1.
Erős, T., O’Hanley, J. R. & Czeglédi, I. A unified model for optimizing riverscape conservation. J. Appl. Ecol. 55, 1871–1883 (2018).
Google Scholar
2.
Ruggeri, P., Pasternak, E. & Okamura, B. To remain or leave: Dispersal variation and its genetic consequences in benthic freshwater invertebrates. Ecol. Evol. 9, 12069–12088 (2019).
PubMed PubMed Central Google Scholar
3.
Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M. & Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88, 310–326 (2013).
PubMed Google Scholar
4.
Geist, J. Seven steps towards improving freshwater conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 447–453 (2015).
Google Scholar
5.
Kujala, H., Lahoz-Monfort, J. J., Elith, J. & Moilanen, A. Not all data are equal: Influence of data type and amount in spatial conservation prioritisation. Methods Ecol. Evol. 9, 2249–2261 (2018).
Google Scholar
6.
Johnson, J. B., Peat, S. M. & Adams, B. J. Where’s the ecology in molecular ecology?. Oikos 118, 1601–1609 (2009).
Google Scholar
7.
Janse, J. H. et al. GLOBIO-aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environ. Sci. Policy 48, 99–114 (2015).
Google Scholar
8.
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
ADS PubMed CAS Google Scholar
9.
Moore, D., Cranston, G., Reed, A. & Galli, A. Projecting future human demand on the Earth’s regenerative capacity. Ecol. Indic. 16, 3–10 (2012).
Google Scholar
10.
Yawson, D. O., Adu, M. O. & Armah, F. A. Impacts of climate change and mitigation policies on malt barley supplies and associated virtual water flows in the UK. Sci. Rep. 10, 1–12 (2020).
Google Scholar
11.
Naidoo, R. et al. Global mapping of ecosystem services and conservation priorities. Proc. Natl. Acad. Sci. USA 105, 9495–9500 (2008).
ADS PubMed CAS Google Scholar
12.
Hermoso, V., Villero, D., Clavero, M. & Brotons, L. Spatial prioritisation of EU’s LIFE-Nature programme to strengthen the conservation impact of Natura 2000. J. Appl. Ecol. 55, 1575–1582 (2018).
Google Scholar
13.
Hermoso, V., Morán-Ordóñez, A., Canessa, S. & Brotons, L. Realising the potential of Natura 2000 to achieve EU conservation goals as 2020 approaches. Sci. Rep. 9, 1–10 (2019).
CAS Google Scholar
14.
Lobera, G., Pardo, I., García, L. & García, C. Disentangling spatio-temporal drivers influencing benthic communities in temporary streams. Aquat. Sci. 81, 1–17 (2019).
CAS Google Scholar
15.
Richman, N. I. et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philos. Trans. R. Soc. B Biol. Sci. 370, 20140060 (2015).
16.
Manenti, R. et al. Causes and consequences of crayfish extinction: Stream connectivity, habitat changes, alien species and ecosystem services. Freshw. Biol. 64, 284–293 (2019).
Google Scholar
17.
Kozák, P., Füreder, L., Kouba, A., Reynolds, J. & Souty-Grosset, C. Current conservation strategies for European crayfish. Knowl. Manag. Aquat. Ecosyst. 01, https://doi.org/10.1051/kmae/2011018 (2011).
18.
Pârvulescu, L. Introducing a new Austropotamobius crayfish species (Crustacea, Decapoda, Astacidae): A miocene endemism of the Apuseni Mountains, Romania. Zool. Anz. 279, 94–102 (2019).
Google Scholar
19.
Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 413, 05–31 (2014).
Google Scholar
20.
Pârvulescu, L. et al. A journey on plate tectonics sheds light on European crayfish phylogeography. Ecol. Evol. 9, 1957–1971 (2019).
PubMed PubMed Central Google Scholar
21.
Pârvulescu, L. & Zaharia, C. Current limitations of the stone crayfish distribution in Romania: Implications for its conservation status. Limnologica 43, 143–150 (2013).
Google Scholar
22.
Klobučar, G. I. V. et al. Role of the Dinaric Karst (western Balkans) in shaping the phylogeographic structure of the threatened crayfish Austropotamobius torrentium. Freshw. Biol. 58, 1089–1105 (2013).
Google Scholar
23.
Qian, S. S., Cuffney, T. F., Alameddine, I., McMahon, G. & Reckhow, K. H. On the application of multilevel modeling in environmental and ecological studies. Ecology 91, 355–361 (2010).
PubMed Google Scholar
24.
Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).
PubMed Google Scholar
25.
Koizumi, I., Usio, N., Kawai, T., Azuma, N. & Masuda, R. Loss of genetic diversity means loss of geological information: The endangered Japanese crayfish exhibits remarkable historical footprints. PLoS ONE 7, e33986 (2012).
