More stories

  • in

    How to wear green

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Individual US diets show wide variation in water scarcity footprints

    1.Willett, W. et al. Food in the Anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).PubMed 

    Google Scholar 
    2.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    3.Hallstrom, E., Carlsson-Kanyama, A. & Borjesson, P. Environmental impact of dietary change: a systematic review. J. Clean. Prod. 91, 1–11 (2015).
    Google Scholar 
    4.Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Global Environ. Change 62, 101926 (2019).5.Azevedo, L. B., Henderson, A. D., van Zelm, R., Jolliet, O. & Huijbregts, M. A. J. Assessing the importance of spatial variability versus model choices in life cycle impact assessment: the case of freshwater eutrophication in europe. Environ. Sci. Technol. 47, 13565–13570 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).7.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Dieter, C. A. et al. Estimated Use of Water in the United States in 2015. Report No 1441 (US Geological Survey, 2018).9.Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–Lancet commission on planetary health. Lancet 386, 1973–2028 (2015).PubMed 

    Google Scholar 
    10.Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).
    Google Scholar 
    11.Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).
    Google Scholar 
    12.Boulay, A.-M. et al. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops. Int. J. Life Cycle Assess. 20, 577–583 (2015).CAS 

    Google Scholar 
    13.Tom, M. S., Fischbeck, P. S. & Hendrickson, C. T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 36, 92–103 (2016).
    Google Scholar 
    14.Blackstone, N. T., El-Abbadi, N. H., McCabe, M. S., Griffin, T. S. & Nelson, M. E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: a modelling study. Lancet Planet. Health 2, e344–e352 (2018).PubMed 

    Google Scholar 
    15.Birney, C. I., Franklin, K. F., Davidson, F. T. & Webber, M. E. An assessment of individual foodprints attributed to diets and food waste in the United States. Environ. Res. Lett. 12, 105008 (2017).ADS 

    Google Scholar 
    16.Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    17.Mekonnen, M. M. & Fulton, J. The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water Int. 43, 860–870 (2018).
    Google Scholar 
    18.Blas, A., Garrido, A. & Willaarts, B. A. Evaluating the water footprint of the Mediterranean and American diets. Water 8, 448 (2016).19.Rehkamp, S. & Canning, P. Measuring embodied blue water in American diets: an EIO supply chain approach. Ecol. Econ. 147, 179–188 (2018).
    Google Scholar 
    20.Harris, F. et al. The water footprint of diets: a global systematic review and meta-analysis. Adv. Nutr. 11, 375–386 (2019).PubMed Central 

    Google Scholar 
    21.Vanham, D., Comero, S., Gawlik, B. M. & Bidoglio, G. The water footprint of different diets within European sub-national geographical entities. Nat. Sustain. 1, 518 (2018).
    Google Scholar 
    22.Vanham, D., Mekonnen, M. M. & Hoekstra, A. Y. The water footprint of the EU for different diets. Ecol. Indicators 32, 1–8 (2013).
    Google Scholar 
    23.Environmental Management—Water Footprint—Principles, Requirements and Guidelines ISO 14046:2014 (International Organization for Standardization, 2014).24.Ridoutt, B. G., Hendrie, G. A. & Noakes, M. Dietary strategies to reduce environmental impact: a critical review of the evidence base. Adv. Nutr. 8, 933–946 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    25.Quinteiro, P., Ridoutt, B. G., Arroja, L. & Dias, A. C. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: a review. Int. J. Life Cycle Assess. 23, 164–180 (2018).
    Google Scholar 
    26.Heller, M. C., Willits-Smith, A., Meyer, R., Keoleian, G. A. & Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 13, 044004 (2018).27.2015–2020 Dietary Guidelines for Americans (US Department of Health and Human Services & US Department of Agriculture, 2015).28.Willits-Smith, A., Aranda, R., Heller, M. C. & Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: a population-based cross-sectional study. Lancet Planet. Health 4, e98–e106 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    29.Hess, T., Andersson, U., Mena, C. & Williams, A. The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK. Food Policy 50, 1–10 (2015).
    Google Scholar 
    30.Goldstein, B., Hansen, S. F., Gjerris, M., Laurent, A. & Birkved, M. Ethical aspects of life cycle assessments of diets. Food Policy 59, 139–151 (2016).
    Google Scholar 
    31.Hess, T., Chatterton, J., Daccache, A. & Williams, A. The impact of changing food choices on the blue water scarcity footprint and greenhouse gas emissions of the British diet: the example of potato, pasta and rice. J. Clean. Prod. 112, 4558–4568 (2016).
    Google Scholar 
    32.Notarnicola, B., Tassielli, G., Renzulli, P. A., Castellani, V. & Sala, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 140, 753–765 (2017).
    Google Scholar 
    33.Heller, M. C. et al. Environmental analyses to inform transitions to sustainable diets in developing countries: case studies for Vietnam and Kenya. Int. J. Life Cycle Assess. 25, 1183–1196 (2020).
    Google Scholar 
    34.Ridoutt, B. G., Baird, D., Anastasiou, K. & Hendrie, G. A. Diet quality and water scarcity: evidence from a large Australian population health survey. Nutrients 11, 1846 (2019).CAS 
    PubMed Central 

    Google Scholar 
    35.Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Global Environ. Change 62, 101926 (2020).
    Google Scholar 
    36.Mekonnen, M. M. & Hoekstra, A. Y. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).CAS 

    Google Scholar 
    37.Meier, T. & Christen, O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ. Sci. Technol. 47, 877–888 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    38.Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).ADS 

    Google Scholar 
    39.Zhuo, L., Mekonnen, M. M. & Hoekstra, A. Y. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 18, 2219–2234 (2014).ADS 

    Google Scholar 
    40.World Economic Forum Water Initiative Water Security: The Water–Food–Energy–Climate Nexus (Island Press, 2011).41.Bazilian, M. et al. Considering the energy, water and food nexus: towards an integrated modelling approach. Energy Policy 39, 7896–7906 (2011).
    Google Scholar 
    42.Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).43.Jefferies, D. et al. Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 33, 155–166 (2012).
    Google Scholar 
    44.Lovarelli, D., Bacenetti, J. & Fiala, M. Water footprint of crop productions: a review. Sci. Total Environ. 548–549, 236–251 (2016).ADS 
    PubMed 

    Google Scholar 
    45.Chenoweth, J., Hadjikakou, M. & Zoumides, C. Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 18, 2325–2342 (2014).ADS 

