More stories

  • in

    Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird

    1.
    Dean, B. et al. Behavioural mapping of a pelagic seabird: combining multiple sensors and a hidden Markov model reveals the distribution of at-sea behaviour. J. R. Soc. 10, 20120570–20120570 (2013).
    Article  Google Scholar 
    2.
    Daniel Kissling, W., Pattemore, D. E. & Hagen, M. Challenges and prospects in the telemetry of insects. Biol. Rev. https://doi.org/10.1111/brv.12065 (2014).
    PubMed  Article  Google Scholar 

    3.
    Williams, H. J. et al. Optimizing the use of biologgers for movement ecology research. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13094 (2019).
    PubMed  Article  Google Scholar 

    4.
    Bowlin, M. S., Cochran, W. W. & Wikelski, M. C. Biotelemetry of New World thrushes during migration: Physiology, energetics and orientation in the wild. Integr. Comp. Biol. 45, 295–304 (2005).
    PubMed  Article  Google Scholar 

    5.
    Shoji, A. et al. Foraging behaviour of sympatric razorbills and puffins. Mar. Ecol. Prog. Ser. 520, 257–267 (2015).
    ADS  Article  Google Scholar 

    6.
    Guilford, T. et al. Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: Insights from machine learning. Proc. Biol. Sci. 276, 1215–1223 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Handcock, R. N. et al. Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9, 3586–3603 (2009).
    PubMed  Article  Google Scholar 

    8.
    Padget, O. et al. In situ clock shift reveals that the sun compass contributes to orientation in a pelagic seabird. Curr. Biol. 28, 275-279.e2 (2018).
    CAS  PubMed  Article  Google Scholar 

    9.
    Votier, S. C., Bicknell, A., Cox, S. L., Scales, K. L. & Patrick, S. C. A bird’s eye view of discard reforms: Bird-borne cameras reveal seabird/fishery interactions. PLoS ONE 8, e57376 (2013).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    Barron, D. G., Brawn, J. D. & Weatherhead, P. J. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol. Evol. 1, 180–187 (2010).
    Article  Google Scholar 

    11.
    Bodey, T. W. et al. A phylogenetically controlled meta-analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data. Methods Ecol. Evol. 9, 946–955 (2018).
    Article  Google Scholar 

    12.
    Aldridge, H. D. J. N. & Brigham, R. M. Load carrying and maneuverability in an insectivorous bat: A test of the 5% ‘rule’ of radio-telemetry. J. Mammal. https://doi.org/10.2307/1381393 (1988).
    Article  Google Scholar 

    13.
    Hammerschlag, N., Gallagher, A. J. & Lazarre, D. M. A review of shark satellite tagging studies. J. Exp. Mar. Biol. Ecol. https://doi.org/10.1016/j.jembe.2010.12.012 (2011).
    Article  Google Scholar 

    14.
    Irvine, A. B., Wells, R. S. & Scott, M. D. An evaluation of techniques for tagging small odontocete cetaceans. Fish. Bull. (1982).

    15.
    van der Hoop, J. M. et al. Bottlenose dolphins modify behavior to reduce metabolic effect of tag attachment. J. Exp. Biol. 217, 4229–4236 (2014).
    PubMed  Article  Google Scholar 

    16.
    Putaala, A., Oksa, J., Rintamaki, H. & Hissa, R. Effects of hand-rearing and radiotransmitters on flight of gray partridge. J. Wildl. Manage. https://doi.org/10.2307/3802136 (1997).
    Article  Google Scholar 

    17.
    Jepsen, N., Thorstad, E. B., Havn, T. & Lucas, M. C. The use of external electronic tags on fish: An evaluation of tag retention and tagging effects. Anim. Biotelemetry https://doi.org/10.1186/s40317-015-0086-z (2015).
    Article  Google Scholar 

    18.
    Vandenabeele, S. P. et al. Are bio-telemetric devices a drag? Effects of external tags on the diving behaviour of great cormorants. Mar. Ecol. Prog. Ser. 519, 239–249 (2015).
    ADS  Article  Google Scholar 

    19.
    Puehringer-Sturmayr, V. et al. Effects of bio-loggers on behaviour and corticosterone metabolites of Northern Bald Ibises (Geronticus eremita) in the field and in captivity. Anim. Biotelemetry https://doi.org/10.1186/s40317-019-0191-5 (2020).
    Article  Google Scholar 

    20.
    Booms, T. L., Schempf, P. F. & Fuller, M. R. Preening behavior of adult gyrfalcons tagged with backpack transmitters. J. Raptor Res. https://doi.org/10.3356/jrr-10-115.1 (2011).
    Article  Google Scholar 

    21.
    Wilson, R. P. & Wilson, M. T. A peck activity record for birds fitted with devices. J. F. Ornithol. (1989).

    22.
    Robert, M., Drolet, B. & Savard, J.-P.L. Effects of backpack radio-transmitters on female Barrow’s goldeneyes. Waterbirds https://doi.org/10.1675/1524-4695(2006)29[115:eobrof]2.0.co;2 (2006).
    Article  Google Scholar 

    23.
    Pouliquen, O., Leishman, M. & Redhead, T. D. Effects of radio collars on wild mice, Mus domesticus. Can. J. Zool. https://doi.org/10.1139/z90-239 (1990).
    Article  Google Scholar 

    24.
    Wilson, C. D., Arnott, G., Reid, N. & Roberts, D. The pitfall with PIT tags: Marking freshwater bivalves for translocation induces short-term behavioural costs. Anim. Behav. https://doi.org/10.1016/j.anbehav.2010.10.003 (2011).
    Article  Google Scholar 

    25.
    Kooyman, G. L. et al. Heart rates and swim speeds of emperor penguins diving under sea ice. J. Exp. Biol. 165, 161–180 (1992).
    CAS  PubMed  Google Scholar 

    26.
    Harris, M. P., Bogdanova, M. I., Daunt, F. & Wanless, S. Using GPS technology to assess feeding areas of Atlantic Puffins Fratercula arctica. Ringing Migr. https://doi.org/10.1080/03078698.2012.691247 (2012).
    Article  Google Scholar 

    27.
    Wanless, S., Harris, M. P. & Morris, J. A. Behavior of alcids with tail-mounted radio transmitters. Colon. Waterbirds 158–163, https://doi.org/10.2307/1521336 (1989).

    28.
    Arlt, D., Low, M. & Pärt, T. Effect of geolocators on migration and subsequent breeding performance of a long-distance passerine migrant. PLoS ONE https://doi.org/10.1371/journal.pone.0082316 (2013).
    PubMed  PubMed Central  Article  Google Scholar 

    29.
    Rodríguez, A., Negro, J. J., Fox, J. W. & Afanasyev, V. Effects of geolocator attachments on breeding parameters of Lesser Kestrels. J. F. Ornithol. https://doi.org/10.1111/j.1557-9263.2009.00247.x (2009).
    Article  Google Scholar 

    30.
    Scandolara, C. et al. Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits. J. Avian Biol. https://doi.org/10.1111/jav.00412 (2014).
    Article  Google Scholar 

    31.
    Whidden, S. E., Williams, C. T., Breton, A. R. & Buck, C. L. Effects of transmitters on the reproductive success of Tufted Puffins. J. F. Ornithol. 78, 206–212 (2007).
    Article  Google Scholar 

    32.
    Griffioen, M., Iserbyt, A. & Muller, W. Handicapping males does not affect their rate of parental provisioning, but impinges on their partners’ turn taking behavior. Front. Ecol. Evol. 7, 1–7 (2019).
    Article  Google Scholar 

    33.
    Ratz, T., Nichol, T. W. & Smiseth, P. T. Parental responses to increasing levels of handicapping in a burying beetle. Behav. Ecol. https://doi.org/10.1093/beheco/arz157 (2019).
    Article  Google Scholar 

    34.
    Wiebe, K. L. Negotiation of parental care when the stakes are high: Experimental handicapping of one partner during incubation leads to short-term generosity. J. Anim. Ecol. 79, 63–70 (2010).
    PubMed  Article  Google Scholar 

    35.
    Cantarero, A., López-Arrabé, J., Palma, A., Redondo, A. J. & Moreno, J. Males respond to female begging signals of need: A handicapping experiment in the pied flycatcher, Ficedula hypoleuca. Anim. Behav. https://doi.org/10.1016/j.anbehav.2014.05.002 (2014).
    Article  Google Scholar 

    36.
    Saraux, C. et al. Reliability of flipper-banded penguins as indicators of climate change. Nature 469, 203–208 (2011).
    ADS  CAS  PubMed  Article  Google Scholar 

    37.
    Beaulieu, M. et al. Can a handicapped parent rely on its partner? An experimental study within Adélie penguin pairs. Anim. Behav. 78, 313–320 (2009).
    Article  Google Scholar 

    38.
    Paredes, R., Jones, I. L. & Boness, D. J. Reduced parental care, compensatory behaviour and reproductive costs of thick-billed murres equipped with data loggers. Anim. Behav. 69, 197–208 (2005).
    Article  Google Scholar 

    39.
    Dean, B. et al. Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. Mar. Ecol. Prog. Ser. 538, 239–248 (2015).
    ADS  CAS  Article  Google Scholar 

    40.
    Guilford, T. C. et al. GPS tracking of the foraging movements of Manx Shearwaters Puffinus puffinus breeding on Skomer Island, Wales. Ibis (Lond. 1859). 150, 462–473 (2008).