ADS PubMed PubMed Central CAS Google Scholar
26.
McNyset, K. M. Use of ecological niche modelling to predict distributions of freshwater fish species in Kansas. Ecol. Freshw. Fish 14, 243–255 (2005).
Google Scholar
27.
Henrys, P. A. & Jarvis, S. G. Integration of ground survey and remote sensing derived data: Producing robust indicators of habitat extent and condition. Ecol. Evol. 9, 8104–8112 (2019).
PubMed PubMed Central Google Scholar
28.
Pârvulescu, L., Zaharia, C., Satmari, A. & Drăguţ, L. Is the distribution pattern of the stone crayfish in the Carpathians related to karstic refugia from Pleistocene glaciations?. Freshw. Sci. 32, 1410–1419 (2013).
Google Scholar
29.
Longshaw, M. & Stebbing, P. Biology and Ecology of Crayfish. (CRC Press, 2015).
30.
Chucholl, C. The bad and the super-bad: Prioritising the threat of six invasive alien to three imperilled native crayfishes. Biol. Invasions 18, 1967–1988 (2016).
Google Scholar
31.
Chucholl, C. & Schrimpf, A. The decline of endangered stone crayfish (Austropotamobius torrentium) in southern Germany is related to the spread of invasive alien species and land-use change. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 44–56 (2016).
Google Scholar
32.
Pârvulescu, L. et al. Flash-flood potential: A proxy for crayfish habitat stability. Ecohydrology 9, 1507–1516 (2016).
Google Scholar
33.
Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).
34.
Şandric, I. et al. Integrating catchment land cover data to remotely assess freshwater quality: A step forward in heterogeneity analysis of river networks. Aquat. Sci. 81, 26 (2019).
Google Scholar
35.
Burkhard, B., Kroll, F., Nedkov, S. & Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 21, 17–29 (2012).
Google Scholar
36.
Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: A review. Landsc. Ecol. 27, 777–797 (2012).
Google Scholar
37.
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Google Scholar
38.
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2017).
39.
Freeman, E. A. & Moisen, G. G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Modell. 217, 48–58 (2008).
Google Scholar
40.
Iorgu, E. I., Popa, O. P., Petrescu, A.-M. & Popa, L. O. Cross-amplification of microsatellite loci in the endangered stone-crayfish Austropotamobius torrentium (Crustacea: Decapoda). Knowl. Manag. Aquat. Ecosyst. 08, https://doi.org/10.1051/kmae/2011021 (2011).
41.
Peakall, R. & Smouse, P. E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).
42.
Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).
43.
Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
PubMed Google Scholar
44.
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Google Scholar
45.
Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–22 (1977).
MathSciNet MATH Google Scholar
46.
Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).
PubMed CAS Google Scholar
47.
Weir, B. S. & Cockerham, C. C. Estimating F‐statistics for the analysis of population structure. Evolution (N. Y). 38, 1358–1370 (1984).
48.
Hammer, D. A. T., Ryan, P. D., Hammer, Ø. & Harper, D. A. T. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica vol. 4 https://palaeo-electronica.orghttp//palaeo-electronica.org/2001_1/past/issue1_01.htm. (2001).
49.
Nei, M., Tajima, F. & Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153–170 (1983).
ADS PubMed CAS Google Scholar
50.
Langella, O. Populations, 1.2. 30. https://bioinformatics.org/~tryphon/populations (1999).
51.
Pritchard, J. K., Stephens, M., Rosenberg, N. A. & Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181 (2000).
PubMed PubMed Central CAS Google Scholar
52.
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
PubMed CAS Google Scholar
53.
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
PubMed PubMed Central CAS Google Scholar
54.
Vähä, J. P. & Primmer, C. R. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 15, 63–72 (2005).
Google Scholar
55.
Bergl, R. A. & Viglant, L. Genetic analysis reveals population structure and recent migration within the highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Mol. Ecol. 16, 501–516 (2006).
Google Scholar
56.
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 1–15 (2010).
Google Scholar
57.
Paetkau, D., Calvert, W., Stirling, I. & Strobeck, C. Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4, 347–354 (1995).
PubMed CAS Google Scholar
58.
Duchesne, P. & Turgeon, J. FLOCK Provides Reliable Solutions to the ‘“Number of Populations”’ Problem. https://doi.org/10.1093/jhered/ess038.
59.
Janes, J. K. et al. The K = 2 conundrum. Mol. Ecol. 26, 3594–3602 (2017).
PubMed Google Scholar
60.
Funk, S. M. et al. Major inconsistencies of inferred population genetic structure estimated in a large set of domestic horse breeds using microsatellites. Ecol. Evol. 10, 4261–4279 (2020).
PubMed PubMed Central Google Scholar
61.
