More stories

  • in

    Drought-modulated allometric patterns of trees in semi-arid forests

    1.
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature509, 600–603 (2014).
    CAS  PubMed  Google Scholar 
    2.
    Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science348, 895–899 (2015).
    PubMed  Google Scholar 

    3.
    Legates, D. R. & Willmott, C. J. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Clim.10, 111–127 (1990).
    Google Scholar 

    4.
    Rotenberg, E. & Yakir, D. Contribution of semi-arid forests to the climate system. Science327, 451–454 (2010).
    CAS  PubMed  Google Scholar 

    5.
    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature429, 651–654 (2004).
    CAS  PubMed  Google Scholar 

    6.
    Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manag.33, 528–544 (2004).
    Google Scholar 

    7.
    Arzai, A. H. & Aliyu, B. S. Fruit tree and vine sprayer calibration based on canopy size and length of row: unit canopy row method. Bayero J. Pure Appl. Sci.3, 260–263 (2010).
    Google Scholar 

    8.
    Hartmann, H. Will a 385 million year-struggle for light become a struggle for water and for carbon?–How trees may cope with more frequent climate change-type drought events. Glob. Change Biol.17, 642–655 (2011).
    Google Scholar 

    9.
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Bio.9, 161–185 (2003).
    Google Scholar 

    10.
    Zaehle, S., Sitch, S., Smith, B. & Hatterman, F. Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Global Biogeochem. Cy. 19, GB3020 (2005).

    11.
    Collins, W. D. et al. The Community Climate System Model Version 3 (CCSM3). J. Clim.19, 2122–2143 (2006).
    Google Scholar 

    12.
    Levis, S., Bonan, G., Vertenstein, M. & Oleson, K. The Community Land Model’s Dynamic Global Vegetation Model (CLM-DGVM): technical description and user’s guide. NCAR Tech. Note459, 1–50 (2004).
    Google Scholar 

    13.
    Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land surface model, I: model description, site-scale evaluation and sensitivity to parameter estimates. Global Biogeochem. Cy.24, GB1005 (2010).

    14.
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cy.19, GB1015 (2005).
    Google Scholar 

    15.
    Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model. Dev.11, 2995–3026 (2018).
    CAS  Google Scholar 

    16.
    Friend, A. D., Stevens, A. K., Knox, R. G. & Cannell, M. G. R. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol. Model.95, 0–287 (1997).
    CAS  Google Scholar 

    17.
    Levy, P. E., Cannell, M. G. R. & Friend, A. D. Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Glob. Environ. Change14, 0–30 (2004).
    CAS  Google Scholar 

    18.
    Zeng, X., Li, F. & Song, X. Development of the IAP dynamic global vegetation model. Adv. Atmos. Sci.31, 505–514 (2014).
    Google Scholar 

    19.
    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences11, 2027–2054 (2014).
    Google Scholar 

    20.
    Sato, H., Itoh, A. & Kohyama, T. SEIB-DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol. Model.200, 279–307 (2007).
    Google Scholar 

    21.
    Zhou, R. et al. Estimation of DBH at forest stand level based on multi-parameters and generalized regression neural network. Forests10, 778–796 (2019).
    Google Scholar 

    22.
    Franceschini, T. & Schneider, R. Influence of shade tolerance and development stage on the allometry of ten temperate tree species. Oecologia176, 739–749 (2014).
    PubMed  Google Scholar 

    23.
    Tao, S., Guo, Q., Li, C., Wang, Z. & Fang, J. Global patterns and determinants of forest canopy height. Ecology12, 3265–3270 (2016).
    Google Scholar 

    24.
    Zimmermann, M. H. Hydraulic architecture of some diffuse-porous trees. Can. J. Bot.-Rev. Canadienne De. Botanique56, 2286–2295 (1978).
    Google Scholar 

    25.
    Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. letters to nature. Nature428, 851–854 (2004).
    CAS  PubMed  Google Scholar 

    26.
    Sterck, F. J., Bongers, F. & Newbery, D. M. Tree architecture in a Bornean lowland rain forest: intraspecific and interspecific patterns. Plant Ecol.153, 279–292 (2001).
    Google Scholar 

    27.
    Stark, S. C. et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett.15, 1406–1414 (2012).
    PubMed  Google Scholar 

    28.
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol.178, 719–739 (2008).
    Google Scholar 

    29.
    Risto, S., Christophe, G., Theodore, M. D. & Eero, N. Functional–structural plant models: a growing paradigm for plant studies. Ann. Bot.-Lond.114, 599–603 (2014).
    Google Scholar 

    30.
    Kevin, L., Paul, T., Michael, W., Benoît, S. & Martin, F. LiDAR remote sensing of forest structure. Prog. Phys. Geog.27, 88–106 (2003).
    Google Scholar 

    31.
    Watt, P. J. & Donoghue, D. N. M. Measuring forest structure with terrestrial laser scanning. Int. J. Remote Sens.26, 1437–1446 (2005).
    Google Scholar 

    32.
    Fernández-Sarríaa, A., Velázquez-Martíb, B., Sajdakb, M., Martíneza, L. & Estornella, J. Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements. Comput. Electron. Agr.93, 90–97 (2013).
    Google Scholar 

    33.
    Bayer, D., Seifert, S. & Pretzsch, H. Structural crown properties of Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) in mixed versus pure stands revealed by terrestrial laser scanning. Trees27, 1035–1047 (2013).
    Google Scholar 

    34.
    Hackenberg, J., Wassenberg, M., Spiecker, H. & Sun, D. Non-destructive method for biomass prediction combining TLS derived tree volume and wood density. Forests6, 1274–1300 (2015).
    Google Scholar 

    35.
    Metz, J. et al. Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. For. Ecol. Manag.310, 275–288 (2013).
    Google Scholar 

    36.
    Disney, M. Terrestrial LiDAR: a 3D revolution in how we look at trees. N. Phytol.222, 1736–1741 (2018).
    Google Scholar 

    37.
    Zeide, B. Primary unit of the tree crown. Ecology74, 1598–1602 (1993).
    Google Scholar 

    38.
    Tyree, M. T. & Sperry, J. S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol.40, 19–38 (2003).
    Google Scholar 

    39.
    Schepper, V. D., Dusschoten, D., Copini, P., Jahnke, S. & Steppe, K. MRI links stem water content to stem diameter variations in transpiring trees. J. Exp. Bot.63, 2645–2653 (2012).
    PubMed  Google Scholar 

    40.
    Pivovaroff, A. L. et al. Multiple strategies for drought survival among woody plant species. Func. Ecol.30, 517–526 (2016).
    Google Scholar 

    41.
    Walcroft, A. S. et al. Radiative transfer and carbon assimilation in relation to canopy architecture, foliage area distribution and clumping in a mature temperate rainforest canopy in New Zealand. Agr. For. Meteorol.135, 326–339 (2005).
    Google Scholar 

    42.
    Smith, J. M. B. Scrubland. https://www.britannica.com/science/scrubland (2009).

    43.
    Archibald, S. & Bond, W. J. Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos102, 3–14 (2003).
    Google Scholar 

    44.
    Erdős, L. et al. The edge of two worlds: a new review and synthesis on Eurasian forest-steppes. Appl. Veg. Sci.21, 345–362 (2018).
    Google Scholar 

    45.
    Jackson, T. et al. An architectural understanding of natural sway frequencies in trees. J. R. Soc. Interface16, 20190116 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: a review. Rev. Geophys.53, 785–818 (2015).
    Google Scholar 

    47.
    Winkler, A. J., Myneni, R. B., Alexandrov, G. A. & Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun.10, 885–893 (2019).
    PubMed  PubMed Central  Google Scholar 

    48.
    Parazoo, N. et al. Optimal estimates of global terrestrial gross primary production from satellite fluorescence and DGVMs. 5th Int. Workshop Remote Sens. Vegetation Fluorescence1, 1–12 (2014).
    Google Scholar 

    49.
    Xu, X., Wang, Z., Rahbek, C., Sanders, N. J. & Fang, J. Geographical variation in the importance of water and energy for oak diversity. J. Biogeogr.43, 279–288 (2016).
    Google Scholar 

    50.
    Fick, S. E. & Hijmans, R. J. (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2016).

    51.
    Fleck, S. et al. Terrestrial lidar measurements for analysing canopy structure in an old-growth forest. In Proc. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 (2007).