    41.
    Shoji, A. et al. Dual foraging and pair-coordination during chick provisioning by Manx shearwaters: empirical evidence supported by a simple model. J. Exp. Biol. 218, 2116–2123 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    42.
    Adams, J. et al. Effects of geolocation archival tags on reproduction and adult body mass of sooty shearwaters (Puffinus griseus). N. Z. J. Zool. 36, 355–366 (2009).
    Article  Google Scholar 

    43.
    Phillips, R. A., Xavier, J. C., Croxall, J. P., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on albatrosses and petrels. Auk 120, 1082–1090 (2003).
    Article  Google Scholar 

    44.
    Pennycuick, C. J., Fast, P. L. F., Ballerstädt, N. & Rattenborg, N. The effect of an external transmitter on the drag coefficient of a bird’s body, and hence on migration range, and energy reserves after migration. J. Ornithol. 153, 633–644 (2012).
    Article  Google Scholar 

    45.
    Hazekamp, A. A. H., Mayer, R. & Osinga, N. Flow simulation along a seal: The impact of an external device. Eur. J. Wildl. Res. 56, 131–140 (2010).
    Article  Google Scholar 

    46.
    Wilson, R. P. Antennae on transmitters on penguins: balancing energy budgets on the high wire. J. Exp. Biol. 207, 2649–2662 (2004).
    PubMed  Article  Google Scholar 

    47.
    Watson, K. P. & Granger, R. A. Hydrodynamic effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas). J. Exp. Biol. 201, 2497–2505 (1998).
    PubMed  Google Scholar 

    48.
    Hull, C. L. The effect of carrying devices on breeding royal penguins. Condor 99, 530–534 (1997).
    Article  Google Scholar 

    49.
    Elliott, K. H. et al. Age-related variation in energy expenditure in a long-lived bird within the envelope of an energy ceiling. J. Anim. Ecol. 83, 136–146 (2014).
    PubMed  Article  Google Scholar 

    50.
    Kelly, K. G., Diamond, A. W., Holberton, R. L. & Bowser, A. K. Researcher handling of incubating Atlantic puffins Fratercula arctica has no effect on reproductive success. Mar. Ornithol. (2015).

    51.
    Müller, M. S., Vyssotski, A. L., Yamamoto, M. & Yoda, K. Individual differences in heart rate reveal a broad range of autonomic phenotypes in a free-living seabird population. J. Exp. Biol. https://doi.org/10.1242/jeb.182758 (2018).
    PubMed  Article  Google Scholar 

    52.
    Weimerskirch, H. et al. Heart rate and energy expenditure of incubating wandering albatrosses: Basal levels, natural variation, and the effects of human disturbance. J. Exp. Biol. (2002).

    53.
    Fayet, A. L. et al. Lower foraging efficiency in immatures drives spatial segregation with breeding adults in a long-lived pelagic seabird. Anim. Behav. 110, 79–89 (2015).
    Article  Google Scholar 

    54.
    Kosztolányi, A., Cuthill, I. C. & Székely, T. Negotiation between parents over care: Reversible compensation during incubation. Behav. Ecol. 20, 446–452 (2009).
    Article  Google Scholar 

    55.
    Suzuki, S. & Nagano, M. To compensate or not? Caring parents respond differentially to mate removal and mate handicapping in the burying beetle, Nicrophorus quadripunctatus. Ethology https://doi.org/10.1111/j.1439-0310.2008.01598.x (2009).
    Article  Google Scholar 

    56.
    Wright, J. & Cuthill, I. Biparental care: Short-term manipulation of partner contribution and brood size in the starling, Sturnus vulgaris. Behav. Ecol. 1, 116–124 (1990).
    Article  Google Scholar 

    57.
    Bijleveld, A. I. & Mullers, R. H. E. E. Reproductive effort in biparental care: An experimental study in long-lived Cape gannets. Behav. Ecol. 20, 736–744 (2009).
    Article  Google Scholar 

    58.
    Dearborn, D. C. Body condition and retaliation in the parental effort decisions of incubating great frigatebirds (Fregata minor). Behav. Ecol. 12, 200–206 (2001).
    Article  Google Scholar 

    59.
    Navarro, J. & González-Solís, J. Experimental increase of flying costs in a pelagic seabird: Effects on foraging strategies, nutritional state and chick condition. Oecologia 151, 150–160 (2007).
    ADS  PubMed  Article  Google Scholar 

    60.
    Brooke, M. The Manx Shearwater. (A & C Black Publishers Ltd, 1990).

    61.
    Heggøy, O., Christensen-Dalsgaard, S., Ranke, P. S., Chastel, O. & Bech, C. GPS-loggers influence behaviour and physiology in the black-legged kittiwake Rissa tridactyla. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps11140 (2015).
    Article  Google Scholar 

    62.
    Fayet, A. L. et al. Carry-over effects on the annual cycle of a migratory seabird: An experimental study. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12580 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Shoji, A. et al. Breeding phenology and winter activity predict subsequent breeding success in a trans-global migratory seabird. Biol. Lett. 11, 20150671 (2015).
    PubMed  PubMed Central  Article  Google Scholar 

    64.
    Boersma, P. & Davies, E. Sexing monomorphic birds by vent measurements. Auk 104, 779–783 (1987).
    Article  Google Scholar 

    65.
    Guilford, T. et al. Geolocators reveal migration and pre-breeding behaviour of the critically endangered balearic shearwater Puffinus mauretanicus. PLoS ONE 7, e33753 (2012).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    66.
    Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. S. Mixtools: An R package for analyzing finite mixture models. J. Stat. Softw. https://doi.org/10.18637/jss.v032.i06 (2009).
    Article  Google Scholar 

    67.
    Fayet, A. L. et al. Drivers and fitness consequences of dispersive migration in a pelagic seabird. Behav. Ecol. https://doi.org/10.1093/beheco/arw013 (2016).
    PubMed  PubMed Central  Article  Google Scholar 

    68.
    Core Team, R. R: A Language and Environment for Statistical Computing. (R Found. Stat. Comput., Vienna, 2018).

    69.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
    Article  Google Scholar 

    70.
    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package ‘emmeans’. Mran.Microsoft.Com https://doi.org/10.1080/00031305.1980.10483031%3e.License (2018).
    Article  Google Scholar  More

  • in

    Frequency of mispackaging of Prochlorococcus DNA by cyanophage

    1.
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.
    CAS  PubMed  Google Scholar 
    2.
    Braakman R, Follows MJ, Chisholm SW. Metabolic evolution and the self-organization of ecosystems. Proc Natl Acad Sci USA. 2017;114:E3091–100.
    CAS  PubMed  Google Scholar 

    3.
    Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.
    CAS  PubMed  Google Scholar 

    4.
    Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–70.
    CAS  PubMed  Google Scholar 

    6.
    Berube PM, Rasmussen A, Braakman R, Stepanauskas R, Chisholm SW. Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. Elife. 2019;8:e41043.
    PubMed  PubMed Central  Google Scholar 

    7.
    Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach based on a biological definition of microbial populations. Cell. 2019;178:820–34.e14.
    CAS  PubMed  Google Scholar 

    8.
    Bentkowski P, Van Oosterhout C, Mock T. A model of genome size evolution for prokaryotes in stable and fluctuating environments. Genome Biol Evol. 2015;7:2344–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Larkin AA, Blinebry SK, Howes C, Lin Y, Loftus SE, Schmaus CA, et al. Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME J. 2016;10:1555–67.
    PubMed  PubMed Central  Google Scholar 

    10.
    Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science. 2014;343:183–6.
    CAS  PubMed  Google Scholar 

    11.
    Biller SJ, McDaniel LD, Breitbart M, Rogers E, Paul JH, Chisholm SW. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 2017;11:394–404.
    CAS  PubMed  Google Scholar 

    12.
    Taton A, Erikson C, Yang Y, Rubin BE, Rifkin SA, Golden JW, et al. The circadian clock and darkness control natural competence in cyanobacteria. Nat Commun. 2020;11:1688.
    CAS  PubMed  PubMed Central  Google Scholar 

    13.
    Popa O, Dagan T. Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol. 2011;14:615–23.
    CAS  PubMed  Google Scholar 

    14.
    Popa O, Landan G, Dagan T. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME J. 2016;11:543–54.
    PubMed  PubMed Central  Google Scholar 

    15.
    Touchon M, Moura de Sousa JA, Rocha EP. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Microbiol. 2017;38:66–73.
    CAS  PubMed  Google Scholar 

    16.
    Jiang SC, Paul JH. Gene transfer by transduction in the marine environment. Appl Environ Microbiol. 1998;64:2780–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Kenzaka T, Tani K, Nasu M. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J. 2010;4:648–59.
    CAS  PubMed  Google Scholar 

    18.
    Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158.
    PubMed  PubMed Central  Google Scholar 

    19.
    Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.
    CAS  PubMed  Google Scholar 

    20.
    Baran N, Goldin S, Maidanik I, Lindell D. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol. 2017;340:1–11.
    Google Scholar 

    21.
    Parsons RJ, Breitbart M, Lomas MW, Carlson CA. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. ISME J. 2012;6:273–84.
    CAS  PubMed  Google Scholar 

    22.
    Clokie MRJ, Millard AD, Wilson WH, Mann NH. Encapsidation of host DNA by bacteriophages infecting marine Synechococcus strains. FEMS Microbiol Ecol. 2003;46:349–52.
    CAS  PubMed  Google Scholar 

    23.
    Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003;6:417–24.
    CAS  PubMed  Google Scholar 

    24.
    Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171–8.
    PubMed  Google Scholar 

    25.
    Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, Chee MSJ, et al. Genome hypermobility by lateral transduction. Science. 2018;362:207–12.
    CAS  PubMed  Google Scholar 

    26.
    Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:180154–11.
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Sabehi G, Lindell D. The P-SSP7 cyanophage has a linear genome with direct terminal repeats. PLoS ONE. 2012;7:e36710.
    CAS  PubMed  PubMed Central  Google Scholar 

    28.
    Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.
    CAS  PubMed  PubMed Central  Google Scholar 

    29.
    Casjens SR, Gilcrease EB. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol. 2009;502:91–111.
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Mašlaňová I, Doškař J, Varga M, Kuntová L, Mužík J, Malúšková D, et al. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ Microbiol Rep. 2012;5:66–73.
    PubMed  Google Scholar 

    31.
    Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.
    CAS  PubMed  Google Scholar 

    32.
    Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS ONE. 2015;10:e0142962–17.
    PubMed  PubMed Central  Google Scholar 

    33.
    Clokie MRJ, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J. 2010;7:291.
    PubMed  PubMed Central  Google Scholar 

    34.
    Frois-Moniz K. Host/virus interactions in the marine cyanobacterium Prochlorococcus. Massachusetts Institute of Technology; 2014.

