More stories

  • in

    In-stream turbines for rethinking hydropower development in the Amazon basin

    1.Renewable Capacity Highlights (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Mar/RE_capacity_highlights_2019.pdf2.Renewable Energy Highlights (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jul/IRENA_Renewable_energy_highlights_July_2019.pdf3.Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 201809426 (2018).Article 
    CAS 

    Google Scholar 
    4.Gernaat, D. E. H. J., Bogaart, P. W., Vuuren, D. P. V., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).Article 

    Google Scholar 
    5.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).Article 
    CAS 

    Google Scholar 
    6.Pokhrel, Y., Shin, S., Lin, Z., Yamazaki, D. & Qi, J. Potential disruption of flood dynamics in the Lower Mekong River Basin due to upstream flow regulation. Sci. Rep. 8, 17767 (2018).Article 
    CAS 

    Google Scholar 
    7.Pokhrel, Y. et al. A review of the integrated effects of changing climate, land use, and dams on Mekong River Hydrology. Water 10, 266 (2018).Article 

    Google Scholar 
    8.Stone, R. Dam-building threatens Mekong fisheries. Science 354, 1084–1085 (2016).Article 
    CAS 

    Google Scholar 
    9.Fearnside, P. M. & Pueyo, S. Greenhouse-gas emissions from tropical dams. Nat. Clim. Change 2, 382 (2012).Article 
    CAS 

    Google Scholar 
    10.O’Connor, J. E., Duda, J. J. & Grant, G. E. 1000 dams down and counting. Science 348, 496–497 (2015).Article 

    Google Scholar 
    11.Timpe, K. & Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 3, e1700611 (2017).Article 

    Google Scholar 
    12.Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).Article 
    CAS 

    Google Scholar 
    13.Forsberg, B. R. et al. The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 12, e0182254 (2017).Article 
    CAS 

    Google Scholar 
    14.Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).Article 
    CAS 

    Google Scholar 
    15.Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).Article 

    Google Scholar 
    16.Pokhrel, Y. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nat. Geosci. 5, 389–392 (2012).Article 
    CAS 

    Google Scholar 
    17.Eiriksdottir, E. S., Oelkers, E. H., Hardardottir, J. & Gislason, S. R. The impact of damming on riverine fluxes to the ocean: a case study from Eastern Iceland. Water Res. 113, 124–138 (2017).Article 
    CAS 

    Google Scholar 
    18.Yang, H. F. et al. Erosion potential of the Yangtze Delta under sediment starvation and climate change. Sci. Rep. 7, 10535 (2017).Article 
    CAS 

    Google Scholar 
    19.Cochrane, S. M. V., Matricardi, E. A. T., Numata, I. & Lefebvre, P. A. Landsat-based analysis of mega dam flooding impacts in the Amazon compared to associated environmental impact assessments: upper Madeira River example 2006–2015. Remote Sens. Appl. Soc. Environ. 7, 1–8 (2017).
    Google Scholar 
    20.Fearnside, P. M. Impacts of Brazil’s Madeira River dams: unlearned lessons for hydroelectric development in Amazonia. Environ. Sci. Policy 38, 164–172 (2014).Article 

    Google Scholar 
    21.VanZwieten, J. et al. In-stream hydrokinetic power: review and appraisal. J. Energy Eng. 141, 04014024 (2014).Article 

    Google Scholar 
    22.Pokhrel, Y. N., Oki, T. & Kanae, S. A grid based assessment of global theoretical hydropower potential. Annu. J. Hydraul. Eng. 52, 7–12 (2008).Article 

    Google Scholar 
    23.Zhou, Y. et al. A comprehensive view of global potential for hydro-generated electricity. Energy Environ. Sci. 8, 2622–2633 (2015).Article 

    Google Scholar 
    24.Hoes, O. A. C., Meijer, L. J. J., Van Der Ent, R. J. & Van De Giesen, N. C. Systematic high-resolution assessment of global hydropower potential. PLoS ONE 12, e0171844 (2017).Article 
    CAS 

    Google Scholar 
    25.Bryden, I. G. & Couch, S. J. ME1—marine energy extraction: tidal resource analysis. Renew. Energy 31, 133–139 (2006).Article 

    Google Scholar 
    26.Karsten, R., Swan, A. & Culina, J. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philos. Trans. R. Soc. A 371, 20120189 (2013).Article 

    Google Scholar 
    27.Malki, R., Masters, I., Williams, A. J. & Nick Croft, T. Planning tidal stream turbine array layouts using a coupled blade element momentum—computational fluid dynamics model. Renew. Energy 63, 46–54 (2014).Article 

    Google Scholar 
    28.Vennell, R., Funke, S. W., Draper, S., Stevens, C. & Divett, T. Designing large arrays of tidal turbines: a synthesis and review. Renew. Sustain. Energy Rev. 41, 454–472 (2015).Article 

    Google Scholar 
    29.Assessment and Mapping of the Riverine Hydrokinetic Energy Resource in the Continental United States Report No. 1026880 (Electrical Power Research Institute, 2012).30.Ortega-Achury, S., McAnally, W., Davis, T. & Martin, J. Hydrokinetic Power Review (Mississippi State Univ., 2010).31.Garrett, C. & Cummins, P. The efficiency of a turbine in a tidal channel. J. Fluid Mech. 588, 243–251 (2007).Article 

    Google Scholar 
    32.Garrett, C. & Cummins, P. Limits to tidal current power. Renew. Energy 33, 2485–2490 (2008).Article 

