More stories

  • in

    A green hydrogen innovation for clean energy

    Renewable energy today — mainly derived from the sun or wind — depends on batteries for storage. While costs have dropped in recent years, the pursuit of more efficient means of storing renewable power continues.

    “All of these technologies, unfortunately, have a long way to go,” said Sossina Haile SB ’86, PhD ’92, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University, at recent talk at MIT. She was the speaker of the fall 2023 Wulff Lecture, an event hosted by the Department of Materials Science and Engineering (DMSE) to ignite enthusiasm for the discipline.

    To add to the renewable energy mix — and help quicken the pace to a sustainable future — Haile is working on an approach based on hydrogen in fuel cells, particularly for eco-friendly fuel in cars. Fuel cells, like batteries, produce electricity from chemical reactions but don’t lose their charge so long as fuel is supplied.

    To generate power, the hydrogen must be pure — not attached to another molecule. Most methods of producing hydrogen today require burning fossil fuel, which generates planet-heating carbon emissions. Haile proposes a “green” process using renewable electricity to extract the hydrogen from steam.

    When hydrogen is used in a fuel cell, “you have water as the product, and that’s the beautiful zero emissions,” Haile said, referring to the renewable energy production cycle that is set in motion.

    Ammonia fuels hydrogen’s potential

    Hydrogen is not yet widely used as a fuel because it’s difficult to transport. For one, it has low energy density, meaning a large volume of hydrogen gas is needed to store a large amount of energy. And storing it is challenging because hydrogen’s tiny molecules can infiltrate metal tanks or pipes, causing cracks and gas leakage.

    Haile’s solution for transporting hydrogen is using ammonia to “carry” it. Ammonia is three parts hydrogen and one part nitrogen, so the hydrogen needs to be separated from the nitrogen before it can be used in the kind of fuel cells that can power cars.

    Ammonia has some advantages, including using existing pipelines and a high transmission capacity, Haile said — so more power can be transmitted at any given time.

    To extract the hydrogen from ammonia, Haile has built devices that look a lot like fuel cells, with cesium dihydrogen phosphate as an electrolyte. The “superprotonic” material displays high proton conductivity — it allows protons, or positively charged particles, to move through it. This is important for hydrogen, which has just a proton and an electron. By letting only protons through the electrolyte, the device strips hydrogen from the ammonia, leaving behind the nitrogen.

    The material has other benefits, too, Haile said: “It’s inexpensive, nontoxic, earth-abundant — all these good things that you want to have when you think about a sustainable energy technology.”

    Play video

    2023 Fall Wulff LectureVideo: Department of Materials Science and Engineering

    Sparking interest — and hope

    Haile’s talk piqued interest in the audience, which nearly filled the 6-120 auditorium at MIT, which seats about 150 people.

    Materials science and engineering major Nikhita Law heard hope in Haile’s talk for a more sustainable future.

    “A major problem in making our energy system sustainable is finding ways to store energy from renewables,” Law says. Even if hydrogen-powered cars are not as wide-scale as lithium-battery-powered electric cars, “a permanent energy storage station where we convert electricity into hydrogen and convert it back seems like it makes more sense than mining more lithium.”

    Another DMSE student, senior Daniel Tong, learned about the challenges involved in transporting hydrogen at another seminar and was curious to learn more. “This was something I hadn’t thought of: Can you carry hydrogen more effectively in a different form? That’s really cool.”

    He adds that talks like the Wulff Lecture are helpful in keeping people up to date in a wide-ranging, interdisciplinary field such as materials science and engineering, which spans chemistry, physics, engineering, and other disciplines. “This is a really good way to get exposed to different parts of materials science. There are so many more facets than you know of.”

    In her talk, Haile encouraged audience members to get involved in sustainability research.

    “There’s lots of room for further insight and materials discovery,” she said.

    Haile concluded by underscoring the challenges faced by developing countries in dealing with climate change impacts, particularly those near the equator where there isn’t adequate infrastructure to deal with big swings in precipitation and temperature. For the people who aren’t driven to solve problems that affect people on the other side of the world, Haile offered some extra motivation.

    “I’m sure many of you enjoy coffee. This is going to put the coffee crops in jeopardy as well,” she said. More

  • in

    Merging science and systems thinking to make materials more sustainable

    For Professor Elsa Olivetti, tackling a problem as large and complex as climate change requires not only lab research but also understanding the systems of production that power the global economy.

    Her career path reflects a quest to investigate materials at scales ranging from the microscopic to the mass-manufactured.

    “I’ve always known what questions I wanted to ask, and then set out to build the tools to help me ask those questions,” says Olivetti, the Jerry McAfee Professor in Engineering.

    Olivetti, who earned tenure in 2022 and was recently appointed associate dean of engineering, has sought to equip students with similar skills, whether in the classroom, in her lab group, or through the interdisciplinary programs she leads at MIT. Those efforts have earned her accolades including the Bose Award for Excellence in Teaching, a MacVicar Faculty Fellowship in 2021, and the McDonald Award for Excellence in Mentoring and Advising in 2023.

    “I think to make real progress in sustainability, materials scientists need to think in interdisciplinary, systems-level ways, but at a deep technical level,” Olivetti says. “Supporting my students so that’s something that a lot more people can do is very rewarding for me.”

    Her mission to make materials more sustainable also makes Olivetti grateful [EAO1] she’s at MIT, which has a long tradition of both interdisciplinary collaboration and technical know-how.