    35.
    Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, et al. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.
    CAS  PubMed  Google Scholar 

    37.
    Moore LR, Chisholm SW. Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol Oceanogr. 1999;44:628–38.
    Google Scholar 

    38.
    Liu R, Liu Y, Chen Y, Zhan Y, Zeng Q. Cyanobacterial viruses exhibit diurnal rhythms during infection. Proc Natl Acad Sci USA. 2019;63:201819689–201814082.
    Google Scholar 

    39.
    Thompson LR, Zeng Q, Chisholm SW. Gene expression patterns during light and dark infection of Prochlorococcus by cyanophage. PLoS ONE. 2016;11:e0165375–20.
    PubMed  PubMed Central  Google Scholar 

    40.
    Puxty RJ, Evans DJ, Millard AD, Scanlan DJ. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J. 2018;12:1273–86.
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–89.
    CAS  PubMed  Google Scholar 

    42.
    Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW. Transfer of photosynthesis genes to and from Prochlorococcus viruses. PNAS. 2004;101:11013–8.
    CAS  PubMed  Google Scholar 

    43.
    Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.
    CAS  PubMed  Google Scholar 

    44.
    Demory D, Liu R, Chen Y, Zhao F, Coenen AR, Zeng Q, et al. Linking light-dependent life history traits with population dynamics for Prochlorococcus and cyanophage. mSystems. 2020;5:e00586–19.
    PubMed  PubMed Central  Google Scholar 

    45.
    Jia Y, Shan J, Millard A, Clokie MRJ, Mann NH. Light-dependent adsorption of photosynthetic cyanophages to Synechococcus sp. WH7803. FEMS Microbiol Lett. 2010;310:120–6.
    CAS  PubMed  Google Scholar 

    46.
    Cooper WJ, Zika RG, Petasne RG, Plane JM. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ Sci Technol. 1988;22:1156–60.
    CAS  PubMed  Google Scholar 

    47.
    Gerringa LJA, Rijkenberg MJA, Timmermans R, Buma AGJ. The influence of solar ultraviolet radiation on the photochemical production of H2O2 in the equatorial Atlantic Ocean. J Sea Res. 2004;51:3–10.
    CAS  Google Scholar 

    48.
    Morris JJ, Johnson ZI, Szul MJ, Keller M, Zinser ER. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean’s surface. PLoS ONE. 2011;6:e16805.
    CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Ziegelhoffer EC, Donohue TJ. Bacterial responses to photo-oxidative stress. Nat Rev Microbiol. 2009;7:856–63.
    CAS  PubMed  PubMed Central  Google Scholar 

    50.
    Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl Environ Microbiol. 2008;74:4530–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio. 2012;3:e00036–12.
    PubMed  PubMed Central  Google Scholar 

    52.
    Zinser ER. Cross-protection from hydrogen peroxide by helper microbes: the impacts on the cyanobacterium Prochlorococcus and other beneficiaries in marine communities. Environ Microbiol Rep. 2018;10:1–35.
    Google Scholar 

    53.
    Mella-Flores D, Six C, Ratin M, Partensky F, Boutte C, Le Corguillé G, et al. Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and UV stress. Front Microbiol. 2012;3:285.
    CAS  PubMed  PubMed Central  Google Scholar 

    54.
    Blot N, Mella-Flores D, Six C, Le Corguillé G, Boutte C, Peyrat A, et al. Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress. Plant Physiol. 2011;156:1934–54.
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Abrashev R, Krumova E, Dishliska V, Eneva R, Engibarov S, Abrashev I, et al. Differential effect of paraquat and hydrogen peroxide on the oxidative stress response in Vibrio Cholerae Non O1 26/06. Biotechnol Biotechnol Equip. 2011;25:72–6.
    Google Scholar 

    56.
    Lindell D. The genus Prochlorococcus, Phylum Cyanobacteria. Prokaryotes. 2014; 829–45.

    57.
    Zinser ER. The microbial contribution to reactive oxygen species dynamics in marine ecosystems. Environ Microbiol Rep. 2018;10:412–27.
    CAS  PubMed  Google Scholar 

    58.
    Zavřel T, Faizi M, Loureiro C, Poschmann G, Stühler K, Sinetova M, et al. Quantitative insights into the cyanobacterial cell economy. Elife. 2019;8:273.
    Google Scholar 

    59.
    Doron S, Fedida A, Hernández-Prieto MA, Sabehi G, Karunker I, Stazic D, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J. 2016;10:1437–55.
    CAS  PubMed  Google Scholar 

    60.
    Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA. 2011;108:E757–64.
    CAS  PubMed  Google Scholar 

    61.
    Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature. 2007;449:83–6.
    CAS  PubMed  Google Scholar 

    62.
    Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11:443–54.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Kolowrat C, Partensky F, Mella-Flores D, Le Corguillé G, Boutte C, Blot N, et al. Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511. BMC Microbiol. 2010;10:204.
    PubMed  PubMed Central  Google Scholar 

    64.
    Laurenceau R, Bliem C, Osburne MS, Becker JW, Biller SJ, Cubillos-Ruiz A, et al. Toward a genetic system in the marine cyanobacterium Prochlorococcus. Access Microbiol. 2020;2:acmi000107.
    Google Scholar 

    65.
    Abedon ST. Phage-Antibiotic combination treatments: antagonistic impacts of antibiotics on the pharmacodynamics of phage therapy? Antibiotics. 2019;8:182.
    CAS  PubMed Central  Google Scholar 

    66.
    Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev. 2019;32:31–25.
    Google Scholar 

    67.
    Schmidt C. Phage therapy’s latest makeover. Nat Biotechnol. 2019;37:1–6.
    Google Scholar 

    68.
    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465–70.
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by restriction–modification systems. Proc Natl Acad Sci USA. 2016;113:5658–63.
    CAS  PubMed  Google Scholar 

    70.
    Colomer-Lluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE. 2011;6:e17549.
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Brown-Jaque M, Calero-Cáceres W, Espinal P, Rodríguez-Navarro J, Miró E, González-López JJ, et al. Antibiotic resistance genes in phage particles isolated from human feces and induced from clinical bacterial isolates. Int J Antimicrob Agents. 2017;51:1–35.
    Google Scholar 

    72.
    Larrañaga O, Brown-Jaque M, Quirós P, Gómez-Gómez C, Blanch AR, Rodríguez-Rubio L, et al. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Environ Int. 2018;115:133–41.
    PubMed  Google Scholar 

    73.
    Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.
    CAS  Google Scholar 

    74.
    Biller SJ, Coe A, Martin-Cuadrado A-B, Chisholm SW. Draft genome sequence of Alteromonas macleodii strain MIT1002, isolated from an enrichment culture of the marine Cyanobacterium Prochlorococcus. Genome Announc. 2015;3:e00967–15.
    PubMed  PubMed Central  Google Scholar 

    75.
    Berube PM, Biller SJ, Kent AG, Berta-Thompson JW, Roggensack SE, Roache-Johnson KH, et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. 2014;9:1195–207.
    PubMed  PubMed Central  Google Scholar 

    76.
    Olson RJ, Chisholm SW, Zettler ER, Altabet MA, Dusenberry JA. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res A. 1990;37:1033–51.
    Google Scholar 

    77.
    Cuervo A, Dans PD, Carrascosa JL, Orozco M, Gomila G, Fumagalli L. Direct measurement of the dielectric polarization properties of DNA. Proc Natl Acad Sci USA. 2014;111:E3624–30.
    CAS  PubMed  Google Scholar 

    78.
    Fang P-A, Wright ET, Weintraub ST, Hakala K, Wu W, Serwer P, et al. Visualization of bacteriophage T3 capsids with DNA incompletely packaged in vivo. J Mol Biol. 2008;384:1384–99.
    CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Shen PS, Domek MJ, Sanz-Garcia E, Makaju A, Taylor RM, Hoggan R, et al. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup. J Virol. 2012;86:7907–17.
    CAS  PubMed  PubMed Central  Google Scholar 

    80.
    Manning KA, Quiles-Puchalt N, Penadés JR, Dokland T. A novel ejection protein from bacteriophage 80α that promotes lytic growth. Virology. 2018;525:237–47.
    CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:e144.
    PubMed  PubMed Central  Google Scholar  More

  • in

    Koala immunogenetics and chlamydial strain type are more directly involved in chlamydial disease progression in koalas from two south east Queensland koala populations than koala retrovirus subtypes

    In this study, koalas from two geographically separated populations in SE Qld, at the Moreton Bay site (MB)9 and the Old Hidden Vale site (HV), underwent regular field monitoring and clinical examinations approximately every 6 months (or more frequently if required for health or welfare concerns). Blood samples, ocular conjunctival swabs and a urogenital tract swab were collected during each clinical examination. From these samples, C. pecorum load and genotype, koala MHC immunogenetics and KoRV proviral subtypes were determined. These results were evaluated in the context of clinical records compiled at the time of sample collection, which included chlamydial disease status.
    Chlamydial epidemiology at each study site
    The overall prevalence of chlamydial infection and disease differed between the study sites
    Longitudinal monitoring of 24 HV koalas (over 113 individual sampling points) identified 24 chlamydial infections for strain typing analysis and eight new chlamydial infections for disease progression analysis. This complemented longitudinal monitoring of 148 MB koalas (over 479 individual sampling points)9 that identified 76 chlamydial infections for strain typing analysis and 38 new chlamydial infections for disease progression analysis. Overall, there was a significantly higher prevalence of infection at HV (58%, 14/24) compared to MB (35%, 89/254)26 (Fisher’s exact test p = 0.028) (Table 1), as well as a significantly higher prevalence of disease at HV (58%, 14/24) compared to MB (27%, 75/279) 26 (Fisher’s exact test p = 0.002).
    Table 1 A comparison of chlamydial epidemiology between the Moreton Bay site (MB) and the Old Hidden Vale site (HV).
    Full size table

