More stories

  • in

    Habitat fragmentation differentially shapes neutral and immune gene variation in a tropical bird species

    Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evolution 21:433–438
    Google Scholar 

    Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H et al. (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247
    Google Scholar 

    Aguilar R, Quesada M, Ashworth L, Herrerias‐Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188
    PubMed  Google Scholar 

    Alcaide M, Edwards SV (2011) Molecular evolution of the toll-like receptor multigene family in birds. Mol Biol Evolution 28:1703–1715
    CAS  Google Scholar 

    Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, second edn. Wiley-Blackwell, Chichester, West Sussex
    Google Scholar 

    Altizer S, Harvell D, Friedle E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol Evolution 18:589–596
    Google Scholar 

    Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in toll-like receptor (TLR) genes in mammals. BMC Evolut Biol 11:368
    CAS  Google Scholar 

    Arnoux E, Eraud C, Navarro N, Tougard C, Thomas A, Cavallo F et al. (2014) Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the forest thrush Turdus lherminieri. Heredity 113:514–525
    CAS  PubMed  PubMed Central  Google Scholar 

    Bateson ZW, Whittingham LA, Johnson JA, Dunn PO (2015) Contrasting patterns of selection and drift between two categories of immune genes in prairie-chickens. Mol Ecol 24:6095–6106
    CAS  PubMed  Google Scholar 

    Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ et al. (2020) Macroimmunology: the drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 89:972–995
    PubMed  Google Scholar 

    Belasen AM, Bletz MC, Leite D, da S, Toledo LF, James TY (2019) Long-term habitat fragmentation is associated with reduced MHC IIB diversity and increased infections in amphibian hosts. Front Ecol Evol 6:236
    Google Scholar 

    Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evolut Biol 16:363–377
    CAS  Google Scholar 

    Bertrand JAM, Bourgeois YXC, Delahaie B, Duval T, García-Jiménez R, Cornuault J et al. (2014) Extremely reduced dispersal and gene flow in an island bird. Heredity 112:190–196
    CAS  PubMed  Google Scholar 

    Biedrzycka A, Radwan J (2008) Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus. Mol Ecol 17:4801–4811
    CAS  PubMed  Google Scholar 

    Binetruy F, Buysse M, Barosi R, Duron O (2020a) Novel Rickettsia genotypes in ticks in French Guiana, South America. Sci Rep 10:1–11
    Google Scholar 

    Binetruy F, Chevillon C, de Thoisy B, Garnier S, Duron O (2019) Survey of ticks in French Guiana. Ticks Tick Borne Dis 10:77–85
    PubMed  Google Scholar 

    Binetruy F, Garnier S, Boulanger N, Talagrand-Reboul É, Loire E, Faivre B et al. (2020b) A novel Borrelia species, intermediate between Lyme disease and relapsing fever groups, in neotropical passerine-associated ticks. Sci Rep. 10:10596
    CAS  PubMed  PubMed Central  Google Scholar 

    Blake JG, Loiselle BA (2012) Temporal and spatial patterns in abundance of the wedge-billed woodcreeper (Glyphorynchus spirurus) in Lowland Ecuador. Wilson J Ornithol 124:436–445
    Google Scholar 

    Bollmer JL, Dunn PO, Whittingham LA, Wimpee C (2010) Extensive MHC class II B gene duplication in a passerine, the common yellowthroat (Geothlypis trichas). J Hered 101:448–460
    CAS  PubMed  Google Scholar 

    Bollmer JL, Ruder EA, Johnson JA, Eimes JA, Dunn PO (2011) Drift and selection influence geographic variation at immune loci of prairie-chickens. Mol Ecol 20:4695–4706
    PubMed  Google Scholar 

    Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13:278–284
    CAS  PubMed  Google Scholar 

    Brown LM, Ramey RR, Tamburini B, Gavin TA (2004) Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conserv Genet 5:743–757
    CAS  Google Scholar 

    Calmont A (2012) La forêt guyanaise, entre valorisation et protection des ressources écosystémiques. VertigO – la revue électronique en sciences de l’environnement. Hors-série 14. http://journals.openedition.org/vertigo/12402

    Cavaillon J-M (2017) Pathogen-associated molecular patterns. In: Inflammation: from molecular and cellular mechanisms to the clinic. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 17–56

    Collinge SK (2009) Ecology of fragmented landscapes. JHU Press, Baltimore

    Colwell DD, Dantas-Torres F, Otranto D (2011) Vector-borne parasitic zoonoses: emerging scenarios and new perspectives. Vet Parasitol 182:14–21
    PubMed  Google Scholar 

    Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O’Farrelly C (2009) The avian toll-Like receptor pathway-subtle differences amidst general conformity. Dev Comp Immunol 33:967–973
    CAS  PubMed  Google Scholar 

    Daszak P (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449
    CAS  PubMed  Google Scholar 

    Dawson DA, Ball AD, Spurgin LG, Martín-Gálvez D, Stewart IRK, Horsburgh GJ et al. (2013) High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species. BMC Genomics 14:176
    CAS  PubMed  PubMed Central  Google Scholar 

    Dawson DA, Horsburgh GJ, Küpper C, Stewart IRK, Ball AD, Durrant KL et al. (2010) New methods to identify conserved microsatellite loci and develop primer sets of high cross-species utility—as demonstrated for birds. Mol Ecol Resour 10:475–494
    CAS  PubMed  Google Scholar 

    DIREN Guyane (2007) Atlas des paysages de Guyane. DIREN Guyane, Cayenne

    Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406
    CAS  PubMed  Google Scholar 

    Downing T, Lloyd AT, O’Farrelly C, Bradley DG (2010) The differential evolutionary dynamics of avian cytokine and TLR gene classes. J Immunol 184:6993–7000
    CAS  PubMed  Google Scholar 

    Driscoll DA, Weir T (2005) Beetle responses to habitat fragmentation depend on ecological traits, habitat condition, and remnant size. Conserv Biol 19:182–194
    Google Scholar 

    Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188
    CAS  Google Scholar 

    Eizaguirre C, Lenz TL, Kalbe M, Milinski M (2012) Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat Commun 3:1–6
    Google Scholar 

    Evans ML, Neff BD, Heath DD (2010) MHC genetic structure and divergence across populations of Chinook salmon (Oncorhynchus tshawytscha). Heredity 104:449–459
    CAS  PubMed  Google Scholar 

    Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515
    Google Scholar 

    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587
    CAS  PubMed  PubMed Central  Google Scholar 

    FAO (2001) Global forest resources assessment 2000. Main report, FAO, Rome

    FAO (2010) Global forest resources assessment 2010. Main report, FAO, Rome

    Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK et al. (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:69
    PubMed  PubMed Central  Google Scholar 

    Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge
    Google Scholar 

    Frankham R, Ballou JD, Ralls K, Eldridge M, Dudash MR, Fenster CB et al. (2017) Genetic management of fragmented animal and plant populations. Oxford University Press, Oxford, UK

    Fraser DJ, Debes PV, Bernatchez L, Hutchings JA (2014) Population size, habitat fragmentation, and the nature of adaptive variation in a stream fish. Proc R Soc B 281:20140370
    PubMed  Google Scholar 

    Galetti M, Guevara R, Neves CL, Rodarte RR, Bovendorp RS, Moreira M et al. (2015) Defaunation affects the populations and diets of rodents in Neotropical rainforests. Biol Conserv 190:2–7
    Google Scholar 

    Galochet M, Morel V (2015) La biodiversité dans l’aménagement du territoire en Guyane française. VertigO – la revue électronique en sciences de l’environnement, Volume 15 Numéro 1. http://journals.openedition.org/vertigo/16069

    Garnier S, Alibert P, Audiot P, Prieur B, Rasplus J-Y (2004) Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography of an alpine insect species, Carabus solieri. Mol Ecol 13:1883–1897
    CAS  PubMed  Google Scholar 

    Garrick RC, Sunnucks P, Dyer RJ (2010) Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. BMC Evol Biol 10:118
    PubMed  PubMed Central  Google Scholar 

    Gavan MK, Oliver MK, Douglas A, Piertney SB (2015) Gene dynamics of toll-like receptor 4 through a population bottleneck in an insular population of water voles (Arvicola amphibius). Conserv Genet 16:1181–1193
    CAS  Google Scholar 

    Gonzalez-Quevedo C, Davies RG, Phillips KP, Spurgin LG, Richardson DS (2016) Landscape-scale variation in an anthropogenic factor shapes immune gene variation within a wild population. Mol Ecol 25:4234–4246
    CAS  PubMed  Google Scholar 

    Gonzalez-Quevedo C, Spurgin LG, Illera JC, Richardson DS (2015) Drift, not selection, shapes toll-like receptor variation among oceanic island populations. Mol Ecol 24:5852–5863
    CAS  PubMed  PubMed Central  Google Scholar 

    Gottdenker NL, Streicker DG, Faust CL, Carroll CR (2014) Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11:619–632
    PubMed  Google Scholar 

    Grueber CE, Knafler GJ, King TM, Senior AM, Grosser S, Robertson B et al. (2015) Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conserv Genet 16:595–611
    CAS  Google Scholar 

    Grueber CE, Wallis GP, Jamieson IG (2013) Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a re-introduced population of a threatened species. Mol Ecol 22:4470–4482
    CAS  PubMed  Google Scholar 

    Grueber CE, Wallis GP, Jamieson IG (2014) Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes. PLoS ONE 9:e89632
    PubMed  PubMed Central  Google Scholar 

    Grueber CE, Wallis GP, King TM, Jamieson IG (2012) Variation at innate immunity toll-like receptor genes in a bottlenecked population of a New Zealand Robin. PLoS ONE 7:e45011
    CAS  PubMed  PubMed Central  Google Scholar 

    Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG (2014) The hard ticks of the world. Springer Netherlands, Dordrecht
    Google Scholar 

    Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD et al. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052
    PubMed  PubMed Central  Google Scholar 

    Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A et al. (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853
    CAS  PubMed  Google Scholar 

    Harrisson KA, Pavlova A, Amos JN, Takeuchi N, Lill A, Radford JQ et al. (2013) Disrupted fine-scale population processes in fragmented landscapes despite large-scale genetic connectivity for a widespread and common cooperative breeder: the superb fairy-wren (Malurus cyaneus). J Anim Ecol 82:322–333
    PubMed  Google Scholar 

    Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638
    CAS  PubMed  Google Scholar 

    Hillis DM, Moritz C, Mable BK (eds) (1996) Molecular systematics, 2nd ed. Sinauer Associates, Sunderland, Massachusetts

    Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807
    Google Scholar 

    Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332
    PubMed  PubMed Central  Google Scholar 

    INSEE (2019) La population guyanaise à l’horizon 2050 : vers un doublement de la population? INSEE Antilles-Guyane, Pointe-à-pitre

    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL et al. (2008) Global trends in emerging infectious diseases. Nature 451:990–993
    CAS  PubMed  PubMed Central  Google Scholar 

    Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129(Suppl):S3–S14
    PubMed  Google Scholar 

    Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137
    CAS  PubMed  Google Scholar 

    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649
    PubMed  PubMed Central  Google Scholar 

    Keesing F, Brunner J, Duerr S, Killilea M, LoGiudice K, Schmidt K et al. (2009) Hosts as ecological traps for the vector of Lyme disease. Proc R Soc B Biol Sci 276:3911–3919
    CAS  Google Scholar 

    Keestra AM, de Zoete MR, Bouwman LI, Vaezirad MM, van Putten JPM (2013) Unique features of chicken toll-like receptors. Dev Comp Immunol 41:316–323
    CAS  PubMed  Google Scholar 

    Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064
    Google Scholar 

    Khimoun A, Arnoux E, Martel G, Pot A, Eraud C, Condé B et al. (2016b) Contrasted patterns of genetic differentiation across eight bird species in the Lesser Antilles. Genetica 144:125–138
    PubMed  Google Scholar 

    Khimoun A, Eraud C, Ollivier A, Arnoux E, Rocheteau V, Bely M et al. (2016a) Habitat specialization predicts genetic response to fragmentation in tropical birds. Mol Ecol 25:3831–3844
    PubMed  Google Scholar 

    Khimoun A, Ollivier A, Faivre B, Garnier S (2017) Level of genetic differentiation affects relative performances of expressed sequence tag and genomic SSRs. Mol Ecol Resour 17:893–903
    CAS  PubMed  Google Scholar 

    Knafler GJ, Grueber CE, Sutton JT, Jamieson IG (2017) Differential patterns of diversity at microsatellite, MHC, and TLR loci in bottlenecked South Island saddleback populations. NZ J Ecol 41:98–106
    Google Scholar 

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K, Battistuzzi FU (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
    CAS  PubMed  PubMed Central  Google Scholar 

    Lehmann T (1993) Ectoparasites: direct impact on host fitness. Parasitol Today 9:8–13
    CAS  PubMed  Google Scholar 

    Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760
    Google Scholar 

    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452
    CAS  PubMed  Google Scholar 

    Lindenmayer DB, Fischer J (2013) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Washington, DC

    Lindsay DL, Barr KR, Lance RF, Tweddale SA, Hayden TJ, Leberg PL (2008) Habitat fragmentation and genetic diversity of an endangered, migratory songbird, the golden-cheeked warbler (Dendroica chrysoparia). Mol Ecol 17:2122–2133
    PubMed  Google Scholar 