    “MIT’s core competencies are well-positioned for bold achievements in climate and sustainability — the deep expertise on the economics side, the frontier knowledge in science, the computational creativity,” Olivetti says. “It’s a really exciting time and place where the key ingredients for progress are simmering in transformative ways.”

    Answering the call

    The moment that set Olivetti on her life’s journey began when she was 8, with a knock at her door. Her parents were in the other room, so Olivetti opened the door and met an organizer for Greenpeace, a nonprofit that works to raise awareness of environmental issues.

    “I had a chat with that guy and got hooked on environmental concerns,” Olivetti says. “I still remember that conversation.”

    The interaction changed the way Olivetti thought about her place in the world, and her new perspective manifested itself in some unique ways. Her elementary school science fair projects became elaborate pursuits of environmental solutions involving burying various items in the backyard to test for biodegradability. There was also an awkward attempt at natural pesticide development, which lead to a worm hatching in her bedroom.

    As an undergraduate at the University of Virginia, Olivetti gravitated toward classes in environmentalism and materials science.

    “There was a link between materials science and a broader, systems way of framing design for environment, and that just clicked for me in terms of the way I wanted to think about environmental problems — from the atom to the system,” Olivetti recalls.

    That interest led Olivetti to MIT for a PhD in 2001, where she studied the feasibility of new materials for lithium-ion batteries.

    “I really wanted to be thinking of things at a systems level, but I wanted to ground that in lab-based research,” Olivetti says. “I wanted an experiential experience in grad school, and that’s why I chose MIT’s program.”

    Whether it was her undergraduate studies, her PhD, or her ensuing postdoc work at MIT, Olivetti sought to learn new skills to continue bridging the gap between materials science and environmental systems thinking.

    “I think of it as, ‘Here’s how I can build up the ways I ask questions,’” Olivetti explains. “How do we design these materials while thinking about their implications as early as possible?”

    Since joining MIT’s faculty in 2014, Olivetti has developed computational models to measure the cost and environmental impact of new materials, explored ways to adopt more sustainable and circular supply chains, and evaluated potential materials limitations as lithium-ion battery production is scaled. That work helps companies increase their use of greener, recyclable materials and more sustainably dispose of waste.

    Olivetti believes the wide scope of her research gives the students in her lab a more holistic understanding of the life cycle of materials.

    “When the group started, each student was working on a different aspect of the problem — like on the natural language processing pipeline, or on recycling technology assessment, or beneficial use of waste — and now each student can link each of those pieces in their research,” Olivetti explains.

    Beyond her research, Olivetti also co-directs the MIT Climate and Sustainability Consortium, which has established a set of eight areas of sustainability that it organizes coalitions around. Each coalition involves technical leaders at companies and researchers at MIT that work together to accelerate the impact of MIT’s research by helping companies adopt innovative and more sustainable technologies.

    “Climate change mitigation and resilience is such a complex problem, and at MIT we have practice in working together across disciplines on many challenges,” Olivetti says. “It’s been exciting to lean on that culture and unlock ways to move forward more effectively.”

    Bridging divides

    Today, Olivetti tries to maximize the impact of her and her students’ research in materials industrial ecology by maintaining close ties to applications. In her research, this means working directly with aluminum companies to design alloys that could incorporate more scrap material or with nongovernmental organizations to incorporate agricultural residues in building products. In the classroom, that means bringing in people from companies to explain how they think about concepts like heat exchange or fluid flow in their products.

    “I enjoy trying to ground what students are learning in the classroom with what’s happening in the world,” Olivetti explains.

    Exposing students to industry is also a great way to help them think about their own careers. In her research lab, she’s started using the last 30 minutes of meetings to host talks from people working in national labs, startups, and larger companies to show students what they can do after their PhDs. The talks are similar to the Industry Seminar series Olivetti started that pairs undergraduate students with people working in areas like 3D printing, environmental consulting, and manufacturing.

    “It’s about helping students learn what they’re excited about,” Olivetti says.

    Whether in the classroom, lab, or at events held by organizations like MCSC, Olivetti believes collaboration is humanity’s most potent tool to combat climate change.

    “I just really enjoy building links between people,” Olivetti says. “Learning about people and meeting them where they are is a way that one can create effective links. It’s about creating the right playgrounds for people to think and learn.” More

  • in

    Engineers develop an efficient process to make fuel from carbon dioxide

    The search is on worldwide to find ways to extract carbon dioxide from the air or from power plant exhaust and then make it into something useful. One of the more promising ideas is to make it into a stable fuel that can replace fossil fuels in some applications. But most such conversion processes have had problems with low carbon efficiency, or they produce fuels that can be hard to handle, toxic, or flammable.

    Now, researchers at MIT and Harvard University have developed an efficient process that can convert carbon dioxide into formate, a liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity. Potassium or sodium formate, already produced at industrial scales and commonly used as a de-icer for roads and sidewalks, is nontoxic, nonflammable, easy to store and transport, and can remain stable in ordinary steel tanks to be used months, or even years, after its production.

    The new process, developed by MIT doctoral students Zhen Zhang, Zhichu Ren, and Alexander H. Quinn; Harvard University doctoral student Dawei Xi; and MIT Professor Ju Li, is described this week in an open-access paper in Cell Reports Physical Science. The whole process — including capture and electrochemical conversion of the gas to a solid formate powder, which is then used in a fuel cell to produce electricity — was demonstrated at a small, laboratory scale. However, the researchers expect it to be scalable so that it could provide emissions-free heat and power to individual homes and even be used in industrial or grid-scale applications.

