Blind spots in global soil biodiversity and ecosystem function research
1.
Wall, D. H. et al. Soil Ecology And Ecosystem Services. p. 406 (Oxford University Press, 2012).
2.
Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).
Google Scholar
3.
Baveye, P. C., Baveye, J. & Gowdy, J. Soil ‘Ecosystem’ services and natural capital: critical appraisal of research on uncertain ground. Front. Environ. Sci. Eng. China 4, 1–49 (2016).
Google Scholar
4.
Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).
ADS CAS PubMed Google Scholar
5.
Heemsbergen & Hal, V. Biodiversity effects on soil processes explained by interspecific functional dissimilarity biodiversity effects on soil processes explained by interspecific. Science 306, 8–10 (2004).
Google Scholar
6.
Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).
ADS CAS PubMed Google Scholar
7.
Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).
ADS PubMed PubMed Central Google Scholar
8.
Risch, A. C. et al. Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nat. Commun. 9, 3684 (2018).
ADS CAS PubMed PubMed Central Google Scholar
9.
Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).
ADS CAS PubMed Google Scholar
10.
Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 201516684 (2015).
Google Scholar
11.
Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).
PubMed Google Scholar
12.
Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).
ADS CAS PubMed PubMed Central Google Scholar
13.
Song, D. et al. Large-scale patterns of distribution and diversity of terrestrial nematodes. Appl. Soil Ecol. 114, 161–169 (2017).
Google Scholar
14.
Delgado-Baquerizo, M. et al. Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nat. Ecol. Evol. 1, 1339–1347 (2017).
PubMed Google Scholar
15.
Pärtel, M., Bennett, J. A. & Zobel, M. Macroecology of biodiversity: disentangling local and regional effects. New Phytol. 211, 404–410 (2016).
PubMed Google Scholar
16.
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).
ADS PubMed PubMed Central Google Scholar
17.
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
ADS CAS PubMed Google Scholar
18.
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
ADS CAS PubMed PubMed Central Google Scholar
19.
Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).
ADS CAS PubMed Google Scholar
20.
Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).
21.
Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).
ADS CAS PubMed Google Scholar
22.
van der Plas, F. et al. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nat. Commun. 7, 11109 (2016).
ADS PubMed PubMed Central Google Scholar
23.
van der Plas, F. et al. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol. Lett. 21, 31–42 (2018).
PubMed Google Scholar
24.
Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).
ADS CAS PubMed PubMed Central Google Scholar
25.
Cameron, E. K. et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol. 2, 1042–1043 (2018).
PubMed PubMed Central Google Scholar
26.
Wetzel, F. T. et al. Unlocking biodiversity data: prioritization and filling the gaps in biodiversity observation data in Europe. Biol. Conserv. 221, 78–85 (2018).
Google Scholar
27.
Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. Biol. Sci. 280, 20122649 (2013).
PubMed PubMed Central Google Scholar
28.
Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10, 50 (2019).
29.
Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).
Google Scholar
30.
Paleari, S. Is the European Union protecting soil? A critical analysis of Community environmental policy and law. Land Use Policy 64, 163–173 (2017).
Google Scholar
31.
Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).
PubMed Google Scholar
32.
Costello, M. J., Michener, W. K., Gahegan, M., Zhang, Z.-Q. & Bourne, P. E. Biodiversity data should be published, cited, and peer reviewed. Trends Ecol. Evol. 28, 454–461 (2013).
PubMed Google Scholar
33.
Bingham, H. C., Doudin, M. & Weatherdon, L. V. The biodiversity informatics landscape: elements, connections and opportunities. 3, e14059 (2017).
34.
Gibb, H. et al. A global database of ant species abundances. Ecology 98, 883–884 (2017).
PubMed Google Scholar
35.
Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).
ADS CAS PubMed PubMed Central Google Scholar
36.
Overmann, J., Abt, B. & Sikorski, J. Present and future of culturing bacteria. Annu. Rev. Microbiol. 71, 711–730 (2017).