    Losos JB, Ricklefs RE (2009) The theory of island biogeography revisited. Princeton University Press, Princeton

    Marantz CA, Aleixo A, Bevier LR, Patten MA, Christie DA (2019) wedge-billed woodcreeper (Glyphorynchus spirurus). In: Handbook of the birds of the world alive. Lynx Edicions, Barcelona

    McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evolution 17:285–291
    Google Scholar 

    Milá B, Bardeleben C (2005) Isolation of polymorphic tetranucleotide microsatellite markers for the wedge-billed woodcreeper Glyphorynchus spirurus. Mol Ecol Notes 5:844–845
    Google Scholar 

    Minias P, Pikus E, Whittingham LA, Dunn PO (2018) A global analysis of selection at the avian MHC. Evolution 72:1278–1293
    PubMed  Google Scholar 

    Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond K et al. (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205
    CAS  PubMed  PubMed Central  Google Scholar 

    Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL et al. (2019) Vegan: community ecology package, vol 2. R package version, p 5–6

    Oliveira CJF, Carvalho WA, Garcia GR, Gutierrez FRS, de Miranda Santos IKF, Silva JS et al. (2010) Tick saliva induces regulatory dendritic cells: MAP-kinases and toll-like receptor-2 expression as potential targets. Vet Parasitol 167:288–297
    CAS  PubMed  Google Scholar 

    ONF (2017) Occupation du sol 2015 sur la bande littorale de Guyane et son evolution entre 2005 et 2015. Direction Régionale ONF Guyane, Cayenne

    Ostfeld RS, Keesing F, Eviner VT (2010) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton

    Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790
    CAS  PubMed  Google Scholar 

    Parham P (2003) Innate immunity: the unsung heroes. Nature 423:20

    Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405
    CAS  PubMed  Google Scholar 

    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539
    CAS  PubMed  PubMed Central  Google Scholar 

    Pearson SK, Bull CM, Gardner MG (2018) Selection outweighs drift at a fine scale: lack of MHC differentiation within a family living lizard across geographically close but disconnected rocky outcrops. Mol Ecol 27:2204–2214
    PubMed  Google Scholar 

    Pond SLK, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533
    CAS  PubMed  Google Scholar 

    Porlier M, Garant D, Perret P, Charmantier A (2012) Habitat-linked population genetic differentiation in the blue tit Cyanistes caeruleus. J Hered 103:781–791
    PubMed  Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
    CAS  PubMed  PubMed Central  Google Scholar 

    Quéméré E, Hessenauer P, Galan M, Fernandez M, Merlet J, Chaval Y et al. (2018) Fluctuating pathogen-mediated selection favours the maintenance of innate immune gene polymorphism in a widespread wild ungulate. bioRxiv: https://doi.org/10.1101/458216

    R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R Core Team, Vienna

    Radwan J, Kuduk K, Levy E, LeBas N, Babik W (2014) Parasite load and MHC diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard. Mol Ecol 23:5966–5978
    CAS  PubMed  Google Scholar 

    Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176
    PubMed  Google Scholar 

    Rivera-Ortíz FA, Aguilar R, Arizmendi MDC, Quesada M, Oyama K (2015) Habitat fragmentation and genetic variability of tetrapod populations: fragmentation and genetic variability. Anim Conserv 18:249–258
    Google Scholar 

    Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106
    PubMed  Google Scholar 

    Sagonas K, Runemark A, Antoniou A, Lymberakis P, Pafilis P, Valakos ED et al. (2019) Selection, drift, and introgression shape MHC polymorphism in lizards. Heredity 122:468–484
    CAS  PubMed  Google Scholar 

    Sano E, Carlson S, Wegley L, Rohwer F (2004) Movement of viruses between biomes. Appl Environ Microbiol 70:5842–5846
    CAS  PubMed  PubMed Central  Google Scholar 

    Santonastaso T, Lighten J, van Oosterhout C, Jones KL, Foufopoulos J, Anthony NM (2017) The effects of historical fragmentation on major histocompatibility complex class II β and microsatellite variation in the Aegean island reptile, Podarcis erhardii. Ecol Evol 7:4568–4581
    PubMed  PubMed Central  Google Scholar 

    Schleicher A, Biedermann R, Kleyer M (2011) Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landsc Ecol 26:529–540
    Google Scholar 

    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234
    CAS  PubMed  Google Scholar 

    Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90
    CAS  Google Scholar 

    Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792
    CAS  PubMed  Google Scholar 

    Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101:15261–15264
    CAS  PubMed  Google Scholar 

    Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B Biol Sci 277:979–988
    CAS  Google Scholar 

    Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169
    CAS  PubMed  PubMed Central  Google Scholar 

    Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989
    CAS  PubMed  PubMed Central  Google Scholar 

    Strand TM, Segelbacher G, Quintela M, Xiao L, Axelsson T, Höglund J (2012) Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse? Ecol Evol 2:341–353
    PubMed  PubMed Central  Google Scholar 

    Sunnucks P (2011) Towards modelling persistence of woodland birds: the role of genetics. Emu 111:19–39
    Google Scholar 

    Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504
    CAS  PubMed  PubMed Central  Google Scholar 

    Tschirren B (2015) Borrelia burgdorferi sensu lato infection pressure shapes innate immune gene evolution in natural rodent populations across Europe. Biol Lett 11:20150263
    PubMed  PubMed Central  Google Scholar 

    Väli U, Einarsson A, Waits L, Ellegren H (2008) To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations? Mol Ecol 17:3808–3817
    PubMed  Google Scholar 

    Van Etten J (2017) R package gdistance: distances and routes on geographical grids. J Stat Softw 76:1–21
    Google Scholar 

    Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecol Lett 10:219–229
    PubMed  Google Scholar 

    Vilas A, Pérez-Figueroa A, Quesada H, Caballero A (2015) Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Mol Ecol 24:4419–4432
    PubMed  Google Scholar 

    Vinkler M, Albrecht T (2009) The question waiting to be asked: innate immunity receptors in the perspective of zoological research. Folia Zool 58:15
    Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370
    CAS  PubMed  Google Scholar 

    Wlasiuk G, Nachman MW (2010) Adaptation and constraint at toll-like receptors in primates. Mol Biol Evol 27:2172–2186
    CAS  PubMed  PubMed Central  Google Scholar 

    Woltmann S, Kreiser BR, Sherry TW (2012) Fine-scale genetic population structure of an understory rainforest bird in Costa Rica. Conserv Genet 13:925–935
    Google Scholar 

    Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken toll-like receptors. Immunogenetics 56:743–753
    CAS  PubMed  Google Scholar 

    Young HS, McCauley DJ, Dirzo R, Goheen JR, Agwanda B, Brook C et al. (2015) Context-dependent effects of large-wildlife declines on small-mammal communities in central Kenya. Ecol Appl 25:348–360
    PubMed  Google Scholar  More

  • in

    Seeds attached to refrigerated shipping containers represent a substantial risk of nonnative plant species introduction and establishment

    Changes in propagule pressure from single or multiple regions directly contribute to the success or failure of nonnative species establishment6,8,23,24. In this study, we collected and measured the quantity and diversity of seeds, over time obtained from the air-intake grilles of refrigerated containers, with two seasons for comparison. Targeting the trans-oceanic transport of a single commodity in this industrial trade system that serves as a transport vector for hitchhiking seeds provided reduced variation in which to quantify propagule pressure, including propagule size (Fig. 1) and propagule number (Supplementary Fig. 2) of plant species considered to be of high-risk to agriculture in the USA19. Our key finding is that influx is sufficient and reproduction of these species is high enough to represent a risk of population(s) establishment in and around the shipping port, even with the bottlenecks of escape from the shipping container, subsequent germination, and seedling survival (Figs. 2, 3).
    Over 20,000 shipping containers are moved as import or export daily on the GCT 14, providing ample volumes for passive hitchhikers to establish at the GCT and surrounding areas. In fact, we found steady arrival of shipping containers over the approximately 32-week shipping season (Supplementary Fig. 2). Conversely, we found strong seasonal variation in propagule number (i.e., number of seeds per refrigerated shipping container; Fig. 1). We estimated for the FNW, S. spontaneum, that over 40,000 seeds entered GCT during the two shipping seasons (Table 1). This level of propagule pressure is clearly sufficient to represent introduction and establishment risk of a clonal, perennial, fecund species that likely does not require a large initial propagule size, even if the escape rate from the shipping containers is exceedingly small (Table 1; Fig. 2). In this study, the four focal monocotyledonous taxa all had similar seed sizes, and no other larger-sized propagative material of these species (e.g., rhizomatous material or cuttings) were encountered during our study at the GCT.
    The theoretical literature postulates that increased numbers of propagules (i.e., propagule size6,8,9,10,11) and pressure (which includes propagule size and frequency as a rate) increases the likelihood of nascent population establishment and population size and diversity6,10; however, among our four focal taxa, a nascent population may establish from a single seed during arrival at a suitable terrestrial substrate, such as the GCT’s greenspaces19. Persistence of an extremely small population can, and is likely to, be facilitated by asexual propagation and spatial spread of these particular plant taxa. Theoretical population biology intrinsically includes propagule pressure within the invasion process6,10, and empirical studies measuring propagule pressure have demonstrated its importance as the most important and generalizable predictor of nonnative invasion success24. Propagule pressure in itself is also the factor most influenced by human activity8,9. Therefore, our study adds additional support to the importance of propagule pressure (see Figs. 2 and 3), and in this system, there is sufficient propagule pressure (i.e., influx from Fig. 3) for invasion success, even if escape rates from shipping containers, germination, and survival are low.
    Though S. spontaneum is the only FNW we encountered, we were also able to identify Arundo donax L., a species that is listed as noxious by 46 of the USA’s 50 states25. We were not able to identify seeds to a taxonomic level sufficient to determine origin status for the other 28 taxa encountered (Table S4), but for our three additional focal species, we suggest that two species are native and one is likely introduced. We found Typha domingensis (Pers.) Steud. (native), Andropogon glomeratus (Walter) Britton, Sterns & Poggenb. and A. virginicus L. (both native), and Phragmites australis (Cav.) Steud. (nonnative), already established on-port at the GCT in a previous study that demonstrated that the Port of Savannah is a hub of nonnative species richness19.
    For any of the species collected on the shipping containers, the propagules have the potential of being picked up en route to the GCT or, with the exception of S. spontaneum since it is not established there, at the GCT. Most of the taxa already have cosmopolitan distributions, and actual escape rates from the shipping containers are not yet known, meaning that the seeds could make multiple journeys on cargo ships across oceans before being released from a container. Also, the seasonality of seed dispersal coincides with dispersal time in the northern hemisphere, which may apply to seed sources in Panama, the Caribbean, or the USA. Andropogon glomeratus and A. virginicus occur throughout North and Central America (including Panama and the Caribbean)26. As native species to the southeastern USA, propagules escaping refrigerated shipping containers are not of significant concern, although they could be homogenizing genetic composition if genotypes from other portions of the parental established ranges are introduced here. Additionally, Andropogon propagules may result in introductions of nonnative species to South America if the seeds remain on the containers and are viable for return trips. Typha domingensis has nearly a global distribution, and though it is native to the southeastern USA, its presence at the Port of Savannah could also indicate the presence of admixed genotypes. Moreover, our morphological identification of the seeds could not distinguish to the species level, and T. angustifolia L., a nonnative species, could have been represented in our samples, though this species is well established and widely distributed already in the USA26. Phragmites australis, a noxious weed in 6 USA states25, is already found worldwide26. The genus Phragmites contains 4 species, of which only Phragmites australis is native to portions of North America; however, intra- and inter-specific hybridization among genotypes has resulted in the influx of nonnative lineages from Europe and Asia, which have spread to areas of the continent where it is not native27,28.
    The most interesting case is S. spontaneum, the FNW. This species is established only in Florida on the USA mainland, where it was introduced for historical and extant breeding programs with sugarcane29. This recent report29 showed that it was naturalized in only three counties, but we have documented it growing in six counties and in cultivation in one additional county (Supplementary Fig. 4). We did not find it growing at the GCT at the Port of Savannah. Yet, it is known that S. spontaneum, which is native to the Indian subcontinent, is well established in the Panama Canal region29,30 along the shipping route of interest. The number of propagules we intercepted and estimated, along with nontrivial germination rates and high survivorship of seedlings, indicate that this species represents a real threat of establishment outside of Florida. Combined with other modeled estimates that S. spontaneum can establish throughout the majority of the USA29, we suggest that this species represents a significant risk of negative invasive species impact, earning its FNW listing in the 1980s18,29.
    All four of our focal taxa share common life history features that have been suggested to be characteristic of invasive plant species: asexual reproduction through rhizomes, persistence in a wide range of environmental conditions, prolific seed production (Table 1 and citations within), wind pollination, and wind dispersal31,32,33. These traits have the potential to enhance geographic spread into new ranges and rapidly lead to single-species domination of local plant communities. All of these taxa have a life history and ecology similar to the very successful southeastern USA invasive species cogongrass (Imperata cylindrica (L.) P. Beauv.) that has been demonstrated to benefit from intraspecific heterosis and multiple introductions34,35,36.
    A previous study used molecular barcoding of seedlings germinated from seed collected from Season 1 in this study, and they identified some seedlings as: S. spontaneum, Typha sp(p)., Phragmites sp(p)., and Andropogon sp(p).37, as identified here. Seeds that were grouped as S. spontaneum in this study resulted in seedlings that returned haplotypes for the genus Phragmites (rbcL haplotype 1 and matK haplotypes 3 and 437) and Saccharum along with other genera37. There are two interesting and opposing forces at play here. First, in sorting seeds morphologically, there is the potential to group similar looking seeds of different species. The molecular barcode result that shows Phragmites haplotypes in seeds morphologically identified as S. spontaneum is evidence of misidentification and inaccurate sorting of seed. Second, some haplotypes showed equally correct molecular identification across multiple genera of grasses, indicating that these standard molecular barcode sequences for plants may not have the species-level resolution necessary for molecular identification of some of the highest threat invasive grass species.
    There are two key approaches to mitigating the risk that propagules of nonnative taxa will become established: 1) prevent propagules from hitchhiking on transoceanic cargo ships, in this case, becoming attached to shipping containers at their point-of-origin or stops along the way (that result from “trans-shipping”), and 2) prevent viable propagules from entering and establishing in the USA, via inspection and interception by the “gatekeepers” of biosecurity at international points-of-entry. These agricultural inspectors are tasked with the interception of propagules of insects, fungi, and all other nonnative or “actionable” taxa, in addition to the seeds of plants. One potential solution to reduce invasion risk by vascular plant seed is to employ a scaled-up version of the research approach we implemented here of backpack vacuuming air-intake grilles of refrigerated shipping containers. Another possibility in lieu of labour-intensive vacuuming of intake grilles is to conduct research on efficacy of liquid pre-emergent herbicide application to the air-intake grilles. For either approach, our data support that these interventions may not be needed year-round for important species like S. spontaneum, which have a clear import seasonality on this particular commodity. For example, based on our data, seed removal measures may only be needed in October, November, and early-mid December.
    In the face of poorly resourced capacity for inspection and the potential of diminishing fiscal resources and human capital, consequences include acceleration of biodiversity loss, economic and environmental impacts, and on-going biotic homogenization. The interception efforts to prevent the entry of nonnative propagules of all nonnative taxa worldwide will ultimately conserve local endemism, biodiversity, economic output, and ecosystem services that are interrupted or extirpated by biological invasions1,3. This research aimed to identify key risks and highlights the need for improved strategies for efficacious prevention and interception of nonnative, particularly plant, propagules prior to establishment, though such prevention approaches can be designed and applied for many taxa. Enhancing the capacity, speed, and frequency of successful prevention programs will be required to minimize or eliminate the real risks posed by viable hitchhiking propagules associated with economic trade and sea/air transportation of commodities and people. More