    Google Scholar 
    33.Miller, G., Franceschi, J., Lese, W. & Rico, J. The Allocation of Kinetic Hydro Energy Conversion Systems (KHECS) in USA Drainage Basins: Regional Resource and Potential Power (USDA,1986).34.Chaudhari, S., Pokhrel, Y., Moran, E. F. & Miguez-Macho, G. Multi-decadal hydrologic change and variability in the Amazon River Basin: understanding terrestrial water storage variations and drought characteristics. Hydrol. Earth Syst. Sci. 23, 2841–2862 (2019).Article 

    Google Scholar 
    35.Pokhrel, Y. N., Fan, Y., Miguez-Macho, G., Yeh, P. J. F. & Han, S. C. The role of groundwater in the Amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with GRACE. J. Geophys. Res. Atmos. 118, 3233–3244 (2013).Article 

    Google Scholar 
    36.Ten-Year Energy Expansion Plan 2029 (Ministry of Mines and Energy, 2019).37.Ansar, A., Flyvbjerg, B., Budzier, A. & Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69, 43–56 (2014).Article 

    Google Scholar 
    38.Petheram, C. & McMahon, T. A. Dams, dam costs and damnable cost overruns. J. Hydrol. X 3, 100026 (2019).Article 

    Google Scholar 
    39.Awojobi, O. & Jenkins, G. P. Were the hydro dams financed by the World Bank from 1976 to 2005 worthwhile? Energy Policy 86, 222–232 (2015).Article 

    Google Scholar 
    40.Previsic, M., Bedard, R. & Polagye, B. System Level Design, Performance, Cost and Economic Assessment—Alaska River In-stream Power Plants (EPRI, 2008).41.Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World (USDOE, 2020); https://doi.org/10.2172/163287842.Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).Article 
    CAS 

    Google Scholar 
    43.Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).44.Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).Article 
    CAS 

    Google Scholar 
    45.Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017539 (2012).46.Shin, S., Pokhrel, Y. & Miguez-Macho, G. High resolution modeling of reservoir release and storage dynamics at the continental scale. Water Resour. Res. 55, 787–810 (2019).Article 

    Google Scholar 
    47.Pokhrel, Y. et al. Incorporating anthropogenic water regulation modules into a land surface model. J. Hydrometeorol. 13, 255–269 (2012).Article 

    Google Scholar 
    48.Pokhrel, Y. N., Fan, Y. & Miguez-Macho, G. Potential hydrologic changes in the Amazon by the end of the 21st century and the groundwater buffer. Environ. Res. Lett. 9, 084004 (2014).Article 

    Google Scholar 
    49.Yamazaki, D., Oki, T. & Kanae, S. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci. 13, 2241–2251 (2009).Article 

    Google Scholar 
    50.Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 89, 93–94 (2008).Article 

    Google Scholar 
    51.Coe, M. T., Costa, M. H. & Howard, E. A. Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrol. Process. 22, 2542–2553 (2008).Article 

    Google Scholar 
    52.Mulligan, M., Saenz-Cruz, L., van Soesbergen, A., Smith, V. T. & Zurita, L. Global Dams Database and Geowiki Version 1 (Geodata, 2009); http://geodata.policysupport.org/dams53.Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).Article 

    Google Scholar 
    54.Guney, M. S. Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew. Sustain. Energy Rev. 15, 3669–3675 (2011).Article 

    Google Scholar 
    55.Shin, S. et al. High resolution modeling of river–floodplain–reservoir inundation dynamics in the Mekong River Basin. Water Resour. Res. 56, e2019WR026449 (2020).Article 

    Google Scholar 
    56.Previsic, M. Cost Breakdown Structure for River Current Device (Sandia National Laboratory, 2012).57.Renewable Power Generation Costs in 2019 (International Renewable Energy Agency, 2019); https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf58.Gridded Population of the World v.4 (CIESIN, 2016); https://doi.org/10.7927/H4SF2T42 More

  • in

    Ultra-strong polymeric hollow fiber membranes for saline dewatering and desalination

    Characteristics of PES hollow fiber membrane substratesFor a TFC hollow fiber membrane, the mechanical strength is dominated or controlled by the hollow fiber membrane substrate because the mechanical strength of the ultrathin selective layer of  PT30-D. This is because the structural parameters of the three membranes are in the order of PT22-D  More

  • in

    Addressing the contribution of indirect potable reuse to inland freshwater salinization

    1.Cañedo-Argüelles, M., Kefford, B. & Schäfer, R. Salt in freshwaters: causes, effects and prospects—introduction to the theme issue. Philos. Trans. R. Soc. Lond. B 374, 20180002 (2018).Article 
    CAS 

    Google Scholar 
    2.Williams, W. D. Anthropogenic salinisation of inland waters. Hydrobiologia 466, 329–337 (2001).Article 

    Google Scholar 
    3.Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl Acad. Sci. USA 114, 4453–4458 (2017).CAS 
    Article 

    Google Scholar 
    4.Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl Acad. Sci. USA 102, 13517–13520 (2005).CAS 
    Article 

    Google Scholar 
    5.Stets, E. G. et al. Landscape drivers of dynamic change in water quality of US rivers. Environ. Sci. Technol. 54, 4336–4343 (2020).CAS 
    Article 

    Google Scholar 
    6.Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).CAS 
    Article 

    Google Scholar 
    7.Bird, D. L., Groffman, P. M., Salice, C. J. & Moore, J. Steady-state land cover but non-steady-state major ion chemistry in urban streams. Environ. Sci. Technol. 52, 13015–13026 (2018).CAS 
    Article 

