More stories

  • in

    Biogeographic problem-solving reveals the Late Pleistocene translocation of a short-faced bear to the California Channel Islands

    1.
    Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: taking the long view of nature’s laboratories. Science. 357, eaam8326 (2017).
    PubMed  Google Scholar 
    2.
    Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, 20160342 (2016).
    PubMed  PubMed Central  Google Scholar 

    3.
    Mychajliw, A. M. & Harrison, R. G. Genetics reveal the origin and timing of a cryptic insular introduction of muskrats in North America. PLoS ONE 9, e111856 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    4.
    Hofman, C. A. & Rick, T. C. Ancient biological invasions and island ecosystems: tracking translocations of wild plants and animals. J. Archaeol. Res. 21, 217–306 (2017).
    Google Scholar 

    5.
    Muhs, D. R. et al. Late Quaternary sea-level history and the antiquity of mammoths (Mammuthus exilis and Mammuthus columbi), Channel Islands National Park, California USA. Q. Res. 83, 502–521 (2015).
    ADS  Google Scholar 

    6.
    Reeder-Myers, L., Erlandson, J., Muhs, D. R. & Rick, T. Sea level, paleogeography, and archaeology on California’s Northern Channel Islands. Quat. Res. 83, 263–272 (2015).
    Google Scholar 

    7.
    Rick, T. C. et al. Ecological change on California’s Channel Islands from the Pleistocene to the Anthropocene. Bioscience 64, 680–692 (2014).
    Google Scholar 

    8.
    Erlandson, J. et al. An archaeological and paleontological chronology for Daisy Cave (CA-SMI-261), San Miguel Island California. Radiocarbon 38, 355–373 (1996).
    CAS  Google Scholar 

    9.
    McLaren, D. et al. Late Pleistocene archaeological discovery models along the Pacific Coast of North America. PaleoAmerica. 6, 43–63 (2020).
    Google Scholar 

    10.
    Collins, P. W., Guthrie, D. A., Whistler, E. L., Vellanoweth, R. L. & Erlandson, J. M. Terminal Pleistocene-Holocene avifauna of San Miguel and Santa Rosa Islands: identifications of previously unidentified avian remains recovered from fossil sites and prehistoric cave deposits. West. North Am. Nat. 78, 370–403 (2018).
    Google Scholar 

    11.
    Rick, T. C., Culleton, B. J., Smith, C. B., Johnson, J. R. & Kennett, D. J. Stable isotope analysis of dog, fox, and human diets at a Late Holocene Chumash village (CA-SRI-2) on Santa Rosa Island California. J. Archaeol. Sci. 38, 1385–1393 (2011).
    Google Scholar 

    12.
    Hofman, C. A. et al. Tracking the origins and diet of an endemic island canid (Urocyon littoralis) across 7300 years of human cultural and environmental change. Quat. Sci. Rev. 146, 147–160 (2016).
    ADS  Google Scholar 

    13.
    Shirazi, S., Rick, T. C., Erlandson, J. M. & Hofman, C. A. A tale of two mice: a trans-Holocene record of Peromyscus nesodytes and Peromyscus maniculatus at Daisy Cave, San Miguel Island California. The Holocene 28, 827–833 (2017).
    ADS  Google Scholar 

    14.
    Kurten, B. Pleistocene bears of North America, Part 2. Genus Arctodus, short-faced bears. Acta Zool. Fennica. 117, 1–60 (1967).
    Google Scholar 

    15.
    Buckley, M. Zooarchaeology by mass spectrometry (ZooMS) collagen fingerprinting for the species identification of archaeological bone fragments. In Zooarchaeology in practice (eds Giovas, C. & LeFebvre, M.) 22–247 (Springer, Cham, 2018).
    Google Scholar 

    16.
    Figueirido, B., Perez-Claros, J. A., Torregrosa, V., Martin-Serra, A. & Palmqvist, P. Demythologizing Arctodus simus, the ‘short-faced’ long-legged and predaceous bear that never was. J. Vertebr. Paleontol. 30, 262–275 (2010).
    Google Scholar 

    17.
    Schubert, B. W. Late Quaternary chronology and extinction of North American giant short-faced bears (Arctodus). Quat. Int. 217, 188–194 (2010).
    Google Scholar 

    18.
    Matheus, P. E. Diet and co-ecology of Pleistocene short-faced bears and brown bears in Eastern Beringia. Quat. Res. 44, 447–453 (1995).
    CAS  Google Scholar 

    19.
    Emslie, S. D. & Czaplewski, N. J. A new record of the giant short-faced bear, Arctodus simus, from western North America with a reevaluation of its paleobiology. Nat Hist. Mus. Los Angel. Cty. Contrib. Sci. 371, 1–12 (1985).
    Google Scholar 

    20.
    Fox-Dobbs, K., Leonard, J. A. & Koch, P. L. Pleistocene megafauna from eastern Beringia: paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 261, 30–46 (2008).
    Google Scholar 

    21.
    Bocherens, H., Emslie, S. D., Billiou, D. & Mariotti, A. Stable isotopes (13C, 15N) and paleodiet of the giant short-faced bear (Arctodus simus). Comptes Rendus de l’Académie des Sciences, Série II, Paris. 320, 779–784 (1995).
    CAS  Google Scholar 

    22.
    Figueirido, B. et al. Dental caries in the fossil record: a window to the evolution of dietary plasticity in an extinct bear. Sci. Rep. 7, 17813 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    23.
    Donohue, S. L., DeSantis, L. R. G., Schubert, B. W. & Ungar, P. S. Was the giant short-faced bear a hyper-scavenger? A new approach to the dietary study of ursids using dental microwear textures. PLoS ONE 8, e77531 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    24.
    Marks, S. A. & Erickson, A. W. Age determination in the black bear. J. Wildl. Manag. 30, 389–410 (1966).
    Google Scholar 

    25.
    Kurten, B. A. Skull of the grizzly bear (Ursus arctos L.) from Pit 10, Rancho La Brea. Nat Hist. Mus. Los Angel. Cty. Sci. Ser. 39, 1–7 (1960).
    Google Scholar 

    26.
    Stock, C. & Harris, J. M. Rancho la Brea: a record of Pleistocene life in California. Nat Hist. Mus. Los Angel. Cty. Sci. Ser 37, 1–113 (1992).
    Google Scholar 

    27.
    Fuller, B. T., Harris, J. M., Farrell, A. B., Takeuchi, G. & Southon, J. R. Sample preparation for radiocarbon dating and isotopic analysis of bone from Rancho La Brea. Nat Hist. Mus. Los Angel. Cty. Sci. Ser. 42, 151–167 (2015).
    Google Scholar 

    28.
    Walker, P. L. Archaeological evidence for the recent extinction of three terrestrial mammals on San Miguel Island. In: The California Islands: proceedings of a multidisciplinary symposium (ed. D. M. Powers). Santa Barbara Museum of Natural History, Santa Barbara, CA, 703–717 (1980).

    29.
    Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectr. 23, 3843–3854 (2009).
    ADS  CAS  Google Scholar 

    30.
    Delisle, I. & Strobeck, C. Conserved primers for rapid sequencing of the complete mitochondrial genome from carnivores, applied to three species of bears. Mol. Biol. Evol. 19, 357–361 (2002).
    CAS  PubMed  Google Scholar 

    31.
    Yu, L., Li, Y. W., Ryder, O. A. & Zhang, Y. P. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evol. Biol. 7, 198 (2007).
    PubMed  PubMed Central  Google Scholar 

    32.
    Krause, J. et al. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evol. Biol. 8, 220 (2008).
    PubMed  PubMed Central  Google Scholar 

    33.
    Mitchell, K. J. Ancient mitochondrial DNA reveals convergent evolution of giant short-faced bears (Tremarctinae) in North and South America. Biol. Lett. 12, 20160062 (2016).
    PubMed  PubMed Central  Google Scholar 

    34.
    Steffen, M. L. & Harington, C. R. Giant short-faced bear (Arctodus simus) from late Wisconsinan deposits at Cowichan Head, Vancouver Island British Columbia. Can. J. Earth Sci. 47, 1029–1036 (2010).
    ADS  Google Scholar 

    35.
    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    36.
    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).
    MathSciNet  Google Scholar 

    37.
    Tahmasebi, F., Longstaffe, F. J. & Zazula, G. Nitrogen isotopes suggest a change in nitrogen dynamics between the Late Pleistocene and modern time in Yukon Canada. PLoS ONE 13, e0192713 (2018).
    PubMed  PubMed Central  Google Scholar 

    38.
    Long, E. S., Sweitzer, R. A., Diefenbach, D. R. & Ben-David, M. Controlling for anthropogenically induced atmospheric variation in stable carbon isotopes studies. Oecologia 146, 148–156 (2005).
    ADS  PubMed  Google Scholar 

    39.
    Coltrain, J. B. et al. Rancho La Brea stable isotope biogeochemistry and its implications for the paleoecology of late Pleistocene, coastal southern California. Palaeogeogr. Palaeoclimatol. Palaeoecol. 205, 199–219 (2004).
    Google Scholar 

    40.
    Chamberlain, C. P. et al. Pleistocene to recent dietary shifts in California condors. Proc. Natl. Acad. Sci. 102, 16707–16711 (2005).
    ADS  CAS  PubMed  Google Scholar 

    41.
    Newsome, S. D. et al. The shifting baseline of northern fur seal ecology in the northeast Pacific Ocean. Proc. Natl. Acad. Sci. 104, 9709–9714 (2007).
    ADS  CAS  PubMed  Google Scholar 

    42.
    Semprebon, G. M. et al. Dietary reconstruction of pygmy mammoths from Santa Rosa Island of California. Quat. Int. 406, 123–136 (2016).
    Google Scholar 

    43.
    Anderson, R. S., Starratt, S., Jass, R. M. B. & Pinter, N. Fire and vegetation history on Santa Rosa Island, Channel Islands, and long-term environmental change in southern California. J. Quat. Sci. 25, 782–797 (2010).
    Google Scholar 

    44.
    Erlandson, J. et al. Paleoindian seafaring, maritime technologies, and coastal foraging on California’s Channel Islands. Science 331, 1181–1185 (2011).
    ADS  CAS  PubMed  Google Scholar 

    45.
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
    Google Scholar 

    46.
    Saltré, F. et al. Uncertainties in dating constrain model choice for inferring extinction time from fossil records. Quat. Sci. Rev. 112, 128–137 (2015).
    ADS  Google Scholar 

    47.
    Naito, Y. I. et al. Evidence for herbivorous cave bears (Ursus spelaeus) in Goyet Cave, Belgium: implications for paleodietary reconstruction of fossil bears using amino acid δ15N approaches. J. Quat. Sci. 31, 598–606 (2016).
    Google Scholar 

    48.
    Naito, Y. et al. Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis. Sci. Rep. 10, 6612 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Mowat, G. & Heard, D. C. Major components of grizzly bear diet across North America. Can. J. Zool. 84, 473–489 (2011).
    Google Scholar 

    50.
    Trayler, R. B., Dundas, R. G., Fox-Dobbs, K. & Van De Water, P. K. Inland California during the Pleistocene- megafaunal stable isotope records reveal new paleoecological and paleoenvironmental insights. Palaeogeogr. Palaeoclimatol. Palaeoecol. 437, 132–140 (2015).
    Google Scholar 

    51.
    Goldberg, C. F. The application of stable carbon and nitrogen isotope analysis to human dietary reconstruction in prehistoric Southern California. PhD Thesis, University of California, Los Angeles, Los Angeles, California (1993).