CAS PubMed Google Scholar
37.
de Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).
Google Scholar
38.
Stewart, G. Meta-analysis in applied ecology. Biol. Lett. 6, 78–81 (2010).
PubMed Google Scholar
39.
Rillig, M. C. et al. Biodiversity research: data without theory—theory without data. Front. Ecol. Evol. 3, 20 (2015).
ADS Google Scholar
40.
Coleman, D. C., Callaham, M. A. & Crossley, D. A., Jr. Fundamentals of Soil Ecology. (Academic Press, 2017).
41.
Lavelle, P. & Spain, A. Soil Ecology. (Springer Science & Business Media, 2001).
42.
Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).
Google Scholar
43.
Phillips, H. R. P. et al. 2019. Global distribution of earthworm diversity. Science https://doi.org/10.1126/science.aax4851 (2019).
44.
van den Hoogen J., et al. Soil nematode abundance and functional group composition at a global scale. Nature https://doi.org/10.1038/s41586-019-1418-6 (2019).
45.
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
PubMed Google Scholar
46.
Orgiazzi, A. et al. Global Soil Biodiversity Atlas (JRC and the Global Soil Biodiversity Initiative, 2016).
47.
Guenard, B., Weiser, M. D. & Gomez, K. The Global Ant Biodiversity Informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol. News 24, 83–89 (2017).
48.
Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. PLoS ONE 5, e11567 (2010).
ADS PubMed PubMed Central Google Scholar
49.
Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).
50.
Evans, T. A., Dawes, T. Z., Ward, P. R. & Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2, 262–267 (2011).
ADS PubMed PubMed Central Google Scholar
51.
Eisenhauer, N., Bowker, M. A., Grace, J. B. & Powell, J. R. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology. Pedobiologia 58, 65–72 (2015).
Google Scholar
52.
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
ADS CAS PubMed Google Scholar
53.
Craven, D. et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).
PubMed Google Scholar
54.
Fraser, L. H. et al. Plant ecology. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349, 302–305 (2015).
ADS CAS PubMed Google Scholar
55.
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
ADS CAS PubMed PubMed Central Google Scholar
56.
Borgman, C. L., Wallis, J. C. & Enyedy, N. Little science confronts the data deluge: habitat ecology, embedded sensor networks, and digital libraries. Int. J. Digit. Lib. 7, 17–30 (2007).
Google Scholar
57.
Hampton, S. E. et al. Big data and the future of ecology. Front. Ecol. Environ. 11, 156–162 (2013).
Google Scholar
58.
Pey, B. et al. Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl. Ecol. 15, 194–206 (2014).
Google Scholar
59.
Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21, 973–985 (2015).
ADS PubMed Google Scholar
60.
Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).
ADS PubMed Google Scholar
61.
Wheeler, Q. D., Raven, P. H. & Wilson, E. O. Taxonomy: impediment or expedient? Science 303, 285 (2004).
CAS PubMed Google Scholar
62.
Delgado-Baquerizo, M. & Eldridge, D. J. Cross-biome drivers of soil bacterial alpha diversity on a worldwide scale. Ecosystems 22, 1–12 (2019).
Google Scholar
63.
Hursh, A. et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Chang. Biol. 23, 2090–2103 (2017).
ADS PubMed Google Scholar
64.
Wang, Q., Liu, S. & Tian, P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob. Chang. Biol. 24, 2841–2849 (2018).
ADS PubMed Google Scholar
65.
Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth-Sci. Rev. 161, 259–278 (2016).
ADS Google Scholar
66.
Delgado-baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 325, 320–325 (2018).
ADS Google Scholar
67.
Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. (2018).
68.
Cowan, D. A. et al. Microbiomics of Namib Desert habitats. Extremophiles 24, 17–29 (2020).
CAS PubMed Google Scholar
69.