    Other approaches to converting carbon dioxide into fuel, Li explains, usually involve a two-stage process: First the gas is chemically captured and turned into a solid form as calcium carbonate, then later that material is heated to drive off the carbon dioxide and convert it to a fuel feedstock such as carbon monoxide. That second step has very low efficiency, typically converting less than 20 percent of the gaseous carbon dioxide into the desired product, Li says.

    By contrast, the new process achieves a conversion of well over 90 percent and eliminates the need for the inefficient heating step by first converting the carbon dioxide into an intermediate form, liquid metal bicarbonate. That liquid is then electrochemically converted into liquid potassium or sodium formate in an electrolyzer that uses low-carbon electricity, e.g. nuclear, wind, or solar power. The highly concentrated liquid potassium or sodium formate solution produced can then be dried, for example by solar evaporation, to produce a solid powder that is highly stable and can be stored in ordinary steel tanks for up to years or even decades, Li says.

    Several steps of optimization developed by the team made all the difference in changing an inefficient chemical-conversion process into a practical solution, says Li, who holds joint appointments in the departments of Nuclear Science and Engineering and of Materials Science and Engineering.

    The process of carbon capture and conversion involves first an alkaline solution-based capture that concentrates carbon dioxide, either from concentrated streams such as from power plant emissions or from very low-concentration sources, even open air, into the form of a liquid metal-bicarbonate solution. Then, through the use of a cation-exchange membrane electrolyzer, this bicarbonate is electrochemically converted into solid formate crystals with a carbon efficiency of greater than 96 percent, as confirmed in the team’s lab-scale experiments.

    These crystals have an indefinite shelf life, remaining so stable that they could be stored for years, or even decades, with little or no loss. By comparison, even the best available practical hydrogen storage tanks allow the gas to leak out at a rate of about 1 percent per day, precluding any uses that would require year-long storage, Li says. Methanol, another widely explored alternative for converting carbon dioxide into a fuel usable in fuel cells, is a toxic substance that cannot easily be adapted to use in situations where leakage could pose a health hazard. Formate, on the other hand, is widely used and considered benign, according to national safety standards.

    Several improvements account for the greatly improved efficiency of this process. First, a careful design of the membrane materials and their configuration overcomes a problem that previous attempts at such a system have encountered, where a buildup of certain chemical byproducts changes the pH, causing the system to steadily lose efficiency over time. “Traditionally, it is difficult to achieve long-term, stable, continuous conversion of the feedstocks,” Zhang says. “The key to our system is to achieve a pH balance for steady-state conversion.”

    To achieve that, the researchers carried out thermodynamic modeling to design the new process so that it is chemically balanced and the pH remains at a steady state with no shift in acidity over time. It can therefore continue operating efficiently over long periods. In their tests, the system ran for over 200 hours with no significant decrease in output. The whole process can be done at ambient temperatures and relatively low pressures (about five times atmospheric pressure).

    Another issue was that unwanted side reactions produced other chemical products that were not useful, but the team figured out a way to prevent these side reactions by the introduction of an extra “buffer” layer of bicarbonate-enriched fiberglass wool that blocked these reactions.

    The team also built a fuel cell specifically optimized for the use of this formate fuel to produce electricity. The stored formate particles are simply dissolved in water and pumped into the fuel cell as needed. Although the solid fuel is much heavier than pure hydrogen, when the weight and volume of the high-pressure gas tanks needed to store hydrogen is considered, the end result is an electricity output near parity for a given storage volume, Li says.

    The formate fuel can potentially be adapted for anything from home-sized units to large scale industrial uses or grid-scale storage systems, the researchers say. Initial household applications might involve an electrolyzer unit about the size of a refrigerator to capture and convert the carbon dioxide into formate, which could be stored in an underground or rooftop tank. Then, when needed, the powdered solid would be mixed with water and fed into a fuel cell to provide power and heat. “This is for community or household demonstrations,” Zhang says, “but we believe that also in the future it may be good for factories or the grid.”

    “The formate economy is an intriguing concept because metal formate salts are very benign and stable, and a compelling energy carrier,” says Ted Sargent, a professor of chemistry and of electrical and computer engineering at Northwestern University, who was not associated with this work. “The authors have demonstrated enhanced efficiency in liquid-to-liquid conversion from bicarbonate feedstock to formate, and have demonstrated these fuels can be used later to produce electricity,” he says.

    The work was supported by the U.S. Department of Energy Office of Science. More

  • in

    Technologies for water conservation and treatment move closer to commercialization

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) provides Solutions Grants to help MIT researchers launch startup companies or products to commercialize breakthrough technologies in water and food systems. The Solutions Grant Program began in 2015 and is supported by Community Jameel. In addition to one-year, renewable grants of up to $150,000, the program also matches grantees with industry mentors and facilitates introductions to potential investors. Since its inception, the J-WAFS Solutions Program has awarded over $3 million in funding to the MIT community. Numerous startups and products, including a portable desalination device and a company commercializing a novel food safety sensor, have spun out of this support.

    The 2023 J-WAFS Solutions Grantees are Professor C. Cem Tasan of the Department of Materials Science and Engineering and Professor Andrew Whittle of the Department of Civil and Environmental Engineering. Tasan’s project involves reducing water use in steel manufacturing and Whittle’s project tackles harmful algal blooms in water. Project work commences this September.

    “This year’s Solutions Grants are being award to professors Tasan and Whittle to help commercialize technologies they have been developing at MIT,” says J-WAFS executive director Renee J. Robins. “With J-WAFS’ support, we hope to see the teams move their technologies from the lab to the market, so they can have a beneficial impact on water use and water quality challenges,” Robins adds.