    52.
    Taubin, G. Estimation of planar curves, surfaces, and nonplanar space-curves defined by implicit equations with applications to edge and range image segmentation. IEEE T. Pattern Anal.13, 1115–1138 (1991).
    Google Scholar 

    53.
    Ohashi, Y. Machine vision methods and articles of manufacture for determination of convex hull and convex hull angle. U.S. Patent No. 5,801,966. 1 Sep. (1998).

    54.
    Li, Y. et al. Derivation, validation, and sensitivity analysis of terrestrial laser scanning-based leaf area index. Can. J. Remote Sens.42, 719–729 (2016).
    Google Scholar 

    55.
    Grossiord, C. et al. Effect of climate change on reference evapotrature, drives functional responses of trees in semi-arid ecosystems. J. Ecol.105, 163–175 (2017).
    Google Scholar 

    56.
    Feldpausch, T. R. et al. Height-diameter allometry of tropical forest trees. Biogeosciences8, 1081–1106 (2011).
    Google Scholar 

    57.
    Solargis Database. http://solargis.cn/imaps. Accessed 21 Nov 2018 (2018).

    58.
    Dai, A. & National Center for Atmospheric Research Staff (eds). Last modified 18 Jul 2017. “The Climate Data Guide: Palmer Drought Severity Index (PDSI).” https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi. Accessed 5 June 2018 (2017).

    59.
    Zomer, R. J. et al. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agr. Ecosyst. Environ.126, 67–80 (2008).
    Google Scholar 

    60.
    Geographic Data Sharing Infrastructure. College of Urban and Environmental Science, Peking University. http://geodata.pku.edu.cn. Accessed 25 Feb 2020 (2020).

    61.
    Fang, J., Wang, Z. & Tang, Z. Atlas of Woody Plants in China. (China Higher Education Press, 2009). More

  • in

    Author Correction: Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests

    Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
    Lea Heidrich, Soyeon Bae, Sebastian Seibold, Simon Thorn & Jörg Müller

    CSIRO Land and Water, Winnellie, Northern Territory, Australia
    Shaun Levick

    Terrestrial Ecology Research Group, Technical University of Munich, Freising, Germany
    Sebastian Seibold, Wolfgang Weisser & Inken Doerfler

    Department of Geoinformatics, Munich University of Applied Sciences, München, Germany
    Peter Krzystek & Alla Serebryanyk

    Forest Inventory and Remote Sensing, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
    Paul Magdon

    Faculty of Geography, Philipps-University Marburg, Marburg, Germany
    Thomas Nauss & Stephan Wöllauer

    Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Göttingen, Germany
    Peter Schall & Christian Ammer

    Bavarian Forest National Park, Grafenau, Germany
    Claus Bässler, Marco Heurich & Jörg Müller

    Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
    Claus Bässler

    Institute of Biology and Environmental Science, Vegetation Science & Nature Conservation, University of Oldenburg, Oldenburg, Germany
    Inken Doerfler

    Institute of Plant Sciences, University of Bern, Bern, Switzerland
    Markus Fischer

    Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
    Martin M. Gossner

    Chair of Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Germany
    Marco Heurich

    Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
    Torsten Hothorn

    Evolutionary Ecology and Conservation Genomics, University Ulm, Ulm, Germany
    Kirsten Jung

    Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
    Holger Kreft

    Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
    Holger Kreft

    Max Planck Institute for Biogeochemistry, Jena, Germany
    Ernst-Detlef Schulze

    Ecological Networks, Technical University of Darmstadt, Darmstadt, Germany
    Nadja Simons More

  • in

    Solar plants versus desert plants

    While it is widely known that certain environmental trade-offs may have to be made in order to reduce carbon emissions and combat climate change, one major site of renewable energy development — solar power facilities in deserts — may have unexpected consequences for vulnerable plants in an understudied ecosystem.

    Credit: Bloomberg / Contributor / Bloomberg / Getty

    Stephen Grodsky and Rebecca Hernandez at the University of California, Davis, studied 35 plant species in the Mojave Desert, including scrub plants, cacti and Mojave yucca, in the area around one of the world’s largest concentrated solar plants in Ivanpah, California. Native plants in the area provide services not only for the ecosystem but also for indigenous peoples in the area who rely on the plants for food and cultural purposes.

    However, Grodsky and Hernandez found that solar plant development negatively affected the richness and evenness of the native scrub and perennial species; the treatment of the ground caused by installation of the solar infrastructure also destroyed biological soil crusts, which seems to allow invasive grasses to spread more widely than they would otherwise. As deserts are home to some of the most vulnerable species and the poorest peoples who rely on that ecosystem, these trade-offs must be further researched and mitigated.

    Author information

    Affiliations

    Nature Plants
    Ryan Scarrow

    Authors
    Ryan Scarrow

    Corresponding author
    Correspondence to Ryan Scarrow.

    Rights and permissions

    About this article

    Cite this article
    Scarrow, R. Solar plants versus desert plants. Nat. Plants (2020). https://doi.org/10.1038/s41477-020-00753-5
    Download citation More

  • in

    Resource partitioning among stranded aquatic mammals from Amazon and Northeastern coast of Brazil revealed through Carbon and Nitrogen Stable Isotopes

    1.
    Mèndez-Fernandez, P. et al. Foraging ecology of five toothed whale species in the Northwest Iberian Peninsula, inferred using carbon and nitrogen isotope ratios. J. Exp. Mar. Bio. Ecol. 413, 150–158 (2012).
    Google Scholar 
    2.
    Browning, N. E., Cockcroft, V. G. & Worthy, G. A. J. Resource partitioning among South African delphinids. J. Exp. Mar. Bio. Ecol. 457, 15–21 (2014).
    Google Scholar 

    3.
    Loizaga de Castro, R., Saporiti, F., Vales, D. G., Cardona, L. & Crespo, E. A. Using stable isotopes to assess whether two sympatric dolphin species share trophic resources. Mar. Mammal Sci. 33, 1235–1244 (2017).
    Google Scholar 

    4.
    Franco-Trecu, V., Drago, M., Costa, P., Dimitriadis, C. & Passadore, C. Trophic relationships in apex predators in an estuary system: a multiple-method approximation. J. Exp. Mar. Bio. Ecol. 486, 230–236 (2017).
    Google Scholar 

    5.
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).
    CAS  Google Scholar 

    6.
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).
    ADS  CAS  Google Scholar 

    7.
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geo-Marine Lett. 45, 341–351 (1981).
    CAS  Google Scholar 

    8.
    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).
    ADS  CAS  Google Scholar 

    9.
    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).
    Google Scholar 

    10.
    McCutchan, J. H., Lewis, W. M., Kendall, C. & Mcgrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. OIKOS 102, 378–390 (2003).
    CAS  Google Scholar 

    11.
    Vanderklift, M. A. & Ponsard, S. Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecologia 136, 169–182, https://doi.org/10.1007/s00442-003-1270-z (2003).
    ADS  PubMed  Google Scholar 

    12.
    Fry, B. Stable Isotope Ecology (Springer, Berlin, 2006).
    Google Scholar 

    13.
    Bearhop, S. et al. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).
    Google Scholar 

    14.
    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front Ecol Env. 5, 429–436 (2007).

    15.
    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
    Google Scholar 

    16.
    Layman, C. A., Arrington, D. A., Montana, C. G. & Post, D. M. Can stable isotope ratio provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).
    PubMed  Google Scholar 

    17.
    Ryan, C. et al. Stable isotope analysis of baleen reveals resource partitioning among sympatric rorquals and population structure in fin whales. Mar. Ecol. Prog. Ser. 479, 251–261 (2013).
    ADS  CAS  Google Scholar 

    18.
    Staudinger, M. D., McAlarney, R. J., McLellan, W. A. & Ann Pabst, D. Foraging ecology and niche overlap in pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales from waters of the U.S. mid-Atlantic coast. Mar. Mammal Sci. 30, 626–655 (2014).