    Google Scholar 
    46.Ridoutt, B. G. & Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environ. Change 20, 113–120 (2010).
    Google Scholar 
    47.Ridoutt, B. G. & Huang, J. Environmental relevance—the key to understanding water footprints. Proc. Natl Acad. Sci. USA 109, E1424–E1424 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    48.Pfister, S. et al. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) ‘A critique on the water-scarcity weighted water footprint in LCA’. Ecol. Indic. 72, 352–359 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    49.2018 Irrigation and Water Management Survey (USDA, 2019).50.Pfister, S. & Bayer, P. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 73, 52–62 (2014).
    Google Scholar 
    51.Pfister, S. & Bayer, P. Water Consumption of Crop on Watershed Level (Blue and Green Water, Uncertainty, incl. Shapefile) https://doi.org/10.17632/brn4xm47jk.1 (2017).52.Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).53.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).54.Mekonnen, M. M. & Hoekstra, A. Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products (UNESCO-IHE, 2010).
    Google Scholar 
    55.Hoekstra, A. Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 66, 564–573 (2016).
    Google Scholar 
    56.Hoekstra, A. Y. Water footprint assessment: evolvement of a new research field. Water Resour. Manage. 31, 3061–3081 (2017).
    Google Scholar 
    57.Caldeira, C. et al. Water footprint profile of crop-based vegetable oils and waste cooking oil: comparing two water scarcity footprint methods. J. Cleaner Prod. 195, 1190–1202 (2018).
    Google Scholar 
    58.Boulay, A.-M., Benini, L. & Sala, S. Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization model. The AWARE model example. Int. J. Life Cycle Assess. 25, 2380–2392 (2020).59.Forin, S., Berger, M. & Finkbeiner, M. Comment to ‘Marginal and non-marginal approaches in characterization: how context and scale affect the selection of an adequate characterization factor. The AWARE model example’. Int. J. Life Cycle Assess. 25, 663–666 (2020).
    Google Scholar 
    60.Boulay, A.-M. & Lenoir, L. Sub-national regionalisation of the AWARE indicator for water scarcity footprint calculations. Ecol. Indic. 111, 106017 (2020).
    Google Scholar 
    61.Rotz, C. A., Asem-Hiablie, S., Place, S. & Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 169, 1–13 (2019).
    Google Scholar 
    62.Peters, C. J., Picardy, J. A., Darrouzet-Nardi, A. & Griffin, T. S. Feed conversions, ration compositions, and land use efficiencies of major livestock products in US agricultural systems. Agric. Syst. 130, 35–43 (2014).
    Google Scholar 
    63.Peters, C. J. et al. Carrying capacity of US agricultural land: ten diet scenarios. Elementa 4, 000116 (2016).64.Census of Agriculture Farm and Ranch Irrigation Survey (USDA NASS, 2013).65.Aquaculture Trade Tables (USDA Economic Research Service, 2018).66.Pahlow, M., Van Oel, P., Mekonnen, M. & Hoekstra, A. Y. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci. Total Environ. 536, 847–857 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    67.Rose, D., Heller, M. C., Willits-Smith, A. M. & Meyer, R. J. Carbon footprint of self-selected US diets: nutritional, demographic, and behavioral correlates. Am. J. Clin. Nutr. 108, 1–9 (2019).
    Google Scholar 
    68.NHANES: 2005–2006 Data Documentation, Codebook and Frequencies (National Center for Health Statistics and Centers for Disease Control, 2008). More

  • in

    A thermodynamic platform for evaluating the energy efficiency of combined power generation and desalination plants

