1.
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
CAS PubMed PubMed Central Google Scholar
2.
Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
Google Scholar
3.
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).
CAS PubMed PubMed Central Google Scholar
4.
van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).
PubMed Google Scholar
5.
Schulze, E.-D. & Mooney, H. Biodiversity and Ecosystem Functioning (Springer, 1993).
6.
Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).
Google Scholar
7.
Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).
PubMed Google Scholar
8.
Hines, J. et al. Mapping change in biodiversity and ecosystem function research: food webs foster integration of experiments and science policy. Adv. Ecol. Res. 61, 297–322 (2019).
Google Scholar
9.
Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).
CAS Google Scholar
10.
Roscher, C., Schumacher, J. & Baade, J. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 121, 107–121 (2004).
Google Scholar
11.
Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).
CAS PubMed Google Scholar
12.
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
Google Scholar
13.
Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).
PubMed Google Scholar
14.
O’Connor, M. I. et al. A general biodiversity–function relationship is mediated by trophic level. Oikos 126, 18–31 (2017).
Google Scholar
15.
Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).
CAS PubMed Google Scholar
16.
Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).
CAS PubMed Google Scholar
17.
Huston, M. A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449–460 (1997).
PubMed Google Scholar
18.
Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
Google Scholar
19.
Wardle, D. A. et al. Biodiversity and ecosystem function: an issue in ecology. Bull. Ecol. Soc. Am. 81, 235–239 (2000).
Google Scholar
20.
Leps, J. What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic Appl. Ecol. 5, 529–534 (2004).
Google Scholar
21.
Srivastava, D. S. & Vellend, M. Biodiversity–ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005).
Google Scholar
22.
Duffy, J. E. Why biodiversity is important to the functioning of real-world ecosystems. Front. Ecol. Environ. 7, 437–444 (2008).
Google Scholar
23.
Duffy, J. E. Biodiversity effects: trends and exceptions—a reply to Wardle and Jonsson. Front. Ecol. Environ. 8, 11–12 (2010).
Google Scholar
24.
Wardle, D. A. & Jonsson, M. Biodiversity effects in real ecosystems—a response to Duffy. Front. Ecol. Environ. 8, 10–11 (2010).
Google Scholar
25.
Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).
Google Scholar
26.
Manning, P. et al. Transferring biodiversity-ecosystem function research to the management of ‘real-world’ ecosystems. Adv. Ecol. Res. 61, 323–356 (2019).
Google Scholar
27.
Wilsey, B. J. & Potvin, C. Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81, 887–892 (2000).
Google Scholar
28.
Wilsey, B. J. & Polley, H. W. Realistically low species evenness does not alter grassland species-richness–productivity relationships. Ecology 85, 2693–2700 (2004).
Google Scholar
29.
Hillebrand, H., Bennett, D. & Cadotte, M. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).
PubMed Google Scholar
30.
Schmitz, M. et al. Consistent effects of biodiversity on ecosystem functioning under varying density and evenness. Folia Geobot. 48, 335–353 (2013).
Google Scholar
31.
Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. J. Appl. Ecol. 50, 365–375 (2013).
Google Scholar
32.
Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).
Google Scholar
33.
Schmid, B. & Hector, A. The value of biodiversity experiments. Basic Appl. Ecol. 5, 535–542 (2004).
Google Scholar
34.
Eisenhauer, N. et al. Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. J. Veg. Sci. 27, 1061–1070 (2016).
Google Scholar
35.
Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013).
CAS PubMed Google Scholar
36.
Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).
CAS PubMed Google Scholar
37.
Buchmann, T. et al. Connecting experimental biodiversity research to real-world grasslands. Perspect. Plant Ecol. Evol. Syst. 33, 78–88 (2018).
Google Scholar
38.
Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).
CAS Google Scholar
39.
Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl Acad. Sci. USA 109, 10394–10397 (2012).
CAS PubMed Google Scholar
40.
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
CAS PubMed Google Scholar
41.
Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl. Ecol. 11, 473–485 (2010).
Google Scholar
42.
Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).
CAS Google Scholar
43.
Tilman, D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol. Monogr. 57, 189–214 (1987).
Google Scholar
44.
Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008).
CAS PubMed Google Scholar
45.
Inouye, R. et al. Old-field succession on a Minnesota sand plain. Ecology 68, 12–26 (1987).
Google Scholar
46.
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).
PubMed Google Scholar
47.
Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).
PubMed Google Scholar
48.
Nakamura, G., Gonçalves, L. O. & da Silva Duarte, L. Revisiting the dimensionality of biological diversity. Ecography (Cop.) 43, 539–548 (2020).
Google Scholar
49.
Stevens, R. D. & Tello, J. S. On the measurement of dimensionality of biodiversity. Glob. Ecol. Biogeogr. 23, 1115–1125 (2014).
Google Scholar
50.
Manning, P. et al. Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J. Appl. Ecol. 52, 1188–1196 (2015).
CAS Google Scholar
51.
Adler, D. & Kelly, T. vioplot: Violin plot. R package version 0.3.0 (2018).
