Increased economic drought impacts in Europe with anthropogenic warming
1.Drought in Central‐Northern Europe (EDO, 2018); https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201809_Central_North_Europe.pdf2.Drought in Europe (EDO, 2019); https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201908_Europe.pdf3.Kovats, R. S. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Fields, C. B. et al.) 1267–1326 (Cambridge Univ. Press, 2014).4.Spinoni, J., Naumann, G. & Vogt, J. V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Change 148, 113–130 (2017).Article
Google Scholar
5.Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).Article
Google Scholar
6.Döll, P., Fiedler, K. & Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 13, 2413 (2009).Article
Google Scholar
7.Wada, Y., Van Beek, L. P., Wanders, N. & Bierkens, M. F. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).Article
Google Scholar
8.Tijdeman, E., Hannaford, J. & Stahl, K. Human influences on streamflow drought characteristics in England and Wales. Hydrol. Earth Syst. Sci. 22, 1051–1064 (2018).Article
Google Scholar
9.Beniston, M. et al. Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81, 71–95 (2007).Article
Google Scholar
10.Nikulin, G., Kjellstrom, E., Hansson, U. L. F., Strandberg, G. & Ullerstig, A. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63, 41–55 (2011).Article
Google Scholar
11.Forzieri, G. et al. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108 (2014).Article
Google Scholar
12.Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421 (2018).Article
Google Scholar
13.Marx, A. et al. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 °C. Hydrol. Earth Syst. Sci. 22, 1017–1032 (2018).Article
Google Scholar
14.Stahl, K. et al. Impacts of European drought events: insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 16, 801–819 (2016).Article
Google Scholar
15.Mapping the Impacts of Natural hazards and Technological Accidents in Europe: An Overview of the Last Decade Technical Report No. 13/2010 (EEA, 2011); http://op.europa.eu/en/publication-detail/-/publication/4f5878ba-0947-4fb6-964b-8818cfda3de7/language-en16.Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004).Article
CAS
Google Scholar
17.Gil, M., Garrido, A. & Hernández-Mora, N. Direct and indirect economic impacts of drought in the agri-food sector in the Ebro River basin (Spain). Nat. Hazards Earth Syst. Sci. 13, 2679–2694 (2013).Article
Google Scholar
18.García-León, D., Standardi, G. & Staccione, A. An integrated approach for the estimation of agricultural drought costs. Land Use Policy 100, 104923 (2021).Article
Google Scholar
19.Byers, E. A., Coxon, G., Freer, J. & Hall, J. W. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain. Nat. Commun. 11, 2239 (2020).CAS
Article
Google Scholar
20.Salmoral, G., Rey, D., Rudd, A., Margon, Pde & Holman, I. A probabilistic risk assessment of the national economic impacts of regulatory drought management on irrigated agriculture. Earths Future 7, 178–196 (2019).Article
Google Scholar
21.Naumann, G., Spinoni, J., Vogt, J. V. & Barbosa, P. Assessment of drought damages and their uncertainties in Europe. Environ. Res. Lett. 10, 124013 (2015).Article
Google Scholar
22.Stagge, J. H., Kohn, I., Tallaksen, L. M. & Stahl, K. Modeling drought impact occurrence based on meteorological drought indices in Europe. J. Hydrol. 530, 37–50 (2015).Article
Google Scholar
23.Blauhut, V. et al. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrol. Earth Syst. Sci. 20, 2779–2800 (2016).Article
Google Scholar
24.Freire-González, J., Decker, C. & Hall, J. W. The economic impacts of droughts: a framework for analysis. Ecol. Econ. 132, 196–204 (2017).Article
Google Scholar
25.The 2015 Ageing Report: Underlying Assumptions and Projection Methodologies (European Commission, 2014).26.Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).Article
Google Scholar
27.Dosio, A. & Fischer, E. M. Will half a degree make a difference? Robust projections of indices of mean and extreme climate in Europe under 1.5 °C, 2 °C, and 3 °C global warming. Geophys. Res. Lett. 45, 935–944 (2018).Article
Google Scholar
28.Jacob, D. et al. Climate impacts in Europe under +1.5 °C global warming. Earths Future 6, 264–285 (2018).Article
Google Scholar
29.Alfieri, L., Dottori, F., Betts, R., Salamon, P. & Feyen, L. Multi-model projections of river flood risk in Europe under global warming. Climate 6, 6 (2018).Article
Google Scholar
30.Vousdoukas, M. I. et al. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nat. Clim. Change 8, 776–780 (2018).Article