    Chlamydial disease progression was common at both study sites
    A total of eight HV koalas met our study inclusion criteria for disease progression analysis by having a new chlamydial infection detected at the ocular (n = 1) or urogenital tract site (n = 7) by quantitative polymerase chain reaction (qPCR) over a period of 18 months. These koalas had no evidence of chlamydial infection (infection loads below detection limit) or disease (clinical examination within normal limits) at that anatomical site at their previous clinical examination. If disease was detected at their first clinical examination, they were excluded from disease progression analyses only (unless it was their first sampling as an independent offspring, n = 1).
    Interestingly, all of the new chlamydial infections at HV (100%, 8/8) progressed to disease, which was not significantly different to the number of new chlamydial infections at MB that progressed to disease (66%, 25/38)9 (Fisher’s exact test p = 0.084) (Supplementary Fig. S1). For six of these new chlamydial infections at HV (one ocular and five urogenital tract), the infection was detected at the same clinical examination as disease. For the other two new chlamydial infections at HV (both urogenital tract), the infection was present at a clinical examination 2.5 months and 4 months before disease was detected.
    The urogenital tract infection load dynamics were similar at both study sites
    The urogenital tract infection load (C. pecorum genome copies/µL) in both HV and MB9 koalas was significantly higher when infections were detected at the same clinical examination as disease (1,028,000 copies/µL, range 11,400–4,760,000 copies/µL), in comparison to infections that were present for one or more consecutive clinical examinations before disease was detected or infections that did not progress to disease (600 copies/µL, range 49–522,800 copies/µL) (Mann–Whitney U = 3, p = 0.030). Similarly, the urogenital tract infection load in both HV and MB9 koalas was significantly higher when koalas acquired a new chlamydial infection (within the last three months) (1,834,000 copies/µL, range 52,400–4,760,000 copies/µL), compared to koalas who had long-term infections (present for more than three months) (724 copies/µL, range 35–7,142 copies/µL) (Mann–Whitney U = 0, p = 0.010). Interestingly, the urogenital tract infection load was significantly higher at HV (1,028,000 copies/µL, range 11,400–4,760,000 copies/µL) compared to MB (3,824 copies/µL, range 138–1,340,000 copies/µL) when infections were detected at the same clinical examination as disease (Mann–Whitney U = 11, p = 0.003). In contrast, the urogenital tract infection load was not significantly different between the study sites (HV 600 copies/µL, range 49–522,800 copies/µL vs MB 794 copies/µL, range 16–13,900 copies/µL) when infections were present for one or more consecutive clinical examinations before disease was detected or infections did not progress to disease (Mann–Whitney U = 28, p = 0.703).
    The prevalence of chlamydial strains, as determined by Multi-Locus Sequence Typing, differed between the study sites
    Overall, 69 C. pecorum-positive samples, comprised of 45 samples from MB (4 ocular and 41 urogenital tract samples from 25 koalas) and 24 samples from HV (2 ocular and 22 urogenital tract samples from 14 koalas), were analysed using a C. pecorum-specific MLST scheme27. Three sequence types (STs) were detected in this study: ST 69, ST 202 and a novel ST (ST 281). ST 69 and ST 202 were detected at both study sites, however their prevalence at each study site was significantly different (Fig. 1). ST 69 was the most prevalent ST at HV, detected in 63% of total samples (15/24) and in 59% of urogenital tract site samples (13/22). ST 69 was significantly less prevalent at MB, detected in 11% of total samples (5/45) and in 12% of urogenital tract site samples (5/41) (overall and urogenital tract site Fisher’s exact test p  More

  • in

    Mapping the forest disturbance regimes of Europe

    1.
    State of Europe’s Forests 2015 Report (Forest Europe, 2015).
    2.
    Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. P. W. & Eberle, J. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Global Change Biol. 21, 299–313 (2015).
    Google Scholar 

    3.
    Ciais, P. et al. Carbon accumulation in European forests. Nat. Geosci. 1, 425–429 (2008).
    CAS  Google Scholar 

    4.
    Senf, C. et al. Canopy mortality has doubled across Europe’s temperate forests in the last three decades. Nat. Commun. 9, 4978 (2018).
    Google Scholar 

    5.
    Seidl, R., Schelhaas, M.-J. & Lexer, M. J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biol. 17, 2842–2852 (2011).
    Google Scholar 

    6.
    Senf, C. & Seidl, R. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Global Change Biol. 24, 1201–1211 (2018).
    Google Scholar 

    7.
    Senf, C., Sebald, J. & Seidl, R. Increases in canopy mortality and their impact on the demographic structure of Europe’s forests. Preprint at bioRxiv https://doi.org/10.1101/2020.03.30.015818 (2020).

    8.
    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).
    CAS  Google Scholar 

    9.
    Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).
    CAS  Google Scholar 

    10.
    Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).
    Google Scholar 

    11.
    Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol. Manage. 259, 698–709 (2010).
    Google Scholar 

    12.
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manage. 259, 660–684 (2010).
    Google Scholar 

    13.
    Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).
    CAS  Google Scholar 

    14.
    Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).
    Google Scholar 

    15.
    Seidl, R. The shape of ecosystem management to come: anticipating risks and fostering resilience. BioScience 64, 1159–1169 (2014).
    Google Scholar 

    16.
    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).
    Google Scholar 

    17.
    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).
    Google Scholar 

    18.
    Bebi, P. et al. Changes of forest cover and disturbance regimes in the mountain forests of the Alps. Forest Ecol. Manage. 388, 43–56 (2017).
    CAS  Google Scholar 

    19.
    Kulakowski, D., Bebi, P. & Rixen, C. The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss Alps. Oikos 120, 216–225 (2011).
    Google Scholar 

    20.
    Munteanu, C. et al. Legacies of 19th century land use shape contemporary forest cover. Glob. Environ. Change 34, 83–94 (2015).
    Google Scholar 

    21.
    Sommerfeld, A. et al. Patterns and drivers of recent disturbances across the temeprate forest biome. Nat. Commun. 9, 4355 (2018).

    22.
    Lindenmayer, D. B. et al. Salvage harvesting policies after natural disturbance. Science 303, 1303 (2004).
    CAS  Google Scholar 

    23.
    Senf, C., Müller, J. & Seidl, R. Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landsc. Ecol. 34, 2837–2850 (2019).

    24.
    Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).
    Google Scholar 

    25.
    Janda, P. et al. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecol. Manage. 388, 67–78 (2017).
    Google Scholar 

    26.
    Vacchiano, G., Garbarino, M., Lingua, E. & Motta, R. Forest dynamics and disturbance regimes in the Italian Apennines. Forest Ecol. Manage. 388, 57–66 (2017).
    Google Scholar 

    27.
    Nagel, T. A. et al. The natural disturbance regime in forests of the Dinaric Mountains: a synthesis of evidence. Forest Ecol. Manage. 388, 29–42 (2017).
    Google Scholar 

    28.
    Stephens, S. L. et al. Temperate and boreal forest mega-fires: characteristics and challenges. Front. Ecol. Environ. 12, 115–122 (2014).
    Google Scholar 

    29.
    Brang, P. et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87, 492–503 (2014).
    Google Scholar 

    30.
    Kulha, N. A. et al. At what scales and why does forest structure vary in naturally dynamic boreal forests? An analysis of forest landscapes on two continents. Ecosystems 22, 709–724 (2019).
    Google Scholar 

    31.
    Duncker, P. S. et al. Classification of forest management approaches. Ecol. Soc. 17, 51 (2012).

    32.
    Levers, C. et al. Drivers of forest harvesting intensity patterns in Europe. Forest Ecol. Manage. 315, 160–172 (2014).
    Google Scholar 

    33.
    Boncina, A. History, current status and future prospects of uneven-aged forest management in the Dinaric region: an overview. Forestry 84, 467–478 (2011).
    Google Scholar 

    34.
    Kulakowski, D. et al. A walk on the wild side: disturbance dynamics and the conservation and management of European mountain forest ecosystems. Forest Ecol. Manage. 388, 120–131 (2017).
    Google Scholar 

    35.
    Kuuluvainen, T., Tahvonen, O. & Aakala, T. Even-aged and uneven-aged forest management in boreal Fennoscandia: a review. AMBIO 41, 720–737 (2012).
    Google Scholar 

    36.
    Kuemmerle, T., Hostert, P., Radeloff, V. C., Perzanowski, K. & Kruhlov, I. Post-socialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine. Ecol. Appl. 17, 1279–1295 (2007).
    Google Scholar 

    37.
    Forzieri, G. et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 12, 257–276 (2020).
    Google Scholar 

    38.
    San-Miguel-Ayanz, J., Moreno, J. M. & Camia, A. Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. Forest Ecol. Manage. 294, 11–22 (2013).
    Google Scholar 

    39.
    Mori, A. S. & Kitagawa, R. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: a global meta-analysis. Biol. Conserv. 175, 65–73 (2014).
    Google Scholar 

    40.
    Meigs, G. W. et al. More ways than one: mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. Forest Ecol. Manage. 406, 410–426 (2017).
    Google Scholar 

    41.
    Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Environ. 170, 121–132 (2015).
    Google Scholar 

    42.
    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
    Google Scholar 

    43.
    Potapov, P. V. et al. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ. 159, 28–43 (2015).
    Google Scholar 

    44.
    Senf, C., Pflugmacher, D., Hostert, P. & Seidl, R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 130, 453–463 (2017).
    Google Scholar 

    45.
    Kennedy, R. E. et al. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens. Environ. 122, 117–133 (2012).
    Google Scholar 

    46.
    Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C. & Hobart, G. W. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sens. Environ. 158, 220–234 (2015).
    Google Scholar 

    47.
    Cohen, W. B., Yang, Z. & Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation. Remote Sens. Environ. 114, 2911–2924 (2010).
    Google Scholar 

    48.
    Pflugmacher, D., Rabe, A., Peters, M. & Hostert, P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 221, 583–595 (2019).
    Google Scholar 

    49.
    Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910 (2010).
    Google Scholar 

    50.
    Kennedy, R. et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. 10, 691 (2018).

    51.
    Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 (2016).
    Google Scholar 

    52.
    Flood, N. Seasonal composite landsat TM/ETM+ images using the medoid (a multi-dimensional median). Remote Sens. 5, 6481–6500 (2013).
    Google Scholar 

    53.
    Pflugmacher, D., Cohen, W. B. & E. Kennedy, R. Using Landsat-derived disturbance history (1972–2010) to predict current forest structure. Remote Sens. Environ. 122, 146–165 (2012).
    Google Scholar 

    54.
    Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E. & Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 205, 131–140 (2018).
    Google Scholar 

    55.
    Senf, C., Pflugmacher, D., Wulder, M. A. & Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 170, 166–177 (2015).
    Google Scholar 