    Google Scholar 
    8.Godwin, K., Hafner, S. & Buff, M. Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application. Environ. Pollut. 124, 273–281 (2003).CAS 
    Article 

    Google Scholar 
    9.Kelly, V. R. et al. Long-term sodium chloride retention in a rural watershed: legacy effects of road salt on streamwater concentration. Environ. Sci. Technol. 42, 410–415 (2008).CAS 
    Article 

    Google Scholar 
    10.Overbo, A., Heger, S. & Gulliver, J. Evaluation of chloride contributions from major point and nonpoint sources in a northern U.S. state. Sci. Total Environ. 764, 144179 (2021).CAS 
    Article 

    Google Scholar 
    11.Olson, J. R. Predicting combined effects of land use and climate change on river and stream salinity. Philos. Trans. R. Soc. Lond. B 374, 20180005 (2018).Article 
    CAS 

    Google Scholar 
    12.Corsi, S. R., Cicco, L. A. D., Lutz, M. A. & Hirsch, R. M. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Sci. Total Environ. 508, 488–497 (2015).CAS 
    Article 

    Google Scholar 
    13.Kaushal, S. S. et al. Novel ‘chemical cocktails’ in inland waters are a consequence of the freshwater salinization syndrome. Philos. Trans. R. Soc. Lond. B 374, 20180017 (2018).Article 
    CAS 

    Google Scholar 
    14.Moore, J., Fanelli, R. M. & Sekellick, A. J. High-frequency data reveal deicing salts drive elevated specific conductance and chloride along with pervasive and frequent exceedances of the US Environmental Protection Agency aquatic life criteria for chloride in urban streams. Environ. Sci. Technol. 54, 778–789 (2019).Article 
    CAS 

    Google Scholar 
    15.Löfgren, S. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut. 130, 863–868 (2001).Article 

    Google Scholar 
    16.Daley, M. L., Potter, J. D. & McDowell, W. H. Salinization of urbanizing New Hampshire streams and groundwater: effects of road salt and hydrologic variability. J. North Am. Benthol Soc. 28, 929–940 (2009).Article 

    Google Scholar 
    17.Cooper, C. A., Mayer, P. M. & Faulkner, B. R. Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream. Biogeochemistry 121, 149–166 (2014).CAS 
    Article 

    Google Scholar 
    18.Snodgrass, J. W. et al. Influence of modern stormwater management practices on transport of road salt to surface waters. Environ. Sci. Technol. 51, 4165–4172 (2017).CAS 
    Article 

    Google Scholar 
    19.International Stormwater BMP Database: 2020 Summary Statistics Project No. 4968 (The Water Research Foundation, 2020).20.Venkatesan, A. K., Ahmad, S., Johnson, W. & Batista, J. R. Systems dynamic model to forecast salinity load to the Colorado River due to urbanization within the Las Vegas valley. Sci. Total Environ. 409, 2616–2625 (2011).CAS 
    Article 

    Google Scholar 
    21.Steele, M. & Aitkenhead-Peterson, J. Long-term sodium and chloride surface water exports from the Dallas/Fort Worth region. Sci. Total Environ. 409, 3021–3032 (2011).CAS 
    Article 

    Google Scholar 
    22.Davies, P. J., Wright, I. A., Jonasson, O. J. & Findlay, S. J. Impact of concrete and PVC pipes on urban water chemistry. Urban Water J. 7, 233–241 (2010).CAS 
    Article 

    Google Scholar 
    23.Wright, I. A., Davies, P. J., Findlay, S. J. & Jonasson, O. J. A new type of water pollution: concrete drainage infrastructure and geochemical contamination of urban waters. Mar. Freshw. Res. 62, 1355–1361 (2011).CAS 
    Article 

    Google Scholar 
    24.Moore, J., Bird, D. L., Dobbis, S. K. & Woodward, G. Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds. Environ. Sci. Technol. Lett. 4, 198–204 (2017).CAS 
    Article 

    Google Scholar 
    25.Tippler, C., Wright, I. A., Davies, P. J. & Hanlon, A. The influence of concrete on the geochemical qualities of urban streams. Mar. Freshw. Res. 65, 1009–1017 (2014).CAS 
    Article 

    Google Scholar 
    26.McLennan, S. M. Weathering and global denudation. J. Geol. 101, 295–303 (1993).Article 

    Google Scholar 
    27.Wilkinson, B. H. Humans as geologic agents: a deep-time perspective. Geology 33, 161–164 (2005).Article 

    Google Scholar 
    28.Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. Lond. B 374, 20180019 (2018).Article 
    CAS 

    Google Scholar 
    29.Haq, S., Kaushal, S. S. & Duan, S. Episodic salinization and freshwater salinization syndrome mobilize base cations, carbon, and nutrients to streams across urban regions. Biogeochemistry 141, 463–486 (2018).CAS 
    Article 

    Google Scholar 
    30.Shanley, J. B. Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts. J. Environ. Qual. 23, 977–986 (1994).CAS 
    Article 

    Google Scholar 
    31.Hong, P. K. A. & Macauley, Y. Corrosion and leaching of copper tubing exposed to chlorinated drinking water. Water Air Soil Pollut. 108, 457–471 (1998).CAS 
    Article 

    Google Scholar 
    32.Nguyen, C. K., Stone, K. R. & Edwards, M. A. Chloride-to-sulfate mass ratio: practical studies in galvanic corrosion of lead solder. J. Am. Water Works Assoc. 103, 81–92 (2011).CAS 
    Article 

