GPS-telemetry unveils the regular high-elevation crossing of the Himalayas by a migratory raptor: implications for definition of a “Central Asian Flyway”
1.
Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: unraveling migratory connectivity. Trends Ecol. Evol. 17, 76–83 (2002).
Google Scholar
2.
Newton, I. The migration ecology of birds (Elsevier-Academic Press, London, 2008).
Google Scholar
3.
Schaub, M., Kania, W. & Köppen, U. Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J. Anim. Ecol. 74, 656–666 (2005).
Google Scholar
4.
Higuchi, H. et al. Migration of Honey-buzzards Pernis apivorus based on satellite tracking. Ornithol. Sci. 4, 109–115 (2005).
Google Scholar
5.
Takekawa, J. et al. Geographic variation in Bar-headed Geese Anser indicus: connectivity of wintering areas and breeding grounds across a broad front. Wildfowl 59, 100–123 (2009).
Google Scholar
6.
Batbayar, N. & Lee, H. Steppe eagle migration from Mongolia to India. In Bird migration across the Himalayas: wetland functioning amidst mountains and glaciers (eds Prins, H. H. T. & Namgali, T.) 117–127 (Cambridge University Press, Cambridge, 2017).
Google Scholar
7.
Dixon, A., Rahman, L., Sokolov, A. & Sokolov, V. A. Peregrine falcons crossing the ‘roof of the world.’ In Bird migration across the Himalayas: wetland functioning amidst mountains and glaciers (eds Prins, H. H. & Namgali, T.) 53–67 (Cambridge University Press, Cambridge, 2017).
Google Scholar
8.
Zalles, J. I. & Bildstein, K. L. Raptor watch: a global directory of raptor migration sites (Hawk Mountain Sanctuary, Kempton, 2000).
Google Scholar
9.
Den Besten, J. W. Migration of Steppe Eagles Aquila nipalensis and other raptors along the Himalayas past Dharamsala, India, in autumn 2001 and spring 2002. Forktail 20, 9–13 (2004).
Google Scholar
10.
Juhant, M. A. & Bildstein, K. L. Raptor migration across and around the Himalayas. In Bird migration across the Himalayas: wetland functioning amidst mountains and glaciers, pp 98–116 (eds Prins, H. H. & Namgali, T.) (Cambridge University Press, Cambridge, 2017).
Google Scholar
11.
Clark, N. E., Boakes, E. H., Mcgowan, P. J. K., Mace, G. M. & Fuller, R. A. Protected areas in South Asia have not prevented habitat loss: a study using historical models of land-use change. PLoS ONE 8, e65298 (2013).
ADS PubMed PubMed Central CAS Google Scholar
12.
Malakoff, D., Wigginton, N. S., Fahrenkamp-Uppenbrink, J. & Wible, B. Rise of the urban planet. Science 80, 272 (2016).
Google Scholar
13.
Yasue, M., Feare, C. J., Bennun, L. & Fiedler, W. The epidemiology of H5N1 Avian influenza in wild birds: why we need better ecological data. Bioscience 56, 923–929 (2006).
Google Scholar
14.
Yanjie, Xu., Gong, P., Wielstra, B. & Si, Y. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Sci. Rep. 6, 30262 (2016).
Google Scholar
15.
Palm, E. C. et al. Mapping migratory flyways in Asia using dynamic Brownian bridge movement models. Mov. Ecol. 3, 3 (2015).
PubMed PubMed Central Google Scholar
16.
Parr, N. et al. High altitude flights by ruddy shelduck Tadorna ferruginea during trans-Himalayan migrations. J. Avian Biol. 48, 1310–1315 (2017).
Google Scholar
17.
Galushin, V. M. A huge urban population of birds of prey in Delhi India. Ibis (Lond. 1859) 113, 522 (1971).
Google Scholar
18.
Kumar, N., Jhala, Y. V., Qureshi, Q., Gosler, A. G. & Sergio, F. Human-attacks by an urban raptor are tied to human subsidies and religious practices. Sci. Rep. 9, 2545 (2019).
ADS PubMed PubMed Central Google Scholar
19.
Kumar, N. et al. The population density of an urban raptor is inextricably tied to human cultural practices. Proc. R. Soc. B Biol. Sci. 286, 20182932 (2019).
Google Scholar
20.
Naoroji, R. Birds of prey of the Indian subcontinent (Christopher Helm, London, 2006).
