Iterative evolution of large-bodied hypercarnivory in canids benefits species but not clades
1.
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1–11 (2014).
Google Scholar
2.
Kruuk, H. The Spotted Hyena: A Study of Predation and Social Behavior (University of Chicago Press, 1972).
3.
Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).
CAS PubMed Google Scholar
4.
Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, 363–368 (2007).
CAS Google Scholar
5.
Van Valkenburgh, B. Deja vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47, 147–163 (2007).
PubMed Google Scholar
6.
MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).
Google Scholar
7.
Andersson, M. On optimal predator search. Theor. Popul. Biol. 19, 58–86 (1981).
Google Scholar
8.
Mukherjee, S. & Heithaus, M. R. Dangerous prey and daring predators: a review. Biol. Rev. 88, 550–563 (2013).
PubMed Google Scholar
9.
Brown, C., Balisi, M., Shaw, C. A. & Van Valkenburgh, B. Skeletal trauma reflects hunting behaviour in extinct sabre-tooth cats and dire wolves. Nat. Ecol. Evol. 1, 1–7 (2017).
Google Scholar
10.
Griffiths, D. Foraging costs and relative prey size. Am. Nat. 116, 743–752 (1980).
Google Scholar
11.
Fryxell, J. M., Mosser, A., Sinclair, A. R. E. & Packer, C. Group formation stabilizes predator–prey dynamics. Nature 449, 1041–1044 (2007).
CAS PubMed Google Scholar
12.
Binder, W. J., Thompson, E. N. & Van Valkenburgh, B. Temporal variation in tooth fracture among Rancho La Brea dire wolves. J. Vertebr. Paleontol. 22, 423–428 (2002).
Google Scholar
13.
Binder, W. J. & Van Valkenburgh, B. A comparison of tooth wear and breakage in Rancho La Brea sabertooth cats and dire wolves across time. J. Vertebr. Paleontol. 30, 255–261 (2010).
Google Scholar
14.
Van Valkenburgh, B. & Hertel, F. Tough times at La Brea: tooth breakage in large carnivores of the late Pleistocene. Science 261, 456–459 (1993).
Google Scholar
15.
Holekamp, K. E., Smale, L., Berg, R. & Cooper, S. M. Hunting rates and hunting success in the spotted hyena (Crocuta crocuta). J. Zool. 242, 1–15 (1997).
Google Scholar
16.
Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29, 445–454 (1992).
Google Scholar
17.
Holliday, J. A. & Steppan, S. J. Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology 30, 108–128 (2004).
Google Scholar
18.
Milton, K. The critical role played by animal source foods in human (Homo) evolution. J. Nutr. 133, 3886–3892 (2003).
Google Scholar
19.
Mealey, S. P. The natural food habits of grizzly bears in Yellowstone National Park, 1973-74. Bears Their Biol. Manag. 4, 281–292 (1980).
Google Scholar
20.
McNab, B. K. Food habits, energetics, and the population biology of mammals. Am. Nat. 116, 106–124 (1980).
Google Scholar
21.
Munoz-Garcia, A. & Williams, J. B. Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiol. Biochem. Zool. 78, 1039–1056 (2005).
PubMed Google Scholar
22.
Hoekstra, H. E. & Fagan, W. F. Body size, dispersal ability, and compositional disharmony: the carnivore-dominated fauna of the Kuril Islands. Divers. Distrib. 4, 135–149 (1998).
Google Scholar
23.
Van Valkenburgh, B. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17, 340–362 (1991).
Google Scholar
24.
Wang, X. Phylogenetic Systematics of the Hesperocyoninae (Carnivora, Canidae). Bulletin of the American Museum of Natural History (American Museum of Natural History, 1994).
25.
Wang, X., Tedford, R. H. & Taylor, B. E. Phylogenetic Systematics of the Borophaginae (Carnivora, Canidae). Bulletin of the American Museum of Natural History (American Museum of Natural History, 1999).
26.
