Google Scholar
7.
McGaugh, S. E., Schwanz, L. E., Bowden, R. M., Gonzalez, J. E. & Janzen, F. J. Inheritance of nesting behaviour across natural environmental variation in a turtle with temperature-dependent sex determination. Proc. R. Soc. B Biol. Sci. 277, 1219–1226 (2010).
Article Google Scholar
8.
Seymour, R. S. & Ackerman, R. A. Adaptations to underground nesting in birds and reptiles. Am. Zool. 20, 437–447 (1980).
Article Google Scholar
9.
Booth, D. T. Influence of incubation temperature on hatchling phenotype in reptiles. Physiol. Biochem. Zool. 79, 274–281 (2006).
PubMed Article PubMed Central Google Scholar
10.
Deeming, D. C. in Temperature-Dependent Sex Determination in Vertebrates (eds Valenzuela, N. & Lance, V. A.) 33–41 (Smithsonian Books, 2004).
11.
Deeming, D. C. & Ferguson, M. in Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles (eds Deeming, D. C. & Ferguson, M. W. J.) 147–171 (Cambridge University Press, Cambridge, 1991).
12.
Schwarzkopf, L. & Brooks, R. J. Nest-site selection and offspring sex ratio in painted turtles, Chrysemys picta. Copeia 1987, 53–61 (1987).
Article Google Scholar
13.
Refsnider, J. M. & Janzen, F. J. Putting eggs in one basket: ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41, 39–57 (2010).
Article Google Scholar
14.
Doody, J. S. et al. Nest site choice compensates for climate effects on sex ratios in a lizard with environmental sex determination. Evol. Ecol. 20, 307–330 (2006).
Article Google Scholar
15.
Ewert, M. A., Lang, J. W. & Nelson, C. E. Geographic variation in the pattern of temperature-dependent sex determination in the American snapping turtle (Chelydra serpentina). J. Zool. 265, 81–95 (2005).
Article Google Scholar
16.
Doody, J. S. Superficial lizards in cold climates: nest site choice along an elevational gradient. Austral. Ecol. 34, 773–779 (2009).
Article Google Scholar
17.
Doody, J. S. & Moore, J. A. Conceptual model for thermal limits on the distribution of reptiles. Herpetol. Conserv. Biol. 5, 283–289 (2010).
Google Scholar
18.
Delmas, V., Bonnet, X., Girondot, M. & Prévot-Julliard, A.-C. Varying hydric conditions during incubation influence egg water exchange and hatchling phenotype in the red-eared slider turtle. Physiol. Biochem. Zool. 81, 345–355 (2008).
PubMed Article PubMed Central Google Scholar
19.
Fitch, H. S. Reproductive cycles in lizards and snakes. Univ. Kans. Mus. Nat. Hist. Misc. Publ. 52, 1–247 (1970).
Google Scholar
20.
Gutzke, W. H., Packard, G. C., Packard, M. & Boardman, T. J. Influence of the hydric and thermal environments on eggs and hatchlings of painted turtles (Chrysemys picta). Herpetologica 43, 393–404 (1987).
Google Scholar
21.
Muth, A. Physiological ecology of desert iguana (Dipsosaurus dorsalis) eggs: temperature and water relations. Ecology 61, 1335–1343 (1980).
Article Google Scholar
22.
Plumer, M. & Snell, H. Nest site selection and water relations of eggs in the snake, Opheodrys aestirus. Copeia 1988, 58–61 (1988).
Article Google Scholar
23.
Reedy, A. M., Zaragoza, D. & Warner, D. A. Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard. Behav. Ecol. 24, 39–46 (2013).
Article Google Scholar
24.
Socci, A. M., Schlaepfer, M. A. & Gavin, T. A. The importance of soil moisture and leaf cover in a female lizard’s (Norops polylepis) evaluation of potential oviposition sites. Herpetologica 61, 233–240 (2005).
Article Google Scholar
25.
Warner, D. A. & Andrews, R. M. Laboratory and field experiments identify sources of variation in phenotypes and survival of hatchling lizards. Biol. J. Lin. Soc. 76, 105–124 (2002).
Article Google Scholar
26.
Li, S. R. et al. Female lizards choose warm, moist nests that improve embryonic survivorship and offspring fitness. Funct. Ecol. 32, 416–423 (2018).
Article Google Scholar
27.
Warner, D. A., Jorgensen, C. F. & Janzen, F. J. Maternal and abiotic effects on egg mortality and hatchling size of turtles: temporal variation in selection over seven years. Funct. Ecol. 24, 857–866 (2010).