  • in

    Microbial deterioration and sustainable conservation of stone monuments and buildings

    1.
    Dornieden, T., Gorbushina, A. & Krumbein, W. Biodecay of cultural heritage as a space/time-related ecological situation—an evaluation of a series of studies. Int. Biodeterior. Biodegrad. 46, 261–270 (2000).
    CAS  Google Scholar 
    2.
    Warscheid, T. et al. Studies on the temporal development of microbial infection of different types of sedimentary rocks and its effect on the alteration of the physico-chemical properties in building materials. In Conservation of stone and other materials: Proc. of the International RILEM/UNESCO congress held at the UNESCO headquarters (ed. Thiel, M.-J.) 303–310 (E. & F.N. Spon Ltd, 1993).

    3.
    Gadd, G. M. Geomicrobiology of the built environment. Nat. Microbiol. 2, 16275 (2017).
    CAS  Google Scholar 

    4.
    Pinna, D. Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives (Apple Academic Press, 2017).

    5.
    Onofri, S., Zucconi, L., Isola, D. & Selbmann, L. Rock-inhabiting fungi and their role in deterioration of stone monuments in the Mediterranean area. Plant Biosyst. 148, 384–391 (2014).
    Google Scholar 

    6.
    Villa, F., Stewart, P. S., Klapper, I., Jacob, J. M. & Cappitelli, F. Subaerial biofilms on outdoor stone monuments: changing the perspective toward an ecological framework. BioScience 66, 285–294 (2016).
    Google Scholar 

    7.
    Warscheid, T. & Braams, J. Biodeterioration of stone: a review. Int. Biodeterior. Biodegrad. 46, 343–368 (2000).
    CAS  Google Scholar 

    8.
    Saiz-Jimenez, C. Biogeochemistry of weathering processes in monuments. Geomicrobiol. J. 16, 27–37 (1999).
    CAS  Google Scholar 

    9.
    Chen, J., Blume, H.-P. & Beyer, L. Weathering of rocks induced by lichen colonization — a review. Catena 39, 121–146 (2000).
    CAS  Google Scholar 

    10.
    Martino, P. D. What about biofilms on the surface of stone monuments? Open Conf. Proc. J. 6, 14–28 (2016).
    Google Scholar 

    11.
    Gu, J.-D., Ford, T. E. & Mitchell, R. in Uhlig’s Corrosion Handbook 3rd edn (ed. Revie, R. W.) 351–363 (Wiley, 2011).

    12.
    Polynov, B. The first stages of soil formation on massive crystaline rocks. Pochvovedeniye 7, 325–339 (1945).
    Google Scholar 

    13.
    Vernadskiy, V. Geochemical Essays (Ocherki geokhimii) (Leningrad State Publishing House, 1927).

    14.
    Krasil’nikov, N. The role of microorganisms in the weathering of rocks. Mikrobiologiya 18, 318–323 (1949).
    Google Scholar 

    15.
    Yarilova, Y. A. The role of lithophilous lichens in the weathering of massive crystalline rocks. Pochvovedeniye 3, 533–548 (1947).
    Google Scholar 

    16.
    Pochon, J., Tardieux, P., Lajudie, J. & Charpentier, M. Degradation des temples d’Angkor et processus biologiques. Ann. Inst. Pasteur 98, 457–461 (1960).
    Google Scholar 

    17.
    Pochon, J. & Jaton, C. in Biodeterioration of Materials (eds. Wolters, A. H. & Elphich, C. C.) 258–268 (Elsevier, 1968).

    18.
    Pochon, J. & Jaton, C. The role of microbiological agencies in the deterioration of stone. Chem. Ind. 9, 1587–1589 (1967).
    Google Scholar 

    19.
    Paquet, J. Contribution a l’etude de la maladie de la pierre: new hypothese sur les causes des transferts et des concentrations de sulfate produisant les effets foliants. Mon. His. France 10, 73–88 (1964).
    Google Scholar 

    20.
    Hueck, H. in Biodeterioration of Materials. Microbiological and Allied Aspects (eds Walters, A. H. & Elphick, J. J.) 6–12 (Elsevier Publishing Co. Ltd, 1968).

    21.
    Gaylarde, P. & Gaylarde, C. Deterioration of siliceous stone monuments in Latin America: microorganisms and mechanisms. Corros. Rev. 22, 395–416 (2004).
    CAS  Google Scholar 

    22.
    Uchida, E., Ogawa, Y., Maeda, N. & Nakagawa, T. Deterioration of stone materials in the Angkor monuments, Cambodia. Eng. Geol. 55, 101–112 (2000).
    Google Scholar 

    23.
    Caneva, G., Bartoli, F., Savo, V., Futagami, Y. & Strona, G. Combining statistical tools and ecological assessments in the study of biodeterioration patterns of stone temples in Angkor (Cambodia). Sci. Rep. 6, 32601 (2016).
    CAS  Google Scholar 

    24.
    Meng, H., Katayama, Y. & Gu, J.-D. More wide occurrence and dominance of ammonia-oxidizing archaea than bacteria at three Angkor sandstone temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. Int. Biodeterior. Biodegrad. 117, 78–88 (2017).
    CAS  Google Scholar 

    25.
    Zammit, G., Sánchez-Moral, S. & Albertano, P. Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci. Total Environ. 409, 2773–2782 (2011).
    CAS  Google Scholar 

    26.
    McNamara, C. J., Perry, T. D., Bearce, K. A., Hernandez-Duque, G. & Mitchell, R. Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb. Ecol. 51, 51–64 (2006).
    Google Scholar 

    27.
    Ortega-Morales, B. O. et al. Bioweathering potential of cultivable fungi associated with semi-arid surface microhabitats of Mayan buildings. Front. Microbiol. 7, 201 (2016).
    Google Scholar 

    28.
    Cappitelli, F., Principi, P., Pedrazzani, R., Toniolo, L. & Sorlini, C. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci. Total Environ. 385, 172–181 (2007).
    CAS  Google Scholar 

    29.
    Rosado, T. et al. Pink! Why not? On the unusual colour of Évora Cathedral. Int. Biodeterior. Biodegrad. 94, 121–127 (2014).
    CAS  Google Scholar 

    30.
    Schiavon, N. et al. A multianalytical approach to investigate stone biodeterioration at a UNESCO world heritage site: the volcanic rock-hewn churches of Lalibela, Northern Ethiopia. Appl. Phys. A 113, 843–854 (2013).
    CAS  Google Scholar 

    31.
    Guillitte, O. Bioreceptivity: a new concept for building ecology studies. Sci. Total Environ. 167, 215–220 (1995).
    CAS  Google Scholar 

    32.
    Warscheid, T. & Leisen, H. in Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series (eds Charola, A. E. et al.) 1–18 (Smithsonian Institution Scholarly Press, 2011).

    33.
    Warscheid, T., Oelting, M. & Krumbein, W. E. Physico-chemical aspects of biodeterioration processes on rocks with special regard to organic pollutants. Int. Biodeterior. Biodegrad. 28, 37–48 (1991).
    CAS  Google Scholar 

    34.
    Haack, T. K. & McFeters, G. A. Nutritional relationships among microorganisms in an epilithic biofilm community. Microb. Ecol. 8, 115–126 (1982).
    CAS  Google Scholar 

    35.
    Liu, X., Meng, H., Wang, Y., Katayama, Y. & Gu, J.-D. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Int. Biodeterior. Biodegrad. 133, 9–16 (2018).
    CAS  Google Scholar 

    36.
    Prieto, B. & Silva, B. Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int. Biodeterior. Biodegrad. 56, 206–215 (2005).
    CAS  Google Scholar 

    37.
    Miller, A. Z. et al. Bioreceptivity of building stones: a review. Sci. Total Environ. 426, 1–12 (2012).
    CAS  Google Scholar 

    38.
    Warscheid, T. et al. Biodeterioration studies on soapstone, quartzite & sandstones of historical monuments in Brazil and Germany. Preliminary results and evaluation for restoration practices. In Proc. of the 7th International Congress on Deterioration and Conservation of Stone 491–500 (Laboratório Nacional de Engenharia Civil, 1992).

    39.
    Beck, K., Al-Mukhtar, M., Rozenbaum, O. & Rautureau, M. Characterization, water transfer properties and deterioration in tuffeau: building material in the Loire valley—France. Build. Environ. 38, 1151–1162 (2003).
    Google Scholar 

    40.
    Sousa, L. M. O., Suárez del Río, L. M., Calleja, L., Ruiz de Argandoña, V. G. & Rey, A. R. Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng. Geol. 77, 153–168 (2005).
    Google Scholar 

    41.
    Koestler, R., Warscheid, T. & Nieto, F. in Saving our Architectural Heritage: The Conservation of Historic Stone Structures (eds Baer, N. S. & Snethlage, R.) 25–36 (Wiley, 1997).

    42.
    Miller, A. Z., Dionísio, A., Laiz, L., Macedo, M. F. & Saiz-Jimenez, C. The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms. Ann. Microbiol. 59, 705–713 (2009).
    CAS  Google Scholar 

    43.
    Tiano, P., Accolla, P. & Tomaselli, L. Phototrophic biodeteriogens on lithoid surfaces: an ecological study. Microb. Ecol. 29, 299–309 (1995).
    CAS  Google Scholar 

    44.
    Vázquez-Nion, D., Silva, B. & Prieto, B. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms. Sci. Total Environ. 610–611, 44–54 (2018).
    Google Scholar 

    45.
    Miller, A., Dionísio, A. & Macedo, M. F. Primary bioreceptivity: a comparative study of different Portuguese lithotypes. Int. Biodeterior. Biodegrad. 57, 136–142 (2006).
    CAS  Google Scholar 

    46.
    Hunt, J. M. Distribution of hydrocarbons in sedimentary rocks. Geochim. Cosmochim. Acta 22, 37–49 (1961).
    CAS  Google Scholar 

    47.
    Carter, N. & Viles, H. Lichen hotspots: raised rock temperatures beneath Verrucaria nigrescens on limestone. Geomorphology 62, 1–16 (2004).
    Google Scholar 

    48.
    Castanier, S., Le Métayer-Levrel, G. & Perthuisot, J.-P. Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment. Geol. 126, 9–23 (1999).
    CAS  Google Scholar 

    49.
    Leavengood, P., Twilley, J. & Asmus, J. F. Lichen removal from Chinese Spirit Path figures of marble. J. Cult. Herit. 1, S71–S74 (2000).
    Google Scholar 

    50.
    Gu, J.-D., Ford, T. E. & Mitchell, R. in Uhlig’s Corrosion Handbook 3rd edn (ed. Revie, R. W.) 451–460 (Wiley, 2011).