Tedford, R. H., Wang, X. & Taylor, B. E. Phylogenetic Systematics of the North American fossil Caninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, Vol. 325 (American Museum of Natural History, 2009).
27.
Balisi, M., Casey, C. & Van Valkenburgh, B. Dietary specialization is linked to reduced species durations in North American fossil canids. R. Soc. Open Sci. 5, 1–15 (2018).
Google Scholar
28.
Van Valkenburgh, B. Major patterns in the history of carnivorous mammals. Annu. Rev. Earth Planet. Sci. 27, 463–493 (1999).
Google Scholar
29.
Figueirido, B., Martín-Serra, A., Tseng, Z. J. & Janis, C. M. Habitat changes and changing predatory habits in North American fossil canids. Nat. Commun. 6, 1–11 (2015).
Google Scholar
30.
Silvestro, D., Antonelli, A. A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).
CAS PubMed Google Scholar
31.
Van Valkenburgh, B., Wang, X. & Damuth, J. Cope’s rule, hypercarnivory, and extinction in North American canids. Science 306, 101–104 (2004).
PubMed Google Scholar
32.
Rasmussen, G. S. A., Gusset, M., Courchamp, F. & Macdonald, D. W. Achilles’ heel of sociality revealed by energetic poverty trap in cursorial hunters. Am. Nat. 172, 508–518 (2008).
PubMed Google Scholar
33.
Raia, P. et al. Progress to extinction: increased specialisation causes the demise of animal clades. Sci. Rep. 6, 30965 (2016).
CAS PubMed PubMed Central Google Scholar
34.
Van Valkenburgh, B. Extinction and replacement among predatory mammals in the North American late Eocene and Oligocene: tracking a paleoguild over 12 million years. Hist. Biol. 8, 129–150 (1994).
35.
Vermeij, G. J. Biological versatility and earth history. Proc. Natl Acad. Sci. U. S. A. 70, 1936–1938 (1973).
CAS PubMed PubMed Central Google Scholar
36.
Piras, P. et al. Evolution of the sabertooth mandible: a deadly ecomorphological specialization. Palaeogeogr. Palaeoclimatol. Palaeoecol. 0–1, https://doi.org/10.1016/j.palaeo.2018.01.034 (2018).
37.
Palmqvist, P., Martinez-Navarro, B. & Arribas, A. Prey selection by terrestrial carnivores in a lower Pleistocene paleocommunity. Paleobiology 22, 514–534 (1996).
Google Scholar
38.
Stock, C. Rancho La Brea: A Record of Pleistocene life in California (Natural History Museum of Los Angeles County, 1992).
39.
Van Valkenburgh, B., Sacco, T. & Wang, X. Pack hunting in Miocene borophagine dogs: evidence from craniodental morphology and body size. in Bulletin of the American Museum of Natural History 147–162, (American Museum of Natural History, 2003). https://doi.org/10.1206/0003-0090(2003)2792.0.CO;2.
40.
Van Valkenburgh, B. & Sacco, T. Sexual dimorphism, social behavior, and intrasexual competition in large Pleistocene carnivorans. J. Vertebr. Paleontol. 22, 164–169 (2002).
Google Scholar
41.
Carbone, C. et al. Parallels between playbacks and Pleistocene tar seeps suggest sociality in an extinct sabretooth cat, Smilodon. Biol. Lett. 5, 81–85 (2009).
PubMed Google Scholar
42.
Van Valkenburgh, B. et al. Sociality in Rancho La Brea Smilodon: arguments favour ‘evidence’ over ‘coincidence’. Biol. Lett. 5, 563–564 (2009).
PubMed Central Google Scholar
43.
Creel, S. & Creel, N. M. The African Wild Dog: Behaviour, Ecology and Conservation (Princeton University Press, 2002).
44.
Sinclair, A. R. E. & Krebs, C. J. Complex numerical responses to top-down and bottom-up processes in vertebrate populations. Philos. Trans. R. Soc. B Biol. Sci. 357, 1221–1231 (2002).
CAS Google Scholar
45.
