Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird
1.
Dean, B. et al. Behavioural mapping of a pelagic seabird: combining multiple sensors and a hidden Markov model reveals the distribution of at-sea behaviour. J. R. Soc. 10, 20120570–20120570 (2013).
Article Google Scholar
2.
Daniel Kissling, W., Pattemore, D. E. & Hagen, M. Challenges and prospects in the telemetry of insects. Biol. Rev. https://doi.org/10.1111/brv.12065 (2014).
PubMed Article Google Scholar
3.
Williams, H. J. et al. Optimizing the use of biologgers for movement ecology research. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13094 (2019).
PubMed Article Google Scholar
4.
Bowlin, M. S., Cochran, W. W. & Wikelski, M. C. Biotelemetry of New World thrushes during migration: Physiology, energetics and orientation in the wild. Integr. Comp. Biol. 45, 295–304 (2005).
PubMed Article Google Scholar
5.
Shoji, A. et al. Foraging behaviour of sympatric razorbills and puffins. Mar. Ecol. Prog. Ser. 520, 257–267 (2015).
ADS Article Google Scholar
6.
Guilford, T. et al. Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: Insights from machine learning. Proc. Biol. Sci. 276, 1215–1223 (2009).
CAS PubMed PubMed Central Article Google Scholar
7.
Handcock, R. N. et al. Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9, 3586–3603 (2009).
PubMed Article Google Scholar
8.
Padget, O. et al. In situ clock shift reveals that the sun compass contributes to orientation in a pelagic seabird. Curr. Biol. 28, 275-279.e2 (2018).
CAS PubMed Article Google Scholar
9.
Votier, S. C., Bicknell, A., Cox, S. L., Scales, K. L. & Patrick, S. C. A bird’s eye view of discard reforms: Bird-borne cameras reveal seabird/fishery interactions. PLoS ONE 8, e57376 (2013).
ADS CAS PubMed PubMed Central Article Google Scholar
10.
Barron, D. G., Brawn, J. D. & Weatherhead, P. J. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol. Evol. 1, 180–187 (2010).
Article Google Scholar
11.
Bodey, T. W. et al. A phylogenetically controlled meta-analysis of biologging device effects on birds: Deleterious effects and a call for more standardized reporting of study data. Methods Ecol. Evol. 9, 946–955 (2018).
Article Google Scholar
12.
Aldridge, H. D. J. N. & Brigham, R. M. Load carrying and maneuverability in an insectivorous bat: A test of the 5% ‘rule’ of radio-telemetry. J. Mammal. https://doi.org/10.2307/1381393 (1988).
Article Google Scholar
13.
Hammerschlag, N., Gallagher, A. J. & Lazarre, D. M. A review of shark satellite tagging studies. J. Exp. Mar. Biol. Ecol. https://doi.org/10.1016/j.jembe.2010.12.012 (2011).
Article Google Scholar
14.
Irvine, A. B., Wells, R. S. & Scott, M. D. An evaluation of techniques for tagging small odontocete cetaceans. Fish. Bull. (1982).
15.
van der Hoop, J. M. et al. Bottlenose dolphins modify behavior to reduce metabolic effect of tag attachment. J. Exp. Biol. 217, 4229–4236 (2014).
PubMed Article Google Scholar
16.
Putaala, A., Oksa, J., Rintamaki, H. & Hissa, R. Effects of hand-rearing and radiotransmitters on flight of gray partridge. J. Wildl. Manage. https://doi.org/10.2307/3802136 (1997).
Article Google Scholar
17.
Jepsen, N., Thorstad, E. B., Havn, T. & Lucas, M. C. The use of external electronic tags on fish: An evaluation of tag retention and tagging effects. Anim. Biotelemetry https://doi.org/10.1186/s40317-015-0086-z (2015).
Article Google Scholar
18.