Rutgers, M. et al. Mapping earthworm communities in Europe. Appl. Soil Ecol. 97, 98–111 (2016).
Google Scholar
70.
Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology 99, 583–596 (2018).
PubMed Google Scholar
71.
Chen, S., Zou, J., Hu, Z., Chen, H. & Lu, Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: summary of available data. Agric. For. Meteorol. 198–199, 335–346 (2014).
ADS Google Scholar
72.
Zhang, D., Hui, D., Luo, Y. & Zhou, G. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol. 1, 85–93 (2008).
Google Scholar
73.
Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).
ADS CAS PubMed Google Scholar
74.
Cameron, E. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019)
75.
Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).
ADS CAS PubMed Google Scholar
76.
Eisenhauer, N. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl Acad. Sci. USA 110, 6889–6894 (2013).
ADS CAS PubMed Google Scholar
77.
Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).
ADS CAS PubMed Google Scholar
78.
Menegotto, A. & Rangel, T. F. Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. Nat. Commun. 9, 4713 (2018).
ADS PubMed PubMed Central Google Scholar
79.
Eisenhauer, N. et al. Priorities for research in soil ecology. Pedobiologia 63, 1–7 (2017).
PubMed PubMed Central Google Scholar
80.
Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).
PubMed PubMed Central Google Scholar
81.
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
ADS CAS Google Scholar
82.
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 489, 326–326 (2012).
ADS CAS Google Scholar
83.
Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob. Chang. Biol. 22, 2505–2515 (2016).
ADS PubMed Google Scholar
84.
Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
Google Scholar
85.
Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52 (2012).
ADS Google Scholar
86.
Kharin, V. V., Zwiers, F. W., Zhang, X. & Hegerl, G. C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20, 1419–1444 (2007).
ADS Google Scholar
87.
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
ADS CAS PubMed PubMed Central Google Scholar
88.
Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).
ADS CAS PubMed Google Scholar
89.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L. & Fichefet, T. Long-term climate change: projections, commitments and irreversibility. Chapter 12 (eds T. Stocker et al) 1029–1136 (Cambridge University Press, 2013).
90.
Delgado-Baquerizo, M., Eldridge, D. J., Hamonts, K. & Singh, B. K. Ant colonies promote the diversity of soil microbial communities. ISME J. https://doi.org/10.1038/s41396-018-0335-2 (2019).
91.
Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).
ADS CAS PubMed Google Scholar
92.
Thomson, S. A. et al. Taxonomy based on science is necessary for global conservation. PLoS Biol. 16, e2005075 (2018).
PubMed PubMed Central Google Scholar
93.
Drew, L. W. Are we losing the science of taxonomy? Bioscience 61, 942–946 (2011).
Google Scholar
94.
Paknia, O., Sh., H. R. & Koch, A. Lack of well-maintained natural history collections and taxonomists in megadiverse developing countries hampers global biodiversity exploration. Organ. Divers. Evol. 15, 619–629 (2015).
Google Scholar
95.
Prathapan, K. D. et al. When the cure kills-CBD limits biodiversity research. Science 360, 1405–1406 (2018).
ADS CAS PubMed Google Scholar
96.
Neumann, D. et al. Global biodiversity research tied up by juridical interpretations of access and benefit sharing. Org. Divers. Evol. 18, 1–12 (2017).
Google Scholar
97.
Leimu, R. & Koricheva, J. What determines the citation frequency of ecological papers? Trends Ecol. Evol. 20, 28–32 (2005).
PubMed Google Scholar
98.
Hugerth, L. W. & Andersson, A. F. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front. Microbiol. 8, 1561 (2017).
PubMed PubMed Central Google Scholar
99.
Terrat, S. et al. Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition. Microb. Biotechnol. 8, 131–142 (2015).
CAS PubMed Google Scholar
100.
Kõljalg, U., Larsson, K. H. & Abarenkov, K. UNITE: a database providing web‐based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166, 1063–1068 (2005).