Berger, C., Štambuk, A., Maguire, I., Weiss, S. & Füreder, L. Integrating genetics and morphometrics in species conservation—A case study on the stone crayfish, Austropotamobius torrentium. Limnologica 69, 28–38 (2018).
Google Scholar
62.
Iojă, C. I. et al. The efficacy of Romania’s protected areas network in conserving biodiversity. Biol. Conserv. 143, 2468–2476 (2010).
Google Scholar
63.
Rabăgia, T. & Maţenco, L. Tertiary tectonic and sedimentological evolution of the South Carpathians foredeep: Tectonic vs eustatic control. Mar. Pet. Geol. 16, 719–740 (1999).
64.
Rãdoane, M., Rãdoane, N. & Dumitriu, D. Geomorphological evolution of longitudinal river profiles in the Carpathians. Geomorphology 50, 293–306 (2003).
ADS Google Scholar
65.
Helms, B., Loughman, Z. J., Brown, B. L. & Stoeckel, J. Recent advances in crayfish biology, ecology, and conservation. Freshw. Sci. 32, 1273–1275 (2013).
Google Scholar
66.
Svobodová, J. et al. The relationship between water quality and indigenous and alien crayfish distribution in the Czech Republic: Patterns and conservation implications. Aquat. Conserv. Mar. Freshw. Ecosyst. 22, 776–786 (2012).
Google Scholar
67.
Pöckl, M. & Streissl, F. Austropotamobius torrentium as an indicator for habitat quality in running waters? Bull. Français la Pêche la Piscic. 743–758, https://doi.org/10.1051/kmae:2005030 (2005).
68.
Magyar, I. et al. Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Glob. Planet. Change 103, 168–173 (2013).
ADS Google Scholar
69.
Zhang, Y., Luan, P., Ren, G., Hu, G. & Yin, J. Estimating the inbreeding level and genetic relatedness in an isolated population of critically endangered Sichuan taimen (Hucho Bleekeri) using genome-wide SNP markers. Ecol. Evol. 10, 1390–1400 (2020).
PubMed PubMed Central Google Scholar
70.
Hoarau, G. et al. Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). Proc. Biol. Sci. 272, 497–503 (2005).
71.
Jourdan, J. et al. Reintroduction of freshwater macroinvertebrates: Challenges and opportunities. Biol. Rev. https://doi.org/10.1111/brv.12458 (2018).
Article PubMed Google Scholar
72.
Oidtmann, B., Heitz, E., Rogers, D. & Hoffmann, R. Transmission of crayfish plague. Dis. Aquat. Organ. 52, 159–167 (2002).
PubMed Google Scholar
73.
Rusch, J. C. et al. Simultaneous detection of native and invasive crayfish and Aphanomyces astaci from environmental DNA samples in a wide range of habitats in Central Europe. NeoBiota (2020).
74.
Hall, Q. A., Curtis, J. M., Williams, J. & Stunz, G. W. The importance of newly-opened tidal inlets as spawning corridors for adult Red Drum (Sciaenops ocellatus). Fish. Res. 212, 48–55 (2019).
Google Scholar
75.
Stewart, F. E. C., Darlington, S., Volpe, J. P., McAdie, M. & Fisher, J. T. Corridors best facilitate functional connectivity across a protected area network. Sci. Rep. 9, 10852 (2019).
ADS PubMed PubMed Central Google Scholar
76.
Strauss, A., White, A. & Boots, M. Invading with biological weapons: The importance of disease-mediated invasions. Funct. Ecol. 26, 1249–1261 (2012).
Google Scholar
77.
Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).
PubMed Google Scholar
78.
Nunes, A. L., Tricarico, E., Panov, V. E., Cardoso, A. C. & Katsanevakis, S. Pathways and gateways of freshwater invasions in Europe. Aquat. Invasions 10, 359–370 (2015).
Google Scholar
79.
Zeng, Y. & Yeo, D. C. J. Assessing the aggregated risk of invasive crayfish and climate change to freshwater crabs: A Southeast Asian case study. Biol. Conserv. 223, 58–67 (2018).
Google Scholar
80.
Alonso, F., Temino, C. & Diéguez-Uribeondo, J. Status of the white-clawed crayfish, Austropotamobius pallipes (Lereboullet, 1858), in Spain: Distribution and legislation. 31–53 (2000).
81.
Van Dyck, H. & Baguette, M. Dispersal behaviour in fragmented landscapes: Routine or special movements?. Basic Appl. Ecol. 6, 535–545 (2005).
Google Scholar
82.
Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. & Brooks, T. M. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).
PubMed Google Scholar
83.
Füreder, L., Gherardi, F. & Souty-Grosset, C. Austropotamobius torrentium. The IUCN Red List of Threatened Species 2010 e.T2431A9439449 https://doi.org/10.2305/IUCN.UK.2010-3.RLTS.T2431A9439449.en (2010). More