    51.
    Roig, P. B., Regidor Ros, J. L. & Estellés, R. M. Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri. Int. Biodeterior. Biodegrad. 84, 266–274 (2013).
    CAS  Google Scholar 

    52.
    Šimonovičová, A., Gódyová, M. & Ševc, J. Airborne and soil microfungi as contaminants of stone in a hypogean cemetery. Int. Biodeterior. Biodegrad. 54, 7–11 (2004).
    Google Scholar 

    53.
    Lan, W., Li, H., Wang, W.-D., Katayama, Y. & Gu, J.-D. Microbial community analysis of fresh and old microbial biofilms on Bayon Temple Sandstone of Angkor Thom, Cambodia. Microb. Ecol. 60, 105–115 (2010).
    Google Scholar 

    54.
    Bartoli, F. et al. Biological colonization patterns on the ruins of Angkor temples (Cambodia) in the biodeterioration vs bioprotection debate. Int. Biodeterior. Biodegrad. 96, 157–165 (2014).
    Google Scholar 

    55.
    Xu, H.-B. et al. Lithoautotrophical oxidation of elemental sulfur by fungi including Fusarium solani isolated from sandstone Angkor temples. Int. Biodeterior. Biodegrad. 126, 95–102 (2018).
    CAS  Google Scholar 

    56.
    Kusumi, A., Li, X. S. & Katayama, Y. Mycobacteria isolated from Angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur. Front. Microbiol. 2, 104 (2011).
    CAS  Google Scholar 

    57.
    Caneva, G. et al. Exploring ecological relationships in the biodeterioration patterns of Angkor temples (Cambodia) along a forest canopy gradient. J. Cult. Herit. 16, 728–735 (2015).
    Google Scholar 

    58.
    Kemmling, A., Kämper, M., Flies, C., Schieweck, O. & Hoppert, M. Biofilms and extracellular matrices on geomaterials. Environ. Geol. 46, 429–435 (2004).
    CAS  Google Scholar 

    59.
    Gaylarde, C. C., Rodríguez, C. H., Navarro-Noya, Y. E. & Ortega-Morales, B. O. Microbial biofilms on the sandstone monuments of the Angkor Wat complex, Cambodia. Curr. Microbiol. 64, 85–92 (2012).
    CAS  Google Scholar 

    60.
    Nuhoglu, Y. et al. The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci. Total Environ. 364, 272–283 (2006).
    CAS  Google Scholar 

    61.
    Gaylarde, C. et al. Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate. Biofouling 33, 113–127 (2017).
    Google Scholar 

    62.
    Mansch, R. & Bock, E. Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegradation 9, 47–64 (1998).
    CAS  Google Scholar 

    63.
    Viles, H. A. Implications of future climate change for stone deterioration. Geol. Soc. Lond. Spec. Publ. 205, 407–418 (2002).
    Google Scholar 

    64.
    Moroni, B. & Pitzurra, L. Biodegradation of atmospheric pollutants by fungi: a crucial point in the corrosion of carbonate building stone. Int. Biodeterior. Biodegrad. 62, 391–396 (2008).
    CAS  Google Scholar 

    65.
    Saiz-Jimenez, C. Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buidlings. Int. Biodeterior. Biodegrad. 40, 225–232 (1997).
    CAS  Google Scholar 

    66.
    Mitchell, R. & Gu, J.-D. Changes in the biofilm microflora of limestone caused by atmospheric pollutants. Int. Biodeterior. Biodegrad. 46, 299–303 (2000).
    CAS  Google Scholar 

    67.
    Stefanis, N.-A., Theoulakis, P. & Pilinis, C. Dry deposition effect of marine aerosol to the building stone of the medieval city of Rhodes, Greece. Build. Environ. 44, 260–270 (2009).
    Google Scholar 

    68.
    Leysen, L., Roekens, E. & Van Grieken, R. Air-pollution-induced chemical decay of a sandy-limestone Cathedral in Belgium. Sci. Total Environ. 78, 263–287 (1989).
    CAS  Google Scholar 

    69.
    Duan, Y. et al. The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, China. PLoS ONE 12, e0179718 (2017).
    Google Scholar 

    70.
    Bakr, A. & El Hafez, M. A. Role assessment of bat excretions in degradation of painted surface from Mohamed Ali’s palace, Suez, Egypt. Egypt. J. Archaeol. Restor. Stud. 3, 47–56 (2012).
    Google Scholar 

    71.
    Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 934 (2015).
    Google Scholar 

    72.
    Aviam, O., Bar-Nes, G., Zeiri, Y. & Sivan, A. Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilization of low-level radioactive waste. Appl. Environ. Microbiol. 70, 6031–6036 (2004).
    CAS  Google Scholar 

    73.
    Vupputuri, S. et al. Isolation of a sulfur-oxidizing Streptomyces sp. from deteriorating bridge structures and its role in concrete deterioration. Int. Biodeterior. Biodegrad. 97, 128–134 (2015).
    CAS  Google Scholar 

    74.
    Sand, W. & Bock, E. Biodeterioration of mineral materials by microorganisms—biogenic sulfuric and nitric acid corrosion of concrete and natural stone. Geomicrobiol. J. 9, 129–138 (1991).
    CAS  Google Scholar 

    75.
    Salvadori, O. & Municchia, A. C. The role of fungi and lichens in the biodeterioration of stone monuments. Open Conf. Proc. J. 7, 39–54 (2016).
    CAS  Google Scholar 

    76.
    Meng, H., Luo, L., Chan, H. W., Katayama, Y. & Gu, J.-D. Higher diversity and abundance of ammonia-oxidizing archaea than bacteria detected at the Bayon Temple of Angkor Thom in Cambodia. Int. Biodeterior. Biodegrad. 115, 234–243 (2016).
    CAS  Google Scholar 

    77.
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).
    CAS  Google Scholar 

    78.
    Gu, J.-D. & Katayama, Y. A microbiological challenge in protection of the sandstone Angkor monuments in Cambodia. IIC Newsletter (15 December 2017).

    79.
    Gu, J.-D., Ford, T. E., Berke, N. S. & Mitchell, R. Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegrad. 41, 101–109 (1998).
    Google Scholar 

    80.
    Li, X. S. et al. Oxidation of elemental sulfur by Fusarium solani strain THIF01 harboring endobacterium Bradyrhizobium sp. Microb. Ecol. 60, 96–104 (2010).
    CAS  Google Scholar 

    81.
    Li, X., Arai, H., Shimoda, I., Kuraishi, H. & Katayama, Y. Enumeration of sulfur-oxidizing microorganisms on deteriorating stone of the Angkor monuments, Cambodia. Microbes Environ. 23, 293–298 (2008).
    Google Scholar 

    82.
    Bourcart, J., Noetzlin, J., Pochon, J. & Berthelier, S. Etude des détériorations des pierres des monuments historiques. In Annales de l’Institut Technique de Bâtiment et des Travaux Publics 1–16 (1949).

    83.
    Lepidi, A. & Schippa, G. Some aspects of the growth of chemotrophic and heterotrophic microorganisms on calcareous surfaces. In Colloque international sur la deterioration des pierres en oeuvre. 1er. International symposium on the deterioration of building stones 143–148 (Les Imprimerie Reunites de Chambery, 1973).

    84.
    Barcellona Vero, L. & Monte Sila, M. Isolation of various sulphur-oxidizing bacteria from stone monuments. In The conservation of stone i. Proceedings of the international symposium (ed. Rossi-Manaresi, R.) 233–244 (Centro per la conservazione delle sculture all’aperto, 1976).

    85.
    Tarantino, M. M. S.-G. The metabolic state of microorganisms of the genus Thiobacillus on stone monuments. In The Conservation of stone II: preprints of the contributions to the international symposium 117–138 (Centro per la conservazione delle sculture all’aperto, 1981).

    86.
    Milde, K., Sand, W., Wolff, W. & Bock, E. Thiobacilli of the corroded concrete walls of the Hamburg sewer system. Microbiology 129, 1327–1333 (1983).
    Google Scholar 

    87.
    Krumbein, W. E. Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (gulf of Aqaba, Sinai). Geomicrobiol. J. 1, 139–203 (1979).
    CAS  Google Scholar 

    88.
    Suzuki, D., Li, Z., Cui, X., Zhang, C. & Katayama, A. Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int. J. Syst. Evol. Microbiol. 64, 3081–3086 (2014).
    CAS  Google Scholar 

    89.
    Kleindienst, S. et al. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J. 8, 2029–2044 (2014).
    CAS  Google Scholar 

    90.
    Griffin, P., Indictor, N. & Koestler, R. The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatment. Int. Biodeterior. Biodegrad. 28, 187–207 (1991).
    Google Scholar 

    91.
    Gaylarde, P., Englert, G., Ortega-Morales, O. & Gaylarde, C. Lichen-like colonies of pure Trentepohlia on limestone monuments. Int. Biodeterior. Biodegrad. 58, 119–123 (2006).
    CAS  Google Scholar 

    92.
    Isola, D. et al. Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers. 76, 75–96 (2016).
    Google Scholar 

    93.
    Suihko, M.-L. et al. Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Syst. Appl. Microbiol. 30, 494–508 (2007).
    CAS  Google Scholar 

    94.
    Morillas, H. et al. Characterization of the main colonizer and biogenic pigments present in the red biofilm from La Galea Fortress sandstone by means of microscopic observations and Raman imaging. Microchem. J. 121, 48–55 (2015).
    CAS  Google Scholar 

    95.
    Hu, H. et al. Occurrence of Aspergillus allahabadii on sandstone at Bayon temple, Angkor Thom, Cambodia. Int. Biodeterior. Biodegrad. 76, 112–117 (2013).
    CAS  Google Scholar 

    96.
    ElBaghdady, K. Z., Tolba, S. T. & Houssien, S. S. Biogenic deterioration of Egyptian limestone monuments: treatment and conservation. J. Cult. Herit. 38, 118–125 (2019).
    Google Scholar 

    97.
    Gonzalez-Pimentel, J. L. et al. Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria. Sci. Rep. 8, 1944 (2018).
    Google Scholar 

    98.
    Garty, J. Influence of epilithic microorganisms on the surface temperature of building walls. Can. J. Bot. 68, 1349–1353 (1990).
    Google Scholar 

    99.
    Sterflinger, K. Fungi: their role in deterioration of cultural heritage. Fungal Biol. Rev. 24, 47–55 (2010).
    Google Scholar 

    100.
    Ortega-Morales, B. O., Gaylarde, C. C., Englert, G. E. & Gaylarde, P. M. Analysis of salt-containing biofilms on limestone buildings of the Mayan culture at Edzna, Mexico. Geomicrobiol. J. 22, 261–268 (2005).
    CAS  Google Scholar 

    101.
    Cappitelli, F. et al. Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl. Environ. Microbiol. 72, 3733–3737 (2006).
    CAS  Google Scholar 

    102.
    Vincke, E. et al. Influence of polymer addition on biogenic sulfuric acid attack of concrete. Int. Biodeterior. Biodegrad. 49, 283–292 (2002).
    CAS  Google Scholar 

    103.
    De Windt, L. & Devillers, P. Modeling the degradation of Portland cement pastes by biogenic organic acids. Cem. Concr. Res. 40, 1165–1174 (2010).
    Google Scholar 

    104.
    Turkington, A. V. & Paradise, T. R. Sandstone weathering: a century of research and innovation. Geomorphology 67, 229–253 (2005).
    Google Scholar 

    105.
    Rossi, F. et al. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 28, 215–224 (2012).
    CAS  Google Scholar 

    106.
    Li, W.-W. & Yu, H.-Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour. Technol. 160, 15–23 (2014).
    CAS  Google Scholar 

    107.
    Stone, A. T. Microbial metabolites and the reductive dissolution of manganese oxides: oxalate and pyruvate. Geochim. Cosmochim. Acta 51, 919–925 (1987).
    CAS  Google Scholar 

    108.
    Monte, M. Oxalate film formation on marble specimens caused by fungus. J. Cult. Herit. 4, 255–258 (2003).
    Google Scholar 

    109.
    Cariati, F., Rampazzi, L., Toniolo, L. & Pozzi, A. Calcium oxalate films on stone surfaces: experimental assessment of the chemical formation. Stud. Conserv. 45, 180–188 (2000).
    CAS  Google Scholar 

    110.
    Scherer, G. W. Stress from crystallization of salt. Cem. Concr. Res. 34, 1613–1624 (2004).
    CAS  Google Scholar 

    111.
    Saiz-Jimenez, C. & Laiz, L. Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int. Biodeterior. Biodegrad. 46, 319–326 (2000).
    CAS  Google Scholar 

    112.
    Favero-Longo, S. E., Borghi, A., Tretiach, M. & Piervittori, R. In vitro receptivity of carbonate rocks to endolithic lichen-forming aposymbionts. Mycol. Res. 113, 1216–1227 (2009).
    Google Scholar 

    113.
    Lisci, M., Monte, M. & Pacini, E. Lichens and higher plants on stone: a review. Int. Biodeterior. Biodegrad. 51, 1–17 (2003).
    Google Scholar 

    114.
    Caneva, G., Danin, A., Ricci, S. & Conti, C. The pitting of Trajan’s column, Rome: an ecological model of its origin. In Conservazione del Patrimonio culturale II, Contributi Centro Linceo Interdisciplinare Beniamino Segre 78–102 (Accademia Nazionale dei Lincei, 1994).

