More stories

  • in

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields

    1.
    Weibull, A. C., Östman, Ö & Granqvist, Å. Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers. Conserv. 12, 1335–1355 (2003).
    Google Scholar 
    2.
    Gurr, G. M. et al. Landscape ecology and expanding range of biocontrol agent taxa enhance prospects for diamondback moth management. A review. Agron. Sustain. Dev. 38, 23 (2018).
    Google Scholar 

    3.
    Schweiger, O. et al. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J. Appl. Ecol. 42, 1129–1139 (2005).
    Google Scholar 

    4.
    Stoate, C. et al. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365 (2001).
    CAS  Google Scholar 

    5.
    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).
    CAS  Google Scholar 

    6.
    Řezáč, M., Pekár, S. & Stará, J. The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum. Biocontrol 55, 503–510 (2010).
    Google Scholar 

    7.
    Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).
    PubMed  PubMed Central  Google Scholar 

    8.
    Magrach, A. et al. Plant-pollinator networks in semi-natural grasslands are resistant to the loss of pollinators during blooming of mass-flowering crops. Ecography 41, 62–74 (2018).
    Google Scholar 

    9.
    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).
    Google Scholar 

    10.
    Rundlöf, M., Bengtsson, J. & Smith, H. G. Local and landscape effects of organic farming on butterfly species richness and abundance. J. Appl. Ecol. 45, 813–820 (2008).
    Google Scholar 

    11.
    Gabriel, D. et al. Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol. Lett. 13, 858–869 (2010).
    PubMed  Google Scholar 

    12.
    Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).
    PubMed  Google Scholar 

    13.
    Tscharntke, T. et al. The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann. Zool. Fenn. 42, 421–432 (2005).
    Google Scholar 

    14.
    Madeira, F. et al. Spillover of arthropods from cropland to protected calcareous grassland—the neighbouring habitat matters. Agric. Ecosyst. Environ. 235, 127–133 (2016).
    Google Scholar 

    15.
    Schmidt, M. H., Roschewitz, I., Thies, C. & Tscharntke, T. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42, 281–287 (2005).
    Google Scholar 

    16.
    Pfiffner, L. & Luka, H. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ. 78, 215–222 (2000).
    Google Scholar 

    17.
    Saqib, H. S. A., You, M. & Gurr, G. M. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops. PeerJ 5, e3795 (2017).
    PubMed  PubMed Central  Google Scholar 

    18.
    Woodcock, B. A. et al. Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agric. Ecosyst. Environ. 139, 181–186 (2010).
    MathSciNet  Google Scholar 

    19.
    Perović, D. J., Gurr, G. M., Raman, A. & Nicol, H. I. Effect of landscape composition and arrangement on biological control agents in a simplified agricultural system: a cost-distance approach. Biol. Control 52, 263–270 (2010).
    Google Scholar 

    20.
    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, 7863–7870 (2018).
    Google Scholar 

    21.
    Riechert, S. E. & Lockley, T. Spiders as biological control agents. Annu. Rev. Entomol. 29, 299–320 (1984).
    Google Scholar 

    22.
    Birkhofer, K. et al. Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 98, 249–255 (2008).
    CAS  PubMed  Google Scholar 

    23.
    Mansour, F., Rosen, D., Shulov, A. & Plaut, H. N. Evaluation of spiders as biological control agents of Spodoptera littoralis larvae on apple in Israel. Acta Oecol. Oecol. Appl. 1, 225–232 (1980).
    Google Scholar 

    24.
    Griffin, J. N., Byrnes, J. E. K. & Cardinale, B. J. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180–2187 (2013).
    PubMed  Google Scholar 

    25.
    Horváth, R. et al. In stable, unmanaged grasslands local factors are more important than landscape-level factors in shaping spider assemblages. Agric. Ecosyst. Environ. 208, 106–113 (2015).
    Google Scholar 

    26.
    Batáry, P., Báldi, A., Samu, F., Szuts, T. & Erdos, S. Are spiders reacting to local or landscape scale effects in Hungarian pastures?. Biol. Conserv. 141, 2062–2070 (2008).
    Google Scholar 

    27.
    Picchi, M. S., Gionata Bocci, F. F., Petacchi, R. & Entling, M. H. Effects of local and landscape factors on spiders and olive fruit flies. Agric. Ecosyst. Environ. 222, 138–147 (2016).
    Google Scholar 

    28.
    Djoudi, E. A. et al. Farming system and landscape characteristics differentially affect two dominant taxa of predatory arthropods. Agric. Ecosyst. Environ. 259, 98–110 (2018).
    Google Scholar 

    29.
    Muneret, L., Thiéry, D., Joubard, B. & Rusch, A. Deployment of organic farming at a landscape scale maintains low pest infestation and high crop productivity levels in vineyards. J. Appl. Ecol. 55, 1516–1525 (2018).
    Google Scholar 

    30.
    Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).
    Google Scholar 

    31.
    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
    CAS  PubMed  Google Scholar 

    32.
    Hurd, L. E. & Fagan, W. F. Cursorial spiders and succession: age or habitat structure?. Oecologia 92, 215–221 (1992).
    ADS  CAS  PubMed  Google Scholar 

    33.
    Halaj, J., Ross, D. W. & Moldenke, A. R. Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos 90, 139–152 (2000).
    Google Scholar 

    34.
    Rypstra, A. A. L., Carter, P. P. E., Balfour, R. R. A. & Marshall, S. S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27, 371–377 (1999).
    Google Scholar 

    35.
    Samu, F. & Szinetár, C. On the nature of agrobiont spiders. J. Arachnol. 30, 389–402 (2002).
    Google Scholar 

    36.
    Gangurde, S. Aboveground arthropod pest and predator diversity in irrigated rice (Oryza sativa L.) production systems of the Philippines. J. Trop. Agric. 45, 1–8 (2007).
    Google Scholar 

    37.
    Öberg, S. & Ekbom, B. Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. Ann. Appl. Biol. 149, 203–211 (2006).
    Google Scholar 

    38.
    Öberg, S. Influence of landscape structure and farming practice on body condition and fecundity of wolf spiders. Basic Appl. Ecol. 10, 614–621 (2009).
    Google Scholar 

    39.
    Garratt, M. P. D., Senapathi, D., Coston, D. J., Mortimer, S. R. & Potts, S. G. The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agric. Ecosyst. Environ. 247, 363–370 (2017).
    Google Scholar 

    40.
    Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).
    PubMed  PubMed Central  Google Scholar 

    41.
    Langellotto, G. A. & Denno, R. F. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139, 1–10 (2004).
    ADS  PubMed  Google Scholar 

    42.
    Marshall, E. J. P. & Moonen, A. C. Field margins in northern Europe: their functions and interactions with agriculture. Agric. Ecosyst. Environ. 89, 5–21 (2002).
    Google Scholar 

    43.
    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
    PubMed  Google Scholar 

    44.
    Schmidt, M. H., Thies, C., Nentwig, W. & Tscharntke, T. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J. Biogeogr. 35, 157–166 (2008).
    Google Scholar 

    45.
    Drapela, T., Moser, D., Zaller, J. G. & Frank, T. Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31, 254–262 (2008).
    Google Scholar 

    46.
    Zimmerer, K. S. The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proc. Natl. Acad. Sci. USA 110, 2769–2774 (2013).
    ADS  CAS  PubMed  Google Scholar 

    47.
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
    ADS  CAS  PubMed  Google Scholar 

    48.
    Sørensen, L. L., Coddington, J. A. & Scharff, N. Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environ. Entomol. 31, 319–330 (2002).
    Google Scholar 

    49.
    Mader, V. et al. Land use at different spatial scales alters the functional role of web-building spiders in arthropod food webs. Agric. Ecosyst. Environ. 219, 152–162 (2016).
    Google Scholar 

    50.
    Hollander, M. & Wolfe, D. Nonparametric Statistical Methods. Wiley Series in Probability and Statistics 2nd edn. (Wiley, New York, 1999).
    Google Scholar 

    51.
    Oksanen, J. et al. Package “vegan”: Community Ecology Package (2019).

    52.
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    MathSciNet  MATH  Google Scholar 

    53.
    Torondel, B. et al. Assessment of the influence of intrinsic environmental and geographical factors on the bacterial ecology of pit latrines. Microb. Biotechnol. 9, 209–223 (2016).
    PubMed  PubMed Central  Google Scholar 

    54.
    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).
    ADS  PubMed  Google Scholar 

    55.
    Belsley, D. A., Kuh, E. & Welsch, R. E. Detecting and assessing collinearity. In Regression Diagnostic: Identifying Influential Data and Sources of Collnearity (eds Belsley, D. A. et al.) 85–191 (Wiley, New York, 2005).
    Google Scholar 

    56.
    Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2, 269–277 (2011).
    Google Scholar 

    57.
    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).
    Google Scholar 

    58.
    Kindt, R. Package “BiodiversityR”: Package for Community Ecology and Suitability Analysis (2019).

    59.
    Warnes, G. R. et al. Package “gplots”: Various R Programming Tools for Plotting Data (2020).

    60.
    Ploner, A. Heatplus: Heatmaps with Row and/or Column Covariates and Colored Clusters (2020). More

  • in

    Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics

    1.
    Simpson, G. G. History of the fauna of Latin America. Am. Sci. 38, 361–389 (1950).
    Google Scholar 
    2.
    Hershkovitz, P. A geographic classification of Neotropical mammals. Chicago natural history museum. Fieldiana Zool. 36, 581–620 (1958).
    Google Scholar 

    3.
    Feeley, K. J. & Stroud, J. T. Where on Earth are the “tropics”?. Front. Biogeogr. 10(2), e38649. https://doi.org/10.21425/F5101-238649 (2018).
    Article  Google Scholar 

    4.
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11), 933–938 (2011).
    Google Scholar 

    5.
    Udvardy, M.D.F. A classification of the biogeographical provinces of the world. IUCN Occasional Papers n° 18 (1975).

    6.
    Canale, G. R., Peres, C. A., Guidorizzi, C. E., Gatto, C. A. F. & Kierulff, M. C. M. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS ONE 7, e41671 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    7.
    Antunes, A. P. et al. Empty forest or empty rivers? A century of commercial hunting in Amazonia. Sci. Adv. 2, e1600936 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    8.
    Galetti, M. et al. Defaunation and biomass collapse of mammals in the largest Atlantic forest remnant. Anim. Conserv. https://doi.org/10.1111/acv.12311 (2016).
    Article  Google Scholar 

    9.
    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113(4), 892–897 (2016).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Püttker, T. et al. Indirect effects of habitat loss via habitat fragmentation: a cross-taxa analysis of forest-dependent species. Biol. Conserv. 241, 108368 (2020).
    Google Scholar 

    11.
    Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl. Acad. Sci. 117(13), 7095–7102 (2020).
    ADS  CAS  PubMed  Google Scholar 

    12.
    Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20(4), 1251–1261 (2006).
    PubMed  Google Scholar 

    13.
    Ceddia, M. G. et al. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl. Acad. Sci. 111(2), 7242–7247 (2014).
    ADS  CAS  PubMed  Google Scholar 

    14.
    Pastro, L. A., Dickman, C. R. & Letnic, M. Fire type and hemisphere determine the effects of fire on the alpha and beta diversity of vertebrates: a global meta-analysis. Glob. Ecol. Biogeogr. 23, 1146–1156 (2014).
    Google Scholar 

    15.
    Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).
    ADS  PubMed  Google Scholar 

    16.
    Brancalion, P. H. S. et al. Análise crítica da Lei de Proteção da Vegetação Nativa (2012), que substituiu o antigo Código Florestal: atualizações e ações em curso. Nat. Conserv. 14, e1–e16 (2016).
    Google Scholar 

    17.
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, Causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
    Google Scholar 

    18.
    Redford, K. H. The empty forest. Bioscience 42, 412–422 (1992).
    Google Scholar 

    19.
    Terborgh, J. The big things that run the world: a sequel to E.O. Wilson. Conserv. Biol. 2(4), 402–403 (1988).
    Google Scholar 

    20.
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  PubMed  Google Scholar 

    21.
    Levi, T. & Peres, C. A. Dispersal vaccum in the seedling recruitment of a primate-dispersed Amazonian tree. Biol. Conserv. 163, 99–106 (2013).
    Google Scholar 

