Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields
1.
Weibull, A. C., Östman, Ö & Granqvist, Å. Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers. Conserv. 12, 1335–1355 (2003).
Google Scholar
2.
Gurr, G. M. et al. Landscape ecology and expanding range of biocontrol agent taxa enhance prospects for diamondback moth management. A review. Agron. Sustain. Dev. 38, 23 (2018).
Google Scholar
3.
Schweiger, O. et al. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J. Appl. Ecol. 42, 1129–1139 (2005).
Google Scholar
4.
Stoate, C. et al. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365 (2001).
CAS Google Scholar
5.
Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).
CAS Google Scholar
6.
Řezáč, M., Pekár, S. & Stará, J. The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum. Biocontrol 55, 503–510 (2010).
Google Scholar
7.
Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).
PubMed PubMed Central Google Scholar
8.
Magrach, A. et al. Plant-pollinator networks in semi-natural grasslands are resistant to the loss of pollinators during blooming of mass-flowering crops. Ecography 41, 62–74 (2018).
Google Scholar
9.
Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).
Google Scholar
10.
Rundlöf, M., Bengtsson, J. & Smith, H. G. Local and landscape effects of organic farming on butterfly species richness and abundance. J. Appl. Ecol. 45, 813–820 (2008).
Google Scholar
11.
Gabriel, D. et al. Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol. Lett. 13, 858–869 (2010).
PubMed Google Scholar
12.
Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).
PubMed Google Scholar
13.
Tscharntke, T. et al. The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann. Zool. Fenn. 42, 421–432 (2005).
Google Scholar
14.
Madeira, F. et al. Spillover of arthropods from cropland to protected calcareous grassland—the neighbouring habitat matters. Agric. Ecosyst. Environ. 235, 127–133 (2016).
Google Scholar
15.
Schmidt, M. H., Roschewitz, I., Thies, C. & Tscharntke, T. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42, 281–287 (2005).
Google Scholar
16.
Pfiffner, L. & Luka, H. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ. 78, 215–222 (2000).
Google Scholar
17.
Saqib, H. S. A., You, M. & Gurr, G. M. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops. PeerJ 5, e3795 (2017).
PubMed PubMed Central Google Scholar
18.
Woodcock, B. A. et al. Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agric. Ecosyst. Environ. 139, 181–186 (2010).
MathSciNet Google Scholar
19.
Perović, D. J., Gurr, G. M., Raman, A. & Nicol, H. I. Effect of landscape composition and arrangement on biological control agents in a simplified agricultural system: a cost-distance approach. Biol. Control 52, 263–270 (2010).
Google Scholar
20.
Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, 7863–7870 (2018).
Google Scholar
21.
Riechert, S. E. & Lockley, T. Spiders as biological control agents. Annu. Rev. Entomol. 29, 299–320 (1984).
Google Scholar
22.
Birkhofer, K. et al. Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 98, 249–255 (2008).
CAS PubMed Google Scholar
23.
Mansour, F., Rosen, D., Shulov, A. & Plaut, H. N. Evaluation of spiders as biological control agents of Spodoptera littoralis larvae on apple in Israel. Acta Oecol. Oecol. Appl. 1, 225–232 (1980).
Google Scholar
24.
Griffin, J. N., Byrnes, J. E. K. & Cardinale, B. J. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180–2187 (2013).
PubMed Google Scholar
25.
Horváth, R. et al. In stable, unmanaged grasslands local factors are more important than landscape-level factors in shaping spider assemblages. Agric. Ecosyst. Environ. 208, 106–113 (2015).
Google Scholar
26.
Batáry, P., Báldi, A., Samu, F., Szuts, T. & Erdos, S. Are spiders reacting to local or landscape scale effects in Hungarian pastures?. Biol. Conserv. 141, 2062–2070 (2008).
Google Scholar
27.
Picchi, M. S., Gionata Bocci, F. F., Petacchi, R. & Entling, M. H. Effects of local and landscape factors on spiders and olive fruit flies. Agric. Ecosyst. Environ. 222, 138–147 (2016).
Google Scholar
28.
Djoudi, E. A. et al. Farming system and landscape characteristics differentially affect two dominant taxa of predatory arthropods. Agric. Ecosyst. Environ. 259, 98–110 (2018).
Google Scholar
29.