    In contrast to exergy analysis approach, a simpler and yet accurate approach of equivalent heat engines is proposed where only minimal input information of key processes or cycles of conversion plant are needed, namely the work (Wa) or heat input (QH), the process average of high (TH), and low (TL) temperatures of heat reservoirs. Presenting the example of a CCGT with a nominal fuel energy input of 2000 MW, the respective ideal or Carnot work of temperature-cascaded heat or reverse engines of CCGT are readily computed, for example, the work engines of gas and steam turbines, as well as the bled steam-powered desalination plants (zero physical work output) as shown in Fig. 3.With this approach, the Carnot work of respective heat engines of CCGT can be “decomposed” individually with respect to the maximum temperature difference between two physical limits predicated by the input fuel and the ambient states. Emulating the same Carnot work as per design of actual cycle, it is then normalized to the respective standard primary energy (QSPE) at the common temperature platform. The thermodynamic consistency of the framework could be confirmed by summing all QSPE of cascaded cycles to yield the primary fuel energy at input. It is envisaged that one of the most plausible and optimal co-generation designs of a hybrid power plant with proven seawater desalination processes is illustrated pictorially in Fig. 7. Here, both electricity and low-grade heat sources are produced in-situ, providing the optimal grid power and capacity of potable water. Such an integrated power and water system is designed with maximum temperature cascade (hence minimum dissipative losses) for power generation and low-grade heat utilization.Fig. 7: A pictorial representation of combined cycle gas turbines (CCGT) plant.A pictorial representation of combined cycle gas turbines (CCGT) plant.Full size imageTo recap, the decoupling framework requires two requisites. Firstly, the matching of Carnot work of each cascaded engine of CCGT, as per designed temperatures, to the ideal engines at the common temperature platform for the computation of standard primary energy (QSPE), as shown in Fig. 3. Secondly, by summing all the standard primary energy (QSPE) available from the decomposed engines, one obtains the equivalent calorific value of fuel supplied to the CCGT.Owing to the common temperature platform of decomposed engines, the ratio of Carnot work (Wc) to the standard primary energy (QSPE) is equally applicable to either a single individual engine or all decomposed engines of the CCGT plant, i.e.,$$frac{{mathop {sum}nolimits_{i = 1}^n {left( {W_{{mathrm{C}},,i}} right)} }}{{mathop {sum}nolimits_{i = 1}^n {left( {Q_{{mathrm{SPE}},,i}} right)} }} = frac{{left( {T_{{mathrm{adia}}} – T_{mathrm{o}}} right)}}{{T_{{mathrm{adia}}}}} = left( {frac{{W_{mathrm{c}}}}{{Q_{{mathrm{SPE}}}}}} right)_i$$
    (1)
    where “i” refers to a specific engines and “n” denotes the total number of engines. The temperatures, (T_{{mathrm{adia}}}) and (T_{mathrm{o}}), are process-average adiabatic flame and ambient temperatures, respectively. As the first and third terms of Eq. 1 are equivalent to the common temperature ratio, i.e., (frac{{left( {T_{{{{{{mathrm{adia}}}}}}} – T_{mathrm{o}}} right)}}{{T_{{{{mathrm{adia}}}}}}}), the terms can be equated to each other and re-arranged to give the fractional form of process heat or work to their respective total, i.e.,$$frac{{Q_{{mathrm{H}},,i}}}{{mathop {sum}nolimits_{i = 1}^n {left( {Q_{{mathrm{H}},,i}} right)} }} = frac{{W_{{mathrm{c}},,i}}}{{mathop {sum}nolimits_{i = 1}^n {left( {W_{{mathrm{C}},,i}} right)} }}$$
    (2)
    Before moving to illustrative examples, it is noted that those seeking thermodynamic details should consult Supplementary Table 1 supplied in the article where it will be seen that the framework adheres to the Second Law.Electricity-driven desalination processesAs electricity is one of the convenient forms of derived energy, it is used to power work-driven membrane-based reverse osmosis (RO) desalination processes. By defining the 2nd Law Efficiency as (eta ^{primeprime} = frac{{W_{mathrm{a}}}}{{W_{mathrm{C}}}}) for an engine, where the actual work input is normally known via electricity consumption of processes. From the decomposed gas and steam turbines that produced electricity of a CCGT plant, a conversion factor (CF) can now be defined, based on the consumption of the standard primary energy of these engines to the actual electricity output, i.e.,$${mathrm{CF}}_{{mathrm{elec}}} = frac{{mathop {sum}nolimits_{i = 1}^{n = 2} {Q_{{mathrm{SPE}},i}} }}{{mathop {sum}nolimits_{i = 1}^{n = 2} {W_{a,i}} }}$$
    (3)
    where the subscripts (i = 1) and (i = 2) refer to the contributions from gas and steam turbines of CCGT, respectively. Note that the denominator term is the actual work, Wa. The latter can be related to the Carnot work (WC) via the empirical 2nd Law Efficiency (left( {eta ^{primeprime}} right)) of the respective work producing cycle. Equation 3 can be further expressed as a function based on the common temperature platform ratio and the sum of work-weighted second law efficiency of the processes, i.e., (mathop {sum}nolimits_{i = 1}^{n = 2} {left( {frac{{W_{{mathrm{C}},i}}}{{W_{{mathrm{C}},T}}}eta _i^{primeprime} } right)}).$${mathrm{CF}}_{{mathrm{elec}}} = frac{{mathop {sum }nolimits_{i = 1}^{n = 2} Q_{{mathrm{SPE}},i}}}{{mathop {sum }nolimits_{i = 1}^{n = 2} W_{a,i}}} = left( {frac{{mathop {sum}nolimits_{i = 1}^{n = 2} {left( {frac{{W_{{mathrm{C}},i}}}{{1 – frac{{T_o}}{{T_{{mathrm{adia}}}}}}}} right)} }}{{mathop {sum }nolimits_{i = 1}^{n = 2} left( {W_{{mathrm{C}},i}eta _i^{primeprime} } right)}}} right) = frac{1}{{left( {1 – frac{{T_o}}{{T_{{mathrm{adia}}}}}} right)mathop {sum }nolimits_{i = 1}^{n = 2} left( {frac{{W_{{mathrm{C}},i}}}{{W_{{mathrm{C}},{mathrm{T}}}}}eta _i^{primeprime} } right)}},$$
    (4)
    Note that the subscripts “c” and “a” refer to the Carnot and actual work, respectively. (W_{{mathrm{C}},{mathrm{T}}}) refers to the total Carnot work of heat engines. The temperatures (T_{{mathrm{adia}}}) and (T_o) are the process-average adiabatic flame temperature (with due allowance for the excess-air combustion) and ambient temperature, respectively.Although Eq. 4 has generated an expression for the desired figure of merit, (frac{{mathop {sum }nolimits_{i = 1}^2 Q_{{mathrm{SPE}},i}}}{{mathop {sum }nolimits_{i = 1}^2 W_{{mathrm{a}},i}}}), this function is a combination of the common temperature ratio platform and the work-weighted second law efficiency, ({mathrm{i.e.}},,bar eta ^{primeprime} = mathop {sum }nolimits_{i = 1}^{n = 2} left( {frac{{W_{{mathrm{C}},i}}}{{W_{{mathrm{C}},{mathrm{T}}}}}eta _i^{primeprime} } right)).Superficially, the inverse of ({mathrm{CF}}_{{mathrm{elec}}}) may appear similar to the conventional energy efficiency of a power plant. However, a closer examination of its derivation reveals a fundamental difference where it employs the standardized QSPE, and not QH. The latter term expresses only the quantitative aspect and makes no allowance for the quality of energy consumed.Thermally driven desalination processesFor a thermally driven multi-effect desalination system (MED), the low-grade heat supplied yielded zero physical work output as of heat engines. Instead, it produces a finite rate of potable water via evaporation and condensation processes. The Carnot work potential of the low-grade steam entering the MED is computed and it is then decomposed to the equivalent standard primary energy (QSPE) at the common energy platform. Hence, the conversion factor (CFth) of MED desalination is defined as the ratio of standard primary energy consumption to the actual heat supply, Qa, i.e.,$$left( {{mathrm{CF}}_{{mathrm{th}}}} right) = left{ {frac{{left( {Q_{{mathrm{SPE}}}} right)}}{{Q_{mathrm{a}}}}} right} = frac{{left( {1 – frac{{T_o}}{{T_{mathrm{H}}}}} right)}}{{left( {1 – frac{{T_o}}{{T_{{mathrm{adia}}}}}} right)}}$$
    (5)
    QSPE is based on Carnot work which is defined at application temperatures. Whereas Qa is the actual energy supplied at bled steam temperature. Since the steam inlet temperatures to different thermally driven desalination processes are different, hence the CFthermal are determined separately for assorted plants.Using the physically meaningful conversion factors, namely CFelec and CFth, these factors transform the absolute values (quantity and quality) of derived energy consumed by diverse desalination methods to the common platform primary energy consumption, enabling a cross comparison of energy efficiency from all desalination methods. In brief, the thermodynamic framework provides the common energy platform that served two key roles: Firstly, the fractional apportionment of standardized primary energy consumption, conducted on the cascaded processes of CCGT to the respective electricity, low-grade thermal sources, etc., yielded the causal calibrated conversion factors for the derived energy to power all diverse processes in industry. This calibration of conversion factors is performed with the best power plant systems available hitherto. Secondly, the calibrated conversion factors enable the conversion of specific energy consumption of practical desalination plants, consuming either electricity or thermal sources, into a common energy platform of QSPE. The relative consumption of standardized QSPE for water produced from all types desalination methods can now be compared accurately.In conclusion, the common energy temperature platform has been used to evaluate and compare the consumption of standard primary energy (QSPE) by assorted seawater desalination methods. In co-generating electricity and thermal heat sources from the best conversion plant available hitherto, the apportionment of respective QSPE to the derived energy at a common platform embeds their absolute quantity and quality of input fossil fuels. Based on the thermodynamic framework presented here, the causal conversion factors (CFelec and CFth) are devised, enabling the direct conversion of kWhelec or kWhth into the common energy platform of QSPE:- An essential requisite needed for a just comparison of energy efficiency of multifarious desalination processes or methods.Since 1983 till now, the energy efficiency of SWRO methods were shown to be better than thermally driven methods of MSF and MED. Comprehensively, all existing desalination methods were relatively energy inefficient, at specific energy efficiencies spanning between 7 and 16% of the thermodynamic limit of 1.06 m3/kWhSPE. Recent hybrid designs of thermally driven processes have improved significantly with the twofold increase in energy efficiency, from More