    Reducing water consumption by solid-state steelmaking

    Water is a major requirement for steel production. The steel industry ranks fourth in industrial freshwater consumption worldwide, since large amounts of water are needed mainly for cooling purposes in the process. Unfortunately, a strong correlation has also been shown to exist between freshwater use in steelmaking and water contamination. As the global demand for steel increases and freshwater availability decreases due to climate change, improved methods for more sustainable steel production are needed.

    A strategy to reduce the water footprint of steelmaking is to explore steel recycling processes that avoid liquid metal processing. With this motivation, Cem Tasan, the Thomas B. King Associate Professor of Metallurgy in the Department of Materials Science and Engineering, and postdoc Onur Guvenc PhD created a new process called Scrap Metal Consolidation (SMC). SMC is based on a well-established metal forming process known as roll bonding. Conventionally, roll bonding requires intensive prior surface treatment of the raw material, specific atmospheric conditions, and high deformation levels. Tasan and Guvenc’s research revealed that SMC can overcome these restrictions by enabling the solid-state bonding of scrap into a sheet metal form, even when the surface quality, atmospheric conditions, and deformation levels are suboptimal. Through lab-scale proof-of-principle investigations, they have already identified SMC process conditions and validated the mechanical formability of resulting steel sheets, focusing on mild steel, the most common sheet metal scrap.

    The J-WAFS Solutions Grant will help the team to build customer product prototypes, design the processing unit, and develop a scale-up strategy and business model. By simultaneously decreasing water usage, energy demand, contamination risk, and carbon dioxide burden, SMC has the potential to decrease the energy need for steel recycling by up to 86 percent, as well as reduce the linked carbon dioxide emissions and safeguard the freshwater resources that would otherwise be directed to industrial consumption. 

    Detecting harmful algal blooms in water before it’s too late

    Harmful algal blooms (HABs) are a growing problem in both freshwater and saltwater environments worldwide, causing an estimated $13 billion in annual damage to drinking water, water for recreational use, commercial fishing areas, and desalination activities. HABs pose a threat to both human health and aquaculture, thereby threatening the food supply. Toxins in HABs are produced by some cyanobacteria, or blue-green algae, whose communities change in composition in response to eutrophication from agricultural runoff, sewer overflows, or other events. Mitigation of risks from HABs are most effective when there is advance warning of these changes in algal communities. 

    Most in situ measurements of algae are based on fluorescence spectroscopy that is conducted with LED-induced fluorescence (LEDIF) devices, or probes that induce fluorescence of specific algal pigments using LED light sources. While LEDIFs provide reasonable estimates of concentrations of individual pigments, they lack resolution to discriminate algal classes within complex mixtures found in natural water bodies. In prior research, Andrew Whittle, the Edmund K. Turner Professor of Civil and Environmental Engineering, worked with colleagues to design REMORA, a low-cost, field-deployable prototype spectrofluorometer for measuring induced fluorescence. This research was part of a collaboration between MIT and the AMS Institute. Whittle and the team successfully trained a machine learning model to discriminate and quantify cell concentrations for mixtures of different algal groups in water samples through an extensive laboratory calibration program using various algae cultures. The group demonstrated these capabilities in a series of field measurements at locations in Boston and Amsterdam. 

    Whittle will work with Fábio Duarte of the Department of Urban Studies and Planning, the Senseable City Lab, and MIT’s Center for Real Estate to refine the design of REMORA. They will develop software for autonomous operation of the sensor that can be deployed remotely on mobile vessels or platforms to enable high-resolution spatiotemporal monitoring for harmful algae. Sensor commercialization will hopefully be able to exploit the unique capabilities of REMORA for long-term monitoring applications by water utilities, environmental regulatory agencies, and water-intensive industries.  More

  • in

    Elsa Olivetti appointed associate dean of engineering

    Elsa Olivetti, the Jerry McAfee (1940) Professor in Engineering in the Department of Materials Science and Engineering, has been appointed as associate dean of engineering, effective Sept. 1.

    As associate dean, Olivetti will oversee a number of strategically important programs and initiatives across MIT’s School of Engineering. She will help lead and shape school-wide efforts related to climate and sustainability. In close collaboration with Nandi Bynoe, the assistant dean for diversity, equity, and inclusion; the school’s DEI faculty lead; and various program faculty leads, Olivetti will oversee the school’s DEI activities and programs. She will also assist with the faculty promotion process and will support both faculty and students across the school with regards fellowships, awards, and honors.

    “Professor Olivetti has demonstrated tremendous leadership abilities, particularly as co-director of the MIT Climate and Sustainability Consortium. Her contributions as a researcher, educator, and leader at MIT have been substantial,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am thrilled to welcome her to the School of Engineering leadership team and look forward to closely with her in this new role.”

    Olivetti first joined MIT as a graduate student after receiving her bachelor’s degree in engineering science from the University of Virginia. As a PhD student in the Department of Materials Science and Engineering (DMSE), her research focused on electrochemistry in inorganic materials for use in lithium-ion batteries. Through postdoctoral research and a staff scientist position with the MIT Materials System Laboratory beginning in 2009, Olivetti developed methods for streamlined carbon footprinting of electronics, a method that is still used widely by the electronics industry.

    In 2014, Olivetti joined the DMSE faculty, where her team works in sustainable and scalable design, processing, and manufacturing of materials use across industries. The Olivetti Group develops experimental and analytical methods for efficient use of industrial waste and recycled materials in concrete, metals, and plastic guiding decisions on a plant floor to policy makers.