    19.
    Gallagher, A. J., Shiffman, D. S., Byrnes, E. E., Hammerschlag-Peyer, C. M. & Hammerschlag, N. Patterns of resource use and isotopic niche overlap among three species of sharks occurring within a protected subtropical estuary. Aquat. Ecol. 51, 435–448 (2017).
    CAS  Google Scholar 

    20.
    Graham, B. S., Koch, P. L., Newsome, S. D., Mcmahon, K. W. & Aurioles, D. Isoscapes. in (ed. J.B.West) 299–318 (Springer Science, London 2010). https://doi.org/10.1007/978-90-481-3354-3

    21.
    Jaeger, A., Lecomte, V. J., Weimerskirch, H., Richard, P. & Cherel, Y. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators ’ foraging areas in the Southern Ocean. RAPID Commun. MASS Spectrom. 24, 3456–3460 (2010).
    ADS  CAS  PubMed  Google Scholar 

    22.
    McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Ocean. 58, 697–714 (2013).
    CAS  Google Scholar 

    23.
    Brault, E. K., Koch, P. L., Mcmahon, K. W. & Broach, K. H. Carbon and nitrogen zooplankton isoscapes in West Antarctica reflect oceanographic transitions. Mar. Ecol. Prog. Ser. 593, 29–45 (2018).
    ADS  CAS  Google Scholar 

    24.
    Troina, C. G. et al. Deep-sea research part I Zooplankton-based δ13C and δ15N isoscapes from the outer continental shelf and slope in the subtropical western South Atlantic. Deep. Res. Part I https://doi.org/10.1016/j.dsr.2020.103235 (2020).
    Article  Google Scholar 

    25.
    Montoya, J. P. Abundance as indicators of forest nitrogen status and soil carbon dynamics stable isotopes in ecology and environmental science. In Stable Isotopes in Ecology and Environmental Science, 176–201 (ed. Lajtha, R. M. K.) (Blackwell Publishing, London, 2007). https://doi.org/10.1002/9780470691854.ch3.
    Google Scholar 

    26.
    Sigman, D. M., Karsh, K. L. & Casciotti, K. L. Ocean Process Tracers: Nitrogen Isotopes in the Ocean. in Encyclopedia of Ocean Sciences (ed. Steele, J.H., Turekian, K.K., Thorpe, S. A.) 4138–4153 (Elsevier Ltd, 2009).

    27.
    Laws, E. A., Popp, B. N., Bidigare, J. R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131–1138 (1995).
    ADS  CAS  Google Scholar 

    28.
    Trueman, C. N. & St John Glew, K. Chapter 6—Isotopic Tracking of Marine Animal Movement Tracking Animal Migration with Stable Isotopes (Elsevier Inc., London, 2019). https://doi.org/10.1016/B978-0-12-814723-8.00006-4.
    Google Scholar 

    29.
    France, R. L. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar. Ecol. Prog. Ser. 124, 307–312 (1995).
    ADS  Google Scholar 

    30.
    Mayer, M., Joye, B. & Aller, C. Importance of suspended participates in riverine delivery of bioavailable nitrogen to coastal zones. Glob. Biochem. Cycles 12, 573–579 (1998).
    ADS  CAS  Google Scholar 

    31.
    Druffel, E. R. M., Bauer, J. E. & Griffin, S. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean. Geochem. Geophys. Geosyst 6, 1–7 (2005).
    Google Scholar 

    32.
    Weber, S. C. et al. Amazon River influence on nitrogen fixation and export production in the western tropical North Atlantic. Limnol. Ocean. https://doi.org/10.1002/lno.10448 (2016).
    Article  Google Scholar 

    33.
    Cai, D. L. & Edmond, J. M. Sources and transport of particulate organic carbon in the Amazon River and Estuary. Estuar. Coast. Shelf Sci. 26, 1–14 (1988).
    ADS  CAS  Google Scholar 

    34.
    Weber, S. C. et al. Habitat delineation in highly variable marine environments. Front. Mar. Sci. 6, 1–16 (2019).
    ADS  Google Scholar 

    35.
    De Menezes, M. P. M., Berger, U. & Mehlig, U. Mangrove vegetation in Amazonia: a review of studies from the coast of Pará and Maranhão States, north Brazil. Acta Amaz. 38, 403–420 (2008).
    Google Scholar 

    36.
    Hayashi, S. N., Souza-filho, P. W. M., Nascimento, W. R. Jr. & Fernandes, M. E. B. The effect of anthropogenic drivers on spatial patterns of mangrove land use on the Amazon coast. PLoS ONE 14, 1–20 (2019).
    Google Scholar 

    37.
    Barthem, R. B. Ocorrência, distribuição e biologia dos peixes da Baía de Marajó, Estuário Amazônico. Bol. do Mus. Para. Emílio Goeldi. Série Zool. 2, 49–69 (1985).

    38.
    Camargo, M. & Isaac, V. Os peixes estuarinos da região Norte do Brasil: Lista de espécie e consideração sobre sua distribuição geográfica. Bol. do Mus. Para. Emílio Goeldi, Ser. Zool. 17, 135 – 147 (2002).

    39.
    Siciliano, S. et al. Revisão do conhecimento sobre os mamíferos aquáticos da costa norte do Brasil. Arq. do Mus. Nac. 66, 381–401 (2008).
    Google Scholar 

    40.
    Meirelles, A. C. O. et al. Cetacean strandings on the coast of Ceará, north-eastern Brazil (1992–2005). J. Mar. Biol. Assoc. United Kingdom 89, 1–8 (2009).
    Google Scholar 

    41.
    Emin-Lima, R. et al. Os mamíferos aquáticos associados aos manguezais da costa norte brasileira. in Mamíferos de Restingas e Manguezais do Brasil 45–57 (Sociedade Brasileira de Mastozoologia, 2010).

    42.
    Siciliano, S. et al. New genetic data extend the range of river dolphins Inia in the Amazon Delta. Hydrobiologia 777. https://doi.org/10.1007/s10750-016-2794-7 (2016).

    43.
    Siciliano, S. et al. Confirmed sightings of the Antillean manatee (Trichechus manatus) on the coast of Ilha de Marajó, northern Brazilian coast. JMBA Glob. Mar. Environ. 34–35 (2007).

    44.
    Alves, M. D. et al. First abundance estimate of the Antillean manatee (Trichechus manatus) in Brazil by aerial survey. J. Mar. Biol. Assoc. UK https://doi.org/10.1017/S0025315415000855 (2015).
    Article  Google Scholar 

    45.
    Monteiro-Neto, C. et al. Impact of fisheries on the tucuxi (Sotalia fluviatilis) and rough-toothed dolphin (Steno bredanensis) populations off Ceará state, northeastern Brazil. Aquat. Mamm. 26, 49–56 (2000).
    Google Scholar 

    46.
    Barreto, A. S. et al. Plano de Ação nacional para Conservação dos Mamíferos Aquáticos – Pequenos Cetáceos. (2010).

    47.
    Moura, J. F., Hauser-Davis, R. A., Lemos, L., Emin-Lima, R. & Siciliano, S. Guiana Dolphins (Sotalia guianensis) as marine ecosystem sentinels: ecotoxicology and emerging diseases. in Reviews of Environmental Contamination and Toxicology, Vol. 228 (ed Whitacre, D. M.) 1–29, https://doi.org/10.1007/978-1-4419-6260-7 (2014).

    48.
    Costa, A. F. et al. Stranding survey as a framework to investigate rare cetacean records of the north and north-eastern Brazilian coasts. Zookeys https://doi.org/10.3897/zookeys.688.12636 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    49.
    Domning, D. P. Distribution and Status of manatees Trichechus spp. near the mouth of the Amazon River, Brazil. Biol. Conserv. 19, 85–97 (1981).
    Google Scholar 

    50.
    Siciliano, S. et al. Going back to my roots: Confirmed sightings of the Antillean manatee (Trichechus manatus) on the coast of Ilha de Marajó, northern Brazilian coast. JMBA Glob. Mar. Environ. 1, 34–35 (2007).
    Google Scholar 

    51.
    Cunha, H. A., da Silva, V. M. F. & Solé-Cava, A. M. Molecular Ecology and Systematics of Sotalia Dolphins. in Biology, Evolution and Conservation of Rivers Dolphins within South America and Asia (eds. Ruiz-Garcia, M. & Shostell, J.) 261–283 (Nova Science Publishers, Inc., 2010).

    52.
    Hrbek, T. et al. A new species of river dolphin from Brazil or: how little do we know our biodiversity. PLoS ONE 9, https://doi.org/10.1371/journal.pone.0083623 (2014).

    53.
    Niño-Torres, C. A., Gallo-Reynoso, J. P., Galván-Magaña, F., Escobar-Briones, E. & Macko, S. A. Isotopic analysis of δ13C, δ15N, and δ34S ‘a feeding tale’ in teeth of the longbeaked common dolphin, Delphinus capensis. Mar. Mammal Sci. 22, 831–846, https://doi.org/10.1111/j.1748-7692.2006.00065.x (2006).
    Google Scholar 

    54.
    Pinela, A. M., Borrell, A., Cardona, L. & Aguilar, A. Stable isotope analysis reveals habitat partitioning among marine mammals off the NW African coast and unique trophic niches for two globally threatened species. Mar. Ecol. Prog. Ser. 416, 295–306, https://doi.org/10.3354/meps08790 (2010).
    ADS  CAS  Article  Google Scholar 

    55.
    Walker, J. L. & Macko, S. A. Dietary studies of marine mammals using stable carbon and nitrogen isotopic ratios of teeth. Mar. Mammal Sci. 15, 314–334 (1999).
    Google Scholar 

    56.
    Riccialdelli, L., Newsome, S. D., Fogel, M. L. & Goodall, R. N. P. Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean. Mar. Ecol. Prog. Ser. 418, 235–248 (2010).
    ADS  Google Scholar 

    57.
    Vighi, M. et al. Stable isotopes indicate population structuring in the Southwest Atlantic population of right whales (Eubalaena australis). PLoS ONE 9, https://doi.org/10.1371/journal.pone.0090489 (2014).