  • in

    Long-lasting, monovalent-selective capacitive deionization electrodes

    1.Parsons, S. & Jefferson, B. Introduction to Potable Water Treatment Processes (Wiley, 2006).2.World Health Organization. Boron in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality (World Health Organization, 2009).3.Zodrow, K. R. et al. Advanced materials, technologies, and complex systems analyses: emerging opportunities to enhance urban water security. Environ. Sci. Technol. 51, 10274–10281 (2017).CAS 
    Article 

    Google Scholar 
    4.Suss, M. E. et al. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015).CAS 
    Article 

    Google Scholar 
    5.Zhang, X., Zuo, K., Zhang, X., Zhang, C. & Liang, P. Selective ion separation by capacitive deionization (CDI) based technologies: a state-of-the-art review. Environ. Sci. Water Res. Technol. 6, 243–257 (2020).CAS 
    Article 

    Google Scholar 
    6.Su, X. et al. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nat. Commun. 9, 4701 (2018).Article 
    CAS 

    Google Scholar 
    7.Swain, B. Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017).CAS 
    Article 

    Google Scholar 
    8.Schaible, G. Understanding Irrigated Agriculture (United States Department of Agriculture, Economic Research Service, 2017).9.Ayers, R. S. & Westcot, D. W. Water Quality for Agriculture. Vol. 29 (Food and Agriculture Organization of the United Nations, 1985).10.Singh, R. B., Minhas, P. S., Chauhan, C. P. S. & Gupta, R. K. Effect of high salinity and SAR waters on salinization, sodication and yields of pearl-millet and wheat. Agric. Water Manag. 21, 93–105 (1992).Article 

    Google Scholar 
    11.Mau, Y. & Porporato, A. A dynamical system approach to soil salinity and sodicity. Adv. Water Resour. 83, 68–76 (2015).CAS 
    Article 

    Google Scholar 
    12.Baker, R. W. Membrane Technology and Applications (Wiley, 2012).13.Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).CAS 
    Article 

    Google Scholar 
    14.Nativ, P., Fridman-Bishop, N. & Gendel, Y. Ion transport and selectivity in thin film composite membranes in pressure-driven and electrochemical processes. J. Membr. Sci. 584, 46–55 (2019).CAS 
    Article 

    Google Scholar 
    15.Wormser, E. M., Nir, O. & Edri, E. Low-resistance monovalent-selective cation exchange membranes prepared using molecular layer deposition for energy-efficient ion separations. RSC Adv. 11, 2427–2436 (2021).16.Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: a review. J. Membr. Sci. 555, 429–454 (2018).CAS 
    Article 

    Google Scholar 
    17.Cohen, B., Lazarovitch, N. & Gilron, J. Upgrading groundwater for irrigation using monovalent selective electrodialysis. Desalination 431, 126–139 (2018).CAS 
    Article 

    Google Scholar 
    18.Ouyang, L., Malaisamy, R. & Bruening, M. L. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. J. Membr. Sci. 310, 76–84 (2008).CAS 
    Article 

    Google Scholar 
    19.Nativ, P., Lahav, O. & Gendel, Y. Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes. Desalination 425, 123–129 (2018).CAS 
    Article 

    Google Scholar 
    20.Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).CAS 
    Article 

    Google Scholar 
    21.Shi, W. et al. Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane. Sep. Purif. Technol. 210, 885–890 (2019).CAS 
    Article 

    Google Scholar 
    22.Choi, J., Dorji, P., Shon, H. K. & Hong, S. Applications of capacitive deionization: desalination, softening, selective removal, and energy efficiency. Desalination 449, 118–130 (2019).CAS 
    Article 

    Google Scholar 
    23.Gamaethiralalage, J. G. et al. Recent advances in ion selectivity with capacitive deionization. Energy Environ. Sci. https://doi.org/10.1039/D0EE03145C (2021).24.Porada, S., Zhao, R., Van Der Wal, A., Presser, V. & Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013).CAS 
    Article 

    Google Scholar 
    25.Hand, S., Guest, J. S. & Cusick, R. D. Technoeconomic analysis of brackish water capacitive deionization: navigating tradeoffs between performance, lifetime, and material costs. Environ. Sci. Technol. 53, 13353–13363 (2019).Article 
    CAS 

    Google Scholar 
    26.Gao, X., Omosebi, A., Landon, J. & Liu, K. Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes. Environ. Sci. Technol. 49, 10920–10926 (2015).CAS 
    Article 

    Google Scholar 
    27.Gao, X., Omosebi, A., Holubowitch, N., Landon, J. & Liu, K. Capacitive deionization using alternating polarization: effect of surface charge on salt removal. Electrochim. Acta 233, 249–255 (2017).CAS 
    Article 

    Google Scholar 
    28.Kang, J. S. et al. Rapid inversion of surface charges in heteroatom-doped porous carbon: a route to robust electrochemical desalination. Adv. Funct. Mater. 30, 1909387 (2020).CAS 
    Article 

    Google Scholar 
    29.Uwayid, R., Seraphim, N. M., Guyes, E. N., Eisenberg, D. & Suss, M. E. Characterizing and mitigating the degradation of oxidized cathodes during capacitive deionization cycling. Carbon 173, 1105–1114 (2021).CAS 
    Article 

    Google Scholar 
    30.Cohen, I., Avraham, E., Bouhadana, Y., Soffer, A. & Aurbach, D. Long term stability of capacitive de-ionization processes for water desalination: the challenge of positive electrodes corrosion. Electrochim. Acta 106, 91–100 (2013).CAS 
    Article 

    Google Scholar 
    31.He, D., Wong, C. E., Tang, W., Kovalsky, P. & Waite, T. D. Faradaic reactions in water desalination by batch-mode capacitive deionization. Environ. Sci. Technol. Lett. 3, 222–226 (2016).CAS 
    Article 

    Google Scholar 
    32.Srimuk, P., Su, X., Yoon, J., Aurbach, D. & Presser, V. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020).CAS 
    Article 

    Google Scholar 
    33.Su, X. et al. Asymmetric Faradaic systems for selective electrochemical separations. Energy Environ. Sci. 10, 1272–1283 (2017).CAS 
    Article 