Google Scholar
31.Estrela, T. & Vargas, E. Drought management plans in the European Union. The case of Spain. Water Resour. Manag. 26, 1537–1553 (2012).Article
Google Scholar
32.Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Change 42, 200–214 (2017).Article
Google Scholar
33.Christensen, P., Gillingham, K. & Nordhaus, W. Uncertainty in forecasts of long-run economic growth. Proc. Natl Acad. Sci. USA 115, 5409–5414 (2018).CAS
Article
Google Scholar
34.Global Assessment Report on Disaster Risk Reduction 2019 (United Nations Office for Disaster Risk Reduction, 2019).35.Forzieri, G. et al. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Change 48, 97–107 (2018).Article
Google Scholar
36.Erfurt, M., Glaser, R. & Blauhut, V. Changing impacts and societal responses to drought in southwestern Germany since 1800. Reg. Environ. Change 19, 2311–2323 (2019).37.Swiss Re The hidden risks of climate change: an increase in property damage from soil subsidence in Europe. PreventionWeb https://www.preventionweb.net/publications/view/20623 (2011).38.Formetta, G. & Feyen, L. Empirical evidence of declining global vulnerability to climate-related hazards. Glob. Environ. Change 57, 101920 (2019).Article
Google Scholar
39.Zhang, H., Li, Y. & Zhu, J.-K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 4, 989–996 (2018).Article
Google Scholar
40.Lohrmann, A., Farfan, J., Caldera, U., Lohrmann, C. & Breyer, C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nat. Energy 4, 1040–1048 (2019).Article
Google Scholar
41.Hallegatte, S., Przyluski, V. & Vogt-Schilb, A. Building world narratives for climate change impact, adaptation and vulnerability analyses. Nat. Clim. Change 1, 151–155 (2011).Article
Google Scholar
42.Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617–622 (2018).Article
Google Scholar
43.Guerreiro, S. B., Dawson, R. J., Kilsby, C., Lewis, E. & Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13, 034009 (2018).Article
Google Scholar
44.Vetter, T. et al. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change 141, 419–433 (2017).CAS
Article
Google Scholar
45.Hattermann, F. F. et al. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environ. Res. Lett. 13, 015006 (2018).Article
Google Scholar
46.Hattermann, F. F. et al. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change 141, 561–576 (2017).Article
Google Scholar
47.Addressing the Challenge of Water Scarcity and Droughts in the European Union (European Commission, 2007); https://www.eea.europa.eu/policy-documents/addressing-the-challenge-of-water48.Smith, A. B. U.S. Billion-Dollar Weather and Climate Disasters, 1980–Present (NCEI Accession 0209268) (NOAA, 2020); https://doi.org/10.25921/STKW-7W7349.Martin-Ortega, J., González-Eguino, M. & Markandya, A. The costs of drought: the 2007/2008 case of Barcelona. Water Policy 14, 539–560 (2012).Article
Google Scholar
50.Zampieri, M. et al. Climate resilience of the top ten wheat producers in the Mediterranean and the Middle East. Reg. Environ. Change 20, 41 (2020).Article
Google Scholar
51.Vliet, M. T. H., van, Vögele, S. & Rübbelke, D. Water constraints on European power supply under climate change: impacts on electricity prices. Environ. Res. Lett. 8, 035010 (2013).Article
Google Scholar
52.Lehner, B., Czisch, G. & Vassolo, S. The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy 33, 839–855 (2005).Article
Google Scholar
53.Jenkins, K. Indirect economic losses of drought under future projections of climate change: a case study for Spain. Nat. Hazards 69, 1967–1986 (2013).Article
Google Scholar
54.Gall, M., Borden, K. A. & Cutter, S. L. When do losses count? Six fallacies of natural hazards loss data. Bull. Am. Meteorol. Soc. 90, 799–810 (2009).Article
Google Scholar
55.Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).CAS
Article
Google Scholar
56.Choat, B. et al. Triggers of tree mortality under drought. Nature https://www.nature.com/articles/s41586-018-0240-x (2018).57.Seidl, R. et al. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 9, 1626 (2018).Article
CAS
Google Scholar
58.Sutanto, S. J., Vitolo, C., Di Napoli, C., D’Andrea, M. & Van Lanen, H. A. J. Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 134, 105276 (2020).Article
Google Scholar
59.de Ruiter, M. C. et al. Why we can no longer ignore consecutive disasters. Earths Future 8, e2019EF001425 (2020).Article
Google Scholar
60.Ford, T. W. & Labosier, C. F. Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. For. Meteorol. 247, 414–423 (2017).Article
Google Scholar