    Olivetti’s team has also developed methods to automatically learn from texts within materials ranging from inorganic materials synthesis, zeolites, solid state batteries, and cement. Her work uses an interdisciplinary approach combining industrial ecology with materials science and engineering to inform and then mitigate the environmental and economic impact of materials.

    Olivetti has lead climate and sustainability efforts across the Institute. She serves as the co-director of the MIT Climate and Sustainability Consortium (MCSC). Launched in 2021, the MCSC fosters collaboration between academia and industry in an effort to accelerate real-world solutions for the climate crisis at scale. Under Olivetti’s leadership alongside co-director Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, and executive director Jeremy Gregory, the consortium has grown to 18 member companies and has provided 20 research projects with seed funding. It has also launched programs such as the MCSC Climate and Sustainability Scholars Program for undergraduate students and the MCSC Impact Fellows Program for postdocs.

    In addition to her leadership at the MCSC, Olivetti is a member of the MIT Climate Nucleus, a faculty committee responsible for the implementation of “Fast Forward: MIT’s Climate Action Plan for the Decade.”

    A dedicated educator, Olivetti has made significant contributions to MIT’s material science and engineering education. She was instrumental in the development of a refined DMSE undergraduate curriculum. She also launched a new class 3.081 (Industrial Ecology of Materials) and served as a founding thread lead for MIT New Engineering Education Transformation’s Advanced Materials Machines program. Olivetti launched “Course 3 Industry Seminars,” which provide undergraduate students an opportunity to learn from industry leaders in fields like manufacturing and environmental consulting.

    Throughout her career, Olivetti has received numerous awards and honors for both her commitment to students and her research contributions. She is the recipient of the 2017 Earll M. Murman Award for Excellence in Undergraduate Advising, a 2020 Paul Gray Award for Public Service, the 2021 Bose Teaching Award, 2021 MacVicar Faculty Fellowship, and the 2023 Capers (1976) and Marion McDonald Award for Excellence in Mentoring and Advising. She also received an Early Career Faculty Fellowship from the Minerals, Metals and Materials Society as well as a National Science Foundation Early Career Development Award.

    Olivetti joins Dean Chandrakasan and Deputy Dean Maria Yang, the Gail E. Kendall (1978) Professor, on the School of Engineering faculty leadership team. More

  • in

    Panel addresses technologies needed for a net-zero future

    Five speakers at a recent public panel discussion hosted by the MIT Energy Initiative (MITEI) and introduced by Deputy Director for Science and Technology Robert Stoner tackled one of the thorniest, yet most critical, questions facing the world today: How can we achieve the ambitious goals set by governments around the globe, including the United States, to reach net zero emissions of greenhouse gases by mid-century?

    While the challenges are great, the panelists agreed, there is reason for optimism that these technological challenges can be solved. More uncertain, some suggested, are the social, economic, and political hurdles to bringing about the needed innovations.

    The speakers addressed areas where new or improved technologies or systems are needed if these ambitious goals are to be achieved. Anne White, aassociate provost and associate vice president for research administration and a professor of nuclear science and engineering at MIT, moderated the panel discussion. She said that achieving the ambitious net-zero goal “has to be accomplished by filling some gaps, and going after some opportunities.” In addressing some of these needs, she said the five topics chosen for the panel discussion were “places where MIT has significant expertise, and progress is already ongoing.”

    First of these was the heating and cooling of buildings. Christoph Reinhart, a professor of architecture and director of the Building Technology Program, said that currently about 1 percent of existing buildings are being retrofitted each year for energy efficiency and conversion from fossil-fuel heating systems to efficient electric ones — but that is not nearly enough to meet the 2050 net-zero target. “It’s an enormous task,” he said. To meet the goals, he said, would require increasing the retrofitting rate to 5 percent per year, and to require all new construction to be carbon neutral as well.

    Reinhart then showed a series of examples of how such conversions could take place using existing solar and heat pump technology, and depending on the configuration, how they could provide a payback to the homeowner within 10 years or less. However, without strong policy incentives the initial cost outlay for such a system, on the order of $50,000, is likely to put conversions out of reach of many people. Still, a recent survey found that 30 percent of homeowners polled said they would accept installation at current costs. While there is government money available for incentives for others, “we have to be very clever on how we spend all this money … and make sure that everybody is basically benefiting.”

    William Green, a professor of chemical engineering, spoke about the daunting challenge of bringing aviation to net zero. “More and more people like to travel,” he said, but that travel comes with carbon emissions that affect the climate, as well as air pollution that affects human health. The economic costs associated with these emissions, he said, are estimated at $860 per ton of jet fuel used — which is very close to the cost of the fuel itself. So the price paid by the airlines, and ultimately by the passengers, “is only about half of the true cost to society, and the other half is being borne by all of us, by the fact that it’s affecting the climate and it’s causing medical problems for people.”

    Eliminating those emissions is a major challenge, he said. Virtually all jet fuel today is fossil fuel, but airlines are starting to incorporate some biomass-based fuel, derived mostly from food waste. But even these fuels are not carbon-neutral, he said. “They actually have pretty significant carbon intensity.”

    But there are possible alternatives, he said, mostly based on using hydrogen produced by clean electricity, and making fuels out of that hydrogen by reacting it, for example, with carbon dioxide. This could indeed produce a carbon-neutral fuel that existing aircraft could use, but the process is costly, requiring a great deal of hydrogen, and ways of concentrating carbon dioxide. Other viable options also exist, but all would add significant expense, at least with present technology. “It’s going to cost a lot more for the passengers on the plane,” Green said, “But the society will benefit from that.”