    Google Scholar 
    34.Singh, K., Porada, S., de Gier, H. D., Biesheuvel, P. M. & de Smet, L. C. P. M. Timeline on the application of intercalation materials in capacitive deionization. Desalination 455, 115–134 (2019).CAS 
    Article 

    Google Scholar 
    35.Yu, F. et al. Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 7, 15999–16027 (2019).CAS 
    Article 

    Google Scholar 
    36.Son, M. et al. Improving the thermodynamic energy efficiency of battery electrode deionization using flow-through electrodes. Environ. Sci. Technol. 54, 3628–3635 (2020).CAS 
    Article 

    Google Scholar 
    37.Pothanamkandathil, V., Fortunato, J. & Gorski, C. A. Electrochemical desalination using intercalating electrode materials: a comparison of energy demands. Environ. Sci. Technol. 54, 3653–3662 (2020).CAS 
    Article 

    Google Scholar 
    38.Srimuk, P. et al. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 4, 18265–18271 (2016).CAS 
    Article 

    Google Scholar 
    39.Gabelich, C. J., Tran, T. D. & Suffet, I. H. M. Electrosorption of inorganic salts from aqueous solution using carbon aerogels. Environ. Sci. Technol. 36, 3010–3019 (2002).CAS 
    Article 

    Google Scholar 
    40.Zhao, R. et al. Time-dependent ion selectivity in capacitive charging of porous electrodes. J. Colloid Interface Sci. 384, 38–44 (2012).CAS 
    Article 

    Google Scholar 
    41.Biesheuvel, P. M. & van Soestbergen, M. Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci. 316, 490–499 (2007).CAS 
    Article 

    Google Scholar 
    42.Suss, M. E. Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes. J. Electrochem. Soc. 164, E270–E275 (2017).CAS 
    Article 

    Google Scholar 
    43.Guyes, E. N., Malka, T. & Suss, M. E. Enhancing the ion-size-based selectivity of capacitive deionization electrodes. Environ. Sci. Technol. 53, 8447–8454 (2019).CAS 
    Article 

    Google Scholar 
    44.Hawks, S. A. et al. Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization. Environ. Sci. Technol. 53, 10863–10870 (2019).CAS 
    Article 

    Google Scholar 
    45.Zhan, C. et al. Specific ion effects at graphitic interfaces. Nat. Commun. 10, 4858 (2019).Article 
    CAS 

    Google Scholar 
    46.Wang, L. & Lin, S. Mechanism of selective ion removal in membrane capacitive deionization for water softening. Environ. Sci. Technol. 53, 5797–5804 (2019).CAS 
    Article 

    Google Scholar 
    47.Giera, B., Henson, N., Kober, E. M., Shell, M. S. & Squires, T. M. Electric double-layer structure in primitive model electrolytes: comparing molecular dynamics with local-density approximations. Langmuir 31, 3553–3562 (2015).CAS 
    Article 

    Google Scholar 
    48.Hou, C., Taboada-Serrano, P., Yiacoumi, S. & Tsouris, C. Electrosorption selectivity of ions from mixtures of electrolytes inside nanopores. J. Chem. Phys. 129, 224703 (2008).Article 
    CAS 

    Google Scholar 
    49.Seo, S.-J. et al. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 44, 2267–2275 (2010).CAS 
    Article 

    Google Scholar 
    50.Gabitto, J. & Tsouris, C. Electrosorption driven ion separation. hal-01966598 (2018).51.Nordstrand, J. & Dutta, J. Predicting and enhancing the ion selectivity in multi-ion capacitive deionization. Langmuir 36, 8476–8484 (2020).CAS 
    Article 

    Google Scholar 
    52.Choi, J., Lee, H. & Hong, S. Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution. Desalination 400, 38–46 (2016).CAS 
    Article 

    Google Scholar 
    53.Avraham, E., Yaniv, B., Soffer, A. & Aurbach, D. Developing ion electroadsorption stereoselectivity, by pore size adjustment with chemical vapor deposition onto active carbon fiber electrodes. Case of Ca2+/Na+ Separation in water capacitive desalination. J. Phys. Chem. C 112, 7385–7389 (2008).CAS 
    Article 

    Google Scholar 
    54.Cerón, M. R. et al. Cation selectivity in capacitive deionization: elucidating the role of pore size, electrode potential, and ion dehydration. ACS Appl. Mater. Interfaces 12, 42644–42652 (2020).Article 
    CAS 

    Google Scholar 
    55.Oyarzun, D. I., Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Adsorption and capacitive regeneration of nitrate using inverted capacitive deionization with surfactant functionalized carbon electrodes. Sep. Purif. Technol. 194, 410–415 (2018).CAS 
    Article 

    Google Scholar 
    56.Dong, Q. et al. Selective removal of lead ions through capacitive deionization: role of ion-exchange membrane. Chem. Eng. J. 361, 1535–1542 (2019).CAS 
    Article 

    Google Scholar 
    57.Wu, T. et al. Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode. Electrochim. Acta 176, 426–433 (2015).CAS 
    Article 

    Google Scholar 
    58.Gao, X. et al. Complementary surface charge for enhanced capacitive deionization. Water Res. 92, 275–282 (2016).CAS 
    Article 

    Google Scholar 
    59.Yang, J., Zou, L. & Choudhury, N. R. Ion-selective carbon nanotube electrodes in capacitive deionisation. Electrochim. Acta 91, 11–19 (2013).CAS 
    Article 

    Google Scholar 
    60.Cohen, I., Avraham, E., Noked, M., Soffer, A. & Aurbach, D. Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode. J. Phys. Chem. C 115, 19856–19863 (2011).CAS 
    Article 

    Google Scholar 
    61.Gao, X., Omosebi, A., Landon, J. & Liu, K. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption-desorption behavior. Energy Environ. Sci. 8, 897–909 (2015).CAS 
    Article 

    Google Scholar 
    62.Hemmatifar, A. et al. Thermodynamics of ion separation by electrosorption. Environ. Sci. Technol. 52, 10196–10204 (2018).CAS 
    Article 

    Google Scholar 
    63.Hemmatifar, A. et al. Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes. Water Res. 122, 387–397 (2017).CAS 
    Article 

    Google Scholar 
    64.Min, B. H., Choi, J.-H. & Jung, K. Y. Improved capacitive deionization of sulfonated carbon/titania hybrid electrode. Electrochim. Acta 270, 543–551 (2018).CAS 
    Article 

    Google Scholar 
    65.Qian, B. et al. Sulfonated graphene as cation-selective coating: a new strategy for high-performance membrane capacitive deionization. Adv. Mater. Interfaces 2, 1500372 (2015).Article 
    CAS 

    Google Scholar 
    66.Jia, B. & Zou, L. Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization. Chem. Phys. Lett. 548, 23–28 (2012).CAS 
    Article 