61.Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).Article
Google Scholar
62.Yuan, X., Ma, Z., Pan, M. & Shi, C. Microwave remote sensing of short-term droughts during crop growing seasons. Geophys. Res. Lett. 42, 4394–4401 (2015).Article
Google Scholar
63.Nguyen, H. et al. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 14, 064016 (2019).Article
Google Scholar
64.Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).Article
Google Scholar
65.Hagenlocher, M. et al. Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda. Environ. Res. Lett. 14, 083002 (2019).Article
Google Scholar
66.Jacobs-Crisioni, C. et al. The LUISA Territorial Reference Scenario 2017: A Technical Description (Publications Office of the European Union, 2017); https://ec.europa.eu/jrc/en/publication/luisa-territorial-reference-scenario-201767.Capros, P. et al. GEM-E3 Model Documentation (Publications Office of the European Union, 2013); https://publications.jrc.ec.europa.eu/repository/handle/111111111/3236668.Keramidas, K., Kitous, A., Després, J. & Schmitz, A. POLES-JRC Model Documentation (Publications Office of the European Union, 2017); https://publications.jrc.ec.europa.eu/repository/handle/JRC11375769.Feyen, L. & Dankers, R. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos. 114, D17116 (2009).Article
Google Scholar
70.Tallaksen, L. M. & Van Lanen, H. A. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater Vol. 48 (Elsevier, 2004).71.Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change 75, 273–299 (2006).Article
Google Scholar
72.Roudier, P. et al. Projections of future floods and hydrological droughts in Europe under a +2 °C global warming. Climatic Change 135, 341–355 (2016).Article
Google Scholar
73.Knijff, J. M. V. D., Younis, J. & Roo, A. P. J. D. LISFLOOD: a GIS‐based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 24, 189–212 (2010).Article
Google Scholar
74.Salamon, P. et al. EFAS Upgrade for the Extended Model Domain (Publications Office of the European Union, 2019); https://publications.jrc.ec.europa.eu/repository/handle/111111111/5558775.Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).Article
Google Scholar
76.Knutti, R. et al. Meeting Report. In IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections (eds Stocker, T. F. et al.) (IPCC, 2010).77.Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. Lond. A 475, 20190013 (2019).
Google Scholar
78.Mentaschi, L. et al. Independence of future changes of river runoff in Europe from the pathway to global warming. Climate 8, 22 (2020).Article
Google Scholar
79.Mentaschi, L. et al. The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis. Hydrol. Earth Syst. Sci. 20, 3527–3547 (2016).Article
Google Scholar
80.Forzieri, G. et al. Resilience of Large Investments and Critical Infrastructures in Europe to Climate Change (Publications Office of the European Union, 2015); https://publications.jrc.ec.europa.eu/repository/handle/111111111/3889481.Batista e Silva, F. et al. HARCI-EU, a harmonized gridded dataset of critical infrastructures in Europe for large-scale risk assessments. Sci. Data 6, 126 (2019).Article
Google Scholar
82.Doornkamp, J. C. Clay shrinkage induced subsidence. Geogr. J. 159, 196–202 (1993).Article
Google Scholar
83.Boivin, P., Garnier, P. & Tessier, D. Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci. Soc. Am. J. 68, 1145–1153 (2004).CAS
Article
Google Scholar
84.Hiederer, R. Mapping Soil Properties for Europe—Spatial Representation of Soil Database Attributes (Publications Office of the European Union, 2013); https://publications.jrc.ec.europa.eu/repository/handle/111111111/2917085.Crilly, M. Analysis of a database of subsidence damage. Struct. Surv. 19, 7–15 (2001).Article
Google Scholar
86.Corti, T., Wüest, M., Bresch, D. & Seneviratne, S. I. Drought-induced building damages from simulations at regional scale. Nat. Hazards Earth Syst. Sci. 11, 3335–3342 (2011).Article
Google Scholar
87.Batista e Silva, F., Lavalle, C. & Koomen, E. A procedure to obtain a refined European land use/cover map. J. Land Use Sci. 8, 255–283 (2013).Article
Google Scholar
88.Florczyk, A. et al. GHSL Data Package 2019 (Publications Office of the European Union, 2019); https://publications.jrc.ec.europa.eu/repository/handle/111111111/5655289.Kron, W., Steuer, M., Löw, P. & Wirtz, A. How to deal properly with a natural catastrophe database—analysis of flood losses. Nat. Hazards Earth Syst. Sci. 12, 535–550 (2012).90.Felbermayr, G. & Gröschl, J. Naturally negative: the growth effects of natural disasters. J. Dev. Econ. 111, 92–106 (2014).Article
Google Scholar More