1.
Cárdenas, L., Castilla, J. C. & Viard, F. A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. J. Biogeogr. 36, 969–981 (2009).
Google Scholar
2.
Kelly, R. P. & Palumbi, S. R. Genetic structure among 50 species of the northeastern pacific rocky intertidal community. PLoS ONE 5, e8594 (2010).
ADS PubMed PubMed Central Google Scholar
3.
Haye, P. A. et al. Phylogeographic structure in benthic marine invertebrates of the southeast pacific coast of Chile with differing dispersal potential. PLoS ONE 9, e88613 (2014).
ADS PubMed PubMed Central Google Scholar
4.
Hellberg, M. E., Burton, R. S., Neigel, J. E. & Palumbi, S. R. Genetic assessment of connectivity among marine populations. B. Mar. Sci. 70, 273–290 (2002).
Google Scholar
5.
Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).
Google Scholar
6.
Marko, P. B. ‘What’s larvae got to do with it?’ Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol. Ecol. 13, 597–611 (2004).
PubMed CAS Google Scholar
7.
Weersing, K. & Toonen, R. J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 393, 1–12 (2009).
ADS Google Scholar
8.
Haye, P. A. & Muñoz-Herrera, N. C. Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis. BMC Evol. Biol. 13, 252 (2013).
PubMed PubMed Central Google Scholar
9.
Mercier, A. et al. Pelagic propagule duration and developmental mode: reassessment of a fading link. Glob. Ecol. Biogeogr. 22, 517–530 (2013).
Google Scholar
10.
Waters, J. M. & Roy, M. S. Phylogeography of a high-dispersal New Zealand sea-star: does upwelling block gene-flow?. Mol. Ecol. 13, 2797–2806 (2004).
PubMed CAS Google Scholar
11.
Teske, P. R. et al. Molecular evidence for long-distance colonization in an Indo-Pacific seahorse lineage. Mar. Ecol. Prog. Ser. 286, 249–260 (2005).
ADS CAS Google Scholar
12.
McGovern, T. M., Keever, C. A., Hart, M. W., Saski, C. & Marko, P. B. Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species. Mol. Ecol. 19, 5043–5060 (2010).
PubMed Google Scholar
13.
Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends. Ecol. Evol. 27, 47–56 (2012).
PubMed Google Scholar
14.
Brante, A., Fernandez, M. & Viard, F. Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata (Calyptraeidae) along the Southeastern Pacific coast. J. Hered. 103, 630–663 (2012).
PubMed Google Scholar
15.
Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
Google Scholar
16.
Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype-environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).
PubMed CAS Google Scholar
17.
Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).
PubMed Google Scholar
18.
Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24, 4348–4370 (2015).
PubMed Google Scholar
19.
Riginos, C., Crandall, E. D., Liggins, L., Bongaerts, P. & Treml, E. A. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr. Zool. 62, 581–601 (2016).
PubMed PubMed Central Google Scholar
20.
Selkoe, K. A. et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar. Ecol. Prog. Ser. 554, 1–19 (2016).
ADS Google Scholar
21.
Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of individual-based genetic distance metrics for landscape genetics. Mol. Ecol. Res. 17, 1308–1317 (2017).
CAS Google Scholar
22.
Martins, K. et al. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evol. App. 11, 1842–1858 (2018).
CAS Google Scholar
23.
Razgour, O. et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Res. 18, 18–31 (2018).
Google Scholar
24.
Hedgecock, D. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates?. Bull. Mar. Sci. 39, 550–564 (1986).
Google Scholar
25.
Slatkin, M. Gene flow and the geographic structure of natural populations. Science 15, 787–792 (1987).
ADS Google Scholar
26.
Attard, C. R. M. et al. Ecological disturbance influences adaptive divergence despite high gene flow in golden perch (Macquaria ambigua): implications for management and resilience to climate change. Mol. Ecol. 27, 196–215 (2017).
PubMed Google Scholar
27.
Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).
PubMed Google Scholar
28.
Banks, S. C. et al. Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 88, 3055–3064 (2007).
PubMed Google Scholar
29.
Galindo, H. M. et al. Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Mol. Ecol. 19, 3692–3707 (2010).
PubMed Google Scholar
30.
Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 3708–3726 (2010).
PubMed Google Scholar
31.
Schiavina, M., Marino, J. A. M., Zane, L. & Mellà, P. Matching oceanography and genetics at the basin scale. Seascape connectivity of the Mediterranean shore crab in the Adriatic Sea. Mol. Ecol. 23, 5496–5507 (2014).