    22.
    Bogoni, J. A., da Silva, P. G. & Peres, C. A. Co-declining mammal–dung beetle faunas throughout the Atlantic Forest biome of South America. Ecography 42, 1803–1818 (2019).
    Google Scholar 

    23.
    Lacher, T. E. et al. The functional roles of mammals in ecosystems. J. Mammal. 100(3), 942–964 (2019).
    Google Scholar 

    24.
    Kaufman, D. M. Diversity of new world mammals: universality of the latitudinal gradients of species and bauplans. J. Mammal. 76(2), 322–334 (1995).
    MathSciNet  Google Scholar 

    25.
    Ceballos, G. & Ehrlich, P. R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl. Acad. Sci. 103(51), 19374–19379 (2006).
    ADS  CAS  PubMed  Google Scholar 

    26.
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, 6089–6096 (2017).
    Google Scholar 

    27.
    Lima, F. et al. ATLANTIC-CAMTRAPS: a dataset of medium and large terrestrial mammal communities in the Atlantic Forest of South America. Ecology 98(11), 2979 (2017).
    PubMed  Google Scholar 

    28.
    Souza, Y. et al. ATLANTIC MAMMALS: a data set of assemblages of medium- and large-sized mammals of the Atlantic Forest of South America. Ecology 100(10), e02785 (2019).
    PubMed  Google Scholar 

    29.
    Janzen, D. H. (ed.) Costa Rican Natural History (The University of Chicago Press, Chicago, 1983).
    Google Scholar 

    30.
    Gentry, A. H. (ed.) Four Neotropical Rainforest (Yale University Press, London, 1993).
    Google Scholar 

    31.
    Nadkarni, N.M. & Wheelwright, N.T. (eds.). Monteverde: Ecology and Conservation of a Tropical Cloud Forest—2014 Updated Chapters. Bowdoin Scholars Bookshelf (2014).

    32.
    Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008).
    ADS  CAS  PubMed  Google Scholar 

    33.
    IUCN Spatial data download: mammals. https://www.iucnredlist.org/technicaldocuments/spatial-data#mammals. Accessed 11 June 2018. (2016).

    34.
    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos Trans. R. Soc. Lond. B Biol. Sci. 366, 2633–2641 (2011).
    PubMed  PubMed Central  Google Scholar 

    35.
    González-Maya, J. F., Martínez-Meyer, E., Medellín, R. & Ceballos, G. Distribution of mammal functional diversity in the Neotropical realm: influence of land-use and exticton risk. PLoS ONE 12(4), e0175931 (2017).
    PubMed  PubMed Central  Google Scholar 

    36.
    Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 2017, 1–12. https://doi.org/10.1111/geb.12601 (2017).
    Article  Google Scholar 

    37.
    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90(9), 2648 (2009).
    Google Scholar 

    38.
    Wilman, H. et al. Elton traits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95(7), 2027–2027 (2014).
    Google Scholar 

    39.
    Wildlife Conservation Society (WCS), and Center for International Earth Science Information Network (CIESIN), Columbia University. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2005). https://doi.org/10.7927/H4M61H5F.

    40.
    Kobayashi, T. et al. Production of global land cover data—GLCNMO2013. J. Geogr. Geol. 9(3), 1–15 (2017).
    Google Scholar 

    41.
    NASA Earth Observatory. Maps created by Jesse Allen and Reto Stockli, NASA Earth Observatory, using data courtesy the MODIS Land Science Team at NASA Goddard Space Flight Center (2020). https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD14A1_M_FIRE&year=2018.

    42.
    Bogoni, J. A. et al. What would be the diversity patterns of medium- to large-bodied mammals if the fragmented Atlantic Forest was a large metacommunity?. Biol. Conserv. 211, 85–94 (2017).
    Google Scholar 

    43.
    Morrone, J. J. Biogeographical regionalisation of the Neotropical region. Zootaxa 3782(1), 1–110 (2014).
    PubMed  Google Scholar 

    44.
    Google Earth. KML gallery: explore the earth on Google (2020). https://earth.google.com/gallery/index.html.

    45.
    Bayes, T. An essay toward solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370–418 (1764).
    MathSciNet  MATH  Google Scholar 

    46.
    Cressie, N. A. C. Statistics for Spatial Data Revised. (Wiley, Hoboken, 1993).
    Google Scholar 

    47.
    Rabinowitz, D. Seven forms of rarity. In The Biological Aspects of Rare Plant Conservation (ed. Synge, H.) 205–217 (Wiley, Hoboken, 1981).
    Google Scholar 

    48.
    Yu, J. & Dobson, F. S. Seven forms of rarity in mammals. J. Biogeogr. 27, 131–139 (2000).
    Google Scholar 

    49.
    Tobler, M. W., Carrillo-Percastegui, S. E., Pitman, R. L., Mares, R. & Powell, G. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11(3), 169–178 (2008).
    Google Scholar 

    50.
    Bogoni, J. A., Pires, J. S. R., Graipel, M. E., Peroni, N. & Peres, C. A. Wish you were here: how defaunated is the Atlantic Forest biome of its medium- to large bodied mammal fauna?. PLoS ONE 13(9), e0204515 (2018).
    PubMed  PubMed Central  Google Scholar 

    51.
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Soft. 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05 (2008).
    Article  Google Scholar 

    52.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing (2020).

    53.
    Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37(1), 17–23 (1950).
    MathSciNet  CAS  PubMed  MATH  Google Scholar 

    54.
    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, Cambridge, 2006).
    Google Scholar 

    55.
    Kamata, A. & Bauer, D. J. A note on the relation between factor analytic and item response theory models. Struct. Equ. Model. 15(1), 136–153 (2008).
    MathSciNet  Google Scholar 

    56.
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).
    PubMed  Google Scholar 

    57.
    Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Soft. 48(2), 1–36 (2012).
    Google Scholar 

    58.
    Maxwell, S., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).
    ADS  CAS  PubMed  Google Scholar 

    59.
    Wen, Z. et al. Using completeness and defaunation indices to understand nature reserve’s key attributes in preserving medium- and large-bodied mammals. Biol. Conserv. 241, 108273 (2020).
    Google Scholar 

    60.
    Camargo-Sanabria, A. A., Mendoza, E., Guevara, R., Martinez-Ramos, M. & Dirzo, R. Experimental defaunation of terrestrial mammalian herbivores alters tropical rainforest understorey diversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 282, 2580 (2015).
    Google Scholar 

    61.
    Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    63.
    Dean, W. With Broadax and Firebrand: The Destruction of the Brazilian Atlantic Forest (University of California Press, Berkeley, 1996).
    Google Scholar 

    64.
    Galetti, M. et al. Priority areas for the conservation of Atlantic forest large mammals. Biol. Conserv. 142(6), 1229–1241 (2009).
    Google Scholar 

    65.
    Leal, I. R., Silva, J. M. C., Tabarelli, M. & Lacher, T. Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conserv. Biol. 19(3), 701–706 (2005).
    Google Scholar 

    66.
    Chesser, T. & Hackett, S. J. Mammalian diversity in South America. Science 256, 1502–1504 (1992).
    ADS  Google Scholar 

    67.
    Ojeda, R. A. Diversity and Conservation of Neotropical Mammals. Encyclopedia of Biodiversity 2nd edn. (Academic Press, Waltham, 2013).
    Google Scholar 

    68.
    Hansen, M. C. et al. High resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    ADS  CAS  PubMed  Google Scholar 

    69.
    Lapola, D. M. et al. Pervasive transition of the Brazilian land-use system. Nat. Clim. Change 4, 27–35 (2014).
    ADS  Google Scholar 

    70.
    Ceddia, M. G. The super-rich and cropland expansion via direct investments in agriculture. Nat. Sustain. 3(4), 312–318 (2020).
    Google Scholar 

    71.
    Chape, S., Harrison, J., Spalding, M. D. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 443–455 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Joppa, L. N., Loarle, S. R. & Pimm, S. L. On the protection of ‘“protected areas”’. Proc. Natl. Acad. Sci. 105(18), 6673–6678 (2008).
    ADS  CAS  PubMed  Google Scholar 

    73.
    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Oliveira, U. et al. Biodiversity conservation gaps in the Brazilian protected areas. Sci. Rep. 7, 9141 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    75.
    Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    76.
    Begotti, R.A. & Peres, C.A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy (2020) (in press).

    77.
    Levi, T., Shepard, G. H., Ohl-Schacherer, J. & Peres, C. A. Modelling the long-term sustainability of indigenous hunting in Manu National Park, Peru: landscape-scale management implications for Amazonia. J. Appl. Ecol. 46, 804–814 (2009).
    Google Scholar 

    78.
    Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol. 17(5), e3000247 (2019).
    PubMed  PubMed Central  Google Scholar 

    79.
    Sanderson, E. S. et al. The human footprint and the last of the wild. Bioscience 52(10), 891–904 (2002).
    Google Scholar 

    80.
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Belote, R. T. et al. Mammal species composition reveals new insights into Earth’s remaining wilderness. Front. Ecol. Environ. https://doi.org/10.1002/fee.2192 (2020).
    Article  Google Scholar 

    82.
    Rodrigues, A. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).
    ADS  CAS  PubMed  Google Scholar 

    83.
    Phillips, H. R. P., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodivers. Conserv. 26, 2251–2270 (2017).
    PubMed  PubMed Central  Google Scholar 

    84.
    Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 14(4), e0215152 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    85.
    Magioli, M. M. et al. Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proc. Natl. Acad. Sci. 116(37), 18466–18472 (2019).
    CAS  PubMed  Google Scholar 

    86.
    Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1787 (2008).
    PubMed  PubMed Central  Google Scholar 

    87.
    Aragão, L. E. O. C. & Shimabukuro, Y. E. The incidence of fire in Amazonian Forests with implications for REDD. Science 328, 1275–1278 (2010).
    ADS  PubMed  Google Scholar 

    88.
    Martin, P. S. Discovery of America. Science 179, 969–974 (1973).
    ADS  CAS  PubMed  Google Scholar 

    89.
    Simpson, G. G. Splendid Isolation: The Curious History of South American Mammals (Yale University Press, New Haven, 1980).
    Google Scholar 

    90.
    Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, Cambridge, 1986).
    Google Scholar 

    91.
    Brown, J. H. & Sibly, R. M. Life-history evolution under a production constraint. Proc. Natl. Acad. Sci. 103(47), 17595–17599 (2006).
    ADS  CAS  PubMed  Google Scholar 

    92.
    Hone, D. W. & Benton, M. J. The evolution of large size: how does Cope’s Rule work?. Trends Ecol. Evol. 20(1), 4–6 (2005).
    PubMed  Google Scholar 

    93.
    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).
    ADS  CAS  PubMed  Google Scholar 

    94.
    Cardillo, M. et al. The predictability of extinction- biological and external correlates of decline in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 275, 1441–1448 (2008).
    Google Scholar 

    95.
    Beca, G. et al. High mammal species turnover in forest patches immersed in biofuel plantations. Biol. Conserv. 210, 352–359 (2017).
    Google Scholar 

    96.
    Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. 114(29), 7635–7640 (2017).
    CAS  PubMed  Google Scholar 

    97.
    Santini, L. et al. One strategy does not fit all: determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).
    PubMed  Google Scholar 

    98.
    Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl. Acad. Sci. 113(4), 856–861 (2016).
    ADS  CAS  PubMed  Google Scholar 

    99.
    Rees, J. D., Kingsford, R. T. & Letnic, M. In the absence of an apex predator, irruptive herbivores suppress grass seed production: implications for small granivores. Biol. Conserv. 213, 13–18 (2017).
    Google Scholar 

    100.
    Berzaghi, F. et al. Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles—the potential of vegetation models. Ecography 41, 1–21 (2018).
    Google Scholar 

    101.
    Bufalo, F. S., Galetti, M. & Culot, L. Seed dispersal by primates and implications for the conservation of a biodiversity hotspot, the Atlantic Forest of South America. Int. J. Primatol. https://doi.org/10.1007/s10764-016-9903-3 (2016).
    Article  Google Scholar 

    102.
    Estrada, A. et al. Impending extinction crisis of the world’s primates: why primates matter. Sci. Adv. 3(1), e1600946 (2017).
    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

