1.
Rubatzky, V.E., C.F. Quiros, and P.W. Simon, Carrots and related vegetable Umbelliferae. 1999: CABI publishing.
2.
Ahmad, T. et al. Phytochemicals in Daucus carota and their health benefits. Foods8(9), 424 (2019).
PubMed Central CAS Google Scholar
3.
Wells, H. F., Bond, J. K. & Thornsbury, S. Vegetables and pulses outlook. Change2015, 16 (2016).
Google Scholar
4.
Carlson, A., Investigating retail price premiums for organic foods. Amber Waves, May, US Department of Agriculture, Economic Research Service, Washington, DC, 2016
5.
Westerveld, S. M., McKeown, A. W. & McDonald, M. R. Seasonal nitrogen partitioning and nitrogen uptake of carrots as affected by nitrogen application in a mineral and an organic soil. HortScience41(5), 1332–1338 (2006).
CAS Google Scholar
6.
Thorup-Kristensen, K. Root growth and nitrogen uptake of carrot, early cabbage, onion and lettuce following a range of green manures. Soil Use Manag.22(1), 29–38 (2006).
Google Scholar
7.
Dugdale, L. et al. Disease response of carrot and carrot somaclones to Alternaria dauci. Plant. Pathol.49(1), 57–67 (2000).
CAS Google Scholar
8.
Parsons, J. et al. Meloidogyne incognita nematode resistance QTL in carrot. Mol. Breed.35(5), 114 (2015).
Google Scholar
9.
Louarn, S. et al. Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots. Postharvest Biol. Technol.76, 26–33 (2013).
CAS Google Scholar
10.
Strobel, G. The emergence of endophytic microbes and their biological promise. J. Fungi4(2), 57 (2018).
Google Scholar
11.
Mandyam, K. & Jumpponen, A. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud. Mycol.53, 173–189 (2005).
Google Scholar
12.
Johnston-Monje, D. & Raizada, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE6(6), e20396 (2011).
ADS PubMed PubMed Central CAS Google Scholar
13.
Newsham, K. K. A meta-analysis of plant responses to dark septate root endophytes. New Phytol.190(3), 783–793 (2011).
PubMed CAS Google Scholar
14.
Hardoim, P. R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev.79(3), 293–320 (2015).
PubMed PubMed Central Google Scholar
15.
Lugtenberg, B. J., Caradus, J. R. & Johnson, L. J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol.92, 12 (2016).
Google Scholar
16.
Kusari, S., Hertweck, C. & Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol.19(7), 792–798 (2012).
PubMed CAS Google Scholar
17.
Huang, Y.-H. Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing. J. Integr. Agric.17(2), 359–367 (2018).
CAS Google Scholar
18.
Rodríguez, P. et al. Are endophytic microorganisms involved in the stereoselective reduction of ketones by Daucus carota root?. J. Mol. Catal. B Enzym.49(1–4), 8–11 (2007).
Google Scholar
19.
Rodriguez, R. et al. Fungal endophytes: diversity and functional roles. New Phytol.182(2), 314–330 (2009).
PubMed CAS Google Scholar
20.
Gómez-Lama Cabanás, C. et al. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front. Microbiol.5, 427 (2014).
PubMed PubMed Central Google Scholar
21.
Busby, P. E., Ridout, M. & Newcombe, G. Fungal endophytes: Modifiers of plant disease. Plant Mol. Biol.90(6), 645–655 (2016).
PubMed CAS Google Scholar
22.
Brader, G. et al. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol.55, 61–83 (2017).
PubMed CAS Google Scholar
23.
Schouten, A. Mechanisms involved in nematode control by endophytic fungi. Annu. Rev. Phytopathol.54, 121–142 (2016).
PubMed CAS Google Scholar
24.
Latz, M. A. et al. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol. Divers.11(5–6), 555–567 (2018).
Google Scholar
25.
Rabiey, M., et al., Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health? Eur. J. Plant Pathol. 2019: p. 1–19.