Vandenabeele, S. P. et al. Are bio-telemetric devices a drag? Effects of external tags on the diving behaviour of great cormorants. Mar. Ecol. Prog. Ser. 519, 239–249 (2015).
ADS Article Google Scholar
19.
Puehringer-Sturmayr, V. et al. Effects of bio-loggers on behaviour and corticosterone metabolites of Northern Bald Ibises (Geronticus eremita) in the field and in captivity. Anim. Biotelemetry https://doi.org/10.1186/s40317-019-0191-5 (2020).
Article Google Scholar
20.
Booms, T. L., Schempf, P. F. & Fuller, M. R. Preening behavior of adult gyrfalcons tagged with backpack transmitters. J. Raptor Res. https://doi.org/10.3356/jrr-10-115.1 (2011).
Article Google Scholar
21.
Wilson, R. P. & Wilson, M. T. A peck activity record for birds fitted with devices. J. F. Ornithol. (1989).
22.
Robert, M., Drolet, B. & Savard, J.-P.L. Effects of backpack radio-transmitters on female Barrow’s goldeneyes. Waterbirds https://doi.org/10.1675/1524-4695(2006)29[115:eobrof]2.0.co;2 (2006).
Article Google Scholar
23.
Pouliquen, O., Leishman, M. & Redhead, T. D. Effects of radio collars on wild mice, Mus domesticus. Can. J. Zool. https://doi.org/10.1139/z90-239 (1990).
Article Google Scholar
24.
Wilson, C. D., Arnott, G., Reid, N. & Roberts, D. The pitfall with PIT tags: Marking freshwater bivalves for translocation induces short-term behavioural costs. Anim. Behav. https://doi.org/10.1016/j.anbehav.2010.10.003 (2011).
Article Google Scholar
25.
Kooyman, G. L. et al. Heart rates and swim speeds of emperor penguins diving under sea ice. J. Exp. Biol. 165, 161–180 (1992).
CAS PubMed Google Scholar
26.
Harris, M. P., Bogdanova, M. I., Daunt, F. & Wanless, S. Using GPS technology to assess feeding areas of Atlantic Puffins Fratercula arctica. Ringing Migr. https://doi.org/10.1080/03078698.2012.691247 (2012).
Article Google Scholar
27.
Wanless, S., Harris, M. P. & Morris, J. A. Behavior of alcids with tail-mounted radio transmitters. Colon. Waterbirds 158–163, https://doi.org/10.2307/1521336 (1989).
28.
Arlt, D., Low, M. & Pärt, T. Effect of geolocators on migration and subsequent breeding performance of a long-distance passerine migrant. PLoS ONE https://doi.org/10.1371/journal.pone.0082316 (2013).
PubMed PubMed Central Article Google Scholar
29.
Rodríguez, A., Negro, J. J., Fox, J. W. & Afanasyev, V. Effects of geolocator attachments on breeding parameters of Lesser Kestrels. J. F. Ornithol. https://doi.org/10.1111/j.1557-9263.2009.00247.x (2009).
Article Google Scholar
30.
Scandolara, C. et al. Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits. J. Avian Biol. https://doi.org/10.1111/jav.00412 (2014).
Article Google Scholar
31.
Whidden, S. E., Williams, C. T., Breton, A. R. & Buck, C. L. Effects of transmitters on the reproductive success of Tufted Puffins. J. F. Ornithol. 78, 206–212 (2007).
Article Google Scholar
32.
Griffioen, M., Iserbyt, A. & Muller, W. Handicapping males does not affect their rate of parental provisioning, but impinges on their partners’ turn taking behavior. Front. Ecol. Evol. 7, 1–7 (2019).
Article Google Scholar
33.
Ratz, T., Nichol, T. W. & Smiseth, P. T. Parental responses to increasing levels of handicapping in a burying beetle. Behav. Ecol. https://doi.org/10.1093/beheco/arz157 (2019).
Article Google Scholar
34.
