More stories

  • in

    MIT’s work with Idaho National Laboratory advances America’s nuclear industry

    At the center of nuclear reactors across the United States, a new type of chromium-coated fuel is being used to make the reactors more efficient and more resistant to accidents. The fuel is one of many innovations sprung from collaboration between researchers at MIT and the Idaho National Laboratory (INL) — a relationship that has altered the trajectory of the country’s nuclear industry.Amid renewed excitement around nuclear energy in America, MIT’s research community is working to further develop next-generation fuels, accelerate the deployment of small modular reactors (SMRs), and enable the first nuclear reactor in space.Researchers at MIT and INL have worked closely for decades, and the collaboration takes many forms, including joint research efforts, student and postdoc internships, and a standing agreement that lets INL employees spend extended periods on MIT’s campus researching and teaching classes. MIT is also a founding member of the Battelle Energy Alliance, which has managed the Idaho National Laboratory for the Department of Energy since 2005.The collaboration gives MIT’s community a chance to work on the biggest problems facing America’s nuclear industry while bolstering INL’s research infrastructure.“The Idaho National Laboratory is the lead lab for nuclear energy technology in the United States today — that’s why it’s essential that MIT works hand in hand with INL,” says Jacopo Buongiorno, the Battelle Energy Alliance Professor in Nuclear Science and Engineering at MIT. “Countless MIT students and postdocs have interned at INL over the years, and a memorandum of understanding that strengthened the collaboration between MIT and INL in 2019 has been extended twice.”Ian Waitz, MIT’s vice president for research, adds, “The strong collaborative history between MIT and the Idaho National Laboratory enables us to jointly contribute practical technologies to enable the growth of clean, safe nuclear energy. It’s a clear example of how rigorous collaboration across sectors, and among the nation’s top research facilities, can advance U.S. economic prosperity, health, and well-being.”Research with impactMuch of MIT’s joint research with INL involves tests and simulations of new nuclear materials, fuels, and instrumentation. One of the largest collaborations was part of a global push for more accident-tolerant fuels in the wake of the nuclear accident that followed the 2011 earthquake and tsunami in Fukushima, Japan.In a series of studies involving INL and members of the nuclear energy industry, MIT researchers helped identify and evaluate alloy materials that could be deployed in the near term to not only bolster safety but also offer higher densities of fuel.“These new alloys can withstand much more challenging conditions during abnormal occurrences without reacting chemically with steam, which could result in hydrogen explosions during accidents,” explains Buongiorno, who is also the director of science and technology at MIT’s Nuclear Reactor Laboratory and the director of MIT’s Center for Advanced Nuclear Energy Systems. “The fuels can take much more abuse without breaking apart in the reactor, resulting in a higher safety margin.”The fuels tested at MIT were eventually adopted by power plants across the U.S., starting with the Byron Clean Energy Center in Ogle County, Illinois.“We’re also developing new materials, fuels, and instrumentation,” Buongiorno says. “People don’t just come to MIT and say, ‘I have this idea, evaluate it for me.’ We collaborate with industry and national labs to develop the new ideas together, and then we put them to the test,  reproducing the environment in which these materials and fuels would operate in commercial power reactors. That capability is quite unique.”Another major collaboration was led by Koroush Shirvan, MIT’s Atlantic Richfield Career Development Professor in Energy Studies. Shirvan’s team analyzed the costs associated with different reactor designs, eventually developing an open-source tool to help industry leaders evaluate the feasibility of different approaches.“The reason we’re not building a single nuclear reactor in the U.S. right now is cost and financial risk,” Shirvan says. “The projects have gone over budget by a factor of two and their schedule has lengthened by a factor of 1.5, so we’ve been doing a lot of work assessing the risk drivers. There’s also a lot of different types of reactors proposed, so we’ve looked at their cost potential as well and how those costs change if you can mass manufacture them.”Other INL-supported research of Shirvan’s involves exploring new manufacturing methods for nuclear fuels and testing materials for use in a nuclear reactor on the surface of the moon.“You want materials that are lightweight for these nuclear reactors because you have to send them to space, but there isn’t much data around how those light materials perform in nuclear environments,” Shirvan says.People and progressEvery summer, MIT students at every level travel to Idaho to conduct research in INL labs as interns.“It’s an example of our students getting access to cutting-edge research facilities,” Shirvan says.There are also several joint research appointments between the institutions. One such appointment is held by Sacit Cetiner, a distinguished scientist at INL who also currently runs the MIT and INL Joint Center for Reactor Instrumentation and Sensor Physics (CRISP) at MIT’s Nuclear Reactor Laboratory.CRISP focuses its research on key technology areas in the field of instrumentation and controls, which have long stymied the bottom line of nuclear power generation.“For the current light-water reactor fleet, operations and maintenance expenditures constitute a sizeable fraction of unit electricity generation cost,” says Cetiner. “In order to make advanced reactors economically competitive, it’s much more reasonable to address anticipated operational issues during the design phase. One such critical technology area is remote and autonomous operations. Working directly with INL, which manages the projects for the design and testing of several advanced reactors under a number of federal programs, gives our students, faculty, and researchers opportunities to make a real impact.”The sharing of experts helps strengthen MIT and the nation’s nuclear workforce overall.“MIT has a crucial role to play in advancing the country’s nuclear industry, whether that’s testing and developing new technologies or assessing the economic feasibility of new nuclear designs,” Buongiorno says. More