    Increased electrification of heating and transportation in order to avoid the use of fossil fuels will place major demands on the existing electric grid systems, which have to perform a constant delicate balancing of production with demand. Anuradha Annaswamy, a senior research scientist in MIT’s mechanical engineering department, said “the electric grid is an engineering marvel.” In the United States it consists of 300,000 miles of transmission lines capable of carrying 470,000 megawatts of power.

    But with a projected doubling of energy from renewable sources entering the grid by 2030, and with a push to electrify everything possible — from transportation to buildings to industry — the load is not only increasing, but the patterns of both energy use and production are changing. Annaswamy said that “with all these new assets and decision-makers entering the picture, the question is how you can use a more sophisticated information layer that coordinates how all these assets are either consuming or producing or storing energy, and have that information layer coexist with the physical layer to make and deliver electricity in all these ways. It’s really not a simple problem.”

    But there are ways of addressing these complexities. “Certainly, emerging technologies in power electronics and control and communication can be leveraged,” she said. But she added that “This is not just a technology problem, really, it is something that requires technologists, economists, and policymakers to all come together.”

    As for industrial processes, Bilge Yildiz, a professor of nuclear science and engineering and materials science and engineering, said that “the synthesis of industrial chemicals and materials constitutes about 33 percent of global CO2 emissions at present, and so our goal is to decarbonize this difficult sector.” About half of all these industrial emissions come from the production of just four materials: steel, cement, ammonia, and ethylene, so there is a major focus of research on ways to reduce their emissions.

    Most of the processes to make these materials have changed little for more than a century, she said, and they are mostly heat-based processes that involve burning a lot of fossil fuel. But the heat can instead be provided from renewable electricity, which can also be used to drive electrochemical reactions in some cases as a substitute for the thermal reactions. Already, there are processes for making cement and steel that produce only about half the present carbon dioxide (CO2) emissions.

    The production of ammonia, which is widely used in fertilizer and other bulk chemicals, accounts for more greenhouse gas emissions than any other industrial source. The present thermochemical process could be replaced by an electrochemical process, she said. Similarly, the production of ethylene, as a feedstock for plastics and other materials, is the second-highest emissions producer, with three tons of carbon dioxide released for every ton of ethylene produced. Again, an electrochemical alternative method exists, but needs to be improved to be cost competitive.

    As the world moves toward electrification of industrial processes to eliminate fossil fuels, the need for emissions-free sources of electricity will continue to increase. One very promising potential addition to the range of carbon-free generation sources is fusion, a field in which MIT is a leader in developing a particularly promising technology that takes advantage of the unique properties of high-temperature superconducting (HTS) materials.

    Dennis Whyte, the director of MIT’s Plasma Science and Fusion Center, pointed out that despite global efforts to reduce CO2 emissions, “we use exactly the same percentage of carbon-based products to generate energy as 10 years ago, or 20 years ago.” To make a real difference in global emissions, “we need to make really massive amounts of carbon-free energy.”

    Fusion, the process that powers the sun, is a particularly promising pathway, because the fuel, derived from water, is virtually inexhaustible. By using recently developed HTS material to generate the powerful magnetic fields needed to produce a sustained fusion reaction, the MIT-led project, which led to a spinoff company called Commonwealth Fusion Systems, was able to radically reduce the required size of a fusion reactor, Whyte explained. Using this approach, the company, in collaboration with MIT, expects to have a fusion system that produces net energy by the middle of this decade, and be ready to build a commercial plant to produce power for the grid early in the next. Meanwhile, at least 25 other private companies are also attempting to commercialize fusion technology. “I think we can take some credit for helping to spawn what is essentially now a new industry in the United States,” Whyte said.

    Fusion offers the potential, along with existing solar and wind technologies, to provide the emissions-free power the world needs, Whyte says, but that’s only half the problem, the other part being how to get that power to where it’s needed, when it’s needed. “How do we adapt these new energy sources to be as compatible as possible with everything that we have already in terms of energy delivery?”

    Part of the way to find answers to that, he suggested, is more collaborative work on these issues that cut across disciplines, as well as more of the kinds of cross-cutting conversations and interactions that took place in this panel discussion. More

  • in

    Powering the future in Mongolia

    Nestled within the Tuul River valley and embraced by the southern Khentii Mountain Range, Ulaanbaatar (UB), Mongolia’s largest city, presents itself as an arena where nature’s forces wage an unrelenting battle against human resilience. The capital city is an icy crucible, with bone-chilling winters that plummet temperatures to an astonishing -40 degrees Fahrenheit (-40 degrees Celsius). Mongolia, often hailed with the celestial moniker of “The Land of the Eternal Blue Sky,” paradoxically succumbs to a veil of pollution and energy struggles during the winter months, obscuring the true shade of the cherished vista.

    To understand the root of these issues, MIT students from classes 22.S094 (Climate and Sustainability Systems: Decarbonizing Ulaanbaatar at Scale) and 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) visited Mongolia to conduct on-site surveys, diving into the diverse tapestry of local life as they gleaned insight from various stakeholder groups. Setting foot on Mongolian soil on a crisp day in January, they wasted no time in shaking off the weariness of their arduous 17-hour flight, promptly embarking on a waiting bus. As they traversed the vast expanse of the countryside, their eyes were captivated by snow-laden terrain.