Wiebe, K. L. Negotiation of parental care when the stakes are high: Experimental handicapping of one partner during incubation leads to short-term generosity. J. Anim. Ecol. 79, 63–70 (2010).
PubMed Article Google Scholar
35.
Cantarero, A., López-Arrabé, J., Palma, A., Redondo, A. J. & Moreno, J. Males respond to female begging signals of need: A handicapping experiment in the pied flycatcher, Ficedula hypoleuca. Anim. Behav. https://doi.org/10.1016/j.anbehav.2014.05.002 (2014).
Article Google Scholar
36.
Saraux, C. et al. Reliability of flipper-banded penguins as indicators of climate change. Nature 469, 203–208 (2011).
ADS CAS PubMed Article Google Scholar
37.
Beaulieu, M. et al. Can a handicapped parent rely on its partner? An experimental study within Adélie penguin pairs. Anim. Behav. 78, 313–320 (2009).
Article Google Scholar
38.
Paredes, R., Jones, I. L. & Boness, D. J. Reduced parental care, compensatory behaviour and reproductive costs of thick-billed murres equipped with data loggers. Anim. Behav. 69, 197–208 (2005).
Article Google Scholar
39.
Dean, B. et al. Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. Mar. Ecol. Prog. Ser. 538, 239–248 (2015).
ADS CAS Article Google Scholar
40.
Guilford, T. C. et al. GPS tracking of the foraging movements of Manx Shearwaters Puffinus puffinus breeding on Skomer Island, Wales. Ibis (Lond. 1859). 150, 462–473 (2008).
41.
Shoji, A. et al. Dual foraging and pair-coordination during chick provisioning by Manx shearwaters: empirical evidence supported by a simple model. J. Exp. Biol. 218, 2116–2123 (2015).
PubMed PubMed Central Article Google Scholar
42.
Adams, J. et al. Effects of geolocation archival tags on reproduction and adult body mass of sooty shearwaters (Puffinus griseus). N. Z. J. Zool. 36, 355–366 (2009).
Article Google Scholar
43.
Phillips, R. A., Xavier, J. C., Croxall, J. P., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on albatrosses and petrels. Auk 120, 1082–1090 (2003).
Article Google Scholar
44.
Pennycuick, C. J., Fast, P. L. F., Ballerstädt, N. & Rattenborg, N. The effect of an external transmitter on the drag coefficient of a bird’s body, and hence on migration range, and energy reserves after migration. J. Ornithol. 153, 633–644 (2012).
Article Google Scholar
45.
Hazekamp, A. A. H., Mayer, R. & Osinga, N. Flow simulation along a seal: The impact of an external device. Eur. J. Wildl. Res. 56, 131–140 (2010).
Article Google Scholar
46.
Wilson, R. P. Antennae on transmitters on penguins: balancing energy budgets on the high wire. J. Exp. Biol. 207, 2649–2662 (2004).
PubMed Article Google Scholar
47.
Watson, K. P. & Granger, R. A. Hydrodynamic effect of a satellite transmitter on a juvenile green turtle (Chelonia mydas). J. Exp. Biol. 201, 2497–2505 (1998).
PubMed Google Scholar
48.
Hull, C. L. The effect of carrying devices on breeding royal penguins. Condor 99, 530–534 (1997).
Article Google Scholar
49.
Elliott, K. H. et al. Age-related variation in energy expenditure in a long-lived bird within the envelope of an energy ceiling. J. Anim. Ecol. 83, 136–146 (2014).
PubMed Article Google Scholar
50.
Kelly, K. G., Diamond, A. W., Holberton, R. L. & Bowser, A. K. Researcher handling of incubating Atlantic puffins Fratercula arctica has no effect on reproductive success. Mar. Ornithol. (2015).
51.