    52.
    Newsome, S. D. et al. Pleistocene to historic shifts in bald eagle diets on the Channel Islands California. Proc. Natl. Acad. Sci. 107, 9246–9251 (2010).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Schubert, B. W. & Kaufmann, J. E. A partial short-faced bear skeleton from an Ozark cave with comments on the paleobiology of the species. J. Cave Karst Stud. 65, 101–110 (2003).
    Google Scholar 

    54.
    Steffen, M. L. & Fulton, T. L. On the association of giant short-faced bear (Arctodus simus) and brown bear (Ursus arctos) in late Pleistocene North America. Geobios 51, 61–74 (2018).
    Google Scholar 

    55.
    Pigati, J. S., Muhs, D. R. & McGeehin, J. P. On the importance of stratigraphic control for vertebrate fossil sites in Channel Islands National Park, California, USA: Examples from new Mammuthus finds on San Miguel Island. Quat. Int. 443, 129–139 (2017).
    Google Scholar 

    56.
    Erlandson, J. M. & Moss, M. L. Shellfish eaters, carrion feeders, and the archaeology of aquatic adaptations. Am. Antiquity 66, 413–432 (2001).
    Google Scholar 

    57.
    Richards, R. I., Churcher, C. S. & Turnbull, W. D. Distribution and size variation in North American short-faced bears, Arctodus simus. In Palaeoecology and Palaeoenvironments of Late Cenozoic Mammals (eds Stewart, K. M. & Semour, K. L.) 191–246 (University of Toronto Press, Toronto, 1996).
    Google Scholar 

    58.
    Orr, P. C. Appendix: Additional Bone Artifacts. In California Shell Artifacts by Anthropological Records (ed. Gifford, E. W.) (University of California Press, California, 1947).
    Google Scholar 

    59.
    Fox-Dobbs, K., Dundas, R. G., Trayler, R. B. & Holroyd, P. A. Paleoecological implications of new megafaunal 14C ages from the McKittrick tar seeps California. J. Vertebr. Paleontol. 34, 220–223 (2014).
    Google Scholar 

    60.
    Guthrie, D. A. Analysis of Avifaunal and Bat Remains from Midden Sites on San Miguel Island. In: D. M. Powers (eds) The California Islands: proceedings of a multidisciplinary symposium. Santa Barbara Museum of Natural History, Santa Barbara, 689–702 (1980).

    61.
    Guthrie, D. A. Fossil vertebrates from Pleistocene terrestrial deposits on the northern Channel Islands, southern California. Contributions to the Geology of the Northern Channel Islands, So. California, 187–192 (1998).

    62.
    Hofman, C. A. et al. Collagen fingerprinting and the earliest marine mammal hunting in North America. Sci. Rep. 8, 10014 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    63.
    Bocherens, H. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quat. Sci. Rev. 117, 42–71 (2015).
    ADS  Google Scholar 

    64.
    van der Sluis, L. G. et al. Combining histology, stable isotope analysis and ZooMS collagen fingerprinting to investigate the taphonomic history and dietary behavior of the extinct giant tortoises from the Mare aux Songes deposit on Mauritius. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 80–91 (2014).
    Google Scholar 

    65.
    Buckley, M. & Collins, M. J. Collagen survival and its use for species identification in Holocene-lower Pleistocene bone fragments from British archaeological and paleontological sites. Antiqua 1, e1 (2011).
    Google Scholar 

    66.
    Dabney, J. et al. mtDNA genome from a Middle Pleistocene cave bear. Proc. Natl. Acad. Sci. 110, 15758–15763 (2013).
    ADS  CAS  PubMed  Google Scholar 

    67.
    Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil DNA glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond Biol. Sci. 370, 624 (2015).
    Google Scholar 

    68.
    Caroe, C. et al. Single-tube library preparation for degraded DNA. Methods Ecol. Evolut. 9, 410–419 (2018).
    Google Scholar 

    69.
    Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage20: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Katoh, K. & Standley, D. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Hasegawa, M., Kishino, H. & Yano, T. A. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evolut. 22, 160–174 (1985).
    CAS  Google Scholar 

    72.
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evolut. 35, 1547–1549 (2018).
    CAS  Google Scholar 

    73.
    Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evolut. 37, 1237–1239 (2020).
    Google Scholar 

    74.
    Felsenstein, J. Confidence limits on phylogenies with a molecular clock. Syst. Zool. 34, 152–161 (1985).
    Google Scholar 

    75.
    Feranec, R. S., Hadly, E. A., Blois, J. L., Barnosky, A. D. & Paytan, A. Radiocarbon dates from the Pleistocene fossil deposits of Samwel Cave, Shasta County, California USA. Radiocarbon 49, 117–121 (2007).
    CAS  Google Scholar 

    76.
    Feranec, R. S. Implications of radiocarbon dates from Potter Creek Cave, Shasta County, California USA. Radiocarbon 51, 931–936 (2009).
    CAS  Google Scholar 

    77.
    Jefferson, G. T. A catalogue of Late Quaternary vertebrates from California part two: mammals. Nat. Hist. Mus. LosAngel. Cty. Tech. Rep. 7, 1–129 (1991).
    Google Scholar 

    78.
    Jefferson, G. T. Stratigraphy and paleontology of the middle to late Pleistocene Manix Formation, and paleoenvironments of the central Mojave River, southern California. In: Paleoenvironments and Paleohydrology of the Mojave and Southern Great Basin Deserts (Y. Enzel, S.G. Wells (Eds.)), Geol. Soc. Amer. Spec. Paper 368. 43–60 (2003).

    79.
    Springer, K., Scott, E., Sagebiel, J. C. & Murray, L. K. Late Pleistocene large mammal faunal dynamics from inland southern California: the Diamond Valley Lake local fauna. Quat. Int. 217, 256–265 (2010).
    Google Scholar 

    80.
    Buckley, M. Species identification of bovine, ovine and porcine type 1 collagen; comparing peptide mass fingerprinting and LC-based proteomics methods. Int. J. Mol. Sci. 17, 445 (2016).
    PubMed  PubMed Central  Google Scholar 

    81.
    Johnson, J. R., Stafford Jr, T. W., Ajie, H. O., & Morris, D. P. Arlington springs revisited. In Proceedings of the fifth California Islands symposium (Vol. 5, pp. 541–545). Santa Barbara, CA: Santa Barbara Museum of Natural History (2002).

    82.
    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal bp. Radiocarbon 55, 1869–1887 (2013).   More

  • in

    Metabolic trait diversity shapes marine biogeography

    1.
    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).
    ADS  PubMed  Google Scholar 
    2.
    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).

    3.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).
    PubMed  Google Scholar 

    4.
    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Ecophysiology. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).
    ADS  PubMed  Google Scholar 

    5.
    Mandic, M., Todgham, A. E. & Richards, J. G. Mechanisms and evolution of hypoxia tolerance in fish. Proc. R. Soc. B 276, 735–744 (2009).
    PubMed  Google Scholar 

    6.
    Seibel, B. A. & Drazen, J. C. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Phil. Trans. R. Soc. Lond. B 362, 2061–2078 (2007).
    Google Scholar 

    7.
    Brey, T. An empirical model for estimating aquatic invertebrate respiration. Methods Ecol. Evol. 1, 92–101 (2010).
    Google Scholar 

    8.
    Peterson, C. C., Nagy, K. A. & Diamond, J. Sustained metabolic scope. Proc. Natl Acad. Sci. USA 87, 2324–2328 (1990).
    ADS  PubMed  Google Scholar 

    9.
    Hammond, K. A. & Diamond, J. Maximal sustained energy budgets in humans and animals. Nature 386, 457–462 (1997).
    ADS  PubMed  Google Scholar 

    10.
    Fry, F. E. J. Effect of the environment on animal activity. Univ. Tor. Stud. Biol. Ser. 55, 1–62 (1947).
    Google Scholar 

    11.
    Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11, 99–113 (1971).
    Google Scholar 

    12.
    Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
    PubMed  Google Scholar 

    13.
    Piiper, J., Dejours, P., Haab, P. & Rahn, H. Concepts and basic quantities in gas exchange physiology. Respir. Physiol. 13, 292–304 (1971).
    PubMed  Google Scholar 

    14.
    Chan, F. et al. Emergence of anoxia in the California current large marine ecosystem. Science 319, 920 (2008).
    ADS  PubMed  Google Scholar 

    15.
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).
    ADS  PubMed  Google Scholar 

    16.
    Wishner, K. F. et al. Ocean deoxygenation and zooplankton: very small oxygen differences matter. Sci. Adv. 4, eaau5180 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    17.
    Howard, E. M. et al. Climate-driven aerobic habitat loss in the California current system. Sci. Adv. 6, eaay3188 (2020).
    ADS  PubMed  PubMed Central  Google Scholar 

    18.
    Nilsson, G. E. & Östlund-Nilsson, S. Does size matter for hypoxia tolerance in fish? Biol. Rev. Camb. Philos. Soc. 83, 173–189 (2008).
    PubMed  Google Scholar 

    19.
    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl Acad. Sci. USA 107, 12941–12945 (2010).
    ADS  PubMed  Google Scholar 

    20.
    Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).
    ADS  PubMed  Google Scholar 

    21.
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).
    ADS  PubMed  Google Scholar 

    22.
    Verberk, W. C. E. P., Bilton, D. T., Calosi, P. & Spicer, J. I. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565–1572 (2011).
    PubMed  Google Scholar 

    23.
    Emerson, S. & Hedges, J. Chemical Oceanography and the Marine Carbon Cycle (Cambridge Univ. Press, 2008).

    24.
    Kristensen, E. Ventilation and oxygen uptake by three species of Nereis (Annelida: Polychaeta). II. Effects of temperature and salinity changes.  Mar. Ecol. Prog. Ser. 12, 229–306 (1983).

    25.
    Gehrke, P. C. Response surface analysis of teleost cardio-respiratory responses to temperature and dissolved oxygen. Comp. Biochem. Physiol. A 89, 587–592 (1988).
    Google Scholar 

    26.
    Spitzer, K. W., Marvin, D. E. Jr & Heath, A. G. The effect of temperature on the respiratory and cardiac response of the bluegill sunfish to hypoxia. Comp. Biochem. Physiol. 30, 83–90 (1969).
    PubMed  Google Scholar 

    27.
    Kielland, Ø. N., Bech, C. & Einum, S. Warm and out of breath: thermal phenotypic plasticity in oxygen supply. Funct. Ecol. 33, 2142–2149 (2019).
    Google Scholar 

    28.
    Chung, M.-T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E. & Grønkjær, P. Field metabolic rates of teleost fishes are recorded in otolith carbonate. Commun. Biol. 2, 24 (2019).
    PubMed  PubMed Central  Google Scholar 

    29.
    Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).
    PubMed  Google Scholar 

    30.
    Verberk, W. C. E. P., Durance, I., Vaughan, I. P. & Ormerod, S. J. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Glob. Change Biol. 22, 1769–1778 (2016).
    ADS  Google Scholar 

    31.
    Verberk, W. C. E. P., Leuven, R. S. E. W., van der Velde, G. & Gabel, F. Thermal limits in native and alien freshwater peracarid Crustacea: the role of habitat use and oxygen limitation. Funct. Ecol. 32, 926–936 (2018).
    PubMed  PubMed Central  Google Scholar 

    32.
    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
    ADS  Google Scholar 

    33.
    Verberk, W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Physiol. A 192, 64–78 (2016).
    Google Scholar 

    34.
    Lefevre, S. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conserv. Physiol. 4, cow009 (2016).
    PubMed  PubMed Central  Google Scholar 

    35.
    Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp. Biol. 221, jeb169615 (2018).
    PubMed  Google Scholar 

    36.
    Ern, R., Norin, T., Gamperl, A. K. & Esbaugh, A. J. Oxygen dependence of upper thermal limits in fishes. J. Exp. Biol. 219, 3376–3383 (2016).
    PubMed  Google Scholar 

    37.
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).
    ADS  PubMed  Google Scholar 

    38.
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).
    ADS  PubMed  Google Scholar 

    39.
    Rummer, J. L. et al. Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob. Change Biol. 20, 1055–1066 (2014).
    ADS  Google Scholar 

    40.
    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).
    ADS  PubMed  Google Scholar 

    41.
    Killen, S. S. et al. Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. Am. Nat. 187, 592–606 (2016).
    PubMed  Google Scholar 

    42.
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
    ADS  PubMed  Google Scholar 

    43.
    Malte, H. & Weber, R. E. A mathematical model for gas exchange in the fish gill based on non-linear blood gas equilibrium curves. Respir. Physiol. 62, 359–374 (1985).
    PubMed  Google Scholar 

    44.
    Rogers, N. J., Urbina, M. A., Reardon, E. E., McKenzie, D. J. & Wilson, R. W. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P crit). Conserv. Physiol. 4, cow012 (2016).
    PubMed  PubMed Central  Google Scholar 

    45.
    Locarnini, R. A. et al. World Ocean Atlas 2013. Volume 1: Temperature (National Centers for Environmental Information, National Oceanic and Atmospheric Administration, 2013).