    Google Scholar 
    33.Stets, E., Lee, C., Lytle, D. & Schock, M. Increasing chloride in rivers of the conterminous US and linkages to potential corrosivity and lead action level exceedances in drinking water. Sci. Total Environ. 613-614, 1498–1509 (2018).CAS 
    Article 

    Google Scholar 
    34.Dietrich, A. M. & Burlingame, G. A. Critical review and rethinking of USEPA secondary standards for maintaining organoleptic quality of drinking water. Environ. Sci. Technol. 49, 708–720 (2015).CAS 
    Article 

    Google Scholar 
    35.Sodium in drinking water. In Guidelines for Drinking-Water Quality 2nd edn, Vol. 2, Health Criteria and Other Supporting Information (World Health Organization, 1996).36.Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Sodium EPA 822-R-03-006 (EPA, 2003).37.National Research Council Water Reuse: Potential for Expanding the Nation’s Water Supply Through Reuse of Municipal Wastewater (National Academies Press, 2012).38.Mukherjee, M. & Jensen, O. Making water reuse safe: a comparative analysis of the development of regulation and technology uptake in the US and Australia. Saf. Sci. 121, 5–14 (2020).Article 

    Google Scholar 
    39.EPA & CDM Smith 2017 Potable Reuse Compendium (EPA, 2017); https://www.epa.gov/sites/production/files/2018-01/documents/potablereusecompendium_3.pdf40.Draft National Water Reuse Action Plan (EPA, 2019); https://www.epa.gov/waterreuse/draft-national-water-reuse-action-plan41.Martin, B. & Via, S. Integrating water reuse into the US water supply portfolio. J. Am. Water Works Assoc. 112, 8–14 (2020).Article 

    Google Scholar 
    42.Freshwater: Supply Concerns Continue, and Uncertainties Complicate Planning Technical Report GAO-14-43 (GAO, 2014); https://www.gao.gov/assets/670/663343.pdf43.Rice, J. & Westerhoff, P. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution. Nat. Geosci. 10, 587–591 (2017).CAS 
    Article 

    Google Scholar 
    44.Wiener, M. J., Moreno, S., Jafvert, C. T. & Nies, L. F. Time series analysis of water use and indirect reuse within a HUC-4 basin (Wabash) over a nine year period. Sci. Total Environ. 738, 140221 (2020).CAS 
    Article 

    Google Scholar 
    45.Harris-Lovett, S. & Sedlak, D. Protecting the sewershed. Science 369, 1429–1430 (2020).CAS 
    Article 

    Google Scholar 
    46.Falconer, I. R., Chapman, H. F., Moore, M. R. & Ranmuthugala, G. Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ. Toxicol. 21, 181–191 (2006).CAS 
    Article 

    Google Scholar 
    47.Novotny, E. V., Sander, A. R., Mohseni, O. & Stefan, H. G. Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour. Res. 45, W12410 (2009).Article 

    Google Scholar 
    48.Potter, J. D., McDowell, W. H., Helton, A. M. & Daley, M. L. Incorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico. Biogeochemistry 121, 271–286 (2013).Article 
    CAS 

    Google Scholar 
    49.Kaushal, S. S. et al. Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 121, 23–44 (2014).CAS 
    Article 

    Google Scholar 
    50.Ambient Water Quality Criteria for Chloride Technical Report EPA 440/5-88-001 (EPA, 1998).51.Nelsen, R. B. An Introduction to Copulas (Springer-Verlag, 2007).52.Comprehensive Annual Financial Report (Upper Occoquan Service Authority, 2017); https://www.uosa.org/Documents/0450_012759.pdf53.Tjandraatmadja, G. et al. Sources of Priority Contaminants in Domestic Wastewater: Contaminant Contribution from Household Products (CSIRO, 2008).54.Schwabe, K., Nemati, M., Amin, R., Tran, Q. & Jassby, D. Unintended consequences of water conservation on the use of treated municipal wastewater. Nat. Sustain. 3, 628–635 (2020).Article 

    Google Scholar 
    55.Cogswell, M. E. et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319, 1209–1220 (2018).CAS 
    Article 

    Google Scholar 
    56.Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).CAS 
    Article 

    Google Scholar 
    57.Grant, S. B. et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337, 681–686 (2012).CAS 
    Article 

    Google Scholar 
    58.Liu, C. et al. Robust slippery liquid-infused porous network surfaces for enhanced anti-icing/deicing performance. ACS Appl. Mater. Interfaces 12, 25471–25477 (2020).CAS 
    Article 

    Google Scholar 
    59.Baldassarre, G. D. et al. Sociohydrology: scientific challenges in addressing the sustainable development goals. Water Resour. Res. 55, 6327–6355 (2019).Article 

    Google Scholar 
    60.Su, J. G. et al. Factors influencing whether children walk to school. Health Place 22, 153–161 (2013).Article 

    Google Scholar 
    61.Micron Announces Investment in Its Semiconductor Manufacturing Plant in Manassas, Virginia (Micron Technology, 2018); https://investors.micron.com/node/37386/pdf62.Lazarova, V., Savoye, P., Janex, M. L., Blatchley, E. R. & Pommepuy, M. Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci. Technol. 40, 203–213 (1999).CAS 
    Article 