    58.
    Junk, W. J. et al. A classification of major naturally-occurring amazonian lowland wetlands. Wetlands 31, 623–640 (2011).
    Google Scholar 

    59.
    Rosário, R. P., Borba, T. A. C., Santos, A. S. & Rollnic, M. Variability of Salinity in Pará River Estuary: 2D Analysis with Flexible Mesh Model. J. Coast. Res. 75, 128–132 (2016).
    Google Scholar 

    60.
    Bezerra, M. O. & Rollnic, M. Physical oceanographic behavior at the Guamá/Acará-Moju and the Paracauari river mouths, Amazon Coast (Brazil). in Journal of Coastal Research 1448–1452 (Proceedings of The 11th International Coastal Synposium, 2011).

    61.
    Rosário, R. P. & Santos, A. S. Contribution to understanding the surface seawater intrusion in the Pará River estuary during low discharge. Proceedings of the 17th Physics of Estuaries and Coastal Seas (PECS) (2014).

    62.
    Nittrouer, C. a. & DeMaster, D. J. The Amazon shelf setting: tropical, energetic, and influenced by a large river. Cont. Shelf Res. 16, 553–573 (1996).

    63.
    Moreira, A. M. & Mavigner, D. S. Conhecendo história e geografia do Piauí. (Gráfica Ferraz, 2007).

    64.
    Szczygielski, A. et al. Evolution of the Parnaíba Delta (NE Brazil) during the late Holocene. Geo-Marine Lett. 35. 105–117, https://doi.org/10.1007/s00367-014-0395-x (2014).
    ADS  Google Scholar 

    65.
    Foote, A. D. et al. Tracking niche variation over millennial timescales in sympatric killer whale lineages. Proc. Biol. Sci. 280, 2–9 (2013).
    Google Scholar 

    66.
    Newsome, S. D., Koch, P. L., Etnier, M. A. & Aurioles-Gamboa, D. Using Carbon and Nitrogen Isotope Values To Investigate Maternal Strategies in Northeast Pacific Otariids. Mar. Mammal Sci. 22, 556–572 (2006).
    Google Scholar 

    67.
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).
    PubMed  Google Scholar 

    68.
    Bisi, T. L. et al. Trophic relationships and habitat preferences of Delphinids from the Southeastern Brazilian Coast determined by carbon and nitrogen stable isotope composition. PLoS ONE 8, e82205 (2013).
    ADS  PubMed  PubMed Central  Google Scholar 

    69.
    Botta, S., Hohn, A. A., Macko, S. A. & Secchi, E. R. Isotopic variation in delphinids from the subtropical western South Atlantic. J. Mar. Biol. Assoc. United Kingdom https://doi.org/10.1017/S0025315411000610 (2012).
    Article  Google Scholar 

    70.
    Medeiros, P. et al. Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean. Global Biogeochem. Cycles 29, 677–690 (2015).
    ADS  CAS  Google Scholar 

    71.
    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. https://doi.org/10.1126/sciadv.1501252 (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    72.
    Loick-Wilde, N. et al. Nitrogen sources and net growth efficiency of zooplankton in three Amazon River plume food webs. Limnol. Oceanogr. 61, 460–481 (2016).
    ADS  CAS  Google Scholar 

    73.
    Fernández, R. et al. Stable isotope analysis in two sympatric populations of bottlenose dolphins Tursiops truncatus: Evidence of resource partitioning?. Mar. Biol. 158, 1043–1055. https://doi.org/10.1007/s00227-011-1629-3 (2011).
    Article  Google Scholar 

    74.
    Riccialdelli, L. & Goodall, N. Intra-specific trophic variation in false killer whales (Pseudorca crassidens) from the southwestern South Atlantic Ocean through stable isotopes analysis. Mamm. Biol. 80, 298–302 (2015).
    Google Scholar 

    75.
    Haro, D., Riccialdelli, L., Blank, O., Matus, R. & Sabat, P. Estimating the isotopic niche of males and females of false killer whales (Pseudorca crassidens) from Magellan Strait. Chile. Mar. Mammal Sci. https://doi.org/10.1111/mms.12564 (2018).
    Article  Google Scholar 

    76.
    Bastida, R., Rodríguez, D. & Secchi, E. Mamiferos Acuaticos de Sudamerica y Antartida. (Vázquez Manzini Editores, 2007).

    77.
    Cardoso, J., Francisco, A., de Souza, S. P. & Siciliano, S. Rough-toothed dolphins (Steno bredanensis) Along Southeastern Brazil: report of an anomalous pigmented juvenile and description of social and feeding behaviors. Aquat. Mamm. 45, 30–36 (2019).
    Google Scholar 

    78.
    Johns, W. E. et al. Annual cycle and variability of the North Brazil current. J. Phys. Oceanogr. 28, 103–128 (1998).
    ADS  Google Scholar 

    79.
    Gross, A., Kiszka, J., Canneyt, O. V., Richard, P. & Ridoux, V. A preliminary study of habitat and resource partitioning among co-occurring tropical dolphins around Mayotte, southwest Indian Ocean. Estuar. Coast. Shelf Sci. 84, 367–374 (2009).
    ADS  CAS  Google Scholar 

    80.
    Trites, A. W. W. Marine mammal trophic levels and interactions. In Encyclopedia of Ocean Sciences (eds Steele, J. H. et al.) 1628–1633 (Academic Press, Berlin, 2001). https://doi.org/10.1029/2002EO000342.
    Google Scholar 

    81.
    Ruiz-Cooley, R. I., Engelhaupt, D. T. & Ortega-Ortiz, J. G. Contrasting C and N isotope ratios from sperm whale skin and squid between the Gulf of Mexico and Gulf of California: Effect of habitat. Mar. Biol. 159, 151–164 (2012).
    CAS  Google Scholar 

    82.
    Goes, J. I. et al. Influence of the Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic. Prog. Oceanogr. 120, 29–40 (2014).
    ADS  Google Scholar 

    83.
    Montoya, J. P., Landrum, J. P. & Weber, S. C. Amazon River influence on nitrogen fixation in the western tropical North Atlantic. J. Mar. Res. 77, 191–213 (2019).
    Google Scholar 

    84.
    Beltrán-Pedreros, S. & Pantoja, T. M. A. Feeding habits of Sotalia fluviatilis in the Amazonian Estuary. Acta Sci. – Biol. Sci. 28, 389–393 (2006).
    Google Scholar 

    85.
    Giarrizzo, T., Schwamborn, R. & Saint-Paul, U. Utilization of carbon sources in a northern Brazilian mangrove ecosystem. Estuar. Coast. Shelf Sci. 95, 447–457. https://doi.org/10.1016/j.ecss.2011.10.018 (2011).
    ADS  CAS  Article  Google Scholar 

    86.
    Crema, L. C., da Silva, V. M. F., Botta, S., Trumbore, S. & Piedade, M. T. F. Does water type influence diet composition in Amazonian manatee (Trichechus inunguis)? A case study comparing black and clearwater rivers. Hydrobiologia https://doi.org/10.1007/s10750-019-3900-4 (2019).
    Article  Google Scholar 

    87.
    Lins, A. L. F. A., Gurgel, E. S. C., Bastos, M. N. C., Sousa, M. E. M. & Emin-Lima, R. Which aquatic plants of the intertidal zone do manatees of the Amazon estuary eat? Sirenews 11–12 (2014).