  • in

    Climate Action Learning Lab helps state and local leaders identify and implement effective climate mitigation strategies

    This spring, J-PAL North America — a regional office of MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) — launched its first ever Learning Lab, centered on climate action. The Learning Lab convened a cohort of government leaders who are enacting a broad range of policies and programs to support the transition to a low-carbon economy. Through the Learning Lab, participants explored how to embed randomized evaluation into promising solutions to determine how to maximize changes in behavior — a strategy that can help advance decarbonization in the most cost-effective ways to benefit all communities. The inaugural cohort included more than 25 participants from state agencies and cities, including the Massachusetts Clean Energy Center, the Minnesota Housing Finance Agency, and the cities of Lincoln, Nebraska; Newport News, Virginia; Orlando, Florida; and Philadelphia.“State and local governments have demonstrated tremendous leadership in designing and implementing decarbonization policies and climate action plans over the past few years,” said Peter Christensen, scientific advisor of the J-PAL North America Environment, Energy, and Climate Change Sector. “And while these are informed by scientific projections on which programs and technologies may effectively and equitably reduce emissions, the projection methods involve a lot of assumptions. It can be challenging for governments to determine whether their programs are actually achieving the expected level of emissions reductions that we desperately need. The Climate Action Learning Lab was designed to support state and local governments in addressing this need — helping them to rigorously evaluate their programs to detect their true impact.”From May to July, the Learning Lab offered a suite of resources for participants to leverage rigorous evaluation to identify effective and equitable climate mitigation solutions. Offerings included training lectures, one-on-one strategy sessions, peer learning engagements, and researcher collaboration. State and local leaders built skills and knowledge in evidence generation and use, reviewed and applied research insights to their own programmatic areas, and identified priority research questions to guide evidence-building and decision-making practices. Programs prioritized for evaluation covered topics such as compliance with building energy benchmarking policies, take-up rates of energy-efficient home improvement programs such as heat pumps and Solar for All, and scoring criteria for affordable housing development programs.“We appreciated the chance to learn about randomized evaluation methodology, and how this impact assessment tool could be utilized in our ongoing climate action planning. With so many potential initiatives to pursue, this approach will help us prioritize our time and resources on the most effective solutions,” said Anna Shugoll, program manager at the City of Philadelphia’s Office of Sustainability.This phase of the Learning Lab was possible thanks to grant funding from J-PAL North America’s longtime supporter and collaborator Arnold Ventures. The work culminated in an in-person summit in Cambridge, Massachusetts, on July 23, where Learning Lab participants delivered a presentation on their jurisdiction’s priority research questions and strategic evaluation plans. They also connected with researchers in the J-PAL network to further explore impact evaluation opportunities for promising decarbonization programs.“The Climate Action Learning Lab has helped us identify research questions for some of the City of Orlando’s deep decarbonization goals. J-PAL staff, along with researchers in the J-PAL network, worked hard to bridge the gap between behavior change theory and the applied, tangible benefits that we achieve through rigorous evaluation of our programs,” said Brittany Sellers, assistant director for sustainability, resilience and future-ready for Orlando. “Whether we’re discussing an energy-efficiency policy for some of the biggest buildings in the City of Orlando or expanding [electric vehicle] adoption across the city, it’s been very easy to communicate some of these high-level research concepts and what they can help us do to actually pursue our decarbonization goals.”The next phase of the Climate Action Learning Lab will center on building partnerships between jurisdictions and researchers in the J-PAL network to explore the launch of randomized evaluations, deepening the community of practice among current cohort members, and cultivating a broad culture of evidence building and use in the climate space. “The Climate Action Learning Lab provided a critical space for our city to collaborate with other cities and states seeking to implement similar decarbonization programs, as well as with researchers in the J-PAL network to help rigorously evaluate these programs,” said Daniel Collins, innovation team director at the City of Newport News. “We look forward to further collaboration and opportunities to learn from evaluations of our mitigation efforts so we, as a city, can better allocate resources to the most effective solutions.”The Climate Action Learning Lab is one of several offerings under the J-PAL North America Evidence for Climate Action Project. The project’s goal is to convene an influential network of researchers, policymakers, and practitioners to generate rigorous evidence to identify and advance equitable, high-impact policy solutions to climate change in the United States. In addition to the Learning Lab, J-PAL North America will launch a climate special topic request for proposals this fall to fund research on climate mitigation and adaptation initiatives. J-PAL will welcome applications from both research partnerships formed through the Learning Lab as well as other eligible applicants.Local government leaders, researchers, potential partners, or funders committed to advancing climate solutions that work, and who want to learn more about the Evidence for Climate Action Project, may email na_eecc@povertyactionlab.org or subscribe to the J-PAL North America Climate Action newsletter. More