26.
Cook, R. J. Advances in plant health management in the twentieth century. Annu. Rev. Phytopathol.38(1), 95–116 (2000).
PubMed CAS Google Scholar
27.
Hallmann, J. et al. Bacterial endophytes in agricultural crops. Can. J. Microbiol.43(10), 895–914 (1997).
CAS Google Scholar
28.
Busby, P. E., Ridout, M. & Newcombe, G. Fungal endophytes: modifiers of plant disease. Plant Mol. Biol.90(6), 645–655 (2016).
PubMed CAS Google Scholar
29.
Card, S. et al. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol. Ecol.92, 8 (2016).
Google Scholar
30.
Card, S. D. et al. Beneficial endophytic microorganisms of Brassica–A review. Biol. Control90, 102–112 (2015).
Google Scholar
31.
May, G., Here come the commensals. Am. J. Bot. 2016. 103.
32.
Hoagland, L. et al. Foodborne pathogens in horticultural production systems: Ecology and mitigation. Sci. Hortic.236, 192–206 (2018).
Google Scholar
33.
Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J.6(7), 1378 (2012).
PubMed CAS Google Scholar
34.
Liu, H. et al. Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Front. Microbiol.8, 2552 (2017).
PubMed PubMed Central Google Scholar
35.
Gottel, N. R. et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol.77(17), 5934–5944 (2011).
PubMed PubMed Central CAS Google Scholar
36.
Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature488(7409), 86 (2012).
ADS PubMed PubMed Central CAS Google Scholar
37.
Philippot, L. et al. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol.11(11), 789–799 (2013).
PubMed CAS Google Scholar
38.
Oono, R. et al. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species. Am. J. Bot.101(8), 1362–1374 (2014).
PubMed Google Scholar
39.
Abdelrazek, S., Carrot Endophytes: Diversity, Ecology and Function. 2019, Purdue University Graduate School.
40.
Hoagland, L. et al. Key traits and promising germplasm for an organic participatory tomato breeding program in the US midwest. HortScience50(9), 1301–1308 (2015).
Google Scholar
41.
Yao, H. & Wu, F. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. FEMS Microbiol. Ecol.72(3), 456–463 (2010).
PubMed CAS Google Scholar
42.
Kwak, Y.-S. et al. Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2, 4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. Appl. Environ. Microbiol.77(5), 1770–1776 (2011).
PubMed CAS Google Scholar
43.
Upreti, R. & Thomas, P. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front. Microbiol.6, 255 (2015).
PubMed PubMed Central Google Scholar
44.
Martin, R. et al. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia107(2), 284–297 (2015).
PubMed Google Scholar
45.
Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature488(7409), 91 (2012).
ADS CAS Google Scholar
46.
da Silva, D. A. F. et al. Endophytic microbial community in two transgenic maize genotypes and in their near-isogenic non-transgenic maize genotype. BMC Microbiol.14(1), 332 (2014).
PubMed PubMed Central Google Scholar
47.
Correa-Galeote, D., Bedmar, E. J. & Arone, G. J. Maize endophytic bacterial diversity as affected by soil cultivation history. Front. Microbiol.9, 484 (2018).
PubMed PubMed Central Google Scholar
48.
Abdelrazek, S. et al. Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS ONE15(6), e0233783 (2020).
PubMed PubMed Central CAS Google Scholar
49.
Horsfall, J. G. An improved grading system for measuring plant diseases. Phytopathology35, 655 (1945).
Google Scholar
50.
Brown, J.R., Recommended chemical soil test procedures for the North Central Region. 1998: Missouri Agricultural Experiment Station, University of Missouri-Columbia
51.
Green, V. S., Stott, D. E. & Diack, M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem.38(4), 693–701 (2006).
CAS Google Scholar
52.
Weil, R. R. et al. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Alternat. Agric.18(1), 3–17 (2003).
Google Scholar
53.
Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil. Ecol.61, 127–130 (2012).