    88.
    Ciotti, L. L., Luna, F. O. & Secchi, E. Intra- and interindividual variation in D13C and D15N composition in the Antillean manatee Trichechus manatus manatus from northeastern Brazil. Mar. Mammal Sci. https://doi.org/10.1111/mms.12102 (2014).
    Article  Google Scholar 

    89.
    Sousa, M. E. M., Martins, B. M. L. & Fernandes, M. E. B. Meeting the giants: the need for local ecological knowledge (LEK) as a tool for the participative management of manatees on Marajó Island, Brazilian Amazonian coast. Ocean Coast. Manag. 86, 53–60 (2013).
    Google Scholar 

    90.
    Best, R. C. & Da Silva, V. M. F. Inia geoffrensis. Mamm. Species 1–8 (1993).

    91.
    Costa, A. F. et al. How far does it go along the coast? Distribution and first genetic analyses of the boto (Inia geoffrensis) along the coast of Pará, Amazon, Brazil. In 2013 SC65a Meeting of The International Whaling Commission 1–12 (IWC/Scientific Commitee, Jeju Island, South Korea, Small Cetaceans, Cambridge, 2013).

    92.
    Martin, A. R. R. & Da Silva, V. M. F. River dolphins and flooded forest: seasonal habitat use and sexual segregation of botos (Inia geoffrensis) in an extreme cetacean environment. J. Zool. Lond. 263, 295–305 (2004).

    93.
    Da Silva, V. M. F., Goulding, M. & Barthem, R. Golfinhos da Amazônia. (INPA, 2008).

    94.
    Di Beneditto, A. P. M. & Ramos, R. M. A. Biology of the marine tucuxi dolphin (Sotalia fluviatilis) in south-eastern Brazil. J. Mar. Biol. Assoc. United Kingdom 84, 1245–1250 (2004).
    Google Scholar 

    95.
    Pansard, K. C. A., Gurgel, H. D. C. B., Andrade, L. C. D. A. & Yamamoto, M. E. Feeding ecology of the estuarine dolphin (Sotalia guianensis) on the coast of Rio Grande do Norte, Brazil. Mar. Mammal Sci. 27, 673–687 (2011).
    Google Scholar 

    96.
    Smith, T. D. & Burrows, A. M. Mobility of the axial regions in a captive Amazon river dolphin (Inia geoffrensis). in Biology, Evolution, and Conservation of river dolphins within South America and Asia (eds. Ruiz-Garcia, M. & Shostell, J. M.) 71–81 (Nova Science Publishers, Inc., 2009).

    97.
    Ramos, R. M. A. et al. Morphology of the Guiana dolphin (Sotalia guianensis) off southeastern Brazil: growth and geographic variation. Lat. Am. J. Aquat. Mamm. 8, 137–149 (2010).
    Google Scholar 

    98.
    Emin-Lima, R. Preenchendo Lacunas em Saúde de Ecossistemas: Estudo Morfológico e de Contaminantes nos Botos-cinza (Sotalia guianensis) da Costa Norte do Brasil. (Tese de Doutorado. Programa de Pós-Graduação em Saúde Pública e Meio Ambiente. Escola Nacional e Saúde Pública, FIOCRUZ, 147p., 2012).

    99.
    Arcoverde, D. L. et al. Evaluation of periotic–timpanic bone complex of Sotalia guianensis (Cetacea: Delphinidae) as tool in identification of geographic variations. J. Mar. Biol. Assoc. United Kingdom 94, 1127–1132. https://doi.org/10.1017/S0025315413001689 (2013).
    Article  Google Scholar 

    100.
    Botta, S. Caracterização do uso do habitat e identificação de Unidades Populacionais de pequenos cetáceos do Atlântico Sul-Ocidental através de métodos químicos. (Tese de Doutorado. PÓS-GRADUAÇÃO EM OCEANOGRAFIA BIOLÓGICA. UNIVERSIDADE FEDERAL DO RIO GRANDE – FURG, 238p., 2011).

    101.
    Camargo, M. & Isaac, V. Os peixes estuarinos da região norte do Brasil: lista de espécies e considerações sobre sua distribuição geográfica. Bol. do Mus. Para. Emílio Goeldi, série Antropol. 17, 133–157 (2002).

    102.
    Vieira, J. O. Diferenças alimentares em populações de boto-cinza Sotalia guianensis (Van Benédén, 1864) (Cetacea, Delphinidae) nas costas Norte e Nordeste brasileira. (Dissertação de Mestrado. Programa de Pós-Graduação em Zoologia. Universidade Federal do Pará, 2014). More

  • in

    Modular prophage interactions driven by capsule serotype select for capsule loss under phage predation

    1.
    Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H. Prophage genomics. Microbiol Mol Biol Rev. 2003;67:238–76.
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Lu MJ, Henning U. Superinfection exclusion by T-even-type coliphages. Trends Microbiol. 1994;2:137–9.
    CAS  PubMed  Google Scholar 

    3.
    Susskind MA, Wright A, Botstein D. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium. IV. genetics and physiology of sieB exclusion. Virology. 1974;62:367–84.
    CAS  PubMed  Google Scholar 

    4.
    Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A, Iguchi A, et al. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 2009;5:e1000408.
    PubMed  PubMed Central  Google Scholar 

    5.
    Matos RC, Lapaque N, Rigottier-Gois L, Debarbieux L, Meylheuc T, Gonzalez-Zorn B, et al. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits. PLoS Genet. 2013;9:e1003539.
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Touchon M, Bobay LM, Rocha EP. The chromosomal accommodation and domestication of mobile genetic elements. Curr Opin Microbiol. 2014a;22:22–9.
    CAS  PubMed  Google Scholar 

    7.
    Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, et al. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol. 2000;38:213–31.
    CAS  PubMed  Google Scholar 

    8.
    Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, et al. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res. 2009;19:12–23.
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Bossi L, Fuentes JA, Mora G, Figueroa-Bossi N. Prophage contribution to bacterial population dynamics. J Bacteriol. 2003;185:6467–71.
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65.
    PubMed  PubMed Central  Google Scholar 

    11.
    Nanda AM, Thormann K, Frunzke J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol. 2015;197:410–9.
    PubMed  PubMed Central  Google Scholar 

    12.
    Brown SP, Le Chat L, De Paepe M, Taddei F. Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol. 2006;16:2048–52.
    CAS  PubMed  Google Scholar 

    13.
    Sousa JAM, Rocha EPC. Environmental structure drives resistance to phages and antibiotics during phage therapy and to invading lysogens during colonisation. Sci Rep. 2019;9:3149.
    PubMed  PubMed Central  Google Scholar 

    14.
    Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. Elife. 2015;4:e08490.
    PubMed Central  Google Scholar 

    15.
    Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Bobay LM, Rocha EP, Touchon M. The adaptation of temperate bacteriophages to their host genomes. Mol Biol Evol. 2013;30:737–51.
    CAS  PubMed  Google Scholar 

    17.
    Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. Infect Immun. 2002;70:3985–93.
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Chen J, Quiles-Puchalt N, Chiang YN, Bacigalupe R, Fillol-Salom A, Chee MSJ, et al. Genome hypermobility by lateral transduction. Science. 2018;362:207–12.
    CAS  PubMed  Google Scholar 

    19.
    Touchon M, Moura de Sousa JA, Rocha EP. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Microbiol. 2017;38:66–73.
    CAS  PubMed  Google Scholar 

    20.
    Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun. 2016;7:13333.
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Brisse S, Grimont F, Grimont PAD. The genus Klebsiella. The Prokaryotes. New York, USA: Springer; 2006. p. 159–96.
    Google Scholar 

    22.
    Lee CR, Lee JH, Park KS, Jeon JH, Kim YB, Cha CJ, et al. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol. 2017;7:483.
    PubMed  PubMed Central  Google Scholar 

    23.
    Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41:252–75.
    CAS  PubMed  Google Scholar 

    24.
    Blin C, Passet V, Touchon M, Rocha EPC, Brisse S. Metabolic diversity of the emerging pathogenic lineages of Klebsiella pneumoniae. Environ Microbiol. 2017;19:1881–98.
    CAS  PubMed  Google Scholar 

    25.
    Wyres KL, Wick RR, Judd LM, Froumine R, Tokolyi A, Gorrie CL, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 2019;15:e1008114.
    CAS  PubMed  PubMed Central  Google Scholar 

    26.
    Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA. 2015;112:E3574–81.
    CAS  PubMed  Google Scholar 

    27.
    Mori M, Ohta M, Agata N, Kido N, Arakawa Y, Ito H, et al. Identification of species and capsular types of Klebsiella clinical isolates, with special reference to Klebsiella planticola. Microbiol Immunol. 1989;33:887–95.
    CAS  PubMed  Google Scholar 

    28.
    Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R, Thomson NR, et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Micro Genom. 2016;2:e000102.
    Google Scholar 