    115.
    Danin, A. Pitting of calcareous rocks by organisms under terrestrial conditions. Isr. J. Earth Sci. 41, 201–207 (1992).
    Google Scholar 

    116.
    Danin, A. & Caneva, G. Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int. Biodeterior. Biodegrad. 26, 397–417 (1990).
    Google Scholar 

    117.
    Lombardozzi, V., Castrignanò, T., D’Antonio, M., Casanova Municchia, A. & Caneva, G. An interactive database for an ecological analysis of stone biopitting. Int. Biodeterior. Biodegrad. 73, 8–15 (2012).
    Google Scholar 

    118.
    Gehrmann, C., Krumbein, W. & Petersen, K. Endolithic lichens and the corrosion of carbonate rocks. A study of biopitting. Int. J. Mycol. Lichenol. 5, 37–48 (1992).
    Google Scholar 

    119.
    McIlroy de la Rosa, J. P., Warke, P. A. & Smith, B. J. Microscale biopitting by the endolithic lichen Verrucaria baldensis and its proposed role in mesoscale solution basin development on limestone. Earth Surf. Process. Landf. 37, 374–384 (2012).
    Google Scholar 

    120.
    Pomar, F., Gómez-Pujol, L., Fornós, J. J., Del Valle, L. & Nogales, B. Limestone biopitting in coastal settings: A spatial, morphometric, SEM and molecular microbiology sequencing study in the Mallorca rocky coast (Balearic Islands, Western Mediterranean). Geomorphology 276, 104–115 (2017).
    Google Scholar 

    121.
    Caneva, G. Ecological approach to the genesis of calcium oxalate patinas on stone monuments. Aerobiologia 9, 149–156 (1993).
    Google Scholar 

    122.
    Bruno, L. & Valle, V. Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman Catacombs. Int. Biodeterior. Biodegrad. 123, 286–295 (2017).
    Google Scholar 

    123.
    Danin, A. Patterns of biogenic weathering as indicators of palaeoclimates in Israel. Proc. R. Soc. Edinb. B 89, 243–253 (1986).
    Google Scholar 

    124.
    de Ferri, L., Lottici, P. P., Lorenzi, A., Montenero, A. & Salvioli-Mariani, E. Study of silica nanoparticles – polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult. Herit. 12, 356–363 (2011).
    Google Scholar 

    125.
    Son, S. et al. Organic−inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservation of stone heritage. ACS Appl. Mater. Inter. 1, 393–401 (2009).
    CAS  Google Scholar 

    126.
    Erkal, A., D’Ayala, D. & Sequeira, L. Assessment of wind-driven rain impact, related surface erosion and surface strength reduction of historic building materials. Build. Environ. 57, 336–348 (2012).
    Google Scholar 

    127.
    Traversetti, L., Bartoli, F. & Caneva, G. Wind-driven rain as a bioclimatic factor affecting the biological colonization at the archaeological site of Pompeii, Italy. Int. Biodeterior. Biodegrad. 134, 31–38 (2018).
    Google Scholar 

    128.
    Ortega-Morales, O., Guezennec, J., Hernández-Duque, G., Gaylarde, C. C. & Gaylarde, P. M. Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico. Curr. Microbiol. 40, 81–85 (2000).
    CAS  Google Scholar 

    129.
    Li, Q., Zhang, B., He, Z. & Yang, X. Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS ONE 11, e0163287 (2016).
    Google Scholar 

    130.
    Wu, F., Wang, W., Feng, H. & Gu, J.-D. Realization of biodeterioration to cultural heritage protection in China. Int. Biodeterior. Biodegrad. 117, 128–130 (2017).
    CAS  Google Scholar 

    131.
    Wang, W. et al. Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang, China. Int. Biodeterior. Biodegrad. 64, 461–466 (2010).
    Google Scholar 

    132.
    Zamarreño, D. V., Inkpen, R. & May, E. Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl. Environ. Microbiol. 75, 5981–5990 (2009).
    Google Scholar 

    133.
    Jroundi, F. et al. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nat. Commun. 8, 279 (2017).
    Google Scholar 

    134.
    Ascaso, C. et al. In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int. Biodeterior. Biodegrad. 49, 1–12 (2002).
    Google Scholar 

    135.
    Koestler, R. J., Parreira, E., Santoro, E. D. & Noble, P. Visual effects of selected biocides on easel painting materials. Stud. Conserv. 38, 265–273 (1993).
    Google Scholar 

    136.
    Fidanza, M. R. & Caneva, G. Natural biocides for the conservation of stone cultural heritage: a review. J. Cult. Herit. 38, 271–286 (2019).
    Google Scholar 

    137.
    Silva, M., Rosado, T., Teixeira, D., Candeias, A. & Caldeira, A. T. Production of green biocides for cultural heritage. Novel biotechnological solutions. Int. J. Conserv. Sci. 6, 519–530 (2015).
    CAS  Google Scholar 

    138.
    Silva, M., Rosado, T., Teixeira, D., Candeias, A. & Caldeira, A. T. Green mitigation strategy for cultural heritage: bacterial potential for biocide production. Environ. Sci. Pollut. Res. 24, 4871–4881 (2017).
    CAS  Google Scholar 

    139.
    Marin, E., Vaccaro, C. & Leis, M. Biotechnology applied to historic stoneworks conservation: testing the potential harmfulness of two biological biocides. Int. J. Conserv. Sci. 7, 227–238 (2016).
    Google Scholar 

    140.
    Caneva, G., Fidanza, M. R., Tonon, C. & Favero-Longo, S. E. Biodeterioration patterns and their interpretation for potential applications to stone conservation: a hypothesis from allelopathic inhibitory effects of lichens on the Caestia Pyramid (Rome). Sustainability 12, 1132 (2020).
    CAS  Google Scholar 

    141.
    Alfano, G. et al. The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera Cathedral after six years from the treatment. Int. Biodeterior. Biodegrad. 65, 1004–1011 (2011).
    CAS  Google Scholar 

    142.
    Soffritti, I. et al. The potential use of microorganisms as restorative agents: an update. Sustainability 11, 3853 (2019).
    CAS  Google Scholar 

    143.
    Scherer, G. W., Flatt, R. & Wheeler, G. Materials science research for the conservation of sculpture and monuments. MRS Bull. 26, 44–50 (2001).
    CAS  Google Scholar 

    144.
    Gu, J.-D. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int. Biodeterior. Biodegrad. 52, 69–91 (2003).
    CAS  Google Scholar 

    145.
    Charola, A. E., McNamara, C. & Koestler, R. J. (eds) Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series Smithsonian Contributions to Museum Conservation no. 2 (Smithsonian Institution Scholarly Press, 2011).

    146.
    Yang, F. et al. Conservation of weathered historic sandstone with biomimetic apatite. Chin. Sci. Bull. 57, 2171–2176 (2012).
    CAS  Google Scholar 

    147.
    Gherardi, F., Roveri, M., Goidanich, S. & Toniolo, L. Photocatalytic nanocomposites for the protection of European architectural heritage. Materials 11, 65 (2018).
    Google Scholar 

    148.
    Sierra-Fernandez, A., Gomez-Villalba, L., Rabanal, M. & Fort, R. New nanomaterials for applications in conservation and restoration of stony materials: a review. Mater. Construcc. 67, e107 (2017).
    Google Scholar 

    149.
    Grossi, C. M., Bonazza, A., Brimblecombe, P., Harris, I. & Sabbioni, C. Predicting twenty-first century recession of architectural limestone in European cities. Environ. Geol. 56, 455–461 (2008).
    CAS  Google Scholar 

    150.
    de la Rosa, J. P. M., Warke, P. A. & Smith, B. J. Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog. Phys. Geog. 37, 325–351 (2013).
    Google Scholar 

    151.
    Gadd, G. M. & Dyer, T. D. Bioprotection of the built environment and cultural heritage. Microb. Biotechnol. 10, 1152–1156 (2017).
    Google Scholar 

    152.
    Pinna, D. Biofilms and lichens on stone monuments: do they damage or protect? Front. Microbiol. 5, 133 (2014).
    Google Scholar 

    153.
    Gadd, G. M. et al. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 28, 36–55 (2014).
    Google Scholar 

    154.
    Bosch-Roig, P. & Ranalli, G. The safety of biocleaning technologies for cultural heritage. Front. Microbiol. 5, 155 (2014).
    Google Scholar 

    155.
    Zhang, G. et al. Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. Int. Biodeterior. Biodegrad. 143, 104723 (2019).
    CAS  Google Scholar 

    156.
    Zhang, X., Ge, Q., Zhu, Z., Deng, Y. & Gu, J.-D. Microbiological community of the Royal Palace in Angkor Thom and Beng Mealea of Cambodia by Illumina sequencing based on 16S rRNA gene. Int. Biodeterior. Biodegrad. 134, 127–135 (2018).
    CAS  Google Scholar  More

  • in

    Field-based sciences must transform in response to COVID-19

    When only local participation in fieldwork is possible, how effectively can remote collaborations be executed in the field sciences, when so much diverse expertise is required?
    Foremost is a comprehensive investment in the creation of digital archives at different scales. Various government agencies and developer-led fieldwork as well as excavations in extreme locations have been using such methods and techniques for years14. However, practice is neither standardized nor mainstreamed across comparable research projects, and in the context of COVID-19 there are many reasons to push for such goals.
    First, the creation of high-resolution photographic databases for photogrammetry is relatively easy to teach remotely, and is inexpensive, although post-processing time is substantial and requires investment in technicians. These techniques can record and visualize spatial relationships, stratigraphic sequences and, depending on the use of different light, may permit assessments that can even be superior to traditional by-eye illustrations14. Specialists can clearly mark sampling locations on the models for those on site, enabling group assessments. Second, the creation of three-dimensional (3D) geological and sedimentary archives also enables re-assessment of sequences in future. Third, the creation and sharing of both the archives and their interpretations will precipitate the much-needed standardization of sampling and analytical procedures. Within an open data framework, this working model will ensure that novice researchers and non-specialists learn from experts through collaborative, team-based inferences, rather than stitching together the results of individual specialists in a top-down approach.
    Our existing international field season schedules also require change — a long-overdue adjustment in the face of increasing anthropogenically induced climate change. Fieldwork will be based locally and projects will require many short and closely spaced field seasons. Those who can access our field sites within a few hours can conduct short-distance trips, focused on discrete steps in the process of assessment, excavation, sampling and inference. For example, a short initial season would focus on building a high-resolution digital model of the field site that can be shared with remote collaborators to develop excavation strategies. A later season could focus solely on sampling, following remote collaborative assessment of digital archives. Such approaches also in part mitigate the problems faced by less-accessible field sites, where frequent online meetings and the exchange of information are impossible. Effective remote collaboration will require very clear scheduling among remote experts at each phase of the process to minimize the burden on local researchers.
    At a landscape scale, the situation becomes more challenging. 3D models from unmanned aerial vehicles (UAVs), remote-sensing data15 and LiDAR16 are already widely used in prospection and analysis, and may facilitate effective collaboration between remote specialists and local participants. Remotely generated landscape-scale hypotheses and geomorphological maps can be tested at a later stage by specialists on the ground, whenever longer-distance travel becomes an appropriate option. The creation of 3D data using UAVs does not represent a considerable remote training challenge. A major new research focus should address the extent to which these methods and predictive models in geomorphology are able to replicate, complement and validate assessments of landscape-scale processes made in the field. More

  • in

    Climate change increases predation risk for a keystone species of the boreal forest

    1.
    Romero, G. Q. et al. Global predation pressure redistribution under future climate change. Nat. Clim. Change 8, 1087–1091 (2018).
    Article  Google Scholar 
    2.
    Ims, R. A. et al. Arctic greening and bird nest predation risk across tundra ecotones. Nat. Clim. Change 9, 607–610 (2019).
    Article  Google Scholar 

    3.
    Stenseth, N. et al. Snow conditions may create an invisible barrier for lynx. Proc. Natl Acad. Sci. USA 101, 10632–10634 (2004).
    CAS  Article  Google Scholar 

    4.
    Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change induced camouflage mismatch in a seasonally colour moulting mammal. Ecol. Lett. 19, 299–307 (2016).
    Article  Google Scholar 

    5.
    Post, E., Peterson, R. O., Stenseth, N. C. & McLaren, B. E. Ecosystem consequences of wolf behavioural response to climate. Nature 401, 905–907 (1999).
    CAS  Article  Google Scholar 

    6.
    Iles, D. T., Rockwell, R. F. & Koons, D. N. Shifting vital rate correlations alter predicted population responses to increasingly variable environments. Am. Nat. 193, E57–E64 (2019).
    Article  Google Scholar 

    7.
    Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328 (2018).
    Article  Google Scholar 

    8.
    Myers, J. H. Population cycles: generalities, exceptions and remaining mysteries. Proc. R. Soc. B 285, 20172841 (2018).
    Article  Google Scholar 

    9.
    Boutin, S. et al. Population changes of the vertebrate community during a snowshoe hare cycle in Canada’s boreal forest. Oikos 74, 69–80 (1995).
    Article  Google Scholar 

    10.
    Murray, D. L. & Boutin, S. The influence of snow on lynx and coyote movements: does morphology affect behavior? Oecologia 88, 463–469 (1991).
    Article  Google Scholar 

    11.
    Penczykowski, R. M., Connolly, B. M. & Barton, B. T. Winter is changing: trophic interactions under altered snow regimes. Food Webs 13, 80–91 (2017).
    Article  Google Scholar 

    12.
    Cornulier, T. et al. Europe-wide dampening of population cycles in keystone herbivores. Science 340, 63–66 (2013).
    CAS  Article  Google Scholar 

    13.
    Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).
    CAS  Article  Google Scholar 

    14.
    Ims, R. A., Henden, J.-A. & Killengreen, S. T. Collapsing population cycles. Trends Ecol. Evol. 23, 79–86 (2008).
    Article  Google Scholar 

    15.
    Hodges, K. et al. in Ecosystem Dynamics of the Boreal Forest (eds Krebs, C. et al.) 141–178 (Oxford Univ. Press, 2001).