    103.
    Almeida-Rocha, J. M., Peres, C. A. & Oliveira, L. C. Primate responses to anthropogenic habitat disturbance: a pantropical meta-analysis. Biol. Conserv. 215, 30–38 (2017).
    Google Scholar 

    104.
    Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6(1), 1–16 (2016).
    Google Scholar 

    105.
    Ji, Y. et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 16(10), 1245–1257 (2013).
    PubMed  Google Scholar 

    106.
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
    Google Scholar 

    107.
    Janson, C. H. & Emmons, L. Ecological structure of the nonflying mammal community at Cocha Cashu Biological Station, Manu National Park, Peru. In Four Neotropical Rainforests (ed. Gentry, A. H.) 314–338 (Yale University Press, New Haven, 1990).
    Google Scholar 

    108.
    Peres, C. A. Structure of nonvolant mammal communities in different Amazonian Forest types. In Mammals of the Neotropics: The Central Neotropics (eds Eisenberg, J. F. & Redford, K. H.) 564–581 (University of Chicago, Chicago, 1999).
    Google Scholar 

    109.
    Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).
    PubMed  Google Scholar 

    110.
    Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. G. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal Rev. https://doi.org/10.1111/mam.12137 (2018).
    Article  Google Scholar 

    111.
    Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).
    Google Scholar 

    112.
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
    ADS  CAS  PubMed  Google Scholar 

    113.
    Waide, R. B. et al. The relationship between productivity and species richness. Annu. Rev. Ecol. Evol. Syst. 30, 257–300 (1999).
    Google Scholar 

    114.
    Oliveira, L. E. C. & Begossi, A. Last trip return rate influence patch choice decisions of small-scale shrimp trawlers: optimal foraging in São Francisco, Coastal Brazil. Hum. Ecol. 39, 323–332 (2011).
    Google Scholar 

    115.
    Cardillo, M. The life-history basis of latitudinal diversity gradients: how do species traits vary from the poles to the equator?. J. Anim. Ecol. 71, 79–87 (2002).
    Google Scholar  More

  • in

    Temperate infection in a virus–host system previously known for virulent dynamics

    Host cultures
    All laboratory experiments were conducted with Emiliania huxleyi strain CCMP374 (https://ncma.bigelow.org/ccmp374) and EhV strain 207 (see below). CCMP374 is a naked strain of E. huxleyi isolated from the Gulf of Maine in 1990, and exhibits rapid growth, high-stationary phase densities (~107 cells per milliliter), and high sensitivity to viral infection27,63. Cultures were maintained at 5·105 to 1·106 cells per millilier and grown at 18 °C, with a 14 h:10 h light:dark cycle with a light intensity of 125 µmol photons m−2 s−1. CCMP374 was grown in batch culture conditions with f/2 rich nutrients42 added to 0.2 µm pore-size filtered (GE Healthcare USA, filter 6718-9582) autoclaved seawater in either polystyrene 50 mL flasks or 6-well plates or polypropylene 96-well plates (Greiner Bio-One, USA; items 690160, 657185, and 780270, respectively; Supplementary Table 1). Addition of f/2 nutrients increases macronutrient concentrations (e.g., NaNO3 882 µM; an ~88-fold enrichment over basal seawater with ~10 µM NaNO3; other nutrients see similar enrichments). This provides ideal, replete conditions conducive to virulent dynamics in which to probe for the presence of virulent viral behavior.
    Virus cultures
    EhV207 has commonly been used to elucidate virulent dynamics, as it induces the rapid decline of host populations and concomitant production of high titers of viral progeny under culture conditions28,36,64. Together with CCMP374, EhV207 comprises a highly virulent host–virus system, strongly predisposing this work towards the execution of virulent activity. Viruses were cultured by adding them to exponentially growing cultures at ~5·105 to 1·106 cells per milliliter in f/2 media at a virus:host ratio of 10:1 MOI. Cultures visibly cleared after approximately three days and viruses were isolated from cellular debris using 0.45 µm pore-size filtration (EMD Millipore, USA; filters SLHV033RS or SVHV01015) and lysates stored in the dark at 4 °C until use within 1 week. This approach yielded viral titers in excess of 108 viruses per milliliter. In experiments where a virus-negative control was required, a heat-killed lysate was produced by incubation at 90 °C for 10–20 min prior to 0.02 µm pore-size filtration (Anotop, Whatman, USA) and cooling to ~18 °C. All infections were conducted in the morning41. For all experiments, virus infectivity was monitored by running parallel cultures with initial host densities of 105 cells per milliliter coincubated with a MOI of 10 (10:1 viruses:host). These visibly cleared in all cases, showing that our viruses were always infectious in these experiments. All flasks were shaken daily and plates mixed by pipetting to preclude settling and ensure equal exposure to infection. In summary, all experiments were conducted in a manner typically conducive to virulent infection and with viable viruses and sensitive hosts.
    Laboratory coincubation experiments
    E. huxleyi-EhV virulent infection dynamics were first were studied using coincubation of viruses and hosts at an initial ratio of 10:1 viruses:host (MOI = 10) in laboratory conditions. In experiments without preinfection treatments—Experiments II, III, and VII—viral lysates were added to high-density (~1·106 cells per milliliter; quantified using a Coulter Counter Multi-sizer 3, Beckman, USA) cultures to a final ratio of 10:1 virus:host (MOI = 10; viruses were quantified using an Influx Mariner flow cytometer; BD, USA). Cultures were then serially diluted down to experimental densities; all cells were from the same inoculum within each experiment (see Supplementary Table 1 for densities in each experiment and Supplementary Fig. 3 for experimental rationale). Uninfected controls substituted lysates with heat-killed, filtered lysate. In experiments with preincubation treatments (Experiments I, IV, V, and VI), cultures for 10:1 MOI coincubation treatment were drawn from the uninfected control after centrifugation and washing, so that uninfected controls, 10:1 MOI coincubation, and pre-infected treatments were all subjected to similar centrifugation and washing before lysate/heat-killed viral addition. The initial set of experiments (Experiments I, II, III, and VII) were conducted for approximately a week as we expected lysis to occur at all densities in that time (Supplementary Table 1). These experiments were subsequently repeated due to our initial interpretation that the lack of lysis in scarce densities ( More

  • in

    Climate action requires new accounting guidance and governance frameworks to manage carbon in shelf seas

    1.
    Virto, L. R., Weber, J.-L. & Jeantil, M. Natural capital accounts and public policy decisions: findings from a survey. Ecol. Ec. 144, 244–259 (2018). This paper shows how institutional and practical obstacles limit uptake of natural capital accounts in real world policy decision making.
    Google Scholar 
    2.
    United Nations. Framework convention on climate change adoption of the Paris Agreement. 21st Conference of the Parties (United Nations, Paris, 2015).

    3.
    Liénart, C. et al. Dynamics of particulate organic matter composition in coastal systems: forcing of spatio-temporal variability at multi-systems scale. Prog. Oceanogr. 162, 271–289 (2018).
    ADS  Google Scholar 

    4.
    Pedrosa-Pàmies, R. et al. Composition and sources of sedimentary organic matter in the deep eastern Mediterranean Sea. Biogeosciences 12, 7379–7402 (2015).
    ADS  Google Scholar 

    5.
    Van der Voort, T. S. et al. Deconvolving the fate of carbon in coastal sediments. Geophys. Res. Lett. 45, 4134–4142 (2018).
    ADS  Google Scholar 

    6.
    da Silva Copertino, M. Add coastal vegetation to the climate critical list. Nature 473, 255 (2011).

    7.
    Cooley, S. R. et al. Overlooked ocean strategies to address climate change, Global Environ. Change 59, 101968 (2019).

    8.
    Avelar, S., van der Voort, T. S. & Eglinton, T. I. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations. Carbon Balance Manag. 12, 10 (2017).

    9.
    Holt, J. et al. Prospects for improving the representation of coastal and shelf seas in global ocean models. Geosci. Model Dev. 10, 499–523 (2017).
    ADS  Google Scholar 

    10.
    Ostrom, E., Gardner, R. & Walker, J. (eds). Rules, Games, and Common-Pool Resources (Univ. of Michigan Press, Ann Arbor, 1994).

    11.
    Legge, O. et al. Carbon on the Northwest European Shelf: contemporary budget and future influences. Front. Mar. Sci. 7, 143 (2020). This paper presents a new budget synthesis of carbon cycling in the North Sea.

    12.
    IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007).

    13.
    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data https://doi.org/10.5194/essd-10-2141-2018 (2018).

    14.
    IPCC Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge and New York, 2013).

    15.
    IPCC Summary for Policymakers. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. R. et al.) (Cambridge University Press, Cambridge and New York, 2014).

    16.
    IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (2019).

    17.
    Burdige, D. J. The preservation of organic matter in marine sediments: controls, mechanisms and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007). This is a major review of sediment organic carbon processing.

    18.
    Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 1 (2020).

    19.
    Taillardat, P., Friess, D. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).

    20.
    Duarte, C. M., Dennison, W. C., Orth, R. J. & Carruthers, T. J. The charisma of coastal ecosystems: addressing the imbalance. Estuaries Coasts 31, 233–238 (2008).
    Google Scholar 

    21.
    Duarte, C. et al. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).
    ADS  CAS  Google Scholar 

    22.
    Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2015).

    23.
    Otto, L. et al. Review of the physical oceanography of the North Sea. Neth. J. Sea Res. 26, 161–238 (1990).
    Google Scholar 

    24.
    Simpson, J. H. & Sharples, J. Introduction to the Physical and Biological Oceanography of Shelf Seas, 413pp (Cambridge University Press, 2012).

    25.
    Soulsby, R. Dynamics of Marine Sands: A Manual for Practical Applications 249pp (Thomas Telford, 1997).

    26.
    Hill, A. E. et al. Thermohaline circulation of shallow tidal seas. Geophys. Res. Lett. 35, https://doi.org/10.1029/2008GL033459 (2008).

    27.
    Brown, J. et al. Observation of the physical structure and seasonal jet-like circulation of the Celtic Sea and St. George’s channel of the Irish. Cont. Shelf Res. 33, 353–361 (2003).
    Google Scholar 

    28.
    Fernand, L. et al. The Irish coastal current: a seasonal jet-like circulation, Cont. Shelf Res. 26, 1775–1793 (2006).

    29.
    Bristow, L. A. et al. Tracing estuarine organic matter sources into the southern North Sea using C and N isotopic signatures. Biogeochemistry 113, 9–22 (2013).
    ADS  CAS  Google Scholar 

    30.
    Huettel, M., Berg, P. & Kostka, J. E. Benthic exchange and biogeochemical cycling in permeable sediments. Annu. Rev. Mar. Sci. 6, 23–51 (2014).
    ADS  Google Scholar 

    31.
    Middelburg, J. J. Reviews and syntheses: to the bottom of carbon processing at the seafloor. Biogeosciences 15, 413–427 (2018).
    ADS  CAS  Google Scholar 

    32.
    Couceiro, F. et al. Impact of resuspension of cohesive sediments at the Oyster Grounds (North Sea) on nutrient exchange across the sediment–water interface. Biogeochemistry 113, 37–52 (2013).
    CAS  Google Scholar 

    33.
    Wilson, R. J., Speirs, D. C., Sabatino, A. & Heath, M. R. A synthetic map of the north-west European Shelf sedimentary environment for applications in marine science. Earth Syst. Sci. Data 10, 109–130 (2018).
    ADS  Google Scholar 

    34.
    Bianchi, T. S., Blair, N., Burdige, D., Eglinton, T. I. & Galy, V. Centers of organic carbon burial at the land-ocean interface. Org. Geochem. 115, 138–155 (2018).
    CAS  Google Scholar 

    35.
    Bauer, J. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).
    ADS  CAS  PubMed  Google Scholar 

    36.
    Sharples, J., Middelburg, J. J., Fennel, K. & Jickells, T. D. What proportion of riverine nutrients reaches the open ocean? Global Biogeochem. Cycles, 31, 39–58 (2017).