    46.
    Garcia, H. E. et al. World Ocean Atlas 2013, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation (National Centers for Environmental Information, National Oceanic and Atmospheric Administration, 2013).

    47.
    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 https://doi.org/10.7289/V5C8276M (2009)

    48.
    Shawe-Taylor, J. & Cristianini, N. Kernel Methods for Pattern Analysis (Cambridge Univ. Press, 2004).

    49.
    Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34, 232–243 (2011).
    Google Scholar 

    50.
    Schurmann, H. & Steffensen, J. F. Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J. Fish Biol. 50, 1166–1180 (1997).
    Google Scholar 

    51.
    Heath, A. G. & Hughes, G. M. Cardiovascular and respiratory changes during heat stress in rainbow trout (Salmo gairdneri). J. Exp. Biol. 59, 323–338 (1973).
    PubMed  Google Scholar  More

  • in

    Long-term changes in habitat and trophic level of Southern Ocean squid in relation to environmental conditions

    1.
    Reid, K. & Croxall, J. P. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proc. R. Soc. B Biol. Sci. 268, 377–384 (2001).
    CAS  Google Scholar 
    2.
    Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: How changes in physical habitats directly affect marine biota. Glob. Chang. Biol. 20, 3004–3025 (2014).
    ADS  PubMed  Google Scholar 

    3.
    Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).
    ADS  CAS  PubMed  Google Scholar 

    4.
    Gutt, J. et al. Cross-disciplinarity in the advance of Antarctic ecosystem research. Mar. Genom. 37, 1–17 (2018).
    CAS  Google Scholar 

    5.
    IPCC (2019) Meredith, M. et al. Special report on the ocean and cryosphere in a changing climate: Polar regions. In press.

    6.
    Kwok, R. & Comiso, J. C. Spatial patterns of variability in Antarctic surface temperature: Connections to the southern hemisphere annular mode and the southern oscillation. Geophys. Res. Lett. 29, 1–4 (2002).
    Google Scholar 

    7.
    Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).
    ADS  CAS  PubMed  Google Scholar 

    8.
    IPCC (2013) Stocker, T. F. et al. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, Cambridge Univ. Press.

    9.
    Meredith, M. P., Murphy, E. J., Hawker, E. J., King, J. C. & Wallace, M. I. On the interannual variability of ocean temperatures around South Georgia, Southern Ocean: Forcing by El Niño/Southern Oscillation and the Southern Annular Mode. Deep Res. Part II Top. Stud. Oceanogr. 55, 2007–2022 (2008).
    ADS  Google Scholar 

    10.
    Turner, J. The El Niño-Southern oscillation and Antarctica. Int. J. Climatol. 24, 1–31 (2004).
    Google Scholar 

    11.
    Pardo, D. et al. Additive effects of climate and fisheries drive ongoing declines in multiple albatross species. Proc. Natl. Acad. Sci. USA. 114, e10829–e10837 (2017).
    CAS  PubMed  Google Scholar 

    12.
    Trathan, P. N. & Murphy, E. J. Sea surface temperature anomalies near South Georgia: Relationships with the Pacific el niño regions. J. Geophys. Res. C. Ocean. 108, 1–10 (2002).
    Google Scholar 

    13.
    Forcada, J. & Trathan, P. N. Penguin responses to climate change in the Southern Ocean. Glob. Chang. Biol. 15, 1618–1630 (2009).
    ADS  Google Scholar 

    14.
    Horswill, C. et al. Unravelling the relative roles of top-down and bottom-up forces driving population change in an oceanic predator. Ecology 97, 1919–1928 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Gillett, N. P. & Thompson, D. W. J. Simulation of recent Southern Hemisphere climate change. Science 302, 273–275 (2003).
    ADS  CAS  PubMed  Google Scholar 

    16.
    Lovenduski, N. S. & Gruber, N. Impact of the Southern annular mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32, 1–4 (2005).
    Google Scholar 

    17.
    Inchausti, P. et al. Inter-annual variability in the breeding performance of seabirds in relation to oceanographic anomalies that affect the Crozet and the Kerguelen sectors of the Southern Ocean. J. Avian Biol. 2, 170–176 (2003).
    Google Scholar 

    18.
    Siniff, D. B., Garrott, R. A., Rotella, J. J., Fraser, W. R. & Ainley, D. G. Opinion: Projecting the effects of environmental change on Antarctic seals. Antarct. Sci. 20, 425–435 (2008).
    ADS  Google Scholar 

    19.
    Ito, M., Minami, H., Tanaka, Y. & Watanuki, Y. Seasonal and inter-annual oceanographic changes induce diet switching in a piscivorous seabird. Mar. Ecol. Prog. Ser. 393, 273–284 (2009).
    ADS  Google Scholar 

    20.
    Xavier, J. C. et al. Seasonal changes in the diet and feeding behaviour of a top predator indicate a flexible response to deteriorating oceanographic conditions. Mar. Biol. 160, 1597–1606 (2013).
    Google Scholar 

    21.
    Xavier, J. C. et al. A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean. Mar. Biol. 165, 1–26 (2018).
    Google Scholar 

    22.
    Hill, S. L., Phillips, T. & Atkinson, A. Potential climate change effects on the habitat of Antarctic krill in the Weddell quadrant of the Southern Ocean. PLoS ONE 8, e72246 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    23.
    Freer, J. J., Tarling, G. A., Collins, M. A., Partridge, J. C. & Genner, M. J. Predicting future distributions of lanternfish, significant ecological resource within the Southern Ocean. Diver. Distr. 25, 1259–1272 (2019).
    Google Scholar 

    24.
    Xavier, J. C., Croxall, J. P., Trathan, P. & Wood, A. G. Feeding strategies and diets of breeding grey-headed and wandering albatrosses at South Georgia. Mar. Biol. 143, 221–232 (2003).
    Google Scholar 

    25.
    Forcada, J., Trathan, P. N., Reid, K. & Murphy, E. J. The effects of global climate variability in pup production of Antarctic fur seals. Ecology 86, 2408–2417 (2005).
    Google Scholar 

    26.
    Arthur, B. et al. Return Customers : Foraging site fidelity and the effect of environmental variability in wide-ranging Antarctic Fur Seals. PLoS ONE 10, 1–19 (2015).
    Google Scholar 

    27.
    Mills, W. F. et al. Long-term trends in albatross diets in relation to prey availability and breeding success. Mar. Biol. 167, 29 (2020).
    Google Scholar 

    28.
    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).
    ADS  CAS  PubMed  Google Scholar 

    29.
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chan. 9, 142–147 (2019).
    ADS  Google Scholar 

    30.
    Clarke, M. R. Cephalopod biomass—estimates from predation. Memoir. Natl. Museum Victoria. 44, 95–107 (1983).
    Google Scholar 

    31.
    Rodhouse, P. G. et al. Environmental effects on cephalopod population dynamics: Implications for management of fisheries. Adv. Mar. Biol. 67, 99–233 (2014).
    PubMed  Google Scholar 

    32.
    Xavier, J. C., Raymond, B., Jones, D. C. & Griffiths, H. Biogeography of cephalopods in the Southern Ocean using habitat suitability prediction models. Ecosystems 19, 220–247 (2016).
    CAS  Google Scholar 

    33.
    Saunders, R. A., Tarling, G. A., Hill, S. & Murphy, E. J. Myctophid fish (Family Myctophidae) are central consumers in the food web of the Scotia Sea (Southern Ocean). Front. Mar. Sci. 6, 530 (2019).
    Google Scholar 

    34.
    Rodhouse, P. G. Role of squid in the Southern Ocean pelagic ecosystem and the possible consequences of climate change. Deep. Res. Part II Top. Stud. Oceanogr. 95, 129–138 (2013).
    ADS  CAS  Google Scholar 

    35.
    Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, 406–407 (2016).
    Google Scholar 

    36.
    Boyle, P. & Rodhouse, P. G. Cephalopods ecology and fisheries (Blackell Science, Oxford, 2005).
    Google Scholar 

    37.
    Cherel, Y. & Hobson, K. A. Stable isotopes, beaks and predators: A new tool to study the trophic ecology of cephalopods, including giant and colossal squids. Proc. R. Soc. B. Biol. Sci. 272, 1601–1607 (2005).
    Google Scholar 

    38.
    Ruiz-Cooley, R. I., Villa, E. C. & Gould, W. R. Ontogenetic variation of δ13C and δ15N recorded in the gladius of the jumbo squid Dosidicus gigas: geographic differences. Mar. Ecol. Prog. Ser. 399, 187–198 (2010).
    ADS  CAS  Google Scholar 

    39.
    Xavier, J. C. Foraging ecology and interactions with fisheries of wandering albatrosses (Diomedea exulans) breeding at South Georgia. Fish. Oceanogr. 13, 324–344 (2004).
    Google Scholar 

    40.
    Cherel, Y., Xavier, J. C., Grissac, S., Trouvé, C. & Weimerskirch, H. Feeding ecology, isotopic niche, and ingestion of fishery-related items of the wandering albatross Diomedea exulans at Kerguelen and Crozet Islands. Mar. Ecol. Prog. Ser. 565, 197–215 (2017).
    ADS  CAS  Google Scholar 

    41.
    Xavier, J. C., Croxall, J. P. & Cresswell, K. A. Boluses: an effective method for assessing the proportions of cephalopods in the diet of albatrosses. Auk. 122, 403–413 (2005).
    Google Scholar 

    42.
    Cherel, Y., Fontaine, C., Jackson, G. D., Jackson, C. H. & Richard, P. Tissue, ontogenic and sex-related differences in δ13C and δ15N values of the oceanic squid Todarodes filippovae (Cephalopoda: Ommastrephidae). Mar. Biol. 156, 699–708 (2009).
    Google Scholar 

    43.
    Guerreiro, M. et al. Habitat and trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Mar. Ecol. Prog. Ser. 530, 119–134 (2015).
    ADS  CAS  Google Scholar 

    44.
    Arkhipkin, A. I. et al. World squid fisheries. Rev. Fish. Sci. Aquac. 8249, 2 (2015).
    Google Scholar 

    45.
    Xavier, J. C. et al. Future challenges in Southern Ocean ecology research. Front. Mar. Sci. 3, 1–9 (2016).
    Google Scholar 

    46.
    Froy, H. et al. Age-related variation in foraging behaviour in the wandering albatross at South Georgia: No evidence for senescence. PLoS ONE 10, e0116415 (2015).
    PubMed  PubMed Central  Google Scholar 

    47.
    Pecl, G. T. & Jackson, G. D. The potential impacts of climate change on inshore squid: Biology, ecology and fisheries. Rev. Fish. Biol. Fish. 18, 373–385 (2008).
    Google Scholar 

    48.
    Rogers, A. D. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120 (2019).
    PubMed  Google Scholar 

    49.
    Griffiths, H. J. Antarctic marine biodiversity—what do we know about the distribution of life in the Southern Ocean?. PLoS ONE 5, e11683 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    50.
    Turner, J. et al. Antarctic climate change and the environment : an update. Polar. Rec. 50, 237–259 (2014).
    Google Scholar 

    51.
    Rodhouse, P. G., Griffiths, H. J., & Xavier, J. C. Southern Ocean squid. In: The Biogeographic Atlas of the Southern Ocean. Cambridge, SCAR, 284–289 (2014a).