    29.
    Pan YJ, Lin TL, Chen CT, Chen YY, Hsieh PF, Hsu CR, et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep. 2015;5:15573.
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Favre-Bonte S, Licht TR, Forestier C, Krogfelt KA. Klebsiella pneumoniae capsule expression is necessary for colonization of large intestines of streptomycin-treated mice. Infect Immun. 1999;67:6152–6.
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Alvarez D, Merino S, Tomas JM, Benedi VJ, Alberti S. Capsular polysaccharide is a major complement resistance factor in lipopolysaccharide O side chain-deficient Klebsiella pneumoniae clinical isolates. Infect Immun. 2000;68:953–5.
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun. 2004;72:7107–14.
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Doorduijn DJ, Rooijakkers SHM, van Schaik W, Bardoel BW. Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology. 2016;221:1102–9.
    CAS  PubMed  Google Scholar 

    34.
    Rendueles O, Garcia-Garcera M, Neron B, Touchon M, Rocha EPC. Abundance and co-occurrence of extracellular capsules increase environmental breadth: Implications for the emergence of pathogens. PLoS Pathog. 2017;13:e1006525.
    PubMed  PubMed Central  Google Scholar 

    35.
    Rendueles O, de Sousa JAM, Bernheim A, Touchon M, Rocha EPC. Genetic exchanges are more frequent in bacteria encoding capsules. PLoS Genet. 2018;14:e1007862.
    PubMed  PubMed Central  Google Scholar 

    36.
    Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet. 2014;46:305–9.
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Moller AG, Lindsay JA, Read TD. Determinants of phage host range in Staphylococcus species. Appl Environ Microbiol. 2019;85:e00209–19.
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Negus D, Burton J, Sweed A, Gryko R, Taylor PW. Poly-gamma-(D)-glutamic acid capsule interferes with lytic infection of Bacillus anthracis by B. anthracis-specific bacteriophages. Appl Environ Microbiol. 2013;79:714–7.
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Scholl D, Adhya S, Merril C. Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl Environ Microbiol. 2005;71:4872–4.
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Niemann H, Frank N, Stirm S. Klebsiella serotype-13 capsular polysaccharide: primary structure and depolymerization by a bacteriophage-borne glycanase. Carbohydr Res. 1977a;59:165–77.
    CAS  PubMed  Google Scholar 

    41.
    Niemann H, Kwiatkowski B, Westphal U, Stirm S. Klebsiella serotype 25 capsular polysaccharide: primary structure and depolymerization by a bacteriophage-borne glycanase. J Bacteriol. 1977b;130:366–74.
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Pan YJ, Lin TL, Chen CC, Tsai YT, Cheng YH, Chen YY, et al. Klebsiella phage PhiK64-1 encodes multiple depolymerases for multiple host capsular types. J Virol. 2017;91:e02457–02416.
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Bessler W, Freund-Molbert E, Knufermann H, Rduolph C, Thurow H, Stirm S. A bacteriophage-induced depolymerase active on Klebsiella K11 capsular polysaccharide. Virology. 1973;56:134–51.
    CAS  PubMed  Google Scholar 

    44.
    Thurow H, Niemann H, Rudolph C, Stirm S. Host capsule depolymerase activity of bacteriophage particles active on Klebsiella K20 and K24 strains. Virology. 1974;58:306–9.
    CAS  PubMed  Google Scholar 

    45.
    Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 2017;101:3103–19.
    CAS  PubMed  PubMed Central  Google Scholar 

    46.
    Scholl D, Rogers S, Adhya S, Merril CR. Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol. 2001;75:2509–15.
    CAS  PubMed  PubMed Central  Google Scholar 

    47.
    Lin TL, Hsieh PF, Huang YT, Lee WC, Tsai YT, Su PA, et al. Isolation of a bacteriophage and its depolymerase specific for K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. J Infect Dis. 2014;210:1734–44.
    CAS  PubMed  Google Scholar 

    48.
    Pan YJ, Lin TL, Chen YY, Lai PH, Tsai YT, Hsu CR, et al. Identification of three podoviruses infecting Klebsiella encoding capsule depolymerases that digest specific capsular types. Micro Biotechnol. 2019;12:472–86.
    CAS  Google Scholar 

    49.
    Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett. 2016;363:fnw002.
    PubMed  Google Scholar 

    50.
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.
    CAS  PubMed  PubMed Central  Google Scholar 

    51.
    Daubin V, Lerat E, Perriere G. The source of laterally transferred genes in bacterial genomes. Genome Biol. 2003;4:R57.
    PubMed  PubMed Central  Google Scholar 

    52.
    Rocha EP, Danchin A. Base composition bias might result from competition for metabolic resources. Trends Genet. 2002;18:291–4.
    CAS  PubMed  Google Scholar 

    53.
    Bobay LM, Touchon M, Rocha EP. Pervasive domestication of defective prophages by bacteria. Proc Natl Acad Sci USA. 2014;111:12127–32.
    CAS  PubMed  Google Scholar 

    54.
    Casjens SR, Gilcrease EB, Huang WM, Bunny KL, Pedulla ML, Ford ME, et al. The pKO2 linear plasmid prophage of Klebsiella oxytoca. J Bacteriol. 2004;186:1818–32.
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    Leclercq S, Cordaux R. Do phages efficiently shuttle transposable elements among prokaryotes? Evolution. 2011;65:3327–31.
    CAS  PubMed  Google Scholar 

    56.
    Ghazaryan L, Tonoyan L, Ashhab AA, Soares MI, Gillor O. The role of stress in colicin regulation. Arch Microbiol. 2014;196:753–64.
    CAS  PubMed  Google Scholar 

    57.
    Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.
    CAS  PubMed  Google Scholar 

    58.
    Samson JE, Magadan AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013;11:675–87.
    CAS  PubMed  Google Scholar 

    59.
    Wyres KL, Gorrie C, Edwards DJ, Wertheim HF, Hsu LY, Van Kinh N, et al. Extensive capsule locus variation and large-scale genomic recombination within the Klebsiella pneumoniae clonal group 258. Genome Biol Evol. 2015;7:1267–79.
    CAS  PubMed  PubMed Central  Google Scholar 

    60.
    Tan D, Zhang Y, Qin J, Le S, Gu J, Chen LK et al. A frameshift mutation in wcaJ associated with phage resistance in Klebsiella pneumoniae. Microorganisms. 2020;8:378.
    CAS  PubMed Central  Google Scholar 

    61.
    Buffet A, Rocha EPC, Rendueles O. Selection for the bacterial capsule in the absence of biotic and abiotic aggressions depends on growth conditions. BioRxiv. 2020. https://doi.org/10.1101/2020.04.27.059774.

    62.
    Julianelle LA. Bacterial variation in cultures of Friedlander’s Bacillus. J Exp Med. 1928;47:889–902.
    CAS  PubMed  PubMed Central  Google Scholar 

    63.
    Randall WA. Colony and antigenic variation in Klebsiella pneumoniae types A, B and C. J Bacteriol. 1939;38:461–77.
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS. Statistical structure of host-phage interactions. Proc Natl Acad Sci USA. 2011;108:E288–97.
    CAS  PubMed  Google Scholar 

    65.
    Mathieu A, Dion M, Deng L, Tremblay D, Moncaut E, Shah SA, et al. Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages. Nat Commun. 2020;11:385.
    Google Scholar 

    66.
    Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, et al. Phage-bacteria infection networks. Trends Microbiol. 2013;21:82–91.
    CAS  PubMed  Google Scholar 

    67.
    Brueggemann AB, Harrold CL, Rezaei Javan R, van Tonder AJ, McDonnell AJ, Edwards BA. Pneumococcal prophages are diverse, but not without structure or history. Sci Rep. 2017;7:42976.
    CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Castillo D, Kauffman K, Hussain F, Kalatzis P, Rorbo N, Polz MF, et al. Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities. Sci Rep. 2018;8:9973.
    PubMed  PubMed Central  Google Scholar 

    69.
    Allen HK, Looft T, Bayles DO, Humphrey S, Levine UY, Alt D, et al. Antibiotics in feed induce prophages in swine fecal microbiomes. mBio. 2011;2:e00260–11.
    PubMed  PubMed Central  Google Scholar 

    70.
    Otsuji N, Sekiguchi M, Iijima T, Takagi Y. Induction of phage formation in the lysogenic Escherichia coli K-12 by mitomycin C. Nature. 1959;184:1079–80.
    CAS  PubMed  Google Scholar 

    71.
    Comeau AM, Tetart F, Trojet SN, Prere MF, Krisch HM. Phage-antibiotic synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One. 2007;2:e799.
    PubMed  PubMed Central  Google Scholar 