    37.
    Kao, S. J. et al. Preservation of terrestrial organic carbon in marine sediments offshore Taiwan: mountain building and atmospheric carbon dioxide sequestration. Earth Surf. Dyn. 2, 127–139 (2014).
    ADS  Google Scholar 

    38.
    Burdige, D. J. Geochemistry of Marine Sediments 1–609 (Princeton University Press, 2006).

    39.
    Aller, R. C. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem. Geol. 114, 331–345 (1994).
    ADS  CAS  Google Scholar 

    40.
    Aller, R. C. In The Benthic Boundary Layer: Transport Processes and Biogeochemistry (eds Boudreau, B. & Jørgensen, B. B.) 269–301 (Oxford Press, 2001).

    41.
    Teal, L. R., Bulling, M. T., Parker, E. R. & Solan, M. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquat. Biol. 2, 207–218 (2008).
    Google Scholar 

    42.
    Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci. Rev. 123, 53–86 (2013).
    ADS  CAS  Google Scholar 

    43.
    Levin, L. A. & Sibuet, M. Understanding continental margin biodiversity: a new imperative. Annu. Rev. Mar. Sci. 4, 79–112 (2012).
    ADS  Google Scholar 

    44.
    Pusceddu, A. et al. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. PNAS 111, 8861–8866 (2014).
    ADS  CAS  PubMed  Google Scholar 

    45.
    Paradis, S. et al. Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean). Biogeosciences 16, 4307–4320 (2019).
    ADS  CAS  Google Scholar 

    46.
    Maier, K. L. et al. Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California. Deep Sea Res. Part I: Oceanogr. Res. Pap. 153, 103–108 (2019).

    47.
    IPCC. IPCC Guidelines for National Greenhouse Gas Inventories—A Primer. Prepared by the National Greenhouse Gas Inventories Programme (eds Eggleston, H. S., Miwa, K., Srivastava, N. & Tanabe, K.) (IGES, Japan, 2008).

    48.
    IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.) (IPCC, Switzerland, 2014).

    49.
    Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).
    ADS  CAS  PubMed  Google Scholar 

    50.
    Griscom, B. W. et al. Natural climate solutions. PNAS 114, 11645–11650 (2017).
    ADS  CAS  PubMed  Google Scholar 

    51.
    Troxler, T., Kennedy, H., Crooks, S. & Sutton-Grier, A. In A Blue Carbon Primer: The State of Coastal Wetlands Carbon Science, Practice and Policy (eds Windham-Myers, L., Crooks, S. & Troxler, T.) (CRC Press, Boca Raton, Fl, 2018).

    52.
    Crooks, S. et al. Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory. Nat. Clim. Change 8, 1109–1112 (2018).
    ADS  CAS  Google Scholar 

    53.
    Ogle, S. M. et al. Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change. Carbon Bal. Manag. 13, 9 (2018).

    54.
    IPCC. Current Scientific Understanding Of The Processes Affecting Terrestrial Carbon Stocks And Human Influences Upon Them. IPCC Meeting on Expert Meeting Report (eds David Schimel, D. & Martin Manning, M.), Geneva, Switzerland, 21–23 July (2003).

    55.
    Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18866–18870 (2007).
    ADS  CAS  PubMed  Google Scholar 

    56.
    Krug, J. H. A. Accounting of GHG emissions and removals from forest management: a long road from Kyoto to Paris. Carbon Bal. Manag. 13, 1 (2018).

    57.
    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).
    Google Scholar 

    58.
    Thorhaug, A., Poulos, H. M., Lopez-Portillo, J., Ku, T. C. W. & Berlyn, G. P. Seagrass blue carbon dynamics in the Gulf of Mexico: stock, losses from anthropogenic disturbance, gains through seagrass restoration. Sci. Total Environ. 15, 626–636 (2017).
    ADS  Google Scholar 

    59.
    United Nations. Technical Recommendations in Support of the System of Environmental – Economic Accounting 2012 – Experimental Ecosystem Accounting, 193 (White Cover Publication, United Nations, 2017).

    60.
    United Nations, European Commission, Food and Agriculture Organization, International Monetary Fund, Organisation for Economic Co-operation and Development, and the World Bank. System of Environmental-Economic Accounting 2012. Central Framework (2014).

    61.
    United Nations, European Commission, Food and Agriculture Organization, Organisation for Economic Co-operation and Development, and the World Bank. System of Environmental-Economic Accounting 2012: Experimental Ecosystem Accounting—final, official publication (2014).

    62.
    Edens, B., Elsasser, P. & Ivanov, E. Discussion paper 6: Defining and valuing carbon related services in the SEEA EEA. Paper submitted to the Expert Meeting on Advancing the Measurement of Ecosystem Services for Ecosystem Accounting, New York, 22–24 January 2019 and subsequently revised. https://seea.un.org/events/expert-meeting-advancing-measurement-ecosystem-services-ecosystem-accounting (2019).

    63.
    European Environment Agency. Natural Capital Accounting in Support of Policymaking in Europe—A Review Based on EEA Ecosystem Accounting Work. EEA Report No 26/2018 (Publication Office of the European Union, Luxembourg, 2019). Natural capital accounting provides evidence on ecosystem trends in a structured and integrated manner that allows for analysis of environment-economy interactions, with diverse entry points into policymaking processes.

    64.
    UK National Ecosystem Assessment. The UK National Ecosystem Assessment: Follow-on (UK NEA-FO) (UNEP-WCMC, LWEC, UK, 2014). This report applies the ecosystem services approach and balance sheet decision support system to environmental policy.

    65.
    Thomas, S. Blue carbon: knowledge gaps, critical issues, and novel approaches. Ecol. Econ. 107, 22–38 (2014).
    Google Scholar 

    66.
    Luisetti, T. et al. Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK. Ecosyst. Serv. 35, 67–76 (2019). This paper provides an economic valuation of the potential damage to shelf sea sediments.
    Google Scholar 

    67.
    Santos, M. M. et al. The last frontier: coupling technological developments with scientific challenges to improve hazard assessment of deep-sea mining. Sci. Total Environ. 627, 1505–1514 (2018).
    ADS  CAS  PubMed  Google Scholar 

    68.
    Orbach, M. Beyond the freedom of the seas: ocean policy for the third millennium. Oceanography 16, 20 (2003).

    69.
    International Seabed Authority (ISA) Voluntary Commitments to Support Implementation of SDG14: https://www.isa.org.jm/isa-voluntary-commitments.

    70.
    Epstein, G., Nenadovic, M. & Boustany, A. Into the deep blue sea: commons theory and international governance of Atlantic Bluefin Tuna. Int. J. Commons 8, 277–303 (2014).

    71.
    United Nations. Convention of Biological Diversity, https://www.cbd.int/sp/ (1992).

    72.
    CBD – Subsidiary Body on Implementation. Second meeting Montreal, Canada, 9–13 July 2018. Item 3 of the provisional agenda. Analysis of the Contribution of Targets Established by Parties and Progress Towards the Aichi Biodiversity Targets: Note by the Executive Secretary (Montreal, Canada, 2018).

    73.
    UNEP. Assessment of post-2010 National Biodiversity Strategies and Action Plans (Nairobi, Kenya, 2018).

    74.
    UN General Assembly Intergovernmental conference on an international legally binding instrument under the United Nations Convention on the Law of the Sea on the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction. Fourth session New York, 23 March–3 April 2020 – Revised draft text of an agreement under the United Nations Convention on the Law of the Sea on the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction. Note by the President (2020).

    75.
    Scharin, H. et al. Processes for the sustainable stewardship of marine environments. Ecol. Econ. 128, 55–67 (2016). This paper applies the balance sheet decision support system to the Baltic Sea Clean Up Action Plan.
    Google Scholar 

    76.
    Hilton, R. G. et al. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nat. Geosci. 1, 759–762 (2008).
    ADS  CAS  Google Scholar 

    77.
    Wakelin, S. L. et al. Modeling the carbon fluxes of the northwest European continental shelf: validation and budgets. J. Geophys. Res. 117, https://doi.org/10.1029/2011JC007402 (2012). This study provides the most complete model-derived carbon fluxes for the northwest European continental shelf to date.

    78.
    Keil, R. Anthropogenic forcing of carbonate and organic carbon preservation in marine sediments. Annu. Rev. Mar. Sci. 9, 151–172 (2017).
    ADS  Google Scholar 

    79.
    Diesing, M. et al. Predicting the standing stock of organic carbon in surface sediments of the North–West European continental shelf. Biogeochemistry 135, 183–200 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    80.
    OSPAR Assessment Portal. Socioeconomics of the OSPAR Maritime Area—Towards and Assessment Framework. https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017/socio-economics/ (2019).

    81.
    Thornton, A. et al. Initial Natural Capital Accounts for the Uk Marine and Coastal Environment. Final Report. Report prepared for the Department for Environment Food and Rural Affairs (2019).

    82.
    Ajani, J. Carbon Stock Accounts. Information Paper for the United Nations Statistics Division Technical Expert Meeting on Ecosystem Accounts, London, 5–7 December (2011). This paper examines issues connected with the use of the SEEA for ecosystem carbon accounting, including measurement and valuation of ocean carbon stocks.

    83.
    United Nation – Statistical Commission – Report on the fifty-first session (3-6 March 2020), Economic and Social Council, Official Records, 2020 – Supplement No. 4: https://unstats.un.org/unsd/statcom/51st-session/documents/2020-37-FinalReport-E.pdf.

    84.
    Turner, R. K., Badura, T. & Ferrini, S. Natural capital accounting perspectives: a pragmatic way forward. Ecosyst. Health Sustainability 5, 237–241 (2019). This paper summarises the range of approaches to natural capital accounting and the ongoing debate surrounding them.
    Google Scholar 

    85.
    van de Ven, P., Obst, C. & Edens, B. Accounting treatments when integrating ecosystem accounts in the SNA. Paper prepared for SEEA EEA Revision coordinated by the United Nations Statistics Division OSPAR Assessment Portal. Socioeconomics of the OSPAR Maritime Area – Towards and Assessment Framework. https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017/socio-economics/ (2019).

    86.
    Acquaye, A. et al. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints. J. Environ. Manag. 187, 571–585 (2017).
    CAS  Google Scholar 

    87.
    Brizga, J., Feng, K. & Hubacek, K. Household carbon footprints in the Baltic States: a global multi-regional input–output analysis from 1995 to 2011. Appl. Energy 189, 780–788 (2017).
    Google Scholar 

    88.
    Bordt, M. Discourses in ecosystem accounting: a survey of the expert community. Ecol. Econ. 144, 82–99 (2018).
    Google Scholar 

    89.
    Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).

    90.
    Fuso Nerini, F. et al. Connecting climate action with other Sustainable Development Goals. Nat. Sustainability 2, 674–680 (2019).
    Google Scholar 

    91.
    Le Blanc, D., Freire, C. & Vierros, M. Mapping the linkages between oceans and other Sustainable Development Goals: a preliminary exploration. DESA Working Paper 149 (2017).

    92.
    Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (1968).
    ADS  CAS  PubMed  Google Scholar 

    93.
    Brun, A. Conference diplomacy: the making of the Paris Agreement. Politics Gov. 4, 115–123 (2016).
    Google Scholar 

    94.
    Christoff, P. The promissory note: COP 21 and the Paris Climate Agreement. Environ. Politics 25, 765–787 (2016).
    MathSciNet  Google Scholar 

    95.
    Pauw, W. P. et al. Beyond headline mitigation numbers: we need more transparent and comparable NDCs to achieve the Paris Agreement on climate change. Clim. Change 147, 23–29 (2017).
    ADS  Google Scholar 

    96.
    Gallo, N. D., Victor, D. V. & Levin, L. A. Ocean commitments under the Paris Agreement. Nat. Clim. Change 7, 833–840 (2017).
    ADS  Google Scholar 

    97.
    United Nations Environment Programme – The Regional Seas Programme: https://www.unenvironment.org/explore-topics/oceans-seas/what-we-do/working-regional-seas/why-does-working-regional-seas-matter.