    Google Scholar 
    67.Lee, J.-Y., Seo, S.-J., Yun, S.-H. & Moon, S.-H. Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water Res. 45, 5375–5380 (2011).CAS 
    Article 

    Google Scholar 
    68.Yan, T., Xu, B., Zhang, J., Shi, L. & Zhang, D. Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization. RSC Adv. 8, 2490–2497 (2018).CAS 
    Article 

    Google Scholar 
    69.Park, H. R. et al. Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization. RSC Adv. 6, 69720–69727 (2016).CAS 
    Article 

    Google Scholar 
    70.Shocron, A. N. & Suss, M. E. Should we pose a closure problem for capacitive charging of porous electrodes? Europhys. Lett. 130, 34003 (2020).CAS 
    Article 

    Google Scholar 
    71.Singh, K. et al. Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization. Desalination 481, 114346 (2020).CAS 
    Article 

    Google Scholar 
    72.Oyarzun, D. I., Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Ion selectivity in capacitive deionization with functionalized electrode: theory and experimental validation. Water Res. X 1, 100008 (2018).Article 
    CAS 

    Google Scholar 
    73.Hawks, S. A. et al. Quantifying the flow efficiency in constant-current capacitive deionization. Water Res. 129, 327–336 (2018).CAS 
    Article 

    Google Scholar 
    74.Hawks, S. A. et al. Performance metrics for the objective assessment of capacitive deionization systems. Water Res. 152, 126–137 (2019).CAS 
    Article 

    Google Scholar 
    75.Kang, J. et al. Direct energy recovery system for membrane capacitive deionization. Desalination 398, 144–150 (2016).CAS 
    Article 

    Google Scholar 
    76.Długołecki, P. & Van Der Wal, A. Energy recovery in membrane capacitive deionization. Environ. Sci. Technol. 47, 4904–4910 (2013).Article 
    CAS 

    Google Scholar 
    77.Atlas, I., Abu Khalla, S. & Suss, M. E. Thermodynamic energy efficiency of electrochemical systems performing simultaneous water desalination and electricity generation. J. Electrochem. Soc. 167, 134517 (2020).CAS 
    Article 

    Google Scholar 
    78.Wang, L., Dykstra, J. E. & Lin, S. Energy efficiency of capacitive deionization. Environ. Sci. Technol. 53, 3366–3378 (2019).CAS 
    Article 

    Google Scholar 
    79.Biesheuvel, P. M. Thermodynamic cycle analysis for capacitive deionization. J. Colloid Interface Sci. 332, 258–264 (2009).CAS 
    Article 

    Google Scholar 
    80.Wang, L., Biesheuvel, P. M. & Lin, S. Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model. J. Colloid Interface Sci. 512, 522–528 (2018).CAS 
    Article 

    Google Scholar 
    81.Qin, M. et al. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination 455, 100–114 (2019).CAS 
    Article 

    Google Scholar 
    82.Hatzell, M. C. & Hatzell, K. B. Blue refrigeration: capacitive de-ionization for brackish water treatment. J. Electrochem. Energy Convers. Storage 15, 1–6 (2018).Article 
    CAS 

    Google Scholar 
    83.Hemmatifar, A., Palko, J. W., Stadermann, M. & Santiago, J. G. Energy breakdown in capacitive deionization. Water Res. 104, 303–311 (2016).CAS 
    Article 

    Google Scholar 
    84.Dykstra, J. E., Zhao, R., Biesheuvel, P. M. & Van der Wal, A. Resistance identification and rational process design in capacitive deionization. Water Res. 88, 358–370 (2016).CAS 
    Article 

    Google Scholar 
    85.Gao, X., Omosebi, A., Landon, J. & Liu, K. Dependence of the capacitive deionization performance on potential of zero charge shifting of carbon xerogel electrodes during long-term operation. J. Electrochem. Soc. 161, E159–E166 (2014).Article 

    Google Scholar 
    86.Gao, X., Omosebi, A., Landon, J. & Liu, K. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy Environ. Sci. 8, 897–909 (2015).CAS 
    Article 

    Google Scholar 
    87.Gao, X., Omosebi, A., Landon, J. & Liu, K. Voltage-based stabilization of microporous carbon electrodes for inverted capacitive deionization. J. Phys. Chem. C 122, 1158–1168 (2018).CAS 
    Article 

    Google Scholar 
    88.Kim, M., Cerro, M., del, Hand, S. & Cusick, R. D. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders. Water Res. 148, 388–397 (2019).CAS 
    Article 

    Google Scholar 
    89.Krüner, B. et al. Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability. Carbon 117, 46–54 (2017).Article 
    CAS 

    Google Scholar 
    90.Biesheuvel, P. M., Zhao, R., Porada, S. & van der Wal, A. Theory of membrane capacitive deionization including the effect of the electrode pore space. J. Colloid Interface Sci. 360, 239–248 (2011).CAS 
    Article 

    Google Scholar 
    91.Tang, W., Kovalsky, P., Cao, B. & Waite, T. D. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. Water Res. 99, 112–121 (2016).CAS 
    Article 

    Google Scholar 
    92.Boublík, T. Hard‐sphere equation of state. J. Chem. Phys. 53, 471–472 (1970).Article 

    Google Scholar 
    93.Mansoori, G. A. et al. Equilibrium thermodynamic properties of the mixture of hard spheres. J. Chem. Phys. 54, 1523–1525 (1971).CAS 
    Article 

    Google Scholar 
    94.Guyes, E. N., Shocron, A. N., Simanovski, A., Biesheuvel, P. M. & Suss, M. E. A one-dimensional model for water desalination by flow-through electrode capacitive deionization. Desalination 415, 8–13 (2017).CAS 
    Article 

    Google Scholar 
    95.Kim, C. et al. Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon 122, 329–335 (2017).CAS 
    Article 

    Google Scholar 
    96.Bi, S. et al. Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline water. Sustain. Energy Fuels 4, 1285–1295 (2020).CAS 
    Article 

    Google Scholar 
    97.Rivin, D., Aron, J. & Donoian, H. Sulfonated carbon black pigmented compositions. 3519452 (1970).98.Vanýsek, P. Equivalent conductivity of electrolytes in aqueous solution. In CRC Handbook of Chemistry and Physics 99th edn (ed. Rumble, J. R.) (CRC Press/Taylor & Francis, 2018).99.Vanýsek, P. Ionic conductivity and diffusion at infinite dilution. In CRC Handbook of Chemistry and Physics 99th edn (ed. Rumble, J. R.) (CRC Press/Taylor & Francis, 2018). More