PubMed CAS Google Scholar
32.
Giles, E. C., Saenz-Agudelo, P., Hussey, N. E., Ravasi, T. & Berumen, M. L. Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea. Ecol. Evol. 5, 2487–2502 (2015).
PubMed PubMed Central Google Scholar
33.
Pardo-Gandarillas, M. C. et al. Phylogeography and species distribution modelling reveal the effects of the Pleistocene ice ages on an intertidal limpet from the south-eastern Pacific. J. Biogeogr. 45, 1751–1767 (2018).
Google Scholar
34.
Pujolar, J. M. et al. Genome-wide single-generation signatures of local selection in the panmictic European eel. Mol. Ecol. 23, 2514–2528 (2014).
PubMed CAS Google Scholar
35.
Tepolt, C. K. & Palumbi, S. R. Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol. Ecol. 24, 4145–4158 (2015).
PubMed CAS Google Scholar
36.
Sandoval-Castillo, J., Robinson, N. A., Hart, A. M., Strain, L. W. S. & Beheregaray, L. B. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol. Ecol. 27, 1603–1020 (2018).
PubMed Google Scholar
37.
Carreras, C. et al. East is east and west is west: population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Div. Dis. 26, 382–398 (2020).
Google Scholar
38.
Tellier, F., Meynard, A. P., Correa, J. A., Faugeron, S. & Valero, M. Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establishes the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: vicariance or parapatry?. Mol. Phyl. Evol. 53, 679–693 (2009).
CAS Google Scholar
39.
Haye, P. A. et al. Genetic and morphological divergence at a biogeographic break in the beach-dwelling brooder Excirolana hirsuticauda Menzies (Crustacea, Peracarida). BMC Evol. Biol. 19, 118 (2019).
PubMed PubMed Central Google Scholar
40.
Sánchez, R., Sepúlveda, R. D., Brante, A. & Cárdenas, L. Spatial patterns of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Mar. Ecol. Prog. Ser. 434, 121–131 (2011).
ADS Google Scholar
41.
Lara, C. et al. Coastal biophysical processes and the biogeography of rocky intertidal species along the south-eastern Pacific. J. Biogeogr. 46, 420–431 (2019).
Google Scholar
42.
Lancellotti, D. & Vásquez, J. A. Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: contribución para la conservación marina. Rev. Chil. Hist. Nat. 73, 99–129 (2000).
Google Scholar
43.
Cea, G. Contribución al conocimiento de algunos aspectos de la biología de Pyura chilensis Molina, 1782 (Chordata, Tunicata, Ascidiacea). Tesis de Licenciatura en Biología, Universidad de Concepción, Concepción, Chile. 205 pp. (1970).
44.
Davis, A. R. Association among ascidians: facilitation of recruitment in Pyura spinifera. Mar. Biol. 126, 35–41 (1996).
Google Scholar
45.
Manríquez, P. & Castilla, J. Role of larval behaviour and microhabitat traits in determining spatial aggregations in the ascidian Pyura chilensis. Mar. Ecol. Prog. Ser. 332, 155–165 (2007).
ADS Google Scholar
46.
Astorga, M. O. & Ortiz, J. C. Genetic variability and population structure in the tunicate Pyura chilensis Molina, 1782, in the coast of Chile. Rev. Chil. Hist. Nat. 79, 423–434 (2006).
Google Scholar
47.
Segovia, N. I., Gallardo-Escárate, C., Poulin, E. & Haye, P. A. Lineage divergence, local adaptation across a biogeographic break, and artificial transport, shape the genetic structure in the ascidian Pyura chilensis. Sci. Rep. 7, 44559 (2017).
ADS PubMed PubMed Central Google Scholar
48.
Hudson, J., Viard, F., Roby, C. & Rius, M. Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biol. Lett. 12, 20160620 (2016).
PubMed PubMed Central Google Scholar
49.
Ordoñez, V., Pascual, M., Rius, M. & Turon, X. Mixed but not admixed: a spatial analysis of genetic variation of an invasive ascidian on natural and artificial substrates. Mar. Biol. 160, 1645–1660 (2013).
Google Scholar
50.
Valdivia, N., Heidemann, A., Thiel, M., Molis, M. & Wahl, M. Effects of disturbance on diversity of hard-bottom macrobenthic communities at the coast of Chile. Mar. Ecol. Prog. Ser. 299, 45–54 (2005).
ADS Google Scholar
51.