Muneret, L., Thiéry, D., Joubard, B. & Rusch, A. Deployment of organic farming at a landscape scale maintains low pest infestation and high crop productivity levels in vineyards. J. Appl. Ecol. 55, 1516–1525 (2018).
Google Scholar
30.
Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).
Google Scholar
31.
Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).
CAS PubMed Google Scholar
32.
Hurd, L. E. & Fagan, W. F. Cursorial spiders and succession: age or habitat structure?. Oecologia 92, 215–221 (1992).
ADS CAS PubMed Google Scholar
33.
Halaj, J., Ross, D. W. & Moldenke, A. R. Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos 90, 139–152 (2000).
Google Scholar
34.
Rypstra, A. A. L., Carter, P. P. E., Balfour, R. R. A. & Marshall, S. S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27, 371–377 (1999).
Google Scholar
35.
Samu, F. & Szinetár, C. On the nature of agrobiont spiders. J. Arachnol. 30, 389–402 (2002).
Google Scholar
36.
Gangurde, S. Aboveground arthropod pest and predator diversity in irrigated rice (Oryza sativa L.) production systems of the Philippines. J. Trop. Agric. 45, 1–8 (2007).
Google Scholar
37.
Öberg, S. & Ekbom, B. Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. Ann. Appl. Biol. 149, 203–211 (2006).
Google Scholar
38.
Öberg, S. Influence of landscape structure and farming practice on body condition and fecundity of wolf spiders. Basic Appl. Ecol. 10, 614–621 (2009).
Google Scholar
39.
Garratt, M. P. D., Senapathi, D., Coston, D. J., Mortimer, S. R. & Potts, S. G. The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agric. Ecosyst. Environ. 247, 363–370 (2017).
Google Scholar
40.
Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).
PubMed PubMed Central Google Scholar
41.
Langellotto, G. A. & Denno, R. F. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139, 1–10 (2004).
ADS PubMed Google Scholar
42.
Marshall, E. J. P. & Moonen, A. C. Field margins in northern Europe: their functions and interactions with agriculture. Agric. Ecosyst. Environ. 89, 5–21 (2002).
Google Scholar
43.
Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
PubMed Google Scholar
44.
Schmidt, M. H., Thies, C., Nentwig, W. & Tscharntke, T. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J. Biogeogr. 35, 157–166 (2008).
Google Scholar
45.
Drapela, T., Moser, D., Zaller, J. G. & Frank, T. Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31, 254–262 (2008).
Google Scholar
46.
Zimmerer, K. S. The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proc. Natl. Acad. Sci. USA 110, 2769–2774 (2013).
ADS CAS PubMed Google Scholar
47.
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
ADS CAS PubMed Google Scholar
48.
Sørensen, L. L., Coddington, J. A. & Scharff, N. Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environ. Entomol. 31, 319–330 (2002).
Google Scholar
49.
Mader, V. et al. Land use at different spatial scales alters the functional role of web-building spiders in arthropod food webs. Agric. Ecosyst. Environ. 219, 152–162 (2016).
Google Scholar
50.
Hollander, M. & Wolfe, D. Nonparametric Statistical Methods. Wiley Series in Probability and Statistics 2nd edn. (Wiley, New York, 1999).
Google Scholar
51.
Oksanen, J. et al. Package “vegan”: Community Ecology Package (2019).
52.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
MathSciNet MATH Google Scholar
53.
Torondel, B. et al. Assessment of the influence of intrinsic environmental and geographical factors on the bacterial ecology of pit latrines. Microb. Biotechnol. 9, 209–223 (2016).
PubMed PubMed Central Google Scholar
54.
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).
ADS PubMed Google Scholar
55.
Belsley, D. A., Kuh, E. & Welsch, R. E. Detecting and assessing collinearity. In Regression Diagnostic: Identifying Influential Data and Sources of Collnearity (eds Belsley, D. A. et al.) 85–191 (Wiley, New York, 2005).
Google Scholar
56.
Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2, 269–277 (2011).
Google Scholar
57.
Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).
Google Scholar
58.
Kindt, R. Package “BiodiversityR”: Package for Community Ecology and Suitability Analysis (2019).
59.
Warnes, G. R. et al. Package “gplots”: Various R Programming Tools for Plotting Data (2020).
60.
Ploner, A. Heatplus: Heatmaps with Row and/or Column Covariates and Colored Clusters (2020). More