  • in

    The importance of warm habitat to the growth regime of cold-water fishes

    1.Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21, 2540–2553 (2015).
    Google Scholar 
    2.Tabor, K. & Williams, J. W. Globally downscaled climate projections for assessing the conservation impacts of climate change. Ecol. Appl. 20, 554–565 (2010).
    Google Scholar 
    3.Small-Lorenz, S. L., Culp, L. A., Ryder, T. B., Will, T. C. & Marra, P. P. A blind spot in climate change vulnerability assessments. Nat. Clim. Change 3, 91–93 (2013).
    Google Scholar 
    4.Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. & Fuller, R. A. Conserving mobile species. Front. Ecol. Environ. 12, 395–402 (2014).
    Google Scholar 
    5.Sears, M. W., Raskin, E. & Angilletta, M. J. The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr. Comp. Biol. 51, 666–675 (2011).
    Google Scholar 
    6.Ebersole, J. L., Liss, W. J. & Frissell, C. A. Thermal heterogeneity, stream channel morphology, and salmonid abundance in northeastern Oregon streams. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f03-107 (2011).7.Baldock, J. R., Armstrong, J. B., Schindler, D. E. & Carter, J. L. Juvenile coho salmon track a seasonally shifting thermal mosaic across a river floodplain. Freshw. Biol. 61, 1454–1465 (2016).CAS 

    Google Scholar 
    8.Armstrong, J. B. & Schindler, D. E. Going with the flow: spatial distributions of juvenile coho salmon track an annually shifting mosaic of water temperature. Ecosystems 16, 1429–1441 (2013).CAS 

    Google Scholar 
    9.Wurtsbaugh, W. A. & Neverman, D. Post-feeding thermotaxis and daily vertical migration in a larval fish. Nature 333, 846–848 (1988).
    Google Scholar 
    10.Thompson, L. M., Staudinger, M. D. & Carter, S. L. Summarizing Components of US Department of the Interior Vulnerability Assessments to Focus Climate Adaptation Planning Open-File Report 2015–1110 (US Geological Survey, 2015).11.Bottrill, M. C. et al. Is conservation triage just smart decision making? Trends Ecol. Evol. 23, 649–654 (2008).
    Google Scholar 
    12.Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
    Google Scholar 
    13.Brady, M. E., Chione, A. M. & Armstrong, J. B. Missing pieces in the full annual cycle of fish ecology: a systematic review of the phenology of freshwater fish research. Preprint at bioRxiv https://doi.org/10.1101/2020.11.24.395665 (2020).14.Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552 (2015).
    Google Scholar 
    15.Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).
    Google Scholar 
    16.Magnuson, J. J., Crowder, L. B. & Medvick, P. A. Temperature as an ecological resource. Integr. Comp. Biol. 19, 331–343 (1979).
    Google Scholar 
    17.Isaak, D. J., Wenger, S. J. & Young, M. K. Big biology meets microclimatology: defining thermal niches of ectotherms at landscape scales for conservation planning. Ecol. Appl. 27, 977–990 (2017).
    Google Scholar 
    18.Poole, G. C. et al. The case for regime-based water quality standards. BioScience 54, 155–161 (2004).
    Google Scholar 
    19.Pauly, S., Soriano-Bartz, M., Moreau, J. & Jarre-Teichmann, A. A new model accounting for seasonal cessation of growth in fishes. Mar. Freshw. Res. 43, 1151–1156 (1992).
    Google Scholar 
    20.Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Integr. Comp. Biol. 11, 99–113 (1971).
    Google Scholar 
    21.Armstrong, J. B. & Schindler, D. E. Excess digestive capacity in predators reflects a life of feast and famine. Nature 476, 84–87 (2011).CAS 

    Google Scholar 
    22.Childress, E. S. & Letcher, B. H. Estimating thermal performance curves from repeated field observations. Ecology 98, 1377–1387 (2017).
    Google Scholar 
    23.Neuheimer, A. B., Thresher, R. E., Lyle, J. M. & Semmens, J. M. Tolerance limit for fish growth exceeded by warming waters. Nat. Clim. Change 1, 110–113 (2011).
    Google Scholar 
    24.Lusardi, R. A., Hammock, B. G., Jeffres, C. A., Dahlgren, R. A. & Kiernan, J. D. Oversummer growth and survival of juvenile coho salmon (Oncorhynchus kisutch) across a natural gradient of stream water temperature and prey availability: an in situ enclosure experiment. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2018-0484 (2019).25.Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).CAS 

    Google Scholar 
    26.Tattam, I. A., Li, H. W., Giannico, G. R. & Ruzycki, J. R. Seasonal changes in spatial patterns of Oncorhynchus mykiss growth require year-round monitoring. Ecol. Freshw. Fish 26, 434–443 (2017).
    Google Scholar 
    27.Munch, S. B. & Conover, D. O. Accounting for local physiological adaptation in bioenergetic models: testing hypotheses for growth rate evolution by virtual transplant experiments. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/f02-013 (2011).28.Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).CAS 

    Google Scholar 
    29.Forseth, T. et al. Thermal growth performance of juvenile brown trout Salmo trutta: no support for thermal adaptation hypotheses. J. Fish Biol. 74, 133–149 (2009).CAS 

    Google Scholar 
    30.Kaeding, L. R. & Kaya, C. M. Growth and diets of trout from contrasting environments in a geothermally heated stream: the Firehole River of Yellowstone National Park. Trans. Am. Fish. Soc. 107, 432–438 (1978).
    Google Scholar 
    31.Armstrong, J. B., Ward, E. J., Schindler, D. E. & Lisi, P. J. Adaptive capacity at the northern front: sockeye salmon behaviourally thermoregulate during novel exposure to warm temperatures. Conserv. Physiol. 4, cow039 (2016).
    Google Scholar 
    32.Petty, J. T., Thorne, D., Huntsman, B. M. & Mazik, P. M. The temperature–productivity squeeze: constraints on brook trout growth along an Appalachian river continuum. Hydrobiologia 727, 151–166 (2014).CAS 

    Google Scholar 
    33.Sommer, T. R., Harrell, W. C. & Nobriga, M. L. Habitat use and stranding risk of juvenile chinook salmon on a seasonal floodplain. North Am. J. Fish. Manag. 25, 1493–1504 (2005).
    Google Scholar 
    34.Hayes, S. A. et al. Steelhead growth in a small central California watershed: upstream and estuarine rearing patterns. Trans. Am. Fish. Soc. 137, 114–128 (2008).
    Google Scholar 
    35.Patrick, C. J. et al. Precipitation and temperature drive continental-scale patterns in stream invertebrate production. Sci. Adv. 5, eaav2348 (2019).CAS 