    That is, until a disconcerting sight unfolded — thick smog, akin to ethereal pillars, permeated the cityscape ahead. These imposing plumes emanated from the colossal smokestacks of Ulaanbaatar’s coal-fired power plants, steadfastly churning electricity and heat to fuel Mongolia’s central and district energy systems. Over 93 percent of the nation’s energy comes from coal-fired power plants, where the most considerable load is caused by household consumption. Nevertheless, with nearly half of Ulaanbaatar’s population disconnected from the central heating networks, one of Mongolia’s most significant sources of pollution comes from coal-burning stoves in the residential settlements known as the ger districts. Over the past three decades, since the democratic revolution in 1990, Mongolians have grappled with escalating concerns surrounding energy provision, accessibility, and sustainability.

    Engineers who think like anthropologists

    “We find ourselves compelled to venture on-site, engaging in direct conversations with the locals, and immersing ourselves in the fabric of daily life to uncover what we don’t know,” emphasized Michael Short, professor in MIT’s Department of Nuclear Science and Engineering and faculty lead of MIT’s NEET Climate and Sustainability Systems thread, shortly before heading to Mongolia.

    The Ulaanbaatar Project sprang from a multiyear collaboration between MIT and the National University of Mongolia (NUM). Shedding light on the matter, Professor Munkhbat Byambajav of the Department of Chemical and Biological Engineering at NUM underscored the paramount importance of mitigating environmental pollution at an economic scale to alleviate the heavy burden borne by the people.

    Class 22.S094 is offered through MIT’s New Engineering Education Transformation (NEET) program, which allows students with multidisciplinary interests to collaborate across departments within four different subject areas, or threads. In this capstone project, students consider ways to decarbonize a city like Ulaanbaatar, transitioning from burning coal briquettes to a more sustainable, energy-efficient solution, given several parameters and constraints set by the local context.

    One of the ideas students have recently explored is a thermal battery made with molten salt that can store enough energy to heat a ger for up to 12 hours with added insulation for cooling curve regulation. The Mongolian ger, meaning home, is a dome-like portable dwelling covered in felt and canvas, held together by ropes traditionally crafted of animal hair or wool. Over several semesters, students have been testing a version of their proposed idea on campus, working with a prototype that weighs around 35 pounds.

    Nathan Melenbrink, the lead instructor of NEET’s Climate and Sustainability Systems (CSS) thread, believes that the complexity of the Ulaanbaatar capstone project allows students to reject the one-way solution approach and instead consider challenges with a nonprescriptive mindset. The uniqueness of the CSS thread is that students are asked to build on the previous findings from the past cohort and iterate on their designs each year. This workflow has allowed the project to mature and advance in ways that may not be feasible within a semester schedule. When asked how the recent trip impacted the ongoing research back on campus, Melenbrink states, “In light of the recent trip to Mongolia, students are beginning to see the impact of cultural immersion and social awareness leveraging the technical scope and rigor of their work.”

    Course 21A.S01, taught by Professor Manduhai Buyandelger of the MIT Anthropology Section, proved instrumental in deepening students’ understanding of the intricate dynamics at play. She asks, “The prototype works in the lab, but does it work in real life once you factor in the challenges in the larger structures of delivery, production, and implementation in Mongolia?”

    This recognition of the social dimensions of engineering permeated the early stages of the UB project, engaging all participants, including students from MIT and NUM, professionals residing in Mongolia, and local nongovernmental organizations, fostering what Buyandelger aptly describes as “a collaboration on multiple scales: trans-disciplinary and transcontinental.” Lauren Bonilla, co-lecturer for the anthropology course, was crucial in devising the first onsite trip to Mongolia. Drawing upon her extensive ethnographic research in Mongolia that spans decades, Bonilla remarks, “To me, engineering is a highly social discipline.” She further stresses how anthro-engineering elevates the social dimensions of engineering by critically questioning the framing of problems and solutions, stating, “It draws on anthropological insights and methods, like ethnography, to bring a human face to the users of a technology and adds complexity and nuance to the social constraints that limit designs.”

    Making of khorkhog

    Amidst the frigid atmosphere, a traditional Mongolian ger stands in front of the Nuclear Science Laboratory at the National University of Mongolia, emitting warm steam from its roof. The faculty and students of NUM organize a welcoming event inside the ger, inviting everyone to partake in a khorkhog cookout. Earlier that week, a remark from the Mongolian energy representative stood out during one of the presentations: “We need powerful heat. Solar is not enough, and electricity is not enough. Mongolians need fire,” he had emphasized.

    Indeed, the culinary delight known as khorkhog demands the relentless embrace of scorching flames. The process involves a large metal jug, stones, fire, and lamb. With skillful precision, the volunteer chef places the fire-heated stones and large pieces of lamb into the cooking container, triggering a cascade of steam that fills the ger, accompanied by the sounds of sizzling and hissing. Everyone waits patiently as the cook carefully inspects the dish, keenly listening for signs of readiness. And when the time comes, a feast is shared among all, complemented by steam-cooked potatoes, freshly sliced onions, and vegetables. In this moment, the presence of fire symbolizes a profound connection with the heart of Mongolian culture, evoking a deep resonance among the gathered crowd as they partake in this cherished staple meal.

    The distance between two points

    Familiar faces form a grid on the computer screen as the standing meeting between the students in Massachusetts and Ulaanbaatar begins. Sharing the morning (evening in Mongolia) for updates has been a critical effort by both sides to stay engaged and make decisions together. NEET CSS students in Cambridge proceeded to share their latest findings.