    52.
    Weimerskirch, H., Louzao, M., de Grissac, S. & Delord, K. Changes in wind pattern alter albatross distribution and life-history traits. Science 335, 211–214 (2012).
    ADS  CAS  PubMed  Google Scholar 

    53.
    Golikov, A. V., Sabirov, R. M., Lubin, P. A. & Jørgensen, L. L. Changes in distribution and range structure of Arctic cephalopods due to climatic changes of the last decades. Biodiversity 14, 28–35 (2013).
    Google Scholar 

    54.
    Golikov, A. V., Sabirov, R. M., Lubin, P. A., Jørgensen, L. L. & Beck, I. M. The northernmost record of Sepietta oweniana (Cephalopoda: Sepiolidae) and comments on boreo-subtropical cephalopod species occurrence in the Arctic. Mar. Biodivers. Rec. 7, e58 (2014).
    Google Scholar 

    55.
    Guerra, A., Gonzalez, A. F. & Rocha, F. Appearance of the common paper nautilus Argonauta argo related to the increase of the sea surface temperature in the north-eastern Atlantic. J. Mar. Biol. Assoc. UK 82, 855–858 (2002).
    Google Scholar 

    56.
    Stowasser, G. et al. Food web dynamics in the Scotia Sea in summer: a stable isotope study. Deep. Sea Res. Part II Top. Stud. Oceanogr. 59–60, 208–221 (2012).
    ADS  Google Scholar 

    57.
    Cherel, Y., Bustamante, P. & Richard, P. Amino acid δ13C and δ15N from sclerotized beaks: A new tool to investigate the foraging ecology of cephalopods, including giant and colossal squids. Mar. Ecol. Prog. Ser. 624, 89–102 (2019).
    ADS  CAS  Google Scholar 

    58.
    Steffan, S. A. et al. Trophic hierarchies illuminated via amino acid isotopic analysis. PLoS ONE 8, e76152 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    59.
    Collins, M. A. & Rodhouse, P. G. Southern ocean cephalopods. Adv. Mar. Biol. 50, 191–265 (2006).
    PubMed  Google Scholar 

    60.
    Clarke, M. R., Croxall, J. P. & Prince, P. A. Cephalopods remains in regurgitation of the wandering albatross Diomedea exulans L. at South Georgia. Br. Antarct. Surv. Bull. 54, 9–21 (1981).
    Google Scholar 

    61.
    Rodhouse, P. G., Clarke, M. R. & Murray, A. W. Cephalopod prey of the wandering albatross Diomedea exulans. Mar. Biol. 10, 1–10 (1987).
    Google Scholar 

    62.
    Xavier, J. C., Croxall, J. P., Trathan, P. N. & Rodhouse, P. G. Inter-annual variation in the cephalopod component of the diet of the wandering albatross, Diomedea exulans, breeding at Bird Island, South Georgia. Mar. Biol. 142, 611–622 (2003).
    Google Scholar 

    63.
    Kennicutt, M., Chown, S. & Cassano, J. Six priorities for Antarctic science. Nature 512, 23–25 (2014).
    ADS  CAS  PubMed  Google Scholar 

    64.
    Gutt, J. et al. The Southern Ocean ecosystem under multiple climate change stresses—an integrated circumpolar assessment. Glob. Chang. Biol. 21, 1434–1453 (2015).
    ADS  PubMed  Google Scholar 

    65.
    Polito, M. J. et al. Contrasting specialist and generalist patterns facilitate foraging niche partitioning in sympatric populations of Pygoscelis penguins. Mar. Ecol. Prog. Ser. 519, 221–237 (2015).
    ADS  CAS  Google Scholar 

    66.
    Xavier, J. C., & Cherel, Y. Cephalopod beak guide for Southern Ocean. (2009).

    67.
    Jaeger, A., Lecomte, V. J., Weimerskirch, H., Richard, P. & Cherel, Y. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid. Commun. Mass. Spectrom. 24, 1457–1466 (2010).
    Google Scholar 

    68.
    Cherel, Y. & Hobson, K. A. Geographical variation in carbon stable isotope signatures of marine predators: A tool to investigate their foraging areas in the Southern Ocean. Mar. Ecol. Prog. Ser. 329, 281–287 (2007).
    ADS  CAS  Google Scholar 

    69.
    Hobson, K. A., Piatt, J. F. & Pitocchelli, J. Using stable isotopes to determine seabird trophic relationships. J. Anim. Ecol. 63, 786–798 (1994).
    Google Scholar 

    70.
    Brault, E. K. et al. Carbon and nitrogen zooplankton isoscapes in West Antarctica reflect oceanographic transitions. Mar. Ecol. Prog. Ser 593, 29–45 (2018).
    ADS  CAS  Google Scholar 

    71.
    Seco, J. et al. Distribution, habitat and trophic ecology of Antarctic squid Kondakovia longimana and Moroteuthis knipovitchi: inferences from predators and stable isotopes. Polar Biol. 39, 167–175 (2016).
    Google Scholar 

    72.
    Keeling, C. D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 2, 229–300 (1979).
    CAS  Google Scholar 

    73.
    Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin. Glob. Chang. Biol. 12, 611–625 (2006).
    ADS  Google Scholar 

    74.
    Jaeger, A. & Cherel, Y. Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the Southern Indian Ocean. PLoS ONE 6, e16484 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
    PubMed  Google Scholar 

    76.
    R Development Core Team (2018) R: a language and environment for statistical computing Vienna More

  • in

    Assessing the population-wide exposure to lead pollution in Kabwe, Zambia: an econometric estimation based on survey data

    Data collection and potential selection bias
    We conducted two joint surveys from July to September 2017 in Kabwe: the Kabwe Household Socioeconomic Survey (KHSS) 2017 conducted by the Central Statistical Office of Zambia and University of Zambia under the supervision of the authors, and a BLL survey performed by the authors. The surveys were approved by the University of Zambia Research Ethics Committee (UNZAREC; REF. No. 012-04-16). Further approvals were granted by the Ministry of Health through the Zambia National Health Research Ethics Board and the Kabwe District Medical Office. The data were collected in accordance to the Declaration of Helsinki, and the informed consent was obtained from all the study participants including the parents/legal guardian of the minor subjects for participating in the study.
    The two surveys were designed consistently and targeted the same sample households selected in the following two-step approach. In the first step, utilising the Zambia’s national census frame which divides the Kabwe district into 384 standard enumeration areas (SEAs), we randomly selected 40 SEAs across the entire district. In the second step, we randomly selected 25 households (and a few replacements) from each sampled SEA. The sampling weights were generated to account for population differences across the SEAs.
    The KHSS 2017 conducted interviews with 895 households (4,900 individuals) at houses and collected data on socioeconomic, demographic and geographic information. The response rate was 88.2%, and we could regard the data adjusted by the sampling weights as representative of the entire Kabwe population (for more details of the survey, see the report33).
    To obtain BLL data, we conducted a blood sampling survey concurrently with the KHSS 2017. For hygiene and ethical considerations, we selected 13 local clinics to perform the blood sampling, instead of collecting blood at houses. We invited up to four members (two children aged 10 years or younger and their parents or guardians) from each sample household for the blood sampling. We prioritised young children over children older than 10 years old. The invitations were made sequentially. We assigned identical venues and dates for households from the same SEAs. The typical assigned dates had a 3-day window from the day after the invitation. However, we allowed for some flexibility and sampled the blood of those who visited the clinic even after the assigned time window, as long as the clinic was operational for households from other SEAs. Therefore, the window for blood sampling was effectively the number of days from the day after the invitation until the pre-set blood sampling period in each clinic was over, which had a substantial variation across households from 3 days to a month. We revisit this feature of the survey window when setting up our econometric model later. A total of 372 households (41.6%) participated in the blood sampling and, on average, 2.2 members from the participating households provided blood samples.
    We performed blood digestion and metal extraction as described by our previous study34 with minor modifications and measured BLLs using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). In addition, we also measured BLLs with a portable analyser, LeadCare II, to obtain quick results22. However, we in this study focus on the ICP-MS data, considering their general accuracy. See the Supplementary Material Section S1 for details on the methods used to measure BLLs and the difference in the data between the two analysers.
    Regardless of the accuracy of the techniques, however, we further need to account for the risk of selection bias in the BLL data. In the absence of formal and compulsory testing mechanisms, we relied on individuals’ voluntary (self-selected) visits to the clinics. However, the participants in blood sampling could have traits leading to higher or lower BLLs than the population. Such traits can include education, gender, age and living standards. The survey design did not prioritise children aged 11 years or older, and this could also contribute to the deviation of characteristics, although a small number of such children attended clinics. Moreover, certain unobservable characteristics affecting BLLs can further differ between the participants and non-participants. For example, those with greater preferences for health possibly had low BLLs but tended to participate in the blood sampling surveys, whereas those with a high innate physiological capacity for lead excretion possibly tended not to participate because they had low BLLs and did not perceive symptoms of lead poisoning. These issues can lead to selection bias, and the raw data observed from the voluntary participants can fail to illustrate the lead poisoning conditions of the population.
    BLL estimation approach
    To correct for potential selection bias, we first estimated the equations to explain BLLs of children aged 0–10 years and adults aged 19 years or above. Then, using the estimated equations, we calculated BLLs for all individuals, including children aged 11–18 years and those in the other age groups who did not participate in the blood sampling.
    BLLs generally depend on the ambient pollution level, the opportunities of exposure to pollution, the physiological capacity of lead absorption and excretion, and the knowledge and technologies used to prevent lead poisoning. We controlled for ambient pollution levels by including the distance, direction, and altitude of household location—the first two variables are with respect to the mine waste dumping site (Black Mountain). The remaining factors were measured by age and various other individual and household characteristics denoted by ({{varvec{X}}}_{i}). Data for these variables are available regardless of participation in blood sampling. We assumed the following equation for BLL:

    $$begin{aligned} log BLL_{i} & = beta_{dis} log distance_{i} + beta_{dir1} direction_{i} + beta_{dir2} direction_{i}^{2} \ & quad + beta_{alt} altitude_{i} + fleft( {age_{i} } right) + {varvec{X}}_{i} user2{gamma^{prime}} + varepsilon_{i}. hfill \ end{aligned}$$
    (1)

    The logarithmic form for BLL adjusts its distribution to approximately normal—BLL is bounded from below and has a skewed distribution—and allows the factors on the right-hand side to have proportional effects rather than level effects. ({varepsilon }_{i}) is the independent and identically distributed error term that captures noise, such as casual fluctuations and measurement errors in BLLs, and the effects of unobservable factors. While we presented a single equation above, we assumed different equations for children aged 0–10 years and adults aged 19 years or above.
    Below, we discuss our specification in detail.
    Geographic factors
    Existing studies have examined the relationship between the geographic location and ambient pollution level12,13,14. Since lead is transported from the mine waste dumping site through the flow of wind and water, the distance from the site is negatively correlated with ambient lead levels. The soil lead contamination spreads to the western side of the site, particularly towards the west-northwest (WNW), which corresponds to the direction of the prevailing local wind. The contamination also slightly extends to the low-elevation south-eastern side, reflecting pollution transported by water. The northern and southern sides are the least contaminated.
    We defined (distanc{e}_{i}) as the distance between the mine waste dumping site and the location of (i)’s household, with ({beta }_{dis} More

  • in

    Behavioral and trophic segregations help the Tahiti petrel to cope with the abundance of wedge-tailed shearwater when foraging in oligotrophic tropical waters

    1.
    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).
    Google Scholar 
    2.
    Navarro, J. et al. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8, e622897 (2013).
    Google Scholar 

    3.
    Dehnhard, N. et al. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: generalist foraging as an adaptation to a highly variable environment?. J. Anim. Ecol. 89, 104–119 (2020).
    PubMed  Google Scholar 

    4.
    Longhurst, A. R. & Pauly, D. Ecology of Tropical Oceans (Academic Press, New York, 1987).
    Google Scholar 

    5.
    Weimerskirch, H. Are seabirds foraging for unpredictable resources?. Deep Res. Part II Top. Stud. Oceanogr. 54, 211–223 (2007).
    ADS  Google Scholar 