101.
Mathieu, J., Caro, G. & Dupont, L. Methods for studying earthworm dispersal. Appl. Soil Ecol. 123, 339–344 (2018).
Google Scholar
102.
Pauchard, N. Access and benefit sharing under the convention on biological diversity and its protocol: what can some numbers tell us about the effectiveness of the regulatory regime? Resources 6, 11 (2017).
Google Scholar
103.
Saha, S., Saha, S. & Saha, S. K. Barriers in Bangladesh. Elife 7, e41926 (2018).
104.
Prathapan, K. D. & Rajan, P. D. Biodiversity access and benefit-sharing: weaving a rope of sand. Curr. Sci. 100, 290–293 (2011).
Google Scholar
105.
van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).
ADS PubMed Google Scholar
106.
Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 12, e0186766 (2017).
PubMed PubMed Central Google Scholar
107.
Makiola, A., et al. Key questions for next-generation biomonitoring. Front. Environ. Sci. 7, 197 (2020).
108.
Maestre, F. T. & Eisenhauer, N. Recommendations for establishing global collaborative networks in soil ecology. Soil Organ. 91, 73–85 (2019).
Google Scholar
109.
Phillips, H. R. P. et al. Red list of a black box. Nat. Ecol. Evol. 1, 0103 (2017).
Google Scholar
110.
Davison, J. et al. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME J. https://doi.org/10.1038/s41396-018-0196-8 (2018).
111.
Overmann, J. Significance and future role of microbial resource centers. Syst. Appl. Microbiol. 38, 258–265 (2015).
PubMed Google Scholar
112.
Overmann, J. & Scholz, A. H. Microbiological research under the nagoya protocol: facts and fiction. Trends Microbiol. 25, 85–88 (2017).
CAS PubMed Google Scholar
113.
Bockmann, F. A. et al. Brazil’s government attacks biodiversity. Science 360, 865 (2018).
ADS CAS PubMed Google Scholar
114.
Scbd-Unep. Nagoya Declaration on Biodiversity in Development Cooperation. 2 (UNEP, 2010).
115.
Perrings, C. et al. Ecosystem services for 2020. Science 330, 323–324 (2010).
ADS CAS PubMed Google Scholar
116.
Bond-Lamberty, B. & Thomson, A. A global database of soil respiration data. Biogeosci. Discuss. 7, 1321–1344 (2010).
ADS Google Scholar
117.
Bamforth, S. S. Interpreting soil ciliate biodiversity. Plant Soil 170, 159–164 (1995).
CAS Google Scholar
118.
Mathieu, J. EGrowth: a global database on intraspecific body growth variability in earthworm. Soil Biol. Biochem. 122, 71–80 (2018).
CAS Google Scholar
119.
Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).
PubMed Google Scholar
120.
Nelson, M. B., Martiny, A. C. & Martiny, J. B. H. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).
CAS PubMed Google Scholar
121.
Chen, J., Yang, S. T., Li, H. W., Zhang, B. & Lv, J. R. Research on geographical environment unit division based on the method of natural breaks (Jenks). ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XL-4/W3, pp. 47–50 (2013).
122.
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
PubMed PubMed Central Google Scholar
123.
Rousseeuw, P. J. & van Zomeren, B. C. Unmasking multivariate outliers and leverage points. J. Am. Stat. Assoc. 85, 633–639 (1990).
Google Scholar
124.
Jackson, D. A. & Chen, Y. Robust principal component analysis and outlier detection with ecological data. Environmetrics 15, 129–139 (2004).
Google Scholar
125.
Mallavan B. P., Minasny B., McBratney A. B., in Digital Soil Mapping. pp. 137–150 (Springer, Dordrecht, 2010).
126.
Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).
PubMed Google Scholar
127.
Hengl, T. et al. SoilGrids1km–global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).
ADS PubMed PubMed Central Google Scholar
128.
Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation through afforestation/reforestation: a global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 126, 81–97 (2008).
Google Scholar
129.
Karger, D. N. et al. Climatologies at high resolution for the Earth land surface areas. Sci. Data 4, 1–19 (2017).
Google Scholar
130.
Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) | The Long Term Archive. Available at: https://lta.cr.usgs.gov/GMTED2010. Accessed on 6 December 2018.
131.
European Space Agency. ESA – Land Cover CCI – Product User Guide Version 2.0. (2017).
132.
Frostegård, Å., Tunlid, A. & Bååth, E. Microbial biomass measured as total lipid phosphate in soils of different organic content. J. Microbiol. Methods 14, 151–163 (1991).
Google Scholar
133.
Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).
CAS PubMed PubMed Central Google Scholar
134.
Eppo, P. M. Nematode extraction. EPPO Bull. 43, 471–495 (2013).
Google Scholar
135.
ISO/FDIS. Soil Quality – Sampling Of Soil Invertebrates – Part 1: Hand-sorting And Extraction Of Earthworms. (ISO, 2018).
136.
ISO. Soil quality – Sampling Of Soil Invertebrates – Part 4: Sampling, Extraction And Identification Of Soil-Inhabiting Nematodes. (ISO, 09-2011).
137.
Hunter, P. A. DEAL for open access: The negotiations between the German DEAL project and publishers have global implications for academic publishing beyond just Germany. EMBO Rep. 19, e46317 (2018).
138.
Knapp, A. K. et al. Past, present, and future roles of long-term experiments in the LTER network. Bioscience 62, 377–389 (2012).
139.
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).
ADS CAS PubMed Google Scholar
140.
Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 1–8 (2017).
Google Scholar
141.
Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).
ADS CAS PubMed Google Scholar
142.
Gilbert, J. A., Jansson, J. K. & Knight, R. The earth microbiome project: successes and aspirations. BMC Biol. 12, 69 (2014).
PubMed PubMed Central Google Scholar
143.
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).
ADS CAS PubMed Google Scholar
144.
Darcy, J. L., Lynch, R. C., King, A. J., Robeson, M. S. & Schmidt, S. K. Global distribution of Polaromonas phylotypes–evidence for a highly successful dispersal capacity. PLoS ONE 6, e23742 (2011).
ADS CAS PubMed PubMed Central Google Scholar
145.
Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).
PubMed Google Scholar
146.
Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).
ADS CAS PubMed Google Scholar
147.
Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).
ADS CAS PubMed Google Scholar
148.
Neal, A. L. et al. Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific Acid phosphatase Gene diversity and abundance. Plant Soil 427, 175–189 (2018).
CAS PubMed Google Scholar
149.
Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 107 (2017).
PubMed Google Scholar
150.
Bates, S. T. et al. Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011).
MathSciNet CAS PubMed Google Scholar
151.
Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).
ADS CAS PubMed Google Scholar
152.
Kivlin, S. N., Hawkes, C. V. & Treseder, K. K. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 43, 2294–2303 (2011).
CAS Google Scholar
153.
Pärtel, M. et al. Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytol. 216, 227–238 (2017).
PubMed Google Scholar
154.
Põlme, S. et al. Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol. 198, 1239–1249 (2013).
PubMed Google Scholar
155.
Sharrock, R. A. et al. A global assessment using PCR techniques of mycorrhizal fungal populations colonising Tithonia diversifolia. Mycorrhiza 14, 103–109 (2004).
CAS PubMed Google Scholar
156.
Tedersoo, L. et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol. Ecol. 21, 4160–4170 (2012).
PubMed Google Scholar
157.
Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe: arbuscular mycorrhizal fungal communities around the globe. J. Ecol. 94, 778–790 (2006).
Google Scholar
158.
Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).
PubMed Google Scholar
159.
Stürmer, S. L., Bever, J. D. & Morton, J. B. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza 28, 587–603 (2018).
PubMed Google Scholar
160.
Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 7, 652–659 (2013).
CAS PubMed Google Scholar
161.
Lara, E., Roussel‐Delif, L. & Fournier, B. Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J. Biogeogr. 43, 520–532 (2016).
162.
Finlay, B. J., Esteban, G. F., Clarke, K. J. & Olmo, J. L. Biodiversity of terrestrial protozoa appears homogeneous across local and global spatial scales. Protist 152, 355–366 (2001).
CAS PubMed Google Scholar
163.
Chao, A., C. Li, P., Agatha, S. & Foissner, W. A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114, 479–493 (2006).
164.
Foissner, W. Global soil ciliate (Protozoa, Ciliophora) diversity: a probability-based approach using large sample collections from Africa, Australia and Antarctica. Biodivers. Conserv. 6, 1627–1638 (1997).
Google Scholar
165.
Nielsen, U. N. et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties: Global-scale patterns of soil nematode assemblage structure. Glob. Ecol. Biogeogr. 23, 968–978 (2014).
Google Scholar
166.
Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl Acad. Sci. USA 108, 17720–17725 (2011).
ADS CAS PubMed Google Scholar
167.
Robeson, M. S. et al. Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally. Proc. Natl Acad. Sci. USA 108, 4406–4410 (2011).
ADS CAS PubMed Google Scholar
168.
Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Chang. Biol. 14, 2661–2677 (2008).
169.
Pachl, P. et al. The tropics as an ancient cradle of oribatid mite diversity. Acarologia 57, 309–322 (2016).
Google Scholar
170.
Dahlsjö, C. A. L. et al. First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. J. Trop. Ecol. 30, 143–152 (2014).
Google Scholar
171.
Briones, M. J. I., Ineson, P. & Heinemeyer, A. Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta‐analysis approach. Glob. Chang. Biol. 13, 2252–2269 (2007).
172.
Silver, W. L. & Miya, R. K. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129, 407–419 (2001).
ADS PubMed Google Scholar
173.
Zhang, T. ’an, Chen, H. Y. H. & Ruan, H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 12, 1817–1825 (2018).
CAS PubMed PubMed Central Google Scholar
174.
Sinsabaugh, R. L., Turner, B. L. & Talbot, J. M. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).
175.
Xu, M. & Shang, H. Contribution of soil respiration to the global carbon equation. J. Plant Physiol. 203, 16–28 (2016).
CAS PubMed Google Scholar
176.
Raich, J. W. & Tufekciogul, A. Vegetation and soil respiration: correlations and controls. Biogeochemistry 48, 71–90 (2000).
CAS Google Scholar
177.
Wang, J., Chadwick, D. R., Cheng, Y. & Yan, X. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Sci. Total Environ. 616-617, 908–917 (2018).
ADS CAS PubMed Google Scholar
178.
Rahmati, M. et al. Development and analysis of the Soil Water Infiltration Global database. Earth Syst. Sci. Data 10, 1237–1263 (2017).
ADS Google Scholar
179.
Serna-Chavez, H. M., Fierer, N. & van Bodegom, P. M. Global drivers and patterns of microbial abundance in soil: Global patterns of soil microbial biomass. Glob. Ecol. Biogeogr. 22, 1162–1172 (2013).
Google Scholar
180.
Howison, R. A., Olff, H., Koppel, J. & Smit, C. Biotically driven vegetation mosaics in grazing ecosystems: the battle between bioturbation and biocompaction. Ecol. Monogr. 87, 363–378 (2017).
181.
Lehmann, A., Zheng, W. & Rillig, M. C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol.1, 1–9 (2017).
Google Scholar
182.
Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).
Google Scholar
183.
van Straaten Oliver, Z. R. T. A. & Bossio, D. Carbon, Land And Water: A Global Analysis Of The Hydrologic Dimensions Of Climate Change Mitigation Through Afforestation/reforestation. (IWMI, 2006). More