    Google Scholar 
    63.Davis, M. L. Water and Wastewater Engineering: Design Principles and Practice (McGraw-Hill, 2010).
    Google Scholar 
    64.Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G. & Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water: a review. Chemosphere 93, 1268–1287 (2013).CAS 
    Article 

    Google Scholar 
    65.Rauch, W. & Kleidorfer, M. Replace contamination, not the pipes. Science 345, 734–735 (2014).CAS 
    Article 

    Google Scholar 
    66.Potts, J. The innovation deficit in public services: the curious problem of too much efficiency and not enough waste and failure. Innovation 11, 34–43 (2009).Article 

    Google Scholar 
    67.McKenzie-Mohr, D., Lee, N. R. & Schultz, P. W. Social Marketing to Protect the Environment: What Works (Sage, 2011).68.Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).Article 

    Google Scholar 
    69.Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).Article 

    Google Scholar 
    70.Appling, A. P., Leon, M. C. & McDowell, W. H. Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex. Ecosphere 6, 269 (2015).Article 

    Google Scholar 
    71.Madadgar, S., AghaKouchak, A., Farahmand, A. & Davis, S. J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 44, 7799–7807 (2017).Article 

    Google Scholar 
    72.Sadegh, M., Ragno, E. & AghaKouchak, A. Multivariate copula analysis toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resour. Res. 53, 5166–5183 (2017).Article 

    Google Scholar 
    73.Racine, J. & Hyndman, R. Using R to teach econometrics. J. Appl. Econom. 17, 175–189 (2002).Article 

    Google Scholar  More

  • in

    How to wear green

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Individual US diets show wide variation in water scarcity footprints

    1.Willett, W. et al. Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).PubMed 

    Google Scholar 
    2.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    3.Hallstrom, E., Carlsson-Kanyama, A. & Borjesson, P. Environmental impact of dietary change: a systematic review. J. Clean. Prod. 91, 1–11 (2015).
    Google Scholar 
    4.Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Global Environ. Change 62, 101926 (2019).5.Azevedo, L. B., Henderson, A. D., van Zelm, R., Jolliet, O. & Huijbregts, M. A. J. Assessing the importance of spatial variability versus model choices in life cycle impact assessment: the case of freshwater eutrophication in europe. Environ. Sci. Technol. 47, 13565–13570 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).7.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Dieter, C. A. et al. Estimated Use of Water in the United States in 2015. Report No 1441 (US Geological Survey, 2018).9.Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–Lancet commission on planetary health. Lancet 386, 1973–2028 (2015).PubMed 

    Google Scholar 
    10.Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).
    Google Scholar 
    11.Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).
    Google Scholar 
    12.Boulay, A.-M. et al. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int. J. Life Cycle Assess. 20, 577–583 (2015).CAS 

    Google Scholar 
    13.Tom, M. S., Fischbeck, P. S. & Hendrickson, C. T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 36, 92–103 (2016).
    Google Scholar 
    14.Blackstone, N. T., El-Abbadi, N. H., McCabe, M. S., Griffin, T. S. & Nelson, M. E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: a modelling study. Lancet Planet. Health 2, e344–e352 (2018).PubMed 

    Google Scholar 
    15.Birney, C. I., Franklin, K. F., Davidson, F. T. & Webber, M. E. An assessment of individual foodprints attributed to diets and food waste in the United States. Environ. Res. Lett. 12, 105008 (2017).ADS 

    Google Scholar 
    16.Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    17.Mekonnen, M. M. & Fulton, J. The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water Int. 43, 860–870 (2018).
    Google Scholar 
    18.Blas, A., Garrido, A. & Willaarts, B. A. Evaluating the water footprint of the Mediterranean and American diets. Water 8, 448 (2016).19.Rehkamp, S. & Canning, P. Measuring embodied blue water in American diets: an EIO supply chain approach. Ecol. Econ. 147, 179–188 (2018).
    Google Scholar 
    20.Harris, F. et al. The water footprint of diets: a global systematic review and meta-analysis. Adv. Nutr. 11, 375–386 (2019).PubMed Central 

    Google Scholar 
    21.Vanham, D., Comero, S., Gawlik, B. M. & Bidoglio, G. The water footprint of different diets within European sub-national geographical entities. Nat. Sustain. 1, 518 (2018).
    Google Scholar 
    22.Vanham, D., Mekonnen, M. M. & Hoekstra, A. Y. The water footprint of the EU for different diets. Ecol. Indicators 32, 1–8 (2013).
    Google Scholar 
    23.Environmental Management—Water Footprint—Principles, Requirements and Guidelines ISO 14046:2014 (International Organization for Standardization, 2014).24.Ridoutt, B. G., Hendrie, G. A. & Noakes, M. Dietary strategies to reduce environmental impact: a critical review of the evidence base. Adv. Nutr. 8, 933–946 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    25.Quinteiro, P., Ridoutt, B. G., Arroja, L. & Dias, A. C. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: a review. Int. J. Life Cycle Assess. 23, 164–180 (2018).
    Google Scholar 
    26.Heller, M. C., Willits-Smith, A., Meyer, R., Keoleian, G. A. & Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 13, 044004 (2018).27.2015–2020 Dietary Guidelines for Americans (US Department of Health and Human Services & US Department of Agriculture, 2015).28.Willits-Smith, A., Aranda, R., Heller, M. C. & Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: a population-based cross-sectional study. Lancet Planet. Health 4, e98–e106 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    29.Hess, T., Andersson, U., Mena, C. & Williams, A. The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK. Food Policy 50, 1–10 (2015).
    Google Scholar 
    30.Goldstein, B., Hansen, S. F., Gjerris, M., Laurent, A. & Birkved, M. Ethical aspects of life cycle assessments of diets. Food Policy 59, 139–151 (2016).
    Google Scholar 
    31.Hess, T., Chatterton, J., Daccache, A. & Williams, A. The impact of changing food choices on the blue water scarcity footprint and greenhouse gas emissions of the British diet: the example of potato, pasta and rice. J. Clean. Prod. 112, 4558–4568 (2016).
    Google Scholar 
    32.Notarnicola, B., Tassielli, G., Renzulli, P. A., Castellani, V. & Sala, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 140, 753–765 (2017).
    Google Scholar 
    33.Heller, M. C. et al. Environmental analyses to inform transitions to sustainable diets in developing countries: case studies for Vietnam and Kenya. Int. J. Life Cycle Assess. 25, 1183–1196 (2020).
    Google Scholar 
    34.Ridoutt, B. G., Baird, D., Anastasiou, K. & Hendrie, G. A. Diet quality and water scarcity: evidence from a large Australian population health survey. Nutrients 11, 1846 (2019).CAS 
    PubMed Central 