    6.
    McDuie, F., Weeks, S. J. & Congdon, B. C. Oceanographic drivers of near-colony seabird foraging site use in tropical marine systems. Mar. Ecol. Prog. Ser. 589, 209–225 (2018).
    ADS  Google Scholar 

    7.
    Grémillet, D. et al. Irreplaceable area extends marine conservation hotspot off Tunisia: insights from GPS-tracking Scopoli’s shearwaters from the largest seabird colony in the Mediterranean. Mar. Biol. 161, 2669–2680 (2014).
    Google Scholar 

    8.
    Weimerskirch, H. et al. At-sea movements of wedge-tailed shearwaters during and outside the breeding season from four colonies in New Caledonia. Mar. Ecol. Prog. Ser. 663, 225–238 (2020).
    ADS  Google Scholar 

    9.
    de Grissac, S., Börger, L., Guitteaud, A. & Weimerskirch, H. Contrasting movement strategies among juvenile albatrosses and petrels. Sci. Rep. 6, 26103 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    10.
    Mott, R. & Clarke, R. H. Systematic review of geographic biases in the collection of at-sea distribution data for seabirds. Emu 118, 235–246 (2018).
    Google Scholar 

    11.
    Cherel, Y. et al. Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar. Ecol. Prog. Ser. 366, 281–291 (2008).
    ADS  CAS  Google Scholar 

    12.
    France, R. L. & Peters, R. H. Ecosystem differences in the trophic enrichment of13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).
    Google Scholar 

    13.
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).
    ADS  CAS  Google Scholar 

    14.
    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotope ecology. Front. Ecol. Environ. 5, 429–436 (2007).
    Google Scholar 

    15.
    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–10012 (2004).
    Google Scholar 

    16.
    Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl. Acad. Sci. USA 104, 10075–10079 (2007).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11, 627–641 (2002).
    CAS  PubMed  Google Scholar 

    18.
    Komura, T., Ando, H., Horikoshi, K., Suzuki, H. & Isagi, Y. DNA barcoding reveals seasonal shifts in diet and consumption of deep-sea fishes in wedge-tailed shearwaters. PLoS ONE 13, e0195385 (2018).
    PubMed  PubMed Central  Google Scholar 

    19.
    Carreiro, A. R. et al. Metabarcoding, stables isotopes, and tracking: unraveling the trophic ecology of a winter-breeding storm petrel (Hydrobates castro) with a multimethod approach. Mar. Biol. 167, 1–13 (2020).
    Google Scholar 

    20.
    Alonso, H. et al. An holistic ecological analysis of the diet of Cory’s shearwaters using prey morphological characters and DNA barcoding. Mol. Ecol. 23, 3719–3733 (2014).
    CAS  PubMed  Google Scholar 

    21.
    del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World. Ostrich to Ducks Vol. 1 (Lynx Editions, Barcelona, 1992).
    Google Scholar 

    22.
    Brooke, M. Albatrosses and Petrels Across the World (Oxford University Press, Oxford, 2004).
    Google Scholar 

    23.
    McDuie, F., Weeks, S. J., Miller, M. G. R. & Congdon, B. C. Breeding tropical shearwaters use distant foraging sites when self-provisioning. Mar. Ornithol. 43, 123–129 (2015).
    Google Scholar 

    24.
    Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).
    ADS  Google Scholar 

    25.
    Furness, R. W. & Birkhead, T. R. Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311, 655–656 (1984).
    ADS  Google Scholar 

    26.
    Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Baduini, C. L. Parental provisioning patterns of wedge-tailed shearwaters and their relation to chick body condition. Condor 104, 823 (2002).
    Google Scholar 

    28.
    Cecere, J. G., Calabrese, L., Rocamora, G. & Catoni, C. Movement patterns and habitat selection of wedge-tailed shearwaters (Puffinus pacificus) breeding at Aride Island, Seychelles. Waterbirds 36, 432–437 (2013).
    Google Scholar 

    29.
    Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).
    ADS  Google Scholar 

    30.
    Jaquemet, S., Le Corre, M. & Weimerskirch, H. Seabird community structure in a coastal tropical environment: importance of natural factors and fish aggregating devices (FADs). Mar. Ecol. Prog. Ser. 268, 281–292 (2004).
    ADS  Google Scholar 

    31.
    Miller, M. G. R., Carlile, N., Phillips, J. S., Mcduie, F. & Congdon, B. C. Importance of tropical tuna for seabird foraging over a marine productivity gradient. Mar. Ecol. Prog. Ser. 586, 233–249 (2018).
    ADS  Google Scholar 

    32.
    Spear, L. B., Ainley, D. G. & Walker, W. A. Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud. Avian Biol. 35, 1–99 (2007).
    Google Scholar 

    33.
    Burger, A. E. Diving depths of shearwaters. Auk 118, 755–759 (2001).
    Google Scholar 

    34.
    Peck, D. R. & Congdon, B. C. Sex-specific chick provisioning and diving behaviour in the wedge-tailed shearwater Puffinus pacificus. J. Avian Biol. 37, 245–251 (2006).
    Google Scholar 

    35.
    IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-1. https://www.iucnredlist.org. Downloaded on 19 March 2020.

    36.
    Villard, P., Dano, S. & Bretagnolle, V. Morphometrics and the breeding biology of the Tahiti petrel Pseudobulweria rostrata. Ibis 148, 285–291 (2006).
    Google Scholar 

    37.
    Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. (2020).

    38.
    Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west pacific. Deep Res. Part II Top. Stud. Oceanogr. 113, 125–144 (2015).
    ADS  Google Scholar 

    39.
    Bretagnolle, V. Le Pétrel de la Chaîne Pterodroma (leucoptera) caledonica: Statut et Menaces. Unpubl. Rep. Prov. Sud, Nouméa, New Caledonia (2001).

    40.
    Pandolfi, M. & Bretagnolle, V. Seabirds of the Southern Lagoon of New Caledonia; distribution, abundance and threats. Waterbirds 25, 202–214 (2002).
    Google Scholar 

    41.
    QGIS Development Team. QGIS geographic information system. Open Source Geospatial Foundation Project (2018).

    42.
    Phillips, R. A., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on albatrosses and petrels. Auk 120, 1082–1090 (2003).
    Google Scholar 

    43.
    Vandenabeele, S. P. et al. Excess baggage for birds: inappropriate placement of tags on gannets changes flight patterns. PLoS ONE 9, e92657 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    44.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
    Google Scholar 

    45.
    Michael, A., Sumner, D., Luque, S. & Fischbach, A. Trip : Tools for the Analysis of Animal Track Data. R package version 1.5.0. (2016).

    46.
    Garriga, J., Palmer, J. R. B., Oltra, A. & Bartumeus, F. Expectation–maximization binary clustering for behavioural annotation. PLoS ONE 11, e0151984 (2016).
    PubMed  PubMed Central  Google Scholar 

    47.
    de Grissac, S., Bartumeus, F., Cox, S. L. & Weimerskirch, H. Early-life foraging: behavioral responses of newly fledged albatrosses to environmental conditions. Ecol. Evol. 7, 6766–6778 (2017).
    PubMed  PubMed Central  Google Scholar 

    48.
    Bennison, A. et al. Search and foraging behaviors from movement data: a comparison of methods. Ecol. Evol. 8, 13–24 (2018).
    PubMed  Google Scholar 

    49.
    Clay, T. A. et al. Divergent foraging strategies during incubation of an unusually wide-ranging seabird, the Murphy’s petrel. Mar. Biol. 166, 8 (2019).
    PubMed  Google Scholar 

    50.
    Mendez, L., Prudor, A. & Weimerskirch, H. Ontogeny of foraging behaviour in juvenile red-footed boobies (Sula sula). Sci. Rep. 7, 13886 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    51.
    Ravache, A. et al. Flying to the moon: lunar cycle influences trip duration and nocturnal foraging behavior of the wedge-tailed shearwater Ardenna pacifica. J. Exp. Mar. Biol. Ecol. 525, 151322 (2020).
    Google Scholar 

    52.
    Lund, U. et al. R package ‘circular’: circular Statistics (version 0.4-93). R Packag (2017).

    53.
    Calenge, C. The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).
    Google Scholar 

    54.
    Hedd, A. et al. Foraging areas, offshore habitat use and colony overlap by incubating leach’s storm-petrels Oceanodroma leucorhoa in the Northwest Atlantic. PLoS ONE 13, 1–18 (2018).
    Google Scholar 

    55.
    Bivand, R. & Rundel, C. Interface to Geometry Engine – Open Source (‘GEOS’) (2018).

    56.
    Hobson, K. A. & Clark, R. G. Turnover of 13 C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110, 638–641 (1993).
    Google Scholar 

    57.
    Jaeger, A., Lecomte, V. J., Weimerskirch, H., Richard, P. & Cherel, Y. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid Commun. Mass Spectrom. 24, 3456–3460 (2010).
    ADS  CAS  PubMed  Google Scholar 

    58.
    Oksanen, J. et al. Package vegan. R Packag ver (2013).

    59.
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
    PubMed  Google Scholar 

    60.
    Ceia, F. R., Paiva, V. H., Garthe, S., Marques, J. C. & Ramos, J. A. Can variations in the spatial distribution at sea and isotopic niche width be associated with consistency in the isotopic niche of a pelagic seabird species?. Mar. Biol. 161, 1861–1872 (2014).
    Google Scholar 

    61.
    Votier, S. C. et al. Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J. Appl. Ecol. 47, 487–497 (2010).
    Google Scholar 

    62.
    Bearhop, S. et al. Stable isotopes indicate sex-specific and longer-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164 (2006).
    ADS  Google Scholar 

    63.
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Jarman, S. N., Redd, K. S. & Gales, N. J. Group-specific primers for amplifying DNA sequences that identify Amphipoda, Cephalopoda, Echinodermata, Gastropoda, Isopoda, Ostracoda and Thoracica. Mol. Ecol. Notes 6, 268–271 (2006).
    CAS  Google Scholar 

    65.
    Braley, M., Goldsworthy, S. D., Page, B., Steer, M. & Austin, J. J. Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol. Ecol. Resour. 10, 466–474 (2010).
    CAS  PubMed  Google Scholar 

    66.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
    CAS  PubMed  Google Scholar 

    68.
    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).
    PubMed  Google Scholar 

    69.
    Froese, R. & Pauly, D. Fishbase. World Wide Web electronic publication. FishBase (2019).

    70.
    Palomares, M. L. D. & Pauly, D. SeaLifeBase. World Wide Web Electronic Publication. www.sealifebase.org, version (2014).