  • in

    MIT gears up to transform manufacturing

    “Manufacturing is the engine of society, and it is the backbone of robust, resilient economies,” says John Hart, head of MIT’s Department of Mechanical Engineering (MechE) and faculty co-director of the MIT Initiative for New Manufacturing (INM). “With manufacturing a lively topic in today’s news, there’s a renewed appreciation and understanding of the importance of manufacturing to innovation, to economic and national security, and to daily lives.”Launched this May, INM will “help create a transformation of manufacturing through new technology, through development of talent, and through an understanding of how to scale manufacturing in a way that enables imparts higher productivity and resilience, drives adoption of new technologies, and creates good jobs,” Hart says.INM is one of MIT’s strategic initiatives and builds on the successful three-year-old Manufacturing@MIT program. “It’s a recognition by MIT that manufacturing is an Institute-wide theme and an Institute-wide priority, and that manufacturing connects faculty and students across campus,” says Hart. Alongside Hart, INM’s faculty co-directors are Institute Professor Suzanne Berger and Chris Love, professor of chemical engineering.The initiative is pursuing four main themes: reimagining manufacturing technologies and systems, elevating the productivity and human experience of manufacturing, scaling up new manufacturing, and transforming the manufacturing base.Breaking manufacturing barriers for corporationsAmgen, Autodesk, Flex, GE Vernova, PTC, Sanofi, and Siemens are founding members of INM’s industry consortium. These industry partners will work closely with MIT faculty, researchers, and students across many aspects of manufacturing-related research, both in broad-scale initiatives and in particular areas of shared interests. Membership requires a minimum three-year commitment of $500,000 a year to manufacturing-related activities at MIT, including the INM membership fee of $275,000 per year, which supports several core activities that engage the industry members.One major thrust for INM industry collaboration is the deployment and adoption of AI and automation in manufacturing. This effort will include seed research projects at MIT, collaborative case studies, and shared strategy development.INM also offers companies participation in the MIT-wide New Manufacturing Research effort, which is studying the trajectories of specific manufacturing industries and examining cross-cutting themes such as technology and financing.Additionally, INM will concentrate on education for all professions in manufacturing, with alliances bringing together corporations, community colleges, government agencies, and other partners. “We’ll scale our curriculum to broader audiences, from aspiring manufacturing workers and aspiring production line supervisors all the way up to engineers and executives,” says Hart.In workforce training, INM will collaborate with companies broadly to help understand the challenges and frame its overall workforce agenda, and with individual firms on specific challenges, such as acquiring suitably prepared employees for a new factory.Importantly, industry partners will also engage directly with students. Founding member Flex, for instance, hosted MIT researchers and students at the Flex Institute of Technology in Sorocaba, Brazil, developing new solutions for electronics manufacturing.“History shows that you need to innovate in manufacturing alongside the innovation in products,” Hart comments. “At MIT, as more students take classes in manufacturing, they’ll think more about key manufacturing issues as they decide what research problems they want to solve, or what choices they make as they prototype their devices. The same is true for industry — companies that operate at the frontier of manufacturing, whether through internal capabilities or their supply chains, are positioned to be on the frontier of product innovation and overall growth.”“We’ll have an opportunity to bring manufacturing upstream to the early stage of research, designing new processes and new devices with scalability in mind,” he says.Additionally, MIT expects to open new manufacturing-related labs and to further broaden cooperation with industry at existing shared facilities, such as MIT.nano. Hart says that facilities will also invite tighter collaborations with corporations — not just providing advanced equipment, but working jointly on, say, new technologies for weaving textiles, or speeding up battery manufacturing.Homing in on the United StatesINM is a global project that brings a particular focus on the United States, which remains the world’s second-largest manufacturing economy, but has suffered a significant decline in manufacturing employment and innovation.One key to reversing this trend and reinvigorating the U.S. manufacturing base is advocacy for manufacturing’s critical role in society and the career opportunities it offers.“No one really disputes the importance of manufacturing,” Hart says. “But we need to elevate interest in manufacturing as a rewarding career, from the production workers to manufacturing engineers and leaders, through advocacy, education programs, and buy-in from industry, government, and academia.”MIT is in a unique position to convene industry, academic, and government stakeholders in manufacturing to work together on this vital issue, he points out.Moreover, in times of radical and rapid changes in manufacturing, “we need to focus on deploying new technologies into factories and supply chains,” Hart says. “Technology is not all of the solution, but for the U.S. to expand our manufacturing base, we need to do it with technology as a key enabler, embracing companies of all sizes, including small and medium enterprises.”“As AI becomes more capable, and automation becomes more flexible and more available, these are key building blocks upon which you can address manufacturing challenges,” he says. “AI and automation offer new accelerated ways to develop, deploy, and monitor production processes, which present a huge opportunity and, in some cases, a necessity.”“While manufacturing is always a combination of old technology, new technology, established practice, and new ways of thinking, digital technology gives manufacturers an opportunity to leapfrog competitors,” Hart says. “That’s very, very powerful for the U.S. and any company, or country, that aims to create differentiated capabilities.”Fortunately, in recent years, investors have increasingly bought into new manufacturing in the United States. “They see the opportunity to re-industrialize, to build the factories and production systems of the future,” Hart says.“That said, building new manufacturing is capital-intensive, and takes time,” he adds. “So that’s another area where it’s important to convene stakeholders and to think about how startups and growth-stage companies build their capital portfolios, how large industry can support an ecosystem of small businesses and young companies, and how to develop talent to support those growing companies.”All these concerns and opportunities in the manufacturing ecosystem play to MIT’s strengths. “MIT’s DNA of cross-disciplinary collaboration and working with industry can let us create a lot of impact,” Hart emphasizes. “We can understand the practical challenges. We can also explore breakthrough ideas in research and cultivate successful outcomes, all the way to new companies and partnerships. Sometimes those are seen as disparate approaches, but we like to bring them together.” More