    56.
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
    Google Scholar 

    57.
    Cohen, W. et al. How similar are forest disturbance maps derived from different landsat time series algorithms? Forests 8, 98 (2017).
    Google Scholar 

    58.
    Birch, C. P. D., Oom, S. P. & Beecham, J. A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 206, 347–359 (2007).
    Google Scholar 

    59.
    Bright, B. C., Hudak, A. T., Kennedy, R. E. & Meddens, A. J. H. Landsat time series and Lidar as predictors of live and dead basal area across five bark beetle-affected forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 3440–3452 (2014).
    Google Scholar 

    60.
    Wilcox, R. R. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy (Springer, 2010). More

  • in

    Recent atmospheric drying in Siberia is not unprecedented over the last 1,500 years

    1.
    Kirdyanov, A. V., Treydte, K. S., Nikolaev, A., Helle, G. & Schleser, G. H. Climate signals in tree-ring width, density and δ13C from larches in Eastern Siberia (Russia). Chem. Geol. 252(1–2), 31–41 (2008).
    ADS  CAS  Google Scholar 
    2.
    Sidorova, O. V. et al. Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob. Change Biol. 16(3), 1003–1018 (2010).
    ADS  Google Scholar 

    3.
    Churakova, O. V. et al. Application of eco-physiological models to the climatic interpretation of δ13C and δ18O measured in Siberian larch tree-rings. Dendrochronologia 39, 51–59 (2016).
    Google Scholar 

    4.
    Kropp, H. et al. Tree density influences eco-hydrological drivers of plant–water relations in a larch boreal forest in Siberia. Ecohydrology 12(7), e2132 (2019).
    Google Scholar 

    5.
    Saurer, M. et al. Spatial variability and temporal trends in water-use efficiency of European forests. Glob. Change Biol. 20(12), 3700–3712 (2014).
    ADS  Google Scholar 

    6.
    Neukom, R. et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649. https://doi.org/10.1038/s41561-019-0400-0 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J. & Werner, J. P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571(7766), 550–554 (2019).
    ADS  CAS  PubMed  Google Scholar 

    8.
    Sidorova, O. V. et al. Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north?. Oecologia 161(4), 825–835 (2009).
    ADS  PubMed  Google Scholar 

    9.
    Knorre, A. A. et al. Twentieth century trends in tree ring stable isotopes (δ13C and δ18O) of Larix sibirica under dry conditions in the forest steppe in Siberia. J. Geophys. Res. Biogeosci. 115(G3), 1–12 (2010).
    Google Scholar 

    10.
    Cable, J. M. et al. Permafrost thaw affects boreal deciduous plant transpiration through increased soil water, deeper thaw, and warmer soils. Ecohydrology 7(3), 982–997 (2014).
    Google Scholar 

    11.
    Bryukhanova, M. V. et al. The response of δ13C, δ18O and cell anatomy of Larix gmelinii tree rings to differing soil active layer depths. Dendrochronologia 34, 51–59 (2015).
    Google Scholar 

    12.
    Steiger, N. J., Smerdon, J. E., Cook, E. R. & Cook, B. I. A reconstruction of global hydroclimate and dynamical variables over the Common Era. Sci. Data 22(5), 180086 (2018).
    Google Scholar 

    13.
    Eamus, D., Boulain, N., Cleverly, J. & Breshears, D. D. Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 3(8), 2711–2729 (2013).
    PubMed  PubMed Central  Google Scholar 

    14.
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5(8), eaax1396 (2019).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Beer, C., Zimov, N., Olofsson, J., Porada, P. & Zimov, S. Production of permafrost soils from thawing by increasing herbivore density. Sci. Rep. 10, 1–10 (2020).
    Google Scholar 

    16.
    Zhang, T. & Armstrong, R. L. Soil freeze-thaw cycles over snow-free land detected by passive microwave remote sensing. Geophys. Res. Lett. 28(5), 763–766 (2001).
    ADS  Google Scholar 

    17.
    Prokushkin, A. et al. Permafrost regime affects the nutritional status and productivity of larches in Central Siberia. Forests 9(6), 314 (2018).
    Google Scholar 

    18.
    Knorre, A. A., Kirdyanov, A. V., Prokushkin, A. S., Krusic, P. J. & Büntgen, U. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ. 652, 314–319 (2019).
    ADS  PubMed  Google Scholar 

    19.
    Kirdyanov, A. V. et al. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab7469 (2020).
    Article  Google Scholar 

    20.
    Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11(7), 474 (2018).
    ADS  CAS  Google Scholar 

    21.
    Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P. and Dubash, N. K. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC (2014).

    22.
    Schweingruber, F. H. Tree Rings: Basic and Applications of Dendrochronology (Springer, Berlin, 1988).
    Google Scholar 

    23.
    Grudd, H. Torneträsk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim. Dyn. 31, 843–857. https://doi.org/10.1007/s00382-007-0358-2 (2008).
    Article  Google Scholar 

    24.
    Hantemirov, R. M. & Shiyatov, S. G. A continuous multi-millennial ring-width chronology in Yamal, northwestern Siberia. Holocene 12, 717–726 (2002).
    ADS  Google Scholar 

    25.
    Churakova, O. V. et al. Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Clim. Past. 15(2), 685–700 (2019).
    Google Scholar 

    26.
    Sidorova, O. V., Siegwolf, R. T., Saurer, M., Naurzbaev, M. M. & Vaganov, E. A. Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. J. Geophys. Res. Biogeosci. 113(G2), G02019 (2008).
    ADS  Google Scholar 

    27.
    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503 (1989).
    CAS  Google Scholar 

    28.
    Gennaretti, F. et al. Bayesian multiproxy temperature reconstruction with black spruce ring widths and stable isotopes from the northern Quebec taiga. Clim. Dyn. https://doi.org/10.1007/s00382-017-3565-5 (2017).
    Article  Google Scholar 

    29.
    Helama, S., Merilainen, J. & Tuomenvirta, H. Multicentennial mega drought in northern Europe coincided with a global El Niño-Southern Oscillation drought pattern during the Mediaeval Climate Anomaly. Geology 37, 175–178. https://doi.org/10.1130/G25329A.1 (2009).
    ADS  Article  Google Scholar 

    30.
    Young, G. H. F., McCarroll, D., Loader, N. J. & Kirchefer, A. G. A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. Holocene https://doi.org/10.1177/0959683609351902 (2010).
    Article  Google Scholar 

    31.
    Loader, N. J., Young, G. H. F., Grudd, H. & McCarroll, D. Stable carbon isotopes from Torneträsk, norther Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quatern. Sci. Rev. 62, 97–113 (2013).
    ADS  Google Scholar 

    32.
    Naulier, M. et al. A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees. Clim. Past 11, 1153–1164. https://doi.org/10.5194/cp-11-1153-2015 (2015).
    Article  Google Scholar 

    33.
    Young, G. H. F. et al. Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim. Dyn. 39, 495–507. https://doi.org/10.1007/s00382-011-1246-3 (2012).
    Article  Google Scholar 

    34.
    Gagen, M. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci. 9(8), 630–635 (2016).
    ADS  CAS  Google Scholar 

    35.
    PAGES Hydro2k Consortium et al. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Clim. Past. 13, 1851–1900. https://doi.org/10.5194/cp-13-1851-2017 (2017).
    Article  Google Scholar 

    36.
    Ljungqvist, F. C. et al. Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quatern. Sci. Rev. 230, 106074 (2020).
    Google Scholar 

    37.
    Simmons, A. M. & Mahroof, R. M. Response of Bemisia tabaci (Hemiptera: Aleyrodidae) to vapor pressure deficit: oviposition, immature survival, and body size. Ann. Entomol. Soc. Am. 104(5), 928–934 (2011).
    Google Scholar 

    38.
    Willett, K. M. et al. HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Clim. Past 10(6), 1983–2006 (2014).
    Google Scholar 

    39.
    Sidorova, O. V., Naurzbaev, M. M., Vaganov, E. A. An integral estimation of tree ring chronologies from subarctic regions of Eurasia. Proc. TRACE 84–92 (2005).

    40.
    Impacts of a warming arctic: arctic climate impact assessment. ACIA Overview report. Cambridge University Press. 140 pp. (2004).

    41.
    Sugimoto, A., Yanagisawa, N., Fujita, N. & Maximov, T. C. Importance of permafrost as a source of water for plants in east Siberian taiga. Ecol. Res. 17(4), 493–503 (2002).
    Google Scholar 

    42.
    Linderholm, H. W. et al. Arctic hydroclimate variability during the last 2000 years: current understanding and research challenges. Clim. Past 14, 473–514 (2018).
    Google Scholar 

    43.
    Peros, M. C. & Gajewski, K. Pollen-based reconstructions of late Holocene climate from the central and western Canadian Arctic. J. Paleolimnol. 41(1), 161–175 (2009).
    ADS  Google Scholar 

    44.
    Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4, 266 (2013).
    PubMed  PubMed Central  Google Scholar 

    45.
    Hughes, M. K., Vaganov, E. A., Shiyatov, S., Touchan, R. & Funkhouser, G. Twentieth-century summer warmth in northern Yakutia in a 600-year context. Holocene 9(5), 629–634 (1999).
    ADS  Google Scholar 

    46.
    Fyodorov-Davydov, D. G., Kholodov, A. L., Ostroumov, V. E., Kraev, G. N., Sorokovikov, V. A., Davudov, S. P. and Merekalova, A. A. Seasonal thaw of soils in the North Yakutian ecosystems. In Proceedings of the 9th International Conference on permafrost, pp. 481–486 (2008).