    Google Scholar 
    36.Mejia, F. H. et al. Stream metabolism increases with drainage area and peaks asynchronously across a stream network. Aquat. Sci. 81, 9 (2018).
    Google Scholar 
    37.Kaylor, M. J., White, S. M., Saunders, W. C. & Warren, D. R. Relating spatial patterns of stream metabolism to distributions of juveniles salmonids at the river network scale. Ecosphere 10, e02781 (2019).
    Google Scholar 
    38.McNyset, K. M., Volk, C. J. & Jordan, C. E. Developing an effective model for predicting spatially and temporally continuous stream temperatures from remotely sensed land surface temperatures. Water 7, 6827–6846 (2015).
    Google Scholar 
    39.Selong, J. H., McMahon, T. E., Zale, A. V. & Barrows, F. T. Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Trans. Am. Fish. Soc. 130, 1026–1037 (2001).
    Google Scholar 
    40.Mesa, M. G., Weiland, L. K., Christiansen, H. E., Sauter, S. T. & Beauchamp, D. A. Development and evaluation of a bioenergetics model for bull trout. Trans. Am. Fish. Soc. 142, 41–49 (2013).CAS 

    Google Scholar 
    41.Muhlfeld, C. C. & Marotz, B. Seasonal movement and habitat use by subadult bull trout in the upper flathead river system, Montana. North Am. J. Fish. Manag. 25, 797–810 (2005).
    Google Scholar 
    42.Guzzo, M. M., Blanchfield, P. J. & Rennie, M. D. Behavioral responses to annual temperature variation alter the dominant energy pathway, growth, and condition of a cold-water predator. Proc. Natl Acad. Sci. USA 114, 9912–9917 (2017).CAS 

    Google Scholar 
    43.Downing, J. A. et al. Global abundance and size distribution of streams and rivers. Inland Waters 2, 229–236 (2012).
    Google Scholar 
    44.Tockner, K., Malard, F. & Ward, J. V. An extension of the flood pulse concept. Hydrol. Process. 14, 2861–2883 (2000).
    Google Scholar 
    45.Fullerton, A. H. et al. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshw. Biol. 55, 2215–2237 (2010).
    Google Scholar 
    46.Fullerton, A. H. et al. Simulated juvenile salmon growth and phenology respond to altered thermal regimes and stream network shape. Ecosphere 8, e02052 (2017).
    Google Scholar 
    47.Rand, P. S., Stewart, D. J., Seelbach, P. W., Jones, M. L. & Wedge, L. R. Modeling steelhead population energetics in Lakes Michigan and Ontario. Trans. Am. Fish. Soc. 122, 977–1001 (1993).
    Google Scholar 
    48.Steel, E. A., Sowder, C. & Peterson, E. E. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network. J. Am. Water Resour. Assoc. 52, 769–787 (2016).
    Google Scholar 
    49.Armstrong, J. B. et al. Diel horizontal migration in streams: juvenile fish exploit spatial heterogeneity in thermal and trophic resources. Ecology 94, 2066–2075 (2013).
    Google Scholar 
    50.Brewitt, K. S., Danner, E. M. & Moore, J. W. Hot eats and cool creeks: juvenile Pacific salmonids use mainstem prey while in thermal refuges. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2016-0395 (2017).51.Pépino, M., Goyer, K. & Magnan, P. Heat transfer in fish: are short excursions between habitats a thermoregulatory behaviour to exploit resources in an unfavourable thermal environment? J. Exp. Biol. 218, 3461–3467 (2015).
    Google Scholar 
    52.Warren, D. R., Robinson, J. M., Josephson, D. C., Sheldon, D. R. & Kraft, C. E. Elevated summer temperatures delay spawning and reduce redd construction for resident brook trout (Salvelinus fontinalis). Glob. Change Biol. 18, 1804–1811 (2012).
    Google Scholar 
    53.Schlosser, I. J. Stream fish ecology: a landscape perspective. BioScience 41, 704–712 (1991).
    Google Scholar 
    54.Lucero, Y., Steel, E. A., Burnett, K. M. & Christiansen, K. Untangling human development and natural gradients: implications of underlying correlation structure for linking landscapes and riverine ecosystems. River Syst. 19, 207–224 (2011).
    Google Scholar 
    55.Muhlfeld, C. C. et al. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout. Glob. Change Biol. 23, 4663–4674 (2017).
    Google Scholar 
    56.Hitt, N. P., Snook, E. L. & Massie, D. L. Brook trout use of thermal refugia and foraging habitat influenced by brown trout. Can. J. Fish. Aquat. Sci. https://doi.org/10.1139/cjfas-2016-0255 (2016).57.Eaton, J. G. & Scheller, R. M. Effects of climate warming on fish thermal habitat in streams of the United States. Limnol. Oceanogr. 41, 1109–1115 (1996).
    Google Scholar 
    58.Rieman, B. E. et al. Anticipated climate warming effects on bull trout habitats and populations across the interior Columbia River basin. Trans. Am. Fish. Soc. 136, 1552–1565 (2007).
    Google Scholar 
    59.Starcevich, S. J., Howell, P. J., Jacobs, S. E. & Sankovich, P. M. Seasonal movement and distribution of fluvial adult bull trout in selected watersheds in the mid-Columbia River and Snake River basins. PLoS ONE 7, e37257 (2012).CAS 

    Google Scholar 
    60.Hanson, P. C., Johnson, T. B., Schindler, D. E., & Kitchell, J. F. Fish Bioenergetics 3.0 for Windows (ASC, 1997).61.Hawkins, B. L., Fullerton, A. H., Sanderson, B. L. & Steel, E. A. Individual-based simulations suggest mixed impacts of warmer temperatures and a nonnative predator on Chinook salmon. Ecosphere 11, e03218 (2020).
    Google Scholar 
    62.Crawford, S. S. & Muir, A. M. Global introductions of salmon and trout in the genus Oncorhynchus: 1870-2007. Rev. Fish Biol. Fisher 18, 313–344 (2008).
    Google Scholar 
    63.Beauchamp, D. A. et al. Bioenergetic responses by Pacific salmon to climate and ecosystem variation. N. Pac. Anadr. Fish Comm. Bull. 4, 257–269 (2007).
    Google Scholar 
    64.Independent Scientific Advisory Board Density Dependence and its Implications for Fish Management and Restoration Programs in the Columbia River Basin ISAB 2015-1 (Northwest Power and Conservation Council, 2015).65.Railsback, S. F. & Rose, K. A. Bioenergetics modeling of stream trout growth: temperature and food consumption effects. Trans. Am. Fish. Soc. 128, 241–256 (1999).
    Google Scholar 
    66.Van Winkle, W. et al. Individual-based model of sympatric populations of brown and rainbow trout for instream flow assessment: model description and calibration. Ecol. Model. 110, 175–207 (1998).
    Google Scholar  More