  • in

    MIT-Africa launches new collaboration with Angola

    The MIT Center for International Studies announced the launch of a new pilot initiative with Angola, to be implemented through its MIT-Africa Program.The new initiative marks a significant collaboration between MIT-Africa, Sonangol (Angola’s national energy company), and the Instituto Superior Politécnico de Tecnologias e Ciências (ISPTEC). The collaboration was formalized at a signing ceremony on MIT’s campus in June with key stakeholders from all three institutions present, including Diamantino Pedro Azevedo, the Angolan minister of mineral resources, petroleum, and gas, and Sonangol CEO Gaspar Martins.“This partnership marks a pivotal step in the Angolan government’s commitment to leveraging knowledge as the cornerstone of the country’s economic transformation,” says Azevedo. “By connecting the oil and gas sector with science, innovation, and world-class training, we are equipping future generations to lead Angola into a more technological, sustainable, and globally competitive era.”The sentiment is shared by the MIT-Africa Program leaders. “This initiative reflects MIT’s deep commitment to fostering meaningful, long-term relationships across the African continent,” says Mai Hassan, faculty director of the MIT-Africa Program. “It supports our mission of advancing knowledge and educating students in ways that are globally informed, and it provides a platform for mutual learning. By working with Angolan partners, we gain new perspectives and opportunities for innovation that benefit both MIT and our collaborators.”In addition to its new collaboration with MIT-Africa, Sonangol has joined MIT’s Industrial Liaison Program (ILP), breaking new ground as its first corporate member based in sub-Saharan Africa. ILP enables companies worldwide to harness MIT resources to address current challenges and to anticipate future needs. As an ILP member, Sonangol seeks to facilitate collaboration in key sectors such as natural resources and mining, energy, construction, and infrastructure.The MIT-Africa Program manages a portfolio of research, teaching, and learning initiatives that emphasize two-way value — offering impactful experiences to MIT students and faculty while collaborating closely with institutions and communities across Africa. The new Angola collaboration is aligned with this ethos, and will launch with two core activities during the upcoming academic year:Global Classroom: An MIT course on geo-spatial technologies for environmental monitoring, taught by an MIT faculty member, will be brought directly to the ISPTEC campus, offering Angolan students and MIT participants a collaborative, in-country learning experience.Global Teaching Labs: MIT students will travel to ISPTEC to teach science, technology, engineering, arts, and mathematics subjects on renewable energy technologies, engaging Angolan students through hands-on instruction.“This is not a traditional development project,” says Ari Jacobovits, managing director of MIT-Africa. “This is about building genuine partnerships rooted in academic rigor, innovation, and shared curiosity. The collaboration has been designed from the ground up with our partners at ISPTEC and Sonangol. We’re coming in with a readiness to learn as much as we teach.”The pilot marks an important first step in establishing a long-term collaboration with Angola. By investing in collaborative education and innovation, the new initiative aims to spark novel approaches to global challenges and strengthen academic institutions on both sides.These agreements with MIT-Africa and ILP “not only enhance our innovation and technological capabilities, but also create opportunities for sustainable development and operational excellence,” says Gaspar. “They advance our mission to be a leading force in the African energy sector.”“The vision behind this initiative is bold,” says Hassan. “It’s about co-creating knowledge and building capacity that lasts.” More