    47.
    Sidorova, O. V. & Naurzbaev, M. M. Response of Larix cajanderi to climatic changes at the upper timberline and in the Indigirka River valley. Lesovedenie 2(73), e75 (2002).
    Google Scholar 

    48.
    Cook, E. R. Bootstrap confidence intervals for red spruce ring-width chronologies and an assessment of age-related bias in recent growth trends. Can. J. For. Res. 20(9), 1326–1331 (1990).
    Google Scholar 

    49.
    Gagen, M. et al. Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17(4), 435–446 (2007).
    ADS  Google Scholar 

    50.
    Loader, N. J., Robertson, I., Barker, A. C., Switsur, V. R. & Waterhouse, J. S. An improved technique for the batch processing of small whole wood samples to α-cellulose. Chem. Geol. 136(3–4), 313–317 (1997).
    ADS  CAS  Google Scholar 

    51.
    Boettger, T. et al. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an inter-laboratory comparison. Anal. Chem. 15, 4603–4612 (2007).
    Google Scholar 

    52.
    Wigley, T. M., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23(2), 201–213 (1984).
    ADS  Google Scholar 

    53.
    Woodley, E. J. et al. Estimating uncertainty in pooled stable isotope time-series from tree-rings. Chem. Geol. 294, 243–248 (2012).
    ADS  Google Scholar 

    54.
    Weigt, R. B. et al. Comparison of δ18O and δ13C values between tree-ring whole wood and cellulose in five species growing under two different site conditions. Rapid Commun. Mass Spectrom. 29(23), 2233–2244 (2015).
    ADS  CAS  PubMed  Google Scholar 

    55.
    Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51(2), 170–193 (1999).
    ADS  Google Scholar 

    56.
    Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M. & Kenawy, A. A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 11(4), 1033–1043 (2010).
    ADS  Google Scholar 

    57.
    Watson, G. S. & Durbin, J. Exact tests of serial correlation using noncircular statistics. Ann. Math. Stat. 1, 446–451 (1951).
    MathSciNet  MATH  Google Scholar  More

  • in

    A guide to ecosystem models and their environmental applications

    1.
    Lindenmayer, D. et al. The complementarity of single-species and ecosystem-oriented research in conservation research. Oikos 116, 1220–1226 (2007).
    Google Scholar 
    2.
    Skern-Mauritzen, M. et al. Ecosystem processes are rarely included in tactical fisheries management. Fish Fish. 17, 165–175 (2016).
    Google Scholar 

    3.
    Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13427 (2019).

    4.
    Buckley, Y. M. & Han, Y. Managing the side effects of invasion control. Science 344, 975–976 (2014).
    CAS  Google Scholar 

    5.
    Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).
    Google Scholar 

    6.
    DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).
    CAS  Google Scholar 

    7.
    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079 (2011).
    CAS  Google Scholar 

    8.
    Evans, M. C., Davila, F., Toomey, A. & Wyborn, C. Embrace complexity to improve conservation decision making. Nat. Ecol. Evol. 1, 1588 (2017).
    Google Scholar 

    9.
    Dorresteijn, I. et al. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape. Proc. R. Soc. B, https://doi.org/10.1098/rspb.2015.1602 (2015).

    10.
    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).
    Google Scholar 

    11.
    Brown, C. J., Saunders, M. I., Possingham, H. P. & Richardson, A. J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 8, e65765 (2013).
    CAS  PubMed Central  PubMed  Google Scholar 

    12.
    Peters, D. P. C. & Okin, G. S. A Toolkit for ecosystem ecologists in the time of big science. Ecosystems 20, 259–266 (2017).
    Google Scholar 

    13.
    Fulton, E. A. Approaches to end-to-end ecosystem models. J. Mar. Syst. 81, 171–183 (2010).
    Google Scholar 

    14.
    Waltner-Toews, D., Kay James, J., Neudoerffer, C. & Gitau, T. Perspective changes everything: managing ecosystems from the inside out. Front. Ecol. Environ. 1, 23–30 (2003).
    Google Scholar 

    15.
    Evans, M. R., Norris, K. J. & Benton, T. G. Predictive ecology: systems approaches. Philos. Trans. R. Soc. B 367, 163–169 (2012).
    Google Scholar 

    16.
    Smith, A. D. M., Fulton, E. J., Hobday, A. J., Smith, D. C. & Shoulder, P. Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES J. Mar. Sci. 64, 633–639 (2007).
    Google Scholar 

    17.
    Baker, C. M. et al. A novel approach to assessing the ecosystem-wide impacts of reintroductions. Ecol. Appl. 29, https://doi.org/10.1002/eap.1811 (2018).

    18.
    Purves, D. et al. Ecosystems: time to model all life on Earth. Nature 493, 295 (2013).
    CAS  Google Scholar 

    19.
    Sutherland, W. J. Predicting the ecological consequences of environmental change: a review of the methods. J. Appl. Ecol. 43, 599–616 (2006).
    Google Scholar 

    20.
    Seidl, R. To model or not to model, that is no longer the question for ecologists. Ecosystems 20, 222–228 (2017).
    PubMed Central  PubMed  Google Scholar 

    21.
    Rastetter, E. B. Modeling for understanding v. modeling for numbers. Ecosystems 20, 215–221 (2017).
    Google Scholar 

    22.
    Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).
    Google Scholar 

    23.
    Schweiger, E. W., Grace, J. B., Cooper, D., Bobowski, B. & Britten, M. Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere 7, e01548 (2016).
    Google Scholar 

    24.
    Evans, M. R. Modelling ecological systems in a changing world. Philos. Trans. R. Soc. B 367, 181–190 (2012).
    Google Scholar 

    25.
    Fulton, E. A., Smith, A. D. M. & Johnson, C. R. Effect of complexity on marine ecosystem models. Mar. Ecol. Prog. Ser. 253, 1–16 (2003).
    Google Scholar 

    26.
    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12097–12912 (2019).
    Google Scholar 

    27.
    Lindenmayer, D. et al. A checklist for ecological management of landscapes for conservation. Ecol. Lett. 11, 78–91 (2007).
    Google Scholar 

    28.
    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
    Google Scholar 

    29.
    Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).
    Google Scholar 

    30.
    Dambacher, J. M., Li, H. W. & Rossignol, P. A. Qualitative predictions in model ecosystems. Ecol. Model. 161, 79–93 (2003).
    Google Scholar 

    31.
    Baker, C. M., Holden, M. H., Plein, M., McCarthy, M. A. & Possingham, H. P. Informing network management using fuzzy cognitive maps. Biol. Conserv. 224, 122–128 (2018).
    Google Scholar 

    32.
    Dexter, N., Ramsey, D. S., MacGregor, C. & Lindenmayer, D. Predicting ecosystem wide impacts of wallaby management using a fuzzy cognitive map. Ecosystems 15, 1363–1379 (2012).
    Google Scholar 

    33.
    Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).
    CAS  PubMed  Google Scholar 

    34.
    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).
    CAS  PubMed Central  PubMed  Google Scholar 

    35.
    Harfoot, M. B. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014).
    PubMed Central  PubMed  Google Scholar 

    36.
    Fulton, E. A. et al. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish. 12, 171–188 (2011).
    Google Scholar 

    37.
    Priester, C. R., Melbourne-Thomas, J., Klocker, A. & Corney, S. Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts. Ecol. Model. 359, 372–382 (2017).
    CAS  Google Scholar 

    38.
    McCann, R. K., Marcot, B. G. & Ellis, R. Bayesian belief networks: applications in ecology and natural resource management. Can. J. Res. 36, 3053–3062 (2006).
    Google Scholar 

    39.
    Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).
    Google Scholar 

    40.
    Lester, R. E. & Fairweather, P. G. Ecosystem states: creating a data-derived, ecosystem-scale ecological response model that is explicit in space and time. Ecol. Model. 222, 2690–2703 (2011).
    CAS  Google Scholar 

    41.
    Lester, R. E., Fairweather, P. G., Webster, I. T. & Quin, R. A. Scenarios involving future climate and water extraction: ecosystem states in the estuary of Australia’s largest river. Ecol. Appl. 23, 984–998 (2013).
    PubMed  Google Scholar 

    42.
    Dubois, D. M. A model of patchiness for prey–predator plankton populations. Ecol. Model. 1, 67–80 (1975).
    Google Scholar 

    43.
    Pauly, D., Christensen, V. & Walters, C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57, 697–706 (2000).
    Google Scholar 

    44.
    Fulton, E. A., Smith, A. D., Smith, D. C. & Johnson, P. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation. Plos ONE 9, e84242 (2014).
    PubMed Central  PubMed  Google Scholar 

    45.
    Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).
    Google Scholar 

    46.
    Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).
    Google Scholar 

    47.
    Crabtree, S. A., Bird, D. W. & Bird, R. B. Subsistence transitions and the simplification of ecological networks in the Western Desert of Australia. Hum. Ecol. 47, https://doi.org/10.1007/s10745-019-0053-z (2019).

    48.
    Planque, B. Projecting the future state of marine ecosystems, “la grande illusion”? ICES J. Mar. Sci. 73, 204–208 (2015).
    Google Scholar 

    49.
    Walters, C. & Maguire, J.-J. Lessons for stock assessment from the northern cod collapse. Rev. Fish. Biol. Fish. 6, 125–137 (1996).
    Google Scholar 

    50.
    García-Díaz, P. et al. A concise guide to developing and using quantitative models in conservation management. Conserv. Sci. Pract. 1, e11 (2019).
    PubMed Central  PubMed  Google Scholar 

    51.
    Morse, N. et al. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, https://doi.org/10.5751/ES-06192-190212 (2014).