Rosenzweig, M. L. Net primary productivity of terrestrial communities: prediction from climatological data. Am. Nat. 102, 67–74 (1968).
Google Scholar
46.
Barnosky, A. D. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21, 172–185 (2001).
Google Scholar
47.
Smiley, T. M., Hyland, E. G., Cotton, J. M. & Reynolds, R. E. Evidence of early C4 grasses, habitat heterogeneity, and faunal response during the Miocene Climatic Optimum in the Mojave Region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 490, 415–430 (2018).
Google Scholar
48.
Kohn, M. J. & Fremd, T. J. Miocene tectonics and climate forcing of biodiversity, western United States. Geology 36, 783–786 (2008).
CAS Google Scholar
49.
Finarelli, J. A. & Badgley, C. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proc. R. Soc. B 277, 2721–2726 (2010).
PubMed Google Scholar
50.
Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauley, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353, 1284–1286 (2016).
CAS PubMed Google Scholar
51.
Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 313, 310–313 (2018).
Google Scholar
52.
Faurby, S., Silvestro, D., Werdelin, L. & Antonelli, A. A. Brain expansion in early hominins predicts carnivore extinctions in East Africa. Ecol. Lett. https://doi.org/10.1111/ele.13451 (2020).
53.
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
CAS PubMed Google Scholar
54.
Wang, X. New material of Osbornodon from the Early Hemingfordian of Nebraska and Florida. in Vertebrate Fossils and Their Context: Contributions in Honor of Richard H.Tedford (ed. Flynn, L. J.) 163–176 (American Museum of Natural History, 2003).
55.
Van Valkenburgh, B. Skeletal and dental predictors of body mass in carnivores. in Body Size in Mammalian Paleobiology: Estimation and Biological Implications (eds Damuth, J. & MacFadden, B. J.) 181–206 (Cambridge University Press, 1990).
56.
Wang, X. et al. First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche. eLife 7, 1–28 (2018).
Google Scholar
57.
Van Valkenburgh, B. & Koepfli, K. P. Cranial and dental adaptations to predation in canids. Mamm. Predat. Ser. Symp. Zool. Soc. 65, 15–37 (1993).
Google Scholar
58.
Slater, G. J. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution. Proc. Natl Acad. Sci. USA 112, 4897–4902 (2015).
59.
Carrasco, M. A., Kraatz, B. P., Davis, E. B. & Barnosky, A. D. Miocene Mammal Mapping Project (MIOMAP). http://www.ucmp.berkeley.edu/miomap/ (University of California Museum of Paleontology, 2005).
60.
Graham, R. W. & Lundelius, E. L. Jr. FAUNMAP II: New data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database http://ucmp.berkeley.edu/faunmap/ (2010).
61.
Bambach, R. K., Knoll, A. H. & Wang, S. C. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30, 522–542 (2004).
Google Scholar
62.
Woodburne, M. O. (ed.) Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology. (Columbia University Press, 2004). https://doi.org/10.7312/wood13040.
63.
Ellis, A. R., Burchett, W. W., Harrar, S. W. & Bathke, A. C. Nonparametric inference for multivariate data: the R package npmv. J. Stat. Softw. 76, 1–18 (2017).
64.
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Google Scholar
65.
McDonald, J. H. Handbook of Biological Statistics (Sparky House Publishing, 2014).
66.
Hunt, G. paleoTS: Analyze Paleontological Time-Series. R package version 0.5.2. https://CRAN.R-project.org/package=paleoTS (2019).
67.
Mazerolle, M. J. & Linden, D. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-0. https://cran.r-project.org/package=AICcmodavg (2019).
68.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2019).
69.
Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: a new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).
Google Scholar
70.
Rambaut, A. et al. Tracer. http://beast.community/tracer (2018).
71.
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).
CAS PubMed Google Scholar
72.
Balisi, M. & Van Valkenburgh, B. Iterative evolution of large-bodied hypercarnivory in canids benefits species but not clades. Dryad, https://doi.org/10.6071/M3M08P (2020). More