Müller, M. S., Vyssotski, A. L., Yamamoto, M. & Yoda, K. Individual differences in heart rate reveal a broad range of autonomic phenotypes in a free-living seabird population. J. Exp. Biol. https://doi.org/10.1242/jeb.182758 (2018).
PubMed Article Google Scholar
52.
Weimerskirch, H. et al. Heart rate and energy expenditure of incubating wandering albatrosses: Basal levels, natural variation, and the effects of human disturbance. J. Exp. Biol. (2002).
53.
Fayet, A. L. et al. Lower foraging efficiency in immatures drives spatial segregation with breeding adults in a long-lived pelagic seabird. Anim. Behav. 110, 79–89 (2015).
Article Google Scholar
54.
Kosztolányi, A., Cuthill, I. C. & Székely, T. Negotiation between parents over care: Reversible compensation during incubation. Behav. Ecol. 20, 446–452 (2009).
Article Google Scholar
55.
Suzuki, S. & Nagano, M. To compensate or not? Caring parents respond differentially to mate removal and mate handicapping in the burying beetle, Nicrophorus quadripunctatus. Ethology https://doi.org/10.1111/j.1439-0310.2008.01598.x (2009).
Article Google Scholar
56.
Wright, J. & Cuthill, I. Biparental care: Short-term manipulation of partner contribution and brood size in the starling, Sturnus vulgaris. Behav. Ecol. 1, 116–124 (1990).
Article Google Scholar
57.
Bijleveld, A. I. & Mullers, R. H. E. E. Reproductive effort in biparental care: An experimental study in long-lived Cape gannets. Behav. Ecol. 20, 736–744 (2009).
Article Google Scholar
58.
Dearborn, D. C. Body condition and retaliation in the parental effort decisions of incubating great frigatebirds (Fregata minor). Behav. Ecol. 12, 200–206 (2001).
Article Google Scholar
59.
Navarro, J. & González-Solís, J. Experimental increase of flying costs in a pelagic seabird: Effects on foraging strategies, nutritional state and chick condition. Oecologia 151, 150–160 (2007).
ADS PubMed Article Google Scholar
60.
Brooke, M. The Manx Shearwater. (A & C Black Publishers Ltd, 1990).
61.
Heggøy, O., Christensen-Dalsgaard, S., Ranke, P. S., Chastel, O. & Bech, C. GPS-loggers influence behaviour and physiology in the black-legged kittiwake Rissa tridactyla. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps11140 (2015).
Article Google Scholar
62.
Fayet, A. L. et al. Carry-over effects on the annual cycle of a migratory seabird: An experimental study. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12580 (2016).
PubMed PubMed Central Article Google Scholar
63.
Shoji, A. et al. Breeding phenology and winter activity predict subsequent breeding success in a trans-global migratory seabird. Biol. Lett. 11, 20150671 (2015).
PubMed PubMed Central Article Google Scholar
64.
Boersma, P. & Davies, E. Sexing monomorphic birds by vent measurements. Auk 104, 779–783 (1987).
Article Google Scholar
65.
Guilford, T. et al. Geolocators reveal migration and pre-breeding behaviour of the critically endangered balearic shearwater Puffinus mauretanicus. PLoS ONE 7, e33753 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
66.
Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. S. Mixtools: An R package for analyzing finite mixture models. J. Stat. Softw. https://doi.org/10.18637/jss.v032.i06 (2009).
Article Google Scholar
67.
Fayet, A. L. et al. Drivers and fitness consequences of dispersive migration in a pelagic seabird. Behav. Ecol. https://doi.org/10.1093/beheco/arw013 (2016).
PubMed PubMed Central Article Google Scholar
68.
Core Team, R. R: A Language and Environment for Statistical Computing. (R Found. Stat. Comput., Vienna, 2018).
69.
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
Article Google Scholar
70.
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package ‘emmeans’. Mran.Microsoft.Com https://doi.org/10.1080/00031305.1980.10483031%3e.License (2018).
Article Google Scholar More