    98.
    Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).
    ADS  CAS  Google Scholar 

    99.
    Najjar, R. G. et al. Carbon budget of tidal wetlands, estuaries, and shelf waters of eastern North America. Glob. Biogeochemical Cycles 32, 389–416 (2018).
    ADS  CAS  Google Scholar 

    100.
    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).
    Google Scholar  More

  • in

    Proximity-based vocal networks reveal social relationships in the Southern white rhinoceros

    1.
    Bradbury, J. & Vehrencamp, S. Principles of Animal Communication (Sinauer Associates, Sunderland, 1998).
    Google Scholar 
    2.
    McGregor, P. K. & Peake, T. M. Communication networks: social environments for receiving and signalling behaviour. Acta Ethologica 2(2), 71–81 (2000).
    Google Scholar 

    3.
    Fichtel, C. & Manser, M. Vocal communication in social groups. In Animal Behaviour: Evolution and Mechanisms. 29–54 (Springer, 2010).

    4.
    Snijders, L. & Naguib, M. Communication in animal social networks: a missing link? In Advances in the Study of Behavior (eds Naguib, M. et al.) 297–359 (Elsevier Academic Press, Oxford, 2017).
    Google Scholar 

    5.
    McGregor, P. Animal Communication Networks (Cambridge University Press, Cambridge, 2005).
    Google Scholar 

    6.
    Seyfarth, R. M. & Cheney, D. L. Signalers and receivers in animal communication. Annu. Rev. Psychol. 54(1), 145–173 (2003).
    PubMed  Google Scholar 

    7.
    Mitani, M. Voiceprint identification and its application to sociological studies of wild Japanese monkeys (Macaca fuscata yakui). Primates 27(4), 397–412 (1986).
    Google Scholar 

    8.
    Kulahci, I. G., Rubenstein, D. I. & Ghazanfar, A. A. Lemurs groom-at-a-distance through vocal networks. Anim. Behav. 110, 179–186 (2015).
    Google Scholar 

    9.
    Sugiura, H. Temporal and acoustic correlates in vocal exchange of coo calls in Japanese macaques. Behaviour 124(3–4), 207–225 (1993).
    Google Scholar 

    10.
    Stoeger-Horwath, A. S. et al. Call repertoire of infant African elephants: first insights into the early vocal ontogeny. J. Acoust. Soc. Am. 121(6), 3922–3931 (2007).
    ADS  PubMed  PubMed Central  Google Scholar 

    11.
    Soltis, J., Leong, K. & Savage, A. African elephant vocal communication I: antiphonal calling behaviour among affiliated females. Anim. Behav. 70(3), 579–587 (2005).
    Google Scholar 

    12.
    Nakahara, F. & Miyazaki, N. Vocal exchanges of signature whistles in bottlenose dolphins (Tursiops truncatus). J. Ethol. 29(2), 309–320 (2011).
    Google Scholar 

    13.
    Sugiura, H. Vocal exchange of coo calls in Japanese macaques. In Primate Origins of Human Cognition and Behavior (ed. Matsuzawa, T.) 135–154 (Springer, Tokyo, 2008).
    Google Scholar 

    14.
    Greeno, N. C. & Semple, S. Sex differences in vocal communication among adult rhesus macaques. Evol. Hum. Behav. 30(2), 141–145 (2009).
    Google Scholar 

    15.
    Sayigh, L. S. et al. Individual recognition in wild bottlenose dolphins: a field test using playback experiments. Anim. Behav. 57(1), 41–50 (1999).
    CAS  PubMed  Google Scholar 

    16.
    Bauers, K. A. A functional analysis of staccato grunt vocalizations in the stumptailed macaque (Macaca arctoides). Ethology 94(2), 147–161 (1993).
    Google Scholar 

    17.
    De Waal, F. B. & Bauers, K. “ Coo” vocalizations in stumptailed macaques: a controlled functional analysis. Behaviour 119(1–2), 143–160 (1991).
    Google Scholar 

    18.
    Silk, J. B., Kaldor, E. & Boyd, R. Cheap talk when interests conflict. Anim. Behav. 59(2), 423–432 (2000).
    CAS  PubMed  Google Scholar 

    19.
    Cheney, D. L. & Seyfarth, R. M. Reconciliatory grunts by dominant female baboons influence victims’ behaviour. Anim. Behav. 54(2), 409–418 (1997).
    CAS  PubMed  Google Scholar 

    20.
    Faragó, T., Townsend, S. & F. Range. The information content of wolf (and dog) social communication. In Biocommunication of Animals. 41–62 (Springer, 2014).

    21.
    Bradbury, J. & Vehrencamp, S. Communication networks. In Principles of Animal Communication. 611–651 (2015).

    22.
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84(5), 1144–1163 (2015).
    PubMed  PubMed Central  Google Scholar 

    23.
    Darwin, C. The Descent of Man: and Selection in Relation to Sex (John Murray, Albemarle Street, 1888).
    Google Scholar 

    24.
    Andersson, M. Sexual Selection Vol. 72 (Princeton University Press, Princeton, 1994).
    Google Scholar 

    25.
    Bene, J. & Zuberbueler, K. Sex differences in the use of vocalizations in wild olive Colobus monkeys. Eur. J. Sci. Res. 25(2), 266–279 (2009).
    Google Scholar 

    26.
    Lemasson, A. et al. Age-and sex-dependent contact call usage in Japanese macaques. Primates 54(3), 283–291 (2013).
    PubMed  Google Scholar 

    27.
    Wright, S. L. & Brown, R. E. Sex differences in ultrasonic vocalizations and coordinated movement in the California mouse (Peromyscus californicus). Behav. Proc. 65(2), 155–162 (2004).
    Google Scholar 

    28.
    Warren, M. R. et al. Sex differences in vocal communication of freely interacting adult mice depend upon behavioral context. PLoS ONE 13(9), e0204527 (2018).
    PubMed  PubMed Central  Google Scholar 

    29.
    Bouchet, H. et al. Sex differences in the vocal repertoire of adult red-capped mangabeys (Cercocebus torquatus): a multi-level acoustic analysis. Am. J. Primatol. 72(4), 360–375 (2010).
    PubMed  Google Scholar 

    30.
    Bouchet, H., Blois-Heulin, C. & Lemasson, A. Age-and sex-specific patterns of vocal behavior in De Brazza’s monkeys (Cercopithecus neglectus). Am. J. Primatol. 74(1), 12–28 (2012).
    PubMed  Google Scholar 

    31.
    Green, S. M. Sex differences and age gradations in vocalizations of Japanese and lion-tailed monkeys (Macaca fuscata and Macaca silenus). Am. Zool. 21(1), 165–183 (1981).
    Google Scholar 

    32.
    Bowyer, R. T. & Kitchen, D. W. Sex and age-class differences in vocalizations of Roosevelt elk during rut. Am. Midl. Nat. 118(2), 225–235 (1987).
    Google Scholar 

    33.
    Fernandez-Vargas, M. & Johnston, R. E. Ultrasonic vocalizations in golden hamsters (Mesocricetus auratus) reveal modest sex differences and nonlinear signals of sexual motivation. PLoS ONE 10(2), e0116789 (2015).
    PubMed  PubMed Central  Google Scholar 

    34.
    Shimizu, M. Vocalizations of feral cats: sexual differences in the breeding season. Mamm. Study 26(2), 85–92 (2001).
    Google Scholar 

    35.
    Rendall, D. et al. Sex differences in the acoustic structure of vowel-like grunt vocalizations in baboons and their perceptual discrimination by baboon listeners. J. Acoust. Soc. Am. 115(1), 411–421 (2004).
    ADS  PubMed  Google Scholar 

    36.
    Smith, A. S. et al. Production and perception of sex differences in vocalizations of Wied’s black-tufted-ear marmosets (Callithrix kuhlii). Am. J. Primatol. 71(4), 324–332 (2009).
    PubMed  PubMed Central  Google Scholar 

    37.
    Miller, C. T., Scarl, J. & Hauser, M. D. Sensory biases underlie sex differences in tamarin long call structure. Anim. Behav. 68(4), 713–720 (2004).
    Google Scholar 

    38.
    Grilliot, M. E., Burnett, S. C. & Mendonça, M. T. Sexual dimorphism in big brown bat (Eptesicus fuscus) ultrasonic vocalizations is context dependent. J. Mammal. 90(1), 203–209 (2009).
    Google Scholar 

    39.
    Baotic, A. & Stoeger, A. S. Sexual dimorphism in African elephant social rumbles. PLoS ONE 12(5), e0177411 (2017).
    PubMed  PubMed Central  Google Scholar 

    40.
    Marler, P. & Dufty, A. Pickert R (1986) Vocal communication in the domestic chicken: II. Is a sender sensitive to the presence and nature of a receiver?. Anim. Behav. 34, 194–198 (1986).
    Google Scholar 

    41.
    Bell, M. B. Receiver identity modifies begging intensity independent of need in banded mongoose (Mungos mungo) pups. Behav. Ecol. Sociobiol. 19(6), 1087–1094 (2008).
    Google Scholar 

    42.
    Leighty, K. A. et al. Rumble vocalizations mediate interpartner distance in African elephant Loxodonta africana. Anim. Behav. 76(5), 1601–1608 (2008).
    Google Scholar 

    43.
    Fedurek, P. et al. Pant hoot chorusing and social bonds in male chimpanzees. Anim. Behav. 86(1), 189–196 (2013).
    Google Scholar 

    44.
    Giacoma, C. et al. Sex differences in the song of Indri indri. Int. J. Primatol. 31(4), 539–551 (2010).
    Google Scholar 

    45.
    Emslie, R. Ceratotherium simum. The IUCN Red List of Threatened Species 2012 (2012).

    46.
    Owen-Smith, R. N. The Behavioural Ecology of the White Rhinoceros (University of Wisconsin Madison, Madison, 1973).
    Google Scholar 

    47.
    Estes, R.D. Rhinoceroses—Family Rhinocerotidae. In The Behavior Guide to African Mammals—Including Hoofed Mammals, Carnivores, Primates. 228–235 (University of California Press Berkeley, 1991).

    48.
    Penny, M. Rhinos: Endangered Species (Christopher Helm Publishers, London, 1987).
    Google Scholar 

    49.
    Pienaar, D. Social organization and behaviour of the white rhinoceros. In Rhinos as Game Ranch Animals. Proceedings of a Symposium. Onderstepoort, Republic of South Africa: South African Veterinary Association. p. (1994).

    50.
    Owen-Smith, R. N. Territoriality in the white rhinoceros (Ceratotherium simum). Nat. Commun. 231(5301), 294–296 (1971).
    CAS  Google Scholar 

    51.
    Shrader, A. M. & Owen-Smith, R. N. The role of companionship in the dispersal of white rhinoceroses (Ceratotherium simum). Behav. Ecol. Sociobiol. 52(3), 255–261 (2002).
    Google Scholar 

    52.
    Policht, R. et al. The vocal repertoire in northern white rhinoceros Ceratotherium simum cottoni as recorded in the last surviving herd. Bioacoustics 18(1), 69–96 (2008).
    Google Scholar 

    53.
    Linn, S. N., Boeer, M. & Scheumann, M. First insights into the vocal repertoire of infant and juvenile Southern white rhinoceros. PLoS ONE 13(3), e0192166 (2018).
    PubMed  PubMed Central  Google Scholar 

    54.
    Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, Princeton, 2008).
    Google Scholar 

    55.
    Castles, M. et al. Social networks created with different techniques are not comparable. Anim. Behav. 96, 59–67 (2014).
    Google Scholar 

    56.
    Altmann, J. Observational study of behavior: sampling methods. Behaviour 49(3), 227–266 (1974).
    CAS  PubMed  Google Scholar 

    57.
    Noldus, L. The observer: a software system for collection and analysis of observational data. Behav. Res. Methods Instrum. Comput. 23(3), 415–429 (1991).
    Google Scholar 

    58.
    Landis, J. R. & Koch, G. G. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33(2), 363–374 (1977).
    CAS  PubMed  MATH  Google Scholar 

    59.
    Team, R. RStudio: integrated development for R. RStudio Inc, Boston, MA 42, 14 (2015).
    Google Scholar 

    60.
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. In Third international AAAI Conference on Weblogs and Social Media (2009).

    61.
    Wey, T. et al. Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim. Beahv. 75(2), 333–344 (2008).
    Google Scholar 

    62.
    Bradbury, J.W. & Vehrencamp, S.L. Communication networks. In Principles of Animal Communication 612–650 (Sinauer Associates, Inc., 2011).