    16.
    Oli, M. K. et al. Demography of snowshoe hare population cycles. Ecology 101, e02969 (2020).
    Article  Google Scholar 

    17.
    Peacock, S. Projected twenty-first-century changes in temperature, precipitation, and snow cover over North America in CCSM4. J. Clim. 25, 4405–4429 (2012).
    Article  Google Scholar 

    18.
    Krebs, C. J. et al. What factors determine cyclic amplitude in the snowshoe hare (Lepus americanus) cycle? Can. J. Zool. 92, 1039–1048 (2014).
    Article  Google Scholar 

    19.
    Yan, C., Stenseth, N. C., Krebs, C. J. & Zhang, Z. Linking climate change to population cycles of hares and lynx. Glob. Change Biol. 19, 3263–3271 (2013).
    Google Scholar 

    20.
    Studd, E. K. et al. Use of acceleration and acoustics to classify behavior, generate time budgets, and evaluate responses to moonlight in free-ranging snowshoe hares. Front. Ecol. Evol. 7, e154 (2019).
    Article  Google Scholar 

    21.
    Mills, L. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Natl Acad. Sci. USA 110, 7360–7365 (2013).
    CAS  Article  Google Scholar 

    22.
    Wilson, E. C., Shipley, A. A., Zuckerberg, B., Peery, M. Z. & Pauli, J. N. An experimental translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares. Conserv. Lett. 12, e12614 (2019).
    Article  Google Scholar 

    23.
    Guillaumet, A., Bowman, J., Thornton, D. & Murray, D. L. The influence of coyote on Canada lynx populations assessed at two different spatial scales. Community Ecol. 16, 135–146 (2015).
    Article  Google Scholar 

    24.
    Peers, M. J. L., Thornton, D. H. & Murray, D. L. Reconsidering the specialist–generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat. PLoS ONE 7, e51488 (2012).
    CAS  Article  Google Scholar 

    25.
    Bowler, B., Krebs, C., O’Donoghue, M. & Hone, J. Climatic amplification of the numerical response of a predator population to its prey. Ecology 95, 1153–1161 (2014).
    Article  Google Scholar 

    26.
    Krebs, C. J., Boutin, S. & Boonstra, R. (eds) Ecosystem Dynamics of the Boreal Forest (Oxford Univ. Press, 2001).

    27.
    O’Donoghue, M., Boutin, S., Krebs, C. & Hofer, E. Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos 80, 150–162 (1997).
    Article  Google Scholar 

    28.
    Hodges, K. in Ecology and Conservation of Lynx in the United States (eds Ruggiero, L. F. et al.) 117–161 (Univ. Press of Colorado, 2000).

    29.
    Brown, R. D. & Mote, P. W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 22, 2124–2145 (2009).
    Article  Google Scholar 

    30.
    Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob. Change Biol. 19, 697–710 (2013).
    Article  Google Scholar 

    31.
    Kielland, K., Olson, K. & Euskirchen, E. Demography of snowshoe hares in relation to regional climate variability during a 10-year population cycle in interior Alaska. Can. J. Res. 40, 1265–1272 (2010).
    Article  Google Scholar 

    32.
    Humphries, M. M., Studd, E. K., Menzies, A. K. & Boutin, S. To everything there is a season: summer-to-winter food webs and the functional traits of keystone species. Integr. Comp. Biol. 57, 961–976 (2017).
    Article  Google Scholar 

    33.
    Peers, M. J. L. et al. Prey availability and ambient temperature influence carrion persistence in the boreal forest. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13275 (2020).

    34.
    Krebs, C. J., Boonstra, R. & Boutin, S. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87, 87–100 (2018).
    Article  Google Scholar 

    35.
    Krebs, C. J. et al. The Community Ecological Monitoring Program Annual Data Report (Univ. of British Columbia, 2018).

    36.
    Zeileis, A., Grothendieck, G., Ryan, J., Ulrich, J. & Andrews, F. zoo: S3 infrastructure for regular and irregular time series (Z’s ordered observations). R package version 1.8-8 (2019).

    37.
    Fieberg, J. & Delgiudice, G. D. What time is it? Choice of time origin and scale in extended proportional hazards models. Ecology 90, 1687–1697 (2009).
    Article  Google Scholar 

    38.
    Murray, D. L. et al. Death from anthropogenic causes is partially compensatory in recovering wolf populations. Biol. Conserv. 143, 2514–2524 (2010).
    Article  Google Scholar 

    39.
    Murray, D. & Bastille-Rousseau, G. in Population Ecology in Practice (eds Murray, D. L. & Sandercock, B.) 123–156 (Wiley-Blackwell, 2020).

    40.
    Burnham, K. & Anderson, D. Model Selection and Multimodel Inference (Springer, 2002).

    41.
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
    Article  Google Scholar 

    42.
    McLellan, B. N. Some mechanisms underlying variation in vital rates of grizzly bears on a multiple use landscape. J. Wildl. Manag. 79, 749–765 (2015).
    Article  Google Scholar 

    43.
    Lunn, M. & McNeil, D. Applying Cox regression to competing risks. Biometrics 51, 524–532 (1995).
    CAS  Article  Google Scholar 

    44.
    Bastille-Rousseau, G. et al. Phase-dependent climate–predator interactions explain three decades of variation in neonatal caribou survival. J. Anim. Ecol. 85, 445–456 (2016).
    Article  Google Scholar 

    45.
    Murray, D. L., Bastille-Rousseau, G., Hornseth, M., Row, J. & Thornton, D. H. in Population Ecology in Practice (eds Murray, D. L. & Sandercock, B.) 17–46 (Wiley-Blackwell, 2020).

    46.
    Hodges, K. E., Krebs, C. J. & Sinclair, A. R. E. Snowshoe hare demography during a cyclic population low. J. Anim. Ecol. 68, 581–594 (1999).
    Article  Google Scholar 

    47.
    Boutin, S., Gilbert, B. S., Krebs, C. J., Sinclair, A. R. E. & Smith, J. N. M. The role of dispersal in the population dynamics of snowshoe hares. Can. J. Zool. 63, 106–115 (1984).
    Article  Google Scholar 

    48.
    Gillis, E. A. Survival of juvenile hares during a cyclic population increase. Can. J. Zool. 76, 1949–1956 (1998).
    Article  Google Scholar 

    49.
    Graf, P. M., Wilson, R. P., Qasem, L., Hackländer, K. & Rosell, F. The use of acceleration to code for animal behaviours; a case study in free-ranging Eurasian beavers Castor fiber. PLoS ONE 10, 1–17 (2015).
    Google Scholar  More

  • in

    Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird

    1.
    Dean, B. et al. Behavioural mapping of a pelagic seabird: combining multiple sensors and a hidden Markov model reveals the distribution of at-sea behaviour. J. R. Soc. 10, 20120570–20120570 (2013).
    Article  Google Scholar 
    2.
    Daniel Kissling, W., Pattemore, D. E. & Hagen, M. Challenges and prospects in the telemetry of insects. Biol. Rev. https://doi.org/10.1111/brv.12065 (2014).
    PubMed  Article  Google Scholar 

    3.
    Williams, H. J. et al. Optimizing the use of biologgers for movement ecology research. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13094 (2019).
    PubMed  Article  Google Scholar 

    4.
    Bowlin, M. S., Cochran, W. W. & Wikelski, M. C. Biotelemetry of New World thrushes during migration: Physiology, energetics and orientation in the wild. Integr. Comp. Biol. 45, 295–304 (2005).
    PubMed  Article  Google Scholar 

    5.
    Shoji, A. et al. Foraging behaviour of sympatric razorbills and puffins. Mar. Ecol. Prog. Ser. 520, 257–267 (2015).
    ADS  Article  Google Scholar 

    6.
    Guilford, T. et al. Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: Insights from machine learning. Proc. Biol. Sci. 276, 1215–1223 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Handcock, R. N. et al. Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9, 3586–3603 (2009).
    PubMed  Article  Google Scholar 

    8.
    Padget, O. et al. In situ clock shift reveals that the sun compass contributes to orientation in a pelagic seabird. Curr. Biol. 28, 275-279.e2 (2018).
    CAS  PubMed  Article  Google Scholar 

    9.
    Votier, S. C., Bicknell, A., Cox, S. L., Scales, K. L. & Patrick, S. C. A bird’s eye view of discard reforms: Bird-borne cameras reveal seabird/fishery interactions. PLoS ONE 8, e57376 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Barron, D. G., Brawn, J. D. & Weatherhead, P. J. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol. Evol. 1, 180–187 (2010).
    Article  Google Scholar 

    11.
    Bodey, T. W. et al. A phylogenetically controlled meta-analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data. Methods Ecol. Evol. 9, 946–955 (2018).
    Article  Google Scholar 

    12.
    Aldridge, H. D. J. N. & Brigham, R. M. Load carrying and maneuverability in an insectivorous bat: A test of the 5% ‘rule’ of radio-telemetry. J. Mammal. https://doi.org/10.2307/1381393 (1988).
    Article  Google Scholar 

    13.
    Hammerschlag, N., Gallagher, A. J. & Lazarre, D. M. A review of shark satellite tagging studies. J. Exp. Mar. Biol. Ecol. https://doi.org/10.1016/j.jembe.2010.12.012 (2011).
    Article  Google Scholar 

    14.
    Irvine, A. B., Wells, R. S. & Scott, M. D. An evaluation of techniques for tagging small odontocete cetaceans. Fish. Bull. (1982).

    15.
    van der Hoop, J. M. et al. Bottlenose dolphins modify behavior to reduce metabolic effect of tag attachment. J. Exp. Biol. 217, 4229–4236 (2014).
    PubMed  Article  Google Scholar 

    16.
    Putaala, A., Oksa, J., Rintamaki, H. & Hissa, R. Effects of hand-rearing and radiotransmitters on flight of gray partridge. J. Wildl. Manage. https://doi.org/10.2307/3802136 (1997).
    Article  Google Scholar 

    17.
    Jepsen, N., Thorstad, E. B., Havn, T. & Lucas, M. C. The use of external electronic tags on fish: An evaluation of tag retention and tagging effects. Anim. Biotelemetry https://doi.org/10.1186/s40317-015-0086-z (2015).
    Article  Google Scholar 

    18.
    Vandenabeele, S. P. et al. Are bio-telemetric devices a drag? Effects of external tags on the diving behaviour of great cormorants. Mar. Ecol. Prog. Ser. 519, 239–249 (2015).
    ADS  Article  Google Scholar 

    19.
    Puehringer-Sturmayr, V. et al. Effects of bio-loggers on behaviour and corticosterone metabolites of Northern Bald Ibises (Geronticus eremita) in the field and in captivity. Anim. Biotelemetry https://doi.org/10.1186/s40317-019-0191-5 (2020).
    Article  Google Scholar 

    20.
    Booms, T. L., Schempf, P. F. & Fuller, M. R. Preening behavior of adult gyrfalcons tagged with backpack transmitters. J. Raptor Res. https://doi.org/10.3356/jrr-10-115.1 (2011).
    Article  Google Scholar 

    21.
    Wilson, R. P. & Wilson, M. T. A peck activity record for birds fitted with devices. J. F. Ornithol. (1989).

    22.
    Robert, M., Drolet, B. & Savard, J.-P.L. Effects of backpack radio-transmitters on female Barrow’s goldeneyes. Waterbirds https://doi.org/10.1675/1524-4695(2006)29[115:eobrof]2.0.co;2 (2006).
    Article  Google Scholar 

    23.
    Pouliquen, O., Leishman, M. & Redhead, T. D. Effects of radio collars on wild mice, Mus domesticus. Can. J. Zool. https://doi.org/10.1139/z90-239 (1990).
    Article  Google Scholar 

    24.
    Wilson, C. D., Arnott, G., Reid, N. & Roberts, D. The pitfall with PIT tags: Marking freshwater bivalves for translocation induces short-term behavioural costs. Anim. Behav. https://doi.org/10.1016/j.anbehav.2010.10.003 (2011).
    Article  Google Scholar 

    25.
    Kooyman, G. L. et al. Heart rates and swim speeds of emperor penguins diving under sea ice. J. Exp. Biol. 165, 161–180 (1992).
    CAS  PubMed  Google Scholar 

    26.
    Harris, M. P., Bogdanova, M. I., Daunt, F. & Wanless, S. Using GPS technology to assess feeding areas of Atlantic Puffins Fratercula arctica. Ringing Migr. https://doi.org/10.1080/03078698.2012.691247 (2012).
    Article  Google Scholar 

    27.
    Wanless, S., Harris, M. P. & Morris, J. A. Behavior of alcids with tail-mounted radio transmitters. Colon. Waterbirds 158–163, https://doi.org/10.2307/1521336 (1989).

