In-stream turbines for rethinking hydropower development in the Amazon basin
1.Renewable Capacity Highlights (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Mar/RE_capacity_highlights_2019.pdf2.Renewable Energy Highlights (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jul/IRENA_Renewable_energy_highlights_July_2019.pdf3.Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 201809426 (2018).Article
CAS
Google Scholar
4.Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).Article
Google Scholar
5.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).Article
CAS
Google Scholar
6.Pokhrel, Y., Shin, S., Lin, Z., Yamazaki, D. & Qi, J. Potential disruption of flood dynamics in the Lower Mekong River Basin due to upstream flow regulation. Sci. Rep. 8, 17767 (2018).Article
CAS
Google Scholar
7.Pokhrel, Y. et al. A review of the integrated effects of changing climate, land use, and dams on Mekong River Hydrology. Water 10, 266 (2018).Article
Google Scholar
8.Stone, R. Dam-building threatens Mekong fisheries. Science 354, 1084–1085 (2016).Article
CAS
Google Scholar
9.Fearnside, P. M. & Pueyo, S. Greenhouse-gas emissions from tropical dams. Nat. Clim. Change 2, 382 (2012).Article
CAS
Google Scholar
10.O’Connor, J. E., Duda, J. J. & Grant, G. E. 1000 dams down and counting. Science 348, 496–497 (2015).Article
Google Scholar
11.Timpe, K. & Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 3, e1700611 (2017).Article
Google Scholar
12.Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).Article
CAS
Google Scholar
13.Forsberg, B. R. et al. The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 12, e0182254 (2017).Article
CAS
Google Scholar
14.Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).Article
CAS
Google Scholar
15.Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).Article
Google Scholar
16.Pokhrel, Y. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).Article
CAS
Google Scholar
17.Eiriksdottir, E. S., Oelkers, E. H., Hardardottir, J. & Gislason, S. R. The impact of damming on riverine fluxes to the ocean: a case study from Eastern Iceland. Water Res. 113, 124–138 (2017).Article
CAS
Google Scholar
18.Yang, H. F. et al. Erosion potential of the Yangtze Delta under sediment starvation and climate change. Sci. Rep. 7, 10535 (2017).Article
CAS
Google Scholar
19.Cochrane, S. M. V., Matricardi, E. A. T., Numata, I. & Lefebvre, P. A. Landsat-based analysis of mega dam flooding impacts in the Amazon compared to associated environmental impact assessments: upper Madeira River example 2006–2015. Remote Sens. Appl. Soc. Environ. 7, 1–8 (2017).
Google Scholar
20.Fearnside, P. M. Impacts of Brazil’s Madeira River dams: unlearned lessons for hydroelectric development in Amazonia. Environ. Sci. Policy 38, 164–172 (2014).Article
Google Scholar
21.VanZwieten, J. et al. In-stream hydrokinetic power: review and appraisal. J. Energy Eng. 141, 04014024 (2014).Article
Google Scholar
22.Pokhrel, Y. N., Oki, T. & Kanae, S. A grid based assessment of global theoretical hydropower potential. Annu. J. Hydraul. Eng. 52, 7–12 (2008).Article
Google Scholar
23.Zhou, Y. et al. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 8, 2622–2633 (2015).Article
Google Scholar
24.Hoes, O. A. C., Meijer, L. J. J., Van Der Ent, R. J. & Van De Giesen, N. C. Systematic high-resolution assessment of global hydropower potential. PLoS ONE 12, e0171844 (2017).Article
CAS
Google Scholar
25.Bryden, I. G. & Couch, S. J. ME1—marine energy extraction: tidal resource analysis. Renew. Energy 31, 133–139 (2006).Article
Google Scholar
26.Karsten, R., Swan, A. & Culina, J. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philos. Trans. R. Soc. A 371, 20120189 (2013).Article
Google Scholar
27.Malki, R., Masters, I., Williams, A. J. & Nick Croft, T. Planning tidal stream turbine array layouts using a coupled blade element momentum—computational fluid dynamics model. Renew. Energy 63, 46–54 (2014).Article
Google Scholar
28.Vennell, R., Funke, S. W., Draper, S., Stevens, C. & Divett, T. Designing large arrays of tidal turbines: a synthesis and review. Renew. Sustain. Energy Rev. 41, 454–472 (2015).Article