    Google Scholar 
    35.Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Global Environ. Change 62, 101926 (2020).
    Google Scholar 
    36.Mekonnen, M. M. & Hoekstra, A. Y. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).CAS 

    Google Scholar 
    37.Meier, T. & Christen, O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ. Sci. Technol. 47, 877–888 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    38.Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).ADS 

    Google Scholar 
    39.Zhuo, L., Mekonnen, M. M. & Hoekstra, A. Y. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 18, 2219–2234 (2014).ADS 

    Google Scholar 
    40.World Economic Forum Water Initiative Water Security: The Water–Food–Energy–Climate Nexus (Island Press, 2011).41.Bazilian, M. et al. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39, 7896–7906 (2011).
    Google Scholar 
    42.Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).43.Jefferies, D. et al. Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 33, 155–166 (2012).
    Google Scholar 
    44.Lovarelli, D., Bacenetti, J. & Fiala, M. Water footprint of crop productions: a review. Sci. Total Environ. 548–549, 236–251 (2016).ADS 
    PubMed 

    Google Scholar 
    45.Chenoweth, J., Hadjikakou, M. & Zoumides, C. Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 18, 2325–2342 (2014).ADS 

    Google Scholar 
    46.Ridoutt, B. G. & Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environ. Change 20, 113–120 (2010).
    Google Scholar 
    47.Ridoutt, B. G. & Huang, J. Environmental relevance—the key to understanding water footprints. Proc. Natl Acad. Sci. USA 109, E1424–E1424 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    48.Pfister, S. et al. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) ‘A critique on the water-scarcity weighted water footprint in LCA’. Ecol. Indic. 72, 352–359 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    49.2018 Irrigation and Water Management Survey (USDA, 2019).50.Pfister, S. & Bayer, P. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 73, 52–62 (2014).
    Google Scholar 
    51.Pfister, S. & Bayer, P. Water Consumption of Crop on Watershed Level (Blue and Green Water, Uncertainty, incl. Shapefile) https://doi.org/10.17632/brn4xm47jk.1 (2017).52.Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).53.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).54.Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products (UNESCO-IHE, 2010).
    Google Scholar 
    55.Hoekstra, A. Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 66, 564–573 (2016).
    Google Scholar 
    56.Hoekstra, A. Y. Water footprint assessment: evolvement of a new research field. Water Resour. Manage. 31, 3061–3081 (2017).
    Google Scholar 
    57.Caldeira, C. et al. Water footprint profile of crop-based vegetable oils and waste cooking oil: comparing two water scarcity footprint methods. J. Cleaner Prod. 195, 1190–1202 (2018).
    Google Scholar 
    58.Boulay, A.-M., Benini, L. & Sala, S. Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization model. The AWARE model example. Int. J. Life Cycle Assess. 25, 2380–2392 (2020).59.Forin, S., Berger, M. & Finkbeiner, M. Comment to ‘Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization factor. The AWARE model example’. Int. J. Life Cycle Assess. 25, 663–666 (2020).
    Google Scholar 
    60.Boulay, A.-M. & Lenoir, L. Sub-national regionalisation of the AWARE indicator for water scarcity footprint calculations. Ecol. Indic. 111, 106017 (2020).
    Google Scholar 
    61.Rotz, C. A., Asem-Hiablie, S., Place, S. & Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 169, 1–13 (2019).
    Google Scholar 
    62.Peters, C. J., Picardy, J. A., Darrouzet-Nardi, A. & Griffin, T. S. Feed conversions, ration compositions, and land use efficiencies of major livestock products in US agricultural systems. Agric. Syst. 130, 35–43 (2014).
    Google Scholar 
    63.Peters, C. J. et al. Carrying capacity of US agricultural land: ten diet scenarios. Elementa 4, 000116 (2016).64.Census of Agriculture Farm and Ranch Irrigation Survey (USDA NASS, 2013).65.Aquaculture Trade Tables (USDA Economic Research Service, 2018).66.Pahlow, M., Van Oel, P., Mekonnen, M. & Hoekstra, A. Y. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci. Total Environ. 536, 847–857 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    67.Rose, D., Heller, M. C., Willits-Smith, A. M. & Meyer, R. J. Carbon footprint of self-selected US diets: nutritional, demographic, and behavioral correlates. Am. J. Clin. Nutr. 108, 1–9 (2019).
    Google Scholar 
    68.NHANES: 2005–2006 Data Documentation, Codebook and Frequencies (National Center for Health Statistics and Centers for Disease Control, 2008). More