    52.
    Fulton, E. & Gorton, R. Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations (FRDC/CSIRO, 2014).

    53.
    Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987 (2008).
    CAS  Google Scholar 

    54.
    Plagányi, É. E. Models for an Ecosystem Approach to Fisheries (FAO, 2007).

    55.
    Hunter, D. O., Britz, T., Jones, M. & Letnic, M. Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biol. Conserv. 191, 428–435 (2015).
    Google Scholar 

    56.
    Baker, C., Bode, M. & McCarthy, M. Models that predict ecosystem impacts of reintroductions should consider uncertainty and distinguish between direct and indirect effects. Biol. Conserv. 196, 211–212 (2016).
    Google Scholar 

    57.
    Bunnefeld, N., Hoshino, E. & Milner-Gulland, E. J. Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441–447 (2011).
    Google Scholar 

    58.
    Morello, E. B. et al. Model to manage and reduce crown-of-thorns starfish outbreaks. Mar. Ecol. Prog. Ser. 512, 167–183 (2014).
    Google Scholar 

    59.
    Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A. & Haddon, M. Management strategy evaluation: best practices. Fish Fish. 17, 303–334 (2016).
    Google Scholar 

    60.
    Edwards, C. T. T., Bunnefeld, N., Balme, G. A. & Milner-Gulland, E. J. Data-poor management of African lion hunting using a relative index of abundance. Proc. Natl Acad. Sci. USA 111, 539–543 (2014).
    CAS  Google Scholar 

    61.
    Mapstone, B. et al. Management strategy evaluation for line fishing in the Great Barrier Reef: balancing conservation and multi-sector fishery objectives. Fish. Res. 94, 315–329 (2008).
    Google Scholar 

    62.
    Roemer, G. W., Donlan, C. J. & Courchamp, F. Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proc. Natl Acad. Sci. USA 99, 791–796 (2002).
    CAS  Google Scholar 

    63.
    Lurgi, M., Ritchie, E. G. & Fordham, D. A. Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: the importance of multispecies interactions. J. Appl. Ecol. 55, 2396–2407 (2018).
    Google Scholar 

    64.
    Raymond, B., McInnes, J., Dambacher, J. M., Way, S. & Bergstrom, D. M. Qualitative modelling of invasive species eradication on subantarctic Macquarie Island. J. Appl. Ecol. 48, 181–191 (2011).
    Google Scholar 

    65.
    Levins, R. Discussion paper: the qualitative analysis of partially specified systems. Ann. NY Acad. Sci. 231, 123–138 (1974).
    CAS  Google Scholar 

    66.
    Baker, C. M., Gordon, A. & Bode, M. Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction. Conserv. Biol. 31, 376–384 (2017).
    Google Scholar 

    67.
    Amstrup, S. C. et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468, 955–958 (2010).
    CAS  Google Scholar 

    68.
    Trifonova, N., Maxwell, D., Pinnegar, J., Kenny, A. & Tucker, A. Predicting ecosystem responses to changes in fisheries catch, temperature, and primary productivity with a dynamic Bayesian network model. ICES J. Mar. Sci. 74, 1334–1343 (2017).
    Google Scholar 

    69.
    McCarthy, M. A., Andelman, S. J. & Possingham, H. P. Reliability of relative predictions in population viability analysis. Conserv. Biol. 17, 982–989 (2003).
    Google Scholar 

    70.
    Jamiyansharav, K., Fernández-Giménez, M. E., Angerer, J. P., Yadamsuren, B. & Dash, Z. Plant community change in three Mongolian steppe ecosystems 1994–2013: applications to state-and-transition models. Ecosphere 9, https://doi.org/10.1002/ecs2.2145 (2018).

    71.
    Rayner, M. J., Hauber, M. E., Imber, M. J., Stamp, R. K. & Clout, M. N. Spatial heterogeneity of mesopredator release within an oceanic island system. Proc. Natl Acad. Sci. USA 104, 20862–20865 (2007).
    CAS  Google Scholar 

    72.
    Melbourne-Thomas, J. et al. Regional‐scale scenario modeling for coral reefs: a decision support tool to inform management of a complex system. Ecol. Appl. 21, 1380–1398 (2011).
    Google Scholar 

    73.
    Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).
    Google Scholar 

    74.
    Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3, 899–903 (2013).
    Google Scholar 

    75.
    Fedriani, J. M. et al. Assisting seed dispersers to restore oldfields: an individual‐based model of the interactions among badgers, foxes and Iberian pear trees. J. Appl. Ecol. 55, 600–611 (2018).
    Google Scholar 

    76.
    Breckling, B., Müller, F., Reuter, H., Hölker, F. & Fränzle, O. Emergent properties in individual-based ecological models—introducing case studies in an ecosystem research context. Ecol. Model. 186, 376–388 (2005).
    Google Scholar 

    77.
    Grimm, V., Ayllón, D. & Railsback, S. F. Next-generation individual-based models integrate biodiversity and ecosystems: yes we can, and yes we must. Ecosystems 20, 229–236 (2017).
    Google Scholar 

    78.
    Walters, C., Christensen, V. & Pauly, D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish. Biol. Fish. 7, 139–172 (1997).
    Google Scholar 

    79.
    Pachzelt, A., Rammig, A., Higgins, S. & Hickler, T. Coupling a physiological grazer population model with a generalized model for vegetation dynamics. Ecol. Model. 263, 92–102 (2013).
    Google Scholar 

    80.
    Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).
    Google Scholar 

    81.
    Bodini, A. Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake. Can. J. Fish. Aquat. Sci. 57, 1999–2009 (2000).
    Google Scholar 

    82.
    Greenville, A. C., Wardle, G. M. & Dickman, C. R. Desert mammal populations are limited by introduced predators rather than future climate change. R. Soc. Open Sci. 4, https://doi.org/10.1098/rsos.170384 (2017).

    83.
    Pasanen‐Mortensen, M. et al. The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change. J. Anim. Ecol. 86, 566–576 (2017).
    Google Scholar 

    84.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).
    CAS  Google Scholar 

    85.
    Bliege Bird, R. & Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2, https://doi.org/10.1038/s41559-018-0576-5 (2018).

    86.
    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B 283, 20152592 (2016).
    Google Scholar 

    87.
    Kuijper, D. et al. Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc. R. Soc. B 283, 20161625 (2016).
    Google Scholar 

    88.
    Moran, D., Laycock, H. & White, P. C. L. The role of cost-effectiveness analysis in conservation decision-making. Biol. Conserv. 143, 826–827 (2010).
    Google Scholar 

    89.
    Evans, M. R. et al. Predictive systems ecology. Proc. R. Soc. B 280, https://doi.org/10.1098/rspb.2013.1452 (2013).

    90.
    Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).
    Google Scholar 

    91.
    Plagányi, É. E. et al. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15, 1–22 (2014).
    Google Scholar 

    92.
    Hui, C. & Richardson, D. M. How to invade an ecological network. Trends Ecol. Evol. 34, 121–131 (2018).
    Google Scholar 

    93.
    Chadès, I., Curtis, J. M. R. & Martin, T. G. Setting realistic recovery targets for two interacting endangered species, sea otter and northern abalone. Conserv. Biol. 26, 1016–1025 (2012).
    Google Scholar 

    94.
    Pesendorfer, M. et al. Oak habitat recovery on California’s largest islands: scenarios for the role of corvid seed dispersal. J. Appl. Ecol. 55, 1185–1194 (2017).
    Google Scholar 

    95.
    Schuwirth, N. et al. How to make ecological models useful for environmental management. Ecol. Model. 411, 108784 (2019).
    Google Scholar 

    96.
    Davis, K. J., Chadès, I., Rhodes, J. R. & Bode, M. General rules for environmental management to prioritise social–ecological systems research based on a value of information approach. J. Appl. Ecol. 56, https://doi.org/10.1111/1365-2664.13425 (2019).

    97.
    Mokany, K. et al. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125, 10–19 (2015).
    Google Scholar 

    98.
    Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evol. 2, 465–474 (2018).
    Google Scholar 

    99.
    Lohr, C. A. et al. Modeling dynamics of native and invasive species to guide prioritization of management actions. Ecosphere 8, e01822 (2017).
    Google Scholar 

    100.
    Nicol, S., Fuller Richard, A., Iwamura, T. & Chadès, I. Adapting environmental management to uncertain but inevitable change. Proc. R. Soc. B 282, 20142984 (2015).
    Google Scholar 

    101.
    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).
    Google Scholar 

    102.
    Andersen, K. H., Jacobsen, N. S. & Farnsworth, K. D. The theoretical foundations for size spectrum models of fish communities. Can. J. Fish. Aquat. Sci. 73, 575–588 (2015).
    Google Scholar 

    103.
    Nicol, S., Sabbadin, R., Peyrard, N. & Chadès, I. Finding the best management policy to eradicate invasive species from spatial ecological networks with simultaneous actions. J. Appl. Ecol. 54, 1989–1999 (2017).
    Google Scholar 

    104.
    Milner‐Gulland, E. J., Shea, K. & Punt, A. Embracing uncertainty in applied ecology. J. Appl. Ecol. 54, 2063–2068 (2017).
    PubMed Central  PubMed  Google Scholar 

    105.
    Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).
    CAS  Google Scholar 

    106.
    Gregr, E. J. & Chan, K. M. A. Leaps of faith: how implicit assumptions compromise the utility of ecosystem models for decision-making. BioScience 65, 43–54 (2015).
    Google Scholar 

    107.
    Hill, S. L. et al. Model uncertainty in the ecosystem approach to fisheries. Fish Fish. 8, 315–336 (2007).
    Google Scholar 

    108.
    Spence, M. A. et al. A general framework for combining ecosystem models. Fish Fish. 19, 1031–1042 (2018).
    Google Scholar 

    109.
    Wood, S. N. & Thomas, M. B. Super-sensitivity to structure in biological models. Proc. R. Soc. B 266, 565–570 (1999).
    Google Scholar 

    110.
    Runge, M. C., Converse, S. J. & Lyons, J. E. Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biol. Conserv. 144, 1214–1223 (2011).
    Google Scholar 

    111.
    Bal, P. et al. Quantifying the value of monitoring species in multi‐species, multi‐threat systems. Methods Ecol. Evol. 9, 1706–1717 (2018).
    Google Scholar 

    112.
    Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. D. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evol. 7, 424 (2019).
    Google Scholar 

    113.
    Wallach, A. D. et al. Trophic cascades in 3D: network analysis reveals how apex predators structure ecosystems. Methods Ecol. Evol. 8, 135–142 (2017).
    Google Scholar 

    114.
    Ruscoe, W. A. et al. Unexpected consequences of control: competitive vs. predator release in a four‐species assemblage of invasive mammals. Ecol. Lett. 14, 1035–1042 (2011).
    Google Scholar 

    115.
    Bower, S. D. et al. Making tough choices: picking the appropriate conservation decision‐making tool. Conserv. Lett. 11, e12418 (2017).
    Google Scholar 

    116.
    Stouffer, D. B. All ecological models are wrong, but some are useful. J. Anim. Ecol. 88, 192–195 (2019).
    Google Scholar 

    117.
    Olsen, E. et al. Ecosystem model skill assessment. Yes we can! PLoS ONE 11, e0146467 (2016).
    PubMed Central  PubMed  Google Scholar 

    118.
    Cattarino, L. et al. Information uncertainty influences conservation outcomes when prioritizing multi‐action management efforts. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13147 (2018).