Google Scholar
21.
Ferguson-Lees, J. & Christie, D. A. Raptors of the world. (2001).
22.
Choudhury, A. Migration of Black-eared Kite or Large Indian Kite Milvus migrans lineatus(Gray) from Mongolia to North-Eastern India. J. Bombay Nat. Hist. Soc. 102, 229–230 (2003).
Google Scholar
23.
Forsman, D. Identification of black-eared kite. Bird. World 16, 56–60 (2003).
Google Scholar
24.
DeCandido, R., Subedi, T., Siponen, M., Sutasha, K. & Pierce, A. Flight identification of Milvus migrans lineatus ‘Black-eared’Kite and Milvus migrans govinda ‘Pariah’Kite in Nepal and Thailand. Bird. ASIA 20, 32–36 (2013).
Google Scholar
25.
Scott, G. R. Elevated performance: the unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455 (2011).
PubMed CAS Google Scholar
26.
Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).
ADS PubMed CAS Google Scholar
27.
Sergio, F. et al. Migration by breeders and floaters of a long-lived raptor: implications for recruitment and territory quality. Anim. Behav. 131, 59–72 (2017).
Google Scholar
28.
Panuccio, M., Agostini, N., Mellone, U. & Bogliani, G. Circannual variation in movement patterns of the Black Kite (Milvus migrans migrans): a review. Ethol. Ecol. Evol. 26, 1–18 (2014).
Google Scholar
29.
Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–950 (1999).
Google Scholar
30.
Sergio, F., Blas, J., Forero, M. G., Donazar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. 18, 811–821 (2007).
Google Scholar
31.
Bildstein, K. L. Migrating raptors of the world: their ecology & conservation (Cornell University Press, Cornell, 2006).
Google Scholar
32.
Flack, A. et al. Costs of migratory decisions: a comparison across eight white stork populations. Science Advances 2, e1500931 (2016).
ADS PubMed PubMed Central Google Scholar
33.
Board, C. P. C. Solid waste management in slaughterhouses (Ministry of Environment and Forests, Government of India, 2004).
Google Scholar
34.
Kumar, N. et al. Habitat selection by an avian top predator in the tropical megacity of Delhi: human activities and socio-religious practices as prey-facilitating tools. Urban Ecosyst. 21, 339–349 (2018).
Google Scholar
35.
Meyburg, B.-U. & Meyburg, C. GPS-Satelliten-Telemetrie bei einem adulten Schwarzmilan (Milvus migrans): Aufenthaltsraum während der Brutzeit, Zug und Überwinterung. Popul. Greifvogel und Eulenarten 6, 311–352 (2009).
Google Scholar
36.
Blanco, G. et al. Integrating population connectivity into pollution assessment: overwintering mixing reveals flame retardant contamination in breeding areas in a migratory raptor. Environ. Res. 166, 553–561 (2018).
PubMed CAS Google Scholar
37.
Sergio, F. et al. No effect of satellite tagging on survival, recruitment, longevity, productivity and social dominance of a raptor, and the provisioning and condition of its offspring. J. Appl. Ecol. 52, 1665–1675 (2015).
Google Scholar
38.
Tanferna, A., López-Jiménez, L., Blas, J., Hiraldo, F. & Sergio, F. Different location sampling frequencies by satellite tags yield different estimates of migration performance: pooling data requires a common protocol (migration estimates by satellite tracking). PLoS ONE 7, e49659 (2012).
ADS PubMed PubMed Central CAS Google Scholar
39.
Seaman, D. E. & Powell, R. A. An evaluation of the accuracy of Kernel density estimators for home range analysis. Ecology 77, 2075–2085 (1996).
Google Scholar
40.
Terraube, J. et al. Broad wintering range and intercontinental migratory divide within a core population of the near-threatened pallid harrier. Divers. Distrib. 18, 401–409 (2012).
Google Scholar
41.
DeCandido, R., Gurung, S., Subedi, T. & Allen, D. The east–west migration of Steppe Eagle Aquila nipalensis and other raptors in Nepal and India. Bird ASIA 19, 18–25 (2013).
Google Scholar
42.
Subedi, T. R. et al. Population structure and annual migration pattern of Steppe Eagles at Thoolakharka Watch Site, Nepal, 2012–2014. J. Raptor Res. 51, 165–171 (2017).
Google Scholar More