    28.
    Arlt, D., Low, M. & Pärt, T. Effect of geolocators on migration and subsequent breeding performance of a long-distance passerine migrant. PLoS ONE https://doi.org/10.1371/journal.pone.0082316 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Rodríguez, A., Negro, J. J., Fox, J. W. & Afanasyev, V. Effects of geolocator attachments on breeding parameters of Lesser Kestrels. J. F. Ornithol. https://doi.org/10.1111/j.1557-9263.2009.00247.x (2009).
    Article  Google Scholar 

    30.
    Scandolara, C. et al. Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits. J. Avian Biol. https://doi.org/10.1111/jav.00412 (2014).
    Article  Google Scholar 

    31.
    Whidden, S. E., Williams, C. T., Breton, A. R. & Buck, C. L. Effects of transmitters on the reproductive success of Tufted Puffins. J. F. Ornithol. 78, 206–212 (2007).
    Article  Google Scholar 

    32.
    Griffioen, M., Iserbyt, A. & Muller, W. Handicapping males does not affect their rate of parental provisioning, but impinges on their partners’ turn taking behavior. Front. Ecol. Evol. 7, 1–7 (2019).
    Article  Google Scholar 

    33.
    Ratz, T., Nichol, T. W. & Smiseth, P. T. Parental responses to increasing levels of handicapping in a burying beetle. Behav. Ecol. https://doi.org/10.1093/beheco/arz157 (2019).
    Article  Google Scholar 

    34.
    Wiebe, K. L. Negotiation of parental care when the stakes are high: Experimental handicapping of one partner during incubation leads to short-term generosity. J. Anim. Ecol. 79, 63–70 (2010).
    PubMed  Article  Google Scholar 

    35.
    Cantarero, A., López-Arrabé, J., Palma, A., Redondo, A. J. & Moreno, J. Males respond to female begging signals of need: A handicapping experiment in the pied flycatcher, Ficedula hypoleuca. Anim. Behav. https://doi.org/10.1016/j.anbehav.2014.05.002 (2014).
    Article  Google Scholar 

    36.
    Saraux, C. et al. Reliability of flipper-banded penguins as indicators of climate change. Nature 469, 203–208 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Beaulieu, M. et al. Can a handicapped parent rely on its partner? An experimental study within Adélie penguin pairs. Anim. Behav. 78, 313–320 (2009).
    Article  Google Scholar 

    38.
    Paredes, R., Jones, I. L. & Boness, D. J. Reduced parental care, compensatory behaviour and reproductive costs of thick-billed murres equipped with data loggers. Anim. Behav. 69, 197–208 (2005).
    Article  Google Scholar 

    39.
    Dean, B. et al. Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. Mar. Ecol. Prog. Ser. 538, 239–248 (2015).
    ADS  CAS  Article  Google Scholar 

    40.
    Guilford, T. C. et al. GPS tracking of the foraging movements of Manx Shearwaters Puffinus puffinus breeding on Skomer Island, Wales. Ibis (Lond. 1859). 150, 462–473 (2008).

    41.
    Shoji, A. et al. Dual foraging and pair-coordination during chick provisioning by Manx shearwaters: empirical evidence supported by a simple model. J. Exp. Biol. 218, 2116–2123 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Adams, J. et al. Effects of geolocation archival tags on reproduction and adult body mass of sooty shearwaters (Puffinus griseus). N. Z. J. Zool. 36, 355–366 (2009).
    Article  Google Scholar 

    43.
    Phillips, R. A., Xavier, J. C., Croxall, J. P., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on albatrosses and petrels. Auk 120, 1082–1090 (2003).
    Article  Google Scholar 

    44.
    Pennycuick, C. J., Fast, P. L. F., Ballerstädt, N. & Rattenborg, N. The effect of an external transmitter on the drag coefficient of a bird’s body, and hence on migration range, and energy reserves after migration. J. Ornithol. 153, 633–644 (2012).
    Article  Google Scholar 

    45.
    Hazekamp, A. A. H., Mayer, R. & Osinga, N. Flow simulation along a seal: The impact of an external device. Eur. J. Wildl. Res. 56, 131–140 (2010).
    Article  Google Scholar 

    46.
    Wilson, R. P. Antennae on transmitters on penguins: balancing energy budgets on the high wire. J. Exp. Biol. 207, 2649–2662 (2004).
    PubMed  Article  Google Scholar 

    47.
    Watson, K. P. & Granger, R. A. Hydrodynamic effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas). J. Exp. Biol. 201, 2497–2505 (1998).
    PubMed  Google Scholar 

    48.
    Hull, C. L. The effect of carrying devices on breeding royal penguins. Condor 99, 530–534 (1997).
    Article  Google Scholar 

    49.
    Elliott, K. H. et al. Age-related variation in energy expenditure in a long-lived bird within the envelope of an energy ceiling. J. Anim. Ecol. 83, 136–146 (2014).
    PubMed  Article  Google Scholar 

    50.
    Kelly, K. G., Diamond, A. W., Holberton, R. L. & Bowser, A. K. Researcher handling of incubating Atlantic puffins Fratercula arctica has no effect on reproductive success. Mar. Ornithol. (2015).

    51.
    Müller, M. S., Vyssotski, A. L., Yamamoto, M. & Yoda, K. Individual differences in heart rate reveal a broad range of autonomic phenotypes in a free-living seabird population. J. Exp. Biol. https://doi.org/10.1242/jeb.182758 (2018).
    PubMed  Article  Google Scholar 

    52.
    Weimerskirch, H. et al. Heart rate and energy expenditure of incubating wandering albatrosses: Basal levels, natural variation, and the effects of human disturbance. J. Exp. Biol. (2002).

    53.
    Fayet, A. L. et al. Lower foraging efficiency in immatures drives spatial segregation with breeding adults in a long-lived pelagic seabird. Anim. Behav. 110, 79–89 (2015).
    Article  Google Scholar 

    54.
    Kosztolányi, A., Cuthill, I. C. & Székely, T. Negotiation between parents over care: Reversible compensation during incubation. Behav. Ecol. 20, 446–452 (2009).
    Article  Google Scholar 

    55.
    Suzuki, S. & Nagano, M. To compensate or not? Caring parents respond differentially to mate removal and mate handicapping in the burying beetle, Nicrophorus quadripunctatus. Ethology https://doi.org/10.1111/j.1439-0310.2008.01598.x (2009).
    Article  Google Scholar 

    56.
    Wright, J. & Cuthill, I. Biparental care: Short-term manipulation of partner contribution and brood size in the starling, Sturnus vulgaris. Behav. Ecol. 1, 116–124 (1990).
    Article  Google Scholar 

    57.
    Bijleveld, A. I. & Mullers, R. H. E. E. Reproductive effort in biparental care: An experimental study in long-lived Cape gannets. Behav. Ecol. 20, 736–744 (2009).
    Article  Google Scholar 

    58.
    Dearborn, D. C. Body condition and retaliation in the parental effort decisions of incubating great frigatebirds (Fregata minor). Behav. Ecol. 12, 200–206 (2001).
    Article  Google Scholar 

    59.
    Navarro, J. & González-Solís, J. Experimental increase of flying costs in a pelagic seabird: Effects on foraging strategies, nutritional state and chick condition. Oecologia 151, 150–160 (2007).
    ADS  PubMed  Article  Google Scholar 

    60.
    Brooke, M. The Manx Shearwater. (A & C Black Publishers Ltd, 1990).

    61.
    Heggøy, O., Christensen-Dalsgaard, S., Ranke, P. S., Chastel, O. & Bech, C. GPS-loggers influence behaviour and physiology in the black-legged kittiwake Rissa tridactyla. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps11140 (2015).
    Article  Google Scholar 

    62.
    Fayet, A. L. et al. Carry-over effects on the annual cycle of a migratory seabird: An experimental study. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12580 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Shoji, A. et al. Breeding phenology and winter activity predict subsequent breeding success in a trans-global migratory seabird. Biol. Lett. 11, 20150671 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Boersma, P. & Davies, E. Sexing monomorphic birds by vent measurements. Auk 104, 779–783 (1987).
    Article  Google Scholar 

    65.
    Guilford, T. et al. Geolocators reveal migration and pre-breeding behaviour of the critically endangered balearic shearwater Puffinus mauretanicus. PLoS ONE 7, e33753 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. S. Mixtools: An R package for analyzing finite mixture models. J. Stat. Softw. https://doi.org/10.18637/jss.v032.i06 (2009).
    Article  Google Scholar 

    67.
    Fayet, A. L. et al. Drivers and fitness consequences of dispersive migration in a pelagic seabird. Behav. Ecol. https://doi.org/10.1093/beheco/arw013 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Core Team, R. R: A Language and Environment for Statistical Computing. (R Found. Stat. Comput., Vienna, 2018).

    69.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar 

    70.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package ‘emmeans’. Mran.Microsoft.Com https://doi.org/10.1080/00031305.1980.10483031%3e.License (2018).
    Article  Google Scholar  More

  • in

    Frequency of mispackaging of Prochlorococcus DNA by cyanophage

    1.
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.
    CAS  PubMed  Google Scholar 
    2.
    Braakman R, Follows MJ, Chisholm SW. Metabolic evolution and the self-organization of ecosystems. Proc Natl Acad Sci USA. 2017;114:E3091–100.
    CAS  PubMed  Google Scholar 

    3.
    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.
    CAS  PubMed  Google Scholar 

    4.
    Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–70.
    CAS  PubMed  Google Scholar 

    6.
    Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. Elife. 2019;8:e41043.
    PubMed  PubMed Central  Google Scholar 

    7.
    Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach based on a biological definition of microbial populations. Cell. 2019;178:820–34.e14.
    CAS  PubMed  Google Scholar 

    8.
    Bentkowski P, Van Oosterhout C, Mock T. A model of genome size evolution for prokaryotes in stable and fluctuating environments. Genome Biol Evol. 2015;7:2344–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Larkin AA, Blinebry SK, Howes C, Lin Y, Loftus SE, Schmaus CA, et al. Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME J. 2016;10:1555–67.
    PubMed  PubMed Central  Google Scholar 

    10.
    Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science. 2014;343:183–6.
    CAS  PubMed  Google Scholar 

    11.
    Biller SJ, McDaniel LD, Breitbart M, Rogers E, Paul JH, Chisholm SW. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 2017;11:394–404.
    CAS  PubMed  Google Scholar 

    12.
    Taton A, Erikson C, Yang Y, Rubin BE, Rifkin SA, Golden JW, et al. The circadian clock and darkness control natural competence in cyanobacteria. Nat Commun. 2020;11:1688.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Popa O, Dagan T. Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol. 2011;14:615–23.
    CAS  PubMed  Google Scholar 

    14.
    Popa O, Landan G, Dagan T. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME J. 2016;11:543–54.
    PubMed  PubMed Central  Google Scholar 

    15.
    Touchon M, Moura de Sousa JA, Rocha EP. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Microbiol. 2017;38:66–73.
    CAS  PubMed  Google Scholar 

    16.
    Jiang SC, Paul JH. Gene transfer by transduction in the marine environment. Appl Environ Microbiol. 1998;64:2780–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Kenzaka T, Tani K, Nasu M. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J. 2010;4:648–59.
    CAS  PubMed  Google Scholar 

    18.
    Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158.
    PubMed  PubMed Central  Google Scholar 

    19.
    Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.
    CAS  PubMed  Google Scholar 

    20.
    Baran N, Goldin S, Maidanik I, Lindell D. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol. 2017;340:1–11.
    Google Scholar 

    21.
    Parsons RJ, Breitbart M, Lomas MW, Carlson CA. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. ISME J. 2012;6:273–84.
    CAS  PubMed  Google Scholar 

    22.
    Clokie MRJ, Millard AD, Wilson WH, Mann NH. Encapsidation of host DNA by bacteriophages infecting marine Synechococcus strains. FEMS Microbiol Ecol. 2003;46:349–52.
    CAS  PubMed  Google Scholar 

    23.
    Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003;6:417–24.
    CAS  PubMed  Google Scholar 

    24.
    Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171–8.
    PubMed  Google Scholar 

    25.
    Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, Chee MSJ, et al. Genome hypermobility by lateral transduction. Science. 2018;362:207–12.
    CAS  PubMed  Google Scholar 

    26.
    Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:180154–11.
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Sabehi G, Lindell D. The P-SSP7 cyanophage has a linear genome with direct terminal repeats. PLoS ONE. 2012;7:e36710.
    CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Casjens SR, Gilcrease EB. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol. 2009;502:91–111.
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Mašlaňová I, Doškař J, Varga M, Kuntová L, Mužík J, Malúšková D, et al. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ Microbiol Rep. 2012;5:66–73.
    PubMed  Google Scholar 

    31.
    Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.
    CAS  PubMed  Google Scholar 

    32.
    Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS ONE. 2015;10:e0142962–17.
    PubMed  PubMed Central  Google Scholar 

    33.
    Clokie MRJ, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J. 2010;7:291.
    PubMed  PubMed Central  Google Scholar 

    34.
    Frois-Moniz K. Host/virus interactions in the marine cyanobacterium Prochlorococcus. Massachusetts Institute of Technology; 2014.