    72.
    Kim M, Jo Y, Hwang YJ, Hong HW, Hong SS, Park K et al. Phage-antibiotic synergy via delayed lysis. Appl Environ Microbiol. 2018;84:e02085–18.
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    De Paepe M, Tournier L, Moncaut E, Son O, Langella P, Petit MA. Carriage of lambda latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLoS Genet. 2016;12:e1005861.
    PubMed  PubMed Central  Google Scholar 

    74.
    Phanphak S, Georgiades P, Li R, King J, Roberts IS, Waigh TA. Super-resolution fluorescence microscopy study of the production of K1 capsules by Escherichia coli: evidence for the differential distribution of the capsule at the poles and the equator of the cell. Langmuir. 2019;35:5635–46.
    CAS  PubMed  PubMed Central  Google Scholar 

    75.
    Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature. 2001;414:555–8.
    CAS  PubMed  Google Scholar 

    76.
    Tzeng YL, Thomas J, Stephens DS. Regulation of capsule in Neisseria meningitidis. Crit Rev Microbiol. 2016;42:759–72.
    CAS  PubMed  Google Scholar 

    77.
    Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 2016;10:2854–66.
    PubMed  PubMed Central  Google Scholar 

    78.
    Zhang YF, LeJeune JT. Transduction of bla(CMY-2), tet(A), and tet(B) from Salmonella enterica subspecies enterica serovar Heidelberg to S-Typhimurium. Vet Microbiol. 2008;129:418–25.
    CAS  PubMed  Google Scholar 

    79.
    Brussow H, Kutter E. Phage ecology. Bacteriophages: biology and application. Boca Raton, Florida: CRC Press; 2005. p. 129–64.
    Google Scholar 

    80.
    Calef E, Marchelli C, Guerrini F. The formation of superinfection-double lysogens of phage lambda in Escherichia coli K-12. Virology. 1965;27:1–10.
    CAS  PubMed  Google Scholar 

    81.
    Scott JR, West BW, Laping JL. Superinfection immunity and prophage repression in phage P1. IV. The c1 repressor bypass function and the role of c4 repressor in immunity. Virology. 1978;85:587–600.
    CAS  PubMed  Google Scholar 

    82.
    Bakk A, Metzler R. Nonspecific binding of the OR repressors CI and Cro of bacteriophage lambda. J Theor Biol. 2004;231:525–33.
    CAS  PubMed  Google Scholar 

    83.
    Casjens S. Prophages and bacterial genomics: what have we learned so far? Mol Microbiol. 2003;49:277–300.
    CAS  PubMed  Google Scholar 

    84.
    Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: All the world’s a phage. Proc Natl Acad Sci USA. 1999;96:2192–7.
    CAS  PubMed  Google Scholar 

    85.
    Ramisetty BCM, Sudhakari PA. Bacterial ‘Grounded’ Prophages: hotspots for genetic renovation and innovation. Front Genet. 2019;10:65.
    CAS  PubMed  PubMed Central  Google Scholar 

    86.
    Venturini C, Ben Zakour N, Bowring B, Morales S, Cole R, Kovach Z et al. K. pneumoniae ST258 genomic variability and bacteriophage susceptibility. bioRxiv. 2019. https://doi.org/10.1101/628339.

    87.
    Hsieh PF, Lin HH, Lin TL, Chen YY, Wang JT. Two T7-like bacteriophages, K5-2 and K5-4, each encodes two capsule depolymerases: isolation and functional characterization. Sci Rep. 2017;7:4624.
    PubMed  PubMed Central  Google Scholar 

    88.
    Majkowska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B, Briers Y, et al. Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol. 2018;9:00209–19.
    Google Scholar 

    89.
    Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016;80:629–61.
    CAS  PubMed  PubMed Central  Google Scholar 

    90.
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
    CAS  PubMed  Google Scholar 

    91.
    Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–D498.
    CAS  PubMed  Google Scholar 

    92.
    Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.
    CAS  PubMed  PubMed Central  Google Scholar 

    93.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.
    Google Scholar 

    94.
    Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–6.
    CAS  PubMed  Google Scholar 

    95.
    Touchon M, Cury J, Yoon EJ, Krizova L, Cerqueira GC, Murphy C, et al. The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol. 2014b;6:2866–82.
    CAS  PubMed  PubMed Central  Google Scholar 

    96.
    Steinegger M, Soding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–8.
    CAS  PubMed  Google Scholar 

    97.
    van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018;46:W278–81.
    PubMed  PubMed Central  Google Scholar 

    98.
    Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100:2141–51.
    CAS  PubMed  Google Scholar 

    99.
    Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Neron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–51.
    CAS  PubMed  PubMed Central  Google Scholar 

    100.
    Oliveira PH, Touchon M, Rocha EP. Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci USA. 2016;113:5658–63.
    CAS  PubMed  Google Scholar 

    101.
    Mucke M, Kruger DH, Reuter M. Diversity of Type II restriction endonucleases that require two DNA recognition sites. Nucleic Acids Res. 2003;31:6079–84.
    CAS  PubMed  PubMed Central  Google Scholar 

    102.
    Ferrieres L, Hemery G, Nham T, Guerout AM, Mazel D, Beloin C, et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J Bacteriol. 2010;192:6418–27.
    CAS  PubMed  PubMed Central  Google Scholar 

    103.
    Guy L, Kultima JR, Andersson SG. genoPlotR: comparative gene and genome visualization in R. Bioinformatics. 2010;26:2334–5.
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Control of Fusarium wilt by wheat straw is associated with microbial network changes in watermelon rhizosphere

    Bacterial community composition
    From 36 soil specimens, 3,370,643 high-quality 16S rDNA reads were obtained [(CK1, T1, CK2, and T2 treatments) × 9 replicates] with 74,955–103,931 sequencing reads (mean = 91,908) per sample. The maximum read length was 478 bp and the minimum average length was 341 bp for the 16S rDNA genes. All rarefaction curves for the bacterial samples revealed that the amount of recorded OTUs was generally 7,000 reads per plateau, indicating the assessment adequately covered the microbial variety (see Supplementary Fig. S2a). The bacterium richness (Chao1 and ACE), evenness indexes (Shannon and Simpson), and number of OTUs between CK1 and T1 as well as between CK2 and T2 were not significantly different (see Supplementary Table S1a).
    The soil bacterial composition of the two treatment groups at the two growth periods were compared at the level of the phylum. A total of 26 bacterial phyla were identified, with the exception of 1.03% of unclassified sequencing reads. The main phyla of the sequenced bacteria were Proteobacteria, Actinobacteria, and Gemmatimonadetes, which occupied over 64.5% of the total bacterial populations in the sample sequences. Chloroflexi, Acidobacteria, Bacteroidetes, Parcubacteria, Verrucomicrobia, and Firmicutes were also identified at relatively elevated richness (average relative abundance > 1%) (Fig. 1a). Wheat straw addition significantly increased the relative abundances of Actinobacteria, Chloroflexi, and Saccharibacteria, while significantly decreasing the relative abundance of Parcubacteria at both moments of sampling (P  0.05) were detected (see Fig. 1a and Supplementary Table S2a).
    Figure 1

    Major bacterial (a) and fungal phylum (b) relative abundance in the soil with (T1 and T2) and without (CK1 and CK2) wheat straw addition. Bacterial phyla with > 1% and fungal phyla with > 0.1% average relative abundances. Others included bacterial phyla below 1% relative abundance and unidentified bacterial and fungal phyla. According to the Student’s t-test (n = 9), * and ** represented P  0.1% bacterial reads in T1 soil (only 0.04% in CK1 soil) (see Supplementary Table S3a). In addition, 14 bacterial genera with relative abundance > 0.1% were more prevalent in CK2 samples, including Spororosarcina, Chryseollinea, Nitrososporia, Truepera, Actinomadura, two Planctomycetes (SM1A02 and I-8), and some Ptoteobacteria (Sulfurifustis, Polycyclovorans, Woodsholes, and H16) (Fig. 2b). In contrast, the Actinobacteria (Aeromicrobium, Nonomured, Nocardioides, Dactylosporangium, and Ilumatobacter) group and Proteobacetia (brachysporum_group, Ramlibacter, Dongia, Hyphomicrobium, Rhizobium, Sphingobium, Parablastomonas, Pseudoxanthononas, Dokdonella, and Pseudohoniella) group were more abundant in the T2 soil than in CK2 (see Fig. 2b and Supplementary Table S3b).
    Figure 2

    LDA histogram scores for bacterial genera with different abundance for the flowering stage (a) and fruiting stage (b) in the watermelon monoculture system.