    Lucy Nester, a nuclear science and engineering major, has been diligently working on developing a high-efficiency electrical heating solution for individual consumers. Her primary focus is leveraging the discounted electricity rates available in the ger districts and utilize existing infrastructure. Recognizing the importance of maximum flexibility in heating the brick, Nester emphasizes the “no one-size-fits-all” solution. She shares the results of her test trials, which involve both inductive and resistive heating methods, outlining the advantages and disadvantages of each approach. Despite her limited experience in electrical engineering and circuit building, Nester has impressively overcome the steep learning curve. She enthusiastically describes her UB trip as “one of the most remarkable experiences I’ve had during my time at MIT.”

    Darshdeep Grewal, a dedicated materials science and engineering major with a strong passion for data science and computation, has been diligently conducting research on convection heating using COMSOL Multiphysics. In his investigation, Grewal explores the correlation between air temperature and heating, investigates the impact of convecting air arrangement on the heating process, and examines the conditions that may contribute to overheating. Leveraging his expertise in computational workflows, Grewal presents an impressive collection of heatmap simulations derived from the extensive data accumulated by his team throughout the project. Recognizing the immense value of these simulations in modeling complex scenarios, he highlights the importance of running experiments concurrently with simulations to ensure accurate calibration of results, stating, “It’s important to stay rooted in reality.”

    Arina Khotimsky, another materials science and engineering major, has actively engaged in NEET’s Climate and Sustainability Systems thread since her sophomore year. Balancing the demands of her final semester at MIT and the upcoming review of 22.S094, Khotimsky reveals how she has seamlessly integrated her project involvement into her energy studies minor. Reflecting on her journey, she remarks, “Working on the Ulaanbaatar project has taught me the significance of taking local context into account while suggesting solutions as an engineer.” Khotimsky has been tirelessly iterating and refining the insulation box prototype, which holds the thermal battery and controls the rate at which the battery releases heat. In addition, the on-site observations have unveiled another design challenge — ensuring the insulation box functions as a secure and dependable means of transportation. 

    To “engineer” means to contrive through one’s deliberate use of skills. What confronted the UB Project team on site was not the limitations of skill or technology, but the real-world constraints often amiss in the early equation: the people and their everyday lives. With over 6,195 miles of distance between the two groups, it takes more than just dedication to make a collaboration blossom. That may be the desire for a positive impact. Moreover, it may be the goal of cultivating a healthier relationship with energy that spans a million-person scale. No matter where you are, there is no one solution to the complex story of energy. This progressive realization brings the two teams together every two weeks in virtual space, bridging the distance between the two points.  More

  • in

    Arina Khotimsky ’23 awarded 2023 Michel David-Weill Scholarship

    Arina Khotimsky ’23 was selected for the 2023 Michel David-Weill scholarship, awarded each year to one student from the United States in a master’s program at Sciences Po in France who exemplifies the core values embodied by its namesake: excellence, leadership, multiculturalism, and high achievement. This fall Khotimsky will enter the master’s program in international energy, which is part of Sciences Po’s Paris School of International Affairs. The program aims to provide a holistic understanding of energy issues, across disciplines and across all energy sources.

    Khotimsky graduated this year from MIT with a major in materials science and engineering, and minors in energy studies and in French.

    Asked what drew her to her major, Khotimsky talked about her love of the outdoors. Seeing effects of climate change on the world around made her made her want to explore solutions. “I settled on material science and engineering because there’s so many different applications: whether it be solar power, developing different battery materials and chemistries, or some other technology. Getting that technical background at MIT can help me understand how we can implement solutions around the world, with diverse cultures in mind.”

    One of Khotimsky’s material sciences professors, Polina Anikeeva, observes that “Arina possesses the spirit of creativity, optimism, and unparalleled work ethic — all necessary ingredients to solve energy and climate challenges of our century.”

    Khotimsky is well aware of the big stakes in discussions around energy policy. She explains, “We have to cooperate internationally to make a dent in carbon emissions. The United States is historically the biggest CO2 emitter and has a large role to play to transition to a more sustainable future.”

    Her interest in studying climate change solutions on a world scale also converged with her interest in studying other languages and cultures. Her main language studies at MIT have been in French, although she also speaks Russian and beginner Chinese.

    Due to her achievement in MIT French classes, Khotimsky was one of nine students selected for a two-week cultural immersion program in Paris last June, led by MIT Professor Bruno Perreau. Perreau also had her in class last fall, and spoke about the energy and commitment she brought to class, describing her as “one of my very best students since I started to teach 22 years ago.” Khotimsky is excited to be living in France for her master’s program and putting her French skills to work.

    Khotimsky’s impressive undergraduate career has also included being co-president of the MIT Energy and Climate Club, and participating in the MIT delegation to 2022 Conference of the Parties summit (COP27) of the United Nations in Egypt last November. She also participated in the NEET Decarbonizing Ulaanbaatar project, traveling to Mongolia in Independent Activities Period 2023 with a group of students and instructors to work on clean heating technologies for traditional ger homes.

    In addition to her academic work and other extracurricular activities, Khotimsky was also a member of the MIT women’s rowing team. She walked onto the team as a first-year student, making it into the Varsity 8 boat for her senior season. Holly Metcalf, MIT women’s varsity openweight rowing coach, explains, “Being on the rowing team has in many ways become a metaphor for what Arina has come to study … She realized that rowing is about so much more than physics — it is about who one must become as an individual to contribute to the sum of mental and physical strength of the entire team.” Khotimsky was recognized on May 22 by the Patriot League, who named her the 2023 Patriot League Women’s Rowing Scholar-Athlete of the Year.

    Looking ahead, Khotimsky envisions her future involving international energy negotiations or policy. “The master’s degree I’m pursuing in international relations will help me develop skills to communicate with stakeholders from around the world and figure out how to implement solutions globally.” More