  • in

    Designing across cultural and geographic divides

    In addition to the typical rigors of MIT classes, Terrascope Subject 2.00C/1.016/EC.746 (Design for Complex Environmental Issues) poses some unusual hurdles for students to navigate: collaborating across time zones, bridging different cultural and institutional experiences, and trying to do hands-on work over Zoom. That’s because the class includes students from not only MIT, but also Diné College in Tsaile, Arizona, within the Navajo Nation, and the University of Puerto Rico-Ponce (UPRP).Despite being thousands of miles apart, students work in teams to tackle a real-world problem for a client, based on the Terrascope theme for the year. “Understanding how to collaborate over long distances with people who are not like themselves will be an important item in many of these students’ toolbelts going forward, in some cases just as much as — or more than — any particular design technique,” says Ari Epstein, Terrascope associate director and senior lecturer. Over the past several years, Epstein has taught the class along with Joel Grimm of MIT Beaver Works and Libby Hsu of MIT D-Lab, as well instructors from the two collaborating institutions. Undergraduate teaching fellows from all three schools are also key members of the instructional staff.Since the partnership began three years ago (initially with Diné College, with the addition of UPRP two years ago), the class themes have included food security and sustainable agriculture in Navajo Nation; access to reliable electrical power in Puerto Rico; and this year, increasing museum visitors’ engagement with artworks depicting mining and landscape alteration in Nevada.Each team — which includes students from all three colleges — meets with clients online early in the term to understand their needs; then, through an iterative process, teams work on designing prototypes. During MIT’s spring break, teams travel to meet with the clients onsite to get feedback and continue to refine their prototypes. At the end of the term, students present their final products to the clients, an expert panel, and their communities at a hybrid showcase event held simultaneously on all three campuses.Free-range design engineering“I really loved the class,” says Graciela Leon, a second-year mechanical engineering major who took the subject in 2024. “It was not at all what I was expecting,” she adds. While the learning objectives on the syllabus are fairly traditional — using an iterative engineering design process, developing teamwork skills, and deepening communication skills, to name a few — the approach is not. “Terrascope is just kind of like throwing you into a real-world problem … it feels a lot more like you are being trusted with this actual challenge,” Leon says.The 2024 challenge was to find a way to help the clients, Puerto Rican senior citizens, turn on gasoline-powered generators when the electrical power grid fails; some of them struggle with the pull cords necessary to start the generators. The students were tasked with designing solutions to make starting the generators easier.Terrascope instructors teach fundamental skills such as iterative design spirals and scrum workflow frameworks, but they also give students ample freedom to follow their ideas. Leon admits she was a bit frustrated at first, because she wasn’t sure what she was supposed to be doing. “I wanted to be building things and thought, ‘Wow, I have to do all these other things, I have to write some kind of client profile and understand my client’s needs.’ I was just like, ‘Hand me a drill! I want to design something!’”When he took the class last year, Uziel Rodriguez-Andujar was also thrown off initially by the independence teams had. Now a second-year UPRP student in mechanical engineering, he’s accustomed to lecture-based classes. “What I found so interesting is the way [they] teach the class, which is, ‘You make your own project, and we need you to find a solution to this. How it will look, and when you have it — that’s up to you,’” he says.Clearing hurdlesTeaching the course on three different campuses introduces a number of challenges for students and instructors to overcome — among them, operating in three different time zones, overcoming language barriers, navigating different cultural and institutional norms, communicating effectively, and designing and building prototypes over Zoom.“The culture span is huge,” explains Epstein. “There are different ways of speaking, different ways of listening, and each organization has different resources.”First-year MIT student EJ Rodriguez found that one of the biggest obstacles was trying to convey ideas to teammates clearly. He took the class this year, when the theme revolved around the environmental impacts of lithium mining. The client, the Nevada Museum of Art, wanted to find ways to engage visitors with its artwork collection related to mining-related landscape changes.Rodriguez and his team designed a pendulum with a light affixed to it that illuminates a painting by a Native American artist. When the pendulum swings, it changes how the visitor experiences the artwork. The team built parts for the pendulum on different campuses, and they reached a point where they realized their pieces were incompatible. “We had different visions of what we wanted for the project, and different vocabulary we were using to describe our ideas. Sometimes there would be a misunderstanding … It required a lot of honesty from each campus to be like, ‘OK, I thought we were doing exactly this,’ and obviously in a really respectful way.”It’s not uncommon for students at Diné College and UPRP to experience an initial hurdle that their MIT peers do not. Epstein notes, “There’s a tendency for some folks outside MIT to see MIT students as these brilliant people that they don’t belong in the same room with.” But the other students soon realize not only that they can hold their own intellectually, but also that their backgrounds and experiences are incredibly valuable. “Their life experiences actually put them way ahead of many MIT students in some ways, when you think about design and fabrication, like repairing farm equipment or rebuilding transmissions,” he adds.That’s how Cauy Bia felt when he took the class in 2024. Currently a first-year graduate student in biology at Diné College, Bia questioned whether he’d be on par with the MIT students. “I’ve grown up on a farm, and we do a lot of building, a lot of calculations, a lot of hands-on stuff. But going into this, I was sweating it so hard [wondering], ‘Am I smart enough to work with these students?’ And then, at the end of the day, that was never an issue,” he says.The value of reflectionEvery two weeks, Terrascope students write personal reflections about their experiences in the class, which helps them appreciate their academic and personal development. “I really felt that I had undergone a process that made me grow as an engineer,” says Leon. “I understood the importance of people and engineering more, including teamwork, working with clients, and de-centering the project away from what I wanted to build and design.”When Bia began the semester, he says, he was more of a “make-or-break-type person” and tended to see things in black and white. “But working with all three campuses, it kind of opened up my thought process so I can assess more ideas, more voices and opinions. And I can get broader perspectives and get bigger ideas from that point,” he says. It was also a powerful experience culturally for him, particularly “drawing parallels between Navajo history, Navajo culture, and seeing the similarities between that and Puerto Rican culture, seeing how close we are as two nations.”Rodriguez-Andujar gained an appreciation for the “constant struggle between simplicity and complexity” in engineering. “You have all these engineers trying to over-engineer everything,” he says. “And after you get your client feedback [halfway through the semester], it turns out, ‘Oh, that doesn’t work for me. I’m sorry — you have to scale it down like a hundred times and make it a lot simpler.’”For instructors, the students’ reflections are invaluable as they strive to make improvements every year. In many ways, you might say the class is an iterative design spiral, too. “The past three years have themselves been prototypes,” Epstein says, “and all of the instructional staff are looking forward to continuing these exciting partnerships.” More