Google Scholar
54.
Institute, S., JMP: Statistics and Graphics Guide. 2000: Sas Inst.
55.
Surette, M. A. et al. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil253(2), 381–390 (2003).
CAS Google Scholar
56.
Corry, J.E., G.D. Curtis, and R.M. Baird, Handbook of culture media for food and water microbiology. 2011: Royal Society of Chemistry.
57.
Reasoner, D. J. & Geldreich, E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol.49(1), 1–7 (1985).
PubMed PubMed Central CAS Google Scholar
58.
Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol.2(2), 113–118 (1993).
PubMed CAS Google Scholar
59.
White, T. J. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc18(1), 315–322 (1990).
Google Scholar
60.
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods7(5), 335 (2010).
PubMed PubMed Central CAS Google Scholar
61.
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26(19), 2460–2461 (2010).
PubMed PubMed Central CAS Google Scholar
62.
Tikhonov, M., Leach, R. W. & Wingreen, N. S. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J9(1), 68–80 (2015).
PubMed Google Scholar
63.
Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons.61(1), 1–10 (1992).
MathSciNet Google Scholar
64.
Chao, A., Nonparametric estimation of the number of classes in a population. Scandinavian Journal of statistics, 265–270 (1984).
65.
Faith, D. P. & Baker, A. M. Phylogenetic diversity (PD) and biodiversity conservation: Some bioinformatics challenges. Evol. Bioinform.2, 117693430600200000 (2006).
Google Scholar
66.
Vázquez-Baeza, Y. et al. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience2(1), 16 (2013).
PubMed PubMed Central Google Scholar
67.
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol.26(1), 32–46 (2001).
Google Scholar
68.
Roberts, D.W. and M.D.W. Roberts, Package ‘labdsv’. Ordination and Multivariate, 2016.
69.
Hill, M., R. Bunce, and M. Shaw, Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. The Journal of Ecology, 597–613 (1975).
70.
Du Toit, L. et al. First report of bacterial blight of carrot in Indiana caused by Xanthomonas hortorum pv. carotae. Plant Dis.98(5), 685–685 (2014).
PubMed Google Scholar
71.
Arnold, A. E. & Herre, E. A. Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia95(3), 388–398 (2003).
PubMed Google Scholar
72.
Gazis, R. & Chaverri, P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol.3(3), 240–254 (2010).
Google Scholar
73.
Rivera-Orduña, F. N. et al. Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers.47(1), 65–74 (2011).
Google Scholar
74.
Vieira, M. L. et al. Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can. J. Microbiol.58(1), 54–66 (2011).
MathSciNet PubMed Google Scholar
75.
Singh, D. K. et al. Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn. f.: Spatiotemporal and tissue type effects. Sci. Rep.7, 2 (2017).
ADS Google Scholar
76.
Arnold, A. E. et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci.100(26), 15649–15654 (2003).
ADS PubMed CAS Google Scholar
77.
Pel, M. J. & Pieterse, C. M. Microbial recognition and evasion of host immunity. J. Exp. Bot.64(5), 1237–1248 (2013).
PubMed CAS Google Scholar
78.
Arnold, A. et al. Hyperdiverse fungal endophytes and endolichenic fungi elucidate the evolution of major ecological modes in the Ascomycota. Syst. Biol.58, 283–297 (2009).
PubMed Google Scholar
79.
Li, H.-Y. et al. Endophytes and their role in phytoremediation. Fungal Divers.54(1), 11–18 (2012).
Google Scholar
80.
Wang, F. et al. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants–a soil microcosm experiment. Chemosphere147, 88–97 (2016).
ADS PubMed CAS Google Scholar
81.
Nilsson, R. H. et al. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett.296(1), 97–101 (2009).
PubMed CAS Google Scholar
82.
Motooka, D. et al. Fungal ITS1 deep-sequencing strategies to reconstruct the composition of a 26-species community and evaluation of the gut mycobiota of healthy Japanese individuals. Front. Microbiol.8, 238 (2017).