    63.
    Cinková, I. & Policht, R. Contact calls of the northern and southern white rhinoceros allow for individual and species identification. PLoS ONE 9(6), e98475 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    64.
    Cinková, I. & Policht, R. Sex and species recognition by wild male southern white rhinoceros using contact pant calls. Anim. Cognit. 19(2), 375–386 (2016).
    Google Scholar 

    65.
    Neumann, C. et al. Loud calls in male crested macaques, Macaca nigra: a signal of dominance in a tolerant species. Anim. Behav. 79(1), 187–193 (2010).
    Google Scholar 

    66.
    Herrera, E. A. & Macdonald, D. W. Aggression, dominance, and mating success among capybara males (Hydrochaeris hydrochaeris). Behav. Ecol. Sociobiol. 4(2), 114–119 (1993).
    Google Scholar 

    67.
    East, M. L. & Hofer, H. Loud calling in a female-dominated mammalian society: II. Behavioural contexts and functions of whooping of spotted hyaenas Crocuta crocuta. Anim. Behav. 42(4), 651–669 (1991).
    Google Scholar 

    68.
    Kitchen, D. M. et al. Loud calls as indicators of dominance in male baboons (Papio cynocephalus ursinus). Behav. Ecol. Sociobiol. 53(6), 374–384 (2003).
    Google Scholar 

    69.
    Hasiniaina, A. F. et al. High frequency/ultrasonic communication in a critically endangered nocturnal primate, Claire’s mouse lemur (Microcebus mamiratra). Am. J. Primatol. 80(6), e22866 (2018).
    PubMed  Google Scholar 

    70.
    Pasch, B. et al. Androgen-dependent male vocal performance influences female preference in Neotropical singing mice. Anim. Behav. 82(2), 177–183 (2011).
    Google Scholar 

    71.
    Zimmermann, E. Castration affects the emission of an ultrasonic vocalization in a nocturnal primate, the grey mouse lemur (Microcebus murinus). Physiol. Behav. 60(3), 693–697 (1996).
    CAS  PubMed  Google Scholar 

    72.
    Leong, K. et al. The use of low-frequency vocalizations in African elephant (Loxodonta africana) reproductive strategies. Horm. Behav. 43(4), 433–443 (2003).
    CAS  PubMed  Google Scholar 

    73.
    Lindburg, D., Czekala, N. & Swaisgood, R. R. Hormonal and behavioral relationships during estrus in the giant panda. Zoo Biol. 20(6), 537–543 (2001).
    CAS  Google Scholar 

    74.
    Wielebnowski, N. & Brown, J. L. Behavioral correlates of physiological estrus in cheetahs. Zoo Biol. 17(3), 193–209 (1998).
    Google Scholar 

    75.
    Cinková, I. & Bičík, V. Social and reproductive behaviour of critically endangered northern white rhinoceros in a zoological garden. Mamm. Biol. 78(1), 50–54 (2013).
    Google Scholar 

    76.
    Patton, F., Campbell, P. & Genade, A. The development of White Rhino social organisation at Ziwa Rhino Sanctuary. Pachyderm 57, 112–113 (2018).
    Google Scholar 

    77.
    Owen-Smith, R. N. The social ethology of the white rhinoceros ceratotberium simum (Burchell 1817). Ethology 38(4), 337–384 (1975).
    Google Scholar  More

  • in

    Experimental neoichnology of post-autotomy arm movements of sea lilies and possible evidence of thrashing behaviour in Triassic holocrinids

    1.
    Maginnis, T. L. The cost of autotomy and regeneration in animals: a review and framework for future research. Behav. Ecol. 17, 857–872. https://doi.org/10.1093/beheco/arl010 (2006).
    Article  Google Scholar 
    2.
    Arnold, E. N. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, 127–169. https://doi.org/10.1080/00222938400770131 (2007).
    Article  Google Scholar 

    3.
    Oji, T. Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoids Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology 22, 339–351. https://doi.org/10.1017/S0094837300016328 (1996).
    Article  Google Scholar 

    4.
    Donovan, S. K. & Pawson, D. L. Proximal growth of the column in bathycrinid crinoids (Echinodermata) following decapitation. Bull. Mar. Sci. 61, 571–579 (1997).
    Google Scholar 

    5.
    Wilkie, I. C. Autotomy as a prelude to regeneration in echinoderms. Microsc. Res. Tech. 55, 369–396. https://doi.org/10.1002/jemt.1185 (2001).
    CAS  Article  PubMed  Google Scholar 

    6.
    Baumiller, T. K. Crinoid ecological morphology. Annu. Rev. Earth Planet. Sci. 36, 221–249. https://doi.org/10.1146/annurev.earth.36.031207.124116 (2008).
    ADS  CAS  Article  Google Scholar 

    7.
    Wilkie, I. C., Barbaglio, A., Maclaren, W. M. & Candia Carnevali, M. D. Physiological and immunocytochemical evidence that glutamatergic neurotransmission is involved in the activation of arm autotomy in the featherstar Antedon mediterranea (Echinodermata: Crinoidea). J. Exp. Biol. 213, 2104–2115. https://doi.org/10.1242/jeb.039578 (2010).
    CAS  Article  PubMed  Google Scholar 

    8.
    Meyer, D. L. Crinoids as renewable resources: rapid regeneration of the visceral mass in a tropical reef-dwelling crinoid from Australia. In Echinoderm biology (eds Burke, D. R., Mladenov, D. P., Lambert, P. & Parsley, L. R.) 519–522 (Balkema, Rotterdam, 1998).
    Google Scholar 

    9.
    Shibata, T. F. & Oji, T. Autotomy and arm number increase in Oxycomanthus japonicus (Echinodermata, Crinoidea). Invertebr. Biol. 122, 375–379. https://doi.org/10.1111/j.1744-7410.2003.tb00101.x (2005).
    Article  Google Scholar 

    10.
    Mozzi, D., Dolmatov, I. Y., Bonasoro, F. & Candia Carnevali, M. D. Visceral regeneration in the crinoid Antedon mediterranea: basic mechanisms, tissues and cells involved in gutre growth. Cent. Eur. J. Biol. 1, 609–635 (2006).
    Google Scholar 

    11.
    Gahn, F. J. & Baumiller, T. K. Arm regeneration in Mississippian crinoids: evidence of intense predation pressure in the Paleozoic? Paleobiology 31, 151–164. https://doi.org/10.1666/0094-8373(2005)0312.0.CO;2 (2005).
    Article  Google Scholar 

    12.
    Kitazawa, K. & Oji, T. Particle selection by the sea lily Metacrinus rotundus Carpenter 1884 (Echinodermata, Crinoidea). J. Exp. Mar. Biol. Ecol. 395, 80–84. https://doi.org/10.1016/j.jembe.2010.08.018 (2010).
    Article  Google Scholar 

    13.
    Kitazawa, K. & Oji, T. Active feeding behavior of and current modification by the sealily Metacrinus rotundus Carpenter 1884 (Echinodermata: Crinoidea). J. Exp. Mar. Biol. Ecol. 453, 13–21. https://doi.org/10.1016/j.jembe.2013.12.017 (2014).
    Article  Google Scholar 

    14.
    Brom, K. R., Oguri, K., Oji, T., Salamon, M. A. & Gorzelak, P. Experimental neoichnology of crawling stalked crinoids. Swiss J. Palaeontol. 137, 197–203. https://doi.org/10.1007/s13358-018-0158-9 (2018).
    Article  Google Scholar 

    15.
    Holland, N. D. & Grimmer, J. C. Fine structure of syzygia articulations before and after arm autotomy in Florometra serratissima (Echinodermata: Crinoidea). Zoomorphology 98, 169–183 (1981).
    Article  Google Scholar 

    16.
    Oji, T. & Okamoto, T. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology 20, 27–39. https://doi.org/10.1017/S0094837300011118 (1994).
    Article  Google Scholar 

    17.
    Saucède, T., Vennin, F., Fara, E., Olivier, N. & The Paris Biota Team. A new holocrinid (Articulata) from the Paris Biota (Bear Lake County, Idaho, USA) highlights the high diversity of Early Triassic crinoids. Geobios 54, 45–53. https://doi.org/10.1016/j.geobios.2019.04.003 (2019).
    Article  Google Scholar 

    18.
    Brayard, A. et al. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Sci. Adv. 3, e1602159 (2017).
    ADS  Article  Google Scholar 

    19.
    Bassler, U. A movement generated in the peripheral nervous system: rhythmic flexion by autotomized legs of the stick insect Cunicuuna impigra. J. Exp. Biol. 111, 191–199 (1984).
    Google Scholar 

    20.
    Dial, B. E. & Fitzpatrick, L. C. The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 51, 310–317 (1981).
    ADS  Article  Google Scholar 

    21.
    Wilkie, C. Arm autotomy in brittlestars (Echinodermata : Ophiuroidea). J. Zool. Lond. 186, 311–330 (1978).
    Article  Google Scholar 

    22.
    Norman, M. D. & Finn, J. Revision of the Octopus horridus species-group, including erection of a new subgenus and description of two member species from the Great Barrier Reef, Australia. Invertebr. Tax. 15, 13–35 (2001).
    Article  Google Scholar 

    23.
    Neto de Carvalho, C. et al. Running crabs, walking crinoids, grazing gastropods: behavioral diversity and evolutionary implications of the Cabeço da Ladeira Lagerstätte (Middle Jurassic, Portugal). Comun. Geol. 103, 39–54 (2016).
    Google Scholar 

    24.
    Dzik, J. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the ‘Cambrian explosion’. Paleobiology 31, 507–525. https://doi.org/10.1666/0094-8373 (2005).
    Article  Google Scholar 

    25.
    Niedźwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E. Tetrapod trackways from the early Middle Devonian of Poland. Nature 463, 43–48. https://doi.org/10.1038/nature08623 (2010).
    ADS  CAS  Article  PubMed  Google Scholar 

    26.
    Plotnick, R. E. Behavioral biology of trace fossils. Paleobiology 38, 459–473. https://doi.org/10.2307/41684612 (2012).
    Article  Google Scholar 

    27.
    Gahn, F. J. & Baumiller, T. K. Evolutionary History of regeneration in crinoids (Echinodermata). Integr. Comp. Biol. 50, 514a–514m (2010).
    Article  Google Scholar 

    28.
    Veitch, M. A. & Baumiller, T. K. Low predation intensity on the stalked crinoid Democrinus sp. (Echinodermata) in Roatán, Honduras reveals deep water as likely predation refuge. Bull. Mar. Sci. https://doi.org/10.5343/bms.2020.0024 (2020).
    Article  Google Scholar 

    29.
    Baumiller, T. K. & Gahn, F. J. Testing predation-driven evolution using Mid-Paleozoic crinoid arm regeneration. Science 305, 1453–1455. https://doi.org/10.1126/science.1101009 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    30.
    Oji, T. Fossil record of echinoderm regeneration with special regard to crinoids. Microsc. Res. Tech. 55, 397–402. https://doi.org/10.1002/jemt.1186 (2001).
    CAS  Article  PubMed  Google Scholar 

    31.
    Foote, M. Morphological diversification of Paleozoic crinoids. Paleobiology 21, 272–299 (1995).
    Article  Google Scholar 

    32.
    Twitchett, R. J. & Oji, T. Early Triassic recovery of echinoderms. C. R. Palevol 4, 531–542. https://doi.org/10.1016/j.crpv.2005.02.006 (2005).
    Article  Google Scholar 

    33.
    Simms, M. J. Systematics, phylogeny and evolutionary history. In Fossil crinoids (eds Hess, H., Ausich, W. I., Brett, E. C. & Simms, J. M.) 31–40 (Cambridge University Press, Cambridge, 1999).
    Google Scholar 

    34.
    Simms, M. J. & Sevastopulo, G. D. The origin of articulate crinoids. Palaeontology 36, 91–109 (1993).
    Google Scholar 

    35.
    Baumiller, T. K. & Messing, C. G. Stalked crinoid locomotion and its ecological and evolutionary implications. Palaeontol. Electron. 10, 2A (2007).
    Google Scholar 

    36.
    Baumiller, T. K., Mooi, R. & Messing, C. G. Urchins in a meadow: paleobiologial and evolutionaryimplications of cidaroidpredation on crinoids. Paleobiology 34, 22–34. https://doi.org/10.1666/07031.1 (2008).
    Article  Google Scholar 