    Full size image

    With respect to the fungal genera, LEfSe analysis showed that there was higher relative abundance of Schizothecium, Entoloma, Preussia, Lecanicillium, and Bipolairs in T1, whereas there was a higher relative abundance of Thanatephorus, Scopulariopsis, Fusarium, and Conocybe in CK1 (Fig. 3a) for the flowering stage. In the fruiting stage, Psathyrella, Filobasidium, Aphanoascus, Cladosporium, Microascus, and Scopulariopsis were found in CK2, while only Schizothecium was found in T2 (Fig. 3b). Furthermore, the second prevailing genus, Fusarium, accounted for 9.70% of all fungal genera in CK1 (only 0.64% in T1). The relative abundance of Fusarium was higher in CK2 than in T2 (see Supplementary Table S4).
    Figure 3

    LDA histogram scores for fungal genera with different abundance for the flowering stage (a) and fruiting stage (b) in the watermelon monoculture system.

    Full size image

    Microbial community variety and the link between genera abundance and environmental conditions
    Non-metric multidimensional scaling (NMDS) clearly indicated that there were considerable variations in the composition of the soil bacterial populations between the samples with (T1 and T2) and without (CK1 and CK2) wheat straw addition in the consecutive watermelon monoculture system in the two growth stages evaluated (Fig. 4a). In the NMDS plot, the nine replicates in the same groups were not closely located for the fungal communities in all the samples, which indicated that there was no distinct difference in fungal community composition between two treatments for the two growth stages (Fig. 4b). RDA revealed that the relative abundances of Planctomyces, Pirellula, and Exiguobacterium were positively correlated with the DI for bacteria (Fig. 5a and Supplementary Table S5a). The relative abundances of Aspergillus, Fusarium, Sopulariopsis, Cladosporium, and Aphanoascus were positively correlated with the DI for fungi (Fig. 5b and Supplementary Table S5b).
    Figure 4

    Non-metric multidimensional scaling (NMDS) according to the Euclidean distance plot of bacterial (a) and fungal (b) microbiota in the flowering stage (CK1 and T1) and fruiting stage (CK2 and T2).

    Full size image

    Figure 5

    Plots of redundancy analysis (RDA) ordination displaying the interactions between the top 10 bacterial (a) and fungal genera (b) and soil environmental variables. AP denotes available phosphorus; pH denotes the solar pH; EC denotes electrolyte conductivity; the disease index (DI) denotes healthy plants as “0”and Fusarium wilt plants as “1”. CK1 represents the soil without wheat straw addition at the watermelon flowering stage while T1 represents the soil with wheat straw addition at the watermelon flowering stage; CK2 represents the soil without wheat straw addition at the watermelon fruiting stage and T2 represents the soil with wheat straw addition at the watermelon fruiting stage.

    Full size image

    Fungal community network analysis
    Soil microbial network analysis is widely performed to understand the taxonomic and functional relations within complex microbial communities13. With respect to fungi, the top 300 OTUs of T1 and CK1 soil at the watermelon flowering stage were chosen for pMEN analysis (Fig. 6). The T1 network consisted of 180 nodes (OTUs), 1,036 connections, and 12 modules, with an average connectivity of 11.511, average path length of 2.999, and clustering coefficient of 0.278. The CK1 network consisted of 166 nodes, 741 connections, and 18 modules, with an average connectivity of 8.927, average path length of 2.920, and clustering coefficient of 0.155. The modularity proportion was higher in the T1 network, although fewer total modules were recognized (Table 1). Strikingly, there were more links in T1 soil (1,036 links) than in CK1 soil (741 links). The positive link/negative link ratio (P/N) was higher in T1 soil (P/N = 0.333) than in CK1 soil (P/N = 0.211), demonstrating that the T1 soil had more complex and positive co-occurrence correlations than the CK1 soil.
    Figure 6

    Network plots of fungal community at the order level from soil without (CK1) (a) and with (T1) (b) wheat straw addition at the watermelon flowering stage. The size of the node corresponds to the relative abundance of the OTUs. The node colors show various phylogenetic associations. Node (edge) connection lines represent co-occurrence with positive (blue) and negative (red) correlations.

    Full size image

    Table 1 Major topological properties of the empirical phylogenetic Molecular Ecological Networks (pMENs) of fungal communities for soil with (T1 and T2) and without (CK1 and CK2) wheat straw addition and their associated random pMENs.
    Full size table

    The top 300 OTUs of T2 and CK2 soil at the watermelon fruiting stage were also chosen for pMEN analysis (see Supplementary Fig. S3). The T2 network consisted of 202 OTU nodes, 1,040 connections, and 14 modules, with an average connectivity of 12.545, average path length of 2.727, and clustering coefficient of 0.214. The CK2 network consisted of 181 nodes, 739 links and 15 modules, with an average connectivity of 8.166, average path length of 3.186, and clustering coefficient of 0.264 (Table 1). Strikingly, there were more links in T2 soil (1,040 links) than in CK2 soil (739 links), which indicated that the T2 soil had more complex and stable microbial networks than the CK2 soil. In T2 soil, the P/N (P/N = 0.218) was lower than that in CK2 soil (P/N = 0.451), indicating that the T2 soil had more negative co-occurrence relationships in the microbial community than those in CK2 soil.
    In addition, CK1 and T1 networks shared 49 nodes (Fig. 7). Nodes of the Sordariales, Onygenales, Microascales, Hypocreales, Eurotiales, Agaricales, and Arachnomycetales genera dominated in both networks. The relative abundance of Sordariales and Hypocreales was higher in the two networks. Furthermore, there was a higher proportion of Sordariales-affiliated OTUs and a lower proportion of Hypocreales-affiliated OTUs in T1 compared to CK1 (Fig. 7a). However, 72 nodes were shared between CK2 and T2 networks. Nodes belonging to the Sordariales, Pleosporales, Onygenales, Microascales, Hypocreales, Eurotiales, and Agaricales genera dominated in both networks. Sordariales, Hypocreales, and Agaricales were relatively more abundant in these two networks. However, the relative abundance of Sordariales and Hypocreales had more significant differences in CK2 compared to T2. There was also a higher proportion of Sordariales-affiliated OTUs and a lower proportion of Hypocreales-affiliated OTUs in T2 compared to CK2 (Fig. 7b). These network analysis results suggested that Sordariales dominated in the T1 and T2 soils, which were treated with wheat straw, while Hypocreales dominated in the soil (CK1 and CK2) without wheat straw addition.
    Figure 7

    Relative abundance of nodes at the order level in modules inside the fungal network created from the flowering stage (a) and fruiting stage (b). Venn diagrams display the amount of shared and unshared network nodes in the soil sample with and without wheat straw addition.

    Full size image

    Bacterial community network analysis
    T1 and CK1 soil bacterial community analysis revealed similar sized networks with 224 and 221 nodes, respectively (see Supplementary Fig. S4 and Table S6). The average connectivity for the T1 and CK1 networks was 7.482 and 7.493, with an average path length of 4.273 and 3.557, respectively. The average clustering coefficient value (0.323 or 0.326) was comparable in the T1 and CK1 soil networks, while modularity was somewhat lower in the T1 network (0.403) than in the CK1 network (0.440). However, the number of modules in T1 (27) was higher than that in CK1 (22). In T1 and CK1 soil, the total number of links was 828 and 838 (P/N = 2.33 for T1 soil and P/N = 2.37 for CK1 soil), respectively. However, T2 and CK2 soil had different nodes (228 and 201, respectively) at the watermelon fruiting stage. Furthermore, the average connectivity was higher in T2 (4.263) than in CK2 (3.562) networks. The average path length, average clustering coefficient value, and modularity were higher in CK2 than in T2 networks (see Supplementary Fig. S5 and Table S6). In T2 and CK2 soils, the total number of links was 486 and 358 (P/N = 1.612 for T2 soil and P/N = 1.732 for CK2 soil), respectively. The data suggested that wheat straw addition did not affect the bacterial co-occurrence relationship in both the watermelon flowering and fruiting stages.
    Inside the T1 versus the CK1 network, a greater percentage of OTUs associated with Proteobacteria, and a reduced OTU ratio for Chloroflexi, Bacteroidetes, and Acidobacteria were found. (see Supplementary Fig. S6a). However, a higher proportion of Proteobacteria and Actinobacteria- affiliated OTUs and a lower proportion of Gemmatimonadetes, Euryarchaeota, Chloroflexi, and Bacteroidetes-affiliated OTUs inside the modules were identified in the T2 versus CK2 network (see Supplementary Fig. S6b). More