Cifuentes, M., Kamlah, C., Thiel, M., Lenz, M. & Wahl, M. Effects of temporal variability of disturbance on the succession in marine fouling communities in northern-central Chile. J. Exp. Mar. Biol. 352, 280–294 (2007).
Google Scholar
52.
Aravena, G., Broitman, B. & Stenseth, N. C. Twelve years of change in coastal upwelling along the Central-Northern Coast of Chile: spatially heterogeneous responses to climatic variability. PLoS ONE 9, e90276 (2014).
ADS PubMed PubMed Central Google Scholar
53.
Torres, R. et al. Air-sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. J. Geophys. Res. 116, C09006 (2011).
ADS Google Scholar
54.
Tapia, F. J., Largier, J. L., Castillo, M., Wieters, E. A. & Navarrete, S. A. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9, e110841 (2014).
ADS PubMed PubMed Central Google Scholar
55.
Montecinos, A. et al. Species replacement along a lineal coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south-east Pacific. BMC Evol. Biol. 12, 97 (2012).
PubMed PubMed Central Google Scholar
56.
Araneda, C. et al. Adaptive genetic variation distinguishes Chilean blue mussels (Mytilus chilensis) from different marine environments. Ecol. Evol. https://doi.org/10.1002/ece3.2110 (2016).
Article PubMed PubMed Central Google Scholar
57.
Cahill, A. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526 (2016).
PubMed Google Scholar
58.
Xu, T. et al. Genome-wide discovery of single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) in deep-sea mussels: potential use in population genomics and cross-species application. Deep-sea. Res. PT II. https://doi.org/10.1016/j.dsr2.2016.03.011 (2016).
Article Google Scholar
59.
Lal, M. M. et al. A parallel population genomic and hydrodynamic approach to fishery management of highly-dispersive marine invertebrates: the case of the Fijian Black-Lip Pearl Oyster Pinctada margaritifera. PLoS ONE 11, e0161390 (2016).
PubMed PubMed Central Google Scholar
60.
Arcos, D. & Navarro, N. Análisis de un índice de surgencia para la zona de Talcahuano, Chile (Lat. 37°S). Inv. Pesqueras. 33, 91–98 (1986).
Google Scholar
61.
Broitman, B. R., Navarrete, S. A., Smith, F. & Gaines, S. D. Geographic variation of southeastern Pacific intertidal communities. Mar. Ecol. Prog. Ser. 224, 21–34 (2001).
ADS Google Scholar
62.
Blanchette, C. A. et al. Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J. Biogeogr. 35, 1593–1607 (2008).
Google Scholar
63.
Espinoza, P. et al. Trophic structure in the northern Humboldt Current system: new perspectives from stable isotope analysis. Mar. Biol. 164, 86 (2017).
Google Scholar
64.
Menge, B. A. & Menge, D. N. L. Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).
Google Scholar
65.
Fenberg, P. B., Menge, B. A., Raimondi, P. T. & Rivadeneira, M. M. Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography 38, 93–95 (2015).
Google Scholar
66.
Gaitán-Espitia, J. D. et al. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline. J. Therm. Biol. 68, 14–20 (2014).
Google Scholar
67.
Gaitán-Espitia, J. D. et al. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol. 217, 4379–4386 (2017).
Google Scholar
68.
Tapia, F. J. & Gallardo-Escárate, C. Spatio-temporal transcriptome analysis in the marine snail Tegula atra along central-northern Chile (28–31°S). Mar. Genomics. 61, 5 (2015).
Google Scholar
69.
Ambler, R. P. & Cañete, J. I. Asentamiento y reclutamiento de Pyura chilensis Molina, 1782 (Urochordata: Ascidiacea) sobre placas artificiales suspendidas en Bahía La Herradura, Coquimbo Chille. Rev. Biol. Mar. 26, 403–413 (1991).
Google Scholar
70.
Pérez-Valdés, M., Figueroa-Aguilera, D. & Rojas-Perez, C. Reproductive cycle of sea squirt Pyura chilensis (Urochordata: Ascidiacea) originating from aquaculture mussel systems. Rev. Biol. Mar. Oceanogr. 52, 333–342 (2017).
Google Scholar
71.
Giles, E. C., Petersen-Zúñiga, C., Morales-González, S., Quesada-Calderón, S. & Saenz-Agudelo, P. Novel microsatellite markers for Pyura chilensis reveal fine-scale genetic structure along the southern coast of Chile. Mar. Biodiv. 23, 1–10 (2017).
Google Scholar
72.