    37.
    Baumiller, T. K. et al. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proc. Natl Acad. Sci. USA 107, 5893–5896. https://doi.org/10.1073/pnas.0914199107 (2010).
    ADS  Article  PubMed  Google Scholar 

    38.
    Hagdorn, H. Triassic: the crucial period of post Palaeozoic crinoid diversification. Swiss J. Palaeontol. 130, 91–112. https://doi.org/10.1007/s13358-010-0009-9 (2011).
    Article  Google Scholar 

    39.
    Salamon, M. A., Niedźwiedzki, R., Gorzelak, P., Lach, R. & Surmik, D. Bromalites from the Middle Triassic of Poland and the rise of the Mesozoic marine revolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 321–322, 142–150. https://doi.org/10.1016/j.palaeo.2012.01.029 (2012).
    Article  Google Scholar 

    40.
    Salamon, M. A., Gorzelak, P., Hanken, N. M., Riise, H. E. & Ferré, B. Crinoids from Svalbard in the aftermath of the end−Permian mass extinction. Pol. Polar Res. 36, 225–238. https://doi.org/10.1515/popore−2015−0015 (2015).
    Article  Google Scholar 

    41.
    Baumiller, T. K. & Hagdorn, H. Taphonomy as a guide to functional morphology of Holocrinus, the first post-Paleozoic crinoid. Lethaia 28, 221–228. https://doi.org/10.1111/j.1502-3931.1995.tb01425.x (1995).
    Article  Google Scholar 

    42.
    Gorzelak, P. Microstructural evidence for stalk autotomy in Holocrinus—the oldest stem-group isocrinid. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 202–207. https://doi.org/10.1016/j.palaeo.2016.12.012 (2018).
    Article  Google Scholar 

    43.
    Gorzelak, P. & Salamon, M. A. Holocrinus—The oldest stem-group isocrinid with stalk shedding and crawling abilities: evidence from taphonomy, microstructure and trace fossils. In 11th North American Paleontological Conference Program with Abstracts (eds Droser, M., Hughes, N., Bonuso, N., Bottjer, D., Eernisse, D., Gaines, R., Hendy, A., et al.) 153–154 (2019).

    44.
    Rasmussen, H. W. Articulata (eds Moore, C. R. & Teichert, C.) T813–T928 (Boulder and Lawrence, 1978).

    45.
    Vitt, L. J., Congdom, J. D. & Dickson, N. A. Adaptive strategies and energetics of tail autotomy in lizards. Ecology 58, 326–337 (1977).
    Article  Google Scholar 

    46.
    Daniels, C. B., Flaherty, S. P. & Simbotwe, M. P. Tail size and effectiveness of autotomy in a lizard. J. Herpetol. 20, 93–96 (1986).
    Article  Google Scholar 

    47.
    Dial, B. E. & Fitzpatrick, L. C. Lizard tail autotomy: Function and energetics of postautotomy tail movement in Scincella lateralis. Science 219, 391–393 (1983).
    ADS  CAS  Article  Google Scholar 

    48.
    Medel, R. G., Jiminez, J. E., Fox, S. F. & Jaksic, F. M. Experimental evidence that high-population frequencies of lizard tail autotomy indicates inefficient predation. Oikos 53, 321–324 (1988).
    Article  Google Scholar 

    49.
    Pafilis, P., Foufopoulos, J., Poulakakis, N., Lymberakis, P. & Valakos, E. D. Tail shedding in island lizards [Lacertidae, Reptilia]: decline of antipredator defenses in relaxed predation environments. Evolution 63, 1262–1278 (2009).
    Article  Google Scholar 

    50.
    Pianka, E. R. Notes on the biology of Varanus caudolineatus and Varanus gilleni. West. Aust. Nat. 11, 76–82 (1969).
    Google Scholar 

    51.
    Arnold, E. N. Caudal autotomy as a defense. In Biology of the Reptilia Vol. 16 (eds Gans, C. & Huey, R. B.) 236–273 (Alan Liss, New York, 1988).
    Google Scholar 

    52.
    Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early Triassic marine biotic recovery: the predators perspective. PLoS ONE 9, e88987. https://doi.org/10.1371/journal.pone.0088987 (2014).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    53.
    Brachaniec, T. et al. Coprolites of marine vertebrate predators from the Lower Triassic of southern Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 118–126. https://doi.org/10.1016/j.palaeo.2015.06.005 (2015).
    Article  Google Scholar  More

  • in

    Assessing the population-wide exposure to lead pollution in Kabwe, Zambia: an econometric estimation based on survey data

    Data collection and potential selection bias
    We conducted two joint surveys from July to September 2017 in Kabwe: the Kabwe Household Socioeconomic Survey (KHSS) 2017 conducted by the Central Statistical Office of Zambia and University of Zambia under the supervision of the authors, and a BLL survey performed by the authors. The surveys were approved by the University of Zambia Research Ethics Committee (UNZAREC; REF. No. 012-04-16). Further approvals were granted by the Ministry of Health through the Zambia National Health Research Ethics Board and the Kabwe District Medical Office. The data were collected in accordance to the Declaration of Helsinki, and the informed consent was obtained from all the study participants including the parents/legal guardian of the minor subjects for participating in the study.
    The two surveys were designed consistently and targeted the same sample households selected in the following two-step approach. In the first step, utilising the Zambia’s national census frame which divides the Kabwe district into 384 standard enumeration areas (SEAs), we randomly selected 40 SEAs across the entire district. In the second step, we randomly selected 25 households (and a few replacements) from each sampled SEA. The sampling weights were generated to account for population differences across the SEAs.
    The KHSS 2017 conducted interviews with 895 households (4,900 individuals) at houses and collected data on socioeconomic, demographic and geographic information. The response rate was 88.2%, and we could regard the data adjusted by the sampling weights as representative of the entire Kabwe population (for more details of the survey, see the report33).
    To obtain BLL data, we conducted a blood sampling survey concurrently with the KHSS 2017. For hygiene and ethical considerations, we selected 13 local clinics to perform the blood sampling, instead of collecting blood at houses. We invited up to four members (two children aged 10 years or younger and their parents or guardians) from each sample household for the blood sampling. We prioritised young children over children older than 10 years old. The invitations were made sequentially. We assigned identical venues and dates for households from the same SEAs. The typical assigned dates had a 3-day window from the day after the invitation. However, we allowed for some flexibility and sampled the blood of those who visited the clinic even after the assigned time window, as long as the clinic was operational for households from other SEAs. Therefore, the window for blood sampling was effectively the number of days from the day after the invitation until the pre-set blood sampling period in each clinic was over, which had a substantial variation across households from 3 days to a month. We revisit this feature of the survey window when setting up our econometric model later. A total of 372 households (41.6%) participated in the blood sampling and, on average, 2.2 members from the participating households provided blood samples.
    We performed blood digestion and metal extraction as described by our previous study34 with minor modifications and measured BLLs using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). In addition, we also measured BLLs with a portable analyser, LeadCare II, to obtain quick results22. However, we in this study focus on the ICP-MS data, considering their general accuracy. See the Supplementary Material Section S1 for details on the methods used to measure BLLs and the difference in the data between the two analysers.
    Regardless of the accuracy of the techniques, however, we further need to account for the risk of selection bias in the BLL data. In the absence of formal and compulsory testing mechanisms, we relied on individuals’ voluntary (self-selected) visits to the clinics. However, the participants in blood sampling could have traits leading to higher or lower BLLs than the population. Such traits can include education, gender, age and living standards. The survey design did not prioritise children aged 11 years or older, and this could also contribute to the deviation of characteristics, although a small number of such children attended clinics. Moreover, certain unobservable characteristics affecting BLLs can further differ between the participants and non-participants. For example, those with greater preferences for health possibly had low BLLs but tended to participate in the blood sampling surveys, whereas those with a high innate physiological capacity for lead excretion possibly tended not to participate because they had low BLLs and did not perceive symptoms of lead poisoning. These issues can lead to selection bias, and the raw data observed from the voluntary participants can fail to illustrate the lead poisoning conditions of the population.
    BLL estimation approach
    To correct for potential selection bias, we first estimated the equations to explain BLLs of children aged 0–10 years and adults aged 19 years or above. Then, using the estimated equations, we calculated BLLs for all individuals, including children aged 11–18 years and those in the other age groups who did not participate in the blood sampling.
    BLLs generally depend on the ambient pollution level, the opportunities of exposure to pollution, the physiological capacity of lead absorption and excretion, and the knowledge and technologies used to prevent lead poisoning. We controlled for ambient pollution levels by including the distance, direction, and altitude of household location—the first two variables are with respect to the mine waste dumping site (Black Mountain). The remaining factors were measured by age and various other individual and household characteristics denoted by ({{varvec{X}}}_{i}). Data for these variables are available regardless of participation in blood sampling. We assumed the following equation for BLL:

    $$begin{aligned} log BLL_{i} & = beta_{dis} log distance_{i} + beta_{dir1} direction_{i} + beta_{dir2} direction_{i}^{2} \ & quad + beta_{alt} altitude_{i} + fleft( {age_{i} } right) + {varvec{X}}_{i} user2{gamma^{prime}} + varepsilon_{i}. hfill \ end{aligned}$$
    (1)

    The logarithmic form for BLL adjusts its distribution to approximately normal—BLL is bounded from below and has a skewed distribution—and allows the factors on the right-hand side to have proportional effects rather than level effects. ({varepsilon }_{i}) is the independent and identically distributed error term that captures noise, such as casual fluctuations and measurement errors in BLLs, and the effects of unobservable factors. While we presented a single equation above, we assumed different equations for children aged 0–10 years and adults aged 19 years or above.
    Below, we discuss our specification in detail.
    Geographic factors
    Existing studies have examined the relationship between the geographic location and ambient pollution level12,13,14. Since lead is transported from the mine waste dumping site through the flow of wind and water, the distance from the site is negatively correlated with ambient lead levels. The soil lead contamination spreads to the western side of the site, particularly towards the west-northwest (WNW), which corresponds to the direction of the prevailing local wind. The contamination also slightly extends to the low-elevation south-eastern side, reflecting pollution transported by water. The northern and southern sides are the least contaminated.
    We defined (distanc{e}_{i}) as the distance between the mine waste dumping site and the location of (i)’s household, with ({beta }_{dis} More

  • in

    Behavioral and trophic segregations help the Tahiti petrel to cope with the abundance of wedge-tailed shearwater when foraging in oligotrophic tropical waters

    1.
    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).
    Google Scholar 
    2.
    Navarro, J. et al. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 8, e622897 (2013).
    Google Scholar 

    3.
    Dehnhard, N. et al. High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: generalist foraging as an adaptation to a highly variable environment?. J. Anim. Ecol. 89, 104–119 (2020).
    PubMed  Google Scholar 

    4.
    Longhurst, A. R. & Pauly, D. Ecology of Tropical Oceans (Academic Press, New York, 1987).
    Google Scholar 

    5.
    Weimerskirch, H. Are seabirds foraging for unpredictable resources?. Deep Res. Part II Top. Stud. Oceanogr. 54, 211–223 (2007).
    ADS  Google Scholar 

    6.
    McDuie, F., Weeks, S. J. & Congdon, B. C. Oceanographic drivers of near-colony seabird foraging site use in tropical marine systems. Mar. Ecol. Prog. Ser. 589, 209–225 (2018).
    ADS  Google Scholar 

    7.
    Grémillet, D. et al. Irreplaceable area extends marine conservation hotspot off Tunisia: insights from GPS-tracking Scopoli’s shearwaters from the largest seabird colony in the Mediterranean. Mar. Biol. 161, 2669–2680 (2014).
    Google Scholar 

    8.
    Weimerskirch, H. et al. At-sea movements of wedge-tailed shearwaters during and outside the breeding season from four colonies in New Caledonia. Mar. Ecol. Prog. Ser. 663, 225–238 (2020).
    ADS  Google Scholar 

    9.
    de Grissac, S., Börger, L., Guitteaud, A. & Weimerskirch, H. Contrasting movement strategies among juvenile albatrosses and petrels. Sci. Rep. 6, 26103 (2016).
    ADS  PubMed  PubMed Central  Google Scholar 