  • in

    A thermodynamic platform for evaluating the energy efficiency of combined power generation and desalination plants

    In contrast to exergy analysis approach, a simpler and yet accurate approach of equivalent heat engines is proposed where only minimal input information of key processes or cycles of conversion plant are needed, namely the work (Wa) or heat input (QH), the process average of high (TH), and low (TL) temperatures of heat reservoirs. Presenting the example of a CCGT with a nominal fuel energy input of 2000 MW, the respective ideal or Carnot work of temperature-cascaded heat or reverse engines of CCGT are readily computed, for example, the work engines of gas and steam turbines, as well as the bled steam-powered desalination plants (zero physical work output) as shown in Fig. 3.With this approach, the Carnot work of respective heat engines of CCGT can be “decomposed” individually with respect to the maximum temperature difference between two physical limits predicated by the input fuel and the ambient states. Emulating the same Carnot work as per design of actual cycle, it is then normalized to the respective standard primary energy (QSPE) at the common temperature platform. The thermodynamic consistency of the framework could be confirmed by summing all QSPE of cascaded cycles to yield the primary fuel energy at input. It is envisaged that one of the most plausible and optimal co-generation designs of a hybrid power plant with proven seawater desalination processes is illustrated pictorially in Fig. 7. Here, both electricity and low-grade heat sources are produced in-situ, providing the optimal grid power and capacity of potable water. Such an integrated power and water system is designed with maximum temperature cascade (hence minimum dissipative losses) for power generation and low-grade heat utilization.Fig. 7: A pictorial representation of combined cycle gas turbines (CCGT) plant.A pictorial representation of combined cycle gas turbines (CCGT) plant.Full size imageTo recap, the decoupling framework requires two requisites. Firstly, the matching of Carnot work of each cascaded engine of CCGT, as per designed temperatures, to the ideal engines at the common temperature platform for the computation of standard primary energy (QSPE), as shown in Fig. 3. Secondly, by summing all the standard primary energy (QSPE) available from the decomposed engines, one obtains the equivalent calorific value of fuel supplied to the CCGT.Owing to the common temperature platform of decomposed engines, the ratio of Carnot work (Wc) to the standard primary energy (QSPE) is equally applicable to either a single individual engine or all decomposed engines of the CCGT plant, i.e.,$$frac{{mathop {sum}nolimits_{i = 1}^n {left( {W_{{mathrm{C}},,i}} right)} }}{{mathop {sum}nolimits_{i = 1}^n {left( {Q_{{mathrm{SPE}},,i}} right)} }} = frac{{left( {T_{{mathrm{adia}}} – T_{mathrm{o}}} right)}}{{T_{{mathrm{adia}}}}} = left( {frac{{W_{mathrm{c}}}}{{Q_{{mathrm{SPE}}}}}} right)_i$$
    (1)
    where “i” refers to a specific engines and “n” denotes the total number of engines. The temperatures, (T_{{mathrm{adia}}}) and (T_{mathrm{o}}), are process-average adiabatic flame and ambient temperatures, respectively. As the first and third terms of Eq. 1 are equivalent to the common temperature ratio, i.e., (frac{{left( {T_{{{{{{mathrm{adia}}}}}}} – T_{mathrm{o}}} right)}}{{T_{{{{mathrm{adia}}}}}}}), the terms can be equated to each other and re-arranged to give the fractional form of process heat or work to their respective total, i.e.,$$frac{{Q_{{mathrm{H}},,i}}}{{mathop {sum}nolimits_{i = 1}^n {left( {Q_{{mathrm{H}},,i}} right)} }} = frac{{W_{{mathrm{c}},,i}}}{{mathop {sum}nolimits_{i = 1}^n {left( {W_{{mathrm{C}},,i}} right)} }}$$
    (2)
    Before moving to illustrative examples, it is noted that those seeking thermodynamic details should consult Supplementary Table 1 supplied in the article where it will be seen that the framework adheres to the Second Law.Electricity-driven desalination processesAs electricity is one of the convenient forms of derived energy, it is used to power work-driven membrane-based reverse osmosis (RO) desalination processes. By defining the 2nd Law Efficiency as (eta ^{primeprime} = frac{{W_{mathrm{a}}}}{{W_{mathrm{C}}}}) for an engine, where the actual work input is normally known via electricity consumption of processes. From the decomposed gas and steam turbines that produced electricity of a CCGT plant, a conversion factor (CF) can now be defined, based on the consumption of the standard primary energy of these engines to the actual electricity output, i.e.,$${mathrm{CF}}_{{mathrm{elec}}} = frac{{mathop {sum}nolimits_{i = 1}^{n = 2} {Q_{{mathrm{SPE}},i}} }}{{mathop {sum}nolimits_{i = 1}^{n = 2} {W_{a,i}} }}$$
    (3)
    where the subscripts (i = 1) and (i = 2) refer to the contributions from gas and steam turbines of CCGT, respectively. Note that the denominator term is the actual work, Wa. The latter can be related to the Carnot work (WC) via the empirical 2nd Law Efficiency (left( {eta ^{primeprime}} right)) of the respective work producing cycle. Equation 3 can be further expressed as a function based on the common temperature platform ratio and the sum of work-weighted second law efficiency of the processes, i.e., (mathop {sum}nolimits_{i = 1}^{n = 2} {left( {frac{{W_{{mathrm{C}},i}}}{{W_{{mathrm{C}},T}}}eta _i^{primeprime} } right)}).$${mathrm{CF}}_{{mathrm{elec}}} = frac{{mathop {sum }nolimits_{i = 1}^{n = 2} Q_{{mathrm{SPE}},i}}}{{mathop {sum }nolimits_{i = 1}^{n = 2} W_{a,i}}} = left( {frac{{mathop {sum}nolimits_{i = 1}^{n = 2} {left( {frac{{W_{{mathrm{C}},i}}}{{1 – frac{{T_o}}{{T_{{mathrm{adia}}}}}}}} right)} }}{{mathop {sum }nolimits_{i = 1}^{n = 2} left( {W_{{mathrm{C}},i}eta _i^{primeprime} } right)}}} right) = frac{1}{{left( {1 – frac{{T_o}}{{T_{{mathrm{adia}}}}}} right)mathop {sum }nolimits_{i = 1}^{n = 2} left( {frac{{W_{{mathrm{C}},i}}}{{W_{{mathrm{C}},{mathrm{T}}}}}eta _i^{primeprime} } right)}},$$