52.
Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).
CAS PubMed PubMed Central Google Scholar
53.
Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).
PubMed PubMed Central Google Scholar
54.
Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).
PubMed Google Scholar
55.
Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).
Google Scholar
56.
Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol. Lett. 12, 1405–1419 (2009).
PubMed Google Scholar
57.
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
CAS PubMed Google Scholar
58.
Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).
PubMed Google Scholar
59.
Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl Acad. Sci. USA 114, 10160–10165 (2017).
CAS PubMed Google Scholar
60.
Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).
PubMed Google Scholar
61.
Lavorel, S. et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 99, 135–147 (2011).
Google Scholar
62.
Schmid, B. The species richness–productivity controversy. Trends Ecol. Evol. 17, 113–114 (2002).
Google Scholar
63.
Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).
CAS PubMed Google Scholar
64.
Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).
CAS PubMed PubMed Central Google Scholar
65.
van der Plas, F. et al. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).
PubMed PubMed Central Google Scholar
66.
Socher, S. A. et al. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 100, 1391–1399 (2012).
Google Scholar
67.
Hobbs, R. J., Higgs, E. & Harris, J. A. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24, 599–605 (2009).
PubMed Google Scholar
68.
Klaus, V. H. et al. Do biodiversity–ecosystem functioning experiments inform stakeholders how to simultaneously conserve biodiversity and increase ecosystem service provisioning in grasslands? Biol. Conserv. 245, 108552 (2020).
Google Scholar
69.
Roscher, C. et al. Convergent high diversity in naturally colonized experimental grasslands is not related to increased productivity. Perspect. Plant Ecol. Evol. Syst. 20, 32–45 (2016).
Google Scholar
70.
Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas mit den Alpen: In Ökologischer, Dynamischer und Historischer Sicht (UTB, 2010).
71.
Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).
Google Scholar
72.
Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).
CAS PubMed PubMed Central Google Scholar
73.
Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78, 81–92 (1997).
Google Scholar
74.
Catford, J. A. et al. Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. Ecol. Lett. 22, 593–604 (2019).
PubMed Google Scholar
75.
Fargione, J. et al. From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B 274, 871–876 (2007).
PubMed Google Scholar
76.
Londo, G. The decimal scale for releves of permanent quadrats. Vegetatio 33, 61–64 (1976).
Google Scholar
77.
Roscher, C. et al. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl. Ecol. 14, 187–198 (2013).
Google Scholar
78.
Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).
Google Scholar
79.
Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic standardization of plant species names. R package version 2.1 (2017).
80.
The Plant List version 1.1 (2013); http://www.theplantlist.org/
81.
Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).
Google Scholar
82.
Martins, W. S., Carmo, W. C., Longo, H. J., Rosa, T. C. & Rangel, T. F. SUNPLIN: simulation with uncertainty for phylogenetic investigations. BMC Bioinform. 14, 324 (2013).
Google Scholar
83.
Rangel, T. F. et al. Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution 69, 1301–1312 (2015).
PubMed Google Scholar
84.
Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).
Google Scholar
85.
Goolsby, E. W., Bruggeman, J. & Ane, C. Rphylopars: Phylogenetic comparative tools for missing data and within-species variation. R package version 0.2.9 (2016).
86.
Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).
Google Scholar
87.
Oksanen, J. et al. Vegan: Community ecology package. R package version 2.3-4 (2016).
88.
Hill, M. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).
Google Scholar
89.
Smith, B. & Wilson, J. B. A consumer’s guide to evenness indices. Oikos 76, 70–82 (1996).
Google Scholar
90.
Magurran, A. Measuring Biological Diversity (Blackwell, 2004).
91.
Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).
PubMed PubMed Central Google Scholar
92.
Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).
PubMed Google Scholar
93.
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
CAS PubMed Google Scholar
94.
Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
PubMed Google Scholar
95.
Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).
PubMed Google Scholar
96.
Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).
Google Scholar
97.
Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014).
98.
R: A Language and Environment for Statistical Computing v.3.4.2 (R Core Team, 2019); https://doi.org/10.1007/978-3-540-74686-7
99.
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).
Google Scholar
100.
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar
101.
Jochum, M. et al. R-code and aggregated data from: The results of biodiversity-ecosystem functioning experiments are realistic. iDiv Data Repository https://doi.org/10.25829/idiv.1869-11-3082 (2020).
102.
Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE, 2011).
103.
Pebesma, E. & Bivand, R. Classes and methods for spatial data in R. R News 5, 9–13 (2005).
Google Scholar
104.
Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).
105.
Habel, K., Grasman, R., Gramacy, R. B., Stahel, A. & Sterratt, D. C. geometry: Mesh generation and surface tessellation. R package version 0.4.1 (2019).
106.
Blonder, B. & Harris, D. hypervolume: High dimensional geometry and set operations using kernel density estimation, support vector machines, and convex hulls. R package version 2.0.11 (2018).
107.
Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7, e01619 (2016).
Google Scholar
108.
Brownrigg, R. mapdata: Extra map databases. R package version 2.3.0 (2018). More