  • in

    Evelyn Wang: A new energy source at MIT

    Evelyn Wang ’00 knows a few things about engineering solutions to hard problems. After all, she invented a way to pull water out of thin air.Now, Wang is applying that problem-solving experience — and a deep, enduring sense of optimism — toward the critical issue of climate change, to strengthen the American energy economy and ensure resilience for all.Wang, a mechanical engineering professor by trade, began work this spring as MIT’s first vice president for energy and climate, overseeing the Institute’s expanding work on climate change. That means broadening the Institute’s already-wide research portfolio, scaling up existing innovations, seeking new breakthroughs, and channeling campus community input to drive work forward.“MIT has the potential to do so much, when we know that climate, energy, and resilience are paramount to events happening around us every day,” says Wang, who is also the Ford Professor of Engineering at MIT. “There’s no better place than MIT to come up with the transformational solutions that can help shape our world.”That also means developing partnerships with corporate allies, startups, government, communities, and other organizations. Tackling climate change, Wang says, “requires a lot of partnerships. It’s not an MIT-only endeavor. We’re going to have to collaborate with other institutions and think about where industry can help us deploy and scale so the impact can be greater.”She adds: “The more partnerships we have, the more understanding we have of the best pathways to make progress in difficult areas.”From MIT to ARPA-EAn MIT faculty member since 2007, Wang leads the Device Research Lab. Along with collaborators, she identifies new materials and optimizations based on heat and mass transport processes that unlock the creation of leading-edge innovations. Her development of the device that extracts water from even very dry air led Foreign Policy Magazine to name her its 2017 Global ReThinker, and she won the 2018 Eighth Prince Sultan bin Abdulaziz International Prize for Water.Her research also extends to other areas such as energy and desalination research. In 2016, Wang and several colleagues announced a device based on nanophotonic crystals with the potential to double the amount of power produced by a given area of solar panels, which led to one of her graduate researchers on the project to co-found the startup Antora Energy. More recently, Wang and colleagues developed an aerogel that improves window insulation, now being commercialized through her former graduate students in a startup, AeroShield.Wang also spent two years recently as director of the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E), which supports early-stage R&D on energy generation, storage, and use.  Returning to MIT, she began her work as vice president for energy and climate in April, engaging with researchers, holding community workshops, and planning to build partnerships.“I’ve been energized coming back to the Institute, given the talented students, the faculty, the staff. It’s invigorating to be back in this community,” Wang says. “People are passionate, excited, and mission-driven, and that’s the energy we need to make a big impact in the world.”Wang is also working to help align the Institute’s many existing climate efforts. This includes the Climate Project at MIT, an Institute-wide presidential initiative announced in 2024, which aims to accelerate and scale up climate solutions while generating new tools and policy proposals. All told, about 300 MIT faculty conduct research related to climate issues in one form or another.“The fact that there are so many faculty working on climate is astounding,” Wang says. “Everyone’s doing exciting work, but how can we leverage our unique strengths to create something bigger than the sum of its parts? That’s what I’m working toward. We’ve spun out so many technologies. How do we do more of that? How do we do that faster, and in a way so the world will feel the impact?”A deep connection to campus — and strong sense of optimismUnderstanding MIT is one of Wang’s strengths, given that she has spent over two decades at the Institute.Wang earned her undergraduate degree from MIT in mechanical engineering, and her MS and PhD in mechanical engineering from Stanford University. She has held several chaired faculty positions at MIT. In 2008, Wang was named the Esther and Harold E. Edgerton Assistant Professor; in 2015, she was named the Gail E. Kendall Professor; and in 2021, she became the Ford Professor of Engineering. Wang served as head of the Department of Mechanical Engineering from 2018 through 2022.As it happens, Wang’s parents, Kang and Edith, met as graduate students at the Institute. Her father, an electrical engineer, became a professor at the University of California at Los Angeles. Wang also met her husband at MIT, and both of her brothers graduated from the Institute.Along with her deep institutional knowledge, administrative experience, and track record as an innovator, Wang is bringing several other things to her new role as vice president for climate: a sense of urgency about the issue, coupled with a continual sense of optimism that innovators can meet society’s needs.“I think optimism can make a difference, and is great to have in the midst of collective challenge,” Wang says. “We’re such a mission-driven university, and people come here to solve real-world problems.”That hopeful approach is why Wang describes the work as not only as a challenge but also a generational opportunity. “We have the chance to design the world we want,” she says, “one that’s cleaner, more sustainable and more resilient. This future is ours to shape and build together.”Wang thinks MIT contains many examples of world-shaping progress, She cites MIT’s announcement this month of the creation of the Schmidt Laboratory for Materials in Nuclear Technologies, at the MIT Plasma Science and Fusion center, to conduct research on next-generation materials that could help enable the construction of fusion power plants. Another example Wang references is MIT research earlier this year on developing clean ammonia, a way to make the world’s most widely-produced chemical with drastically-reduced greenhouse gas emissions.“Those solutions could be breakthroughs,” Wang says. “Those are the kinds of things that give us optimism. There’s still a lot of research to be done, but it suggests the potential of what our world can be.”Optimism: There’s that word again.“Optimism is the only way to go,” Wang says. “Yes, the world is challenged. But this is where MIT’s strengths — in research, innovation, and education — can bring optimism to the table.” More