Morales-González, S., Giles, E. C., Quesada-Calderón, S. & Saenz-Agudelo, P. Fine-scale hierarchical genetic structure and kinship analysis of the ascidian Pyura chilensis in the southeastern Pacific. Ecol. Evol. 10, 15–20. https://doi.org/10.1002/ece3.5526 (2019).
Article Google Scholar
73.
Gaggiotti, O. E. et al. Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case study. Evolution 63, 2939–2951 (2009).
PubMed Google Scholar
74.
Gagnaire, P. A. et al. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol. Appl 8, 769–786 (2015).
PubMed PubMed Central Google Scholar
75.
Gagnaire, P. A. & Gaggiotti, O. E. Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches. Curr. Zool. 62, 603–616 (2016).
PubMed PubMed Central Google Scholar
76.
Gili, J. O. & Coma, R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol. Evol. 13, 316–321 (1998).
PubMed CAS Google Scholar
77.
Riisgård, H. U. & Larsen, P. S. Minireview: ciliary filter feeding and bio-fluid mechanics—present understanding and unsolved problems. Limnol. Ocenogr. 46, 882–891 (2001).
ADS Google Scholar
78.
Petersen, J. K., Mayer, M. & Knudsen, A. Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. Mar. Biol. 133, 185–192 (1999).
Google Scholar
79.
Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 0084 (2017).
Google Scholar
80.
Thiel, M. et al. The Humboldt current system of Northern and Central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr. Mar. Biol. 45, 195–344 (2007).
Google Scholar
81.
Riginos, C. & Liggins, L. Seascape genetics: populations, individuals, and genes Marooned and Adrift. Geograph. Comp. 7, 197–216 (2013).
Google Scholar
82.
De Donato, M., Peters, S. O., Mitchell, S. E., Hussain, T. & Imumorin, I. G. Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS ONE 8, e62137 (2013).
ADS PubMed PubMed Central Google Scholar
83.
Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).
ADS PubMed PubMed Central CAS Google Scholar
84.
Lu, F. et al. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network- based SNP discovery protocol. PLoS Genet. 9, e1003215 (2013).
PubMed PubMed Central CAS Google Scholar
85.
Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol. Biogeogr. 21, 272–328 (2012).
Google Scholar
86.
Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Global Ecol. Biogeogr. 27, 277–284 (2017).
Google Scholar
87.
Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).
PubMed PubMed Central Google Scholar
88.
Jeffreys, H. The Theory of Probability 3rd edn. (Oxford University Press, Oxford, UK, 1961).
Google Scholar
89.
Whitlock, M. C. & Lotterhos, K. E. Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST. Am. Nat. 186, 24–36 (2015).
Google Scholar
90.
Luu, K., Bazin, E. & Blum, M. G. PCADAPT: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Res. 17, 67–77 (2017).
CAS Google Scholar
91.
Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 24, 1031–1046 (2015).
PubMed Google Scholar
92.
Dray, S., Legendre, P. & Peres-Neto, P. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Mod. 96, 483–493 (2006).
Google Scholar
93.
Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, The Netherlands, 2012).
Google Scholar
94.
Oksanen, J. et al. VEGAN: community Ecology Package—R package version 2.4–3. https://CRAN.R-project.org/package=vegan (2017)
95.
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
PubMed Google Scholar
96.
de Villemereuil, P., Frichot, E., Bazin, E., François, O. & Gaggiotti, O. Genome scan methods against more complex models: when and how much should we trust them?. Mol. Ecol. 23, 2006–2019 (2014).
PubMed Google Scholar
97.
Frichot, E., Schoville, S. D., de Villermeuil, P., Gaggiotti, O. E. & François, O. Detecting adaptive evolution based on association with ecological gradients: orientation matters!. Heredity 115, 22–28 (2015).
PubMed PubMed Central CAS Google Scholar
98.
Jombart, T. ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
PubMed PubMed Central CAS Google Scholar
99.
Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for Associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30, 1687–1699 (2013).
PubMed PubMed Central CAS Google Scholar
100.
Guenther, T. & Coop, G. Robust identification of local adaptation from allele frequencies. Genetics 195, 205–220 (2013).
Google Scholar
101.
Stucki, S. et al. High performance computation of landscape genomic models integrating local indices of spatial association. Mol. Ecol. Res. 17, 1072–1089 (2016).
Google Scholar
102.
Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TREMBL in 2000. Nucleic. Acids. Res. 28, 45–48 (2000).
PubMed PubMed Central CAS Google Scholar More