Article Google Scholar
28.
Black, C. P., Birchard, G. F., Schuett, G. W. & Black, V. D. in Respiration and Metabolism of Embryonic Vertebrates (ed Seymour, R. S.) 137–145 (Springer, Berlin, 1984).
29.
Hayes, W. K., Carter, R. L., Cyril, S. & Thornton, B. in Iguanas: Biology and Conservation (eds Alberts, A. C., Carter, R. L., Hayes, W. K., & Martins, E. P.) 232–257 (University of California Press, 2004).
30.
Iverson, J. B., Hines, K. N. & Valiulis, J. M. The nesting ecology of the Allen Cays rock iguana, Cyclura cychlura inornata in the Bahamas. Herpetol. Monogr. 18, 1–36 (2004).
Article Google Scholar
31.
Kam, Y.-C. Effects of simulated flooding on metabolism and water balance of turtle eggs and embryos. J. Herpetol. 28, 173–178 (1994).
Article Google Scholar
32.
Moll, E. O. & Legler, J. M. The life history of a neotropical slider turtle, Pseudemys scripta (Schoepff), in Panama. Bull. Los Angel.Cty. Mus.Nat. Hist. 11, 1–102 (1971).
Google Scholar
33.
Tracy, C. R. Water relations of parchment-shelled lizard (Sceloporus undulatus) eggs. Copeia 3, 478–482 (1980).
Article Google Scholar
34.
Mortimer, J. A. The influence of beach sand characteristics on the nesting behavior and clutch survival of green turtles (Chelonia mydas). Copeia 1990, 802–817 (1990).
Article Google Scholar
35.
Platt, S. G. & Thorbjarnarson, J. B. Nesting ecology of the American crocodile in the coastal zone of Belize. Copeia 2000, 869–873 (2000).
Article Google Scholar
36.
Snell, H. L. & Tracy, C. R. Behavioral and morphological adaptations by Galapagos land iguanas (Conolophus subcristatus) to water and energy requirements of eggs and neonates. Am. Zool. 25, 1009–1018 (1985).
Article Google Scholar
37.
Thompson, M., Packard, G., Packard, M. & Rose, B. Analysis of the nest environment of tuatara Sphenodon punctatus. J. Zool. 238, 239–251 (1996).
Article Google Scholar
38.
Bodensteiner, B. L., Mitchell, T. S., Strickland, J. T. & Janzen, F. J. Hydric conditions during incubation influence phenotypes of neonatal reptiles in the field. Funct. Ecol. 29, 710–717 (2015).
Article Google Scholar
39.
Doody, J. S., James, H., Colyvas, K., Mchenry, C. R. & Clulow, S. Deep nesting in a lizard, déjà vu devil’s corkscrews: first helical reptile burrow and deepest vertebrate nest. Biol. J. Lin. Soc. 116, 13–26 (2015).
Article Google Scholar
40.
Doody, J. S. et al. Cryptic and complex nesting in the yellow-spotted monitor, Varanus panoptes. J. Herpetol. 48, 363–370 (2014).
Article Google Scholar
41.
Doody, J. S. et al. Deep, helical, communal nesting and emergence in the sand monitor: ecology informing paleoecology?. J. Zool. 305, 88–95 (2018).
Article Google Scholar
42.
Doody, J. S. et al. Deep communal nesting by yellow-spotted monitors in a desert ecosystem: indirect evidence for a response to extreme dry conditions. Herpetologica 74, 306–310 (2018).
Article Google Scholar
43.
Bureau of Meteorology. Average Annual, Seasonal and Monthly Rainfall, https://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp (2019).
44.
Cogger, H. Reptiles and Amphibians of Australia (CSIRO Publishing, 2014).
45.
Doody, J. S. et al. Chronic effects of an invasive species on an animal community. Ecology 98, 2093–2101 (2017).
PubMed Article PubMed Central Google Scholar
46.
Doody, J. S. et al. Invasive toads shift predator–prey densities in animal communities by removing top predators. Ecology 96, 2544–2554 (2015).
PubMed Article PubMed Central Google Scholar
47.
Shea, G. & Sadlier, R. An ovigerous argus monitor, Varanus panoptes panoptes. Herpetofauna 31, 132–133 (2001).
Google Scholar
48.
Doody, J. S. et al. Impacts of the invasive cane toad on aquatic reptiles in a highly modified ecosystem: the importance of replicating impact studies. Biol. Invasions 16, 2303–2309 (2014).
Article Google Scholar
49.
Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).
MathSciNet Article Google Scholar
50.
Telemeco, R. S., Elphick, M. J. & Shine, R. Nesting lizards (Bassiana duperreyi) compensate partly, but not completely, for climate change. Ecology 90, 17–22 (2009).
PubMed Article PubMed Central Google Scholar
51.
Wilson, D. S. Nest-site selection: microhabitat variation and its effects on the survival of turtle embryos. Ecology 79, 1884–1892 (1998).
Article Google Scholar
52.
Refsnider, J., Bodensteiner, B., Reneker, J. & Janzen, F. Nest depth may not compensate for sex ratio skews caused by climate change in turtles. Anim. Conserv. 16, 481–490 (2013).
Article Google Scholar
53.
Morjan, C. L. Variation in nesting patterns affecting nest temperatures in two populations of painted turtles (Chrysemys picta) with temperature-dependent sex determination. Behav. Ecol. Sociobiol. 53, 254–261 (2003).
Article Google Scholar
54.
Refsnider, J. M. & Janzen, F. J. Behavioural plasticity may compensate for climate change in a long-lived reptile with temperature-dependent sex determination. Biol. Conserv. 152, 90–95 (2012).
Article Google Scholar
55.
Georges, A., Limpus, C. & Stoutjesdijk, R. Hatchling sex in the marine turtle Caretta caretta is determined by proportion of development at a temperature, not daily duration of exposure. J. Exp. Zool. 270, 432–444 (1994).
Article Google Scholar
56.
Barbault, R. Population dynamics and reproductive patterns of three African skinks. Copeia 1976, 483–490 (1976).
Article Google Scholar
57.
Brown, G. & Shine, R. Why do most tropical animals reproduce seasonally? Testing hypotheses on an Australian snake. Ecology 87, 133–143 (2006).
CAS PubMed Article PubMed Central Google Scholar
58.
Van Dyke, J. U. in Reproductive Biology and Phylogeny of Lizards and Tuatara (ed Rheubert, J. L.) 121–155 (CRC Press, New York, 2014).
59.
James, C. & Shine, R. The seasonal timing of reproduction. Oecologia 67, 464–474 (1985).
ADS PubMed Article PubMed Central Google Scholar
60.
Packard, G. C., Miller, K. & Packard, M. J. A protocol for measuring water potential in subterranean nests of reptiles. Herpetologica 48, 202–209 (1992).
Google Scholar
61.
Taylor, J. A. & Tulloch, D. Rainfall in the wet-dry tropics: extreme events at Darwin and similarities between years during the period 1870–1983 inclusive. Aust. J. Ecol. 10, 281–295 (1985).
Article Google Scholar
62.
de Almeida Prado, C. P., Uetanabaro, M. & Lopes, F. S. Reproductive strategies of Leptodactylus chaquensis and L. podicipinus in the Pantanal Brazil. J. Herpetol. 34, 135–139 (2000).
Article Google Scholar
63.
Newton, I. Population limitation in birds: the last 100 years. Brit. Birds 100, 518–539 (2007).
Google Scholar
64.
James, C. D. & Whitford, W. G. An experimental study of phenotypic plasticity in the clutch size of a lizard. Oikos 70, 49–56 (1994).
Article Google Scholar
65.
Jolly, C. J., Shine, R. & Greenlees, M. J. The impacts of a toxic invasive prey species (the cane toad, Rhinella marina) on a vulnerable predator (the lace monitor, Varanus varius). Biol. Invasions 18, 1499–1509 (2016).
Article Google Scholar
66.
Christian, K. in Varanoid Lizards of the World (eds Pianka, E. R. & King, D. R.) 423–429 (Indiana University Press, 2004).
67.
Christian, K. A., Corbett, L., Green, B. & Weavers, B. W. Seasonal activity and energetics of two species of varanid lizards in tropical Australia. Oecologia 103, 349–357 (1995).
ADS PubMed Article PubMed Central Google Scholar
68.
Warner, D. A., Du, W.-G. & Georges, A. Introduction to the special issue—Developmental plasticity in reptiles: physiological mechanisms and ecological consequences. J. Exp. Zool. A Ecol. Int. Physiol. 329, 153–161 (2018).
Google Scholar
69.
While, G. M. et al. Patterns of developmental plasticity in response to incubation temperature in reptiles. J. Exp. Zool. Part A Ecol. Integr. Physiol. 329, 162–176 (2018).
Google Scholar
70.
Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).
ADS CAS PubMed Article PubMed Central Google Scholar More