Google Scholar
29.Assessment and Mapping of the Riverine Hydrokinetic Energy Resource in the Continental United States Report No. 1026880 (Electrical Power Research Institute, 2012).30.Ortega-Achury, S., McAnally, W., Davis, T. & Martin, J. Hydrokinetic Power Review (Mississippi State Univ., 2010).31.Garrett, C. & Cummins, P. The efficiency of a turbine in a tidal channel. J. Fluid Mech. 588, 243–251 (2007).Article
Google Scholar
32.Garrett, C. & Cummins, P. Limits to tidal current power. Renew. Energy 33, 2485–2490 (2008).Article
Google Scholar
33.Miller, G., Franceschi, J., Lese, W. & Rico, J. The Allocation of Kinetic Hydro Energy Conversion Systems (KHECS) in USA Drainage Basins: Regional Resource and Potential Power (USDA,1986).34.Chaudhari, S., Pokhrel, Y., Moran, E. F. & Miguez-Macho, G. Multi-decadal hydrologic change and variability in the Amazon River Basin: understanding terrestrial water storage variations and drought characteristics. Hydrol. Earth Syst. Sci. 23, 2841–2862 (2019).Article
Google Scholar
35.Pokhrel, Y. N., Fan, Y., Miguez-Macho, G., Yeh, P. J. F. & Han, S. C. The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J. Geophys. Res. Atmos. 118, 3233–3244 (2013).Article
Google Scholar
36.Ten-Year Energy Expansion Plan 2029 (Ministry of Mines and Energy, 2019).37.Ansar, A., Flyvbjerg, B., Budzier, A. & Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69, 43–56 (2014).Article
Google Scholar
38.Petheram, C. & McMahon, T. A. Dams, dam costs and damnable cost overruns. J. Hydrol. X 3, 100026 (2019).Article
Google Scholar
39.Awojobi, O. & Jenkins, G. P. Were the hydro dams financed by the World Bank from 1976 to 2005 worthwhile? Energy Policy 86, 222–232 (2015).Article
Google Scholar
40.Previsic, M., Bedard, R. & Polagye, B. System Level Design, Performance, Cost and Economic Assessment—Alaska River In-stream Power Plants (EPRI, 2008).41.Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World (USDOE, 2020); https://doi.org/10.2172/163287842.Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).Article
CAS
Google Scholar
43.Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).44.Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).Article
CAS
Google Scholar
45.Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017539 (2012).46.Shin, S., Pokhrel, Y. & Miguez-Macho, G. High resolution modeling of reservoir release and storage dynamics at the continental scale. Water Resour. Res. 55, 787–810 (2019).Article
Google Scholar
47.Pokhrel, Y. et al. Incorporating anthropogenic water regulation modules into a land surface model. J. Hydrometeorol. 13, 255–269 (2012).Article
Google Scholar
48.Pokhrel, Y. N., Fan, Y. & Miguez-Macho, G. Potential hydrologic changes in the Amazon by the end of the 21st century and the groundwater buffer. Environ. Res. Lett. 9, 084004 (2014).Article
Google Scholar
49.Yamazaki, D., Oki, T. & Kanae, S. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci. 13, 2241–2251 (2009).Article
Google Scholar
50.Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).Article
Google Scholar
51.Coe, M. T., Costa, M. H. & Howard, E. A. Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrol. Process. 22, 2542–2553 (2008).Article
Google Scholar
52.Mulligan, M., Saenz-Cruz, L., van Soesbergen, A., Smith, V. T. & Zurita, L. Global Dams Database and Geowiki Version 1 (Geodata, 2009); http://geodata.policysupport.org/dams53.Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).Article
Google Scholar
54.Guney, M. S. Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew. Sustain. Energy Rev. 15, 3669–3675 (2011).Article
Google Scholar
55.Shin, S. et al. High resolution modeling of river–floodplain–reservoir inundation dynamics in the Mekong River Basin. Water Resour. Res. 56, e2019WR026449 (2020).Article
Google Scholar
56.Previsic, M. Cost Breakdown Structure for River Current Device (Sandia National Laboratory, 2012).57.Renewable Power Generation Costs in 2019 (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf58.Gridded Population of the World v.4 (CIESIN, 2016); https://doi.org/10.7927/H4SF2T42 More