  • in

    Day of Climate inspires young learners to take action

    “Close your eyes and imagine we are on the same team. Same arena. Same jersey. And the game is on the line,” Jaylen Brown, the 2024 NBA Finals MVP for the Boston Celtics, said to a packed room of about 200 people at the recent Day of Climate event at the MIT Museum.“Now think about this: We aren’t playing for ourselves; we are playing for the next generation,” Brown added, encouraging attendees to take climate action. The inaugural Day of Climate event brought together local learners, educators, community leaders, and the MIT community. Featuring project showcases, panels, and a speaker series, the event sparked hands-on learning and inspired climate action across all ages.The event marked the celebration of the first year of a larger initiative by the same name. Led by the pK-12 team at MIT Open Learning, Day of Climate has brought together learners and educators by offering free, hands-on curriculum lessons and activities designed to introduce learners to climate change, teach how it shapes their lives, and consider its effects on humanity. Cynthia Breazeal, dean of digital learning at MIT Open Learning, notes the breadth of engagement across MIT that made the event, and the larger initiative, possible with contributions from more than 10 different MIT departments, labs, centers, and initiatives. “MIT is passionate about K-12 education,” she says. “It was truly inspiring to witness how our entire community came together to demonstrate the power of collaboration and advocacy in driving meaningful change.”From education to action The event kicked off with a showcase, where the Day of Climate grantees and learners invited attendees to learn about their projects and meaningfully engage with lessons and activities. Aranya Karighattam, a local high school senior, adapted the curriculum Urban Heat Islands — developed by Lelia Hampton, a PhD student in electrical engineering and computer science at MIT, and Chris Rabe, program director at the MIT Environmental Solution Initiative — sharing how this phenomenon affects the Boston metropolitan area. 