PubMed PubMed Central Google Scholar
83.
Dumas-Gaudot, E. et al. A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root-fungus interactions. Proteomics4(2), 451–453 (2004).
PubMed CAS Google Scholar
84.
Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol.22(21), 5271–5277 (2013).
PubMed Google Scholar
85.
Lemanceau, P. et al. Let the core microbiota be functional. Trends Plant Sci.22(7), 583–595 (2017).
PubMed CAS Google Scholar
86.
Shade, A. & Handelsman, J. Beyond the Venn diagram: The hunt for a core microbiome. Environ. Microbiol.14(1), 4–12 (2012).
PubMed CAS Google Scholar
87.
Pancher, M., et al., Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Applied and environmental microbiology, 2012: p. AEM. 07655–11.
88.
Xia, Y. et al. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front. Plant Sci.6, 490 (2015).
PubMed PubMed Central Google Scholar
89.
Reeve, J. et al. Organic farming, soil health, and food quality: considering possible links. In Advances in Agronomy 319–367 (Elsevier, Amserdam, 2016).
Google Scholar
90.
Hoagland, L. et al. Orchard floor management effects on nitrogen fertility and soil biological activity in a newly established organic apple orchard. Biol. Fertil. Soils45(1), 11 (2008).
Google Scholar
91.
Rudisill, M. A. et al. Sustaining soil quality in intensively managed high tunnel vegetable production systems: A role for green manures and chicken litter. HortScience50(3), 461–468 (2015).
Google Scholar
92.
Seghers, D. et al. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol.70(3), 1475–1482 (2004).
PubMed PubMed Central CAS Google Scholar
93.
Chen, S. & Reese, C. D. Parasitism of the nematode Heterodera glycines by the fungus Hirsutella rhossiliensis as influenced by crop sequence. J. Nematol.31(4), 437 (1999).
PubMed PubMed Central CAS Google Scholar
94.
D’Amico, M., Frisullo, S. & Cirulli, M. Endophytic fungi occurring in fennel, lettuce, chicory, and celery—commercial crops in southern Italy. Mycol. Res.112(1), 100–107 (2008).
PubMed Google Scholar
95.
González-Teuber, M., Vilo, C. & Bascuñán-Godoy, L. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genom. Data11, 109–112 (2017).
PubMed PubMed Central Google Scholar
96.
Riches, M.R.M.J.V.K., Muck Vegetable Cultivar Trial& Research Report2016. 2016.
97.
Liu, B. et al. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl. Soil. Ecol.37(3), 202–214 (2007).
Google Scholar
98.
van Bruggen, A. H. et al. Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Appl. Soil. Ecol.86, 192–201 (2015).
Google Scholar
99.
Cai, X. et al. Long-term organic farming manipulated rhizospheric microbiome and Bacillus antagonism against Pepper blight (Phytophthora capsici). Front. Microbiol.10, 342 (2019).
PubMed PubMed Central Google Scholar
100.
Liu, H. et al. Dark septate endophytes colonizing the roots of ‘non-mycorrhizal’plants in a mine tailing pond and in a relatively undisturbed environment, Southwest China. J. Plant Interact.12(1), 264–271 (2017).
CAS Google Scholar
101.
Bonito, G. et al. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol.23(13), 3356–3370 (2014).
PubMed Google Scholar
102.
Chen, Y. H., Gols, R. & Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol.60, 35–58 (2015).
PubMed CAS Google Scholar
103.
Williamson, V.M., P.A. Roberts, and R. Perry, 13. Mechanisms and genetics of resistance. Root-knot nematodes, 2009. 301.
104.
Davis, R. M. Carrot diseases and their management. In Diseases of Fruits and Vegetables 397–439 (Springer, Berlin, 2004).
Google Scholar
105.