    71.
    Wickham, H. tidyverse: Easily Install and Load ‘Tidyverse’ Packages. R package version 1.0.0 (2016).

    72.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).
    Google Scholar 

    73.
    Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).
    Google Scholar 

    74.
    Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).
    Google Scholar 

    75.
    Granadeiro, J., Nunes, M., Silva, M. & Furness, R. Flexible foraging strategy of Cory’s shearwater, Calonectris diomedea, during the chick-rearing period. Anim. Behav. 56, 1169–1176 (1998).
    CAS  PubMed  Google Scholar 

    76.
    Kareiva, P. & Odell, G. Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987).
    Google Scholar 

    77.
    Jennings, S., Pinnegar, J. K., Polunin, N. V. C. & Warr, K. J. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser. 226, 77–85 (2002).
    ADS  Google Scholar 

    78.
    Clua, É & Grosvalet, F. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).
    Google Scholar 

    79.
    Roger, C. Relationships among yellowfin and skipjack tuna, their prey-fish and plankton. Fish. Oceanogr. 3, 133–141 (1994).
    Google Scholar 

    80.
    Choy, C. A., Popp, B. N., Hannides, C. C. S. & Drazen, J. C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the north pacific subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60, 1156–1171 (2015).
    ADS  Google Scholar 

    81.
    Lipinski, M. R. & Jackson, S. Surface-feeding on cephalopods by procellariiform seabirds in the southern Benguela region, South Africa. J. Zool. 218, 549–563 (1989).
    Google Scholar 

    82.
    Spear, L. B. & Ainley, D. G. Morphological differences relative to ecological segregation in petrels (family: Procellariidae) of the Southern Ocean And Tropical Pacific. Auk 115, 1017–1033 (1998).
    Google Scholar 

    83.
    Keenan, S. W. & DeBruyn, J. M. Changes to vertebrate tissue stable isotope (δ15N) composition during decomposition. Sci. Rep. 9, 1–12 (2019).
    Google Scholar 

    84.
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
    MathSciNet  PubMed  Google Scholar 

    85.
    Mendez, L., Cotté, C., Prudor, A. & Weimerskirch, H. Variability in foraging behaviour of red-footed boobies nesting on Europa Island. Acta Oecol. 72, 87–97 (2016).
    ADS  Google Scholar  More

  • in

    Habitat fragmentation differentially shapes neutral and immune gene variation in a tropical bird species

    Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evolution 21:433–438
    Google Scholar 

    Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H et al. (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247
    Google Scholar 

    Aguilar R, Quesada M, Ashworth L, Herrerias‐Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188
    PubMed  Google Scholar 

    Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evolution 28:1703–1715
    CAS  Google Scholar 

    Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, second edn. Wiley-Blackwell, Chichester, West Sussex
    Google Scholar 

    Altizer S, Harvell D, Friedle E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol Evolution 18:589–596
    Google Scholar 

    Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in toll-like receptor (TLR) genes in mammals. BMC Evolut Biol 11:368
    CAS  Google Scholar 

    Arnoux E, Eraud C, Navarro N, Tougard C, Thomas A, Cavallo F et al. (2014) Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the forest thrush Turdus lherminieri. Heredity 113:514–525
    CAS  PubMed  PubMed Central  Google Scholar 

    Bateson ZW, Whittingham LA, Johnson JA, Dunn PO (2015) Contrasting patterns of selection and drift between two categories of immune genes in prairie-chickens. Mol Ecol 24:6095–6106
    CAS  PubMed  Google Scholar 

    Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ et al. (2020) Macroimmunology: the drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 89:972–995
    PubMed  Google Scholar 

    Belasen AM, Bletz MC, Leite D, da S, Toledo LF, James TY (2019) Long-term habitat fragmentation is associated with reduced MHC IIB diversity and increased infections in amphibian hosts. Front Ecol Evol 6:236
    Google Scholar 

    Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evolut Biol 16:363–377
    CAS  Google Scholar 

    Bertrand JAM, Bourgeois YXC, Delahaie B, Duval T, García-Jiménez R, Cornuault J et al. (2014) Extremely reduced dispersal and gene flow in an island bird. Heredity 112:190–196
    CAS  PubMed  Google Scholar 

    Biedrzycka A, Radwan J (2008) Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus. Mol Ecol 17:4801–4811
    CAS  PubMed  Google Scholar 

    Binetruy F, Buysse M, Barosi R, Duron O (2020a) Novel Rickettsia genotypes in ticks in French Guiana, South America. Sci Rep 10:1–11
    Google Scholar 

    Binetruy F, Chevillon C, de Thoisy B, Garnier S, Duron O (2019) Survey of ticks in French Guiana. Ticks Tick Borne Dis 10:77–85
    PubMed  Google Scholar 

    Binetruy F, Garnier S, Boulanger N, Talagrand-Reboul É, Loire E, Faivre B et al. (2020b) A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks. Sci Rep. 10:10596
    CAS  PubMed  PubMed Central  Google Scholar 

    Blake JG, Loiselle BA (2012) Temporal and spatial patterns in abundance of the wedge-billed woodcreeper (Glyphorynchus spirurus) in Lowland Ecuador. Wilson J Ornithol 124:436–445
    Google Scholar 

    Bollmer JL, Dunn PO, Whittingham LA, Wimpee C (2010) Extensive MHC class II B gene duplication in a passerine, the common yellowthroat (Geothlypis trichas). J Hered 101:448–460
    CAS  PubMed  Google Scholar 

    Bollmer JL, Ruder EA, Johnson JA, Eimes JA, Dunn PO (2011) Drift and selection influence geographic variation at immune loci of prairie-chickens. Mol Ecol 20:4695–4706
    PubMed  Google Scholar 

    Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284
    CAS  PubMed  Google Scholar 

    Brown LM, Ramey RR, Tamburini B, Gavin TA (2004) Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conserv Genet 5:743–757
    CAS  Google Scholar 

    Calmont A (2012) La forêt guyanaise, entre valorisation et protection des ressources écosystémiques. VertigO – la revue électronique en sciences de l’environnement. Hors-série 14. http://journals.openedition.org/vertigo/12402

    Cavaillon J-M (2017) Pathogen-associated molecular patterns. In: Inflammation: from molecular and cellular mechanisms to the clinic. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 17–56

    Collinge SK (2009) Ecology of fragmented landscapes. JHU Press, Baltimore

    Colwell DD, Dantas-Torres F, Otranto D (2011) Vector-borne parasitic zoonoses: emerging scenarios and new perspectives. Vet Parasitol 182:14–21
    PubMed  Google Scholar 

    Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O’Farrelly C (2009) The avian toll-Like receptor pathway-subtle differences amidst general conformity. Dev Comp Immunol 33:967–973
    CAS  PubMed  Google Scholar 

    Daszak P (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449
    CAS  PubMed  Google Scholar 

    Dawson DA, Ball AD, Spurgin LG, Martín-Gálvez D, Stewart IRK, Horsburgh GJ et al. (2013) High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species. BMC Genomics 14:176
    CAS  PubMed  PubMed Central  Google Scholar 

    Dawson DA, Horsburgh GJ, Küpper C, Stewart IRK, Ball AD, Durrant KL et al. (2010) New methods to identify conserved microsatellite loci and develop primer sets of high cross-species utility—as demonstrated for birds. Mol Ecol Resour 10:475–494
    CAS  PubMed  Google Scholar 

    DIREN Guyane (2007) Atlas des paysages de Guyane. DIREN Guyane, Cayenne

    Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406
    CAS  PubMed  Google Scholar 

    Downing T, Lloyd AT, O’Farrelly C, Bradley DG (2010) The differential evolutionary dynamics of avian cytokine and TLR gene classes. J Immunol 184:6993–7000
    CAS  PubMed  Google Scholar 

    Driscoll DA, Weir T (2005) Beetle responses to habitat fragmentation depend on ecological traits, habitat condition, and remnant size. Conserv Biol 19:182–194
    Google Scholar 

    Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188
    CAS  Google Scholar 

    Eizaguirre C, Lenz TL, Kalbe M, Milinski M (2012) Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat Commun 3:1–6
    Google Scholar 

    Evans ML, Neff BD, Heath DD (2010) MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha). Heredity 104:449–459
    CAS  PubMed  Google Scholar 

    Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515
    Google Scholar 

    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587
    CAS  PubMed  PubMed Central  Google Scholar 

    FAO (2001) Global forest resources assessment 2000. Main report, FAO, Rome

    FAO (2010) Global forest resources assessment 2010. Main report, FAO, Rome

    Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK et al. (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:69
    PubMed  PubMed Central  Google Scholar 

    Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge
    Google Scholar 

    Frankham R, Ballou JD, Ralls K, Eldridge M, Dudash MR, Fenster CB et al. (2017) Genetic management of fragmented animal and plant populations. Oxford University Press, Oxford, UK

    Fraser DJ, Debes PV, Bernatchez L, Hutchings JA (2014) Population size, habitat fragmentation, and the nature of adaptive variation in a stream fish. Proc R Soc B 281:20140370
    PubMed  Google Scholar 

    Galetti M, Guevara R, Neves CL, Rodarte RR, Bovendorp RS, Moreira M et al. (2015) Defaunation affects the populations and diets of rodents in Neotropical rainforests. Biol Conserv 190:2–7
    Google Scholar 

    Galochet M, Morel V (2015) La biodiversité dans l’aménagement du territoire en Guyane française. VertigO – la revue électronique en sciences de l’environnement, Volume 15 Numéro 1. http://journals.openedition.org/vertigo/16069

    Garnier S, Alibert P, Audiot P, Prieur B, Rasplus J-Y (2004) Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography of an alpine insect species, Carabus solieri. Mol Ecol 13:1883–1897
    CAS  PubMed  Google Scholar 

    Garrick RC, Sunnucks P, Dyer RJ (2010) Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evol Biol 10:118
    PubMed  PubMed Central  Google Scholar 

    Gavan MK, Oliver MK, Douglas A, Piertney SB (2015) Gene dynamics of toll-like receptor 4 through a population bottleneck in an insular population of water voles (Arvicola amphibius). Conserv Genet 16:1181–1193
    CAS  Google Scholar 

    Gonzalez-Quevedo C, Davies RG, Phillips KP, Spurgin LG, Richardson DS (2016) Landscape-scale variation in an anthropogenic factor shapes immune gene variation within a wild population. Mol Ecol 25:4234–4246
    CAS  PubMed  Google Scholar 

    Gonzalez-Quevedo C, Spurgin LG, Illera JC, Richardson DS (2015) Drift, not selection, shapes toll-like receptor variation among oceanic island populations. Mol Ecol 24:5852–5863
    CAS  PubMed  PubMed Central  Google Scholar 

    Gottdenker NL, Streicker DG, Faust CL, Carroll CR (2014) Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11:619–632
    PubMed  Google Scholar 

    Grueber CE, Knafler GJ, King TM, Senior AM, Grosser S, Robertson B et al. (2015) Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conserv Genet 16:595–611
    CAS  Google Scholar 

    Grueber CE, Wallis GP, Jamieson IG (2013) Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a re-introduced population of a threatened species. Mol Ecol 22:4470–4482
    CAS  PubMed  Google Scholar 

    Grueber CE, Wallis GP, Jamieson IG (2014) Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes. PLoS ONE 9:e89632
    PubMed  PubMed Central  Google Scholar 

    Grueber CE, Wallis GP, King TM, Jamieson IG (2012) Variation at innate immunity toll-like receptor genes in a bottlenecked population of a New Zealand Robin. PLoS ONE 7:e45011
    CAS  PubMed  PubMed Central  Google Scholar 

    Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG (2014) The hard ticks of the world. Springer Netherlands, Dordrecht
    Google Scholar 

    Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD et al. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052
    PubMed  PubMed Central  Google Scholar 

    Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A et al. (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853
    CAS  PubMed  Google Scholar 

    Harrisson KA, Pavlova A, Amos JN, Takeuchi N, Lill A, Radford JQ et al. (2013) Disrupted fine-scale population processes in fragmented landscapes despite large-scale genetic connectivity for a widespread and common cooperative breeder: the superb fairy-wren (Malurus cyaneus). J Anim Ecol 82:322–333
    PubMed  Google Scholar 

    Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638
    CAS  PubMed  Google Scholar 

    Hillis DM, Moritz C, Mable BK (eds) (1996) Molecular systematics, 2nd ed. Sinauer Associates, Sunderland, Massachusetts

    Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807
    Google Scholar 

    Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332
    PubMed  PubMed Central  Google Scholar 

    INSEE (2019) La population guyanaise à l’horizon 2050 : vers un doublement de la population? INSEE Antilles-Guyane, Pointe-à-pitre

    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL et al. (2008) Global trends in emerging infectious diseases. Nature 451:990–993
    CAS  PubMed  PubMed Central  Google Scholar 

    Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129(Suppl):S3–S14
    PubMed  Google Scholar 

    Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137
    CAS  PubMed  Google Scholar 

    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649
    PubMed  PubMed Central  Google Scholar 

    Keesing F, Brunner J, Duerr S, Killilea M, LoGiudice K, Schmidt K et al. (2009) Hosts as ecological traps for the vector of Lyme disease. Proc R Soc B Biol Sci 276:3911–3919
    CAS  Google Scholar 

    Keestra AM, de Zoete MR, Bouwman LI, Vaezirad MM, van Putten JPM (2013) Unique features of chicken toll-like receptors. Dev Comp Immunol 41:316–323
    CAS  PubMed  Google Scholar 

    Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064
    Google Scholar 

    Khimoun A, Arnoux E, Martel G, Pot A, Eraud C, Condé B et al. (2016b) Contrasted patterns of genetic differentiation across eight bird species in the Lesser Antilles. Genetica 144:125–138
    PubMed  Google Scholar 

    Khimoun A, Eraud C, Ollivier A, Arnoux E, Rocheteau V, Bely M et al. (2016a) Habitat specialization predicts genetic response to fragmentation in tropical birds. Mol Ecol 25:3831–3844
    PubMed  Google Scholar 

    Khimoun A, Ollivier A, Faivre B, Garnier S (2017) Level of genetic differentiation affects relative performances of expressed sequence tag and genomic SSRs. Mol Ecol Resour 17:893–903
    CAS  PubMed  Google Scholar 

    Knafler GJ, Grueber CE, Sutton JT, Jamieson IG (2017) Differential patterns of diversity at microsatellite, MHC, and TLR loci in bottlenecked South Island saddleback populations. NZ J Ecol 41:98–106
    Google Scholar 

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K, Battistuzzi FU (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
    CAS  PubMed  PubMed Central  Google Scholar 

    Lehmann T (1993) Ectoparasites: direct impact on host fitness. Parasitol Today 9:8–13
    CAS  PubMed  Google Scholar 

    Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760
    Google Scholar 

    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452
    CAS  PubMed  Google Scholar 

    Lindenmayer DB, Fischer J (2013) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Washington, DC

    Lindsay DL, Barr KR, Lance RF, Tweddale SA, Hayden TJ, Leberg PL (2008) Habitat fragmentation and genetic diversity of an endangered, migratory songbird, the golden-cheeked warbler (Dendroica chrysoparia). Mol Ecol 17:2122–2133
    PubMed  Google Scholar 

    Losos JB, Ricklefs RE (2009) The theory of island biogeography revisited. Princeton University Press, Princeton

    Marantz CA, Aleixo A, Bevier LR, Patten MA, Christie DA (2019) wedge-billed woodcreeper (Glyphorynchus spirurus). In: Handbook of the birds of the world alive. Lynx Edicions, Barcelona

    McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evolution 17:285–291
    Google Scholar 

    Milá B, Bardeleben C (2005) Isolation of polymorphic tetranucleotide microsatellite markers for the wedge-billed woodcreeper Glyphorynchus spirurus. Mol Ecol Notes 5:844–845
    Google Scholar 

    Minias P, Pikus E, Whittingham LA, Dunn PO (2018) A global analysis of selection at the avian MHC. Evolution 72:1278–1293
    PubMed  Google Scholar 

    Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond K et al. (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205
    CAS  PubMed  PubMed Central  Google Scholar 

    Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL et al. (2019) Vegan: community ecology package, vol 2. R package version, p 5–6

    Oliveira CJF, Carvalho WA, Garcia GR, Gutierrez FRS, de Miranda Santos IKF, Silva JS et al. (2010) Tick saliva induces regulatory dendritic cells: MAP-kinases and toll-like receptor-2 expression as potential targets. Vet Parasitol 167:288–297
    CAS  PubMed  Google Scholar 

    ONF (2017) Occupation du sol 2015 sur la bande littorale de Guyane et son evolution entre 2005 et 2015. Direction Régionale ONF Guyane, Cayenne

    Ostfeld RS, Keesing F, Eviner VT (2010) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton

    Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790
    CAS  PubMed  Google Scholar 

    Parham P (2003) Innate immunity: the unsung heroes. Nature 423:20

    Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405
    CAS  PubMed  Google Scholar 

    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539
    CAS  PubMed  PubMed Central  Google Scholar 

    Pearson SK, Bull CM, Gardner MG (2018) Selection outweighs drift at a fine scale: lack of MHC differentiation within a family living lizard across geographically close but disconnected rocky outcrops. Mol Ecol 27:2204–2214
    PubMed  Google Scholar 

    Pond SLK, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533
    CAS  PubMed  Google Scholar 

    Porlier M, Garant D, Perret P, Charmantier A (2012) Habitat-linked population genetic differentiation in the blue tit Cyanistes caeruleus. J Hered 103:781–791
    PubMed  Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
    CAS  PubMed  PubMed Central  Google Scholar 

    Quéméré E, Hessenauer P, Galan M, Fernandez M, Merlet J, Chaval Y et al. (2018) Fluctuating pathogen-mediated selection favours the maintenance of innate immune gene polymorphism in a widespread wild ungulate. bioRxiv: https://doi.org/10.1101/458216

    R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R Core Team, Vienna

    Radwan J, Kuduk K, Levy E, LeBas N, Babik W (2014) Parasite load and MHC diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard. Mol Ecol 23:5966–5978
    CAS  PubMed  Google Scholar 

    Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176
    PubMed  Google Scholar 

    Rivera-Ortíz FA, Aguilar R, Arizmendi MDC, Quesada M, Oyama K (2015) Habitat fragmentation and genetic variability of tetrapod populations: fragmentation and genetic variability. Anim Conserv 18:249–258
    Google Scholar 

    Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106
    PubMed  Google Scholar 

    Sagonas K, Runemark A, Antoniou A, Lymberakis P, Pafilis P, Valakos ED et al. (2019) Selection, drift, and introgression shape MHC polymorphism in lizards. Heredity 122:468–484
    CAS  PubMed  Google Scholar 

    Sano E, Carlson S, Wegley L, Rohwer F (2004) Movement of viruses between biomes. Appl Environ Microbiol 70:5842–5846
    CAS  PubMed  PubMed Central  Google Scholar 

    Santonastaso T, Lighten J, van Oosterhout C, Jones KL, Foufopoulos J, Anthony NM (2017) The effects of historical fragmentation on major histocompatibility complex class II β and microsatellite variation in the Aegean island reptile, Podarcis erhardii. Ecol Evol 7:4568–4581
    PubMed  PubMed Central  Google Scholar 

    Schleicher A, Biedermann R, Kleyer M (2011) Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landsc Ecol 26:529–540
    Google Scholar 

    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234
    CAS  PubMed  Google Scholar 

    Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90
    CAS  Google Scholar 

    Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792
    CAS  PubMed  Google Scholar 

    Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101:15261–15264
    CAS  PubMed  Google Scholar 

    Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B Biol Sci 277:979–988
    CAS  Google Scholar 

    Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169
    CAS  PubMed  PubMed Central  Google Scholar 

    Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989
    CAS  PubMed  PubMed Central  Google Scholar 

    Strand TM, Segelbacher G, Quintela M, Xiao L, Axelsson T, Höglund J (2012) Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse? Ecol Evol 2:341–353
    PubMed  PubMed Central  Google Scholar 

    Sunnucks P (2011) Towards modelling persistence of woodland birds: the role of genetics. Emu 111:19–39
    Google Scholar 

    Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504
    CAS  PubMed  PubMed Central  Google Scholar 

    Tschirren B (2015) Borrelia burgdorferi sensu lato infection pressure shapes innate immune gene evolution in natural rodent populations across Europe. Biol Lett 11:20150263
    PubMed  PubMed Central  Google Scholar 

    Väli U, Einarsson A, Waits L, Ellegren H (2008) To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol Ecol 17:3808–3817
    PubMed  Google Scholar 

    Van Etten J (2017) R package gdistance: distances and routes on geographical grids. J Stat Softw 76:1–21
    Google Scholar 

    Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecol Lett 10:219–229
    PubMed  Google Scholar 

    Vilas A, Pérez-Figueroa A, Quesada H, Caballero A (2015) Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Mol Ecol 24:4419–4432
    PubMed  Google Scholar 

    Vinkler M, Albrecht T (2009) The question waiting to be asked: innate immunity receptors in the perspective of zoological research. Folia Zool 58:15
    Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370
    CAS  PubMed  Google Scholar 

    Wlasiuk G, Nachman MW (2010) Adaptation and constraint at toll-like receptors in primates. Mol Biol Evol 27:2172–2186
    CAS  PubMed  PubMed Central  Google Scholar 

    Woltmann S, Kreiser BR, Sherry TW (2012) Fine-scale genetic population structure of an understory rainforest bird in Costa Rica. Conserv Genet 13:925–935
    Google Scholar 

    Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken toll-like receptors. Immunogenetics 56:743–753
    CAS  PubMed  Google Scholar 

    Young HS, McCauley DJ, Dirzo R, Goheen JR, Agwanda B, Brook C et al. (2015) Context-dependent effects of large-wildlife declines on small-mammal communities in central Kenya. Ecol Appl 25:348–360
    PubMed  Google Scholar  More

  • in

    Livestock enclosures in drylands of Sub-Saharan Africa are overlooked hotspots of N2O emissions

    Field N2O flux measurements
    At seven different semi-arid and arid savanna regions in Kenya (Fig. 1, Supplementary Fig. 9), N2O measurements from soils at 46 boma sites and 22 adjacent reference sites (undisturbed savanna) were carried out. At each boma and control site, 3–7 plots were chosen randomly for flux measurements. Local members of the pastoral communities, including herders and/or community elders were interviewed for information on the time since abandonment of each boma.
    N2O fluxes from bomas were measured using the fast-box chamber method15, deploying an ultra-portable greenhouse gas analyzer of ABB-Los Gatos Research Inc. (Modell 909–0041). A gas-tight, vented chamber (0.3 × 0.2 × 0.15 m) was pressed against the ground on foam frames for 4–7 min, during which time sample air was pumped from the headspace of the chamber to the analyzer and returned to the chamber thereafter. In this way, changes in headspace N2O concentrations were continuously measured over the sample period, with a running average of every 5 s. Linear regression over the sample period was used to calculate fluxes. The detection limit for N2O fluxes was More

  • in

    Temperature transcends partner specificity in the symbiosis establishment of a cnidarian

    1.
    Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.
    Google Scholar 
    2.
    Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci. 2017;4:158.
    Google Scholar 

    3.
    Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol. 2013;22:4335–48.
    PubMed  CAS  Google Scholar 

    4.
    Bay RA, Palumbi SR. Multilocus adaptation associated with heat resistance in reef-building corals. Curr Biol. 2014;24:2952–6.
    PubMed  CAS  Google Scholar 

    5.
    Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV. Genomic determinants of coral heat tolerance across latitudes. Science. 2015;348:1460.
    PubMed  CAS  Google Scholar 

    6.
    Howells EJ, Abrego D, Meyer E, Kirk NL, Burt JA. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob Change Biol. 2016;22:2702–14.
    Google Scholar 

    7.
    Morikawa MK, Palumbi SR. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc Natl Acad Sci USA. 2019;116:10586.
    PubMed  CAS  Google Scholar 

    8.
    Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc Biol Sci. 2006;273:2305–12.
    PubMed  PubMed Central  Google Scholar 

    9.
    Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA. 2008;105:10444.
    PubMed  CAS  Google Scholar 

    10.
    LaJeunesse TC, Smith RT, Finney J, Oxenford H. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc B: Biol Sci. 2009;276:4139–48.
    Google Scholar 

    11.
    Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Change. 2011;2:116.
    Google Scholar 

    12.
    LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol. 2018;28:2570–.e6.
    PubMed  CAS  Google Scholar 

    13.
    Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE. 2012;7:e50685.
    PubMed  PubMed Central  CAS  Google Scholar 

    14.
    Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA. Mechanisms of reef coral resistance to future climate change. Science. 2014;344:895.
    PubMed  CAS  Google Scholar 

    15.
    Sawall Y, Al-Sofyani A, Hohn S, Banguera-Hinestroza E, Voolstra CR, Wahl M. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Sci Rep. 2015;5:8940.
    PubMed  PubMed Central  CAS  Google Scholar 

    16.
    Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Change. 2017;7:627.
    Google Scholar 

    17.
    Baker AC. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol, Evolution, Syst. 2003;34:661–89.
    Google Scholar 

    18.
    Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM, et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J. 2016;10:2693–701.
    PubMed  PubMed Central  CAS  Google Scholar 

    19.
    Cunning R, Silverstein RN, Baker AC. Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs. 2018;37:145–52.
    Google Scholar 