    Play video

    Day of Climate inspires young learners to take actionVideo: MIT Open Learning

    Karighattam discussed what could be done to shield local communities from urban heat islands. They suggested doubling the tree cover in areas with the lowest quartile tree coverage as one mitigating strategy, but noted that even small steps, like building a garden and raising awareness for this issue, can help.Day of Climate echoed a consistent call to action, urging attendees to meaningfully engage in both education and action. Brown, who is an MIT Media Lab Director’s Fellow, spoke about how education and collective action will pave the way to tackle big societal challenges. “We need to invest in sustainability communities,” he said. “We need to invest in clean technology, and we need to invest in education that fosters environmental stewardship.”Part of MIT’s broader sustainability efforts, including The Climate Project, the event reflected a commitment to building a resilient and sustainable future for all. Influenced by the Climate Action Through Education (CATE), Day of Climate panelist Sophie Shen shared how climate education inspired her civic life. “Learning about climate change has inspired me to take action on a wider systemic level,” she said.Shen, a senior at Arlington High School and local elected official, emphasized how engagement and action looks different for everyone. “There are so many ways to get involved,” she said. “That could be starting a community garden — those can be great community hubs and learning spaces — or it could include advocating to your local or state governments.”Becoming a catalyst for change The larger Day of Climate initiative encourages young people to understand the interdisciplinary nature of climate change and consider how the changing climate impacts many aspects of life. With curriculum available for learners from ages 4 to 18, these free activities range from Climate Change Charades — where learners act out words like “deforestation” and “recycling” — to Climate Change Happens Below Water, where learners use sensors to analyze water quality data like pH and solubility.Many of the speakers at the event shared personal anecdotes from their childhood about how climate education, both in and out of the classroom, has changed the trajectory of their lives. Addaline Jorroff, deputy climate chief and director of mitigation and community resilience in the Office of Climate Resilience and Innovation for the Commonwealth of Massachusetts, explained how resources from MIT were instrumental in her education as a middle and high schooler, while Jaylen Brown told how his grandmother helped him see the importance of taking care of the planet, through recycling and picking up trash together, when he was young.Claudia Urrea, director of the pK-12 team at Open Learning and director of Day of Climate, emphasizes how providing opportunities at schools — through new curriculum, classroom resources and mentorship — are crucial, but providing other educational opportunities also matter: in particular, opportunities that support learners in becoming strong leaders.“I strongly believe that this event not only inspired young learners to take meaningful action, both large and small, towards a better future, but also motivated all the stakeholders to continue to create opportunities for these young learners to emerge as future leaders,” Urrea says.The team plans to hold the Day of Climate event annually, bringing together young people, educators, and the MIT community. Urrea hopes the event will act as a catalyst for change — for everyone.“We hope Day of Climate serves as the opportunity for everyone to recognize the interconnectedness of our actions,” Urrea says. “Understanding this larger system is crucial for addressing current and future challenges, ultimately making the world a better place for all.”The Day of Climate event was hosted by the Day of Climate team in collaboration with MIT Climate Action Through Education (CATE) and Earth Day Boston. More

  • in

    SLB joins the MIT.nano Consortium

    SLB, a global company creating technology to address the world’s energy challenges, has joined the MIT.nano Consortium.The MIT.nano Consortium is a platform for academia-industry collaboration, fostering research and innovation in nanoscale science and engineering.“The addition of SLB to the MIT.nano Consortium represents a powerful synergy between academic innovation and leading industry,” says Vladimir Bulović, the founding faculty director of MIT.nano and the Fariborz Masseh (1990) Professor of Emerging Technologies at MIT. “SLB’s expertise in developing energy technologies and its commitment to decarbonization aligns with MIT‘s mission to address the many challenges of climate change. Their addition to the consortium, and collaborations that will follow, will empower the MIT.nano community to advance critical research in this domain.”For 100 years, SLB has developed strategies and systems to unlock access to energy beneath the Earth’s surface. The company’s founder, Conrad Schlumberger, conceived the idea of using electrical measurements to map subsurface rock bodies back in 1912. Since then, SLB has continued to open new fronts in energy exploration—innovating in oil and gas, scaling new technologies, and designing digital solutions. Applying decades of innovation in science and engineering, SLB has committed to accelerating the decarbonization of the energy sector and supporting the global transition to low-carbon energy systems.With more than 900 facilities in over 120 countries, SLB adds to the global industry perspective of the MIT.nano Consortium and the broader MIT research community.“Taking a nanoscale approach to the scientific and technological challenges we face in the decarbonization domains is an endeavor that SLB is excited to embark on with MIT.nano,” says Smaine Zeroug, SLB research director and ambassador to MIT. “We are confident our engagement with MIT.nano and the extensive research network they offer access to will ultimately lead to field-viable solutions.”SLB has a longstanding relationship with MIT. The company, formerly named Schlumberger, donated specialized software to the MIT Seismic Visualization Laboratory in 1999 to enable MIT researchers and students to use three-dimensional seismic data in their studies of the Earth’s upper crust. SLB is also a current member of the MIT CSAIL Alliances.As a member of the MIT.nano consortium, SLB will gain unparalleled access to MIT.nano’s dynamic user community, providing opportunities to share expertise and guide advances in nanoscale technology.MIT.nano continues to welcome new companies as sustaining members. For details, and to see a list of current members, visit the MIT.nano Consortium page. More