    119.
    Greenville, A. C. et al. Biodiversity responds to increasing climatic extremes in a biome-specific manner. Sci. Total Environ. 634, 382–393 (2018).
    CAS  Google Scholar 

    120.
    de Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).
    Google Scholar 

    121.
    Curtsdotter, A. et al. Ecosystem function in predator–prey food webs — confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).
    Google Scholar 

    122.
    Greenville, A. C., Nguyen, V., Wardle, G. M. & Dickman, C. R. Making the most of incomplete long-term datasets: the MARSS solution. Aust. Zool. 39, 733–747 (2018).
    Google Scholar 

    123.
    Tulloch, A. I. T., Chadès, I. & Possingham, H. P. Accounting for complementarity to maximize monitoring power for species management. Conserv. Biol. 27, 988–999 (2013).
    Google Scholar 

    124.
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
    Google Scholar 

    125.
    Bode, M., Bode, L., Choukroun, S., James, M. K. & Mason, L. B. Resilient reefs may exist, but can larval dispersal models find them? PLoS Biol. 16, e2005964 (2018).
    PubMed Central  PubMed  Google Scholar 

    126.
    Tittensor, D., Coll, M. & Walker, N. D. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).
    Google Scholar 

    127.
    Prowse, T. A. A. et al. An efficient protocol for the global sensitivity analysis of stochastic ecological models. Ecosphere 7, e01238 (2016).
    Google Scholar 

    128.
    McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).
    Google Scholar 

    129.
    Chee, Y. E. & Wintle, B. A. Linking modelling, monitoring and management: an integrated approach to controlling overabundant wildlife. J. Appl. Ecol. 47, 1169–1178 (2010).
    Google Scholar 

    130.
    Plagányi, É. E. & Butterworth, D. S. The Scotia Sea krill fishery and its possible impacts on dependent predators: modeling localized depletion of prey. Ecol. Appl. 22, 748–761 (2012).
    Google Scholar 

    131.
    Kinzey, D. & Punt, A. E. Multispecies and single‐species models of fish population dynamics: comparing parameter estimates. Nat. Resour. Model. 22, 67–104 (2009).
    Google Scholar 

    132.
    Bode, M. & Possingham, H. Can culling a threatened species increase its chance of persisting? Ecol. Model. 201, 11–18 (2007).
    Google Scholar 

    133.
    Poudel, D. & Sandal, L. K. Stochastic optimization for multispecies fisheries in the Barents Sea. Nat. Resour. Model. 28, 219–243 (2015).
    Google Scholar 

    134.
    Gray, R. & Wotherspoon, S. Increasing model efficiency by dynamically changing model representations. Environ. Model. Softw. 30, 115–122 (2012).
    Google Scholar 

    135.
    Punt, A. E. & Hobday, D. Management strategy evaluation for rock lobster, Jasus edwardsii, off Victoria, Australia: accounting for uncertainty in stock structure. N. Zeal. J. Mar. Freshw. Res. 43, 485–509 (2009).
    Google Scholar 

    136.
    Colléter, M. et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol. Model. 302, 42–53 (2015).
    Google Scholar 

    137.
    Angelini, S. et al. An ecosystem model of intermediate complexity to test management options for fisheries: a case study. Ecol. Model. 319, 218–232 (2016).
    Google Scholar 

    138.
    Tulloch, V. J., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish. Fish. 19, 117–137 (2018).
    Google Scholar 

    139.
    Geary, W. L., Ritchie, E. G., Lawton, J. A., Healey, T. R. & Nimmo, D. G. Incorporating disturbance into trophic ecology: fire history shapes mesopredator suppression by an apex predator. J. Appl. Ecol. 55, https://doi.org/10.1111/1365-2664.13125 (2018).

    140.
    Marcot, B. G., Holthausen, R. S., Raphael, M. G., Rowland, M. M. & Wisdom, M. J. Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement. Ecol. Manag. 153, 29–42 (2001).
    Google Scholar 

    141.
    Elmhagen, B., Ludwig, G., Rushton, S. P., Helle, P. & Lindén, H. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. J. Anim. Ecol. 79, 785–794 (2010).
    CAS  PubMed  Google Scholar 

    142.
    Ritchie, E. et al. Ecosystem restoration with teeth: what role for predators? Trends Ecol. Evol. 27, 265–271 (2012).
    Google Scholar 

    143.
    Borsuk, M. E., Stow, C. A. & Reckhow, K. H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecol. Model. 173, 219–239 (2004).
    Google Scholar 

    144.
    Christensen, V. & Walters, C. J. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109–139 (2004).
    Google Scholar  More

  • in

    Cutting out the middle clam: lucinid endosymbiotic bacteria are also associated with seagrass roots worldwide

    1.
    Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, et al. A global crisis for seagrass ecosystems. Bioscience. 2006;56:987–96.
    Article  Google Scholar 
    2.
    Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, et al. Sulfide as a soil phytotoxin-a review. Front Plant Sci. 2013;4:268.
    Article  Google Scholar 

    3.
    Hasler-Sheetal H, Holmer M. Sulfide intrusion and detoxification in the seagrass Zostera marina. PLoS One. 2015;10:1–19.
    Article  Google Scholar 

    4.
    Brodersen KE, Lichtenberg M, Paz LC, Kühl M Epiphyte-cover on seagrass (Zostera marina L.) leaves impedes plant performance and radial O2 loss from the below-ground tissue. Front Mar Sci. 2015;2:1–11.

    5.
    Fahimipour AK, Kardish MR, Lang JM, Green JL, Eisen JA, Stachowicz JJ. Global-scale structure of the eelgrass microbiome. Appl Environ Microbiol. 2017;83:1–12.
    Article  Google Scholar 

    6.
    Van der Heide T, Govers LL, de Fouw J, Olff H, Van der Geest M, Van Katwijk MM, et al. A three-stage symbiosis forms the foundation of seagrass ecosystems. Science. 2012;336:1432–4.
    Article  Google Scholar 

    7.
    Van Der Geest M, Van Der Heide T, Holmer M, De Wit R. First field-based evidence that the seagrass-lucinid mutualism can mitigate sulfide stress in seagrasses. Front Mar Sci. 2020;7:1–13.
    Article  Google Scholar 

    8.
    Lim SJ, Alexander L, Engel AS, Paterson AT, Anderson LC, Campbell BJ. Extensive thioautotrophic gill endosymbiont diversity within a single Ctena orbiculata (Bivalvia: Lucinidae) population and implications for defining host-symbiont specificity and species recognition. mSystems. 2019;4:1–19.
    Article  Google Scholar 

    9.
    Brissac T, Merçot H, Gros O. Lucinidae/sulfur-oxidizing bacteria: ancestral heritage or opportunistic association? Further insights from the Bohol Sea (the Philippines). FEMS Microbiol Ecol. 2011;75:63–76.
    CAS  Article  Google Scholar 

    10.
    Brodersen KE, Koren K, Moßhammer M, Ralph PJ, Kühl M, Santner J. Seagrass-mediated phosphorus and iron solubilization in tropical sediments. Environ Sci Technol. 2017;51:14155–63.
    CAS  Article  Google Scholar 

    11.
    Martin BC, Bougoure J, Ryan MH, Bennett WW, Colmer TD, Joyce NK, et al. Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. ISME J. 2019;13:707–19.
    CAS  Article  Google Scholar 

    12.
    Callahan BJ, McMurdie PJ, Rosen M, Han AW, Johnson AJA, Holmes S. DADA2: High resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:4–5.
    Article  Google Scholar 

    13.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
    Article  Google Scholar 

    14.
    Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704.
    Article  Google Scholar 

    15.
    Les DH, Cleland MA, Waycott M. Phylogenetic studies in alismatidae, II: evolution of marine angiosperms (Seagrasses) and hydrophily. Am Soc Plant Taxon. 1997;22:443–63.
    Google Scholar 

    16.
    Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, Van Der Geest M, Kleiner M, et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol. 2016;2:1–11.
    Google Scholar 

    17.
    König S, Gros O, Heiden SE, Hinzke T, Thürmer A, Poehlein A, et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol. 2016;2:16193.
    Article  Google Scholar 

    18.
    Lim SJ, Davis BG, Gill DE, Walton J, Nachman E, Engel AS, et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 2019;13:902–20.
    CAS  Article  Google Scholar 

    19.
    Touchette BW, Burkholder JM. Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Bot. 2000;250:133–67.
    CAS  Google Scholar 

    20.
    Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H. Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (thalassia testudinum environment). Appl Environ Microbiol. 2003;69:6264–7.
    CAS  Article  Google Scholar  More

  • in

    Effectiveness of protected areas in conserving tropical forest birds

    Study areas: biodiversity hotspots
    We focused on eight biodiversity hotspots21: those with at least 25% of their extent within the “tropical and subtropical moist broadleaf forests” biome44 and for which we obtained at least 1000 checklists from eBird (after applying the data selection procedure described below): Atlantic Forest, Tropical Andes, Tumbes-Chocó-Magdalena, and Mesoamerica (Americas); Eastern Afromontane (Africa); Western Ghats and Sri Lanka, Indo-Burma and Sundaland (Asia). Within each hotspot, we analysed only areas overlapping the “tropical and subtropical moist broadleaf forests” biome44 (Fig. 1, Supplementary Figs. 1, 4, and 5), assumed to have been originally forested (see Supplementary Methods 4d).
    Data selection: eBird checklists
    We obtained bird sightings from the eBird citizen science database23. The reporting system is based on checklists, whereby the observer provides: list of birds detected; GPS location; sampling effort (whether or not all detected species are reported; sampling duration; sampling protocol, e.g., stationary point, travel, and banding; and distance travelled in case of travelling protocol); starting time of the sampling event; and number of observers.
    We used the eBird dataset released in December 201845, focusing on records from 2005 to 2018, as data collected prior to 2005 were too scarce for analysis. We filtered this dataset to obtain high-quality checklists comparable in protocol and effort: we selected complete checklists only (i.e. in which observers explicitly declare having reported all bird species detected and identified); following either the “stationary points” or the “travelling counts” protocol; with durations of continuous observation of 0.5–10 h; with observers travelling distances during the checklist 60% of the 1-km buffer around the point is forested47) versus non-forest ( More