    (4)
    Note that the subscripts “c” and “a” refer to the Carnot and actual work, respectively. (W_{{mathrm{C}},{mathrm{T}}}) refers to the total Carnot work of heat engines. The temperatures (T_{{mathrm{adia}}}) and (T_o) are the process-average adiabatic flame temperature (with due allowance for the excess-air combustion) and ambient temperature, respectively.Although Eq. 4 has generated an expression for the desired figure of merit, (frac{{mathop {sum }nolimits_{i = 1}^2 Q_{{mathrm{SPE}},i}}}{{mathop {sum }nolimits_{i = 1}^2 W_{{mathrm{a}},i}}}), this function is a combination of the common temperature ratio platform and the work-weighted second law efficiency, ({mathrm{i.e.}},,bar eta ^{primeprime} = mathop {sum }nolimits_{i = 1}^{n = 2} left( {frac{{W_{{mathrm{C}},i}}}{{W_{{mathrm{C}},{mathrm{T}}}}}eta _i^{primeprime} } right)).Superficially, the inverse of ({mathrm{CF}}_{{mathrm{elec}}}) may appear similar to the conventional energy efficiency of a power plant. However, a closer examination of its derivation reveals a fundamental difference where it employs the standardized QSPE, and not QH. The latter term expresses only the quantitative aspect and makes no allowance for the quality of energy consumed.Thermally driven desalination processesFor a thermally driven multi-effect desalination system (MED), the low-grade heat supplied yielded zero physical work output as of heat engines. Instead, it produces a finite rate of potable water via evaporation and condensation processes. The Carnot work potential of the low-grade steam entering the MED is computed and it is then decomposed to the equivalent standard primary energy (QSPE) at the common energy platform. Hence, the conversion factor (CFth) of MED desalination is defined as the ratio of standard primary energy consumption to the actual heat supply, Qa, i.e.,$$left( {{mathrm{CF}}_{{mathrm{th}}}} right) = left{ {frac{{left( {Q_{{mathrm{SPE}}}} right)}}{{Q_{mathrm{a}}}}} right} = frac{{left( {1 – frac{{T_o}}{{T_{mathrm{H}}}}} right)}}{{left( {1 – frac{{T_o}}{{T_{{mathrm{adia}}}}}} right)}}$$
    (5)
    QSPE is based on Carnot work which is defined at application temperatures. Whereas Qa is the actual energy supplied at bled steam temperature. Since the steam inlet temperatures to different thermally driven desalination processes are different, hence the CFthermal are determined separately for assorted plants.Using the physically meaningful conversion factors, namely CFelec and CFth, these factors transform the absolute values (quantity and quality) of derived energy consumed by diverse desalination methods to the common platform primary energy consumption, enabling a cross comparison of energy efficiency from all desalination methods. In brief, the thermodynamic framework provides the common energy platform that served two key roles: Firstly, the fractional apportionment of standardized primary energy consumption, conducted on the cascaded processes of CCGT to the respective electricity, low-grade thermal sources, etc., yielded the causal calibrated conversion factors for the derived energy to power all diverse processes in industry. This calibration of conversion factors is performed with the best power plant systems available hitherto. Secondly, the calibrated conversion factors enable the conversion of specific energy consumption of practical desalination plants, consuming either electricity or thermal sources, into a common energy platform of QSPE. The relative consumption of standardized QSPE for water produced from all types desalination methods can now be compared accurately.In conclusion, the common energy temperature platform has been used to evaluate and compare the consumption of standard primary energy (QSPE) by assorted seawater desalination methods. In co-generating electricity and thermal heat sources from the best conversion plant available hitherto, the apportionment of respective QSPE to the derived energy at a common platform embeds their absolute quantity and quality of input fossil fuels. Based on the thermodynamic framework presented here, the causal conversion factors (CFelec and CFth) are devised, enabling the direct conversion of kWhelec or kWhth into the common energy platform of QSPE:- An essential requisite needed for a just comparison of energy efficiency of multifarious desalination processes or methods.Since 1983 till now, the energy efficiency of SWRO methods were shown to be better than thermally driven methods of MSF and MED. Comprehensively, all existing desalination methods were relatively energy inefficient, at specific energy efficiencies spanning between 7 and 16% of the thermodynamic limit of 1.06 m3/kWhSPE. Recent hybrid designs of thermally driven processes have improved significantly with the twofold increase in energy efficiency, from More