    10.
    Mott, R. & Clarke, R. H. Systematic review of geographic biases in the collection of at-sea distribution data for seabirds. Emu 118, 235–246 (2018).
    Google Scholar 

    11.
    Cherel, Y. et al. Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar. Ecol. Prog. Ser. 366, 281–291 (2008).
    ADS  CAS  Google Scholar 

    12.
    France, R. L. & Peters, R. H. Ecosystem differences in the trophic enrichment of13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).
    Google Scholar 

    13.
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).
    ADS  CAS  Google Scholar 

    14.
    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotope ecology. Front. Ecol. Environ. 5, 429–436 (2007).
    Google Scholar 

    15.
    Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–10012 (2004).
    Google Scholar 

    16.
    Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl. Acad. Sci. USA 104, 10075–10079 (2007).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11, 627–641 (2002).
    CAS  PubMed  Google Scholar 

    18.
    Komura, T., Ando, H., Horikoshi, K., Suzuki, H. & Isagi, Y. DNA barcoding reveals seasonal shifts in diet and consumption of deep-sea fishes in wedge-tailed shearwaters. PLoS ONE 13, e0195385 (2018).
    PubMed  PubMed Central  Google Scholar 

    19.
    Carreiro, A. R. et al. Metabarcoding, stables isotopes, and tracking: unraveling the trophic ecology of a winter-breeding storm petrel (Hydrobates castro) with a multimethod approach. Mar. Biol. 167, 1–13 (2020).
    Google Scholar 

    20.
    Alonso, H. et al. An holistic ecological analysis of the diet of Cory’s shearwaters using prey morphological characters and DNA barcoding. Mol. Ecol. 23, 3719–3733 (2014).
    CAS  PubMed  Google Scholar 

    21.
    del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World. Ostrich to Ducks Vol. 1 (Lynx Editions, Barcelona, 1992).
    Google Scholar 

    22.
    Brooke, M. Albatrosses and Petrels Across the World (Oxford University Press, Oxford, 2004).
    Google Scholar 

    23.
    McDuie, F., Weeks, S. J., Miller, M. G. R. & Congdon, B. C. Breeding tropical shearwaters use distant foraging sites when self-provisioning. Mar. Ornithol. 43, 123–129 (2015).
    Google Scholar 

    24.
    Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).
    ADS  Google Scholar 

    25.
    Furness, R. W. & Birkhead, T. R. Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311, 655–656 (1984).
    ADS  Google Scholar 

    26.
    Lewis, S., Sherratt, T. N., Hamer, K. C. & Wanless, S. Evidence of intra-specific competition for food in a pelagic seabird. Nature 412, 816–819 (2001).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Baduini, C. L. Parental provisioning patterns of wedge-tailed shearwaters and their relation to chick body condition. Condor 104, 823 (2002).
    Google Scholar 

    28.
    Cecere, J. G., Calabrese, L., Rocamora, G. & Catoni, C. Movement patterns and habitat selection of wedge-tailed shearwaters (Puffinus pacificus) breeding at Aride Island, Seychelles. Waterbirds 36, 432–437 (2013).
    Google Scholar 

    29.
    Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).
    ADS  Google Scholar 

    30.
    Jaquemet, S., Le Corre, M. & Weimerskirch, H. Seabird community structure in a coastal tropical environment: importance of natural factors and fish aggregating devices (FADs). Mar. Ecol. Prog. Ser. 268, 281–292 (2004).
    ADS  Google Scholar 

    31.
    Miller, M. G. R., Carlile, N., Phillips, J. S., Mcduie, F. & Congdon, B. C. Importance of tropical tuna for seabird foraging over a marine productivity gradient. Mar. Ecol. Prog. Ser. 586, 233–249 (2018).
    ADS  Google Scholar 

    32.
    Spear, L. B., Ainley, D. G. & Walker, W. A. Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud. Avian Biol. 35, 1–99 (2007).
    Google Scholar 

    33.
    Burger, A. E. Diving depths of shearwaters. Auk 118, 755–759 (2001).
    Google Scholar 

    34.
    Peck, D. R. & Congdon, B. C. Sex-specific chick provisioning and diving behaviour in the wedge-tailed shearwater Puffinus pacificus. J. Avian Biol. 37, 245–251 (2006).
    Google Scholar 

    35.
    IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-1. https://www.iucnredlist.org. Downloaded on 19 March 2020.

    36.
    Villard, P., Dano, S. & Bretagnolle, V. Morphometrics and the breeding biology of the Tahiti petrel Pseudobulweria rostrata. Ibis 148, 285–291 (2006).
    Google Scholar 

    37.
    Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. (2020).

    38.
    Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west pacific. Deep Res. Part II Top. Stud. Oceanogr. 113, 125–144 (2015).
    ADS  Google Scholar 

    39.
    Bretagnolle, V. Le Pétrel de la Chaîne Pterodroma (leucoptera) caledonica: Statut et Menaces. Unpubl. Rep. Prov. Sud, Nouméa, New Caledonia (2001).

    40.
    Pandolfi, M. & Bretagnolle, V. Seabirds of the Southern Lagoon of New Caledonia; distribution, abundance and threats. Waterbirds 25, 202–214 (2002).
    Google Scholar 

    41.
    QGIS Development Team. QGIS geographic information system. Open Source Geospatial Foundation Project (2018).

    42.
    Phillips, R. A., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on albatrosses and petrels. Auk 120, 1082–1090 (2003).
    Google Scholar 

    43.
    Vandenabeele, S. P. et al. Excess baggage for birds: inappropriate placement of tags on gannets changes flight patterns. PLoS ONE 9, e92657 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    44.
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, Berlin, 2016).
    Google Scholar 

    45.
    Michael, A., Sumner, D., Luque, S. & Fischbach, A. Trip : Tools for the Analysis of Animal Track Data. R package version 1.5.0. (2016).

    46.
    Garriga, J., Palmer, J. R. B., Oltra, A. & Bartumeus, F. Expectation–maximization binary clustering for behavioural annotation. PLoS ONE 11, e0151984 (2016).
    PubMed  PubMed Central  Google Scholar 

    47.
    de Grissac, S., Bartumeus, F., Cox, S. L. & Weimerskirch, H. Early-life foraging: behavioral responses of newly fledged albatrosses to environmental conditions. Ecol. Evol. 7, 6766–6778 (2017).
    PubMed  PubMed Central  Google Scholar 

    48.
    Bennison, A. et al. Search and foraging behaviors from movement data: a comparison of methods. Ecol. Evol. 8, 13–24 (2018).
    PubMed  Google Scholar 

    49.
    Clay, T. A. et al. Divergent foraging strategies during incubation of an unusually wide-ranging seabird, the Murphy’s petrel. Mar. Biol. 166, 8 (2019).
    PubMed  Google Scholar 

    50.
    Mendez, L., Prudor, A. & Weimerskirch, H. Ontogeny of foraging behaviour in juvenile red-footed boobies (Sula sula). Sci. Rep. 7, 13886 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    51.
    Ravache, A. et al. Flying to the moon: lunar cycle influences trip duration and nocturnal foraging behavior of the wedge-tailed shearwater Ardenna pacifica. J. Exp. Mar. Biol. Ecol. 525, 151322 (2020).
    Google Scholar 

    52.
    Lund, U. et al. R package ‘circular’: circular Statistics (version 0.4-93). R Packag (2017).

    53.
    Calenge, C. The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).
    Google Scholar 

    54.
    Hedd, A. et al. Foraging areas, offshore habitat use and colony overlap by incubating leach’s storm-petrels Oceanodroma leucorhoa in the Northwest Atlantic. PLoS ONE 13, 1–18 (2018).
    Google Scholar 

    55.
    Bivand, R. & Rundel, C. Interface to Geometry Engine – Open Source (‘GEOS’) (2018).

    56.
    Hobson, K. A. & Clark, R. G. Turnover of 13 C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110, 638–641 (1993).
    Google Scholar 

    57.
    Jaeger, A., Lecomte, V. J., Weimerskirch, H., Richard, P. & Cherel, Y. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid Commun. Mass Spectrom. 24, 3456–3460 (2010).
    ADS  CAS  PubMed  Google Scholar 

    58.
    Oksanen, J. et al. Package vegan. R Packag ver (2013).

    59.
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
    PubMed  Google Scholar 

    60.
    Ceia, F. R., Paiva, V. H., Garthe, S., Marques, J. C. & Ramos, J. A. Can variations in the spatial distribution at sea and isotopic niche width be associated with consistency in the isotopic niche of a pelagic seabird species?. Mar. Biol. 161, 1861–1872 (2014).
    Google Scholar 

    61.
    Votier, S. C. et al. Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J. Appl. Ecol. 47, 487–497 (2010).
    Google Scholar 

    62.
    Bearhop, S. et al. Stable isotopes indicate sex-specific and longer-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164 (2006).
    ADS  Google Scholar 

    63.
    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Jarman, S. N., Redd, K. S. & Gales, N. J. Group-specific primers for amplifying DNA sequences that identify Amphipoda, Cephalopoda, Echinodermata, Gastropoda, Isopoda, Ostracoda and Thoracica. Mol. Ecol. Notes 6, 268–271 (2006).
    CAS  Google Scholar 

    65.
    Braley, M., Goldsworthy, S. D., Page, B., Steer, M. & Austin, J. J. Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol. Ecol. Resour. 10, 466–474 (2010).
    CAS  PubMed  Google Scholar 

    66.
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
    CAS  PubMed  Google Scholar 

    68.
    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).
    PubMed  Google Scholar 

    69.
    Froese, R. & Pauly, D. Fishbase. World Wide Web electronic publication. FishBase (2019).

    70.
    Palomares, M. L. D. & Pauly, D. SeaLifeBase. World Wide Web Electronic Publication. www.sealifebase.org, version (2014).

    71.
    Wickham, H. tidyverse: Easily Install and Load ‘Tidyverse’ Packages. R package version 1.0.0 (2016).

    72.
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2018).
    Google Scholar 

    73.
    Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).
    Google Scholar 

    74.
    Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).
    Google Scholar 

    75.
    Granadeiro, J., Nunes, M., Silva, M. & Furness, R. Flexible foraging strategy of Cory’s shearwater, Calonectris diomedea, during the chick-rearing period. Anim. Behav. 56, 1169–1176 (1998).
    CAS  PubMed  Google Scholar 

    76.
    Kareiva, P. & Odell, G. Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987).
    Google Scholar 

    77.
    Jennings, S., Pinnegar, J. K., Polunin, N. V. C. & Warr, K. J. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser. 226, 77–85 (2002).
    ADS  Google Scholar 

    78.
    Clua, É & Grosvalet, F. Mixed-species feeding aggregation of dolphins, large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18 (2001).
    Google Scholar 

    79.
    Roger, C. Relationships among yellowfin and skipjack tuna, their prey-fish and plankton. Fish. Oceanogr. 3, 133–141 (1994).
    Google Scholar 

    80.
    Choy, C. A., Popp, B. N., Hannides, C. C. S. & Drazen, J. C. Trophic structure and food resources of epipelagic and mesopelagic fishes in the north pacific subtropical Gyre ecosystem inferred from nitrogen isotopic compositions. Limnol. Oceanogr. 60, 1156–1171 (2015).
    ADS  Google Scholar 

    81.
    Lipinski, M. R. & Jackson, S. Surface-feeding on cephalopods by procellariiform seabirds in the southern Benguela region, South Africa. J. Zool. 218, 549–563 (1989).
    Google Scholar 

    82.
    Spear, L. B. & Ainley, D. G. Morphological differences relative to ecological segregation in petrels (family: Procellariidae) of the Southern Ocean And Tropical Pacific. Auk 115, 1017–1033 (1998).
    Google Scholar 

    83.
    Keenan, S. W. & DeBruyn, J. M. Changes to vertebrate tissue stable isotope (δ15N) composition during decomposition. Sci. Rep. 9, 1–12 (2019).
    Google Scholar 

    84.
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).
    MathSciNet  PubMed  Google Scholar 

    85.
    Mendez, L., Cotté, C., Prudor, A. & Weimerskirch, H. Variability in foraging behaviour of red-footed boobies nesting on Europa Island. Acta Oecol. 72, 87–97 (2016).
    ADS  Google Scholar  More