    20.
    Stat M, Loh WKW, LaJeunesse TC, Hoegh-Guldberg O, Carter DA. Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs. 2009;28:709–13.
    Google Scholar 

    21.
    Putnam HM, Stat M, Pochon X, Gates RG. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc B: Biol Sci. 2012;279:4352–61.
    Google Scholar 

    22.
    Stat M, Morris E, Gates RD. Functional diversity in coral–dinoflagellate symbiosis. Proc Natl Acad Sci USA. 2008;105:9256.
    PubMed  CAS  Google Scholar 

    23.
    Starzak DE, Quinnell RG, Nitschke MR, Davy SK. The influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis. Mar Biol. 2014;161:711–24.
    CAS  Google Scholar 

    24.
    Gabay Y, Weis VM, Davy SK. Symbiont identity influences patterns of symbiosis establishment, host growth, and asexual reproduction in a model cnidarian-dinoflagellate symbiosis. Biol Bull. 2018;234:1–10.
    PubMed  Google Scholar 

    25.
    Quigley KM, Bay LK, Willis BL. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus acropora. Front Mar Sci. 2017;4:401.
    Google Scholar 

    26.
    Cumbo VR, vanOppen MJH, Baird AH. Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Mar Ecol Prog Ser. 2018;587:117–27.
    CAS  Google Scholar 

    27.
    Ali A, Kriefall NG, Emery LE, Kenkel CD, Matz MV, Davies SW. Recruit symbiosis establishment and Symbiodiniaceae composition influenced by adult corals and reef sediment. Coral Reefs. 2019;38:405–15.
    Google Scholar 

    28.
    McIlroy SE, Cunning R, Baker AC, Coffroth MA. Competition and succession among coral endosymbionts. Ecol Evolution. 2019;9:12767–78.
    Google Scholar 

    29.
    Abrego D, Willis BL, van Oppen MJH. Impact of light and temperature on the uptake of algal symbionts by coral juveniles. PLoS ONE. 2012;7:e50311.
    PubMed  PubMed Central  CAS  Google Scholar 

    30.
    Schnitzler CE, Hollingsworth LL, Krupp DA, Weis VM. Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria. Mar Biol. 2012;159:633–42.
    Google Scholar 

    31.
    Hawkins TD, Hagemeyer JCG, Warner ME. Temperature moderates the infectiousness of two conspecific Symbiodinium strains isolated from the same host population. Environ Microbiol. 2016;18:5204–17.
    PubMed  CAS  Google Scholar 

    32.
    Swain TD, Chandler J, Backman V, Marcelino L. Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct Ecol. 2017;31:172–83.
    Google Scholar 

    33.
    Gabay Y, Parkinson JE, Wilkinson SP, Weis VM, Davy SK. Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME J. 2019;13:2489–99.
    PubMed  Google Scholar 

    34.
    Poland DM, Coffroth MA. Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs. 2017;36:119–29.
    Google Scholar 

    35.
    Fraune S, Bosch TCG. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA. 2007;104:13146.
    PubMed  CAS  Google Scholar 

    36.
    Herrera M, Ziegler M, Voolstra CR, Aranda M. Laboratory-cultured strains of the sea anemone exaiptasia reveal distinct bacterial communities. Front Mar Sci. 2017;4:115.
    Google Scholar 

    37.
    Grajales A, Rodríguez E. Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actinaria, Metridioidea). Zootaxa. 2014;3826:55–100.
    PubMed  Google Scholar 

    38.
    Xiang T, Hambleton EA, DeNofrio JC, Pringle JR, Grossman AR. Isolation of clonal axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity. J Phycol. 2013;49:447–58.
    PubMed  CAS  Google Scholar 

    39.
    Bieri T, Onishi M, Xiang T, Grossman AR, Pringle JR. Relative contributions of various cellular mechanisms to loss of algae during cnidarian bleaching. PLoS ONE. 2016;11:e0152693.
    PubMed  PubMed Central  Google Scholar 

    40.
    Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics. 2009;10:258.
    PubMed  PubMed Central  Google Scholar 

    41.
    Cziesielski MJ, Liew YJ, Cui G, Schmidt-Roach S, Campana S, Marondedze C, et al. Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc Biol Sci. 2018;285:20172654.
    PubMed  PubMed Central  Google Scholar 

    42.
    Belda-Baillie CA, Baillie BK, Maruyama T. Specificity of a model cnidarian-dinoflagellate symbiosis. Biol Bull. 2002;202:74–85.
    PubMed  CAS  Google Scholar 

    43.
    Rodriguez-Lanetty M, Chang S-J, Song J-I. Specificity of two temperate dinoflagellate–anthozoan associations from the north-western Pacific Ocean. Mar Biol. 2003;143:1193–9.
    Google Scholar 

    44.
    Cziesielski MJ, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies. Ecol Evolution. 2019;9:10055–66.
    Google Scholar 

    45.
    Lehnert EM, Mouchka ME, Burriesci MS, Gallo ND, Schwarz JA, Pringle JR. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda). 2014;4:277–95.
    CAS  Google Scholar 

    46.
    Gegner HM, Ziegler M, Rädecker N, Buitrago-López C, Aranda M, Voolstra CR. High salinity conveys thermotolerance in the coral model Aiptasia. Biol Open. 2017;6:1943.
    PubMed  PubMed Central  CAS  Google Scholar 

    47.
    Cui G, Liew YJ, Li Y, Kharbatia N, Zahran NI, Emwas A-H, et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 2019;15:e1008189.
    PubMed  PubMed Central  CAS  Google Scholar 

    48.
    Röthig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, et al. Distinct bacterial communities associated with the coral model aiptasia in aposymbiotic and symbiotic states with symbiodinium. Front Mar Sci. 2016;3:234.
    Google Scholar 

    49.
    Matthews JL, Sproles AE, Oakley CA, Grossman AR, Weis VM, Davy SK. Menthol-induced bleaching rapidly and effectively provides experimental aposymbiotic sea anemones (Aiptasia sp.) for symbiosis investigations. J Exp Biol. 2016;219:306.
    PubMed  Google Scholar 

    50.
    Hume BCC, Ziegler M, Poulain J, Pochon X, Romac S, Boissin E, et al. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ. 2018;6:e4816.
    PubMed  PubMed Central  Google Scholar 

    51.
    Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol Ecol Resour. 2019;19:1063–80.
    PubMed  PubMed Central  CAS  Google Scholar 

    52.
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing; 2018.

    53.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Community Ecology Package. 2019.

    54.
    Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 

    55.
    Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. American Cancer Society; 2017. p. 1–15.

    56.
    Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.
    Google Scholar 

    57.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
    PubMed  PubMed Central  Google Scholar 

    58.
    IBM SPSS Statistics (Version 22.0). Armonk, NY, USA: IBM Corporation; 2013.

    59.
    Robison JD, Warner ME. Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol. 2006;42:568–79.
    CAS  Google Scholar 

    60.
    McGinty ES, Pieczonka J, Mydlarz LD. Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microb Ecol. 2012;64:1000–7.
    PubMed  CAS  Google Scholar 

    61.
    Grégoire V, Schmacka F, Coffroth MA, Karsten U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J Appl Phycol. 2017;29:1893–905.
    Google Scholar 

    62.
    Lesser MP. Phylogenetic signature of light and thermal stress for the endosymbiotic dinoflagellates of corals (Family Symbiodiniaceae). Limnol Oceanogr. 2019;64:1852–63.
    Google Scholar 

    63.
    Hambleton EA, Guse A, Pringle JR. Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. J Exp Biol. 2014;217:1613.
    PubMed  PubMed Central  Google Scholar 

    64.
    Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, Hatta M, et al. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep. 2016;6:32366.
    PubMed  PubMed Central  CAS  Google Scholar 

    65.
    Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol. 2013;22:4499–515.
    PubMed  CAS  Google Scholar 

    66.
    Little AF, van Oppen MJH, Willis BL. Flexibility in algal endosymbioses shapes growth in reef corals. Science. 2004;304:1492.
    PubMed  CAS  Google Scholar 

    67.
    Pettay DT, Wham DC, Smith RT, Iglesias-Prieto R, LaJeunesse TC. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc Natl Acad Sci USA. 2015;112:7513.
    PubMed  CAS  Google Scholar 

    68.
    Baums IB, Devlin-Durante MK, LaJeunesse TC. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014;23:4203–15.
    PubMed  Google Scholar 

    69.
    Nyamukondiwa C, Terblanche JS. Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J Therm Biol. 2009;34:406–14.
    Google Scholar 

    70.
    Dowd WW, King FA, Denny MW. Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol. 2015;218:1956.
    PubMed  Google Scholar 

    71.
    Chidawanyika F, Nyamukondiwa C, Strathie L, Fischer K. Effects of thermal regimes, starvation and age on heat tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS ONE. 2017;12:e0169371.
    PubMed  PubMed Central  Google Scholar 

    72.
    Hoadley KD, Lewis AM, Wham DC, Pettay DT, Grasso C, Smith R, et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress. Sci Rep. 2019;9:9985.
    PubMed  PubMed Central  Google Scholar 

    73.
    Rädecker N, Raina J-B, Pernice M, Perna G, Guagliardo P, Kilburn MR, et al. Using aiptasia as a model to study metabolic interactions in cnidarian-symbiodinium symbioses. Front Physiol. 2018;9:214–214.
    PubMed  PubMed Central  Google Scholar 

    74.
    Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Change Biol. 2018;24:e474–84.
    Google Scholar 

    75.
    Berumen ML, Voolstra CR, Daffonchio D, Agusti S, Aranda M, Irigoien X, et al. The Red Sea: environmental gradients shape a natural laboratory in a nascent ocean. In: Voolstra CR, Berumen ML, editors. Coral Reefs of the Red Sea. Cham: Springer International Publishing; 2019. p. 1–10.

    76.
    Hawkins TD, Hagemeyer JCG, Hoadley KD, Marsh AG, Warner ME. Partitioning of respiration in an animal-algal symbiosis: implications for different aerobic capacity between Symbiodinium spp. Front Physiol. 2016;7:128.
    PubMed  PubMed Central  Google Scholar 

    77.
    Hoadley KD, Rollison D, Pettay DT, Warner ME. Differential carbon utilization and asexual reproduction under elevated pCO2 conditions in the model anemone, Exaiptasia pallida, hosting different symbionts. Limnol Oceanogr. 2015;60:2108–20.
    CAS  Google Scholar 

    78.
    Borell EM, Yuliantri AR, Bischof K, Richter C. The effect of heterotrophy on photosynthesis and tissue composition of two scleractinian corals under elevated temperature. J Exp Mar Biol Ecol. 2008;364:116–23.
    Google Scholar 

    79.
    Ferrier-Pagès C, Rottier C, Beraud E, Levy O. Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J Exp Mar Biol Ecol. 2010;390:118–24.
    Google Scholar 

    80.
    Connolly SR, Lopez-Yglesias MA, Anthony KRN. Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs. 2012;31:951–60.
    Google Scholar 

    81.
    Lyndby NH, Holm JB, Wangpraseurt D, Grover R, Rottier C, Kühl M, et al. Effect of feeding and thermal stress on photosynthesis, respiration and the carbon budget of the scleractinian coral Pocillopora damicornis. bioRxiv. 2018:378059.

    82.
    Borell EM, Bischof K. Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia. 2008;157:593.
    PubMed  Google Scholar 

    83.
    Weng L-C, Pasaribu B, Ping Lin I, Tsai C-H, Chen C-S, Jiang P-L. Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from aiptasia pulchella. Sci Rep. 2014;4:5777.
    PubMed  PubMed Central  CAS  Google Scholar 

    84.
    Fitt W, Cook C. The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarian. Mar Biol. 2001;139:507–17.
    Google Scholar 

    85.
    Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs. 2003;22:229–40.
    Google Scholar 

    86.
    van der Merwe R, Röthig T, Voolstra CR, Ochsenkühn MA, Lattemann S, Amy GL. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment. Front Mar Sci. 2014;1:58.
    Google Scholar  More