Farrokhi-Nejad, R., Cromey, M. G. & Moosawi-Jorf, S. A. Determination of the anastomosis grouping and virulence of Rhizoctonia spp. associated with potato tubers grown in Lincoln, New Zealand. Pak. J. Biol. Sci.10(21), 3786–3793 (2007).
PubMed Google Scholar
106.
Durán-López, M. et al. The micorryzal fungi Ceratobasidium sp. and Sebacina vermifera promote seed germination and seedling development of the terrestrial orchid Epidendrum secundum Jacq. South Afr. J. Bot.125, 54–61 (2019).
Google Scholar
107.
Mosquera-Espinosa, A. T. et al. The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice. Mycologia105(1), 141–150 (2013).
PubMed Google Scholar
108.
Vanhove, W., Vanhoudt, N. & Van Damme, P. Biocontrol of vascular streak dieback (Ceratobasidium theobromae) on cacao (Theobroma cacao) through induced systemic resistance and direct antagonism. Biocontrol Sci. Tech.26(4), 492–503 (2016).
Google Scholar
109.
Taufik, M., et al. Evaluating the ability of endophyte fungus to tontrol VSD diseases in cocoa seeding. in IOP Conference Series: Earth and Environmental Science. 2019. IOP Publishing.
110.
du Toit, L. & Derie, M. First report of Cladosporium leaf spot of spinach caused by Cladosporium variabile in the winter spinach production region of California and Arizona. Plant Dis.96(7), 1071–1071 (2012).
PubMed Google Scholar
111.
Hamayun, M. et al. Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J. Microbiol. Biotechnol.25(10), 1785–1792 (2009).
CAS Google Scholar
112.
Nesha, R. & Siddiqui, Z. A. Effects of Paecilomyces lilacinus and Aspergillus niger alone and in combination on the growth, chlorophyll contents and soft rot disease complex of carrot. Sci. Hortic.218, 258–264 (2017).
Google Scholar
113.
Wang, F. et al. Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J. Microbiol. Biotechnol.23(1), 79–83 (2007).
Google Scholar
114.
Li, X.-J. et al. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J. Agric. Food Chem60(13), 3424–3431 (2012).
PubMed CAS Google Scholar
115.
de Vries, R. P., de Lange, E. S. & Stalpers, J. A. Control and possible applications of a novel carrot-spoilage basidiomycete, Fibulorhizoctoniaápsychrophila. Antonie Van Leeuwenhoek93(4), 407–413 (2008).
PubMed PubMed Central Google Scholar
116.
Iturralde Martinez, J. F. et al. Multiplex end-point PCR for the detection of three species of ophiosphaerella causing spring dead spot of bermudagrass. Plant Dis.103(8), 2010–2014 (2019).
PubMed Google Scholar
117.
Gao, L., et al., Three new species of Cyphellophora (Chaetothyriales) associated with sooty blotch and flyspeck. PLoS One, 2015. 10(9).
118.
Spagnoletti, F. et al. Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl. Soil. Ecol.111, 25–32 (2017).
Google Scholar
119.
Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome: New concepts in the light of meta-omics. Front. Cell. Infect. Microbiol.4, 29 (2014).
PubMed PubMed Central Google Scholar
120.
Lee, K., Pan, J. J. & May, G. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol. Lett.299(1), 31–37 (2009).
PubMed CAS Google Scholar
121.
Aimé, S. et al. The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol. Plant Microbe Interact.26(8), 918–926 (2013).
PubMed Google Scholar
122.
CaféFilho, A., Reifschneider, F. & Tateishi, N. T. Pathogenicity of Colletotrichum gloeosporioides to carrot. Int. J. Pest Manag.32(4), 274–276 (1986).
Google Scholar
123.
Redman, R. S. et al. Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol.119(2), 795–804 (1999).
PubMed PubMed Central CAS Google Scholar
124.
Lu, H. et al. New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci.151(1), 67–73 (2000).
CAS Google Scholar
125.
Hiruma, K. et al. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell165(2), 464–474 (2016).
PubMed PubMed Central CAS Google Scholar More