    35.
    Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, et al. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.
    CAS  PubMed  Google Scholar 

    37.
    Moore LR, Chisholm SW. Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol Oceanogr. 1999;44:628–38.
    Google Scholar 

    38.
    Liu R, Liu Y, Chen Y, Zhan Y, Zeng Q. Cyanobacterial viruses exhibit diurnal rhythms during infection. Proc Natl Acad Sci USA. 2019;63:201819689–201814082.
    Google Scholar 

    39.
    Thompson LR, Zeng Q, Chisholm SW. Gene expression patterns during light and dark infection of Prochlorococcus by cyanophage. PLoS ONE. 2016;11:e0165375–20.
    PubMed  PubMed Central  Google Scholar 

    40.
    Puxty RJ, Evans DJ, Millard AD, Scanlan DJ. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J. 2018;12:1273–86.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–89.
    CAS  PubMed  Google Scholar 

    42.
    Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW. Transfer of photosynthesis genes to and from Prochlorococcus viruses. PNAS. 2004;101:11013–8.
    CAS  PubMed  Google Scholar 

    43.
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.
    CAS  PubMed  Google Scholar 

    44.
    Demory D, Liu R, Chen Y, Zhao F, Coenen AR, Zeng Q, et al. Linking light-dependent life history traits with population dynamics for Prochlorococcus and cyanophage. mSystems. 2020;5:e00586–19.
    PubMed  PubMed Central  Google Scholar 

    45.
    Jia Y, Shan J, Millard A, Clokie MRJ, Mann NH. Light-dependent adsorption of photosynthetic cyanophages to Synechococcus sp. WH7803. FEMS Microbiol Lett. 2010;310:120–6.
    CAS  PubMed  Google Scholar 

    46.
    Cooper WJ, Zika RG, Petasne RG, Plane JM. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ Sci Technol. 1988;22:1156–60.
    CAS  PubMed  Google Scholar 

    47.
    Gerringa LJA, Rijkenberg MJA, Timmermans R, Buma AGJ. The influence of solar ultraviolet radiation on the photochemical production of H2O2 in the equatorial Atlantic Ocean. J Sea Res. 2004;51:3–10.
    CAS  Google Scholar 

    48.
    Morris JJ, Johnson ZI, Szul MJ, Keller M, Zinser ER. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean’s surface. PLoS ONE. 2011;6:e16805.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Ziegelhoffer EC, Donohue TJ. Bacterial responses to photo-oxidative stress. Nat Rev Microbiol. 2009;7:856–63.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl Environ Microbiol. 2008;74:4530–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio. 2012;3:e00036–12.
    PubMed  PubMed Central  Google Scholar 

    52.
    Zinser ER. Cross-protection from hydrogen peroxide by helper microbes: the impacts on the cyanobacterium Prochlorococcus and other beneficiaries in marine communities. Environ Microbiol Rep. 2018;10:1–35.
    Google Scholar 

    53.
    Mella-Flores D, Six C, Ratin M, Partensky F, Boutte C, Le Corguillé G, et al. Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and UV stress. Front Microbiol. 2012;3:285.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Blot N, Mella-Flores D, Six C, Le Corguillé G, Boutte C, Peyrat A, et al. Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. Plant Physiol. 2011;156:1934–54.
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Abrashev R, Krumova E, Dishliska V, Eneva R, Engibarov S, Abrashev I, et al. Differential effect of paraquat and hydrogen peroxide on the oxidative stress response in Vibrio Cholerae Non O1 26/06. Biotechnol Biotechnol Equip. 2011;25:72–6.
    Google Scholar 

    56.
    Lindell D. The genus Prochlorococcus, Phylum Cyanobacteria. Prokaryotes. 2014; 829–45.

    57.
    Zinser ER. The microbial contribution to reactive oxygen species dynamics in marine ecosystems. Environ Microbiol Rep. 2018;10:412–27.
    CAS  PubMed  Google Scholar 

    58.
    Zavřel T, Faizi M, Loureiro C, Poschmann G, Stühler K, Sinetova M, et al. Quantitative insights into the cyanobacterial cell economy. Elife. 2019;8:273.
    Google Scholar 

    59.
    Doron S, Fedida A, Hernández-Prieto MA, Sabehi G, Karunker I, Stazic D, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J. 2016;10:1437–55.
    CAS  PubMed  Google Scholar 

    60.
    Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA. 2011;108:E757–64.
    CAS  PubMed  Google Scholar 

    61.
    Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature. 2007;449:83–6.
    CAS  PubMed  Google Scholar 

    62.
    Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11:443–54.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Kolowrat C, Partensky F, Mella-Flores D, Le Corguillé G, Boutte C, Blot N, et al. Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511. BMC Microbiol. 2010;10:204.
    PubMed  PubMed Central  Google Scholar 

    64.
    Laurenceau R, Bliem C, Osburne MS, Becker JW, Biller SJ, Cubillos-Ruiz A, et al. Toward a genetic system in the marine cyanobacterium Prochlorococcus. Access Microbiol. 2020;2:acmi000107.
    Google Scholar 

    65.
    Abedon ST. Phage-Antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics. 2019;8:182.
    CAS  PubMed Central  Google Scholar 

    66.
    Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev. 2019;32:31–25.
    Google Scholar 

    67.
    Schmidt C. Phage therapy’s latest makeover. Nat Biotechnol. 2019;37:1–6.
    Google Scholar 

    68.
    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465–70.
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by restriction–modification systems. Proc Natl Acad Sci USA. 2016;113:5658–63.
    CAS  PubMed  Google Scholar 

    70.
    Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE. 2011;6:e17549.
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Brown-Jaque M, Calero-Cáceres W, Espinal P, Rodríguez-Navarro J, Miró E, González-López JJ, et al. Antibiotic resistance genes in phage particles isolated from human feces and induced from clinical bacterial isolates. Int J Antimicrob Agents. 2017;51:1–35.
    Google Scholar 

    72.
    Larrañaga O, Brown-Jaque M, Quirós P, Gómez-Gómez C, Blanch AR, Rodríguez-Rubio L, et al. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Environ Int. 2018;115:133–41.
    PubMed  Google Scholar 

    73.
    Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.
    CAS  Google Scholar 

    74.
    Biller SJ, Coe A, Martin-Cuadrado A-B, Chisholm SW. Draft genome sequence of Alteromonas macleodii strain MIT1002, isolated from an enrichment culture of the marine Cyanobacterium Prochlorococcus. Genome Announc. 2015;3:e00967–15.
    PubMed  PubMed Central  Google Scholar 

    75.
    Berube PM, Biller SJ, Kent AG, Berta-Thompson JW, Roggensack SE, Roache-Johnson KH, et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. 2014;9:1195–207.
    PubMed  PubMed Central  Google Scholar 

    76.
    Olson RJ, Chisholm SW, Zettler ER, Altabet MA, Dusenberry JA. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res A. 1990;37:1033–51.
    Google Scholar 

    77.
    Cuervo A, Dans PD, Carrascosa JL, Orozco M, Gomila G, Fumagalli L. Direct measurement of the dielectric polarization properties of DNA. Proc Natl Acad Sci USA. 2014;111:E3624–30.
    CAS  PubMed  Google Scholar 

    78.
    Fang P-A, Wright ET, Weintraub ST, Hakala K, Wu W, Serwer P, et al. Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo. J Mol Biol. 2008;384:1384–99.
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Shen PS, Domek MJ, Sanz-Garcia E, Makaju A, Taylor RM, Hoggan R, et al. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup. J Virol. 2012;86:7907–17.
    CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Manning KA, Quiles-Puchalt N, Penadés JR, Dokland T. A novel ejection protein from bacteriophage 80α that promotes lytic growth. Virology. 2018;525:237–47.
    CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:e144.
    PubMed  PubMed Central  Google Scholar  More

  • in

    Koala immunogenetics and chlamydial strain type are more directly involved in chlamydial disease progression in koalas from two south east Queensland koala populations than koala retrovirus subtypes

    In this study, koalas from two geographically separated populations in SE Qld, at the Moreton Bay site (MB)9 and the Old Hidden Vale site (HV), underwent regular field monitoring and clinical examinations approximately every 6 months (or more frequently if required for health or welfare concerns). Blood samples, ocular conjunctival swabs and a urogenital tract swab were collected during each clinical examination. From these samples, C. pecorum load and genotype, koala MHC immunogenetics and KoRV proviral subtypes were determined. These results were evaluated in the context of clinical records compiled at the time of sample collection, which included chlamydial disease status.
    Chlamydial epidemiology at each study site
    The overall prevalence of chlamydial infection and disease differed between the study sites
    Longitudinal monitoring of 24 HV koalas (over 113 individual sampling points) identified 24 chlamydial infections for strain typing analysis and eight new chlamydial infections for disease progression analysis. This complemented longitudinal monitoring of 148 MB koalas (over 479 individual sampling points)9 that identified 76 chlamydial infections for strain typing analysis and 38 new chlamydial infections for disease progression analysis. Overall, there was a significantly higher prevalence of infection at HV (58%, 14/24) compared to MB (35%, 89/254)26 (Fisher’s exact test p = 0.028) (Table 1), as well as a significantly higher prevalence of disease at HV (58%, 14/24) compared to MB (27%, 75/279) 26 (Fisher’s exact test p = 0.002).
    Table 1 A comparison of chlamydial epidemiology between the Moreton Bay site (MB) and the Old Hidden Vale site (HV).
    Full size table

    Chlamydial disease progression was common at both study sites
    A total of eight HV koalas met our study inclusion criteria for disease progression analysis by having a new chlamydial infection detected at the ocular (n = 1) or urogenital tract site (n = 7) by quantitative polymerase chain reaction (qPCR) over a period of 18 months. These koalas had no evidence of chlamydial infection (infection loads below detection limit) or disease (clinical examination within normal limits) at that anatomical site at their previous clinical examination. If disease was detected at their first clinical examination, they were excluded from disease progression analyses only (unless it was their first sampling as an independent offspring, n = 1).
    Interestingly, all of the new chlamydial infections at HV (100%, 8/8) progressed to disease, which was not significantly different to the number of new chlamydial infections at MB that progressed to disease (66%, 25/38)9 (Fisher’s exact test p = 0.084) (Supplementary Fig. S1). For six of these new chlamydial infections at HV (one ocular and five urogenital tract), the infection was detected at the same clinical examination as disease. For the other two new chlamydial infections at HV (both urogenital tract), the infection was present at a clinical examination 2.5 months and 4 months before disease was detected.
    The urogenital tract infection load dynamics were similar at both study sites
    The urogenital tract infection load (C. pecorum genome copies/µL) in both HV and MB9 koalas was significantly higher when infections were detected at the same clinical examination as disease (1,028,000 copies/µL, range 11,400–4,760,000 copies/µL), in comparison to infections that were present for one or more consecutive clinical examinations before disease was detected or infections that did not progress to disease (600 copies/µL, range 49–522,800 copies/µL) (Mann–Whitney U = 3, p = 0.030). Similarly, the urogenital tract infection load in both HV and MB9 koalas was significantly higher when koalas acquired a new chlamydial infection (within the last three months) (1,834,000 copies/µL, range 52,400–4,760,000 copies/µL), compared to koalas who had long-term infections (present for more than three months) (724 copies/µL, range 35–7,142 copies/µL) (Mann–Whitney U = 0, p = 0.010). Interestingly, the urogenital tract infection load was significantly higher at HV (1,028,000 copies/µL, range 11,400–4,760,000 copies/µL) compared to MB (3,824 copies/µL, range 138–1,340,000 copies/µL) when infections were detected at the same clinical examination as disease (Mann–Whitney U = 11, p = 0.003). In contrast, the urogenital tract infection load was not significantly different between the study sites (HV 600 copies/µL, range 49–522,800 copies/µL vs MB 794 copies/µL, range 16–13,900 copies/µL) when infections were present for one or more consecutive clinical examinations before disease was detected or infections did not progress to disease (Mann–Whitney U = 28, p = 0.703).
    The prevalence of chlamydial strains, as determined by Multi-Locus Sequence Typing, differed between the study sites
    Overall, 69 C. pecorum-positive samples, comprised of 45 samples from MB (4 ocular and 41 urogenital tract samples from 25 koalas) and 24 samples from HV (2 ocular and 22 urogenital tract samples from 14 koalas), were analysed using a C. pecorum-specific MLST scheme27. Three sequence types (STs) were detected in this study: ST 69, ST 202 and a novel ST (ST 281). ST 69 and ST 202 were detected at both study sites, however their prevalence at each study site was significantly different (Fig. 1). ST 69 was the most prevalent ST at HV, detected in 63% of total samples (15/24) and in 59% of urogenital tract site samples (13/22). ST 69 was significantly less prevalent at MB, detected in 11% of total samples (5/45) and in 12% of urogenital tract site samples (5/41) (overall and urogenital tract site Fisher’s exact test p  More